WO2018096664A1 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
WO2018096664A1
WO2018096664A1 PCT/JP2016/085099 JP2016085099W WO2018096664A1 WO 2018096664 A1 WO2018096664 A1 WO 2018096664A1 JP 2016085099 W JP2016085099 W JP 2016085099W WO 2018096664 A1 WO2018096664 A1 WO 2018096664A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
tank
compressor
water
amount
Prior art date
Application number
PCT/JP2016/085099
Other languages
French (fr)
Japanese (ja)
Inventor
謙作 畑中
徹 小出
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018552362A priority Critical patent/JP6715948B2/en
Priority to EP16922258.5A priority patent/EP3546846B1/en
Priority to PCT/JP2016/085099 priority patent/WO2018096664A1/en
Publication of WO2018096664A1 publication Critical patent/WO2018096664A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/232Temperature of the refrigerant in heat pump cycles at the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0252Compressor control by controlling speed with two speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a water heater, and more particularly to control of a water heater provided with a refrigerant circuit to which a water circulation circuit is connected.
  • a heat pump water heater has been proposed that executes control to increase the rotational speed of a pump provided in the water circulation circuit in a step shape when the boiling operation is started (see, for example, Patent Document 1).
  • the heat pump water heater of Patent Document 1 executes this control to shorten the arrival time of the target hot water temperature and prevent overshooting of the hot water temperature with respect to the target hot water temperature.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water heater that can suppress a decrease in COP.
  • a water heater includes a compressor, a condenser connected to a water circulation circuit, a refrigerant circuit including a throttling device and an evaporator, a tank provided in the water circulation circuit and storing water heated by the condenser.
  • a conveying device provided in the water circulation circuit for conveying water to the tank of the water circulation circuit, a first detection unit for detecting the outside air temperature, and a compressor and a throttling device based on the detected outside air temperature of the first detection unit
  • a control device that controls the transport device, the control device including an operation control unit that controls operations of the compressor, the squeezing device, and the transport device, and the operation control unit stores the heated water in the tank.
  • both the compressor and the conveying device are started, and the compressor is first compressed until a predetermined first period elapses from the start of the boiling operation. Operate at machine speed and pass through the first period After, to operate the compressor in a second compressor speed greater than the first compressor speed.
  • the water heater according to the present invention since it has the above-described configuration, it is possible to suppress a decrease in COP.
  • control device Cnt It is the table with which the compressor rotation speed with which control apparatus Cnt is provided was specified. It is the table with which the rotation speed of conveyance with which control apparatus Cnt is provided was specified. It is the table with which the 2nd period with which control apparatus Cnt is provided was specified. It is the table with which target hot-water temperature with which the control apparatus Cnt is provided was specified. It is the table with which the 3rd period with which control apparatus Cnt is provided was specified.
  • FIG. 1A is a schematic configuration example diagram of a water heater 100 according to an embodiment. The configuration of the water heater 100 will be described with reference to FIG. 1A.
  • the water heater 100 includes a refrigerant circuit C1, a water circulation circuit C2, a control device Cnt, and various detection units. Moreover, the water heater 100 is connected to the hot water supply utilization part U1, the hot water supply utilization part U2, and the water supply part U3.
  • the hot water supply utilization unit U1 corresponds to, for example, a bath tub.
  • the water supply unit U3 corresponds to, for example, a water tap connected to a water supply pipe.
  • the refrigerant circulates.
  • a carbon dioxide refrigerant can be employed.
  • the refrigerant circuit C1 includes a compressor 1 that compresses the refrigerant, a heat exchanger 2 that functions as a condenser, a throttling device 3 that functions to depressurize the refrigerant, and a heat exchanger 4 that functions as an evaporator.
  • the heat exchanger 4 is provided with a blower 4 ⁇ / b> A that supplies air to the heat exchanger 4.
  • the heat exchanger 2 includes a refrigerant channel through which a refrigerant flows and a water channel through which water flows.
  • the heat exchanger 2 is configured so that heat can be exchanged between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path.
  • the refrigerant circuit C1 is connected to the refrigerant flow path of the heat exchanger 2
  • the water circulation circuit C2 is connected to the water flow path of the heat exchanger 2.
  • the heat exchanger 2 condenses the refrigerant flowing through the refrigerant flow path.
  • the heat exchanger 2 can be composed of, for example, a double pipe heat exchanger.
  • the water circulation circuit C2 includes a water flow path of the heat exchanger 2, a flow path switching device 6A, a mixing circuit 6B, a tank 7 for storing water, a heat exchanger 8, and a flow path switching device 9.
  • the water circulation circuit C2 includes a transport device 5 that transports water to the tank 7 and a transport device 10 that transports water to the hot water supply utilization unit U1. Further, the water circulation circuit C2 includes a pipe P1 to a pipe P16.
  • the conveyance apparatus 5 and the conveyance apparatus 10 can be comprised with the pump which conveys water, for example.
  • the flow path switching device 6A can be constituted by a four-way valve, for example.
  • the flow path switching device 6A includes four ports through which water flows.
  • the flow path switching device 6A includes a first port a, a second port b, a third port c, and a fourth port d.
  • the first port a of the flow path switching device 6A is connected to the pipe P3.
  • the second port b of the flow path switching device 6A is connected to the pipe P4.
  • the third port c of the flow path switching device 6A is connected to the pipe P2.
  • the fourth port d of the flow path switching device 6A is connected to the pipe P8.
  • the flow path switching device 6A can form a first flow path that connects the third port c and the fourth port d.
  • the flow path switching device 6A can form a second flow path that connects the first port a and the second port b. That is, the channel switching device 6A is configured to selectively switch between the first channel and the second channel.
  • the mixing circuit 6B is a circuit having a function of mixing heated water and water supplied from the water supply unit U3.
  • the mixing circuit 6B includes a channel switching device 6B1 and a channel switching device 6B2.
  • the flow path switching device 6B1 and the flow path switching device 6B2 can be configured by, for example, a three-way valve.
  • the flow path switching device 6B1 includes a first port a, a second port b, and a third port c.
  • the flow path switching device 6B2 includes a first port a, a second port b, and a third port c.
  • the first port a of the flow path switching device 6B1 is connected to the pipe P10.
  • the second port b of the flow path switching device 6B1 is connected to the third port c of the flow path switching device 6B2.
  • the third port c of the flow path switching device 6B1 is connected to the second port b of the flow path switching device 6B2.
  • the first port a of the flow path switching device 6B2 is connected to the pipe P12.
  • a pipe P11 is connected to a pipe connecting the second port b of the flow path switching device 6B1 and the third port c of the flow path switching apparatus 6B2.
  • the tank 7 stores the water heated by the heat exchanger 2.
  • the tank 7 is connected to the pipe P3, the pipe P5, the pipe P6, and the pipe P7.
  • the heat exchanger 8 includes a first water channel to which the pipes P8 and P9 are connected, and a second water channel to which the pipes P12 and P13 are connected.
  • the heat exchanger 2 is configured to exchange heat between water flowing through the first water flow path and water flowing through the second water flow path.
  • the flow path switching device 9 can be constituted by a three-way valve, for example.
  • the flow path switching device 9 includes a first port a, a second port b, and a third port c.
  • the first port a of the flow path switching device 9 is connected to the pipe P16.
  • the second port b of the flow path switching device 9 is connected to the pipe P9.
  • the third port c of the flow path switching device 9 is connected to the pipe P6.
  • the flow path switching device 9 can form a third flow path that connects the first port a and the second port b.
  • the flow path switching device 9 can form a fourth flow path that connects the first port a and the third port c. That is, the flow path switching device 9 is configured to selectively switch between the third flow path and the fourth flow path.
  • the pipe P1 connects the water discharge side of the transport device 5 and the water flow path of the heat exchanger 2.
  • the pipe P2 connects the water channel of the heat exchanger 2 and the third port c of the channel switching device 6A.
  • the pipe P3 connects the first port a of the flow path switching device 6A and the tank 7.
  • the pipe P4 connects the second port b of the flow path switching device 6A and the pipe P1.
  • the pipe P5 connects the pipe P8 and the tank 7.
  • the pipe P5 connects the pipe P8 and the mixing circuit 6B.
  • the pipe P6 connects the tank 7 and the third port c of the flow path switching device 9.
  • the pipe P7 connects the tank 7 and the pipe P11.
  • the pipe P8 connects the fourth port d of the flow path switching device 6A and the pipe P5.
  • the pipe P8 connects the fourth port d of the flow path switching device 6A and the first water flow path of the heat exchanger 8.
  • the pipe P9 connects the first water flow path of the heat exchanger 8 and the second port b of the flow path switching device 9.
  • the pipe P10 connects the hot water supply utilization unit U2 and the first port a of the flow path switching device 6B1 of the mixing circuit 6B.
  • the pipe P11 connects the water supply unit U3 and a pipe between the second port b of the flow path switching device 6B1 of the mixing circuit 6B and the third port c of the flow path switching apparatus 6B2.
  • the pipe P11 is connected to the pipe P7. Water is supplied to the mixing circuit 6B and the tank 7 through the pipe P11.
  • the pipe P12 connects the first port a of the flow path switching device 6B2 of the mixing circuit 6B and the second water flow path of the heat exchanger 8.
  • the pipe P12 connects the first port a of the flow path switching device 6B2 of the mixing circuit 6B and the pipe P15.
  • the pipe P13 connects the water discharge side of the transport apparatus 10 and the second water flow path of the heat exchanger 8.
  • the pipe P14 connects the water suction side of the transport apparatus 10 and the hot water supply utilization unit U1.
  • the pipe P15 connects the pipe P12 and the hot water supply utilization unit U1.
  • the pipe P16 connects the water suction side of the transport device 5 and the first port a of the flow path switching device 9.
  • the first detection unit 10A is a temperature sensor that detects the outside air temperature.
  • the second detection unit 10 ⁇ / b> B is a temperature sensor that detects the refrigerant temperature on the discharge side of the compressor 1.
  • the third detection unit 10 ⁇ / b> C is a temperature sensor that detects the heat medium temperature at the outlet of the heat exchanger 2.
  • the fourth detection unit 10 ⁇ / b> D is a temperature sensor that detects the temperature of the water stored in the tank 7.
  • the fourth detection unit 10 ⁇ / b> D can also be used to calculate the amount of water stored in the tank 7.
  • the fourth detection unit 10 ⁇ / b> D can be configured by a plurality of temperature sensors arranged in the vertical direction of the tank 7.
  • the detection results of the first detection unit 10A to the fourth detection unit 10D are output to the control device Cnt to control the compressor 1, the conveyance device 5, the conveyance device 10, and the like.
  • Each functional unit included in the control device Cnt is configured with dedicated hardware or MPU (Micro Processing Unit) that executes a program stored in a memory.
  • MPU Micro Processing Unit
  • the control device Cnt is, for example, a single circuit, a composite circuit, an ASIC (application-specific integrated circuit), an FPGA (field-programmable gate array), or a combination thereof. Applicable.
  • Each functional unit realized by the control device Cnt may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • each function executed by the control device Cnt is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory.
  • the MPU implements each function of the control device Cnt by reading and executing a program stored in the memory.
  • the memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • FIG. 1B is an explanatory diagram of the boiling operation of the water heater 100 according to the embodiment.
  • the water heater 100 can perform a boiling operation in which water is boiled by the heat exchanger 2 and stored in the tank 7.
  • the control device Cnt operates the compressor 1 and circulates the refrigerant in the refrigerant circuit C1.
  • the controller Cnt sets the rotation speed of the compressor 1 to a first compressor rotation speed described later.
  • the controller Cnt operates the transport device 5 during the boiling operation.
  • the control device Cnt sets the rotational speed of the transport device 5 to a first transport rotational speed described later.
  • the control device Cnt switches the flow path switching device 6A to the first flow path, and switches the flow path switching device 9 to the fourth flow path.
  • the water of the water circulation circuit C2 flows in the order of the transport device 5, the heat exchanger 2, the flow path switching device 6A, the tank 7, and the flow path switching device 9, and returns to the transport device 5.
  • FIG. 1C is an explanatory diagram of the additional cooking operation of the water heater 100 according to the embodiment.
  • the water heater 100 can also perform other operations of the boiling operation.
  • the additional cooking operation will be described as an example.
  • the additional cooking operation is an operation in which the water stretched in the hot water supply utilization unit U1 (bath) is heated again.
  • the control device Cnt may stop the compressor 1 or may operate it. Further, in the additional cooking operation, the control device Cnt operates the transport device 5 and the transport device 10. In the additional cooking operation, the control device Cnt switches the flow path switching device 6A to the second flow path, and switches the flow path switching device 9 to the third flow path.
  • the water that has flowed out of the transfer device 5 of the water circulation circuit C2 flows through the flow path switching device 6A, the tank 7, the heat exchanger 8, and the flow path switching device 9, and returns to the transfer device 5.
  • the water that has flowed out of the transfer device 10 of the water circulation circuit C2 is heated to the water flowing through the first water flow path of the heat exchanger 8, and then supplied to the hot water supply utilization unit U1 through the pipe P15.
  • FIG. 2 is a functional block diagram of the control device Cnt.
  • the control device Cnt includes a heat amount acquisition unit 90A, a heat storage amount acquisition unit 90B, a first rotation speed acquisition unit 90C, and a second rotation speed acquisition unit 90D.
  • the control device Cnt includes a period acquisition unit 90E, a tapping temperature information acquisition unit 90F, and an opening degree acquisition unit 90G. Furthermore, the control device Cnt includes an operation control unit 90H and a storage unit 90I.
  • the heat quantity acquisition unit 90A of the control device Cnt acquires data related to the heat quantity of the water stored in the tank 7.
  • the data relating to the amount of heat of water corresponds to the amount of heat of the remaining hot water, which is the amount of heat of water in the tank 7.
  • heat amount acquisition part 90A acquires the remaining hot water calorie
  • the heat storage amount acquisition unit 90B of the control device Cnt acquires data (target heat storage amount) related to the target value of the total heat storage amount (total heat amount) of the water stored in the tank 7. Data relating to the target value of the total heat storage amount of water corresponds to the target heat storage amount in the tank 7.
  • the heat storage amount acquisition unit 90B calculates a target value of the total heat storage amount of water stored in the tank 7 based on, for example, the heat amount of water used in the hot water supply utilization unit U1, the hot water supply utilization unit U2, and the like.
  • the heat storage amount acquisition unit 90B acquires data regarding the calculated target value as the target heat storage amount.
  • the first rotation speed acquisition unit 90C of the control device Cnt acquires the first compressor rotation speed and the second compressor rotation speed based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature. .
  • the first rotation speed acquisition unit 90C acquires the remaining hot water heat amount from the heat amount acquisition unit 90A, acquires the target heat storage amount from the heat storage amount acquisition unit 90B, and acquires the detected outside air temperature from the first detection unit 10A.
