WO2018094737A1 - 脉搏波采集装置和脉搏波采集标定方法 - Google Patents

脉搏波采集装置和脉搏波采集标定方法 Download PDF

Info

Publication number
WO2018094737A1
WO2018094737A1 PCT/CN2016/107501 CN2016107501W WO2018094737A1 WO 2018094737 A1 WO2018094737 A1 WO 2018094737A1 CN 2016107501 W CN2016107501 W CN 2016107501W WO 2018094737 A1 WO2018094737 A1 WO 2018094737A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
pulse
pressure
sensing film
human body
Prior art date
Application number
PCT/CN2016/107501
Other languages
English (en)
French (fr)
Inventor
张海英
张以涛
张劭龙
刘苏
耿兴光
侯洁娜
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to PCT/CN2016/107501 priority Critical patent/WO2018094737A1/zh
Publication of WO2018094737A1 publication Critical patent/WO2018094737A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention relates to the field of pulse wave acquisition technology, and in particular to a pulse wave acquisition device and a pulse wave acquisition calibration method.
  • TCM diagnosis has experienced more than 2,000 years of clinical practice and is one of the essence of the traditional Chinese medicine four diagnosis.
  • the blood and blood of the human body will be affected, and the blood circulation will be affected, and the pulse will change.
  • the traditional diagnostic fingering method is based on the method of “three fingers and the same” for the diagnosis of the pulse. The main reason is to understand the characteristics of the pulse and the changes of the pulse with the change of pressure when the three parts of the inch, the off and the ruler are simultaneously pointed down.
  • the three-part and nine-month diagnostic method can collect more abundant pulse information, fully carry forward the theoretical characteristics of traditional pulmonology, and provide an important basis for clinical diagnosis, syndrome differentiation and treatment.
  • the main object of the present invention is to provide a pulse wave collecting device and a pulse wave collecting and calibrating method for solving the problem that the pulse wave collecting device in the prior art cannot accurately reflect the pulse information of the human body.
  • a pulse wave collecting device for collecting a pulse wave when a human body is subjected to different external pressures, including a fixing band, and a fixing band for winding around the human body is provided.
  • a pulse detecting portion a pressure adjusting portion, the pressure adjusting portion is connected to the fixing belt;
  • the pulse sensor includes a sensing film, and the sensing film is connected to one end of the pressure adjusting portion away from the fixing belt to cause the pressure adjusting portion to press the sensing film
  • the sensing film is used to convert the pulse wave into a piezoelectric signal, wherein the sensing film is made of a flexible material;
  • the pressure transmitting portion is connected to the sensing film through the pressure transmitting portion to The pressing force generated by the pressure regulating portion is uniformly transmitted to the surface of the sensing film.
  • the sensing film is a polyvinylidene fluoride film.
  • the sensing film comprises a connecting support segment and a pulse wave collecting segment connected to the connecting supporting segment, wherein the pulse wave collecting segment is plural, and the plurality of pulse wave collecting segments are spaced apart along the length direction of the connecting supporting segment.
  • pulse wave acquisition segments are five, and each pulse wave acquisition segment is perpendicular to the connection support segment.
  • the pressure transmitting portion is made of a flexible material, and a mesh structure is formed on the pressure transmitting portion.
  • the pressure transmitting portion is one of rubber, silica gel or sponge.
  • the pulse sensor further includes: a sensing circuit, the sensing circuit is coupled to the sensing film to transmit the piezoelectric signal; and the signal processing unit is electrically connected to the sensing film through the sensing circuit and used to receive and process the piezoelectric Signal; signal display unit, the signal display unit is electrically connected to the signal processing unit and used to display the value of the piezoelectric signal.
  • the pressure adjusting portion includes a pressure regulating air bag, the pressure adjusting air bag is disposed on the fixing belt, and the pressure regulating air bag has a cubic structure.
  • the pressure regulating portion further includes a pressure sensor, an air pump, and a three-way structure, wherein the first port of the three-way structure is in communication with the chamber of the pressure regulating air bag, and the second port of the three-way structure is in communication with the air pump, and the three-way structure The third port is in communication with the pressure sensor.
  • a pulse wave acquisition calibration method comprising: step S1: adjusting an external static pressure value of a human body pulse detection to a P by a pressure adjustment portion; and step S2: obtaining a human body pulse detection by a pulse sensor a pulse wave X corresponding to the external static pressure value P generated by the pulse wave acting on the sensing film of the pulse sensor; step S3: respectively, the plurality of amplitudes X and the plurality of amplitudes X respectively
  • the electrical signal value U is used as the ordinate and the abscissa, and a plurality of amplitude pressure points B are calibrated in the two-dimensional coordinate system; step S4: the amplitude pressure curve of the pulse wave is drawn through the plurality of amplitude pressure points B.
  • ⁇ P is greater than or equal to 5 mmHg and less than or equal to 30 mmHg.
  • step S2 includes: step S21: measuring, by the pulse sensor, a piezoelectric signal value U corresponding to the external static pressure value P generated by the pulse wave at the pulse detection of the human body acting on the sensing film of the pulse sensor; step S22 : The amplitude X of the pulse wave is calculated by the piezoelectric signal value U.
  • the piezoelectric signal value U and the amplitude X satisfy the formula: Where g 3n is the piezoelectric coefficient of the sensing film and t is the thickness of the sensing film.
  • step S0 is further included: installing the pulse wave collecting device to the body pulse detecting portion.
  • the pulse wave collecting device includes a fixing belt for winding around the pulse detecting portion of the human body
  • the medical staff can wrap the fixing band around the pulse of the human body, thereby improving the pulse wave collecting device and the human body. Stability between connections.
  • the pulse wave collecting device comprises a pressure adjusting portion and a pulse sensor
  • the pressure adjusting portion is connected to the fixing belt
  • the pulse sensor comprises a sensing film
  • the sensing film is connected with one end of the pressure adjusting portion away from the fixing belt so that the pressure adjusting portion will sense
  • the film is pressed at the pulse detection of the human body, and the sensing film is used to convert the pulse wave into a piezoelectric signal, wherein the sensing film is soft Made of sexual materials.
  • the pressure adjusting portion can be pressed between the fixing belt and the body pulse detecting portion to provide an effective pressing force for the sensing film, so that the sensing film and the human body pulse detecting portion are effectively adhered to each other, thereby making the sensing film
  • the pulse wave of the human body pulse detection can be comprehensively collected.
  • the sensing film is made of a flexible material, the sensing film can reciprocately move along with the pulse of the human body, so the sensing film can accurately measure the human body.
