WO2018095164A1 - 多级导流装置 - Google Patents

多级导流装置 Download PDF

Info

Publication number
WO2018095164A1
WO2018095164A1 PCT/CN2017/106704 CN2017106704W WO2018095164A1 WO 2018095164 A1 WO2018095164 A1 WO 2018095164A1 CN 2017106704 W CN2017106704 W CN 2017106704W WO 2018095164 A1 WO2018095164 A1 WO 2018095164A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow guiding
spiral
spiral blade
guiding device
seat body
Prior art date
Application number
PCT/CN2017/106704
Other languages
English (en)
French (fr)
Inventor
蒋婷婷
冯国平
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621269699.2U external-priority patent/CN206221378U/zh
Priority claimed from CN201611048393.9A external-priority patent/CN106368985A/zh
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2018095164A1 publication Critical patent/WO2018095164A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to the field of fluid delivery machinery, and in particular to a multi-stage flow guiding device applied to a vacuum cleaner or a smoker fan.
  • the fan rotates under the driving device, and a negative pressure is formed in the sealed casing to suck the dust into the dust collecting device to achieve the cleaning function.
  • the rotation speed is generally between 60,000 and 80,000 rpm
  • the diffuser is generally used to introduce the fluid into the center of the driving device for heat dissipation, the airflow is easy to generate eddy current and has large resistance, and the performance is generally low.
  • the present invention aims to solve at least one of the above technical problems to some extent.
  • the present invention proposes a multi-stage flow guiding device that not only improves the fluid flow performance but also improves the hydraulic performance of the flow guiding device.
  • a multi-stage flow guiding device includes: a seat body, a deflector hood, a plurality of first spiral blades, and a plurality of second spiral blades, wherein the air guiding hood is disposed on the seat body,
  • the air guiding hood is formed in a ring shape and is located at one end of the seat body, and an air chamber is defined between an inner wall surface of the air guiding hood and an outer wall surface of the seat body, and the air guiding hood is One end of the seat body is spaced apart to define a wind chamber inlet, and a plurality of the first spiral blades are spaced apart from each other along a circumferential direction of the seat body on an outer wall surface of the seat body and located in the air chamber.
  • the second spiral blades are circumferentially spaced apart on the outer wall surface of the seat body, and the second spiral blades are spaced apart from the first spiral, each of the second One end of the spiral blade is located in the air chamber, and the other end protrudes from the air chamber, adjacent to the two of the second A tuyere outlet is defined between the other ends of the helical blades.
  • a wind chamber is defined between the outer wall surface of the seat body and the air guiding hood, and a plurality of first spiral blades and a plurality of second spiral blades are disposed in the air chamber.
  • the use of the gap between the first spiral blade and the second spiral blade to guide the fluid movement not only reduces the fluid eddy current and wind resistance, but also reduces the temperature of the driving device, protects the driving device from high temperature damage, and can effectively utilize multiple stages.
  • the internal space of the flow guiding device optimizes the structural design of the multi-stage flow guiding device and reduces the volume and space occupied by the multi-stage guiding device.
  • multi-stage flow guiding device may further have the following additional technical features:
  • the seat body comprises an upper half and a lower half, the lower end of the upper half being connected to the upper end of the lower half, the upper half being formed substantially from top to bottom a circular table shape in which a radial dimension is gradually increased, the lower half is formed in a column shape, the first spiral blade is disposed on the upper half, and the first end of the second spiral blade is disposed in the upper half The other end of the segment extends downward to the lower half.
  • the upper end of the first spiral blade is flush with the upper end of the second spiral blade.
  • the upper end of the first spiral blade and the upper end of the second spiral blade are respectively formed as rounded curved surfaces that protrude upward.
  • the plurality of the first spiral blades are inclined in the same direction as the plurality of the second spiral blades.
  • the upper half is integrally formed with the lower half.
  • the lower half is provided with a plurality of positioning grooves extending along the axial direction thereof and spaced apart in the circumferential direction.
  • the first spiral blade and the second spiral blade are integrally formed with the seat body, respectively.
  • the first spiral blade and the second spiral blade are respectively 9-16.
  • the deflector hood is formed substantially in the shape of a semi-disc, and the deflector is closely connected to the end of the first spiral blade.
  • FIG. 1 is an exploded view of a multi-stage flow guiding device in accordance with an embodiment of the present invention
  • FIG. 2 is a partial view of a multi-stage flow guiding device according to an embodiment of the present invention.
  • Figure 3 is a structural schematic view of the structure shown in Figure 2 at another angle;