  • the first compressor rotation speed and the second compressor rotation speed are predetermined constant values. Further, the second compressor rotational speed is larger than the first compressor rotational speed. Specific acquisition means for the first compressor speed and the second compressor speed will be described later with reference to FIG.
  • the second rotation speed acquisition unit 90D of the control device Cnt acquires the first transfer rotation speed and the second transfer rotation speed based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature.
  • the second rotation speed acquisition unit 90D acquires the remaining hot water heat amount from the heat amount acquisition unit 90A, acquires the target heat storage amount from the heat storage amount acquisition unit 90B, and acquires the detected outside air temperature from the first detection unit 10A.
  • the first conveyance rotation number is a predetermined constant value.
  • the second conveyance rotation number is not limited to a predetermined constant value, and may be a fluctuation value that changes with time.
  • the first transport rotational speed is smaller than the second transport rotational speed. This magnitude relationship is satisfied regardless of whether the second conveyance rotation number is a constant value or a fluctuation value. Specific acquisition means for the first transport rotation speed and the second transport rotation speed will be described later with reference to FIG. 4A.
  • the period acquisition unit 90E of the control device Cnt can acquire the first period stored in advance in the storage unit 90I from the storage unit 90I.
  • the period acquisition unit 90E acquires the second period based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature.
  • the period acquisition unit 90E acquires the remaining hot water heat amount from the heat amount acquisition unit 90A, acquires the target heat storage amount from the heat storage amount acquisition unit 90B, and acquires the detected outside air temperature from the first detection unit 10A. Specific means for acquiring the second period will be described later with reference to FIG. 4B.
  • the hot water temperature information acquisition unit 90F of the control device Cnt acquires the first target hot water temperature and the second target hot water temperature based on the remaining hot water amount, the target heat storage amount, and the detected outside air temperature. For example, when the detected outside air temperature becomes low as in winter, the first target hot water temperature and the second target hot water temperature are increased accordingly.
  • the hot water temperature information acquisition unit 90F acquires the detected outside air temperature from the first detection unit 10A. Further, the hot water temperature information acquisition unit 90F acquires a third period in which the target hot water temperature is set to the first target hot water temperature based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature.
  • the opening degree acquisition unit 90G of the control device Cnt determines the first opening degree that is the target opening degree of the expansion device 3 based on the first compressor rotation speed and the target hot water temperature at the start of the boiling operation. get.
  • the opening degree obtaining unit 90G obtains the first compressor rotational speed from the first rotational speed obtaining unit 90C, and obtains the target hot water temperature from the hot water temperature information obtaining unit 90F.
  • the opening degree acquiring unit 90G is based on the refrigerant temperature discharged from the compressor 1 and is the second opening that is the target opening degree of the expansion device 3. Get the opening. That is, the opening degree acquisition unit 90G acquires the second opening degree based on the temperature detected by the second detection unit 10B.
  • the operation control unit 90H of the control device Cnt controls the rotational speed of the compressor 1, the opening degree of the expansion device 3, the rotational speed of the transport device 5, and the rotational speed of the transport device 10. In addition, the operation control unit 90H switches the rotation speed of the blower 4A, the flow path of the flow path switching device 6A, the flow path switching of the mixing circuit 6B (the flow path switching device 6B1 and the flow path switching device 6B2), and the flow The switching of the flow path of the path switching device 9 is controlled.
  • FIG. 3 is a table provided in the control device Cnt, in which the compressor rotational speed is specified.
  • the control device Cnt includes a first table in which the first compressor rotational speed is specified and a second table in which the second compressor rotational speed is specified. In the first table and the second table, compressor rotational speeds that satisfy the following relationship are specified.
  • the calorific value difference value can be defined by a numerical value determined based on the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of the water in the tank 7.
  • the heat amount difference value is zero. That is, in this case, the control device Cnt refers to the cell in the column “0” in the first table of FIG. Further, for example, if the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of the water in the tank 7, is a numerical value within a predetermined second range that is larger than the first range.
  • the calorie difference value is 100. That is, in this case, the control device Cnt refers to the cell in the column “100” in the first table of FIG.
  • the outside air temperature value can be defined by a numerical value determined based on the detected outside air temperature. For example, if the detected outside air temperature is 40 degrees or less and higher than 25 degrees, the outside air temperature value is 40. That is, in this case, the control device Cnt refers to the cell in the row “40” in the first table of FIG. For example, if the detected outside air temperature is 25 degrees or less and higher than 16 degrees, the outside air temperature value is 25. That is, in this case, the control device Cnt refers to the cell in the row “25” in the first table of FIG.
  • the 3rd table, the 4th table, the 5th table, the 6th table, the 7th table, and the 8th table demonstrated based on FIG. 4A, FIG. 4B, FIG. 5A, and FIG. 5B mentioned later.
  • a plurality of (for example, five) heat amount difference values corresponding to the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount that is the heat amount of the water in the tank 7 are specified.
  • a plurality of (for example, six) outside air temperature values corresponding to the detected outside air temperature are specified.
  • 4A, 4B, 5A, and 5B the definition of the calorific value difference and the outside air temperature value and the explanation of the calorie difference value and the outside air temperature value described based on FIG. 3 are applied. be able to.
  • the first compressor rotation speed increases as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, increases. That is, when the outside air temperature value is constant, the first compressor rotation speed increases as the heat difference value increases. When the outside air temperature value is constant, the value is larger as the first compressor speed specified on the right side of the first table is higher.
  • the first compressor rotation speed increases as the detected outside air temperature decreases. That is, when the heat difference value is constant, the first compressor rotation speed increases as the outside air temperature value decreases. In the case where the calorific value difference is constant, the value is larger as the first compressor speed specified on the lower side of the first table.
  • the second compressor rotational speed is specified in the same manner as the first table.
  • a plurality of heat amount difference values corresponding to the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount which is the heat amount of the water in the tank 7 are specified.
  • five different heat quantity difference values are specified.
  • a plurality of outside air temperature values corresponding to the detected outside air temperature are specified.
  • the second compressor rotational speed increases as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, increases. That is, when the outside air temperature value is constant, the second compressor rotation speed increases as the heat quantity difference value increases. Further, the second compressor rotational speed is larger as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the second compressor rotation speed increases as the outside air temperature value decreases.
  • Numeral values that can improve the COP of the water heater 100 under various circumstances are adopted for the compressor rotation speeds specified in the first table and the second table.
  • the control device Cnt operates the compressor 1 at the compressor rotational speed corresponding to each situation, the water heater 100 can realize a boiling operation with a high COP even under various situations.
  • FIG. 4A is a table provided with the control device Cnt, in which the number of conveyance rotations is specified.
  • the control device Cnt includes a third table in which the first transfer rotation speed is specified and a fourth table in which the second transfer rotation speed is specified. In the third table and the fourth table, the number of conveyance rotations satisfying the following relationship is specified.
  • the first transfer rotational speed is larger as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is smaller. That is, when the outside air temperature value is constant, the first transfer rotation speed increases as the calorific value difference value decreases. In addition, the first transfer rotation speed is larger as the detected outside air temperature is higher. That is, when the calorific value difference value is constant, the first transfer rotation speed increases as the outside air temperature value increases.
  • the second conveyance rotation speed increases as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is smaller. That is, when the outside air temperature value is constant, the second conveyance rotation speed increases as the calorific value difference value decreases. In addition, the second conveyance rotation speed increases as the detected outside air temperature increases. That is, when the calorific value difference value is constant, the second transfer rotational speed increases as the outside air temperature value increases.
  • FIG. 4B is a table with which the second period is specified, which is included in the control device Cnt.
  • the control device Cnt includes a fifth table in which the second period is specified.
  • a second period that satisfies the following relationship is specified.
  • the second period is shorter as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is smaller. That is, when the outside air temperature value is constant, the second period becomes shorter as the calorific value difference value is smaller.
  • the second period is shorter as the detected outside air temperature is higher. That is, when the calorific value difference value is constant, the second period is shorter as the outside air temperature value is higher.
  • the control device Cnt acquires the initial value of the second conveyance rotation number based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature. Then, when a predetermined condition is satisfied, the control device Cnt performs, for example, a variation control that varies the conveyance rotation number, and varies the second conveyance rotation number.
  • a variation control for example, PID control ( Proportional-Integral-Differential Controller ) can be employed. In addition, it is not limited to PID control, P control or PI control may be sufficient.
  • the predetermined condition may be, for example, that the detected temperature (hot water temperature) of the third detection unit 10C exceeds a predetermined target hot water temperature. That is, the control device Cnt shifts to fluctuation control when the temperature detected by the third detector 10C (the temperature of the hot water) exceeds the first target hot water temperature or the second target hot water temperature. As a result, the rotational speed of the transport device 5 changes from the initial value of the second transport rotational speed.
  • the numerical values that can improve the COP of the water heater 100 under various circumstances are adopted for the pump rotation speeds specified in the third table and the fourth table.
  • a numerical value that can improve the COP of the water heater 100 under various circumstances is adopted.
  • various situations are determined based on the detected outside air temperature and the difference between the target heat storage amount and the remaining hot water heat amount.
  • the controller Cnt operates the transfer device 5 in the second period corresponding to the number of rotations of the pump corresponding to each situation and the hot water heater 100 has a high COP even in various situations. Can be realized.
  • FIG. 5A is a table with which the target hot water temperature is specified, which is included in the control device Cnt.
  • the control device Cnt includes a sixth table in which the first target hot water temperature is specified and a seventh table in which the second target hot water temperature is specified.
  • the sixth table and the seventh table the first target hot water temperature and the second target hot water temperature satisfying the following relationship are specified.
  • the first target hot water temperature is higher as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is larger. That is, when the outside air temperature value is constant, the first target hot water temperature is higher as the calorie difference value is larger. The first target hot water temperature is higher as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the first target hot water temperature is higher as the outside air temperature value is smaller.
  • the second target hot water temperature is higher as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is larger. That is, when the outside air temperature value is constant, the second target hot water temperature is higher as the calorie difference value is larger. The second target hot water temperature is higher as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the second target hot water temperature is higher as the outside air temperature value is smaller.
  • FIG. 5B is a table with which the third period is specified, which is included in the control device Cnt.
  • the control device Cnt includes an eighth table in which the third period is specified.
  • the eighth table a third period that satisfies the following relationship is specified.
  • the third period is longer as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is larger. That is, when the outside air temperature value is constant, the third period becomes longer as the calorific value difference is larger. The third period is longer as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the third period becomes longer as the outside air temperature value is lower.
  • the effect will be explained using winter as an example. If the target hot water temperature (corresponding to the first target hot water temperature) is suppressed during the period when the boiling operation is not started, the opening degree of the expansion device 3 becomes too large, and the refrigerant discharged from the compressor 1 The temperature is unlikely to increase, and the COP of the water heater 100 may decrease. Therefore, when the control device Cnt starts the boiling operation, it is possible to suppress the decrease in COP of the water heater 100 by setting the target hot water temperature in consideration of the detected outside air temperature. In addition, when the control device Cnt starts the boiling operation, the decrease in COP of the water heater 100 is suppressed by setting the target hot water temperature in consideration of the difference between the target heat storage amount and the remaining hot water heat amount. be able to.
  • a numerical value capable of improving the COP of the water heater 100 under various circumstances is adopted.
  • a numerical value that can improve the COP of the water heater 100 under various circumstances is adopted.
  • the controller Cnt sets the target hot water temperature corresponding to each situation and the third period corresponding to each situation, so that the water heater 100 can realize a boiling operation with a high COP even under various situations.
  • the compressor 1 operates at the first compressor speed during the first period. When the first period elapses, the compressor 1 operates at a second compressor rotational speed that is greater than the first compressor rotational speed.
  • FIG. 6B is an explanatory diagram of the change over time of the operation of the transport device 5.
  • FIG. 6B illustrates an example in which the second period is shorter than the third period.
  • the conveyance device 5 operates at the first conveyance rotation number during the second period.
  • the transport device 5 starts operation at a second transport rotational speed that is smaller than the first transport rotational speed. And when the detection temperature (hot water temperature) of the 3rd detection part 10C exceeds 1st target hot water temperature, the rotation speed of the conveying apparatus 5 fluctuates from 2nd conveyance rotation speed.
  • the control device Cnt sets the set value of the target hot water temperature as the first target hot water temperature during the third period. And control apparatus Cnt makes the setting value of target hot-water temperature the 2nd target hot-water temperature larger than 1st target hot-water temperature, when the 3rd period passes.
  • FIG. 7 is a modified example when the set rotational speed of the compressor 1 is shifted from the first compressor rotational speed to the second compressor rotational speed.
  • the control device Cnt may increase the set rotational speed of the compressor 1 stepwise from the first compressor rotational speed to reach the second compressor rotational speed at the end of the first period. .