  • the pulse wave generated at the pulse detection is converted into a piezoelectric signal, and by analyzing and analyzing the external pressure and the piezoelectric signal applied to the pulse detection portion of the human body by the pressure adjustment portion, the amplitude pressure curve can be obtained, thereby accurately reflecting the human body's Pulse information.
  • the pulse wave collecting device includes a pressure transmitting portion
  • the pressure adjusting portion is coupled to the sensing film through the pressure transmitting portion to uniformly transmit the pressing force generated by the pressure adjusting portion to the surface of the sensing film.
  • the pressure transmitting portion is disposed between the pressure adjusting portion and the sensing film, thereby ensuring that the pressing force generated by the pressure adjusting portion is uniformly transmitted to the surface of the sensing film, so that the sensing film and the human body pulse detecting portion are sufficiently The ground is tightly pressed, so that the pulse wave collecting device reliably collects the pulse wave at the pulse detecting portion of the human body.
  • FIG. 1 is a schematic exploded view showing a pulse wave collecting device at a pulse detecting area of a human body according to an alternative embodiment of the present invention
  • FIG. 2 is a schematic exploded perspective view showing another perspective of the pulse wave acquiring device of FIG. 1;
  • FIG. 3 is a schematic structural view of a sensing film of the pulse wave acquiring device of FIG. 1;
  • FIG. 4 is a schematic structural view of a fixing belt with a pressure regulating airbag of the pulse wave collecting device of FIG. 1;
  • Figure 5 is a graph showing the amplitude pressure curve of a pulse wave at a human body pulse detection obtained by a pulse wave acquisition calibration method according to an alternative embodiment of the present invention.
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.
  • the present invention provides a pulse wave collecting device and a pulse wave collecting and calibrating method, wherein the pulse wave collecting device is used by the above-mentioned pulse wave collecting device.
  • the pulse wave acquisition calibration method described above can obtain the amplitude pressure curve of the pulse wave at the pulse detection of the human body.
  • the pulse wave acquisition calibration method described above is not limited to using only the pulse wave acquisition device described above, and the pulse wave acquisition device is the pulse wave described below. Wave acquisition device.
  • the pulse wave collecting device is configured to collect a pulse wave when the human body pulse detecting portion 1 receives different external pressures.
  • the pulse wave collecting device includes a fixing belt 10, a pressure adjusting portion 20, a pressure transmitting portion 30, and Pulse sensor 40; solid
  • the fixing belt 10 is for winding around the human body pulse detecting portion 1, and the pressure adjusting portion 20 is connected to the fixing belt 10.
  • the pulse sensor 40 includes a sensing film 41 which is connected to one end of the pressure adjusting portion 20 away from the fixing belt 10 to The pressure adjusting portion 20 presses the sensing film 41 to the human body pulse detecting portion 1 for converting the pulse wave into a piezoelectric signal, wherein the sensing film 41 is made of a flexible material, and the pressure adjusting portion 20
  • the pressure transmitting portion 30 is connected to the sensing film 41 to uniformly transmit the pressing force generated by the pressure adjusting portion 20 to the surface of the sensing film 41.
  • the pulse wave collecting device includes the fixing belt 10 for winding around the human body pulse detecting portion 1
  • the medical staff can wrap the fixing belt 10 around the pulse of the human body, thereby improving the connection between the pulse wave collecting device and the human body. Sex.
  • the pulse wave collecting device includes the pressure adjusting portion 20 and the pulse sensor 40
  • the pressure adjusting portion 20 is connected to the fixing belt 10
  • the pulse sensor 40 includes the sensing film 41, and the sensing film 41 and the end of the pressure adjusting portion 20 away from the fixing belt 10.
  • the connection is made such that the pressure adjusting portion 20 presses the sensing film 41 to the human body pulse detecting portion 1, and the sensing film 41 is used to convert the pulse wave into a piezoelectric signal, wherein the sensing film 41 is made of a flexible material.
  • the pressure adjusting portion 20 can be pressed between the fixing belt 10 and the human body pulse detecting portion 1 to provide an effective pressing force to the sensing film 41, so that the sensing film 41 and the human body pulse detecting portion 1 are effectively adhered to each other.
  • the sensing film 41 can comprehensively collect the pulse wave at the pulse detecting portion 1 of the human body.
  • the sensing film 41 is made of a flexible material, the sensing film 41 can reciprocate along with the pulse of the human body pulse. Since the sensing film 41 can accurately convert the pulse wave generated at the pulse detecting portion 1 of the human body into a piezoelectric signal, the external pressure and the piezoelectric signal applied to the pulse detecting portion 1 of the human body by the pressure adjusting portion 20 are analyzed. Then, the amplitude pressure curve can be obtained, thereby accurately reflecting the pulse information of the human body.
  • the pulse wave collecting device includes the pressure transmitting portion 30, the pressure adjusting portion 20 is connected to the sensing film 41 through the pressure transmitting portion 30 to uniformly transmit the pressing force generated by the pressure adjusting portion 20 to the surface of the sensing film 41.
  • the pressure transmitting portion 30 is disposed between the pressure adjusting portion 20 and the sensing film 41, ensuring that the pressing force generated by the pressure adjusting portion 20 is uniformly transmitted to the surface of the sensing film 41, thereby causing the sensing film 41.
  • the human body pulse detecting unit 1 is sufficiently closely attached to the pulse wave collecting device to reliably collect the pulse wave of the human body pulse detecting unit 1.
  • the sensing film 41 is a polyvinylidene fluoride film. That is, PVDF film.
  • the sensing film 41 made of polyvinylidene fluoride material is attached to the pulse detecting portion 1 of the human body, the contact area of the pulse wave collecting device and the pulse detecting portion 1 of the human body is effectively increased, thereby ensuring the acquisition of the pulse wave.
  • the blood vessel is not moved due to the movement of the human blood vessel or the shaking of the hand, and the pulse wave data is collected more stably and objectively.
  • the sensing film 41 includes a connection supporting section 411 and a pulse wave collecting section 412 connected to the connecting supporting section 411, wherein the pulse wave collecting section 412 is a plurality of pulse wave collecting sections.
  • the 412 are spaced apart along the length direction of the connection support section 411.
  • the plurality of pulse wave acquisition segments 412 are used as sensors to collect pulse waves at different points of the human body pulse detection site 1 and ensure that the plurality of pulse wave acquisition segments 412 do not interfere with each other, thereby improving the pulse wave acquisition device. Reliable stability to pulse wave acquisition.
