WO2018095301A1 - 一种束流剂量分布测量检测的方法 - Google Patents

一种束流剂量分布测量检测的方法 Download PDF

Info

Publication number
WO2018095301A1
WO2018095301A1 PCT/CN2017/111931 CN2017111931W WO2018095301A1 WO 2018095301 A1 WO2018095301 A1 WO 2018095301A1 CN 2017111931 W CN2017111931 W CN 2017111931W WO 2018095301 A1 WO2018095301 A1 WO 2018095301A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
computer
gamma photon
detected
positron
Prior art date
Application number
PCT/CN2017/111931
Other languages
English (en)
French (fr)
Inventor
薛会
李磊
刘飞
Original Assignee
江苏超敏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏超敏科技有限公司 filed Critical 江苏超敏科技有限公司
Publication of WO2018095301A1 publication Critical patent/WO2018095301A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation

Definitions

  • the invention belongs to the technical field of dose verification devices, and in particular relates to a method for measuring and detecting beam dose distribution.
  • the principle of preoperative dose verification is to use a phantom instead of a patient, to illuminate the proton/heavy ion terminal with a designed treatment plan, to actually measure the spatial distribution of the proton beam/heavy ion beam dose within the phantom, and to expect The spatial distribution is aligned to verify if there is a deviation to ensure that the accelerator is operating normally.
  • PET positron emission tomography
  • Proton/heavy ions will react with the nucleus in the human body to form positron decay nuclides (such as 15O, 11C, 13N, etc.) where they are deposited after being incident on the human body.
  • the distribution of the concentration of these nuclei decaying in the human body represents the dose distribution of proton/heavy ions in the human body.
  • Positron Emission Tomography is an instrument that images positrons by measuring positron annihilation of photons. It has been used clinically for decades and can be used to measure positrons.
  • This dose verification is divided into two types, one is offline measurement and the other is online measurement.
  • the offline measurement is performed on the PET immediately after the patient receives the proton/heavy ion irradiation.
  • This measurement is post-operative verification, and the PET machine used is a PET machine for clinical diagnosis.
  • This measurement has three major drawbacks: First, due to the movement of the body, the soft tissue organs have been displaced and deformed compared to the treatment, so the PET image needs to be complexly registered with the CT image of the treatment terminal. It increases the difficulty of processing the measurement results and reduces the measurement accuracy. Second, it takes a certain time (about 20 minutes) from the completion of the treatment to the PET scan.
  • the reconstruction algorithms used in clinical PET are designed for the injection of positron-emitting drugs (positive electron activity in the order of mCi), which is not well suited for low positron activity after proton/heavy ion therapy. In the case, the imaging error is large, which reduces the accuracy of the measurement.
  • On-line measurement refers to the development of a specialized PET machine that is mounted on a proton/heavy ion therapy terminal and is measured while illuminating. This measurement is an intraoperative verification that avoids the three shortcomings of the aforementioned post-operative measurements. At present, this technology is still in the research stage. Only a few foreign research institutions such as the United States, Japan, and Germany have conducted preliminary tests, and they still face many technical problems and have not yet entered clinical applications. Even if this technology matures, the cost will be very expensive.
  • the dose measuring instruments used in the intraoperative verification are mainly on-line PET, installed on the proton/heavy ion treatment terminal, and are measured while irradiating. It is necessary to construct a large-scale ring detector, which is bulky and expensive, and has not been widely clinicalized. application. And not real-time online measurement, can not achieve true synchronization, need to perform PET scan after the end of treatment, it takes a long time.
  • a method for beam dose distribution measurement detection includes the following steps:
  • S1 the computer detects a beam signal, and determines the beam state, if it is in the state, then proceeds to step 2, if it is in the closed state, proceeds to step 3;
  • the detector module performs second gamma photon detection, and transmits the detected second gamma photon signal to a computer;
  • the detector module performs positron mode detection and transmits the detected positron mode signal to the computer;
  • S4 the computer performs signal detection on the detected second gamma photon signal and positron mode signal And obtain a spatial distribution of the beam dose.
  • S11 is further included after S1: anti-coincidence detection of the beam signal is performed by the collimator.
  • S2 specifically includes the following sub-steps:
