WO2018094799A1 - 一种量子点薄膜及背光模块 - Google Patents

一种量子点薄膜及背光模块 Download PDF

Info

Publication number
WO2018094799A1
WO2018094799A1 PCT/CN2016/111640 CN2016111640W WO2018094799A1 WO 2018094799 A1 WO2018094799 A1 WO 2018094799A1 CN 2016111640 W CN2016111640 W CN 2016111640W WO 2018094799 A1 WO2018094799 A1 WO 2018094799A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
layer
metal
quantum dot
dot film
Prior art date
Application number
PCT/CN2016/111640
Other languages
English (en)
French (fr)
Inventor
崔宏青
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/329,287 priority Critical patent/US20180143469A1/en
Publication of WO2018094799A1 publication Critical patent/WO2018094799A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a quantum dot film and a backlight module.
  • the blue light source is coupled to the blue light beam after entering the light guide plate, first collects light through the prism film, and then passes through the upper quantum dot film to excite the narrow band of red and green light, and is brightened by polarization conversion.
  • the film converts the light in the direction of vibration into the same linear polarization direction.
  • the polarization direction is parallel to the transmission axis of the polarizer of the liquid crystal cell, thereby greatly improving the utilization of the backlight.
  • green light can also excite red light.
  • the reflective brightness enhancement film structure is passed, the green light which is inconsistent with the polarization direction of the brightness enhancement film is reflected and re-transmitted through the quantum dot film, thereby exciting the red quantum dot light emission, wherein the blue light excites the green quantum dot to emit light.
  • the light of the green quantum dots excites the red quantum dots to emit light. Therefore, after two energy conversions, the energy loss, especially the long-wave green light, is more serious, and the energy loss of the red quantum dot luminescence is more serious, which leads to the problem that the existing quantum dot film has more energy loss and is prone to color shift.
  • the object of the present invention is to provide a quantum dot film and a backlight module, which can solve the technical problem that the energy loss of the existing quantum dot film is large and the color shift is easy to occur.
  • the present invention provides a quantum dot film comprising:
  • a quantum light emitting layer comprising a plurality of quantum rods arranged in the same direction; the quantum rods having a particle size ranging from 1 to 10 nanometers;
  • the metal layer comprising a plurality of spaced apart metal lines; wherein the metal lines have a first major axis, the quantum rods have a second major axis, the first long axis
  • the extension line is approximately perpendicular to the extension of the second major axis.
  • the distance between the center points of two adjacent metal wires ranges from 20 to 500 nm.
  • the ratio of the width of the metal line to the center pitch ranges from 0.1 to 0.9, wherein the center pitch is the distance between the center points of two adjacent metal wires.
  • the metal wire has a thickness ranging from 10 to 500 nm.
  • the material of the dielectric layer includes at least one of SiO 2 , SiO, MgO, Si 3 N 4 , TiO 2 , and Ta 2 O 5 .
  • the material of the metal layer includes at least one of Al, Ag, and Au.
  • the quantum dot film further includes a first isolation layer and a second isolation layer, the first isolation layer is located under the quantum light emitting layer, and the second isolation layer is located in the Between the quantum light emitting layer and the dielectric layer.
  • the present invention also provides a backlight module including a light guide plate and a quantum dot film, the quantum dot film comprising:
  • a quantum light emitting layer comprising a plurality of quantum rods arranged in the same direction
  • the metal layer comprising a plurality of spaced apart metal lines; wherein the metal lines have a first major axis, the quantum rods have a second major axis, the first long axis
  • the angle between the extension line and the extension line of the second long axis is within a preset angle range.
  • the extension line of the first major axis is approximately perpendicular to the extension line of the second major axis.
  • the quantum rod has a particle diameter ranging from 1 to 10 nm.
  • the distance between the center points of two adjacent metal wires ranges from 20 to 500 nm.
  • the ratio of the width of the metal wire to the center pitch ranges from 0.1 to 0.9, wherein the center pitch is a distance between center points of two adjacent metal wires.
  • the metal wire has a thickness ranging from 10 to 500 nm.
  • the material of the dielectric layer includes at least one of SiO 2 , SiO, MgO, Si 3 N 4 , TiO 2 , and Ta 2 O 5 .
  • the material of the metal layer includes at least one of Al, Ag, and Au.
  • the quantum dot film further includes a first isolation layer and a second isolation layer, the first isolation layer is located under the quantum light emitting layer, and the second isolation layer is located in the quantum Between the luminescent layer and the dielectric layer.
  • a quantum rod is disposed in the quantum light-emitting layer, and a dielectric layer and a metal layer having a plurality of metal lines are provided on the quantum light-emitting layer. Since the quantum rod has a better degree of polarization, it is possible to reduce the luminance loss and color shift caused by the short-wavelength quantum dots to excite long-wavelength quantum dots, thereby improving luminance efficiency and reducing color shift.
  • FIG. 1 is a schematic structural view of a quantum dot film according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a quantum dot film according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a backlight module of the present invention.