Abstract

A control device includes an operation control unit that controls the operations of a compressor, a throttling device, and a transportation device. The operation control unit starts the operation of both the compressor and the transportation device when starting a boiling operation of storing heated water in a tank. The operation control device operates the compressor at a first compressor rotation speed until a predetermined first duration has elapsed from the start of the boiling operation, and operates the compressor at a second compressor rotation speed higher than the first compressor rotation speed after the first duration has elapsed.

Description

給湯機Water heater
 本発明は、給湯機に関し、特に、水循環回路が接続された冷媒回路を備えている給湯機の制御に関するものである。 The present invention relates to a water heater, and more particularly to control of a water heater provided with a refrigerant circuit to which a water circulation circuit is connected.
 例えば、ヒートポンプ給湯機には、沸き上げ運転を開始すると水循環回路に設けられたポンプの回転数をステップ状に増加させる制御を実行するものが提案されている(例えば、特許文献1参照)。特許文献1のヒートポンプ給湯機は、この制御を実行することで、目標出湯温度の到達時間を短縮するとともに、出湯温度の目標出湯温度に対するオーバーシュートを防止している。 For example, a heat pump water heater has been proposed that executes control to increase the rotational speed of a pump provided in the water circulation circuit in a step shape when the boiling operation is started (see, for example, Patent Document 1). The heat pump water heater of Patent Document 1 executes this control to shorten the arrival time of the target hot water temperature and prevent overshooting of the hot water temperature with respect to the target hot water temperature.
特開2005-140439号公報Japanese Patent Laid-Open No. 2005-140439
 沸き上げ運転を開始するときにおいては、冷媒の温度及び機器の動作等が安定化しておらず、給湯機のCOP(Coefficient Of Performance)が低下しやすい。沸き上げ運転を開始するときにおいて、給湯機に備えられた各種機器の動作によっては、COPの低下がより大きくなる場合がある。沸き上げ運転を開始するときにおいて、例えばポンプの回転数を抑えすぎると、COPの低下がより大きくなる場合がある。 When starting the boiling operation, the temperature of the refrigerant, the operation of the equipment, and the like are not stabilized, and the COP ( Coefficient Of Performance) of the water heater tends to decrease. When starting the boiling operation, depending on the operation of various devices provided in the water heater, the reduction of the COP may become larger. When starting the boiling operation, for example, if the number of rotations of the pump is suppressed too much, the COP may be further decreased.
 本発明は、上記のような課題を解決するためになされたもので、COPの低下を抑制することができる給湯機を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water heater that can suppress a decrease in COP.
 本発明に係る給湯機は、圧縮機、水循環回路に接続されている凝縮器、絞り装置及び蒸発器を含む冷媒回路と、水循環回路に設けられ、凝縮器で加熱された水を貯留するタンクと、水循環回路に設けられ、水循環回路のタンクに水を搬送する搬送装置と、外気温度を検出する第1の検出部と、第1の検出部の検出外気温度に基づいて、圧縮機、絞り装置及び搬送装置を制御する制御装置と、を備え、制御装置は、圧縮機、絞り装置及び搬送装置の動作を制御する動作制御部を含み、動作制御部は、タンクに加熱された水を貯留する沸き上げ運転を開始する場合には、圧縮機及び搬送装置の両方を共に運転開始し、沸き上げ運転の開始から予め定められた第1の期間が経過するまでは、圧縮機を第1の圧縮機回転数で運転し、第1の期間の経過後は、圧縮機を第1の圧縮機回転数よりも大きい第2の圧縮機回転数で運転する。 A water heater according to the present invention includes a compressor, a condenser connected to a water circulation circuit, a refrigerant circuit including a throttling device and an evaporator, a tank provided in the water circulation circuit and storing water heated by the condenser. A conveying device provided in the water circulation circuit for conveying water to the tank of the water circulation circuit, a first detection unit for detecting the outside air temperature, and a compressor and a throttling device based on the detected outside air temperature of the first detection unit And a control device that controls the transport device, the control device including an operation control unit that controls operations of the compressor, the squeezing device, and the transport device, and the operation control unit stores the heated water in the tank. When starting the boiling operation, both the compressor and the conveying device are started, and the compressor is first compressed until a predetermined first period elapses from the start of the boiling operation. Operate at machine speed and pass through the first period After, to operate the compressor in a second compressor speed greater than the first compressor speed.
 本発明に係る給湯機によれば、上記構成を備えているので、COPの低下を抑制することができる。 According to the water heater according to the present invention, since it has the above-described configuration, it is possible to suppress a decrease in COP.
実施の形態に係る給湯機100の概要構成例図である。It is an example of outline composition of hot water supply machine 100 concerning an embodiment. 実施の形態に係る給湯機100の沸き上げ運転の説明図である。It is explanatory drawing of the boiling operation of the water heater 100 which concerns on embodiment. 実施の形態に係る給湯機100の追い炊き運転の説明図である。It is explanatory drawing of the additional cooking operation of the water heater 100 which concerns on embodiment. 制御装置Cntの機能ブロック図である。It is a functional block diagram of control device Cnt. 制御装置Cntが備える、圧縮機回転数が特定されたテーブルである。It is the table with which the compressor rotation speed with which control apparatus Cnt is provided was specified. 制御装置Cntが備える、搬送回転数が特定されたテーブルである。It is the table with which the rotation speed of conveyance with which control apparatus Cnt is provided was specified. 制御装置Cntが備える、第2の期間が特定されたテーブルである。It is the table with which the 2nd period with which control apparatus Cnt is provided was specified. 制御装置Cntが備える、目標出湯温度が特定されたテーブルである。It is the table with which target hot-water temperature with which the control apparatus Cnt is provided was specified. 制御装置Cntが備える、第3の期間が特定されたテーブルである。It is the table with which the 3rd period with which control apparatus Cnt is provided was specified. 圧縮機1の動作の時間変化の説明図である。It is explanatory drawing of the time change of operation | movement of the compressor. 搬送装置5の動作の時間変化の説明図である。It is explanatory drawing of the time change of operation | movement of the conveying apparatus. 目標出湯温度の時間変化の説明図である。It is explanatory drawing of the time change of target hot-water temperature. 圧縮機1の設定回転数を、第1の圧縮機回転数から第2の圧縮機回転数へ移行させるときの変形例である。This is a modification when the set rotational speed of the compressor 1 is shifted from the first compressor rotational speed to the second compressor rotational speed.
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態.
 図1Aは、実施の形態に係る給湯機100の概要構成例図である。図1Aを参照して給湯機100の構成について説明する。
Embodiment.
FIG. 1A is a schematic configuration example diagram of a water heater 100 according to an embodiment. The configuration of the water heater 100 will be described with reference to FIG. 1A.
[構成説明]
 給湯機100は、冷媒回路C1と、水循環回路C2と、制御装置Cntと、各種の検出部とを備えている。また、給湯機100は、給湯利用部U1、給湯利用部U2及び水供給部U3に接続されている。給湯利用部U1は、例えばお風呂の浴槽に対応する。また、給湯利用部U2は、例えばシャワー、カラン及びキッチンの蛇口等に対応する。更に、水供給部U3は、例えば水道の配管に接続された給水栓に対応する。
[Description of configuration]
The water heater 100 includes a refrigerant circuit C1, a water circulation circuit C2, a control device Cnt, and various detection units. Moreover, the water heater 100 is connected to the hot water supply utilization part U1, the hot water supply utilization part U2, and the water supply part U3. The hot water supply utilization unit U1 corresponds to, for example, a bath tub. Moreover, the hot water supply utilization part U2 respond | corresponds, for example to a shower, currant, a kitchen faucet, etc. Furthermore, the water supply unit U3 corresponds to, for example, a water tap connected to a water supply pipe.
 冷媒回路C1は、冷媒が循環する。冷媒としては、例えば二酸化炭素冷媒を採用することができる。冷媒回路C1は、冷媒を圧縮する圧縮機1と、凝縮器として機能する熱交換器2と、冷媒を減圧する機能を有する絞り装置3と、蒸発器として機能する熱交換器4とを含む。熱交換器4には、熱交換器4に空気を供給する送風機4Aが付設されている。
 熱交換器2は、冷媒が流れる冷媒流路と、水が流れる水流路とを含む。熱交換器2は、冷媒流路を流れる冷媒と、水流路を流れる水とが熱交換できるように構成されている。冷媒回路C1は熱交換器2の冷媒流路に接続され、水循環回路C2は熱交換器2の水流路に接続されている。熱交換器2は、冷媒流路を流れる冷媒を凝縮させる。熱交換器2は、例えば2重管熱交換器で構成することができる。
In the refrigerant circuit C1, the refrigerant circulates. As the refrigerant, for example, a carbon dioxide refrigerant can be employed. The refrigerant circuit C1 includes a compressor 1 that compresses the refrigerant, a heat exchanger 2 that functions as a condenser, a throttling device 3 that functions to depressurize the refrigerant, and a heat exchanger 4 that functions as an evaporator. The heat exchanger 4 is provided with a blower 4 </ b> A that supplies air to the heat exchanger 4.
The heat exchanger 2 includes a refrigerant channel through which a refrigerant flows and a water channel through which water flows. The heat exchanger 2 is configured so that heat can be exchanged between the refrigerant flowing through the refrigerant flow path and the water flowing through the water flow path. The refrigerant circuit C1 is connected to the refrigerant flow path of the heat exchanger 2, and the water circulation circuit C2 is connected to the water flow path of the heat exchanger 2. The heat exchanger 2 condenses the refrigerant flowing through the refrigerant flow path. The heat exchanger 2 can be composed of, for example, a double pipe heat exchanger.
 水循環回路C2は、水が循環する。水循環回路C2は、熱交換器2の水流路と、流路切替装置6Aと、混合回路6Bと、水を貯留するタンク7と、熱交換器8と、流路切替装置9とを含む。また、水循環回路C2は、タンク7に水を搬送する搬送装置5と、給湯利用部U1に水を搬送する搬送装置10とを含む。更に、水循環回路C2は、配管P1~配管P16を含む。搬送装置5及び搬送装置10は、例えば水を搬送するポンプで構成することができる。 Water is circulated in the water circulation circuit C2. The water circulation circuit C2 includes a water flow path of the heat exchanger 2, a flow path switching device 6A, a mixing circuit 6B, a tank 7 for storing water, a heat exchanger 8, and a flow path switching device 9. The water circulation circuit C2 includes a transport device 5 that transports water to the tank 7 and a transport device 10 that transports water to the hot water supply utilization unit U1. Further, the water circulation circuit C2 includes a pipe P1 to a pipe P16. The conveyance apparatus 5 and the conveyance apparatus 10 can be comprised with the pump which conveys water, for example.
 流路切替装置6Aは、例えば四方弁で構成することができる。流路切替装置6Aは、水が流れる4つのポートを備えている。流路切替装置6Aは、第1のポートaと第2のポートbと第3のポートcと第4のポートdとを備えている。流路切替装置6Aの第1のポートaは配管P3に接続されている。流路切替装置6Aの第2のポートbは配管P4に接続されている。流路切替装置6Aの第3のポートcは配管P2に接続されている。流路切替装置6Aの第4のポートdは配管P8に接続されている。流路切替装置6Aは、第3のポートcと第4のポートdとを接続する第1の流路を形成することができる。また、流路切替装置6Aは、第1のポートaと第2のポートbとを接続する第2の流路を形成することができる。つまり、流路切替装置6Aは、第1の流路と第2の流路を選択的に切り替えることができるように構成されている。 The flow path switching device 6A can be constituted by a four-way valve, for example. The flow path switching device 6A includes four ports through which water flows. The flow path switching device 6A includes a first port a, a second port b, a third port c, and a fourth port d. The first port a of the flow path switching device 6A is connected to the pipe P3. The second port b of the flow path switching device 6A is connected to the pipe P4. The third port c of the flow path switching device 6A is connected to the pipe P2. The fourth port d of the flow path switching device 6A is connected to the pipe P8. The flow path switching device 6A can form a first flow path that connects the third port c and the fourth port d. Moreover, the flow path switching device 6A can form a second flow path that connects the first port a and the second port b. That is, the channel switching device 6A is configured to selectively switch between the first channel and the second channel.
 混合回路6Bは、加熱された水と、水供給部U3から供給される水とを混合する機能を有する回路である。混合回路6Bは、流路切替装置6B1及び流路切替装置6B2を含む。流路切替装置6B1及び流路切替装置6B2は、例えば三方弁で構成することができる。
 流路切替装置6B1は、第1のポートaと第2のポートbと第3のポートcとを備えている。また、流路切替装置6B2は、第1のポートaと第2のポートbと第3のポートcとを備えている。
The mixing circuit 6B is a circuit having a function of mixing heated water and water supplied from the water supply unit U3. The mixing circuit 6B includes a channel switching device 6B1 and a channel switching device 6B2. The flow path switching device 6B1 and the flow path switching device 6B2 can be configured by, for example, a three-way valve.
The flow path switching device 6B1 includes a first port a, a second port b, and a third port c. The flow path switching device 6B2 includes a first port a, a second port b, and a third port c.
 流路切替装置6B1の第1のポートaは配管P10に接続されている。流路切替装置6B1の第2のポートbは流路切替装置6B2の第3のポートcに接続されている。流路切替装置6B1の第3のポートcは流路切替装置6B2の第2のポートbに接続されている。流路切替装置6B2の第1のポートaは配管P12に接続されている。流路切替装置6B1の第2のポートbと流路切替装置6B2の第3のポートcとを接続する配管には、配管P11が接続されている。 The first port a of the flow path switching device 6B1 is connected to the pipe P10. The second port b of the flow path switching device 6B1 is connected to the third port c of the flow path switching device 6B2. The third port c of the flow path switching device 6B1 is connected to the second port b of the flow path switching device 6B2. The first port a of the flow path switching device 6B2 is connected to the pipe P12. A pipe P11 is connected to a pipe connecting the second port b of the flow path switching device 6B1 and the third port c of the flow path switching apparatus 6B2.
 タンク7は、熱交換器2で加熱された水を貯留する。タンク7は、配管P3、配管P5、配管P6及び配管P7に接続されている。
 熱交換器8は、配管P8及び配管P9が接続された第1の水流路と、配管P12及び配管P13が接続された第2の水流路とを含む。熱交換器2は、第1の水流路を流れる水と、第2の水流路を流れる水とが熱交換できるように構成されている。
The tank 7 stores the water heated by the heat exchanger 2. The tank 7 is connected to the pipe P3, the pipe P5, the pipe P6, and the pipe P7.
The heat exchanger 8 includes a first water channel to which the pipes P8 and P9 are connected, and a second water channel to which the pipes P12 and P13 are connected. The heat exchanger 2 is configured to exchange heat between water flowing through the first water flow path and water flowing through the second water flow path.
 流路切替装置9は、例えば三方弁で構成することができる。流路切替装置9は、第1のポートaと第2のポートbと第3のポートcとを備えている。流路切替装置9の第1のポートaは配管P16に接続されている。流路切替装置9の第2のポートbは配管P9に接続されている。流路切替装置9の第3のポートcは配管P6に接続されている。流路切替装置9は、第1のポートaと第2のポートbとを接続する第3の流路を形成することができる。また、流路切替装置9は、第1のポートaと第3のポートcとを接続する第4の流路を形成することができる。つまり、流路切替装置9は、第3の流路と第4の流路を選択的に切り替えることができるように構成されている。 The flow path switching device 9 can be constituted by a three-way valve, for example. The flow path switching device 9 includes a first port a, a second port b, and a third port c. The first port a of the flow path switching device 9 is connected to the pipe P16. The second port b of the flow path switching device 9 is connected to the pipe P9. The third port c of the flow path switching device 9 is connected to the pipe P6. The flow path switching device 9 can form a third flow path that connects the first port a and the second port b. Further, the flow path switching device 9 can form a fourth flow path that connects the first port a and the third port c. That is, the flow path switching device 9 is configured to selectively switch between the third flow path and the fourth flow path.
 配管P1は搬送装置5の水吐出側と熱交換器2の水流路とを接続する。
 配管P2は熱交換器2の水流路と流路切替装置6Aの第3のポートcとを接続する。
 配管P3は流路切替装置6Aの第1のポートaとタンク7とを接続する。
 配管P4は流路切替装置6Aの第2のポートbと配管P1とを接続する。
 配管P5は配管P8とタンク7とを接続する。また、配管P5は、配管P8と混合回路6Bとを接続する。
The pipe P1 connects the water discharge side of the transport device 5 and the water flow path of the heat exchanger 2.
The pipe P2 connects the water channel of the heat exchanger 2 and the third port c of the channel switching device 6A.
The pipe P3 connects the first port a of the flow path switching device 6A and the tank 7.
The pipe P4 connects the second port b of the flow path switching device 6A and the pipe P1.
The pipe P5 connects the pipe P8 and the tank 7. The pipe P5 connects the pipe P8 and the mixing circuit 6B.