  • Figure 4 is a plan view of the structure shown in Figure 2;
  • Figure 5 is a bottom plan view of the structure shown in Figure 2;
  • FIG. 6 is a schematic structural view of a seat body of a multi-stage flow guiding device according to an embodiment of the present invention.
  • Figure 7 is a top plan view of the structure shown in Figure 6.
  • 100 a multi-stage flow guiding device
  • a multi-stage flow guiding device 100 according to an embodiment of the present invention will be specifically described below with reference to FIGS. 1 through 7.
  • the multi-stage flow guiding device 100 includes a seat body 10, a flow guiding hood 20, a plurality of first spiral blades 30, and a plurality of second spiral blades 40.
  • the seat body 10 is formed substantially in a column shape, and the guiding wind
  • the cover 20 is disposed on the base 10, and the air guiding hood 20 is formed substantially annularly at one end of the base 10.
  • the inner wall surface of the air guiding hood 20 and the outer wall surface of the base 10 define a wind chamber (not shown).
  • the flow guiding hood 20 is spaced apart from one end of the seat body 10 to define a wind chamber inlet (not shown), and the plurality of first spiral blades 30 are circumferentially spaced apart from each other on the outer wall surface of the seat body 10 and Located in the air chamber, a plurality of second spiral blades 40 are circumferentially spaced apart on the outer wall surface of the base 10, and the second spiral blades 40 are spaced apart from the first spiral, and each of the second spiral blades 40 is disposed.
  • One end is located in the air chamber, the other end extends out of the air chamber, and the other end of the adjacent two second spiral blades 40 defines an air outlet.
  • the multi-stage flow guiding device 100 is mainly composed of the seat body 10, the deflector hood 20, the plurality of first spiral blades 30, and the plurality of second spiral blades 40.
  • a driving device 50 is disposed under the multi-stage flow guiding device 100 , and the driving device 50 and the multi-stage guiding device 100 are connected by the base 10 and below the base 10 (as shown in FIG. 1 ).
  • the lower part shown is connected to the top of the driving device 50 (above shown in FIG.
  • the upper cover of the seat body 10 is provided with a flow guiding hood 20, and the inner wall surface of the air guiding hood 20 and the outer wall of the housing 10 are
  • the air chamber is defined between the top outer peripheral edge of the air guiding hood 20 and the top outer peripheral edge of the seat body 10 to define a wind chamber inlet, and the air chamber inlet communicates with the air chamber, that is, the air chamber is inserted and formed along the circumference of the seat body 10 An extended annular structure.
  • first spiral blades 30 and a plurality of second spiral blades 40 are disposed in the wind chamber, and the plurality of first spiral blades 30 and the plurality of second spiral blades 40 are circumferentially spaced along the wall of the seat body 10. And the first spiral blade 30 and the second spiral blade 40 are alternately disposed, wherein one end of the first spiral blade 30 and the second spiral blade 40 (the upper end shown in FIG.
  • the multi-stage flow guiding device 100 defines a wind chamber between the outer wall surface of the seat body 10 and the air guiding hood 20, and a plurality of first spiral blades 30 are disposed in the air chamber.
  • the plurality of second spiral blades 40 guide the fluid movement by using the gap between the first spiral blade 30 and the second spiral blade 40, so that the fluid passes through the multiple diffusion and then enters the driving device 50 to reduce the fluid to the driving device 50.
  • the impact can not only reduce the fluid eddy current and wind resistance, but also reduce the temperature of the driving device 50, protect the driving device 50 from high temperature damage, and can effectively utilize the internal space of the multi-stage guiding device 100 to optimize the multi-level diversion.
  • the structural design of the device 100 reduces the volume and space occupied by the multi-stage flow guiding device 100.
  • the base 10 includes an upper half 11 and a lower half 12, the lower end of which is connected to the upper end of the lower half 12, and the upper half 11 is formed substantially in a radial dimension from the top to the bottom.
  • the lower half 12 is formed in a column shape, and the first spiral blade 30 is disposed on the upper half 11, and the first end of the second spiral blade 40 is disposed on the upper half 11 and the other end extends downward to the lower half. 12 on.
  • the base 10 is composed of an upper half 11 and a lower half 12 which are arranged in the up and down direction and connected, and the upper half 11 is formed substantially as a truncated cone structure, and the radial dimension of the truncated cone structure gradually increases from the top to the bottom. That is to say, the two sides of the longitudinal section shape of the upper half 11 in the vertical direction form a curve arranged along the axial direction of the seat body 10, and the lower half section 12 is a cylindrical structure, and the radial dimensions are equal, that is, the formation
  • the top section of the upper half 11 is connected to the bottom end of the lower half 12 by an equal-section columnar structure.
  • the first spiral blade 30 is disposed on the outer wall surface of the upper half 11 and extends downward along the outer wall of the upper half 11
