WO2018094836A1 - 交互设备、数据传输方法和系统 - Google Patents

交互设备、数据传输方法和系统 Download PDF

Info

Publication number
WO2018094836A1
WO2018094836A1 PCT/CN2016/113355 CN2016113355W WO2018094836A1 WO 2018094836 A1 WO2018094836 A1 WO 2018094836A1 CN 2016113355 W CN2016113355 W CN 2016113355W WO 2018094836 A1 WO2018094836 A1 WO 2018094836A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
audio data
smart pen
microprocessor
touch
Prior art date
Application number
PCT/CN2016/113355
Other languages
English (en)
French (fr)
Inventor
张金成
Original Assignee
广州视睿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视睿电子科技有限公司 filed Critical 广州视睿电子科技有限公司
Publication of WO2018094836A1 publication Critical patent/WO2018094836A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to an interactive device, a data transmission method, and a system.
  • the smart pen is a multi-function mobile pen with matching operation platform communication compared with the traditional refill.
  • FIG. 1 is a frame diagram of a smart pen system in the prior art solution.
  • the smart pen 3 is internally integrated with an MCU (Micro Ccontroller Unit) 31 and a first wifi (Wireless-Fidelity) module. 32.
  • the MCU 31 and the first wifi module 32 are connected by a USB (Universal Serial Bus) method to implement state control of the first wifi module 32 by the MCU 31.
  • the smart pen 3 and the display device 4 use wifi communication, mainly in the 2.4G frequency band.
  • the first wifi module 32 of the smart pen 3 is built into the local area network by the second wifi module 41 of the display device 4 via the RF (Radio Frequency) protocol, and the main control chip 42 performs corresponding operations according to the control command issued by the smart pen 3. Implement the corresponding functions.
  • RF Radio Frequency
  • the prior art solution requires that the smart pen end and the display device end have a built-in wifi module, and the price is relatively high. Due to the use of the wifi band, the signal is greatly affected by the interference, so that the display device cannot accurately execute the control command sent by the smart pen end.
  • the speaker usually needs to configure a sound amplifying device to enable all the users in the current scene to clearly hear the speaker's voice.
  • the embodiments of the present invention provide an interaction device, a data transmission method, and a system, so that the communication quality between the smart pen and the display device is higher, and the speaker device is not required to be additionally configured.
  • an embodiment of the present invention provides an interaction device, including an infrared smart pen and an infrared touch display.
  • the infrared smart pen includes a microphone, a first infrared emitter, and a smart pen microprocessor.
  • a processor is coupled to the microphone and the first infrared emitter, respectively;
  • the microphone is configured to collect audio data, and send the audio data to the smart pen microprocessor;
  • the smart pen microprocessor is configured to encode the audio data and send the data to a first infrared emitter
  • the first infrared emitter is configured to transmit an infrared signal carrying encoded audio data
  • the infrared touch display includes a touch microprocessor, an infrared touch frame, a speaker unit, and a whole machine control chip, and the touch microprocessor is respectively connected to the infrared touch frame and the whole machine control chip.
  • the whole machine main control chip is associated with the speaker unit;
  • the infrared touch frame is configured to receive an infrared signal emitted by the first infrared emitter
  • the touch microprocessor is configured to decode the infrared signal to obtain audio data and send the data to the main control chip of the whole machine;
  • the whole machine main control chip is configured to convert the audio data into a play signal recognizable by the speaker unit, and send the play signal to the speaker unit;
  • the speaker unit is configured to play the play signal.
  • the embodiment of the present invention further provides a data transmission method, which is used in the foregoing interaction device, and includes:
  • the smart pen microprocessor encodes the audio data received by the microphone
  • the smart pen microprocessor transmits the encoded audio data to the first infrared emitter to Transmitting, by the first infrared emitter, an infrared signal comprising encoded audio data;
  • the touch microprocessor decodes the infrared signal received by the infrared touch frame to obtain the audio data
  • the touch microprocessor sends the audio data to the whole machine control chip, so that the whole machine main control chip responds to the audio data.
  • the embodiment of the present invention further provides a data transmission system, which is used in the foregoing interaction device, and the smart pen microprocessor includes:
  • An encoding module configured to encode audio data received by the microphone
  • a transmitting module configured to transmit the encoded audio data to the first infrared emitter to transmit an infrared signal including the encoded audio data through the first infrared emitter;
  • the touch microprocessor includes:
  • a decoding module configured to decode an infrared signal received by the infrared touch frame to obtain the audio data
  • a response module configured to send the audio data to the entire host control chip, so that the whole machine master chip responds to the audio data.
  • the smart pen microprocessor of the infrared smart pen encodes the audio data collected by the microphone and sends the audio data to the first infrared emitter, so that the first infrared emitter transmits the The infrared signal of the audio data
  • the touch microprocessor of the infrared touch display decodes the infrared signal received by the infrared touch frame to obtain the audio data in the infrared signal, and sends the audio data to the main control chip of the whole machine, the whole machine main
  • the control chip converts the audio data into a playback signal and plays through the speaker unit, thereby realizing communication by means of infrared signals between the interaction devices, improving the communication quality, and simultaneously interacting with the infrared touch display through the infrared smart pen
  • the user's audio playback is realized, so that the function integration of the interactive device is higher, the overhead of purchasing the sound amplifying device is avoided, and the user experience is improved.
  • FIG. 1 is a frame diagram of a smart pen system in a prior art solution
  • FIG. 2 is a schematic structural diagram of an interaction device according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a data transmission method according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a data transmission system according to Embodiment 4 of the present invention.
  • FIG. 2 is a schematic structural diagram of an interaction device according to Embodiment 1 of the present invention.
  • an interaction device provided by an embodiment of the present invention includes an infrared smart pen 1 and an infrared touch display 2, and the infrared smart pen 1 includes a microphone 11, a first infrared emitter 12, and a smart pen microprocessor 13, and a smart pen micro The processor 13 is connected to the microphone 11 and the first infrared emitter 12, respectively.
  • the microphone 11 is configured to collect audio data and transmit the audio data to the smart pen microprocessor 13.
  • a smart pen microprocessor 13 is configured to encode the audio data and transmit it to the first infrared emitter 12.
  • the first infrared emitter 12 is configured to transmit an infrared signal carrying the encoded audio data.
  • the infrared touch display 2 includes a touch microprocessor 21, an infrared touch frame 22, a speaker unit 23, and a whole main control chip 24.
  • the touch microprocessor 21 is respectively connected to the infrared touch frame 22 and the whole main control chip 24.
  • the whole machine master chip 24 is associated with the speaker unit 23.