  • FIG. 1 is a schematic structural diagram of a quantum dot film according to an embodiment of the present invention.
  • the quantum dot film of the present invention comprises a quantum light emitting layer 11, a dielectric layer 12, and a metal layer 13; the quantum light emitting layer 11 includes a plurality of quantum rods 111 arranged in the same direction. It can be understood that the arrangement directions of all the quantum rods 111 are arranged substantially in one direction, that is, the longitudinal directions of the quantum rods 111 are arranged substantially in the same direction.
  • the quantum light-emitting layer 11 may further include a resin dielectric layer distributed in the resin dielectric layer.
  • the quantum rods 111 may have a particle size ranging from 1 to 10 nanometers. Since the deflection effect of the quantum rod in the particle size range is optimal, the brightness loss can be better reduced.
  • the dielectric layer 12 is located on the quantum light emitting layer 11 for isolating the quantum light emitting layer 11 and the metal layer 13; the material of the dielectric layer 12 includes SiO2, SiO, MgO, Si3N4, TiO2, Ta2O5 At least one.
  • the metal layer 13 is located on the dielectric layer 12, and the metal layer 13 includes a plurality of spaced apart metal lines 131, and the material of the metal layer 13 includes at least one of Al, Ag, and Au. Since these metals enable red, green, and blue light to pass through, that is, the transmittance of light is increased.
  • the metal wire 131 has a first major axis, such as the axis in the direction of the straight inward direction, that is, the length direction of the wire 131.
  • the quantum rod 111 has a second major axis, such as an axis along the horizontal direction of the second major axis, that is, a length direction of the quantum rod.
  • An angle between the extension line of the first major axis and the extension line of the second major axis is within a preset angle range.
  • the length direction of the metal wire 131 is not parallel to the longitudinal direction of the quantum rod 111, that is, the predetermined angle range is greater than 0 degrees and less than 180 degrees. It can be understood that the specific preparation method of the metal line 131 is obtained by patterning the entire metal layer 13.
  • the quantum rod absorbs part of the blue light and excites red and green light having excellent polarization; generally, the polarization directions of all the red and green lights are parallel to The quantum rod orientation and the direction of arrangement of the metal lines have a certain angle, so that light can be completely transmitted through the metal wire grid without reflection.
  • the portion of the unabsorbed blue light having an angle of polarization with the metal line is also transmitted through the metal line, and the polarized light having a polarization direction parallel to the metal line is reflected by the metal line and re-enters the quantum light-emitting layer. It acts with the quantum rod and partially enters the light guide plate for recycling. Since the quantum rod has a better degree of polarization, it can reduce the brightness loss and color shift caused by the short-wavelength quantum dots to excite long-wavelength quantum dots, and improve the display effect of the existing high color gamut display device.
  • the extension line of the first major axis is approximately perpendicular to the extension line of the second major axis. That is, the longitudinal direction of the metal wire 131 is perpendicular to the longitudinal direction of the quantum rod 111. Since the two are perpendicular, the polarization degree of the quantum rod can be optimized, thereby better reducing the brightness loss and color shift caused by the short-wavelength quantum dots to excite long-wave quantum dots.
  • the distance L between the center points of the adjacent two metal lines 131 ranges from 20 to 500 nm.
  • the distance L between the center point of the first metal line 131 on the leftmost side and the center point of the second metal line 131 on the left side is in the range of 20-500 nm. Since the pitch of the metal lines exceeds the range, the polarization of the light is not favorable.
  • the ratio of the width M of the metal wire 131 to the center distance L ranges from 0.1 to 0.9, wherein the center pitch is the distance between the center points of two adjacent metal wires. That is, when the ratio of the width of the metal wire 131 to the gap of the metal wire 131 is within this range, the light generated by the quantum rod can be better polarized, and the utilization of light is improved.
  • the thickness D of the metal wire 131 ranges from 10 to 500 nanometers. Since the thickness is too small, it is not conducive to the polarization of light, and the thickness is too large to facilitate light transmission. Therefore, the thickness of the metal wire 131 is set in this range. Inside, it can effectively improve the transmittance of light and facilitate the polarization of light.
  • the quantum dot film 10 further includes a first isolation layer 14 and a second isolation layer 15, the first isolation layer 14 is located below the quantum light-emitting layer 11, the second The isolation layer 15 is located between the quantum light emitting layer 11 and the dielectric layer 12.
  • the first isolation layer 14 and the second isolation layer 15 serve to prevent erosion of water molecules or oxygen molecules on the quantum light-emitting layer.
  • the method for fabricating the quantum light-emitting layer in the above quantum dot film comprises:
  • the resin medium layer having the upper and lower two isolation layers is placed in a container, the container is laterally disposed with a certain number of electrodes, and a transverse electric field can be generated on the surface of the resin dielectric layer by applying different bias voltages;