  • the second spiral blade 40 is disposed between the adjacent two first spiral blades 30 .
  • the second spiral blade 40 extends downward from the top of the upper half 11 to the bottom of the lower half 12, and the first spiral blade 30 of the upper half 11 and the second spiral blade 40 are alternately spaced.
  • the seat body 10 continuously increases the cross-sectional area of the air chamber by the mutual cooperation between the upper half 11 and the lower half 12, and uses the difference in length between the first spiral blade 30 and the second spiral blade 40 to define the wind chamber.
  • the shape increases the path of the fluid as it passes through the air chamber, thereby reducing the fluid eddy current and wind resistance, which is beneficial to achieve
  • the high speed, vacuum and high air volume improve the performance of the multi-stage flow guiding device 100.
  • the upper end of the first helical blade 30 is flush with the upper end of the second helical blade 40, i.e., the upper end of the first helical blade 30 and the upper end of the second helical blade 40 are equidistant from the central axis of the seat 10.
  • the upper end of the first spiral blade 30 is flush with the upper end of the second spiral blade 40 to ensure the symmetry of the structure at the entrance of the air chamber, and can be evenly distributed to the first spiral when flowing through the inlet of the air chamber into the air chamber.
  • the structural design at the inlet of the air chamber is optimized to prevent the work of the multi-stage flow guiding device 100 from being affected by the uneven distribution of the fluid, and the operation of the multi-stage flow guiding device 100 is ensured. stability.
  • the upper end of the first spiral blade 30 and the upper end of the second spiral blade 40 are respectively formed as rounded curved surfaces that protrude upward.
  • the upper end faces of the first spiral blade 30 and the second spiral blade 40 are rounded curved surfaces, and the two sides of the smooth spiral curved surface are respectively connected to the two sides of the first spiral blade 30 or the second spiral blade 40, with respect to the plane
  • the smooth surface has less resistance to fluids.
  • the resistance of the multi-stage flow guiding device 100 to the passing fluid can be reduced, and the fluid can smoothly enter the air chamber through the inlet of the air chamber. Increase the speed of fluid flow.
  • the plurality of first spiral blades 30 and the plurality of second spiral blades 40 have the same inclination direction.
  • the upper half of the seat body 10 is provided with a plurality of first spiral blades 30 and an upper half of the plurality of second spiral blades 40, and the first spiral blades 30 and the first
  • the two spiral blades 40 are each inclined with respect to an imaginary straight line on which the radius of the corresponding position is located, and the inclination directions of the first spiral blade 30 and the second spiral blade 40 with respect to the straight line where the corresponding radius is located are identical.
  • the inclination directions of the first spiral blade 30 and the second spiral blade 40 are set at equal angles, and the resistance of the spiral blade to the fluid can be further reduced, and the eddy current of the fluid can be reduced, thereby maximally increasing the multi-stage flow guiding device 100.
  • the diversion effect further improves the heat dissipation effect of the driving device 50.
  • the upper half 11 and the lower half 12 are integrally formed.
  • the upper half 11 and the lower half 12 In the production process, it can be integrally injection molded to form the seat body 10, and there is no connection gap between the two. Therefore, the integrally formed structure can not only ensure the structure and performance stability of the seat body 10, but also facilitate molding and manufacture, and save the connection structure and connection process between the upper half 11 and the lower half 12, thereby improving the seat.
  • the assembly efficiency of the body 10 reduces the difficulty of the production of the seat body 10, and the connection is reliable.
  • the integrally formed seat body 10 has a high overall strength and stability, is easy to assemble, has a long service life, and reduces production and production. Maintain production.
  • the lower half 12 is provided with a plurality of positioning grooves 13 extending along the axial direction thereof and spaced apart in the circumferential direction.
  • the bottom of the lower half 12 is provided with a plurality of positioning grooves 13, which are arranged in the circumferential direction of the lower half 12, wherein the positioning grooves 13 are along the radial direction of the lower half 12.
  • the direction penetrates the side wall surface of the lower half 12, and the positioning groove 13 is disposed between the adjacent second spiral blades 40.
  • the positioning groove 13 is provided at the bottom of the lower half 12, and the positioning groove 13 is engaged with the driving device 50.
  • the connection stability between the base 10 and the driving device 50 is improved, and the seat body 10 and the driving device 50 are prevented.
  • the mutual displacement affects the normality of the multi-stage flow guiding device 100, and on the other hand, the contact area between the seat body 10 and the driving device 50 is increased, thereby increasing the heat dissipation effect of the driving device 50.