  • the infrared touch frame 22 is configured to receive an infrared signal emitted by the first infrared emitter 12.
  • the touch microprocessor 21 is configured to decode the infrared signal to obtain audio data and send the data to the whole host control chip 24.
  • the whole machine main control chip 24 is configured to convert the audio data into a play signal recognizable by the speaker unit 23, and send the play signal to the speaker unit 23.
  • the speaker unit 23 is configured to play the play signal.
  • the smart pen microprocessor 13, the microphone 11 and the first infrared emitter 12 are located inside the infrared smart pen 1.
  • the first infrared emitter 12 can be an infrared emitting lamp.
  • a sound hole (not shown) of the microphone 11 is located on the surface of the infrared smart pen 1.
  • the infrared smart pen 1 can also set a selection switch (not shown), and the user can turn the microphone 11 on or off according to the selection switch.
  • the infrared smart pen 1 may further include an infrared receiver (not shown) connected to the smart pen microprocessor 13 for receiving an external infrared signal and transmitting the infrared signal to the smart pen microprocessor 13 Follow up.
  • the infrared receiver can be an infrared receiving lamp or an infrared photosensitive element.
  • the infrared touch frame 22 is disposed on the display surface of the infrared touch display 2, and the touch microprocessor 21, the speaker unit 23, and the whole main control chip 24 are located inside the infrared touch display 2.
  • the speaker hole (not shown) of the speaker unit 23 is disposed on the surface of the infrared touch display 2, and the number of the speaker units 23 is not limited in this embodiment.
  • an infrared receiving lamp and an infrared emitting lamp are disposed on the inner wall of the infrared touch frame 22 to realize receiving and transmitting the infrared signal.
  • the whole control chip 24 is connected to the touch microprocessor 21 through a USB and UART (Universal Asynchronous Receiver/Transmitter) interface for receiving the audio data acquired by the touch microprocessor 21. .
  • USB and UART Universal Asynchronous Receiver/Transmitter
  • a third infrared receiver may be disposed on the same side of the infrared touch frame 22 as the display surface.
  • the third infrared receiver may be an infrared receiving head.
  • the third infrared receiver can receive the infrared signal and forward the infrared signal to the whole machine control chip 24.
  • the third infrared receiver is disposed on an outer surface of the corner of the infrared touch frame 22 and vertically faces the display surface of the infrared touch display 2.
  • the third infrared receiver can receive the infrared signal in the range of 15 meters in front of the infrared touch display 2 and 15 degrees in the left and right.
  • the infrared touch frame 22 cannot receive the infrared signal sent by the infrared smart pen 1, it can receive through the third infrared.
  • the device receives the infrared signal sent by the infrared smart pen 1.
  • the interaction device further includes: an external speaker (not shown), and the external speaker is associated with the whole machine master chip 24.
  • the whole machine main control chip 24 is further configured to: when detecting that the external speaker is associated with the whole main control chip 24, send the play signal to the external speaker;
  • the external speaker is configured to play the play signal.
  • the external speaker can be a device such as a headphone or an audio device.
  • the infrared touch display 2 and the external speaker can be connected by wire or wirelessly, and when the connection is established, the whole main control chip 24 confirms the association with the external speaker.
  • the whole main control chip 24 detects that an external speaker is connected to the infrared touch display 2, the audio data is played by the external speaker by default.
  • the smart pen microprocessor of the infrared smart pen encodes the audio data collected by the microphone and sends the audio data to the first infrared emitter, so that the first infrared emitter transmits the infrared signal carrying the audio data.
  • Infrared touch display touch microprocessor decode infrared touch frame receiving The infrared signal is used to obtain the audio data in the infrared signal, and the audio data is sent to the main control chip of the whole machine, and the main control chip of the whole machine converts the audio data into a play signal, and plays through the speaker unit, thereby realizing
  • the interaction between the interactive devices is performed by means of infrared signals, which improves the communication quality.
  • the interaction between the infrared smart pen and the infrared touch display realizes the user's audio playback, so that the functional integration of the interactive device is higher, and the additional purchase is avoided.
  • the overhead of the sound reinforcement device enhances the user experience.
  • FIG. 3 is a flowchart of a data transmission method according to Embodiment 2 of the present invention.
  • the data transmission method provided in this embodiment is applicable to the interaction device provided in the foregoing embodiment.
  • the data transmission method provided by this embodiment may be performed by a data transmission system, which may be implemented by software and/or hardware.
  • the data transmission method provided in this embodiment includes:
  • the smart pen microprocessor encodes audio data received by the microphone.
  • the smart pen microprocessor is in a work activated state, wherein the work activated state refers to a state in which the infrared smart pen and the infrared touch display can be synchronized after being synchronized. At this time, the infrared smart pen and the infrared touch display can perform normal data transmission.
  • the received audio data is sent to the smart pen microprocessor when the microphone is turned on.
  • the smart pen microprocessor encodes the audio data so that the audio data can be mapped into the infrared signal.
  • the specific coding rule is not limited in this embodiment.
  • the audio data can be received in real time and sent to the smart pen microprocessor when the microphone is turned on, and the smart pen microprocessor can encode the audio data received in real time.
  • the smart pen microprocessor transmits the encoded audio data to the first infrared emitter to transmit an infrared signal including the encoded audio data through the first infrared emitter.
  • the smart pen microprocessor transmits the encoded audio data to the first infrared emitter.
  • First An infrared transmitter transmits an infrared signal carrying audio data.
  • the smart pen microprocessor encodes the signature of the infrared smart pen and sends it to the first infrared emitter.
  • the infrared signal emitted by the first infrared emitter further includes a signature of the infrared smart pen.
  • the infrared smart phone signature is used to identify the infrared signal emitted by the interactive infrared smart pen, thereby eliminating the interference of other infrared signals on the infrared touch display.
  • the touch microprocessor decodes the infrared signal received by the infrared touch frame to obtain the audio data.
  • the touch microprocessor is required to decode the infrared signal received by the infrared touch frame to determine Subsequent operations.
  • the decoding rule of the touch microprocessor for decoding the infrared signal may be determined according to the above coding rule.
  • the touch microprocessor decodes the infrared signal
  • the audio data in the infrared signal is obtained.
  • the touch microprocessor sends the audio data to a whole control chip, so that the whole control chip responds to the audio data.
  • the touch microprocessor sends the audio data to the main control chip of the whole machine, and when the main control chip receives the audio data, converts the audio data into a play signal, and confirms whether there is currently associated with the infrared touch display.