  • the pulse wave acquisition segments 412 are five, and each of the pulse wave acquisition segments 412 is perpendicular to the connection support segment 411.
  • the human body pulse detection area 1 is a human wrist.
  • the five pulse wave acquisition segments 412 are respectively an inch acquisition segment 413, an inch collection segment 414, a closed acquisition segment 415, a ruler acquisition segment 416, and a sub-segment acquisition segment 417, respectively, for collecting the inch, inch, and off of the human wrist. Pulse wave information at five feet, feet and feet.
  • each pulse wave collecting segment 412 is vertically disposed with the direction of the human wrist, thereby ensuring that each pulse wave collecting segment 412 can Fully simulate the human finger.
  • the pressure transmitting portion 30 is made of a flexible material, and the pressure transmitting portion 30 is provided with a mesh structure.
  • the pressure transmitting portion 30 can absorb the vibration potential energy transmitted outward from the pulse wave collecting portion 412, avoiding the vibration of the pulse wave collecting portion 412 and affecting the pulse wave collecting portion 412 adjacent thereto, thereby ensuring the collection of the sensing film 41.
  • the validity of the pulse wave information Further, the pressure transmitting portion 30 provided with the mesh structure and made of a flexible material can be deformed reliably by the movement of the sensing film 41, so that the deformation amount of the sensing film 41 can be reliably reflected, and the sensing film can be made.
  • the piezoelectric signal generated at 41 is more clear.
  • the pressure transmitting portion 30 is one of rubber, silica gel or sponge.
  • the pulse sensor 40 further includes a sensing circuit, a signal processing unit, and a signal display unit.
  • the sensing circuit is coupled to the sensing film 41 to transmit the piezoelectric signal
  • the signal processing unit The sensor circuit is electrically coupled to the sensing film 41 and used to receive and process the piezoelectric signal.
  • the signal display unit is electrically coupled to the signal processing unit and is used to display the value of the piezoelectric signal.
  • the pressure adjusting portion 20 includes a pressure regulating air bag 21, the pressure adjusting air bag 21 is disposed on the fixing belt 10, and the pressure regulating air bag 21 has a cubic structure.
  • the surface of the pressure regulating airbag 21 facing the sensing film 41 is integrally moved, thereby ensuring that the surface of the pressure regulating airbag 21 facing the sensing film 41 will pass through.
  • the sensing film 41 is pressed to make the force at each point of the sensing film 41 uniform.
  • the pressure regulating balloon 21 is made of silicone.
  • the fixing tape 10 is wound around the human body pulse detecting portion 1 and connected by a connecting means provided at both ends in the longitudinal direction of the fixing tape 10.
  • the connecting device is a nylon buckle disposed at both ends of the fixing belt 10 in the longitudinal direction.
  • the pressure regulating portion 20 further includes a pressure sensor, an air pump, and a three-way structure, wherein the first port of the three-way structure communicates with the bladder of the pressure regulating air bag 21, The second port of the three-way structure is in communication with the air pump, and the third port of the three-way structure is in communication with the pressure sensor.
  • the pressure regulating bladder 21 is inflated by the air pump, and the pressure sensor can perform the detection of the air pressure in the pressure regulating bladder 21, thus obtaining the external static pressure value P of the human body pulse detecting portion 1.
  • the pulse wave acquisition calibration method includes a step S1, a step S2, a step S3, and a step S4, wherein the step S1 is: adjusting the external static pressure value of the human body pulse detection point 1 to the P by the pressure adjustment unit 20; the step S2 is: passing the pulse
  • the sensor 40 is generated by the pulse wave of the human body pulse detecting portion 1 acting on the sensing film 41 of the pulse sensor 40.
  • step S3 is a plurality of amplitude values X and a plurality of electrical signal values U corresponding to the plurality of amplitudes X as the ordinate and the abscissa, respectively, in the two-dimensional coordinate system
  • step S4 is: plotting the amplitude pressure curves of the pulse waves through the plurality of amplitude pressure points B.
  • Fig. 5 is a graph showing the amplitude pressure curve of a pulse wave at a human body pulse detection according to an alternative embodiment obtained by the pulse wave acquisition calibration method described above.
  • the abscissa axis is the external static pressure value P of the human body pulse detecting point 1
  • the ordinate is the amplitude X corresponding to the external static pressure value P.
  • the pulse of the human body through the trend of the amplitude pressure curve such as floating veins, sinking veins or veins, can provide an effective diagnostic basis for doctors to diagnose patients' diseases.
  • the curve A1, the curve A2, the curve A3, the curve A4, and the curve A5 in the figure respectively correspond to the upper acquisition section 413, the inch collection section 414, the off acquisition section 415, the ruler acquisition section 416, and the under-scale acquisition section. 417 measures and converts the amplitude pressure curve, which is the pulse information of the five inches, inches, feet, feet and feet under the human wrist.
  • ⁇ P the amount of pressure increase each time
  • n the number of times the pressure is increased.
  • ⁇ P is greater than or equal to 5 mmHg and less than or equal to 30 mmHg.
  • Step S2 of the pulse wave acquisition calibration method includes: step S21 and step S22, wherein step S21 is: measuring, by the pulse sensor 40, a pulse wave generated by the pulse detection portion 1 of the human body on the sensing film 41 of the pulse sensor 40.
  • the external static pressure value P corresponds to the piezoelectric signal value U; in step S22, the amplitude X of the pulse wave is calculated by the piezoelectric signal value U.
  • the amplitude X of the pulse wave can be reliably calculated by the piezoelectric signal value U generated and measured on the sensing film 41, thereby calibrating the ordinate point corresponding to the abscissa point, and passing the abscissa point And the ordinate point can draw a plurality of amplitude pressure points B in FIG. 5, and by connecting a plurality of amplitude pressure points B, the amplitude pressure curve of the pulse wave can be accurately obtained.
  • the piezoelectric signal value U and the amplitude X satisfy the formula:
  • g 3n is the piezoelectric coefficient of the sensing film 41
  • t is the thickness of the sensing film 41.
  • step S0 the pulse wave collecting device is installed to the human body pulse detecting station 1.
  • the sensing film is larger than the ordinary strain gauge pulse sensor, the area covering the pulse of the human body can be greatly increased, and the measurement of the pulse wave does not deviate from the measurement due to the movement of the human blood vessel or the shaking of the human hand. Position, more stable and objective collection of pulse wave data;
  • the pulse information of the human body pulse detecting position can be objectively reflected, and the pressure range can be conveniently controlled by the adjusting portion to pressurize, and the positioning is floated, taken, Sink
  • the pulse wave collecting device of the present invention has a compact structure and is convenient to carry.