 配管P6はタンク7と流路切替装置9の第3のポートcとを接続する。
 配管P7はタンク7と配管P11とを接続する。
 配管P8は流路切替装置6Aの第4のポートdと配管P5とを接続する。また、配管P8は流路切替装置6Aの第4のポートdと熱交換器8の第1の水流路とを接続する。
 配管P9は熱交換器8の第1の水流路と流路切替装置9の第2のポートbとを接続する。
The pipe P6 connects the tank 7 and the third port c of the flow path switching device 9.
The pipe P7 connects the tank 7 and the pipe P11.
The pipe P8 connects the fourth port d of the flow path switching device 6A and the pipe P5. The pipe P8 connects the fourth port d of the flow path switching device 6A and the first water flow path of the heat exchanger 8.
The pipe P9 connects the first water flow path of the heat exchanger 8 and the second port b of the flow path switching device 9.
 配管P10は給湯利用部U2と混合回路6Bの流路切替装置6B1の第1のポートaとを接続する。
 配管P11は、水供給部U3と、混合回路6Bの流路切替装置6B1の第2のポートbと流路切替装置6B2の第3のポートcとの間の配管と、を接続する。また、配管P11は、配管P7に接続されている。配管P11を介して混合回路6B及びタンク7へ水が供給される。
The pipe P10 connects the hot water supply utilization unit U2 and the first port a of the flow path switching device 6B1 of the mixing circuit 6B.
The pipe P11 connects the water supply unit U3 and a pipe between the second port b of the flow path switching device 6B1 of the mixing circuit 6B and the third port c of the flow path switching apparatus 6B2. The pipe P11 is connected to the pipe P7. Water is supplied to the mixing circuit 6B and the tank 7 through the pipe P11.
 配管P12は、混合回路6Bの流路切替装置6B2の第1のポートaと、熱交換器8の第2の水流路とを接続する。また、配管P12は、混合回路6Bの流路切替装置6B2の第1のポートaと、配管P15とを接続する。
 配管P13は搬送装置10の水吐出側と熱交換器8の第2の水流路とを接続する。
 配管P14は搬送装置10の水吸入側と給湯利用部U1とを接続する。
 配管P15は配管P12と給湯利用部U1とを接続する。
 配管P16は搬送装置5の水吸入側と流路切替装置9の第1のポートaとを接続する。
The pipe P12 connects the first port a of the flow path switching device 6B2 of the mixing circuit 6B and the second water flow path of the heat exchanger 8. The pipe P12 connects the first port a of the flow path switching device 6B2 of the mixing circuit 6B and the pipe P15.
The pipe P13 connects the water discharge side of the transport apparatus 10 and the second water flow path of the heat exchanger 8.
The pipe P14 connects the water suction side of the transport apparatus 10 and the hot water supply utilization unit U1.
The pipe P15 connects the pipe P12 and the hot water supply utilization unit U1.
The pipe P16 connects the water suction side of the transport device 5 and the first port a of the flow path switching device 9.
 第1の検出部10Aは、外気温度を検出する温度センサである。第2の検出部10Bは、圧縮機1の吐出側の冷媒温度を検出する温度センサである。第3の検出部10Cは、熱交換器2の出口の熱媒体温度を検出する温度センサである。
 第4の検出部10Dは、タンク7内に貯留されている水の温度を検出する温度センサである。第4の検出部10Dは、タンク7内に貯留されている水の量の算出にも用いることができる。第4の検出部10Dは、例えば、タンク7の上下方向に複数配置された温度センサで構成することができる。
The first detection unit 10A is a temperature sensor that detects the outside air temperature. The second detection unit 10 </ b> B is a temperature sensor that detects the refrigerant temperature on the discharge side of the compressor 1. The third detection unit 10 </ b> C is a temperature sensor that detects the heat medium temperature at the outlet of the heat exchanger 2.
The fourth detection unit 10 </ b> D is a temperature sensor that detects the temperature of the water stored in the tank 7. The fourth detection unit 10 </ b> D can also be used to calculate the amount of water stored in the tank 7. For example, the fourth detection unit 10 </ b> D can be configured by a plurality of temperature sensors arranged in the vertical direction of the tank 7.
 制御装置Cntには、第1の検出部10A~第4の検出部10Dの検出結果が出力され、圧縮機1、搬送装置5及び搬送装置10等を制御する。 The detection results of the first detection unit 10A to the fourth detection unit 10D are output to the control device Cnt to control the compressor 1, the conveyance device 5, the conveyance device 10, and the like.
 制御装置Cntに含まれる各機能部は、専用のハードウェア、又は、メモリに格納されるプログラムを実行するMPU(Micro Processing Unit)で構成される。制御装置Cntが専用のハードウェアである場合、制御装置Cntは、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが該当する。制御装置Cntが実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。制御装置CntがMPUの場合、制御装置Cntが実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。MPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置Cntの各機能を実現する。メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。 Each functional unit included in the control device Cnt is configured with dedicated hardware or MPU (Micro Processing Unit) that executes a program stored in a memory. When the control device Cnt is dedicated hardware, the control device Cnt is, for example, a single circuit, a composite circuit, an ASIC (application-specific integrated circuit), an FPGA (field-programmable gate array), or a combination thereof. Applicable. Each functional unit realized by the control device Cnt may be realized by individual hardware, or each functional unit may be realized by one piece of hardware. When the control device Cnt is an MPU, each function executed by the control device Cnt is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory. The MPU implements each function of the control device Cnt by reading and executing a program stored in the memory. The memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
[動作説明]
 図1Bは、実施の形態に係る給湯機100の沸き上げ運転の説明図である。
 給湯機100は、熱交換器2で水を沸き上げてタンク7に貯留する、沸き上げ運転を実行することができる。沸き上げ運転時において、制御装置Cntは、圧縮機1を運転し、冷媒回路C1に冷媒を循環させる。ここで、沸き上げ運転の開始時において、制御装置Cntは、圧縮機1の回転数を、後述する第1の圧縮機回転数とする。
 また、沸き上げ運転時において、制御装置Cntは、搬送装置5を運転する。ここで、沸き上げ運転開始時において、制御装置Cntは、搬送装置5の回転数を、後述する第1の搬送回転数とする。沸き上げ運転時において、制御装置Cntは、流路切替装置6Aを第1の流路に切り替え、また、流路切替装置9を第4の流路に切り替える。これにより、水循環回路C2の水は、搬送装置5、熱交換器2、流路切替装置6A、タンク7及び流路切替装置9の順番に流れ、搬送装置5に戻る。
[Description of operation]
FIG. 1B is an explanatory diagram of the boiling operation of the water heater 100 according to the embodiment.
The water heater 100 can perform a boiling operation in which water is boiled by the heat exchanger 2 and stored in the tank 7. During the boiling operation, the control device Cnt operates the compressor 1 and circulates the refrigerant in the refrigerant circuit C1. Here, at the start of the boiling operation, the controller Cnt sets the rotation speed of the compressor 1 to a first compressor rotation speed described later.
Further, the controller Cnt operates the transport device 5 during the boiling operation. Here, at the start of the boiling operation, the control device Cnt sets the rotational speed of the transport device 5 to a first transport rotational speed described later. During the boiling operation, the control device Cnt switches the flow path switching device 6A to the first flow path, and switches the flow path switching device 9 to the fourth flow path. Thereby, the water of the water circulation circuit C2 flows in the order of the transport device 5, the heat exchanger 2, the flow path switching device 6A, the tank 7, and the flow path switching device 9, and returns to the transport device 5.
 図1Cは、実施の形態に係る給湯機100の追い炊き運転の説明図である。
 給湯機100は、沸き上げ運転の他の運転も実行できる。ここでは、一例として、追い炊き運転を説明する。
 追い炊き運転は、給湯利用部U1(お風呂)に張られている水を、再度加熱する運転である。追い炊き運転において、制御装置Cntは、圧縮機1は停止していてもよいし、運転していてもよい。また、追い炊き運転において、制御装置Cntは、搬送装置5及び搬送装置10を運転する。また、追い炊き運転において、制御装置Cntは、流路切替装置6Aを第2の流路に切り替え、また、流路切替装置9を第3の流路に切り替える。これにより、水循環回路C2の搬送装置5から流出した水は、流路切替装置6A、タンク7、熱交換器8及び流路切替装置9を流れ、搬送装置5に戻る。一方、水循環回路C2の搬送装置10から流出した水は、熱交換器8の第1の水流路を流れる水に加熱された後に、配管P15を介して給湯利用部U1に供給される。
FIG. 1C is an explanatory diagram of the additional cooking operation of the water heater 100 according to the embodiment.
The water heater 100 can also perform other operations of the boiling operation. Here, the additional cooking operation will be described as an example.
The additional cooking operation is an operation in which the water stretched in the hot water supply utilization unit U1 (bath) is heated again. In the additional cooking operation, the control device Cnt may stop the compressor 1 or may operate it. Further, in the additional cooking operation, the control device Cnt operates the transport device 5 and the transport device 10. In the additional cooking operation, the control device Cnt switches the flow path switching device 6A to the second flow path, and switches the flow path switching device 9 to the third flow path. Thereby, the water that has flowed out of the transfer device 5 of the water circulation circuit C2 flows through the flow path switching device 6A, the tank 7, the heat exchanger 8, and the flow path switching device 9, and returns to the transfer device 5. On the other hand, the water that has flowed out of the transfer device 10 of the water circulation circuit C2 is heated to the water flowing through the first water flow path of the heat exchanger 8, and then supplied to the hot water supply utilization unit U1 through the pipe P15.
[制御装置Cntの機能について]
 図2は、制御装置Cntの機能ブロック図である。
[Regarding the function of the control device Cnt]
FIG. 2 is a functional block diagram of the control device Cnt.
 制御装置Cntは、熱量取得部90Aと、蓄熱量取得部90Bと、第1の回転数取得部90Cと、第2の回転数取得部90Dとを備えている。また、制御装置Cntは、期間取得部90Eと、出湯温度情報取得部90Fと、開度取得部90Gとを備えている。更に、制御装置Cntは、動作制御部90Hと、記憶部90Iとを備えている。 The control device Cnt includes a heat amount acquisition unit 90A, a heat storage amount acquisition unit 90B, a first rotation speed acquisition unit 90C, and a second rotation speed acquisition unit 90D. The control device Cnt includes a period acquisition unit 90E, a tapping temperature information acquisition unit 90F, and an opening degree acquisition unit 90G. Furthermore, the control device Cnt includes an operation control unit 90H and a storage unit 90I.
 制御装置Cntの熱量取得部90Aは、タンク7に貯留されている水の熱量に関するデータを取得する。この水の熱量に関するデータは、タンク7内の水の熱量である残湯熱量に対応している。熱量取得部90Aは、第4の検出部10Dの検出温度に基づいて、残湯熱量を取得する。 The heat quantity acquisition unit 90A of the control device Cnt acquires data related to the heat quantity of the water stored in the tank 7. The data relating to the amount of heat of water corresponds to the amount of heat of the remaining hot water, which is the amount of heat of water in the tank 7. The calorie | heat amount acquisition part 90A acquires the remaining hot water calorie | heat amount based on the detected temperature of 4th detection part 10D.
 制御装置Cntの蓄熱量取得部90Bは、タンク7に貯留されている水の総蓄熱量(総熱量)の目標値に関するデータ(目標蓄熱量)を取得する。この水の総蓄熱量の目標値に関するデータが、タンク7内の目標蓄熱量に対応する。蓄熱量取得部90Bは、例えば、給湯利用部U1及び給湯利用部U2等で使用された水の熱量に基づいて、タンク7に貯留されている水の総蓄熱量の目標値を算出する。蓄熱量取得部90Bは、この算出した目標値に関するデータを目標蓄熱量として取得する。 The heat storage amount acquisition unit 90B of the control device Cnt acquires data (target heat storage amount) related to the target value of the total heat storage amount (total heat amount) of the water stored in the tank 7. Data relating to the target value of the total heat storage amount of water corresponds to the target heat storage amount in the tank 7. The heat storage amount acquisition unit 90B calculates a target value of the total heat storage amount of water stored in the tank 7 based on, for example, the heat amount of water used in the hot water supply utilization unit U1, the hot water supply utilization unit U2, and the like. The heat storage amount acquisition unit 90B acquires data regarding the calculated target value as the target heat storage amount.
 制御装置Cntの第1の回転数取得部90Cは、残湯熱量と、目標蓄熱量と、検出外気温度とに基づいて、第1の圧縮機回転数及び第2の圧縮機回転数を取得する。第1の回転数取得部90Cは、残湯熱量を熱量取得部90Aから取得し、目標蓄熱量を蓄熱量取得部90Bから取得し、検出外気温度を第1の検出部10Aから取得する。第1の圧縮機回転数及び第2の圧縮機回転数は、予め定められた一定値である。また、第1の圧縮機回転数よりも第2の圧縮機回転数の方が大きい。第1の圧縮機回転数及び第2の圧縮機回転数の、具体的な取得手段は後述の図3で説明する。 The first rotation speed acquisition unit 90C of the control device Cnt acquires the first compressor rotation speed and the second compressor rotation speed based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature. . The first rotation speed acquisition unit 90C acquires the remaining hot water heat amount from the heat amount acquisition unit 90A, acquires the target heat storage amount from the heat storage amount acquisition unit 90B, and acquires the detected outside air temperature from the first detection unit 10A. The first compressor rotation speed and the second compressor rotation speed are predetermined constant values. Further, the second compressor rotational speed is larger than the first compressor rotational speed. Specific acquisition means for the first compressor speed and the second compressor speed will be described later with reference to FIG.
 制御装置Cntの第2の回転数取得部90Dは、残湯熱量と、目標蓄熱量と、検出外気温度とに基づいて、第1の搬送回転数及び第2の搬送回転数を取得する。第2の回転数取得部90Dは、残湯熱量を熱量取得部90Aから取得し、目標蓄熱量を蓄熱量取得部90Bから取得し、検出外気温度を第1の検出部10Aから取得する。第1の搬送回転数は、予め定められた一定値である。一方、第2の搬送回転数は、予め定められた一定値に限定されず、時間とともに変化する変動値であってもよい。また、第2の搬送回転数よりも第1の搬送回転数の方が小さい。この大小関係は、第2の搬送回転数が、一定値であるか、変動値であるかに関わらず、満たす。第1の搬送回転数及び第2の搬送回転数の、具体的な取得手段は後述の図4Aで説明する。 The second rotation speed acquisition unit 90D of the control device Cnt acquires the first transfer rotation speed and the second transfer rotation speed based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature. The second rotation speed acquisition unit 90D acquires the remaining hot water heat amount from the heat amount acquisition unit 90A, acquires the target heat storage amount from the heat storage amount acquisition unit 90B, and acquires the detected outside air temperature from the first detection unit 10A. The first conveyance rotation number is a predetermined constant value. On the other hand, the second conveyance rotation number is not limited to a predetermined constant value, and may be a fluctuation value that changes with time. In addition, the first transport rotational speed is smaller than the second transport rotational speed. This magnitude relationship is satisfied regardless of whether the second conveyance rotation number is a constant value or a fluctuation value. Specific acquisition means for the first transport rotation speed and the second transport rotation speed will be described later with reference to FIG. 4A.
 制御装置Cntの期間取得部90Eは、記憶部90Iから、記憶部90Iに予め記憶されている第1の期間を取得することができる。 The period acquisition unit 90E of the control device Cnt can acquire the first period stored in advance in the storage unit 90I from the storage unit 90I.
 また、期間取得部90Eは、残湯熱量と、目標蓄熱量と、検出外気温度とに基づいて、第2の期間を取得する。期間取得部90Eは、残湯熱量を熱量取得部90Aから取得し、目標蓄熱量を蓄熱量取得部90Bから取得し、検出外気温度を第1の検出部10Aから取得する。第2の期間の具体的な取得手段は、後述の図4Bで説明する。 Further, the period acquisition unit 90E acquires the second period based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature. The period acquisition unit 90E acquires the remaining hot water heat amount from the heat amount acquisition unit 90A, acquires the target heat storage amount from the heat storage amount acquisition unit 90B, and acquires the detected outside air temperature from the first detection unit 10A. Specific means for acquiring the second period will be described later with reference to FIG. 4B.
 制御装置Cntの出湯温度情報取得部90Fは、残湯熱量と、目標蓄熱量と、検出外気温度とに基づいて、第1の目標出湯温度及び第2の目標出湯温度を取得する。例えば、冬場のように検出外気温度が低くなると、その分、第1の目標出湯温度及び第2の目標出湯温度を大きくする。出湯温度情報取得部90Fは、検出外気温度を第1の検出部10Aから取得する。また、出湯温度情報取得部90Fは、残湯熱量と、目標蓄熱量と、検出外気温度とに基づいて、目標出湯温度を第1の目標出湯温度に設定する第3の期間を取得する。 The hot water temperature information acquisition unit 90F of the control device Cnt acquires the first target hot water temperature and the second target hot water temperature based on the remaining hot water amount, the target heat storage amount, and the detected outside air temperature. For example, when the detected outside air temperature becomes low as in winter, the first target hot water temperature and the second target hot water temperature are increased accordingly. The hot water temperature information acquisition unit 90F acquires the detected outside air temperature from the first detection unit 10A. Further, the hot water temperature information acquisition unit 90F acquires a third period in which the target hot water temperature is set to the first target hot water temperature based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature.