  • the second gamma photon signal is detected by the second layer detector and the third layer detector, wherein the signal detected by the second layer detector is a second gamma photon signal, and is detected at the third layer detector.
  • the second gamma photon signal is transmitted to the computer.
  • S4 specifically includes the following sub-steps:
  • S41 The computer determines whether the energy of the second gamma photon signal is higher than a preset threshold; if it is higher than the preset threshold, step 42 is performed;
  • the computer obtains an intersection of the second ⁇ photon signal and the beam current signal according to an incident direction of the second ⁇ photon signal;
  • the computer obtains a spatial distribution of the beam dose according to the intersection of the obtained second gamma photon signal and the beam current signal and the positron mode signal.
  • the beam dose distribution measurement and detection method of the invention can detect the distribution of the beam dose after the beam flows through the simulated human body, thereby further detecting the emission dose of the beam emission end, thereby judging the accuracy of the detected dose distribution.
  • FIG. 1 is a flow chart of a method for measuring and detecting a beam dose distribution according to the present invention
  • FIG. 2 is a structural block diagram of a beam dose distribution measuring apparatus according to the present invention.
  • the beam dose distribution measuring device mainly comprises the following steps:
  • S1 the computer detects a beam signal and determines the beam state, if it is in the state, it enters S11, and if it is in the closed state, it proceeds to S3;
  • S2 the detector module performs second gamma photon detection, and transmits the detected second gamma photon signal to the computer; S2 specifically includes the following substeps:
  • the second gamma photon signal is detected by the second layer detector and the third layer detector, wherein the signal detected by the second layer detector is a second gamma photon signal, and is detected at the third layer detector.
  • the second gamma photon signal is transmitted to the computer.
  • the detector module performs positron mode detection and transmits the detected positron mode signal to the computer;
  • S4 The computer performs signal processing on the detected second gamma photon signal and the positron mode signal, and obtains a spatial distribution of the beam dose; S4 specifically includes the following substeps:
  • S41 The computer determines whether the energy of the second gamma photon signal is higher than a preset threshold; if it is higher than the preset threshold, step 42 is performed;
  • the computer obtains an intersection of the second ⁇ photon signal and the beam current signal according to an incident direction of the second ⁇ photon signal;
  • the computer obtains a spatial distribution of the beam dose according to the intersection of the obtained second gamma photon signal and the beam current signal and the positron mode signal.
  • the instantaneous high-energy gamma photons can best represent the distribution of proton/heavy ion deposition dose in the human body in time and space, it is most important for the measurement of dose distribution; positron (actually annihilation photon emitted by positron) There is a certain lag in time, but there is a difference in space that can be corrected. With a certain method, it can be used to measure the spatial distribution of dose; X-ray and low-energy gamma photo have large difference in space and dose distribution, which cannot be used for measurement. Dose distribution, but due to its excessive strength It will become a source of interference for measuring instantaneous high-energy gamma photons and positrons.
  • the beam dose distribution measurement detection method of the present invention can detect the dose distribution of the beam current on the simulated human body, and compare the obtained dose distribution with the dose distribution of the beam emission end to detect the beam dose distribution. Measuring the accuracy of device detection.
  • the main purpose of the beam dose distribution measurement method of the present invention is to: (1) accurately measure a prompt high-energy gamma photon signal from the above various particles; that is, a second gamma photon signal; (2) simultaneously utilize The positron signal is used for measurement correction; (3) the accuracy of detecting the beam dose distribution measuring device can be detected relatively effectively.
  • the cross-sectional distribution of the proton/heavy ion beam can be completely determined by accurate measurement and verification of the imaging two-dimensional optical dosimeter before surgery, then intraoperative online monitoring
  • the main task can be simplified to one-dimensional monitoring of the proton/heavy ion beam range without the need for complex 3D imaging directly.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种束流剂量分布测量方法,包括以下步骤:S1:计算机检测一束流信号,并判断束流状态,如果处于开启状态,则进入步骤S2,如果处于关闭状态,则进入步骤S3;S2:探测器模块进行第二γ光子探测,并将探测到的第二γ光子信号传输至计算机;S3:探测器模块进行正电子模式探测,并将探测到的正电子模式信号传输至计算机;S4:计算机对探测得到的第二γ光子信号和正电子模式信号进行信号处理,并得到束流剂量的空间分布。该方法能检测束流经过模拟人体后的束流剂量的分布,从而进一步检测出束流发射端的发射剂量,提高剂量分布探测的准确性。