  • the external speaker when there is an external speaker, the whole host control chip sends the playback signal to the external speaker for playback. When there is no external speaker, the whole control chip sends the playback signal to the built-in speaker unit for playback.
  • the smart pen microprocessor encodes the audio data acquired by the microphone and transmits it in the form of an infrared signal through the first infrared emitter, and the touch microprocessor decodes the infrared signal received by the infrared touch frame to obtain the audio. Data, and sent to the main control chip, so that the main control chip Respond to audio data.
  • the communication between the interactive devices is realized by the infrared signal, thereby improving the communication quality.
  • the user's audio playback is realized through the interaction between the infrared smart pen and the infrared touch display, so that the functional integration of the interactive device is higher and avoids The additional cost of purchasing a sound reinforcement device enhances the user experience.
  • the smart pen microprocessor may further include: turning on the microphone to receive the audio data when the smart pen microprocessor is in the active activation state.
  • the step may include the following scheme:
  • the smart pen microprocessor controls the microphone to continuously turn on, and when the infrared smart pen is in the non-working active state, the smart pen microprocessor controls the microphone to be turned off.
  • Solution 2 When the smart pen microprocessor is in the active state, the microphone is turned on according to the microphone turn-on command.
  • the smart pen microprocessor receives the microphone open command issued by the user, and turns on the microphone according to the microphone open command, and turns off the microphone when receiving the microphone close command issued by the user.
  • a selection switch can be set in the infrared smart pen to receive the microphone open command and the microphone close command sent by the user.
  • the smart pen microprocessor controls the microphone to turn off when the infrared smart pen is in a non-active active state.
  • FIG. 4 is a flowchart of a data transmission method according to Embodiment 3 of the present invention. This embodiment is at Optimization is performed on the basis of the above embodiment.
  • the infrared signal transmitted by the first infrared emitter in this embodiment further includes: a feature code of the infrared smart pen.
  • the data transmission method provided in this embodiment specifically includes:
  • the smart pen microprocessor encodes audio data received by the microphone.
  • the smart pen microprocessor encodes the feature code of the infrared smart pen.
  • Each infrared smart pen has a corresponding feature code, and different infrared smart pens have different feature codes.
  • S410 and S420 can be executed simultaneously.
  • the smart pen microprocessor transmits the encoded audio data and the feature code to the first infrared emitter to transmit an infrared signal including the encoded audio data and the feature code through the first infrared emitter.
  • the touch microprocessor decodes the infrared signal received by the infrared touch frame to obtain the audio data and the feature code of the infrared smart pen.
  • the touch microprocessor determines whether the feature code matches a feature code of the current interactive infrared smart pen. When the feature code matches the feature code of the current interactive infrared smart pen, S460 is performed; otherwise, the process returns to S440.
  • the infrared smart pen and the infrared touch display are complete sets of equipment, the infrared smart pen and the infrared touch display should pre-store each other's feature codes, such as the product serial number, machine code, and the like.
  • the feature code of the infrared smart pen is also recorded by the user into the infrared touch display, so that the infrared touch display determines the feature code of the currently interacting infrared smart pen.
  • the touch microprocessor can match the decoded feature code with the pre-stored feature code of the currently interacting infrared smart pen to confirm whether the currently received infrared signal is an infrared signal sent by the interactive infrared smart pen, such that Can eliminate the interference caused by other infrared signals to the infrared touch display Disturb.
  • the touch microprocessor sends the audio data to the main control chip, so that the whole control chip responds to the audio data.
  • the smart pen microprocessor encodes the audio data acquired by the microphone and the feature code of the infrared smart pen, and transmits the infrared signal carrying the audio data and the feature code through the first infrared emitter, and the touch microprocessor Decoding the infrared signal received by the infrared touch frame to obtain the audio data and the feature code, and when the decoded feature code matches the feature code of the pre-stored interactive infrared smart pen, sending the audio data to the whole machine control chip, so that the whole machine master The control chip responds to the audio data.
  • the communication between the interactive devices is realized by the infrared signal, and the interference of other infrared signals is eliminated, and the communication quality is improved.
  • the user's audio playback is realized through the interaction between the infrared smart pen and the infrared touch display, so that the interactive device
  • the functional integration is higher, avoiding the overhead of purchasing additional sound-amplifying equipment and improving the user experience.
  • FIG. 5 is a schematic structural diagram of a data transmission system according to Embodiment 4 of the present invention.
  • the data transmission system provided in this embodiment is used in the interaction device provided by the foregoing embodiment.
  • the data transmission system provided by this embodiment includes: a smart pen microprocessor 13 and a touch microprocessor 21.
  • the smart pen microprocessor 13 includes:
  • the encoding module 131 is configured to encode audio data received by the microphone.
  • the transmitting module 132 is configured to transmit the encoded audio data to the first infrared emitter to transmit an infrared signal including the encoded audio data through the first infrared emitter.
  • the touch microprocessor 21 includes:
  • the decoding module 211 is configured to decode an infrared signal received by the infrared touch frame to obtain the audio data.
  • the response module 212 is configured to send the audio data to the whole host control chip, so that the whole machine master chip responds to the audio data.
  • the smart pen microprocessor 13 further includes: a microphone on module 133 for continuously turning on the microphone when the work is activated; or for turning on the microphone according to the microphone when the work is activated. , turn on the microphone.
  • the infrared signal emitted by the first infrared emitter further includes: a feature code of the infrared smart pen.
  • the decoding module 211 is specifically configured to: decode an infrared signal received by the infrared touch frame to obtain the audio data and the feature code of the infrared smart pen.
  • the response module 212 is specifically configured to: when the feature code matches the feature code of the current interactive infrared smart pen, send the audio data to the main control chip of the whole machine to enable the The whole machine master chip responds to the audio data.
  • the data transmission system provided by the embodiment of the present invention can perform the data transmission method provided by any of the foregoing embodiments, and has corresponding functions and beneficial effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种交互设备、数据传输方法和系统,交互设备包括红外智能笔(1)和红外触控显示器(2),红外智能笔(1)包括:麦克风(11),用于采集音频数据,并将音频数据发送至智能笔微处理器(13);智能笔微处理器(13),用于编码音频数据并发送至第一红外发射器(12);第一红外发射器(12),用于发射携带有编码后音频数据的红外信号;红外触控显示器(2)包括:红外触摸框(22),用于接收第一红外发射器(12)发射的红外信号;触控微处理器(21),用于解码红外信号以获取音频数据并发送至整机主控芯片(24);整机主控芯片(24),用于将音频数据转化成扬声单元(23)可识别的播放信号并发送给扬声单元(23);扬声单元(23),用于播放该播放信号。上述技术方案使交互设备间的通信质量更高,且降低了生产成本。