  • first spiral blade 30 and the second spiral blade 40 are integrally formed with the seat body 10, respectively.
  • the first spiral blade 30 and the second spiral blade 40 may be integrally molded with the seat body 10 during production, form an integral structure with the seat body 10, and the first spiral blade 30 and the second spiral blade 40 and the seat body 10 There is no connection gap between them. Therefore, the integrally formed structure can not only ensure the structure and performance stability of the seat body 10 and the first spiral blade 30 and the second spiral blade 40, but also facilitate molding and manufacturing, and save the first spiral blade 30 and the second spiral.
  • the connection structure between the blade 40 and the seat body 10 and the joining process improve the assembly efficiency of the seat body 10. Furthermore, the integrally formed structure has high overall strength and stability, is easy to assemble, and reduces production costs.
  • the first spiral blade 30 and the second spiral blade 40 are respectively 9-16.
  • the number of the first spiral blade 30 and the second spiral blade 40 are equal, and the first spiral blade 30 or the second spiral
  • the number of the blades 40 is limited to between 9 and 16, and may be nine, which may be 12 or 16 respectively.
  • the effect is best.
  • the working performance of the multi-stage flow guiding device 100 can be improved, and the number of the first spiral blade 30 and the second spiral blade 40 is prevented from being excessive or too small, which affects the flow guiding effect of the fluid, and on the other hand, the multi-stage flow guiding device is optimized.
  • the structural design of 100 reduces production costs.
  • the deflector hood 20 is generally formed in a semi-disc shape, and the deflector hood 20 is closely coupled to the end of the first spiral blade 30.
  • the air guiding hood 20 is formed substantially in a hemispherical structure with an open top, and the top end surface of the air guiding hood 20 is arranged in parallel with the bottom end surface, wherein the top end of the air guiding hood 20 forms a ring-shaped structure.
  • the inner diameter of the top end of the air guiding hood 20 is substantially equal to the length of the first spiral blade 30 from the central axis of the base 10.
  • the inner diameter of the bottom end of the air guiding hood 20 is substantially the same as the center of the second spiral blade 40 from the center of the base 10.
  • the lengths of the shafts are equal in size.
  • the sealing performance of the multi-stage flow guiding device 100 is improved, and the diversion is prevented from being affected by the excessive distance between the outer side of the spiral blade and the inner wall surface of the air guiding hood 20.
  • the effect, thereby reducing the wind resistance and eddy current of the air chamber, increases the heat dissipation effect of the driving device 50.
  • a multi-stage flow guiding device 100 is mainly composed of a seat body 10, a flow guiding hood 20, a plurality of first spiral blades 30, and a plurality of second spiral blades 40, and a multi-stage guide.
  • a driving device 50 is disposed under the flow device 100.
  • the driving device 50 and the multi-stage flow guiding device 100 are connected by a seat body 10.
  • the upper cover of the seat body 10 is provided with a deflector hood 20, and the inner wall surface of the air guiding hood 20
  • a wind chamber is defined between the outer wall of the seat body 10.
  • the air chamber is provided with a plurality of first spiral blades 30 and a plurality of second spiral blades 40, and the plurality of first spiral blades 30 and the plurality of second spiral blades 40 are along
  • the seats 10 are circumferentially spaced apart, and the first helical blades 30 are alternately spaced from the second helical blades 40.
  • the wind flows from the air chamber inlet into the air chamber, then exits the air chamber outlet and enters the drive unit 50.
  • the fluid when the fluid enters the air chamber through the inlet of the air chamber of the multi-stage flow guiding device 100, the fluid along the phase
  • the flow path between the adjacent first spiral blade 30 and the second spiral blade 40 increases the moving distance of the fluid in the wind chamber, improves the heat dissipation effect of the driving device 50, and reduces the eddy current and wind resistance of the air chamber to the fluid.
  • the multi-stage flow guiding device 100 can not only reduce the fluid eddy current and wind resistance, but also reduce the temperature of the driving device 50, protect the driving device 50 from high temperature damage, and can effectively utilize multiple stages.
  • the internal space of the flow guiding device 100 optimizes the structural design of the multi-stage flow guiding device 100, and reduces the volume and space occupied by the multi-stage guiding device 100.
  • the structure is simple, the components are connected reliably, the service life of the multi-stage flow guiding device 100 is prolonged, and the working performance of the multi-stage flow guiding device 100 is improved.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or connected integrally; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise.
  • , or connected integrally may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种多级导流装置(100),包括:座体(10)、导流风罩(20)、多个第一螺旋叶片(30)和多个第二螺旋叶片(40),导流风罩(20)的内壁面与座体(10)的外壁面之间限定出风腔,多个第一螺旋叶片(30)和多个第二螺旋叶片(40)均沿座体(10)的周向间隔开交错布置,第二螺旋叶片(40)的一端位于风腔内,相邻两个第二螺旋叶片(40)的另一端之间限定出风腔出口。