 制御装置Cntの開度取得部90Gは、沸き上げ運転の開始時には、第1の圧縮機回転数と、目標出湯温度とに基づいて、絞り装置3の目標開度である第1の開度を取得する。開度取得部90Gは、第1の圧縮機回転数を第1の回転数取得部90Cから取得し、目標出湯温度を出湯温度情報取得部90Fから取得する。開度取得部90Gは、沸き上げ運転を開始してから予め定められた時間が経過したときには、圧縮機1から吐出される冷媒温度に基づいて、絞り装置3の目標開度である第2の開度を取得する。つまり、開度取得部90Gは、第2の検出部10Bの検出温度に基づいて、第2の開度を取得する。 The opening degree acquisition unit 90G of the control device Cnt determines the first opening degree that is the target opening degree of the expansion device 3 based on the first compressor rotation speed and the target hot water temperature at the start of the boiling operation. get. The opening degree obtaining unit 90G obtains the first compressor rotational speed from the first rotational speed obtaining unit 90C, and obtains the target hot water temperature from the hot water temperature information obtaining unit 90F. When a predetermined time has elapsed since the start of the heating operation, the opening degree acquiring unit 90G is based on the refrigerant temperature discharged from the compressor 1 and is the second opening that is the target opening degree of the expansion device 3. Get the opening. That is, the opening degree acquisition unit 90G acquires the second opening degree based on the temperature detected by the second detection unit 10B.
 制御装置Cntの動作制御部90Hは、圧縮機1の回転数、絞り装置3の開度、搬送装置5の回転数、及び、搬送装置10の回転数を制御する。また、動作制御部90Hは、送風機4Aの回転数、流路切替装置6Aの流路の切り替え、混合回路6B(流路切替装置6B1及び流路切替装置6B2)の流路の切り替え、及び、流路切替装置9の流路の切り替えを制御する。 The operation control unit 90H of the control device Cnt controls the rotational speed of the compressor 1, the opening degree of the expansion device 3, the rotational speed of the transport device 5, and the rotational speed of the transport device 10. In addition, the operation control unit 90H switches the rotation speed of the blower 4A, the flow path of the flow path switching device 6A, the flow path switching of the mixing circuit 6B (the flow path switching device 6B1 and the flow path switching device 6B2), and the flow The switching of the flow path of the path switching device 9 is controlled.
 制御装置Cntの記憶部90Iには、各種データが格納されている。 Various data are stored in the storage unit 90I of the control device Cnt.
[第1の圧縮機回転数及び第2の圧縮機回転数について]
 図3は、制御装置Cntが備える、圧縮機回転数が特定されたテーブルである。
 制御装置Cntは、第1の圧縮機回転数が特定された第1のテーブル及び第2の圧縮機回転数が特定された第2のテーブルを備えている。第1のテーブル及び第2のテーブルは、下記のような関係を満たす圧縮機回転数が特定されている。
[About the first compressor speed and the second compressor speed]
FIG. 3 is a table provided in the control device Cnt, in which the compressor rotational speed is specified.
The control device Cnt includes a first table in which the first compressor rotational speed is specified and a second table in which the second compressor rotational speed is specified. In the first table and the second table, compressor rotational speeds that satisfy the following relationship are specified.
 第1のテーブルには、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差に対応する熱量差値が複数特定されている。タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が大きくなる程、熱量差値も大きくなる。ここで、熱量差値は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差に基づいて定まる数値で定義することができる。例えば、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が、予め定められた第1の範囲内の数値であれば熱量差値は0である。つまり、この場合には、制御装置Cntは、図3の第1のテーブルの「0」の列のセルを参照することになる。また、例えば、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が、第1の範囲よりも大きい予め定められた第2の範囲内の数値であれば熱量差値は100である。つまり、この場合には、制御装置Cntは、図3の第1のテーブルの「100」の列のセルを参照することになる。ここでは、一例として、5つの異なる熱量差値が特定されている。
 また、第1のテーブルには、検出外気温度に対応する外気温度値が複数特定されている。ここで、外気温度値は、検出外気温度に基づいて定まる数値で定義することができる。例えば、検出外気温度が40度以下であって25度より高ければ、外気温度値は40である。つまり、この場合には、制御装置Cntは、図3の第1のテーブルの「40」の行のセルを参照することになる。また、例えば、検出外気温度が25度以下であって16度より高ければ、外気温度値は25である。つまり、この場合には、制御装置Cntは、図3の第1のテーブルの「25」の行のセルを参照することになる。ここでは、一例として、6つの異なる外気温度値が特定されている。したがって、第1のテーブルには、5×6=30個の第1の圧縮機回転数が特定されている。なお、後述する図4A、図4B、図5A及び図5Bに基づいて説明する、第3のテーブル、第4のテーブル、第5のテーブル、第6のテーブル、第7のテーブル及び第8のテーブルについても、第1のテーブルと同様の形式を備えている。つまり、これらの各テーブルについても、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差に対応する熱量差値が複数(例えば、5つ)特定され、また、検出外気温度に対応する外気温度値が複数(例えば、6つ)特定されている。また、図4A、図4B、図5A及び図5Bに示す各テーブルにおいても、図3に基づいて説明した、熱量差値及び外気温度値の定義及び熱量差値及び外気温度値の説明を適用することができる。
In the first table, a plurality of heat amount difference values corresponding to the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount which is the heat amount of the water in the tank 7 are specified. As the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of the water in the tank 7, increases, the heat difference value also increases. Here, the calorific value difference value can be defined by a numerical value determined based on the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of the water in the tank 7. For example, if the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is a numerical value within a predetermined first range, the heat amount difference value is zero. That is, in this case, the control device Cnt refers to the cell in the column “0” in the first table of FIG. Further, for example, if the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of the water in the tank 7, is a numerical value within a predetermined second range that is larger than the first range. The calorie difference value is 100. That is, in this case, the control device Cnt refers to the cell in the column “100” in the first table of FIG. Here, as an example, five different heat quantity difference values are specified.
In the first table, a plurality of outside air temperature values corresponding to the detected outside air temperature are specified. Here, the outside air temperature value can be defined by a numerical value determined based on the detected outside air temperature. For example, if the detected outside air temperature is 40 degrees or less and higher than 25 degrees, the outside air temperature value is 40. That is, in this case, the control device Cnt refers to the cell in the row “40” in the first table of FIG. For example, if the detected outside air temperature is 25 degrees or less and higher than 16 degrees, the outside air temperature value is 25. That is, in this case, the control device Cnt refers to the cell in the row “25” in the first table of FIG. Here, as an example, six different outside air temperature values are specified. Accordingly, 5 × 6 = 30 first compressor rotation speeds are specified in the first table. In addition, the 3rd table, the 4th table, the 5th table, the 6th table, the 7th table, and the 8th table demonstrated based on FIG. 4A, FIG. 4B, FIG. 5A, and FIG. 5B mentioned later. Is also provided with the same format as the first table. That is, for each of these tables, a plurality of (for example, five) heat amount difference values corresponding to the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount that is the heat amount of the water in the tank 7 are specified. A plurality of (for example, six) outside air temperature values corresponding to the detected outside air temperature are specified. 4A, 4B, 5A, and 5B, the definition of the calorific value difference and the outside air temperature value and the explanation of the calorie difference value and the outside air temperature value described based on FIG. 3 are applied. be able to.
 第1の圧縮機回転数は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が大きいほど、大きい。つまり、外気温度値を一定とした場合において、第1の圧縮機回転数は、熱量差値が大きいほど、大きくなる。外気温度値を一定とした場合において、第1のテーブルの右側に特定された第1の圧縮機回転数であるほど、値が大きいということである。 The first compressor rotation speed increases as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, increases. That is, when the outside air temperature value is constant, the first compressor rotation speed increases as the heat difference value increases. When the outside air temperature value is constant, the value is larger as the first compressor speed specified on the right side of the first table is higher.
 また、第1の圧縮機回転数は、検出外気温度が低いほど、大きい。つまり、熱量差値を一定とした場合において、第1の圧縮機回転数は、外気温度値が小さいほど、大きくなる。熱量差値を一定とした場合において、第1のテーブルの下側に特定された第1の圧縮機回転数であるほど、値が大きいということである。 Also, the first compressor rotation speed increases as the detected outside air temperature decreases. That is, when the heat difference value is constant, the first compressor rotation speed increases as the outside air temperature value decreases. In the case where the calorific value difference is constant, the value is larger as the first compressor speed specified on the lower side of the first table.
 第2のテーブルにも、第1のテーブルと同様の要領で第2の圧縮機回転数が特定されている。第2のテーブルは、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差に対応する熱量差値が複数特定されている。ここでは、一例として、5つの異なる熱量差値が特定されている。また、第2のテーブルには、検出外気温度に対応する外気温度値が複数特定されている。ここでは、一例として、8つの異なる外気温度値が特定されている。したがって、第2のテーブルには、5×8=40個の第2の圧縮機回転数が特定されている。 Also in the second table, the second compressor rotational speed is specified in the same manner as the first table. In the second table, a plurality of heat amount difference values corresponding to the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount which is the heat amount of the water in the tank 7 are specified. Here, as an example, five different heat quantity difference values are specified. In the second table, a plurality of outside air temperature values corresponding to the detected outside air temperature are specified. Here, as an example, eight different outside air temperature values are specified. Therefore, 5 × 8 = 40 second compressor rotation speeds are specified in the second table.
 第2の圧縮機回転数は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が大きいほど、大きい。つまり、外気温度値を一定とした場合において、第2の圧縮機回転数は、熱量差値が大きいほど、大きくなる。
 また、第2の圧縮機回転数は、検出外気温度が低いほど、大きい。つまり、熱量差値を一定とした場合において、第2の圧縮機回転数は、外気温度値が小さいほど、大きくなる。
The second compressor rotational speed increases as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, increases. That is, when the outside air temperature value is constant, the second compressor rotation speed increases as the heat quantity difference value increases.
Further, the second compressor rotational speed is larger as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the second compressor rotation speed increases as the outside air temperature value decreases.
 沸き上げ運転を開始してまもない期間は、圧縮機1の仕事をタンク7に貯留される水の熱量へ変換する効率を上げにくい。沸き上げ運転開始当初においては、冷媒の温度及び各種機器の動作等が安定化していないためである。したがって、制御装置Cntが、沸き上げ運転を開始する場合には圧縮機1の回転数を第1の圧縮機回転数として抑え、第1の期間の経過後に圧縮機1の回転数を第2の圧縮機回転数に上げる制御を実行する、ことにより、COPの低下を抑制することができる。 During the period when the boiling operation is not started, it is difficult to increase the efficiency of converting the work of the compressor 1 into the amount of heat of water stored in the tank 7. This is because the temperature of the refrigerant and the operation of various devices are not stabilized at the beginning of the boiling operation. Therefore, when the controller Cnt starts the boiling operation, the rotational speed of the compressor 1 is suppressed as the first compressor rotational speed, and the rotational speed of the compressor 1 is set to the second rotational speed after the first period has elapsed. By executing the control to increase the compressor rotational speed, it is possible to suppress the decrease in COP.
 第1のテーブル及び第2のテーブルに特定されている各圧縮機回転数には、様々な状況下において、給湯機100のCOPを向上させることができる数値が採用されている。実施の形態では、様々な状況下を、検出外気温度と、目標蓄熱量と残湯熱量との差と、に基づいて定めた。なお、実施の形態では、5×8=40の状況を想定した。制御装置Cntが各状況に応じた圧縮機回転数で圧縮機1を運転させることで、給湯機100は様々な状況下においても、COPが高い、沸き上げ運転を実現できる。 Numeral values that can improve the COP of the water heater 100 under various circumstances are adopted for the compressor rotation speeds specified in the first table and the second table. In the embodiment, various situations are determined based on the detected outside air temperature and the difference between the target heat storage amount and the remaining hot water heat amount. In the embodiment, a situation of 5 × 8 = 40 is assumed. When the control device Cnt operates the compressor 1 at the compressor rotational speed corresponding to each situation, the water heater 100 can realize a boiling operation with a high COP even under various situations.
[第1の搬送回転数及び第2の搬送回転数について]
 図4Aは、制御装置Cntが備える、搬送回転数が特定されたテーブルである。
 制御装置Cntは、第1の搬送回転数が特定された第3のテーブル及び第2の搬送回転数が特定された第4のテーブルを備えている。第3のテーブル及び第4のテーブルは、下記のような関係を満たす搬送回転数が特定されている。
[About the first conveyance rotation speed and the second conveyance rotation speed]
FIG. 4A is a table provided with the control device Cnt, in which the number of conveyance rotations is specified.
The control device Cnt includes a third table in which the first transfer rotation speed is specified and a fourth table in which the second transfer rotation speed is specified. In the third table and the fourth table, the number of conveyance rotations satisfying the following relationship is specified.
 第1の搬送回転数は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が小さいほど、大きい。つまり、外気温度値を一定とした場合において、第1の搬送回転数は、熱量差値が小さいほど、大きくなる。
 また、第1の搬送回転数は、検出外気温度が高いほど、大きい。つまり、熱量差値を一定とした場合において、第1の搬送回転数は、外気温度値が大きいほど、大きくなる。
The first transfer rotational speed is larger as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is smaller. That is, when the outside air temperature value is constant, the first transfer rotation speed increases as the calorific value difference value decreases.
In addition, the first transfer rotation speed is larger as the detected outside air temperature is higher. That is, when the calorific value difference value is constant, the first transfer rotation speed increases as the outside air temperature value increases.
 第2の搬送回転数は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が小さいほど、大きい。つまり、外気温度値を一定とした場合において、第2の搬送回転数は、熱量差値が小さいほど、大きくなる。
 また、第2の搬送回転数は、検出外気温度が高いほど、大きい。つまり、熱量差値を一定とした場合において、第2の搬送回転数は、外気温度値が大きいほど、大きくなる。
The second conveyance rotation speed increases as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is smaller. That is, when the outside air temperature value is constant, the second conveyance rotation speed increases as the calorific value difference value decreases.
In addition, the second conveyance rotation speed increases as the detected outside air temperature increases. That is, when the calorific value difference value is constant, the second transfer rotational speed increases as the outside air temperature value increases.
 図4Bは、制御装置Cntが備える、第2の期間が特定されたテーブルである。
 制御装置Cntは、第2の期間が特定された第5のテーブルを備えている。第5のテーブルは、下記のような関係を満たす第2の期間が特定されている。
FIG. 4B is a table with which the second period is specified, which is included in the control device Cnt.
The control device Cnt includes a fifth table in which the second period is specified. In the fifth table, a second period that satisfies the following relationship is specified.
 第2の期間は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が小さいほど、短い。つまり、外気温度値を一定とした場合において、第2の期間は、熱量差値が小さいほど、短くなる。
 第2の期間は、検出外気温度が高いほど、短い。つまり、熱量差値を一定とした場合において、第2の期間は、外気温度値が高いほど、短くなる。