Abstract

一种脉搏波采集装置和脉搏波采集标定方法,其中,脉搏波采集装置用于采集人体脉搏检测处(1)在受到不同外压时的脉搏波,脉搏波采集装置包括:固定带(10),固定带(10)用于缠绕在人体脉搏检测处(1);压力调节部(20),压力调节部(20)与固定带(10)连接;脉搏传感器(40),脉搏传感器(40)包括传感薄膜(41),传感薄膜(41)与压力调节部(20)的远离固定带(10)的一端连接以使压力调节部(20)将传感薄膜(41)压紧在人体脉搏检测处(1),传感薄膜(41)用于将脉搏波转换成压电信号,其中,传感薄膜(41)由柔性材料制成;压力传递部(30),压力调节部(20)通过压力传递部(30)与传感薄膜(41)连接以将压力调节部(20)产生的挤压力均匀地传递到传感薄膜(41)的表面。上述装置解决了现有技术中的脉搏波采集装置无法准确地反应出人体的脉象信息的问题。

Description

脉搏波采集装置和脉搏波采集标定方法 技术领域
本发明涉及脉搏波采集技术领域,具体而言,涉及一种脉搏波采集装置和脉搏波采集标定方法。
背景技术
中医诊脉经历了两千多年临床实践,是我国传统中医四诊的精髓之一。中医理论认为,人体脏腑气血发生病变,血脉运行就会受到影响,脉象就有变化。传统诊脉指法以“三指并齐”的下指诊脉方法为基础,主要是了解“寸、关、尺”三部同时下指时,脉象的特征和随施加压力变化而出现脉象的变化情况;观察“寸、关、尺”三部在同等加压的条件下脉象图的相似性或差异性;必要时还以“指指交替”的变换方法,调正指压,分别在“浮、中、沉”三种按压力度下分别诊脉,进一步比对和确认各部的特异性。三部九候的诊脉方法,能采集更为丰富的脉象信息,充分发扬传统脉学的理论特色,为临床提供识病、辨证、治疗的重要依据。
近年来,国内外研制出了不同的脉象仪,用于代替人对患者进行诊脉,但是大部分脉象仪的传感器都无法准确地定位中医切脉时所取“寸、关、尺”三部,也无法模拟中医手法“浮、中、沉”三种按压力度,而且在采集人体脉搏检测处的脉搏波过程中经常会由于患者的脉管的滑动或者患者的手臂不自主抖动而导致脉搏波的采集失效,损失了重要的脉搏波信息,从而不能得到完整的人体生理机能的变化情况的信息,进而很难实现对患者的疾病进行确诊。
发明内容
本发明的主要目的在于提供一种脉搏波采集装置和脉搏波采集标定方法,以解决现有技术中的脉搏波采集装置无法准确地反应出人体的脉象信息的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种脉搏波采集装置,用于采集人体脉搏检测处在受到不同外压时的脉搏波,包括:固定带,固定带用于缠绕在人体脉搏检测处;压力调节部,压力调节部与固定带连接;脉搏传感器,脉搏传感器包括传感薄膜,传感薄膜与压力调节部的远离固定带的一端连接以使压力调节部将传感薄膜压紧在人体脉搏检测处,传感薄膜用于将脉搏波转换成压电信号,其中,传感薄膜由柔性材料制成;压力传递部,压力调节部通过压力传递部与传感薄膜连接以将压力调节部产生的挤压力均匀地传递到传感薄膜的表面。
进一步地,传感薄膜为聚偏氟乙烯膜。
进一步地,传感薄膜包括连接支撑段和与连接支撑段相连接的脉搏波采集段,其中,脉搏波采集段为多个,多个脉搏波采集段沿连接支撑段的长度方向间隔设置。
进一步地,脉搏波采集段为五个,各脉搏波采集段均与连接支撑段相垂直。
进一步地,压力传递部由柔性材料制成,且压力传递部上开设有网孔结构。
进一步地,压力传递部为橡胶、硅胶或海绵中的一种。
进一步地,脉搏传感器还包括:传感电路,传感电路与传感薄膜连接以传输压电信号;信号处理单元,信号处理单元通过传感电路与传感薄膜电连接并用于接收和处理压电信号;信号显示单元,信号显示单元与信号处理单元电连接并用于显示压电信号的数值。
进一步地,压力调节部包括压力调节气囊,压力调节气囊设置在固定带上,且压力调节气囊呈立方体结构。
进一步地,压力调节部还包括压力传感器、气泵和三通结构,其中,三通结构的第一端口与压力调节气囊的囊腔连通,三通结构的第二端口与气泵连通,三通结构的第三端口与压力传感器连通。
根据本发明的另一方面,提供了一种脉搏波采集标定方法,包括:步骤S1:通过压力调节部调整人体脉搏检测处的外部静态压力值至P;步骤S2:通过脉搏传感器得到人体脉搏检测处的脉搏波作用在脉搏传感器的传感薄膜上而产生的与外部静态压力值P相对应的幅值X;步骤S3:分别以多个幅值X和与多个幅值X相对应的多个电信号值U作为纵坐标和横坐标,在二维坐标系中标定出多个幅值压力点B;步骤S4:通过多个幅值压力点B绘制出脉搏波的幅值压力曲线。
进一步地,外部静态压力值P满足公式:P=n×ΔP,其中,ΔP为每次的压力增加量,n为压力增加的次数。
进一步地,ΔP大于等于5mmHg且小于等于30mmHg。
进一步地,步骤S2包括:步骤S21:通过脉搏传感器测量人体脉搏检测处的脉搏波作用在脉搏传感器的传感薄膜上而产生的与外部静态压力值P相对应的压电信号值U;步骤S22:通过压电信号值U计算得到脉搏波的幅值X。
进一步地,压电信号值U和幅值X满足公式:
Figure PCTCN2016107501-appb-000001
其中,g3n为传感薄膜的压电系数,t为传感薄膜的厚度。
进一步地,在步骤S1之前,还包括步骤S0:将脉搏波采集装置安装到人体脉搏检测处。
应用本发明的技术方案,由于脉搏波采集装置包括用于缠绕在人体脉搏检测处的固定带,从而医务工作人员能够将固定带缠绕在人体的脉搏处,进而提高了脉搏波采集装置与人体之间的连接稳定性。