Description

多级导流装置 技术领域
本发明涉及流体输送机械技术领域,具体而言,涉及到应用于吸尘器或抽烟机风机的多级导流装置。
背景技术
相关技术中的吸尘器结构,在驱动装置带动下风机旋转,在密封的壳体内形成负压将尘屑吸入集尘装置中从而达到清洁的作用,在形成吸力的过程中,由于受叶轮、导流器、驱动装置温升等的限制,转速普遍在60000-80000rpm之间,且普遍采用扩压器将流体引入驱动装置中心进行散热,气流易产生涡流且会有较大的阻力,性能普遍低。
发明内容
本发明旨在至少在一定程度上解决上述技术问题之一。
为此,本发明提出一种多级导流装置,该多级导流装置不仅提高流体的流动性能,还提高了导流装置的水力性能。
根据本发明实施例的多级导流装置,包括:座体、导流风罩、多个第一螺旋叶片和多个第二螺旋叶片,所述导流风罩设在所述座体上,所述导流风罩大致形成为环形且位于所述座体的一端,所述导流风罩的内壁面与所述座体的外壁面之间限定出风腔,所述导流风罩与所述座体的一端间隔开限定出风腔入口,多个所述第一螺旋叶片沿所述座体的周向间隔开设在所述座体的外壁面上且位于所述风腔内,多个所述第二螺旋叶片沿所述座体的周向间隔开设在所述座体的外壁面上,所述第二螺旋叶片与所述第一螺旋间隔开交错布置,每个所述第二螺旋叶片的一端位于所述风腔内,另一端伸出所述风腔,相邻两个所述第二 螺旋叶片的另一端之间限定出风腔出口。
根据本发明实施例的多级导流装置,通过在座体的外壁面与导流风罩之间限定出风腔,并在风腔内设置多个第一螺旋叶片与多个第二螺旋叶片,利用第一螺旋叶片与第二螺旋叶片之间的间隙引导流体运动,不仅能够降低流体涡流与风阻,还能降低驱动装置的温度,保护驱动装置不受高温损坏,而且,能够有效地利用多级导流装置的内部空间,优化了多级导流装置的结构设计,缩小了多级导流装置的体积和占用空间。
另外,根据本发明实施例的多级导流装置,还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述座体包括上半段和下半段,所述上半段的下端与所述下半段的上端相连,所述上半段大致形成为从上向下径向尺寸逐渐增大的圆台状,所述下半段形成为柱状,所述第一螺旋叶片设在所述上半段上,所述第二螺旋叶片的第一端设在所述上半段上且另一端向下延伸至所述下半段上。
根据本发明的一个实施例,所述第一螺旋叶片的上端与所述第二螺旋叶片的上端平齐。
根据本发明的一个实施例,所述第一螺旋叶片的上端和所述第二螺旋叶片的上端分别形成为向上突出的圆滑曲面。
根据本发明的一个实施例,多个所述第一螺旋叶片与多个所述第二螺旋叶片的倾斜方向相同。
根据本发明的一个实施例,所述上半段与所述下半段一体成型。
根据本发明的一个实施例,所述下半段上设有多个沿其轴向延伸且在周向上间隔开布置的定位槽。
根据本发明的一个实施例,所述第一螺旋叶片和所述第二螺旋叶片分别与所述座体一体成型。
根据本发明的一个实施例,所述第一螺旋叶片和所述第二螺旋叶片分别为 9-16个。
根据本发明的一个实施例,所述导流风罩大致形成为半圆盘形,所述导流风罩与所述第一螺旋叶片的末端紧密相连。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的多级导流装置的爆炸图;
图2是根据本发明实施例的多级导流装置的部装图;
图3是图2中所示的结构在另一个角度的结构示意图;
图4是图2中所示的结构的俯视图;
图5是图2中所示的结构的仰视图;
图6是根据本发明实施例的多级导流装置的座体的结构示意图;
图7是图6中所示的结构的俯视图。
附图标记:
100:多级导流装置;
10:座体;11:上半段;12:下半段;13:定位槽;
20:导流风罩;30:第一螺旋叶片;40:第二螺旋叶片;50:驱动装置。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不 能理解为对本发明的限制。
下面结合附图1至附图7具体描述根据本发明实施例的多级导流装置100。
根据本发明实施例的多级导流装置100包括座体10、导流风罩20、多个第一螺旋叶片30和多个第二螺旋叶片40,座体10大致形成为柱状,导流风罩20设在座体10上,导流风罩20大致形成为环形且位于座体10的一端,导流风罩20的内壁面与座体10的外壁面之间限定出风腔(未示出),导流风罩20与座体10的一端间隔开限定出风腔入口(未示出),多个第一螺旋叶片30沿座体10的周向间隔开设在座体10的外壁面上且位于风腔内,多个第二螺旋叶片40沿座体10的周向间隔开设在座体10的外壁面上,第二螺旋叶片40与第一螺旋间隔开交错布置,每个第二螺旋叶片40的一端位于风腔内,另一端伸出风腔,相邻两个第二螺旋叶片40的另一端之间限定出风腔出口。
换言之,多级导流装置100主要由座体10、导流风罩20、多个第一螺旋叶片30和多个第二螺旋叶片40组成。具体地,如图1所示,多级导流装置100下方设有驱动装置50,驱动装置50与多级导流装置100之间通过座体10相连,座体10的下方(如图1所示的下方)连接在驱动装置50的顶部(如图1所示的上方),座体10的上方罩设有导流风罩20,导流风罩20的内壁面与座体10的外壁之间限定出风腔,导流风罩20的顶部外周沿与座体10的顶部外周沿之间限定出风腔入口,风腔入口与风腔连通,即风腔出入形成为沿座体10周向延伸的环形结构。
进一步地,风腔内设有多个第一螺旋叶片30和多个第二螺旋叶片40,多个第一螺旋叶片30与多个第二螺旋叶片40沿座体10的壁的周向间隔布置,且第一螺旋叶片30与第二螺旋叶片40间隔交替设置,其中,第一螺旋叶片30与第二螺旋叶片40的一端(如图1所示的上端)设在座体10的顶壁且沿风腔出口的周向依次交替间隔布置,另一端沿座体10外侧壁面向下延伸,且第二螺旋叶片40在底座10的轴向上的长度大于第一螺旋叶片30在底座10的轴向上的长度,相邻两个第二螺旋叶片40的另一端(如图1所示的下端)之间限定出 风腔出口,风流从风腔入口进入风腔内,然后从风腔出口流出,并进入驱动装置50中。