The second period is shorter as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is smaller. That is, when the outside air temperature value is constant, the second period becomes shorter as the calorific value difference value is smaller.
The second period is shorter as the detected outside air temperature is higher. That is, when the calorific value difference value is constant, the second period is shorter as the outside air temperature value is higher.
 第2の搬送回転数が変動値である場合には、制御装置Cntは、第2の搬送回転数の初期値を残湯熱量と目標蓄熱量と検出外気温度とに基づいて取得する。そして、制御装置Cntは、予め定められた条件を満たした場合には、例えば搬送回転数を変動させる変動制御を実行し、第2の搬送回転数を変動させる。なお、変動制御としては、例えば、PID制御(Proportional-Integral-Differential Controller)を採用することができる。なお、PID制御に限定されるものではなく、P制御でもPI制御でもよい。ここで、予め定められた条件とは、例えば、第3の検出部10Cの検出温度(出湯温度)が、予め定められた目標出湯温度を超えたこと、とすることができる。つまり、制御装置Cntは、第3の検出部10Cの検出温度(出湯温度)が第1の目標出湯温度又は第2の目標出湯温度を超えると、変動制御に移行する。その結果、搬送装置5の回転数は、第2の搬送回転数の初期値から変化する。 When the second conveyance rotation number is a variable value, the control device Cnt acquires the initial value of the second conveyance rotation number based on the remaining hot water heat amount, the target heat storage amount, and the detected outside air temperature. Then, when a predetermined condition is satisfied, the control device Cnt performs, for example, a variation control that varies the conveyance rotation number, and varies the second conveyance rotation number. As the variation control, for example, PID control ( Proportional-Integral-Differential Controller ) can be employed. In addition, it is not limited to PID control, P control or PI control may be sufficient. Here, the predetermined condition may be, for example, that the detected temperature (hot water temperature) of the third detection unit 10C exceeds a predetermined target hot water temperature. That is, the control device Cnt shifts to fluctuation control when the temperature detected by the third detector 10C (the temperature of the hot water) exceeds the first target hot water temperature or the second target hot water temperature. As a result, the rotational speed of the transport device 5 changes from the initial value of the second transport rotational speed.
 沸き上げ運転を開始してまもない期間において、搬送装置5の回転数を抑えてしまう又は搬送装置5を停止させたままとすると、冷媒回路C1から供給される熱量の取得効率が低減する場合がある。つまり、圧縮機1の仕事をタンク7に貯留される水の熱量へ変換する効率を上げにくい。したがって、制御装置Cntが、沸き上げ運転を開始する場合には圧縮機1の運転を開始とともに搬送装置5の運転を開始することで、給湯機100のCOPの低下を抑制することができる。 When the rotation speed of the transport device 5 is suppressed or the transport device 5 is kept stopped in a period that is shortly after starting the boiling operation, the acquisition efficiency of the amount of heat supplied from the refrigerant circuit C1 is reduced. There is. That is, it is difficult to increase the efficiency of converting the work of the compressor 1 into the amount of heat of water stored in the tank 7. Therefore, when the control device Cnt starts the boiling operation, the start of the operation of the compressor 1 and the operation of the transfer device 5 can be suppressed, thereby suppressing the decrease in COP of the water heater 100.
 第3のテーブル及び第4のテーブルに特定されている各ポンプ回転数には、様々な状況下において、給湯機100のCOPを向上させることができる数値が採用されている。第5のテーブルに特定されている期間も、様々な状況下において、給湯機100のCOPを向上させることができる数値が採用されている。実施の形態では、様々な状況下を、検出外気温度と、目標蓄熱量と残湯熱量との差と、に基づいて定めている。なお、実施の形態では、5×8=40の状況を想定した。制御装置Cntが各状況に応じたポンプ回転数及び各状況に応じた第2の期間で搬送装置5を運転させることで、給湯機100は様々な状況下においても、COPが高い、沸き上げ運転を実現できる。 The numerical values that can improve the COP of the water heater 100 under various circumstances are adopted for the pump rotation speeds specified in the third table and the fourth table. For the period specified in the fifth table, a numerical value that can improve the COP of the water heater 100 under various circumstances is adopted. In the embodiment, various situations are determined based on the detected outside air temperature and the difference between the target heat storage amount and the remaining hot water heat amount. In the embodiment, a situation of 5 × 8 = 40 is assumed. The controller Cnt operates the transfer device 5 in the second period corresponding to the number of rotations of the pump corresponding to each situation and the hot water heater 100 has a high COP even in various situations. Can be realized.
[第1の目標出湯温度及び第2の目標出湯温度について]
 図5Aは、制御装置Cntが備える、目標出湯温度が特定されたテーブルである。
 制御装置Cntは、第1の目標出湯温度が特定された第6のテーブル及び第2の目標出湯温度が特定された第7のテーブルを備えている。第6のテーブル及び第7のテーブルは、下記のような関係を満たす第1の目標出湯温度及び第2の目標出湯温度が特定されている。
[First target hot water temperature and second target hot water temperature]
FIG. 5A is a table with which the target hot water temperature is specified, which is included in the control device Cnt.
The control device Cnt includes a sixth table in which the first target hot water temperature is specified and a seventh table in which the second target hot water temperature is specified. In the sixth table and the seventh table, the first target hot water temperature and the second target hot water temperature satisfying the following relationship are specified.
 第1の目標出湯温度は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が大きいほど、高い。つまり、外気温度値を一定とした場合において、第1の目標出湯温度は、熱量差値が大きいほど、高い。
 また、第1の目標出湯温度は、検出外気温度が低いほど、高い。つまり、熱量差値を一定とした場合において、第1の目標出湯温度は、外気温度値が小さいほど、高い。
The first target hot water temperature is higher as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is larger. That is, when the outside air temperature value is constant, the first target hot water temperature is higher as the calorie difference value is larger.
The first target hot water temperature is higher as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the first target hot water temperature is higher as the outside air temperature value is smaller.
 第2の目標出湯温度は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が大きいほど、高い。つまり、外気温度値を一定とした場合において、第2の目標出湯温度は、熱量差値が大きいほど、高い。
 また、第2の目標出湯温度は、検出外気温度が低いほど、高い。つまり、熱量差値を一定とした場合において、第2の目標出湯温度は、外気温度値が小さいほど、高い。
The second target hot water temperature is higher as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is larger. That is, when the outside air temperature value is constant, the second target hot water temperature is higher as the calorie difference value is larger.
The second target hot water temperature is higher as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the second target hot water temperature is higher as the outside air temperature value is smaller.
 図5Bは、制御装置Cntが備える、第3の期間が特定されたテーブルである。
 制御装置Cntは、第3の期間が特定された第8のテーブルを備えている。第8のテーブルは、下記のような関係を満たす第3の期間が特定されている。
FIG. 5B is a table with which the third period is specified, which is included in the control device Cnt.
The control device Cnt includes an eighth table in which the third period is specified. In the eighth table, a third period that satisfies the following relationship is specified.
 第3の期間は、タンク7内の目標蓄熱量とタンク7内の水の熱量である残湯熱量との差が大きいほど、長い。つまり、外気温度値を一定とした場合において、第3の期間は、熱量差値が大きいほど、長くなる。
 第3の期間は、検出外気温度が低いほど、長い。つまり、熱量差値を一定とした場合において、第3の期間は、外気温度値が低いほど、長くなる。
The third period is longer as the difference between the target heat storage amount in the tank 7 and the remaining hot water heat amount, which is the heat amount of water in the tank 7, is larger. That is, when the outside air temperature value is constant, the third period becomes longer as the calorific value difference is larger.
The third period is longer as the detected outside air temperature is lower. That is, when the calorific value difference value is constant, the third period becomes longer as the outside air temperature value is lower.
 ここでは、冬期を一例に効果を説明する。沸き上げ運転を開始してまもない期間において、目標出湯温度(第1の目標出湯温度に対応)を抑えると、絞り装置3の開度が大きくなりすぎて、圧縮機1から吐出される冷媒温度が上昇しにくくなり、給湯機100のCOPが低下する場合がある。したがって、制御装置Cntが、沸き上げ運転を開始する場合には、検出外気温度を加味して目標出湯温度を設定することで、給湯機100のCOPの低下を抑制することができる。また、制御装置Cntが、沸き上げ運転を開始する場合には、目標蓄熱量と残湯熱量との差を加味して目標出湯温度を設定することで、給湯機100のCOPの低下を抑制することができる。 Here, the effect will be explained using winter as an example. If the target hot water temperature (corresponding to the first target hot water temperature) is suppressed during the period when the boiling operation is not started, the opening degree of the expansion device 3 becomes too large, and the refrigerant discharged from the compressor 1 The temperature is unlikely to increase, and the COP of the water heater 100 may decrease. Therefore, when the control device Cnt starts the boiling operation, it is possible to suppress the decrease in COP of the water heater 100 by setting the target hot water temperature in consideration of the detected outside air temperature. In addition, when the control device Cnt starts the boiling operation, the decrease in COP of the water heater 100 is suppressed by setting the target hot water temperature in consideration of the difference between the target heat storage amount and the remaining hot water heat amount. be able to.
 第6のテーブル及び第7のテーブルに特定されている各目標出湯温度には、様々な状況下において、給湯機100のCOPを向上させることができる数値が採用されている。第8のテーブルに特定されている期間も、様々な状況下において、給湯機100のCOPを向上させることができる数値が採用されている。実施の形態では、様々な状況下を、検出外気温度と、目標蓄熱量と残湯熱量との差と、に基づいて定めている。なお、実施の形態では、5×8=40の状況を想定した。制御装置Cntが各状況に応じた目標出湯温度及び各状況に応じた第3の期間を設定することで、給湯機100は様々な状況下においても、COPが高い、沸き上げ運転を実現できる。 For each target hot water temperature specified in the sixth table and the seventh table, a numerical value capable of improving the COP of the water heater 100 under various circumstances is adopted. During the period specified in the eighth table, a numerical value that can improve the COP of the water heater 100 under various circumstances is adopted. In the embodiment, various situations are determined based on the detected outside air temperature and the difference between the target heat storage amount and the remaining hot water heat amount. In the embodiment, a situation of 5 × 8 = 40 is assumed. The controller Cnt sets the target hot water temperature corresponding to each situation and the third period corresponding to each situation, so that the water heater 100 can realize a boiling operation with a high COP even under various situations.
[沸き上げ運転における圧縮機1の動作]
 図6Aは、圧縮機1の動作の時間変化の説明図である。
 なお、図6Aの時間t=0は沸き上げ運転の開始時に対応している。
 また、図6Aの時間t=t1は沸き上げ運転の第1の期間の終了時に対応している。
 圧縮機1は、第1の期間の間は第1の圧縮機回転数で運転する。そして、第1の期間が経過すると、圧縮機1は、第1の圧縮機回転数よりも大きい第2の圧縮機回転数で運転する。
[Operation of compressor 1 in boiling operation]
FIG. 6A is an explanatory diagram of the change over time of the operation of the compressor 1.
Note that time t = 0 in FIG. 6A corresponds to the start of the boiling operation.
Further, time t = t1 in FIG. 6A corresponds to the end of the first period of the boiling operation.
The compressor 1 operates at the first compressor speed during the first period. When the first period elapses, the compressor 1 operates at a second compressor rotational speed that is greater than the first compressor rotational speed.
[沸き上げ運転における搬送装置5の動作]
 図6Bは、搬送装置5の動作の時間変化の説明図である。
 なお、図6Bの時間t=0は沸き上げ運転の開始時に対応している。
 また、図6Bの時間t=t2-1は沸き上げ運転の第2の期間の終了時に対応している。
 また、図6Bの時間t=t2-2は、第3の検出部10Cの検出温度(出湯温度)が、第1の目標出湯温度を超えた時に対応している。なお、図6Bでは、第2の期間が第3の期間よりも短い例を示している。
 搬送装置5は、第2の期間の間は第1の搬送回転数で運転する。そして、第2の期間が経過すると、搬送装置5は、第1の搬送回転数よりも小さい第2の搬送回転数で運転開始する。そして、第3の検出部10Cの検出温度(出湯温度)が、第1の目標出湯温度を超えた場合には、搬送装置5の回転数が第2の搬送回転数から変動する。
[Operation of transfer device 5 in boiling operation]
FIG. 6B is an explanatory diagram of the change over time of the operation of the transport device 5.
Note that time t = 0 in FIG. 6B corresponds to the start of the boiling operation.
Further, time t = t2-1 in FIG. 6B corresponds to the end of the second period of the boiling operation.
Further, the time t = t2-2 in FIG. 6B corresponds to the time when the detected temperature (hot water temperature) of the third detection unit 10C exceeds the first target hot water temperature. Note that FIG. 6B illustrates an example in which the second period is shorter than the third period.
The conveyance device 5 operates at the first conveyance rotation number during the second period. When the second period elapses, the transport device 5 starts operation at a second transport rotational speed that is smaller than the first transport rotational speed. And when the detection temperature (hot water temperature) of the 3rd detection part 10C exceeds 1st target hot water temperature, the rotation speed of the conveying apparatus 5 fluctuates from 2nd conveyance rotation speed.
[沸き上げ運転における目標出湯温度の時間変化]
 図6Cは、目標出湯温度の時間変化の説明図である。
 なお、図6Cの時間t=0は沸き上げ運転の開始時に対応している。
 また、図6Cの時間t=t3は沸き上げ運転の第3の期間の終了時に対応している。
 制御装置Cntは、第3の期間の間は目標出湯温度の設定値を第1の目標出湯温度とする。そして、制御装置Cntは、第3の期間が経過すると、目標出湯温度の設定値を、第1の目標出湯温度よりも大きい第2の目標出湯温度とする。
[Changes in target hot water temperature over time during boiling operation]
FIG. 6C is an explanatory diagram of a change over time in the target hot water temperature.
Note that time t = 0 in FIG. 6C corresponds to the start of the boiling operation.
Further, time t = t3 in FIG. 6C corresponds to the end of the third period of the boiling operation.
The control device Cnt sets the set value of the target hot water temperature as the first target hot water temperature during the third period. And control apparatus Cnt makes the setting value of target hot-water temperature the 2nd target hot-water temperature larger than 1st target hot-water temperature, when the 3rd period passes.
 図7は、圧縮機1の設定回転数を、第1の圧縮機回転数から第2の圧縮機回転数へ移行させるときの変形例である。制御装置Cntは、第1の期間の終了時において、圧縮機1の設定回転数を、第1の圧縮機回転数から段階的に増大させて第2の圧縮機回転数へ到達させてもよい。搬送装置5の動作についても同様である。 FIG. 7 is a modified example when the set rotational speed of the compressor 1 is shifted from the first compressor rotational speed to the second compressor rotational speed. The control device Cnt may increase the set rotational speed of the compressor 1 stepwise from the first compressor rotational speed to reach the second compressor rotational speed at the end of the first period. . The same applies to the operation of the transport device 5.
 1 圧縮機、2 熱交換器、3 絞り装置、4 熱交換器、4A 送風機、5 搬送装置、6A 流路切替装置、6B 混合回路、6B1 流路切替装置、6B2 流路切替装置、7 タンク、8 熱交換器、9 流路切替装置、10 搬送装置、10A 第1の検出部、10B 第2の検出部、10C 第3の検出部、10D 第4の検出部、90A 熱量取得部、90B 蓄熱量取得部、90C 第1の回転数取得部、90D 第2の回転数取得部、90E 期間取得部、90F 出湯温度情報取得部、90G 開度取得部、90H 動作制御部、90I 記憶部、100 給湯機、C1 冷媒回路、C2 水循環回路、Cnt 制御装置、P1 配管、P2 配管、P3 配管、P4 配管、P5 配管、P6 配管、P7 配管、P8 配管、P9 配管、P10 配管、P11 配管、P12 配管、P13 配管、P14 配管、P15 配管、P16 配管、U1 給湯利用部、U2 給湯利用部、U3 水供給部。 1 compressor, 2 heat exchanger, 3 expansion device, 4 heat exchanger, 4A blower, 5 transport device, 6A flow switching device, 6B mixing circuit, 6B1 flow switching device, 6B2 flow switching device, 7 tank, 8 heat exchanger, 9 flow path switching device, 10 transport device, 10A first detection unit, 10B second detection unit, 10C third detection unit, 10D fourth detection unit, 90A heat quantity acquisition unit, 90B heat storage Quantity acquisition unit, 90C first rotation number acquisition unit, 90D second rotation number acquisition unit, 90E period acquisition unit, 90F hot water temperature information acquisition unit, 90G opening degree acquisition unit, 90H operation control unit, 90I storage unit, 100 Water heater, C1 refrigerant circuit, C2 water circulation circuit, Cnt control device, P1 piping, P2 piping, P3 piping, P4 piping, P5 piping, P6 piping, P7 piping, 8 piping, P9 pipe, P10 pipe, P11 pipe, P12 pipe, P13 pipe, P14 pipe, P15 pipe, P16 pipe, U1 hot water utilization unit, U2 hot water usage part, U3 water supply unit.