  • a quantum rod is provided in the quantum light-emitting layer, and a dielectric layer and a metal layer having a plurality of metal lines are provided on the quantum light-emitting layer. Since the quantum rod has a better degree of polarization, it is possible to reduce the luminance loss and color shift caused by the short-wavelength quantum dots to excite long-wavelength quantum dots, thereby improving luminance efficiency and reducing color shift.
  • FIG. 3 is a schematic structural view of a backlight module of the present invention.
  • the backlight module 100 includes a light source 21, a reflective sheet 22, a light guide plate 23, an optical film 24, and a quantum dot film 10.
  • the light source 21 is used to provide the original light
  • the light guide plate 23 is located above the reflective sheet 22
  • the optical film 24 is located above the light guide plate 23
  • the quantum dot film 10 is located above the optical film 24.
  • the quantum dot film 10 includes a quantum light emitting layer 11, a dielectric layer 12, and a metal layer 13; the quantum light emitting layer 11 includes a plurality of quantum rods 111 arranged in the same direction. It can be understood that the arrangement directions of all the quantum rods 111 are arranged substantially in one direction, that is, the longitudinal directions of the quantum rods 111 are arranged substantially in the same direction.
  • the quantum light-emitting layer 11 may further include a resin dielectric layer distributed in the resin dielectric layer.
  • the quantum rods 111 may have a particle size ranging from 1 to 10 nanometers. Since the deflection effect of the quantum rod in the particle size range is optimal, the brightness loss can be better reduced.
  • the dielectric layer 12 is located on the quantum light emitting layer 11 for isolating the quantum light emitting layer 11 and the metal layer 13; the material of the dielectric layer 12 includes SiO2, SiO, MgO, Si3N4, TiO2, Ta2O5 At least one.
  • the metal layer 13 is located on the dielectric layer 12, and the metal layer 13 includes a plurality of spaced apart metal lines 131, and the material of the metal layer 13 includes at least one of Al, Ag, and Au. Since these metals enable red, green, and blue light to pass through, that is, the transmittance of light is increased.
  • the metal wire 131 has a first major axis, such as the axis in the direction of the straight inward direction, that is, the length direction of the wire 131.
  • the quantum rod 111 has a second major axis, such as an axis along the horizontal direction of the second major axis, that is, a length direction of the quantum rod.
  • An angle between the extension line of the first major axis and the extension line of the second major axis is within a preset angle range.
  • the length direction of the metal wire 131 is not parallel to the longitudinal direction of the quantum rod 111, that is, the predetermined angle range is greater than 0 degrees and less than 180 degrees. It can be understood that the specific preparation method of the metal line 131 is obtained by patterning the entire metal layer 13.
  • the extension line of the first major axis is approximately perpendicular to the extension line of the second major axis. That is, the longitudinal direction of the metal wire 131 is perpendicular to the longitudinal direction of the quantum rod 111. Since the two are perpendicular, the polarization degree of the quantum rod can be optimized, thereby better reducing the brightness loss and color shift caused by the short-wavelength quantum dots to excite long-wave quantum dots.
  • the distance L between the center points of the adjacent two metal lines 131 ranges from 20 to 500 nm.
  • the distance L between the center point of the first metal line 131 on the leftmost side and the center point of the second metal line 131 on the left side is in the range of 20-500 nm. Since the pitch of the metal lines exceeds the range, the polarization of the light is not favorable.
  • the ratio of the width M of the metal wire 131 to the center distance L ranges from 0.1 to 0.9, wherein the center pitch is the distance between the center points of two adjacent metal wires. That is, when the ratio of the width of the metal wire 131 to the gap of the metal wire 131 is within this range, the light generated by the quantum rod can be better polarized, and the utilization of light is improved.
  • the thickness D of the metal wire 131 ranges from 10 to 500 nanometers. Since the thickness is too small, it is not conducive to the polarization of light, and the thickness is too large to facilitate light transmission. Therefore, the thickness of the metal wire 131 is set in this range. Inside, it can effectively improve the transmittance of light and facilitate the polarization of light.
  • the quantum dot film 10 further includes a first isolation layer 14 and a second isolation layer 15, the first isolation layer 14 is located below the quantum light-emitting layer 11, the second The isolation layer 15 is located between the quantum light emitting layer 11 and the dielectric layer 12.
  • the first isolation layer 14 and the second isolation layer 15 serve to prevent erosion of water molecules or oxygen molecules on the quantum light-emitting layer.
  • a quantum rod is disposed in the quantum light-emitting layer, and a dielectric layer and a metal layer having a plurality of metal lines are disposed on the quantum light-emitting layer. Since the quantum rod has a better degree of polarization, it is possible to reduce the luminance loss and color shift caused by the short-wavelength quantum dots to excite long-wavelength quantum dots, thereby improving luminance efficiency and reducing color shift.