由此,根据本发明实施例的多级导流装置100,通过在座体10的外壁面与导流风罩20之间限定出风腔,并在风腔内设置多个第一螺旋叶片30与多个第二螺旋叶片40,利用第一螺旋叶片30与第二螺旋叶片40之间的间隙引导流体运动,使流体经过多次扩压后再进入驱动装置50,减小流体对驱动装置50的冲击,不仅能够降低流体涡流与风阻,还能降低驱动装置50的温度,保护驱动装置50不受高温损坏,而且,能够有效地利用多级导流装置100的内部空间,优化了多级导流装置100的结构设计,缩小了多级导流装置100的体积和占用空间。
优选地,座体10包括上半段11和下半段12,上半段11的下端与下半段12的上端相连,上半段11大致形成为从上向下径向尺寸逐渐增大的圆台状,下半段12形成为柱状,第一螺旋叶片30设在上半段11上,第二螺旋叶片40的第一端设在上半段11上且另一端向下延伸至下半段12上。
具体而言,座体10由沿上下方向布置且相连的上半段11和下半段12组成,上半段11大致形成为圆台结构,圆台结构的径向尺寸从上到下逐渐增大,也就是说,上半段11沿竖直方向截得的纵截面形状的两条侧边形成沿座体10轴向布置的曲线,下半段12为圆柱结构,且径向尺寸相等,即形成等截面柱状结构,上半段11的顶端与下半段12的底端相连。
其中,第一螺旋叶片30设置在上半段11的外壁面上,且沿上半段11的外壁面向下延伸,相邻两个第一螺旋叶片30之间设有第二螺旋叶片40,第二螺旋叶片40从上半段11的顶部向下延伸至下半段12的底部,并且上半段11的第一螺旋叶片30与第二螺旋叶片40交替间隔布置。
座体10通过上半段11与下半段12之间的相互配合,不断增加风腔的截面积,并利用第一螺旋叶片30与第二螺旋叶片40之间的长度差,限定风腔的形状,增加了流体经过风腔时的路径,从而降低了流体涡流与风阻,有利于实现 高转速、真空度与大风量,提升了多级导流装置100的工作性能。
有利地,第一螺旋叶片30的上端与第二螺旋叶片40的上端平齐,即第一螺旋叶片30的上端与第二螺旋叶片40上端距离座体10的中心轴的距离相等。
由此,第一螺旋叶片30的上端与第二螺旋叶片40的上端平齐设置,保证风腔入口处结构的对称性,流通通过风腔入口进入风腔时,能够均匀的分配到第一螺旋叶片30与第二螺旋叶片40之间的流体通道中,优化了风腔入口处的结构设计,防止因流体分配不均匀影响多级导流装置100的工作,保证多级导流装置100的工作稳定性。
进一步地,第一螺旋叶片30的上端和第二螺旋叶片40的上端分别形成为向上突出的圆滑曲面。
也就是说,第一螺旋叶片30与第二螺旋叶片40的上端面为圆滑曲面,圆滑曲面的两侧分别连接第一螺旋叶片30或第二螺旋叶片40的两个侧面,相对于平面而言,圆滑曲面对流体的阻力较小。
其中,通过在第一螺旋叶片30的上端和第二螺旋叶片40的上端设置向上突出的圆滑曲面,能够降低多级导流装置100对通过流体的阻力,保证流体通过风腔入口顺利进入风腔,提高流体的通过速度。
需要说明的是,多个第一螺旋叶片30与多个第二螺旋叶片40的倾斜方向相同。
具体地,如图6和图7所示,座体10的上半段11上设多个第一螺旋叶片30和多个第二螺旋叶片40的上半部分,且第一螺旋叶片30与第二螺旋叶片40均相对于对应位置的半径所在假想直线倾斜布置,并且,第一螺旋叶片30与第二螺旋叶片40相对于对应的半径所在的直线的倾斜方向一致。
由此,将第一螺旋叶片30与第二螺旋叶片40的倾斜方向设置成等角度,能够进一步降低螺旋叶片对流体的阻力,降低流体的涡流,从而最大程度的增加多级导流装置100的导流效果,进而提高了驱动装置50的散热效果。
优选地,上半段11与下半段12一体成型。例如,上半段11与下半段12 在生产过程中可以一体注塑成型,形成座体10,两者之间没有连接缝隙。由此,一体成型的结构不仅可以保证座体10的结构、性能稳定性,而且方便成型、制造简单,节省了上半段11与下半段12之间的连接结构与连接工序,提高了座体10的装配效率,且降低了座体10生产的难度要求,连接可靠,再者,一体成型的座体10结构整体强度和稳定性较高,组装方便,使用寿命较长,降低了生产与维护生产。
可选地,下半段12上设有多个沿其轴向延伸且在周向上间隔开布置的定位槽13。
如图3所示,下半段12的底部设有多个定位槽13,多个定位槽13沿下半段12的周向间隔开布置,其中,定位槽13沿下半段12的径向方向贯穿下半段12的侧壁面,且定位槽13设置在相邻第二螺旋叶片40之间。
通过在下半段12的底部设置定位槽13,利用定位槽13与驱动装置50配合卡接,一方面提高了座体10与驱动装置50的连接稳定性,防止因座体10与驱动装置50之间相互错动影响多级导流装置100正常,另一方面,增加了座体10与驱动装置50之间的接触面积,从而增加了驱动装置50的散热效果。
需要说明的是,第一螺旋叶片30和第二螺旋叶片40分别与座体10一体成型。
例如,第一螺旋叶片30和第二螺旋叶片40在生产过程中可以与座体10一体注塑成型,与座体10形成整体结构,且第一螺旋叶片30和第二螺旋叶片40与座体10之间不存在连接缝隙。由此,一体成型的结构不仅可以保证座体10与第一螺旋叶片30和第二螺旋叶片40的结构、性能稳定性,而且方便成型、制造简单,节省了第一螺旋叶片30和第二螺旋叶片40与座体10之间的连接结构以及连接工艺,提高了座体10的装配效率,再者,一体成型的结构整体强度和稳定性较高,组装方便,降低了生产成本。