Claims (17)

  1.  圧縮機、水循環回路に接続されている凝縮器、絞り装置及び蒸発器を含む冷媒回路と、
     前記水循環回路に設けられ、前記凝縮器で加熱された水を貯留するタンクと、
     前記水循環回路に設けられ、前記水循環回路の前記タンクに水を搬送する搬送装置と、
     外気温度を検出する第1の検出部と、
     前記第1の検出部の検出外気温度に基づいて、前記圧縮機、前記絞り装置及び前記搬送装置を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記圧縮機、前記絞り装置及び前記搬送装置の動作を制御する動作制御部を含み、
     前記動作制御部は、
     前記タンクに加熱された水を貯留する沸き上げ運転を開始する場合には、前記圧縮機及び前記搬送装置の両方を共に運転開始し、
     前記沸き上げ運転の開始から予め定められた第1の期間が経過するまでは、前記圧縮機を第1の圧縮機回転数で運転し、
     前記第1の期間の経過後は、前記圧縮機を前記第1の圧縮機回転数よりも大きい第2の圧縮機回転数で運転する
     給湯機。
    A refrigerant circuit including a compressor, a condenser connected to a water circulation circuit, a throttling device and an evaporator;
    A tank that is provided in the water circulation circuit and stores water heated by the condenser;
    A conveying device provided in the water circulation circuit, for conveying water to the tank of the water circulation circuit;
    A first detector for detecting the outside air temperature;
    A control device for controlling the compressor, the expansion device, and the transport device based on the detected outside air temperature of the first detection unit;
    With
    The control device includes:
    An operation control unit for controlling operations of the compressor, the squeezing device, and the conveying device;
    The operation controller is
    When starting the boiling operation to store the water heated in the tank, start both the compressor and the transport device,
    Until the predetermined first period has elapsed from the start of the boiling operation, the compressor is operated at the first compressor speed,
    After the elapse of the first period, the compressor is operated at a second compressor rotational speed that is greater than the first compressor rotational speed.
  2.  前記第1の圧縮機回転数は、
     前記タンク内の目標蓄熱量と前記タンク内の水の熱量である残湯熱量との差が大きいほど、大きい
     請求項1に記載の給湯機。
    The first compressor speed is
    The hot water heater according to claim 1, wherein a difference between a target heat storage amount in the tank and a remaining hot water heat amount that is a heat amount of water in the tank is larger.
  3.  前記第2の圧縮機回転数は、
     前記タンク内の目標蓄熱量と前記タンク内の水の熱量である残湯熱量との差が大きいほど、大きい
     請求項1又は2に記載の給湯機。
    The second compressor speed is
    The water heater according to claim 1 or 2, wherein the hot water heater is larger as a difference between a target heat storage amount in the tank and a remaining hot water heat amount that is a heat amount of water in the tank is larger.
  4.  前記第1の圧縮機回転数は、
     前記検出外気温度が低いほど、大きい
     請求項1~3のいずれか一項に記載の給湯機。
    The first compressor speed is
    The hot water heater according to any one of claims 1 to 3, wherein the detected outside air temperature is lower as it is lower.
  5.  前記第2の圧縮機回転数は、
     前記検出外気温度が低いほど、大きい
     請求項1~4のいずれか一項に記載の給湯機。
    The second compressor speed is
    The hot water supply apparatus according to any one of claims 1 to 4, wherein the detected outside air temperature is lower as the temperature is lower.
  6.  前記動作制御部は、
     前記沸き上げ運転の開始から予め定められた第2の期間が経過するまでは、前記搬送装置を第1の搬送回転数で運転し、
     前記第2の期間の経過後は、前記搬送装置を前記第1の搬送回転数よりも小さい第2の搬送回転数で運転する
     請求項1~5のいずれか一項に記載の給湯機。
    The operation controller is
    Until the predetermined second period elapses from the start of the boiling operation, the transport device is operated at the first transport speed,
    The hot water heater according to any one of claims 1 to 5, wherein after the elapse of the second period, the transport device is operated at a second transport rotational speed that is smaller than the first transport rotational speed.
  7.  前記第1の搬送回転数は、
     前記タンク内の目標蓄熱量と前記タンク内の水の熱量である残湯熱量との差が小さいほど、大きい
     請求項6に記載の給湯機。
    The first transfer rotation number is:
    The hot water heater according to claim 6, wherein the difference between the target heat storage amount in the tank and the remaining hot water heat amount, which is the heat amount of water in the tank, is larger.
  8.  前記第2の搬送回転数は、
     前記タンク内の目標蓄熱量と前記タンク内の水の熱量である残湯熱量との差が小さいほど、大きい
     請求項6又は7に記載の給湯機。
    The second transport rotation number is:
    The hot water heater according to claim 6 or 7, wherein the difference between the target heat storage amount in the tank and the remaining hot water heat amount that is the heat amount of water in the tank is larger.
  9.  前記第1の搬送回転数は、
     前記検出外気温度が高いほど、大きい
     請求項6~8のいずれか一項に記載の給湯機。
    The first transfer rotation number is:
    The water heater according to any one of claims 6 to 8, wherein the hot water temperature is higher as the detected outside air temperature is higher.
  10.  前記第2の搬送回転数は、
     前記検出外気温度が高いほど、大きい
     請求項6~9のいずれか一項に記載の給湯機。
    The second transport rotation number is:
    The water heater according to any one of claims 6 to 9, wherein the detected outdoor air temperature is higher as it is higher.
  11.  前記第2の期間は、
     前記タンク内の目標蓄熱量と前記タンク内の水の熱量である残湯熱量との差が小さいほど、短い
     請求項6~10のいずれか一項に記載の給湯機。
    The second period is:
    The hot water supply apparatus according to any one of claims 6 to 10, wherein the smaller the difference between the target heat storage amount in the tank and the remaining hot water heat amount, which is the heat amount of water in the tank, is shorter.
  12.  前記第2の期間は、
     前記検出外気温度が高いほど、短い
     請求項6~11のいずれか一項に記載の給湯機。
    The second period is:
    The hot water supply device according to any one of claims 6 to 11, wherein the detected outside air temperature is higher as it is higher.
  13.  前記制御装置は、
     前記タンク内の水の熱量である残湯熱量を取得する熱量取得部をさらに含む
     請求項1~12のいずれか一項に記載の給湯機。
    The control device includes:
    The hot water supply apparatus according to any one of claims 1 to 12, further comprising a calorific value acquisition unit configured to acquire a residual hot water calorific value that is a calorific value of water in the tank.
  14.  前記制御装置は、
     前記タンク内の目標蓄熱量を取得する蓄熱量取得部をさらに含む
     請求項1~13のいずれか一項に記載の給湯機。
    The control device includes:
    The hot water heater according to any one of claims 1 to 13, further comprising a heat storage amount acquisition unit that acquires a target heat storage amount in the tank.
  15.  前記制御装置は、
     前記タンク内の水の熱量である残湯熱量と前記タンク内の目標蓄熱量と前記検出外気温度とに基づいて、前記第1の圧縮機回転数及び前記第2の圧縮機回転数を取得する第1の回転数取得部をさらに含む
     請求項1~14のいずれか一項に記載の給湯機。
    The control device includes:
    The first compressor rotation speed and the second compressor rotation speed are acquired based on a remaining hot water heat amount that is a heat amount of water in the tank, a target heat storage amount in the tank, and the detected outside air temperature. The water heater according to any one of claims 1 to 14, further comprising a first rotation speed acquisition unit.
  16.  前記制御装置は、
     前記タンク内の水の熱量である残湯熱量と前記タンク内の目標蓄熱量と前記検出外気温度とに基づいて、前記第1の搬送回転数及び前記第2の搬送回転数を取得する第2の回転数取得部をさらに含む
     請求項6~12、及び、請求項6~12に従属する請求項13~15のいずれか一項に記載の給湯機。
    The control device includes:
    The second transfer rotational speed is acquired based on the remaining hot water heat quantity that is the heat quantity of water in the tank, the target heat storage quantity in the tank, and the detected outside air temperature. The hot water heater according to any one of claims 6 to 12 and claims 13 to 15 dependent on claims 6 to 12.
  17.  前記制御装置は、
     前記タンク内の水の熱量である残湯熱量と前記タンク内の目標蓄熱量と前記検出外気温度とに基づいて、前記第1の搬送回転数で前記搬送装置を運転する前記第2の期間を取得する期間取得部をさらに含む
     請求項6~12、16、及び、請求項6~12に従属する請求項13~15のいずれか一項に記載の給湯機。
    The control device includes:
    Based on the amount of remaining hot water, which is the amount of water in the tank, the target amount of heat stored in the tank, and the detected outside air temperature, the second period in which the transport device is operated at the first transport speed. The hot water supply apparatus according to any one of claims 6 to 12, 16 and claim 13 to 15 dependent on claim 6 to 12, further comprising a period acquisition unit for acquisition.
PCT/JP2016/085099 2016-11-28 2016-11-28 Water heater WO2018096664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018552362A JP6715948B2 (en) 2016-11-28 2016-11-28 Water heater
EP16922258.5A EP3546846B1 (en) 2016-11-28 2016-11-28 Water heater
PCT/JP2016/085099 WO2018096664A1 (en) 2016-11-28 2016-11-28 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085099 WO2018096664A1 (en) 2016-11-28 2016-11-28 Water heater