Description

一种束流剂量分布测量检测的方法 技术领域
本发明属于剂量验证设备技术领域,尤其涉及一种束流剂量分布测量检测的方法。
背景技术
术前剂量验证的原理是使用体模代替病人,在质子/重离子终端上采用设计好的治疗计划进行照射,实际测量质子束/重离子束的剂量在体模内的空间分布,并和期望的空间分布比对,验证是否存在偏差,以确保加速器工作在正常状态。
质子/重离子治癌的术中及术后剂量验证的基本技术路线是正电子断层成像(PET)。这一技术路线的原理如下:质子/重离子在入射人体后沉积剂量的地方,会与人体内的原子核反应,生成正电子衰变核素(如15O,11C,13N等)。这些核素衰变出的正电子在人体内浓度的分布代表了质子/重离子在人体内的剂量分布。正电子断层成像仪(Positron Emission Tomography,PET)是一种通过符合测量正电子湮灭光子从而对正电子成像的仪器,在临床上已有几十年的应用历史,可以用来测量正电子在人体内的浓度分布。这种剂量验证又分为两种,一种是线下测量,另一种是在线测量。线下测量是病人接受质子/重离子照射后,马上到PET上进行测量。这种测量属于术后验证,所用的PET机器就是做临床诊断用的PET机器。这种测量有三个主要的缺点:一是病人由于身体的移动,软的组织器官相比于治疗时已经会发生位移和形变,因此PET图像需要和治疗终端的CT图像进行复杂的配准处理,增加了测量结果处理的难度,同时降低了测量准确度。二是由于从治疗完毕到进行PET扫描需要一定的时间(约20分钟左右),这时15O(半衰期2分钟)基本全部衰变,13N(半衰期10分钟)绝大部分衰变,所以只能测量到部分11C(半 衰期20分钟)的信息,损失了宝贵的信息。三是临床PET所使用的重建算法都是针对注射正电子药物的情况(正电子活度在mCi量级)设计的,不能很好的适用于质子/重离子治疗后的低正电子活度的情况,成像的误差较大,降低了测量的准确度。这三个缺点限制了线下术后测量在质子重离子治癌剂量验证方面的应用。
在线测量是指研发专门的PET机器,安装在质子/重离子治疗终端上,在照射的同时进行测量。这种测量属于术中验证,可以避免前述线下术后测量的三个缺点。目前这种技术尚处于研究阶段,只有美国、日本、德国等国外少数研究机构进行了初步的测试,还面临很多技术问题,尚未进入临床应用。这种技术即使成熟后,成本也将非常昂贵。
目前术中验证所用的剂量测量仪器主要是在线PET,安装在质子/重离子治疗终端上,在照射的同时进行测量,需要建造大型环状探测器,体积庞大,价格昂贵,尚未得到广泛的临床应用。并且并非实时在线测量,做不到真正的同步,需要在治疗结束后进行PET扫描,耗费时间长。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种束流剂量分布测量检测的方法,其能解决测量和检测束流剂量分布的技术问题。
本发明的目的采用以下技术方案实现:
一种束流剂量分布测量检测的方法,包括以下步骤:
S1:计算机检测一束流信号,并判断束流状态,如果处于开启状态,则进入步骤2,如果处于关闭状态,则进入步骤3;
S2:探测器模块进行第二γ光子探测,并将探测到的第二γ光子信号传输至计算机;
S3:探测器模块进行正电子模式探测,并将探测到的正电子模式信号传输至计算机;
S4:计算机对探测得到的第二γ光子信号和正电子模式信号进行信号处 理,并得到束流剂量的空间分布。
优选地,还包括位于S1之后的S11:通过准直器来进行束流信号的反符合探测。
优选地,S2具体包括以下子步骤:
S21:通过第一层探测器探测得到X射线信号和第一γ光子信号;
S22:通过第二层探测器和第三层探测器探测得到第二γ光子信号,其中在第二层探测器探测得到的信号为第二一γ光子信号,在第三层探测器处探测得到的为第二二γ光子信号,并将第二γ光子信号传输至计算机。
优选地,S4具体包括以下子步骤:
S41:计算机判断第二γ光子信号的能量是否高于预设阈值;如果高于预设阈值,则执行步骤42;
S42:计算机根据康普顿散射方程计算得到第二γ光子信号的入射方向;
S43:计算机根据第二γ光子信号的入射方向得出第二γ光子信号与束流信号的交点;
S44:计算机根据得到的第二γ光子信号与束流信号的交点和正电子模式信号以得到束流剂量的空间分布。
相比现有技术,本发明的有益效果在于:
本发明的束流剂量分布测量检测的方法,其能检测束流经过模拟人体后的束流剂量的分布,从而进一步检测出束流发射端的发射剂量,从而判断探测得到的剂量分布的准确性。
附图说明
图1为本发明一种束流剂量分布测量检测的方法的流程图;
图2为本发明一种束流剂量分布测量设备的结构框图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述:
如图1和图2所示,本发明的束流剂量分布测量检测的方法主要应用于 束流剂量分布测量设备上,其主要包括以下步骤:
S1:计算机检测一束流信号,并判断束流状态,如果处于开启状态,则进入S11,如果处于关闭状态,则进入S3;
S11:通过准直器来进行束流信号的反符合探测;
S2:探测器模块进行第二γ光子探测,并将探测到的第二γ光子信号传输至计算机;S2具体包括以下子步骤:
S21:通过第一层探测器探测得到X射线信号和第一γ光子信号;
S22:通过第二层探测器和第三层探测器探测得到第二γ光子信号,其中在第二层探测器探测得到的信号为第二一γ光子信号,在第三层探测器处探测得到的为第二二γ光子信号,并将第二γ光子信号传输至计算机。
S3:探测器模块进行正电子模式探测,并将探测到的正电子模式信号传输至计算机;
S4:计算机对探测得到的第二γ光子信号和正电子模式信号进行信号处理,并得到束流剂量的空间分布;S4具体包括以下子步骤:
S41:计算机判断第二γ光子信号的能量是否高于预设阈值;如果高于预设阈值,则执行步骤42;
S42:计算机根据康普顿散射方程计算得到第二γ光子信号的入射方向;
S43:计算机根据第二γ光子信号的入射方向得出第二γ光子信号与束流信号的交点;
S44:计算机根据得到的第二γ光子信号与束流信号的交点和正电子模式信号以得到束流剂量的空间分布。
由于瞬发高能γ光子在时间上和空间上能最精确代表质子/重离子在人体内沉积剂量的分布,对于剂量分布的测量来说最为重要;正电子(实际上是正电子发出的湮没光子)在时间上有一定滞后,但空间上存在可以校正的差异,配合一定的方法,可以用于测量剂量的空间分布;X射线和低能γ光子在空间上和剂量分布差异较大,不能用于测量剂量分布,反而由于其过高的强度 会成为测量瞬发高能γ光子和正电子的干扰源。通过本发明的束流剂量分布测量检测的方法,能够检测到束流打在模拟人体上的剂量分布,并且将得到的剂量分布与束流发射端的剂量分布进行对比,来检测该束流剂量分布测量设备检测的精确度。
所以本发明的束流剂量分布测量的方法主要目的在于:(1)从以上各种粒子中精确的测量出瞬发高能γ光子信号;也即是第二γ光子信号;(2)同时可以利用正电子信号来进行测量补正;(3)能够比较有效的检测该束流剂量分布测量设备的检测的准确性。
考虑到质子/重离子在人体类的路径基本是直线,质子/重离子束流的横截面分布可以术前通过成像式二维光学剂量仪精确的测量和验证来完全确定,那么术中在线监测的主要任务就可以简化为对质子/重离子束流射程的一维监测,而没有必要直接进行复杂的3D成像。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (4)