由于脉搏波采集装置包括压力调节部和脉搏传感器,压力调节部与固定带连接,脉搏传感器包括传感薄膜,传感薄膜与压力调节部的远离固定带的一端连接以使压力调节部将传感薄膜压紧在人体脉搏检测处,传感薄膜用于将脉搏波转换成压电信号,其中,传感薄膜由柔 性材料制成。这样,压力调节部通过挤压在固定带和人体脉搏检测处之间从而能够为传感薄膜提供有效的挤压力,使传感薄膜与人体脉搏检测处有效地贴紧,进而使传感薄膜能够全面地采集人体脉搏检测处的脉搏波,不仅如此,由于传感薄膜由柔性材料制成,传感薄膜能够随着人体脉搏的搏动而发生往复形变运动,因此传感薄膜能够准确地将人体脉搏检测处产生的脉搏波转换成压电信号,通过对压力调节部施加给人体脉搏检测处的外部压力和压电信号的处理分析,便能够得到幅值压力曲线,从而准确地反应出人体的脉象信息。
由于脉搏波采集装置包括压力传递部,压力调节部通过压力传递部与传感薄膜连接以将压力调节部产生的挤压力均匀地传递到传感薄膜的表面。这样,压力传递部设置在压力调节部与传感薄膜之间,保证了将压力调节部产生的挤压力均匀地传递到传感薄膜的表面上,从而使传感薄膜与人体脉搏检测处充分地贴紧,进而使脉搏波采集装置可靠地采集到人体脉搏检测处的脉搏波。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种可选实施例的脉搏波采集装置在人体脉搏检测处的分解结构示意图;
图2示出了图1中的脉搏波采集装置的另一个视角的分解结构示意图;
图3示出了图1中的脉搏波采集装置的传感薄膜的结构示意图;
图4示出了图1中的脉搏波采集装置的带有压力调节气囊的固定带的结构示意图;
图5示出了使用本发明的一种可选实施例的脉搏波采集标定方法得到的人体脉搏检测处的脉搏波的幅值压力曲线图。
其中,上述附图包括以下附图标记:
1、人体脉搏检测处;10、固定带;20、压力调节部;21、调节气囊;30、压力传递部;40、脉搏传感器;41、传感薄膜;411、连接支撑段;412、脉搏波采集段;413、寸上采集段;414、寸采集段;415、关采集段;416、尺采集段;417、尺下采集段。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
为了解决现有技术中的脉搏波采集装置无法准确地反应出人体的脉象信息的问题,本发明提供了一种脉搏波采集装置和脉搏波采集标定方法,其中,通过上述的脉搏波采集装置使用上述的脉搏波采集标定方法能够得到人体脉搏检测处的脉搏波的幅值压力曲线,上述的脉搏波采集标定方法不局限于仅使用上述的脉搏波采集装置,脉搏波采集装置为下述的脉搏波采集装置。
如图1至图4所示,脉搏波采集装置用于采集人体脉搏检测处1在受到不同外压时的脉搏波,脉搏波采集装置包括固定带10、压力调节部20、压力传递部30和脉搏传感器40;固 定带10用于缠绕在人体脉搏检测处1,压力调节部20与固定带10连接,脉搏传感器40包括传感薄膜41,传感薄膜41与压力调节部20的远离固定带10的一端连接以使压力调节部20将传感薄膜41压紧在人体脉搏检测处1,传感薄膜41用于将脉搏波转换成压电信号,其中,传感薄膜41由柔性材料制成,压力调节部20通过压力传递部30与传感薄膜41连接以将压力调节部20产生的挤压力均匀地传递到传感薄膜41的表面。
由于脉搏波采集装置包括用于缠绕在人体脉搏检测处1的固定带10,从而医务工作人员能够将固定带10缠绕在人体的脉搏处,进而提高了脉搏波采集装置与人体之间的连接稳定性。
由于脉搏波采集装置包括压力调节部20和脉搏传感器40,压力调节部20与固定带10连接,脉搏传感器40包括传感薄膜41,传感薄膜41与压力调节部20的远离固定带10的一端连接以使压力调节部20将传感薄膜41压紧在人体脉搏检测处1,传感薄膜41用于将脉搏波转换成压电信号,其中,传感薄膜41由柔性材料制成。这样,压力调节部20通过挤压在固定带10和人体脉搏检测处1之间从而能够为传感薄膜41提供有效的挤压力,使传感薄膜41与人体脉搏检测处1有效地贴紧,进而使传感薄膜41能够全面地采集人体脉搏检测处1处的脉搏波,不仅如此,由于传感薄膜41由柔性材料制成,传感薄膜41能够随着人体脉搏的搏动而发生往复形变运动,因此传感薄膜41能够准确地将人体脉搏检测处1处产生的脉搏波转换成压电信号,通过对压力调节部20施加给人体脉搏检测处1的外部压力和压电信号的处理分析,便能够得到幅值压力曲线,从而准确地反应出人体的脉象信息。
由于脉搏波采集装置包括压力传递部30,压力调节部20通过压力传递部30与传感薄膜41连接以将压力调节部20产生的挤压力均匀地传递到传感薄膜41的表面。这样,压力传递部30设置在压力调节部20与传感薄膜41之间,保证了将压力调节部20产生的挤压力均匀地传递到传感薄膜41的表面上,从而使传感薄膜41与人体脉搏检测处1充分地贴紧,进而使脉搏波采集装置可靠地采集到人体脉搏检测处1的脉搏波。
可选地,传感薄膜41为聚偏氟乙烯膜。即PVDF膜。使用由聚偏氟乙烯材质制成的传感薄膜41贴合在人体脉搏检测处1时,有效地增大了脉搏波采集装置与人体脉搏检测处1的接触面积,从而保证了在采集脉搏波的过程中不会因为人体血管的移动或者手部的抖动而导致采集,偏离测量位置,更加稳定客观地采集出脉搏波数据。
如图1至图3所示,传感薄膜41包括连接支撑段411和与连接支撑段411相连接的脉搏波采集段412,其中,脉搏波采集段412为多个,多个脉搏波采集段412沿连接支撑段411的长度方向间隔设置。这样,多个脉搏波采集段412均作为传感器以采集人体脉搏检测处1的不同点位的脉搏波,且保证了多个脉搏波采集段412之间互不干扰,从而提高了脉搏波采集装置可靠对脉搏波采集的稳定性。