Description

交互设备、数据传输方法和系统 技术领域
本发明涉及电子技术领域,尤其涉及一种交互设备、数据传输方法和系统。
背景技术
智能笔,是一款相对传统笔芯而言,具有匹配操作平台通信的多功能移动笔。请参考图1,其是现有技术方案中智能笔系统的框架图,智能笔3的内部集成有MCU(Microccontroller Unit,微控制单元)31和第一wifi(Wireless-Fidelity,无线保真)模块32,MCU31和第一wifi模块32通过USB(Universal Serial Bus,通用串行总线)方式连接,实现MCU31对第一wifi模块32的状态控制。智能笔3与显示设备4之间采用wifi通信,主要是2.4G频段。智能笔3的第一wifi模块32通过RF(Radio Frequency,射频)协议,与显示设备4的第二wifi模块41搭建成局域网,主控芯片42根据智能笔3发出的控制命令执行相应的操作,实现对应的功能。
然而,现有技术方案要求智能笔端和显示设备端均内置wifi模块,价格成本较高,因采用wifi频段,信号受干扰影响较大,使得显示设备无法准确执行智能笔端发送的控制命令。
同时,若智能笔应用于面积较大的场景,例如阶梯教室等,通常演讲者还需要另配置扩音设备,才可以使得当前场景下的全部用户清晰的听到演讲者的声音。
发明内容
有鉴于此,本发明实施例提供一种交互设备、数据传输方法和系统,以使智能笔与显示设备间的通信质量更高,同时无需额外为使用者配置扩音设备。
第一方面,本发明实施例提供了一种交互设备,包括红外智能笔和红外触控显示器,所述红外智能笔包括麦克风、第一红外发射器和智能笔微处理器,所述智能笔微处理器分别与所述麦克风和所述第一红外发射器相连;
所述麦克风,用于采集音频数据,并将所述音频数据发送至所述智能笔微处理器;
所述智能笔微处理器,用于编码所述音频数据并发送至第一红外发射器;
所述第一红外发射器,用于发射携带有编码后音频数据的红外信号;
所述红外触控显示器包括触控微处理器、红外触摸框、扬声单元以及整机主控芯片,所述触控微处理器分别与所述红外触摸框和所述整机主控芯片相连,所述整机主控芯片与所述扬声单元关联;
所述红外触摸框,用于接收所述第一红外发射器发射的红外信号;
所述触控微处理器,用于解码所述红外信号以获取音频数据并发送至整机主控芯片;
所述整机主控芯片,用于将所述音频数据转化成所述扬声单元可识别的播放信号,并将所述播放信号发送给所述扬声单元;
所述扬声单元,用于播放所述播放信号。
第二方面,本发明实施例还提供了一种数据传输方法,用于上述交互设备,包括:
智能笔微处理器编码麦克风接收的音频数据;
所述智能笔微处理器将编码后的音频数据传输给所述第一红外发射器,以 通过所述第一红外发射器发射包含编码后音频数据的红外信号;
触控微处理器解码红外触摸框接收的红外信号,以获取所述音频数据;
所述触控微处理器将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
第三方面,本发明实施例还提供了一种数据传输系统,用于上述交互设备,智能笔微处理器包括:
编码模块,用于编码麦克风接收的音频数据;
发射模块,用于将编码后的音频数据传输给所述第一红外发射器,以通过所述第一红外发射器发射包含编码后音频数据的红外信号;
触控微处理器包括:
解码模块,用于解码红外触摸框接收的红外信号,以获取所述音频数据;
响应模块,用于将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
本发明实施例提供的交互设备、数据传输方法和系统,红外智能笔的智能笔微处理器编码麦克风采集的音频数据并发送至第一红外发射器,以使第一红外发射器发射携带有该音频数据的红外信号,红外触控显示器的触控微处理器解码红外触摸框接收的红外信号,以获取红外信号中的音频数据,并将该音频数据发送至整机主控芯片,整机主控芯片将该音频数据转化成播放信号,并通过扬声单元进行播放,实现了交互设备间以红外信号的方式进行通信,提高了通信质量,同时,通过红外智能笔与红外触控显示器的交互实现了使用者的音频播放,使得交互设备的功能集成度更高,避免额外购置扩音设备的开销,提升了用户使用体验。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是现有技术方案中智能笔系统的框架图;
图2为本发明实施例一提供的一种交互设备的结构示意图;
图3为本发明实施例二提供的一种数据传输方法的流程图;
图4为本发明实施例三提供的一种数据传输方法的流程图;
图5为本发明实施例四提供的一种数据传输系统的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。
实施例一
图2为本发明实施例一提供的一种交互设备的结构示意图。参考图2,本发明实施例提供的交互设备,包括红外智能笔1和红外触控显示器2,红外智能笔1包括麦克风11、第一红外发射器12和智能笔微处理器13,智能笔微处理器13分别与麦克风11和第一红外发射器12相连。
麦克风11,用于采集音频数据,并将所述音频数据发送至智能笔微处理器13。
智能笔微处理器13,用于编码所述音频数据并发送至第一红外发射器12。
第一红外发射器12,用于发射携带有编码后音频数据的红外信号。