Publications (1)

Publication Number Publication Date
WO2018096664A1 true WO2018096664A1 (en) 2018-05-31

Family

ID=62195850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085099 WO2018096664A1 (en) 2016-11-28 2016-11-28 Water heater

Country Status (3)

Country Link
EP (1) EP3546846B1 (en)
JP (1) JP6715948B2 (en)
WO (1) WO2018096664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021002004A1 (en) * 2019-07-04 2021-01-07

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140439A (en) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010261665A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Heat pump type water heater
JP2011075257A (en) * 2009-10-02 2011-04-14 Hitachi Appliances Inc Heat pump type water heater
JP2012241944A (en) * 2011-05-17 2012-12-10 Hitachi Appliances Inc Refrigerating cycle control apparatus
JP2013137169A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Heat pump type water heater
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater
JP2013224767A (en) * 2012-04-20 2013-10-31 Rinnai Corp Thermal equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239333B2 (en) * 2013-09-27 2017-11-29 三菱重工サーマルシステムズ株式会社 Hot water supply system and control method thereof
JP6488160B2 (en) * 2015-03-10 2019-03-20 リンナイ株式会社 Heat pump heating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140439A (en) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010261665A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Heat pump type water heater
JP2011075257A (en) * 2009-10-02 2011-04-14 Hitachi Appliances Inc Heat pump type water heater
JP2012241944A (en) * 2011-05-17 2012-12-10 Hitachi Appliances Inc Refrigerating cycle control apparatus
JP2013137169A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Heat pump type water heater
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater
JP2013224767A (en) * 2012-04-20 2013-10-31 Rinnai Corp Thermal equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021002004A1 (en) * 2019-07-04 2021-01-07
WO2021002004A1 (en) * 2019-07-04 2021-01-07 三菱電機株式会社 Hot water supply system
EP3995753A4 (en) * 2019-07-04 2022-07-20 Mitsubishi Electric Corporation Hot water supply system
JP7302659B2 (en) 2019-07-04 2023-07-04 三菱電機株式会社 hot water system

Also Published As

Publication number Publication date
EP3546846A4 (en) 2019-11-20
EP3546846B1 (en) 2021-03-24
JPWO2018096664A1 (en) 2019-06-27
JP6715948B2 (en) 2020-07-01
EP3546846A1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5011713B2 (en) Heat pump type water heater
KR101805334B1 (en) Heat source device
JP5996119B2 (en) Air conditioning system and controller
JP5161008B2 (en) Heat pump type water heater
JP6703468B2 (en) Air conditioner with hot water supply function
WO2017122303A1 (en) Heat pump water heater
WO2017158782A1 (en) Heat pump hot water supplier
JP6103144B2 (en) Heat pump heating system
WO2018096664A1 (en) Water heater
JP5139211B2 (en) Heat pump type water heater
JP2017044446A (en) Heat pump device and water heater including the same
JP6399113B2 (en) Heat supply system
JP6679461B2 (en) Heat pump water heater with heating function
JP4882438B2 (en) Heat pump water heater
JP6571042B2 (en) Heat pump type water heater
JP2005337550A (en) Heat pump water heater
JP5898506B2 (en) Heat pump equipment
JP4950004B2 (en) Heat pump type water heater
JP2008261590A (en) Ejector cycle
JP2011094932A (en) Air-conditioning hot water supply system
JP2009085476A (en) Heat pump water heater
JP2019100620A (en) Heat pump type water heater
JP5134446B2 (en) Heat pump type water heater
JP5764029B2 (en) Heat pump water heater and refrigeration cycle
CN110869680B (en) Hot water supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016922258

Country of ref document: EP