如图3所示,脉搏波采集段412为五个,各脉搏波采集段412均与连接支撑段411相垂直。
可选地,如图1所示,人体脉搏检测处1为人体手腕处。
五个脉搏波采集段412分别为寸上采集段413、寸采集段414、关采集段415、尺采集段416和尺下采集段417,分别用于采集人体手腕处的寸上、寸、关、尺、尺下五处的脉搏波信息。
需要说明的是,在使用脉搏波采集装置时,连接支撑段411沿着人体手腕的方向设置,同时各脉搏波采集段412垂直与人体手腕的方向设置,这样保证了各脉搏波采集段412能够充分地模拟人的手指。
可选地,压力传递部30由柔性材料制成,且压力传递部30上开设有网孔结构。这样,压力传递部30能够吸收脉搏波采集段412向外传递的振动势能,避免脉搏波采集段412的振动而影响到与其相邻的脉搏波采集段412,保证了传感薄膜41采集到的脉搏波信息的有效性。而且设有网孔结构且由柔性材料制成的压力传递部30能够可靠地适应传感薄膜41的运动而发生形变,从而能够可靠地反应出传感薄膜41的形变量,进行使传感薄膜41处产生的压电信号更加清晰。
可选地,压力传递部30为橡胶、硅胶或海绵中的一种。
在本发明的一个未图示的可选实施例中,脉搏传感器40还包括传感电路、信号处理单元和信号显示单元,传感电路与传感薄膜41连接以传输压电信号,信号处理单元通过传感电路与传感薄膜41电连接并用于接收和处理压电信号,信号显示单元与信号处理单元电连接并用于显示压电信号的数值。
如图1、图2和图4所示,压力调节部20包括压力调节气囊21,压力调节气囊21设置在固定带10上,且压力调节气囊21呈立方体结构。这样,当向压力调节气囊21内充气时,压力调节气囊21的朝向传感薄膜41一侧的表面会整体运动,从而保证了压力调节气囊21的朝向传感薄膜41一侧的表面将整个传感薄膜41压紧,使传感薄膜41各点处的受力均匀。
可选地,压力调节气囊21由硅胶制成。
固定带10缠绕在人体脉搏检测处1并通过设置在固定带10长度方向两端的连接装置连接。
可选地,连接装置为设置在固定带10长度方向两端的尼龙扣。
在本发明的另一个未图示的可选实施例中,压力调节部20还包括压力传感器、气泵和三通结构,其中,三通结构的第一端口与压力调节气囊21的囊腔连通,三通结构的第二端口与气泵连通,三通结构的第三端口与压力传感器连通。这样,通过气泵为压力调节气囊21充气,压力传感器能够实施检测压力调节气囊21内的气压,这样也就得到了人体脉搏检测处1的外部静态压力值P。
脉搏波采集标定方法,包括步骤S1、步骤S2、步骤S3和步骤S4,其中,步骤S1为:通过压力调节部20调整人体脉搏检测处1的外部静态压力值至P;步骤S2为:通过脉搏传感器40得到人体脉搏检测处1的脉搏波作用在脉搏传感器40的传感薄膜41上而产生的与外部 静态压力值P相对应的幅值X;步骤S3为分别以多个幅值X和与多个幅值X相对应的多个电信号值U作为纵坐标和横坐标,在二维坐标系中标定出多个幅值压力点B;步骤S4为:通过多个幅值压力点B绘制出脉搏波的幅值压力曲线。
图5示出了根据上述脉搏波采集标定方法得到的一个可选实施例的人体脉搏检测处的脉搏波的幅值压力曲线图。在图中示出的坐标系中,横坐标轴为人体脉搏检测处1的外部静态压力值P,纵坐标为与外部静态压力值P相对应的幅值X。在中医学中,通过幅值压力曲线的运动趋势便能够别出的人体的脉象,如浮脉、沉脉或芤脉,从而为医生对患者的疾病诊断中提供有效的诊断依据。
如图5所示,图中的曲线A1、曲线A2、曲线A3、曲线A4和曲线A5分别对应寸上采集段413、寸采集段414、关采集段415、尺采集段416和尺下采集段417测量并转化得到幅值压力曲线,也就是反应了人体手腕处的寸上、寸、关、尺、尺下五处的脉象信息。
需要说明的是,外部静态压力值P满足公式:P=n×ΔP,其中,ΔP为每次的压力增加量,n为压力增加的次数。这样,通过压力调节部20调整人体脉搏检测处1的外部静态压力值至P,外部静态压力值P由零开始增加,以ΔP为增加量进行标定横坐标点。
可选地,ΔP大于等于5mmHg且小于等于30mmHg。
脉搏波采集标定方法的步骤S2包括:步骤S21和步骤S22,其中,步骤S21为:通过脉搏传感器40测量人体脉搏检测处1的脉搏波作用在脉搏传感器40的传感薄膜41上而产生的与外部静态压力值P相对应的压电信号值U;步骤S22为:通过压电信号值U计算得到脉搏波的幅值X。
这样,通过传感薄膜41上产生并测量到的压电信号值U便能够可靠地计算出脉搏波的幅值X,从而标定得到了与横坐标点相对应的纵坐标点,通过横坐标点和纵坐标点便能够绘制出图5中的多个幅值压力点B,通过连接多个幅值压力点B进而能够准确地得到脉搏波的幅值压力曲线。
可选地,压电信号值U和幅值X满足公式:
Figure PCTCN2016107501-appb-000002
其中,g3n为传感薄膜41的压电系数,t为传感薄膜41的厚度。
需要说明的是,在步骤S1之前,还包括步骤S0:将脉搏波采集装置安装到人体脉搏检测处1。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:。
1、由于传感薄膜相较于普通的应变片式脉搏传感器,覆盖人体脉搏的面积能够大大地增加,在采集脉搏波的过程中不会因为人体血管的移动或者人体手部的抖动而偏离测量位置,更加稳定客观地采集出脉搏波数据;
2、由于压力传递部的设置,使得各脉搏波采集段之间的震动串扰降到极低,使得采集到的脉搏波数据更加客观真实;
3、由于使用压力调节部加压,人体手腕处的脉管的浮中沉每处压力受力均匀,保证了采集到的不同位置处的脉搏波的真实可靠性;