Abstract

一种量子点薄膜(10)及背光模块(100)。量子点薄膜(10)包括量子发光层(11)、介质层(12)以及金属层(13)。量子发光层(11)包括多个沿同一方向排布的量子棒(111)。金属层(13)包括多个间隔设置的金属线(131)。金属线(131)具有第一长轴。量子棒(111)具有第二长轴。第一长轴的延长线与第二长轴的延长线之间的夹角位于预设角度范围内。

Description

一种量子点薄膜及背光模块 技术领域
本发明涉及液晶显示器技术领域,特别是涉及一种量子点薄膜及背光模块。
背景技术
目前,使用量子点薄膜(QD film)实现高色域以及较高的光学穿透率,需要搭配光学增亮膜。按照光线传输的路径,蓝色光源耦合进入导光板后射出的蓝色光线,首先经过棱镜膜集光,然后经过其上层的量子点薄膜,激发出窄带的红色和绿色光,经过偏振转换增亮膜,将振动方向杂乱的光线转化为同一个线性偏振方向上。该偏振方向平行于液晶盒入光测的偏光片透光轴,从而大大提高背光的利用率。
但是这种结构存在设计难点,调整好光谱空间分布的量子点薄膜,在经过偏振转换增亮膜时,会有一部分偏振方向的反射光被反射回来,从而会再次激发量子点薄膜。因而激发的红色和绿色光的比例会比预先设定的比例高,造成整个显示器出现色偏。
此外,由于绿光的能量显著高于红光的能量,因而绿光也可以激发红光。在经过反射型的增亮膜结构时,由于与增亮膜透过偏振方向不一致的绿光会被反射并重新透过量子点薄膜,从而激发红色量子点发光,其中蓝光激发绿色量子点发光,绿色量子点的光线激发红色量子点发光。因此,经历两次能量转化后,导致能量损耗,尤其是长波绿光激发红色量子点发光的能量损失比较严重,导致现有的量子点薄膜存在能量损耗较多以及容易出现色偏的问题。
因此,有必要提供一种量子点薄膜及背光模块,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种量子点薄膜及背光模块,以解决现有量子点薄膜的能量损耗较多以及容易出现色偏的技术问题。
技术解决方案
为解决上述技术问题,本发明提供了一种量子点薄膜,其包括:
量子发光层,包括多个沿同一方向排布的量子棒;所述量子棒的粒径范围为1-10纳米;
介质层,位于所述量子发光层上;以及
金属层,位于所述介质层上,所述金属层包括多个间隔设置的金属线;其中所述金属线具有第一长轴,所述量子棒具有第二长轴,所述第一长轴的延长线与所述第二长轴的延长线近似垂直。
在本发明的量子点薄膜中,相邻两个所述金属线的中心点之间的距离范围为20-500纳米。
在本发明的量子点薄膜中,所述金属线的宽度与中心间距的比例范围为0.1-0.9,其中所述中心间距为相邻两个所述金属线的中心点之间的距离。
在本发明的量子点薄膜中,所述金属线的厚度范围为10-500纳米。
在本发明的量子点薄膜中,所述介质层的材料包括SiO2、SiO、MgO、Si3N4、TiO2、Ta2O5中的至少一种。
在本发明的量子点薄膜中,所述金属层的材料包括Al、Ag、Au中的至少一种。
在本发明的量子点薄膜中,所述量子点薄膜还包括第一隔离层和第二隔离层,所述第一隔离层位于所述量子发光层的下方,所述第二隔离层位于所述量子发光层和所述介质层之间。
本发明还提供一种背光模块,其包括导光板以及量子点薄膜,所述量子点薄膜包括:
量子发光层,包括多个沿同一方向排布的量子棒;
介质层,位于所述量子发光层上;
金属层,位于所述介质层上,所述金属层包括多个间隔设置的金属线;其中所述金属线具有第一长轴,所述量子棒具有第二长轴,所述第一长轴的延长线与所述第二长轴的延长线之间的夹角位于预设角度范围内。
在本发明的背光模块中,所述第一长轴的延长线与所述第二长轴的延长线近似垂直。
在本发明的背光模块中,所述量子棒的粒径范围为1-10纳米。
在本发明的背光模块中,相邻两个所述金属线的中心点之间的距离范围为20-500纳米。
在本发明的背光模块中,所述金属线的宽度与中心间距的比例范围为0.1-0.9,其中所述中心间距为相邻两个所述金属线的中心点之间的距离。
在本发明的背光模块中,所述金属线的厚度范围为10-500纳米。