  1. 一种束流剂量分布测量检测的方法,其特征在于,包括以下步骤:
    S1:计算机检测一束流信号,并判断束流状态,如果处于开启状态,则进入步骤S2,如果处于关闭状态,则进入步骤S3;
    S2:探测器模块进行第二γ光子探测,并将探测到的第二γ光子信号传输至计算机;
    S3:探测器模块进行正电子模式探测,并将探测到的正电子模式信号传输至计算机;
    S4:计算机对探测得到的第二γ光子信号和正电子模式信号进行信号处理,并得到束流剂量的空间分布。
  2. 如权利要求1所述的束流剂量分布测量检测的方法,其特征在于,还包括位于S1之后的S11:通过准直器来进行束流信号的反符合探测。
  3. 如权利要求1所述的束流剂量分布测量检测的方法,其特征在于,S2具体包括以下子步骤:
    S21:通过第一层探测器探测得到X射线信号和第一γ光子信号;
    S22:通过第二层探测器和第三层探测器探测得到第二γ光子信号,其中在第二层探测器探测得到的信号为第二一γ光子信号,在第三层探测器处探测得到的为第二二γ光子信号,并将第二γ光子信号传输至计算机。
  4. 如权利要求1所述的束流剂量分布测量检测的方法,其特征在于,S4具体包括以下子步骤:
    S41:计算机判断第二γ光子信号的能量是否高于预设阈值;如果高于预设阈值,则执行步骤S42;
    S42:计算机根据康普顿散射方程计算得到第二γ光子信号的入射方向;
    S43:计算机根据第二γ光子信号的入射方向得出第二γ光子信号与束流信号的交点;
    S44:计算机根据得到的第二γ光子信号与束流信号的交点和正电子模式信号以得到束流剂量的空间分布。
PCT/CN2017/111931 2016-11-24 2017-11-20 一种束流剂量分布测量检测的方法 WO2018095301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611049709.6 2016-11-24
CN201611049709.6A CN106772542B (zh) 2016-11-24 2016-11-24 一种束流剂量分布测量检测的方法