4、通过使用本发明的脉搏波采集装置或脉搏波采集标定方法,能够客观地反应出人体脉搏检测处的脉象信息,通过调节部加压方便地控制加压范围,定位浮取、中取、沉取;
5、本发明的脉搏波采集装置的结构构小巧轻便,方便携带。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种脉搏波采集装置,用于采集人体脉搏检测处(1)在受到不同外压时的脉搏波,其特征在于,包括:
    固定带(10),所述固定带(10)用于缠绕在所述人体脉搏检测处(1);
    压力调节部(20),所述压力调节部(20)与所述固定带(10)连接;
    脉搏传感器(40),所述脉搏传感器(40)包括传感薄膜(41),所述传感薄膜(41)与所述压力调节部(20)的远离所述固定带(10)的一端连接以使所述压力调节部(20)将所述传感薄膜(41)压紧在所述人体脉搏检测处(1),所述传感薄膜(41)用于将所述脉搏波转换成压电信号,其中,所述传感薄膜(41)由柔性材料制成;
    压力传递部(30),所述压力调节部(20)通过所述压力传递部(30)与所述传感薄膜(41)连接以将所述压力调节部(20)产生的挤压力均匀地传递到所述传感薄膜(41)的表面。
  2. 根据权利要求1所述的脉搏波采集装置,其特征在于,所述传感薄膜(41)为聚偏氟乙烯膜。
  3. 根据权利要求1所述的脉搏波采集装置,其特征在于,所述传感薄膜(41)包括连接支撑段(411)和与所述连接支撑段(411)相连接的脉搏波采集段(412),其中,所述脉搏波采集段(412)为多个,多个所述脉搏波采集段(412)沿所述连接支撑段(411)的长度方向间隔设置。
  4. 根据权利要求3所述的脉搏波采集装置,其特征在于,所述脉搏波采集段(412)为五个,各所述脉搏波采集段(412)均与所述连接支撑段(411)相垂直。
  5. 根据权利要求1所述的脉搏波采集装置,其特征在于,所述压力传递部(30)由柔性材料制成,且所述压力传递部(30)上开设有网孔结构。
  6. 根据权利要求5所述的脉搏波采集装置,其特征在于,所述压力传递部(30)为橡胶、硅胶或海绵中的一种。
  7. 根据权利要求1所述的脉搏波采集装置,其特征在于,所述脉搏传感器(40)还包括:
    传感电路,所述传感电路与所述传感薄膜(41)连接以传输所述压电信号;
    信号处理单元,所述信号处理单元通过所述传感电路与所述传感薄膜(41)电连接并用于接收和处理所述压电信号;
    信号显示单元,所述信号显示单元与所述信号处理单元电连接并用于显示所述压电信号的数值。
  8. 根据权利要求1所述的脉搏波采集装置,其特征在于,所述压力调节部(20)包括压力调节气囊(21),所述压力调节气囊(21)设置在所述固定带(10)上,且所述压力调节气囊(21)呈立方体结构。
  9. 根据权利要求8所述的脉搏波采集装置,其特征在于,所述压力调节部(20)还包括压力传感器、气泵和三通结构,其中,所述三通结构的第一端口与所述压力调节气囊(21)的囊腔连通,所述三通结构的第二端口与所述气泵连通,所述三通结构的第三端口与所述压力传感器连通。
  10. 一种脉搏波采集标定方法,其特征在于,包括:
    步骤S1:通过压力调节部(20)调整人体脉搏检测处(1)的外部静态压力值至P;
    步骤S2:通过脉搏传感器(40)得到所述人体脉搏检测处(1)的脉搏波作用在所述脉搏传感器(40)的传感薄膜(41)上而产生的与所述外部静态压力值P相对应的幅值X;
    步骤S3:分别以多个所述幅值X和与多个所述幅值X相对应的多个电信号值U作为纵坐标和横坐标,在二维坐标系中标定出多个幅值压力点B;
    步骤S4:通过多个所述幅值压力点B绘制出所述脉搏波的幅值压力曲线。
  11. 根据权利要求10所述的脉搏波采集标定方法,其特征在于,所述外部静态压力值P满足公式:P=n×ΔP,其中,ΔP为每次的压力增加量,n为压力增加的次数。
  12. 根据权利要求11所述的脉搏波采集标定方法,其特征在于,所述ΔP大于等于5mmHg且小于等于30mmHg。
  13. 根据权利要求10所述的脉搏波采集标定方法,其特征在于,所述步骤S2包括:
    步骤S21:通过所述脉搏传感器(40)测量所述人体脉搏检测处(1)的脉搏波作用在所述脉搏传感器(40)的传感薄膜(41)上而产生的与所述外部静态压力值P相对应的压电信号值U;
    步骤S22:通过所述压电信号值U计算得到所述脉搏波的幅值X。
  14. 根据权利要求13所述的脉搏波采集标定方法,其特征在于,所述压电信号值U和所述幅值X满足公式:其中,g3n为所述传感薄膜(41)的压电系数,t为所述传感薄膜(41)的厚度。
  15. 根据权利要求10所述的脉搏波采集标定方法,其特征在于,在所述步骤S1之前,还包括步骤S0:将脉搏波采集装置安装到人体脉搏检测处(1)。
PCT/CN2016/107501 2016-11-28 2016-11-28 脉搏波采集装置和脉搏波采集标定方法 WO2018094737A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107501 WO2018094737A1 (zh) 2016-11-28 2016-11-28 脉搏波采集装置和脉搏波采集标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107501 WO2018094737A1 (zh) 2016-11-28 2016-11-28 脉搏波采集装置和脉搏波采集标定方法