在本发明的背光模块中,所述介质层的材料包括SiO2、SiO、MgO、Si3N4、TiO2、Ta2O5中的至少一种。
在本发明的背光模块中,所述金属层的材料包括Al、Ag、Au中的至少一种。
在本发明的背光模块中,所述量子点薄膜还包括第一隔离层和第二隔离层,所述第一隔离层位于所述量子发光层的下方,所述第二隔离层位于所述量子发光层和所述介质层之间。
有益效果
本发明的量子点薄膜及背光模块,通过将量子发光层内设置量子棒,并且在量子发光层上设置介质层和具有多个金属线的金属层。由于量子棒具有较佳的偏振度,因而能够减少短波长量子点激发长波量子点所导致的亮度损失与色偏问题,从而提高了亮度效率、并降低了色偏。
附图说明
图1为本发明实施例量子点薄膜的结构示意图。
图2为本发明另一实施例量子点薄膜的结构示意图。
图3为本发明背光模块的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
请参照图1,图1为本发明实施例量子点薄膜的结构示意图。
如图1所示,本发明的量子点薄膜包括量子发光层11、介质层12、金属层13;该量子发光层11包括多个沿同一方向排布的量子棒111。可以理解的,全部量子棒111的排布方向大致沿一个方向排布,也即该量子棒111的长轴方向的大致沿同一方向排布。该量子发光层11还可以包括树脂介质层,该量子棒111分布在树脂介质层中。所述量子棒111的粒径范围可以为1-10纳米。由于该粒径范围内的量子棒的偏转效果最佳,从而能够更好地降低亮度损失。
该介质层12位于所述量子发光层11上,该介质层12用于隔离量子发光层11和金属层13;所述介质层12的材料包括SiO2、SiO、MgO、Si3N4、TiO2、Ta2O5中的至少一种。
金属层13位于所述介质层12上,所述金属层13包括多个间隔设置的金属线131,所述金属层13的材料包括Al、Ag、Au中的至少一种。由于这些金属能够使得红色、绿色以及蓝色光线更好地透过,也即提高了光线的透过率。所述金属线131具有第一长轴,比如该长轴为沿直面向里的方向的轴线,也即金属线131的长度方向。所述量子棒111具有第二长轴,比如该第二长轴沿水平方向的轴线,也即为量子棒的长度方向。所述第一长轴的延长线与所述第二长轴的延长线之间的夹角位于预设角度范围内。具体地,金属线131的长度方向与量子棒111的长度方向不平行,也即该预设角度范围为大于0度小于180度。可以理解的,该金属线131的具体制备方式是对整层金属层13进行图案化处理得到的。
由于背光模块中的蓝光LED发射蓝光通过导光板进入量子发光层11中,量子棒吸收部分蓝光并激发出具有极佳偏振度的红、绿光;通常所有的红、绿光的偏振方向平行于量子棒取向以及与金属线的排布方向具有一定的夹角,因而使得光线能够完全透过所述金属线栅而不产生反射。其中未被吸收的蓝光中偏振方向与金属线具有夹角的部分,也会透过金属线,而偏振方向平行于金属线的偏振光被所述金属线反射,并重新进入量子发光层,使其与量子棒作用,部分进入导光板中进行循环利用。由于量子棒具有较佳的偏振度,因而能够减少短波长量子点激发长波量子点所导致的亮度损失与色偏问题,改善现有高色域显示装置的显示效果。
优选地,该所述第一长轴的延长线与所述第二长轴的延长线近似垂直。也即金属线131的长度方向与量子棒111的长度方向垂直。由于两者垂直时,能够使得量子棒的偏振度达到最佳,从而更好地减少短波长量子点激发长波量子点所导致的亮度损失和色偏问题。
优选地,相邻两个金属线131的中心点之间的距离L的范围为20-500纳米。比如最左侧的第一个金属线131的中心点与最左侧的第二个金属线131的中心点之间的间距L位于20-500纳米范围。由于金属线的间距超过该范围,不利于光线的偏振。
优选地,所述金属线131的宽度M与中心间距L的比例范围为0.1-0.9,其中所述中心间距为相邻两个所述金属线的中心点之间的距离。也即金属线131的宽度与金属线131的间隙的比例位于此范围时,能够更好地使量子棒产生的光线进行偏振,提高了光线的利用率。
优选地,所述金属线131的厚度D的范围为10-500纳米,由于厚度太小,不利于光线的偏振,厚度太大不利于光线透过,因此将金属线131的厚度设置在此范围内,能够有效地提高光线的透过率以及便于光线产生偏振。