Publications (1)

Publication Number Publication Date
WO2018095301A1 true WO2018095301A1 (zh) 2018-05-31

Family

ID=58912783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111931 WO2018095301A1 (zh) 2016-11-24 2017-11-20 一种束流剂量分布测量检测的方法

Country Status (2)

Country Link
CN (1) CN106772542B (zh)
WO (1) WO2018095301A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031048A (zh) * 2021-03-05 2021-06-25 中国科学院近代物理研究所 一种离子束射程快速质控验证的装置及方法
CN113101544A (zh) * 2021-04-02 2021-07-13 中国科学院近代物理研究所 用于重离子治疗装置的束晕探测器联锁应用系统及方法
CN114488262A (zh) * 2022-01-19 2022-05-13 西北核技术研究所 用于加速器束流能量测量的探测器及其标定与测试方法
CN116052839A (zh) * 2023-02-02 2023-05-02 深圳扬奇医芯智能科技有限公司 基于切伦科夫辐射的剂量验证方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772542B (zh) * 2016-11-24 2019-04-16 江苏超敏科技有限公司 一种束流剂量分布测量检测的方法
CN110270014B (zh) * 2019-05-07 2022-01-04 彭浩 质子或重离子放射治疗剂量实时监测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283758A1 (en) * 2007-04-27 2008-11-20 Siemens Medical Solutions Usa, Inc. Prompt gamma correction for non-standard isotopes in a pet scanner
CN102369457A (zh) * 2009-04-07 2012-03-07 Gsi亥姆霍兹重离子研究中心有限责任公司 探测器装置
WO2012135725A2 (en) * 2011-03-30 2012-10-04 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for increasing the sensitivity of simultaneous multi-isotope positron emission tomography
CN104136077A (zh) * 2011-10-14 2014-11-05 代尔夫特工业大学 强子辐射装置和验证方法
JP2015188589A (ja) * 2014-03-28 2015-11-02 国立研究開発法人国立がん研究センター 生体機能観測装置および放射線治療システム
CN105431884A (zh) * 2013-04-11 2016-03-23 皇家飞利浦有限公司 用于对图像中的级联伽马进行解释和建模的方法
CN106501839A (zh) * 2016-11-24 2017-03-15 江苏超敏仪器有限公司 一种束流剂量分布测量设备
CN106772542A (zh) * 2016-11-24 2017-05-31 江苏超敏仪器有限公司 一种束流剂量分布测量检测的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747799A1 (en) * 2005-07-27 2007-01-31 Ion Beam Applications S.A. Dosimetry device for verification of a radiation therapy apparatus
FR2930995B1 (fr) * 2008-05-07 2010-07-30 Centre Nat Rech Scient Procede et dispositif de mesure en temps reel d'une dose locale lors du bombardement d'une cible par des hadrons au moyen des gamma prompts
JP5721135B2 (ja) * 2011-02-22 2015-05-20 独立行政法人日本原子力研究開発機構 粒子線モニタリング装置、粒子線モニタリングプログラム及び粒子線モニタリング方法
US9849307B2 (en) * 2014-10-21 2017-12-26 The Regents Of The University Of California System and method for dose verification and gamma ray imaging in ion beam therapy
CN104360376A (zh) * 2014-12-09 2015-02-18 西南科技大学 具有放射源核素识别功能的伽马相机及核素识别方法
CN205073542U (zh) * 2015-09-28 2016-03-09 南京中硼联康医疗科技有限公司 用于中子捕获治疗系统的辐射线检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283758A1 (en) * 2007-04-27 2008-11-20 Siemens Medical Solutions Usa, Inc. Prompt gamma correction for non-standard isotopes in a pet scanner
CN102369457A (zh) * 2009-04-07 2012-03-07 Gsi亥姆霍兹重离子研究中心有限责任公司 探测器装置
WO2012135725A2 (en) * 2011-03-30 2012-10-04 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for increasing the sensitivity of simultaneous multi-isotope positron emission tomography
CN104136077A (zh) * 2011-10-14 2014-11-05 代尔夫特工业大学 强子辐射装置和验证方法
CN105431884A (zh) * 2013-04-11 2016-03-23 皇家飞利浦有限公司 用于对图像中的级联伽马进行解释和建模的方法
JP2015188589A (ja) * 2014-03-28 2015-11-02 国立研究開発法人国立がん研究センター 生体機能観測装置および放射線治療システム
CN106501839A (zh) * 2016-11-24 2017-03-15 江苏超敏仪器有限公司 一种束流剂量分布测量设备
CN106772542A (zh) * 2016-11-24 2017-05-31 江苏超敏仪器有限公司 一种束流剂量分布测量检测的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031048A (zh) * 2021-03-05 2021-06-25 中国科学院近代物理研究所 一种离子束射程快速质控验证的装置及方法
CN113031048B (zh) * 2021-03-05 2022-11-15 中国科学院近代物理研究所 一种离子束射程快速质控验证的装置及方法
CN113101544A (zh) * 2021-04-02 2021-07-13 中国科学院近代物理研究所 用于重离子治疗装置的束晕探测器联锁应用系统及方法
CN114488262A (zh) * 2022-01-19 2022-05-13 西北核技术研究所 用于加速器束流能量测量的探测器及其标定与测试方法
CN116052839A (zh) * 2023-02-02 2023-05-02 深圳扬奇医芯智能科技有限公司 基于切伦科夫辐射的剂量验证方法及装置
CN116052839B (zh) * 2023-02-02 2023-08-15 深圳扬奇医芯智能科技有限公司 基于切伦科夫辐射的剂量验证方法及装置