可选地,第一螺旋叶片30和第二螺旋叶片40分别为9-16个。换言之,第一螺旋叶片30与第二螺旋叶片40的个数相等,且第一螺旋叶片30或第二螺旋 叶片40的个数限制在9-16个之间,可以分别是9个,可以分别是12个,也可以分别是16个,当第一螺旋叶片30的个数为12个时效果最好,一方面能够提高多级导流装置100的工作性能,防止第一螺旋叶片30和第二螺旋叶片40的数量过多或过少影响流体的导流效果,另一方面优化了多级导流装置100的结构设计,降低生产成本。
有利地,导流风罩20大致形成为半圆盘形,导流风罩20与第一螺旋叶片30的末端紧密相连。
如图1所示,导流风罩20大致形成为顶部敞开的半球形结构,且导流风罩20的顶部端面与底部端面平行布置,其中,导流风罩20的顶端形成位环形结构,导流风罩20顶端的内径尺寸与第一螺旋叶片30距离座体10中心轴的长度尺寸大致相等,导流风罩20底端的内径尺寸大致与第二螺旋叶片40底端距离座体10中心轴的长度尺寸相等。
由此,在保证风流通过风腔进入驱动装置50的前提下,提高了多级导流装置100的密封性,防止因螺旋叶片的外侧与导流风罩20的内壁面距离过大影响导流效果,从而降低了风腔的风阻与涡流,增加了驱动装置50的散热效果。
下面结合具体实施例描述根据本发明实施例的多级导流装置100的工作过程。
如图1所示,根据本发明实施例的多级导流装置100主要由座体10、导流风罩20、多个第一螺旋叶片30和多个第二螺旋叶片40组成,多级导流装置100下方设有驱动装置50,驱动装置50与多级导流装置100之间通过座体10相连,座体10的上方罩设有导流风罩20,导流风罩20的内壁面与座体10的外壁之间限定出风腔,风腔内设有多个第一螺旋叶片30和多个第二螺旋叶片40,多个第一螺旋叶片30与多个第二螺旋叶片40沿座体10的周向间隔布置,且第一螺旋叶片30与第二螺旋叶片40间隔交替设置,风流从风腔入口进入风腔,然后从风腔出口流出,并进入驱动装置50中。
其中,流体通过多级导流装置100的风腔入口进入风腔内时,流体沿着相 邻第一螺旋叶片30与第二螺旋叶片40之间的流道流动,增加了流体在风腔内的运动距离,提高了驱动装置50的散热效果,降低风腔对流体的涡流与风阻。
由此,根据本发明实施例的多级导流装置100,不仅能够降低流体涡流与风阻,还能降低驱动装置50的温度,保护驱动装置50不受高温损坏,而且,能够有效地利用多级导流装置100的内部空间,优化了多级导流装置100的结构设计,缩小了多级导流装置100的体积和占用空间。再者,结构简单,各部件连接可靠,延长了多级导流装置100的使用寿命,提升了多级导流装置100的工作性能。
根据本发明实施例的多级导流装置100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中 以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多级导流装置,其特征在于,包括:
    座体;
    导流风罩,所述导流风罩设在所述座体上,所述导流风罩大致形成为环形且位于所述座体的一端,所述导流风罩的内壁面与所述座体的外壁面之间限定出风腔,所述导流风罩与所述座体的一端间隔开限定出风腔入口;
    多个第一螺旋叶片,多个所述第一螺旋叶片沿所述座体的周向间隔开设在所述座体的外壁面上且位于所述风腔内;
    多个第二螺旋叶片,多个所述第二螺旋叶片沿所述座体的周向间隔开设在所述座体的外壁面上,所述第二螺旋叶片与所述第一螺旋间隔开交错布置,每个所述第二螺旋叶片的一端位于所述风腔内,另一端伸出所述风腔,相邻两个所述第二螺旋叶片的另一端之间限定出风腔出口。
  2. 根据权利要求1所述的多级导流装置,其特征在于,所述座体包括上半段和下半段,所述上半段的下端与所述下半段的上端相连,所述上半段大致形成为从上向下径向尺寸逐渐增大的圆台状,所述下半段形成为柱状,所述第一螺旋叶片设在所述上半段上,所述第二螺旋叶片的第一端设在所述上半段上且另一端向下延伸至所述下半段上。
  3. 根据权利要求2所述的多级导流装置,其特征在于,所述第一螺旋叶片的上端与所述第二螺旋叶片的上端平齐。
  4. 根据权利要求2所述的多级导流装置,其特征在于,所述第一螺旋叶片的上端和所述第二螺旋叶片的上端分别形成为向上突出的圆滑曲面。
  5. 根据权利要求2所述的多级导流装置,其特征在于,多个所述第一螺旋叶片与多个所述第二螺旋叶片的倾斜方向相同。
  6. 根据权利要求2所述的多级导流装置,其特征在于,所述上半段与所述下半段一体成型。
  7. 根据权利要求2所述的多级导流装置,其特征在于,所述下半段上设有 多个沿其轴向延伸且在周向上间隔开布置的定位槽。
  8. 根据权利要求1所述的多级导流装置,其特征在于,所述第一螺旋叶片和所述第二螺旋叶片分别与所述座体一体成型。
  9. 根据权利要求1所述的多级导流装置,其特征在于,所述第一螺旋叶片和所述第二螺旋叶片分别为9-16个。
  10. 根据权利要求1所述的多级导流装置,其特征在于,所述导流风罩大致形成为半圆盘形,所述导流风罩与所述第一螺旋叶片的末端紧密相连。
PCT/CN2017/106704 2016-11-23 2017-10-18 多级导流装置 WO2018095164A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201621269699.2U CN206221378U (zh) 2016-11-23 2016-11-23 多级导流装置
CN201611048393.9A CN106368985A (zh) 2016-11-23 2016-11-23 多级导流装置
CN201621269699.2 2016-11-23
CN201611048393.9 2016-11-23