优选地,如图2所示,所述量子点薄膜10还包括第一隔离层14和第二隔离层15,所述第一隔离层14位于所述量子发光层11的下方,所述第二隔离层15位于所述量子发光层11和所述介质层12之间。所述第一隔离层14和第二隔离层15用于防止水分子或者氧分子对量子发光层的侵蚀。
上述量子点薄膜中量子发光层的制作方法包括:
S101、将具有上下两个隔离层的树脂介质层放入一容器中,所述容器横向设置一定数量的电极,可通过施加不同的偏压在树脂介质层表面产生横向电场;
S102、将混合有量子棒的配体溶液均匀地滴在所述树脂介质层的表面;
S103、施加一定的横向电压,使得所述量子棒沿着电场方向排布;该横向电压用于产生横向电场。
S104、采用UV或者热固化方式使得量子棒的取向固定。
本发明的量子点薄膜,通过将量子发光层内设置量子棒,并且在量子发光层上设置介质层和具有多个金属线的金属层。由于量子棒具有较佳的偏振度,因而能够减少短波长量子点激发长波量子点所导致的亮度损失与色偏问题,从而提高了亮度效率、并降低了色偏。
请参照图3,本发明背光模块的结构示意图。
如图3所示,该背光模块100包括光源21、反射片22、导光板23、光学膜片24以及量子点薄膜10。其中光源21用于提供原始光线,导光板23位于反射片22的上方,光学膜片24位于导光板23的上方,量子点薄膜10位于光学膜片24的上方。
具体地,可以结合图1,该量子点薄膜10包括量子发光层11、介质层12、金属层13;该量子发光层11包括多个沿同一方向排布的量子棒111。可以理解的,全部量子棒111的排布方向大致沿一个方向排布,也即该量子棒111的长轴方向的大致沿同一方向排布。该量子发光层11还可以包括树脂介质层,该量子棒111分布在树脂介质层中。所述量子棒111的粒径范围可以为1-10纳米。由于该粒径范围内的量子棒的偏转效果最佳,从而能够更好地降低亮度损失。
该介质层12位于所述量子发光层11上,该介质层12用于隔离量子发光层11和金属层13;所述介质层12的材料包括SiO2、SiO、MgO、Si3N4、TiO2、Ta2O5中的至少一种。
金属层13位于所述介质层12上,所述金属层13包括多个间隔设置的金属线131,所述金属层13的材料包括Al、Ag、Au中的至少一种。由于这些金属能够使得红色、绿色以及蓝色光线更好地透过,也即提高了光线的透过率。所述金属线131具有第一长轴,比如该长轴为沿直面向里的方向的轴线,也即金属线131的长度方向。所述量子棒111具有第二长轴,比如该第二长轴沿水平方向的轴线,也即为量子棒的长度方向。所述第一长轴的延长线与所述第二长轴的延长线之间的夹角位于预设角度范围内。具体地,金属线131的长度方向与量子棒111的长度方向不平行,也即该预设角度范围为大于0度小于180度。可以理解的,该金属线131的具体制备方式是对整层金属层13进行图案化处理得到的。
优选地,该所述第一长轴的延长线与所述第二长轴的延长线近似垂直。也即金属线131的长度方向与量子棒111的长度方向垂直。由于两者垂直时,能够使得量子棒的偏振度达到最佳,从而更好地减少短波长量子点激发长波量子点所导致的亮度损失和色偏问题。
优选地,相邻两个金属线131的中心点之间的距离L的范围为20-500纳米。比如最左侧的第一个金属线131的中心点与最左侧的第二个金属线131的中心点之间的间距L位于20-500纳米范围。由于金属线的间距超过该范围,不利于光线的偏振。
优选地,所述金属线131的宽度M与中心间距L的比例范围为0.1-0.9,其中所述中心间距为相邻两个所述金属线的中心点之间的距离。也即金属线131的宽度与金属线131的间隙的比例位于此范围时,能够更好地使量子棒产生的光线进行偏振,提高了光线的利用率。
优选地,所述金属线131的厚度D的范围为10-500纳米,由于厚度太小,不利于光线的偏振,厚度太大不利于光线透过,因此将金属线131的厚度设置在此范围内,能够有效地提高光线的透过率以及便于光线产生偏振。
优选地,如图2所示,所述量子点薄膜10还包括第一隔离层14和第二隔离层15,所述第一隔离层14位于所述量子发光层11的下方,所述第二隔离层15位于所述量子发光层11和所述介质层12之间。所述第一隔离层14和第二隔离层15用于防止水分子或者氧分子对量子发光层的侵蚀。