红外触控显示器2包括触控微处理器21、红外触摸框22、扬声单元23以及整机主控芯片24,触控微处理器21分别与红外触摸框22和整机主控芯片24相连,整机主控芯片24与扬声单元23关联。
红外触摸框22,用于接收第一红外发射器12发射的红外信号。
触控微处理器21,用于解码所述红外信号以获取音频数据并发送至整机主控芯片24。
整机主控芯片24,用于将所述音频数据转化成扬声单元23可识别的播放信号,并将所述播放信号发送给扬声单元23。
扬声单元23,用于播放所述播放信号。
在本实施例中,智能笔微处理器13、麦克风11和第一红外发射器12位于红外智能笔1的内部。第一红外发射器12可以为红外发射灯。麦克风11的收音孔(图未示)位于红外智能笔1的表面。
可选的,红外智能笔1还可以设置选择开关(图未示),用户可以根据选择开关开启或者关闭麦克风11。
可选的,红外智能笔1中还可以包括与智能笔微处理器13相连的红外接收器(图未示),用于接收外部的红外信号,并将红外信号发送至智能笔微处理器13进行后续处理。其中,红外接收器可以是红外接收灯或红外光敏元件。
典型的,红外触摸框22设置于红外触控显示器2的显示面,触控微处理器21、扬声单元23和整机主控芯片24位于红外触控显示器2的内部。其中,扬声单元23的扬声孔(图未示)设置在红外触控显示器2的表面,且扬声单元23的个数本实施例不作限定。
进一步的,红外触摸框22的内壁设置红外接收灯和红外发射灯,以实现红外信号的接收和发送
可选的,整机主控芯片24通过USB和UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)接口连接上述触控微处理器21,用于接收触控微处理器21获取的音频数据。
可选的,红外触摸框22与显示面的朝向相同的一侧还可以设置第三红外接收器(图未示)。其中,第三红外接收器可以为红外接收头。第三红外接收器可以接收红外信号,并将该红外信号转发给整机主控芯片24。该第三红外接收器设置于红外触摸框22边角的外表面,并垂直红外触控显示器2的显示面。第三红外接收器可以接收红外触控显示器2正前方15米及左右15°范围内的红外信号,当红外触摸框22无法接收到红外智能笔1发送的红外信号时,可以通过第三红外接收器接收红外智能笔1发送的红外信号。
可选的,交互设备还包括:外置扬声器(图未示),所述外置扬声器与所述整机主控芯片24关联。
相应的,所述整机主控芯片24,还用于当检测到存在所述外置扬声器与整机主控芯片24关联时,将所述播放信号发送给所述外置扬声器;
所述外置扬声器,用于播放所述播放信号。
具体的,外置扬声器可以为耳机或者音响等设备。红外触控显示器2与外置扬声器可以通过有线或者无线的方式连接,当建立连接时,整机主控芯片24确认与外置扬声器关联。
可选的,当整机主控芯片24检测到存在外置扬声器与红外触控显示器2相连时,默认通过外置扬声器播放音频数据。
本发明实施例一提供的交互设备,红外智能笔的智能笔微处理器编码麦克风采集的音频数据并发送至第一红外发射器,以使第一红外发射器发射携带有该音频数据的红外信号,红外触控显示器的触控微处理器解码红外触摸框接收 的红外信号,以获取红外信号中的音频数据,并将该音频数据发送至整机主控芯片,整机主控芯片将该音频数据转化成播放信号,并通过扬声单元进行播放,实现了交互设备间以红外信号的方式进行通信,提高了通信质量,同时,通过红外智能笔与红外触控显示器的交互实现了使用者的音频播放,使得交互设备的功能集成度更高,避免额外购置扩音设备的开销,提升了用户使用体验。
实施例二
图3为本发明实施例二提供的一种数据传输方法的流程图。本实施例提供的数据传输方法适用于上述实施例提供的交互设备。本实施例提供的数据传输方法可以由数据传输系统执行,该数据传输系统可以由软件和/或硬件实现。参考图3,本实施例提供的数据传输方法包括:
S310、智能笔微处理器编码麦克风接收的音频数据。
在本实施例中,智能笔微处理器处于工作激活状态,其中,工作激活状态是指红外智能笔与红外触控显示器完成同步后,可以进行通信的状态。此时,红外智能笔与红外触控显示器可以进行正常的数据传输。
具体的,麦克风开启时将接收的音频数据发送至智能笔微处理器。智能笔微处理器对音频数据进行编码,以使音频数据可以被映射到红外信号中。具体的编码规则本实施例不作限定。
可选的,麦克风开启时可以实时接收音频数据并发送至智能笔微处理器,智能笔微处理器可以对实时接收的音频数据进行编码。
S320、所述智能笔微处理器将编码后的音频数据传输给所述第一红外发射器,以通过所述第一红外发射器发射包含编码后音频数据的红外信号。
具体的,智能笔微处理器将编码后的音频数据发送至第一红外发射器。第 一红外发射器向外发送携带有音频数据的红外信号。
可选的,智能笔微处理器还将红外智能笔的特征码进行编码,并发送至第一红外发射器。此时,第一红外发射器发射的红外信号中,还包括红外智能笔的特征码。这样可以使红外触控显示器接收红外信号时,通过红外智能笔特征码对交互的红外智能笔发射的红外信号进行识别,消除了其他红外信号对红外触控显示器的干扰。
S330、触控微处理器解码红外触摸框接收的红外信号,以获取所述音频数据。
考虑到红外触控显示器中红外触摸框可以接收到接收范围内全部的红外信号,且无法判断接收红外信号的来源,此时,需要触控微处理器解码红外触摸框接收的红外信号,以确定后续的操作。其中,触控微处理器解码红外信号的解码规则,可以根据上述编码规则确定。
进一步的,触控微处理器解码红外信号后,获取红外信号中音频数据。