Publications (1)

Publication Number Publication Date
WO2018095164A1 true WO2018095164A1 (zh) 2018-05-31

Family

ID=62194729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106704 WO2018095164A1 (zh) 2016-11-23 2017-10-18 多级导流装置

Country Status (1)

Country Link
WO (1) WO2018095164A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803740A (zh) * 2010-02-05 2012-11-28 卡梅伦国际有限公司 离心式压缩机扩压器小叶片
CN104154009A (zh) * 2014-08-13 2014-11-19 深圳市锐钜科技有限公司 离心式风轮多级增压吸风机
CN104343734A (zh) * 2014-09-05 2015-02-11 北京动力机械研究所 离心压气机
CN105626552A (zh) * 2016-02-22 2016-06-01 柴俊麟 一种螺旋式离心风机及空气处理设备
CN205559366U (zh) * 2016-03-29 2016-09-07 浙江理工大学 一种离心压缩机的扩压器
CN106368985A (zh) * 2016-11-23 2017-02-01 广东威灵电机制造有限公司 多级导流装置
CN206071923U (zh) * 2016-10-10 2017-04-05 东莞市大可智能科技有限公司 一种新型管道风机
CN206221315U (zh) * 2016-11-23 2017-06-06 广东威灵电机制造有限公司 风机
CN206221378U (zh) * 2016-11-23 2017-06-06 广东威灵电机制造有限公司 多级导流装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803740A (zh) * 2010-02-05 2012-11-28 卡梅伦国际有限公司 离心式压缩机扩压器小叶片
CN104154009A (zh) * 2014-08-13 2014-11-19 深圳市锐钜科技有限公司 离心式风轮多级增压吸风机
CN104343734A (zh) * 2014-09-05 2015-02-11 北京动力机械研究所 离心压气机
CN105626552A (zh) * 2016-02-22 2016-06-01 柴俊麟 一种螺旋式离心风机及空气处理设备
CN205559366U (zh) * 2016-03-29 2016-09-07 浙江理工大学 一种离心压缩机的扩压器
CN206071923U (zh) * 2016-10-10 2017-04-05 东莞市大可智能科技有限公司 一种新型管道风机
CN106368985A (zh) * 2016-11-23 2017-02-01 广东威灵电机制造有限公司 多级导流装置
CN206221315U (zh) * 2016-11-23 2017-06-06 广东威灵电机制造有限公司 风机
CN206221378U (zh) * 2016-11-23 2017-06-06 广东威灵电机制造有限公司 多级导流装置

Similar Documents

Publication Publication Date Title
JP6417771B2 (ja) 電動送風機
CN106368985A (zh) 多级导流装置
CN101297119B (zh) 多叶片离心式送风机
AU2008363120B2 (en) Propeller fan, fluid feeder and mold
CN206221315U (zh) 风机
CN106640768B (zh) 离心风机和具有其的吸尘器
US9624945B2 (en) Circulation pump
KR102118500B1 (ko) 마그넷 펌프
CN102506029A (zh) 一种离心风机叶轮及离心风机
CN106382254A (zh) 叶轮
RU2014123110A (ru) Лопатка рабочего колеса с усовершенствованной передней кромкой
JP2014173580A (ja) 送風装置
CN109340187A (zh) 用于吸尘器的定叶轮、风机及吸尘器
WO2018095154A1 (zh) 离心泵和用于离心泵的叶轮
CN103148021A (zh) 具有进口导叶的离心压气机及涡轮增压器
WO2018095164A1 (zh) 多级导流装置
WO2013111780A1 (ja) 遠心圧縮機
KR101400665B1 (ko) 원심형 송풍장치
CN206221378U (zh) 多级导流装置
JP2016017500A (ja) 遠心送風機
JP2006144805A (ja) 電動送風機
CN107401517A (zh) 使空气流动装置的风路结构及使空气流动装置
WO2019011315A1 (zh) 离心叶轮和具有其的离心风机、吸尘器
US10376119B2 (en) Steam cleaner
CN206608362U (zh) 叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17874851

Country of ref document: EP

Kind code of ref document: A1