本发明的背光模块,通过将量子发光层内设置量子棒,并且在量子发光层上设置介质层和具有多个金属线的金属层。由于量子棒具有较佳的偏振度,因而能够减少短波长量子点激发长波量子点所导致的亮度损失与色偏问题,从而提高了亮度效率、并降低了色偏。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种量子点薄膜,其包括:
    量子发光层,包括多个沿同一方向排布的量子棒;所述量子棒的粒径范围为1-10纳米;
    介质层,位于所述量子发光层上;以及
    金属层,位于所述介质层上,所述金属层包括多个间隔设置的金属线;其中所述金属线具有第一长轴,所述量子棒具有第二长轴,所述第一长轴的延长线与所述第二长轴的延长线近似垂直。
  2. 根据权利要求1所述的量子点薄膜,其中相邻两个所述金属线的中心点之间的距离范围为20-500纳米。
  3. 根据权利要求1所述的量子点薄膜,其中所述金属线的宽度与中心间距的比例范围为0.1-0.9,其中所述中心间距为相邻两个所述金属线的中心点之间的距离。
  4. 根据权利要求1所述的量子点薄膜,其中所述金属线的厚度范围为10-500纳米。
  5. 根据权利要求1所述的量子点薄膜,其中所述介质层的材料包括SiO2、SiO、MgO、Si3N4、TiO2、Ta2O5中的至少一种。
  6. 根据权利要求1所述的量子点薄膜,其中所述金属层的材料包括Al、Ag、Au中的至少一种。
  7. 根据权利要求1所述的量子点薄膜,其中所述量子点薄膜还包括第一隔离层和第二隔离层,所述第一隔离层位于所述量子发光层的下方,所述第二隔离层位于所述量子发光层和所述介质层之间。
  8. 一种背光模组,其包括导光板以及量子点薄膜,所述量子点薄膜包括:
    量子发光层,包括多个沿同一方向排布的量子棒;
    介质层,位于所述量子发光层上;
    金属层,位于所述介质层上,所述金属层包括多个间隔设置的金属线;其中所述金属线具有第一长轴,所述量子棒具有第二长轴,所述第一长轴的延长线与所述第二长轴的延长线之间的夹角位于预设角度范围内。
  9. 根据权利要求8所述的背光模组,其中所述第一长轴的延长线与所述第二长轴的延长线近似垂直。
  10. 根据权利要求8所述的背光模组,其中所述量子棒的粒径范围为1-10纳米。
  11. 根据权利要求8所述的背光模组,其中相邻两个所述金属线的中心点之间的距离范围为20-500纳米。
  12. 根据权利要求8所述的背光模组,其中所述金属线的宽度与中心间距的比例范围为0.1-0.9,其中所述中心间距为相邻两个所述金属线的中心点之间的距离。
  13. 根据权利要求8所述的背光模组,其中所述金属线的厚度范围为10-500纳米。
  14. 根据权利要求8所述的背光模组,其中所述介质层的材料包括SiO2、SiO、MgO、Si3N4、TiO2、Ta2O5中的至少一种。
  15. 根据权利要求8所述的背光模组,其中所述金属层的材料包括Al、Ag、Au中的至少一种。
  16. 根据权利要求8所述的背光模组,其中所述量子点薄膜还包括第一隔离层和第二隔离层,所述第一隔离层位于所述量子发光层的下方,所述第二隔离层位于所述量子发光层和所述介质层之间。
PCT/CN2016/111640 2016-11-24 2016-12-23 一种量子点薄膜及背光模块 WO2018094799A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,287 US20180143469A1 (en) 2016-11-24 2016-12-23 Quantum dot film and backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611052211.5 2016-11-24
CN201611052211.5A CN106646721A (zh) 2016-11-24 2016-11-24 一种量子点薄膜及背光模块