S340、所述触控微处理器将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
示例性的,触控微处理器将音频数据发送给整机主控芯片,整机主控芯片接收到音频数据时,将音频数据转换成播放信号,并确认当前是否存在与红外触控显示器关联的外置扬声器,当存在外置扬声器时,整机主控芯片将该播放信号发送给外置扬声器进行播放。当不存在外置扬声器时,整机主控芯片将该播放信号发送给内置扬声单元进行播放。
本实施例的技术方案,智能笔微处理器编码麦克风获取的音频数据并通过第一红外发射器以红外信号的形式发射出去,触控微处理器解码红外触摸框接收的红外信号,以获取音频数据,并发送至整机主控芯片,以使整机主控芯片 对音频数据进行响应。实现了交互设备间以红外信号的方式进行通信,提高了通信质量,同时,通过红外智能笔与红外触控显示器的交互实现了使用者的音频播放,使得交互设备的功能集成度更高,避免额外购置扩音设备的开销,提升了用户使用体验。
在上述实施例的基础上,在智能笔微处理器编码麦克风接收的音频数据之前,还可以包括:智能笔微处理器在工作激活状态时,开启麦克风以接收音频数据。
其中,该步骤可以包括下述方案:
方案一、智能笔微处理器在工作激活状态时,持续开启麦克风。
具体的,在红外智能笔处于工作激活状态时,智能笔微处理器控制麦克风持续开启,并在红外智能笔处于非工作激活状态时,智能笔微处理器控制麦克风关闭。
方案二、智能笔微处理器在工作激活状态时,根据麦克风开启指令,开启麦克风。
具体的,在红外智能笔处于工作激活状态时,智能笔微处理器接收用户发出的麦克风开启指令,并根据该麦克风开启指令开启麦克风,并在接收用户发出的麦克风关闭指令时关闭麦克风。此时,红外智能笔中可以设置选择开关,以接收用户发送的麦克风开启指令和麦克风关闭指令。
可选的,在红外智能笔处于非工作激活状态时,智能笔微处理器控制麦克风关闭。
实施例三
图4为本发明实施例三提供的一种数据传输方法的流程图。本实施例是在 上述实施例的基础上进行优化。本实施例中第一红外发射器发射的红外信号中还包括:红外智能笔的特征码,参考图4,本实施例提供的数据传输方法具体包括:
S410、智能笔微处理器编码麦克风接收的音频数据。
S420、智能笔微处理器编码红外智能笔的特征码。
其中,每个红外智能笔都有对应的特征码,不同红外智能笔对应的特征码不同。
其中,S410和S420可以同时执行。
S430、所述智能笔微处理器将编码后的音频数据和特征码传输给所述第一红外发射器,以通过所述第一红外发射器发射包含编码后音频数据和特征码的红外信号。
S440、触控微处理器解码红外触摸框接收的红外信号,以获取所述音频数据和所述红外智能笔的特征码。
S450、触控微处理器判断所述特征码是否与当前交互红外智能笔的特征码匹配。在所述特征码与当前交互红外智能笔的特征码匹配时,执行S460,否则,返回执行S440。
典型的,如果红外智能笔与红外触控显示器是成套设备,那么红外智能笔与红外触控显示器应预先相互保存对方的特征码,例如产品序列号、机器码等。可选的,也可以由用户将红外智能笔的特征码录入红外触控显示器中,以使红外触控显示器确定当前交互的红外智能笔的特征码。
进一步的,触控微处理器可以将解码得到的特征码与预存的当前交互的红外智能笔的特征码进行匹配,以确认当前接收的红外信号是否为交互的红外智能笔发出的红外信号,这样可以消除其他红外信号对红外触控显示器造成的干 扰。
S460、触控微处理器将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
本实施例的技术方案,智能笔微处理器编码麦克风获取的音频数据和红外智能笔的特征码,并通过第一红外发射器发射携带有音频数据和特征码的红外信号,触控微处理器解码红外触摸框接收的红外信号以获取音频数据和特征码,在解码得到的特征码与预存的交互红外智能笔的特征码匹配时,发送音频数据至整机主控芯片,以使整机主控芯片对音频数据进行响应。实现了交互设备间以红外信号的方式进行通信,且消除其他红外信号的干扰,提高了通信质量,同时,通过红外智能笔与红外触控显示器的交互实现了使用者的音频播放,使得交互设备的功能集成度更高,避免额外购置扩音设备的开销,提升了用户使用体验。
实施例四
图5为本发明实施例四提供的一种数据传输系统的结构示意图。本实施例提供的数据传输系统用于上述实施例提供的交互设备。参考图5,本实施例提供的数据传输系统包括:智能笔微处理器13和触控微处理器21。
其中,智能笔微处理器13包括:
编码模块131,用于编码麦克风接收的音频数据。
发射模块132,用于将编码后的音频数据传输给所述第一红外发射器,以通过所述第一红外发射器发射包含编码后音频数据的红外信号。
触控微处理器21包括:
解码模块211,用于解码红外触摸框接收的红外信号,以获取所述音频数据;
响应模块212,用于将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
在上述实施例的基础上,所述智能笔微处理器13还包括:麦克风开启模块133,用于在工作激活状态时,持续开启麦克风;或者,用于在工作激活状态时,根据麦克风开启指令,开启麦克风。
在上述实施例的基础上,所述第一红外发射器发射的红外信号中还包括:红外智能笔的特征码。
在上述实施例的基础上,所述解码模块211具体用于:解码红外触摸框接收的红外信号,以获取所述音频数据和所述红外智能笔的特征码。