Also Published As

Publication number Publication date
CN106772542B (zh) 2019-04-16
CN106772542A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018095301A1 (zh) 一种束流剂量分布测量检测的方法
JP5567058B2 (ja) 体内での(vivo)線量計測を実施するシステム
Li et al. Patient-specific quality assurance for the delivery of 60Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field
WO2018040623A1 (zh) 多伽马光子同时发射药物时间符合核医学成像系统及方法
Spreeuw et al. Online 3D EPID‐based dose verification: proof of concept
RU2535635C2 (ru) Динамическое формирование изображений посредством позитронно-эмиссионной томографии с компенсацией загрязнений изотопами
CN106501839B (zh) 一种束流剂量分布测量设备
CN109562277B (zh) 放射治疗剂量校准、重建和验证的自动化方法及实施系统
US8995609B2 (en) X-ray compton scatter imaging on volumetric CT systems
KR101948800B1 (ko) 3차원 산란 방사선 영상장치와 이를 갖는 방사선 의료장비 및 3차원 산란 방사선 영상장치의 배치 방법
Clemente‐Gutiérrez et al. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric‐modulated arc therapy techniques
CN109876308B (zh) 用于测量辐射输出率和监测射束能量的设备和方法
Rankine et al. Three-dimensional dosimetric validation of a magnetic resonance guided intensity modulated radiation therapy system
CN112473024A (zh) 一种对bnct过程中的三维硼剂量或硼浓度进行实时监测的方法
CN107544086A (zh) 加马光子侦测成像装置与方法
Li et al. Investigating the effectiveness of monitoring relevant variations during IMRT and VMAT treatments by EPID-based 3D in vivo verification performed using planning CTs
Das et al. Task group 174 report: utilization of [18F] fluorodeoxyglucose positron emission tomography ([18F] FDG‐PET) in radiation therapy
Torres-Xirau et al. 3D dosimetric verification of unity MR-linac treatments by portal dosimetry
KR101749324B1 (ko) 3차원 산란 방사선 영상장치 및 이를 갖는 방사선 의료장비
Han et al. Proton radiography and fluoroscopy of lung tumors: a Monte Carlo study using patient‐specific 4DCT phantoms
JP6190302B2 (ja) 生体機能観測装置および放射線治療システム
KR20160008820A (ko) 보정 계수 연산 장치 및 방법
Ibbott et al. The MD Anderson experience with 3D dosimetry and an MR-linac
Piermattei et al. ASi EPIDs for the in-vivo dosimetry of static and dynamic beams
WO2023243364A1 (ja) 放射線計測装置、放射線計測方法、放射線計測プログラム、体内組織移動方法及び非一時的記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873118

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17873118

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 02/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17873118

Country of ref document: EP

Kind code of ref document: A1