Publications (1)

Publication Number Publication Date
WO2018094799A1 true WO2018094799A1 (zh) 2018-05-31

Family

ID=58811180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111640 WO2018094799A1 (zh) 2016-11-24 2016-12-23 一种量子点薄膜及背光模块

Country Status (2)

Country Link
CN (1) CN106646721A (zh)
WO (1) WO2018094799A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749681A (zh) * 2015-03-19 2015-07-01 明基材料有限公司 偏光板
CN104880741A (zh) * 2015-05-26 2015-09-02 明基材料有限公司 量子棒膜
CN105301828A (zh) * 2015-11-18 2016-02-03 深圳市华星光电技术有限公司 液晶显示装置及其制作方法
CN105372875A (zh) * 2015-11-20 2016-03-02 明基材料有限公司 量子棒膜
CN105954932A (zh) * 2016-07-06 2016-09-21 武汉华星光电技术有限公司 背光模组及液晶显示装置
US20160327720A1 (en) * 2013-06-11 2016-11-10 Samsung Display Co., Ltd. Quantum rod sheet, backlight unit, display device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160327720A1 (en) * 2013-06-11 2016-11-10 Samsung Display Co., Ltd. Quantum rod sheet, backlight unit, display device and manufacturing method thereof
CN104749681A (zh) * 2015-03-19 2015-07-01 明基材料有限公司 偏光板
CN104880741A (zh) * 2015-05-26 2015-09-02 明基材料有限公司 量子棒膜
CN105301828A (zh) * 2015-11-18 2016-02-03 深圳市华星光电技术有限公司 液晶显示装置及其制作方法
CN105372875A (zh) * 2015-11-20 2016-03-02 明基材料有限公司 量子棒膜
CN105954932A (zh) * 2016-07-06 2016-09-21 武汉华星光电技术有限公司 背光模组及液晶显示装置

Also Published As

Publication number Publication date
CN106646721A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2013159376A1 (zh) 背光模组及液晶显示装置
WO2016054838A1 (zh) 直下式背光模组及其制造方法
WO2019148591A1 (zh) 直下式背光模组以及液晶显示器
WO2016082312A1 (zh) 背光模块及具有该背光模块的液晶显示装置
US11322706B2 (en) Quantum dot film, quantum dot light-emitting assembly and display device
WO2018090432A1 (zh) 显示器
WO2016074267A1 (zh) 背光模块及液晶显示装置
KR20120113564A (ko) 광학 시트 및 이를 포함하는 표시장치
US11175448B2 (en) Light-emitting device and method for fabricating same
CN104155803A (zh) 背光模块及液晶显示装置
WO2017024600A1 (zh) 液晶显示器及其液晶显示模组
WO2017219397A1 (zh) Lcd显示装置、基于量子点的背光模组及其制作方法
CN104503137A (zh) 背光模块及具有该背光模块的液晶显示器
WO2017101201A1 (zh) 量子点管及液晶显示装置
WO2017028358A1 (zh) 液晶显示装置及其背光模组
WO2017015988A1 (zh) 一种液晶显示面板及偏光片的制作方法
WO2020168669A1 (zh) 量子点液晶显示器
WO2017206290A1 (zh) 背光模组以及液晶显示器
CN108919558B (zh) 一种楔形基板的量子点彩膜结构
WO2017177488A1 (zh) 双面液晶显示装置及其背光模组
WO2013185364A1 (zh) 面光源及显示装置
WO2017173681A1 (zh) 一种量子点光源及量子点背光模组
WO2016192128A1 (zh) 一种显示面板及液晶显示装置
WO2017118384A1 (zh) 一种点光源及其透镜的制备方法
CN108321284B (zh) 一种直下式量子点白光led背光模组及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329287

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922443

Country of ref document: EP

Kind code of ref document: A1