Publications (1)

Publication Number Publication Date
WO2018094737A1 true WO2018094737A1 (zh) 2018-05-31

Family

ID=62194605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107501 WO2018094737A1 (zh) 2016-11-28 2016-11-28 脉搏波采集装置和脉搏波采集标定方法

Country Status (1)

Country Link
WO (1) WO2018094737A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111387955A (zh) * 2020-03-27 2020-07-10 河南经方云科技有限公司 基于脉象波形的中医脉象分析与识别方法及系统
CN114022968A (zh) * 2021-11-05 2022-02-08 苏州渤远弘电子有限公司 一种人体静电信息记录传递系统
CN114038556A (zh) * 2021-11-05 2022-02-11 深圳市嘉乐医疗科技有限公司 一种具有智能问诊系统的健康检测仪
CN116942082A (zh) * 2023-06-27 2023-10-27 浙江大学 一种柔性薄膜压力传感器标定方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491611A (zh) * 2002-10-24 2004-04-28 成都三九数码医药设备有限公司 脉象信息的采集和处理方法
CN1638693A (zh) * 2002-03-02 2005-07-13 河·H·黄 脉搏诊断装置
US20080177187A1 (en) * 2007-01-19 2008-07-24 Samsung Electronics Co., Ltd Portable device for measuring user's biosignals and method thereof
CN204839479U (zh) * 2015-08-03 2015-12-09 刘垚 一种中医脉诊仪
CN105147261A (zh) * 2015-08-03 2015-12-16 刘垚 一种中医脉诊仪及其定位寸、关、尺脉搏点的方法
CN106580273A (zh) * 2016-11-28 2017-04-26 中国科学院微电子研究所 脉搏波采集装置和脉搏波采集标定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638693A (zh) * 2002-03-02 2005-07-13 河·H·黄 脉搏诊断装置
CN1491611A (zh) * 2002-10-24 2004-04-28 成都三九数码医药设备有限公司 脉象信息的采集和处理方法
US20080177187A1 (en) * 2007-01-19 2008-07-24 Samsung Electronics Co., Ltd Portable device for measuring user's biosignals and method thereof
CN204839479U (zh) * 2015-08-03 2015-12-09 刘垚 一种中医脉诊仪
CN105147261A (zh) * 2015-08-03 2015-12-16 刘垚 一种中医脉诊仪及其定位寸、关、尺脉搏点的方法
CN106580273A (zh) * 2016-11-28 2017-04-26 中国科学院微电子研究所 脉搏波采集装置和脉搏波采集标定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111387955A (zh) * 2020-03-27 2020-07-10 河南经方云科技有限公司 基于脉象波形的中医脉象分析与识别方法及系统
CN114022968A (zh) * 2021-11-05 2022-02-08 苏州渤远弘电子有限公司 一种人体静电信息记录传递系统
CN114038556A (zh) * 2021-11-05 2022-02-11 深圳市嘉乐医疗科技有限公司 一种具有智能问诊系统的健康检测仪
CN116942082A (zh) * 2023-06-27 2023-10-27 浙江大学 一种柔性薄膜压力传感器标定方法和装置

Similar Documents

Publication Publication Date Title
CN106725363B (zh) 脉搏波采集装置和脉搏波采集标定方法
US11684274B2 (en) Method and apparatus for cuff-less blood pressure measurement in a mobile device
WO2018094737A1 (zh) 脉搏波采集装置和脉搏波采集标定方法
JP4177116B2 (ja) 前立腺のリアルタイムな機械的画像化処理
JP7229263B2 (ja) 静脈または臓器の圧力および/または弾性を測定し、超音波測定ユニットと組み合わせるための圧力測定装置、圧力測定システムおよび方法
US6491647B1 (en) Physiological sensing device
US8731859B2 (en) Calibration system for a force-sensing catheter
US20030212335A1 (en) Pulse diagnostic system
US20190090781A1 (en) Sensor calibration considering subject-dependent variables and/or body positions
US20130018277A1 (en) Non-invasive intracranial pressure monitor
CN106580273A (zh) 脉搏波采集装置和脉搏波采集标定方法
CN109222918B (zh) 脉搏波传感器、传感器阵列及采用其的脉搏波测量装置
CN105030214A (zh) 一种智能诊脉分析仪
WO2018094738A1 (zh) 脉搏波采集装置和脉搏波采集标定方法
US20160095580A1 (en) Lung ventilation measurements using ultrasound
CN101816565B (zh) 一种肌肉痉挛检测装置
US20160095572A1 (en) System and Method for Non-Invasive Blood Pressure Measurement
US20040267165A1 (en) Tactile breast imager and method for use
Liu et al. A novel flexible pressure sensor array for depth information of radial artery
US20070239041A1 (en) Non-invasive Venous Pressure Measurement
CN112137599A (zh) 一种脉搏检测装置及其制作方法
CN104434110B (zh) 基于柔性电纺织材料的连续呼吸测量方法
CN108078552A (zh) 一种基于气压自动调整的脉诊仪
WO2019010616A1 (zh) 脉搏波传感器、传感器阵列及采用其的脉搏波测量装置
CN112120679A (zh) 一种脉搏检测设备及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922260

Country of ref document: EP

Kind code of ref document: A1