在上述实施例的基础上,所述响应模块212具体用于:在所述特征码与当前交互红外智能笔的特征码匹配时,将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
本发明实施例提供的数据传输系统可以执行上述任意实施例提供的数据传输方法,具备相应的功能和有益效果。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种交互设备,其特征在于,包括红外智能笔和红外触控显示器,所述红外智能笔包括麦克风、第一红外发射器和智能笔微处理器,所述智能笔微处理器分别与所述麦克风和所述第一红外发射器相连;
    所述麦克风,用于采集音频数据,并将所述音频数据发送至所述智能笔微处理器;
    所述智能笔微处理器,用于编码所述音频数据并发送至第一红外发射器;
    所述第一红外发射器,用于发射携带有编码后音频数据的红外信号;
    所述红外触控显示器包括触控微处理器、红外触摸框、扬声单元以及整机主控芯片,所述触控微处理器分别与所述红外触摸框和所述整机主控芯片相连,所述整机主控芯片与所述扬声单元关联;
    所述红外触摸框,用于接收所述第一红外发射器发射的红外信号;
    所述触控微处理器,用于解码所述红外信号以获取音频数据并发送至整机主控芯片;
    所述整机主控芯片,用于将所述音频数据转化成所述扬声单元可识别的播放信号,并将所述播放信号发送给所述扬声单元;
    所述扬声单元,用于播放所述播放信号。
  2. 根据权利要求1所述的交互设备,其特征在于,还包括:外置扬声器,所述外置扬声器与所述整机主控芯片关联;
    相应的,所述整机主控芯片,还用于当检测到存在所述外置扬声器与整机主控芯片关联时,将所述播放信号发送给所述外置扬声器;
    所述外置扬声器,用于播放所述播放信号。
  3. 一种数据传输方法,用于权利要求1或2所述的交互设备,其特征在于,包括:
    智能笔微处理器编码麦克风接收的音频数据;
    所述智能笔微处理器将编码后的音频数据传输给所述第一红外发射器,以通过所述第一红外发射器发射包含编码后音频数据的红外信号;
    触控微处理器解码红外触摸框接收的红外信号,以获取所述音频数据;
    所述触控微处理器将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
  4. 根据权利要求3所述的数据传输方法,其特征在于,智能笔微处理器编码麦克风接收的音频数据之前还包括:
    智能笔微处理器在工作激活状态时,持续开启麦克风;或者,
    智能笔微处理器在工作激活状态时,根据麦克风开启指令,开启麦克风。
  5. 根据权利要求3所述的数据传输方法,其特征在于,所述第一红外发射器发射的红外信号中还包括:红外智能笔的特征码。
  6. 根据权利要求5所述的数据传输方法,其特征在于,触控微处理器解码红外触摸框接收的红外信号,以获取所述音频数据包括:
    触控微处理器解码红外触摸框接收的红外信号,以获取所述音频数据和所述红外智能笔的特征码;
    相应的,所述触控微处理器将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应包括:
    所述触控微处理器在所述特征码与当前交互红外智能笔的特征码匹配时,将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
  7. 一种数据传输系统,用于权利要求1或2所述的交互设备,其特征在于,智能笔微处理器包括:
    编码模块,用于编码麦克风接收的音频数据;
    发射模块,用于将编码后的音频数据传输给所述第一红外发射器,以通过所述第一红外发射器发射包含编码后音频数据的红外信号;
    触控微处理器包括:
    解码模块,用于解码红外触摸框接收的红外信号,以获取所述音频数据;
    响应模块,用于将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
  8. 根据权利要求7所述的数据传输系统,其特征在于,所述智能笔微处理器还包括:
    麦克风开启模块,用于在工作激活状态时,持续开启麦克风;或者,用于在工作激活状态时,根据麦克风开启指令,开启麦克风。
  9. 根据权利要求7所述的数据传输系统,其特征在于,所述第一红外发射器发射的红外信号中还包括:红外智能笔的特征码。
  10. 根据权利要求9所述的数据传输系统,其特征在于,解码模块具体用于:
    解码红外触摸框接收的红外信号,以获取所述音频数据和所述红外智能笔的特征码;
    相应的,所述响应模块具体用于:
    在所述特征码与当前交互红外智能笔的特征码匹配时,将所述音频数据发送至整机主控芯片,以使所述整机主控芯片对所述音频数据进行响应。
PCT/CN2016/113355 2016-11-23 2016-12-30 交互设备、数据传输方法和系统 WO2018094836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611047255.9 2016-11-23
CN201611047255.9A CN106775004B (zh) 2016-11-23 2016-11-23 交互设备、数据传输方法和系统

Publications (1)

Publication Number Publication Date
WO2018094836A1 true WO2018094836A1 (zh) 2018-05-31

Family

ID=58974333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113355 WO2018094836A1 (zh) 2016-11-23 2016-12-30 交互设备、数据传输方法和系统

Country Status (2)

Country Link
CN (1) CN106775004B (zh)
WO (1) WO2018094836A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225838A (zh) * 2020-01-21 2021-08-06 青岛海信移动通信技术股份有限公司 一种麦克风的控制方法、音频接收设备及音频采集设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365043A (zh) * 2000-06-30 2002-08-21 国际商业机器公司 一个智能指示设备
CN102749992A (zh) * 2011-04-19 2012-10-24 英特尔公司 多功能输入设备
CN103873510A (zh) * 2012-12-12 2014-06-18 方正国际软件(北京)有限公司 一种基于手势的多移动终端数据交换方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169132A1 (en) * 2007-01-03 2008-07-17 Yao Ding Multiple styli annotation system
CN201017492Y (zh) * 2007-03-20 2008-02-06 王征海 遥控激光笔
CN104951210B (zh) * 2014-03-24 2018-12-14 联想(北京)有限公司 一种信息处理方法及电子设备
CN104484080A (zh) * 2014-12-30 2015-04-01 湖南巨手科技发展有限公司 Led多点触控显示设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365043A (zh) * 2000-06-30 2002-08-21 国际商业机器公司 一个智能指示设备
CN102749992A (zh) * 2011-04-19 2012-10-24 英特尔公司 多功能输入设备
CN103873510A (zh) * 2012-12-12 2014-06-18 方正国际软件(北京)有限公司 一种基于手势的多移动终端数据交换方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225838A (zh) * 2020-01-21 2021-08-06 青岛海信移动通信技术股份有限公司 一种麦克风的控制方法、音频接收设备及音频采集设备

Also Published As

Publication number Publication date
CN106775004A (zh) 2017-05-31
CN106775004B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
RU2010145146A (ru) Беспроводной наушник, совершающий переход между беспроводными сетями
KR101473173B1 (ko) ANC(Active Noise Cancellation) 기능을 가지는 휴대폰용 이어폰
US9733631B2 (en) System and method for controlling a plumbing fixture
WO2018094828A1 (zh) 交互设备、模式选择方法及系统
CN111786740A (zh) 一种网络收音机及网络收音方法
CN105244012A (zh) 数字影音设备
US20070060195A1 (en) Communication apparatus for playing sound signals
JP7197992B2 (ja) 音声認識装置、音声認識方法
CN101600060B (zh) 蓝牙子母立体双声道的数字电视
CN109348369A (zh) 一种音响系统及其控制方法
CN107645721A (zh) 蓝牙设备音量调整方法、设备及计算机可读存储介质
WO2018094836A1 (zh) 交互设备、数据传输方法和系统
CN202856964U (zh) 一种音频播放系统及融合了无线语音的多声道耳机
CN109151783A (zh) 数据传输方法、装置、电子设备及存储介质
CN205584461U (zh) 一种音箱
WO2018094825A1 (zh) 智能笔、控制方法及装置,交互设备、交互方法及系统
KR20130137903A (ko) 음향 출력 장치, 오디오 처리 장치, 음향 출력 방법 및 오디오 처리 방법
WO2018094834A1 (zh) 交互设备、信息传输方法和系统
CN102426769B (zh) 一种遥控器装置及通讯方法
CN205104223U (zh) 数字影音设备
CN204305268U (zh) 一种蓝牙窗口对讲机
US20130315417A1 (en) Bluethooth-to-rf tranceiver
CN103686428A (zh) 音频信号的无线播放控制方法、智能电视及穿戴式设备
TWI479408B (zh) 用於一電腦系統之數據卡及相關電腦系統
CN103489296A (zh) 一种蓝牙设备控制方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: 1205A 04.10.2019

122 Ep: pct application non-entry in european phase

Ref document number: 16922315

Country of ref document: EP

Kind code of ref document: A1