WO2018093146A1 - Method for coating iron-based alloy and product produced thereby having high hardness and low frictional property - Google Patents

Method for coating iron-based alloy and product produced thereby having high hardness and low frictional property Download PDF

Info

Publication number
WO2018093146A1
WO2018093146A1 PCT/KR2017/012944 KR2017012944W WO2018093146A1 WO 2018093146 A1 WO2018093146 A1 WO 2018093146A1 KR 2017012944 W KR2017012944 W KR 2017012944W WO 2018093146 A1 WO2018093146 A1 WO 2018093146A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
iron
based alloy
coating layer
layer
Prior art date
Application number
PCT/KR2017/012944
Other languages
French (fr)
Korean (ko)
Inventor
김상권
이재훈
여국현
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201780071249.3A priority Critical patent/CN109983147B/en
Publication of WO2018093146A1 publication Critical patent/WO2018093146A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • C23C10/40Chromising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Definitions

  • the present invention relates to a method for coating an iron-based alloy and a product having high hardness and low friction characteristics, and more particularly, after forming a chromium-based coating layer by pack cementation on the surface of the iron-based alloy, the chromium-based coating layer is
  • the present invention relates to a coating method of an iron-based alloy for coating an iron-based alloy layer by screen plasma immersion carbonization on a formed iron-based alloy, and a product having high hardness and low friction characteristics.
  • pack cementation is a kind of chemical vapor deposition (CVD) technique, in which an iron-based alloy and a pack mixture powder are charged into a pack, and then the pack is heated to coat the iron-based alloy.
  • the pack mixture powder is a powder containing a reactive metal such as chromium (Cr), aluminum (Al), silicon (Si), etc., an active agent such as ammonium chloride (NH 4 Cl), and an inert such as alumina (Al 2 O 3 ). to be.
  • a reactive metal such as chromium (Cr), aluminum (Al), silicon (Si), etc.
  • an active agent such as ammonium chloride (NH 4 Cl)
  • an inert such as alumina (Al 2 O 3 ).
  • Pack cementation is a coating method that has been used for a long time and has many advantages.
  • Pack cementation is a coating method for forming a coating layer that is simple, economical and has good adhesion.
  • the iron-based alloy coated by the pack cementation has mechanical properties such as improved hardness, corrosion resistance, wear resistance, oxidation resistance and the like.
  • a uniform coating layer may be formed on the entire surface of the iron-based alloy having a three-dimensional shape by pack cementation.
  • Pack cementation may be classified into chromizing, aluminizing, siliconizing, etc. according to the kind of reactive metal.
  • Patent No. 10-1384374 name of the invention: a method for coating a metal sintered part by pack cementation and a pack cementation coated metal sintered part, Patent Document 1 is disclosed.
  • US Patent Publication No. 2011-0293365 name: Cement plant refractory anchor, Patent Document 2
  • US Patent No. 5275983 Pack name of the invention: Pack mixture composition for SiC pack cementation coating of carbonaceous substrates, Patent Document 3 is disclosed.
  • parts such as bearings and bushings are used in a device that rotates at high speed, and require low friction characteristics as well as high hardness surfaces.
  • iron-based alloys have a high hardness surface but have a high friction coefficient to be used as materials for bearings and bushings.
  • a screen plasma method is used to penetrate nitrogen atoms and carbon atoms to improve hardness and reduce friction coefficients by forming new carbide and nitride complexes on the surface of iron-based alloys.
  • Screen plasma immersion carbonization is a method of generating plasma directly on the surface of an iron-based alloy to penetrate nitrogen and carbon. Unlike the conventional plasma method, plasma is generated through a screen separated from the iron-based alloy to infiltrate nitrogen to form an immersion carbonization layer. It is a method of manufacturing.
  • the screen plasma apparatus includes a vacuum chamber 10, a screen 20, a heater 30, a vacuum pump 40, a cathode power supply 50, and a heater power supply 60.
  • a general screen plasma precipitated carbonization is described.
  • the vacuum chamber 40 is operated to create a vacuum pressure atmosphere of about 1 ⁇ 10 -3 Torr in the vacuum chamber 10, and then the cathode power supply unit 50 connected to the screen 20 is operated to operate the screen.
  • the heater 20 is heated and the heater 30 is connected to the heater 30 so that the heater 30 is heated to raise the temperature in the vacuum chamber 10 to the process temperature.
  • the inner wall of the vacuum chamber 10 shows a positive (+) relative charge
  • the screen 20 shows a negative (-) relative charge, so that an electric field is generated between the inner wall of the vacuum chamber 10 and the screen 20.
  • nitrogen, hydrocarbon and hydrogen gas are injected into the vacuum chamber 10.
  • the hydrogen gas is formed in a high temperature and a vacuum atmosphere inside the vacuum chamber 10, and as soon as it is injected into the vacuum chamber 10 receives the energy of the temperature and pressure is plasmaized, hydrogen plasma and hydrocarbon plasma is screened (20) Dense around.
  • Nitrogen gas has a relatively high ionization energy than hydrogen gas, and thus, plasma is not smoothed. However, the plasma plasma hydrogenated already collides with the nitrogen gas and serves to smoothly generate the nitrogen plasma.
  • Screen plasma immersion carbonization using the screen plasma apparatus as described above has a problem of heating the vacuum chamber by using a heater, which is an additional device, to increase the temperature of the vacuum chamber to the process temperature.
  • a heater which is an additional device
  • the iron-based oxide film is naturally formed on the surface, which causes the iron-based oxide film to inhibit the nitriding carbonization process, and there is a problem that the iron-based oxide film is removed by lowering the magnetic conductivity of the iron-based alloy.
  • the conventional screen plasma apparatus applies a high-current power source and applies a cathodic, so that a high-density input process of the penetrating element is not possible due to the reaction of nitrogen and hydrocarbon gas in the glow, thereby accelerating the particle accelerator.
  • a high voltage is applied to the device to form an immersion layer on the iron-based alloy.
  • Patent Document 1 Republic of Korea Patent No. 10-1384374
  • Patent Document 2 United States Patent Publication No. 2011-0293365
  • Patent Document 3 US Patent No. 5275983
  • the technical problem to be achieved by the present invention is to control a strong oxide film, such as Cr 2 O 3 is naturally formed in a stainless steel material that can be removed only by processing outside the conventional pickling operation, while a very small amount without a separate external heater in the heating process It is to provide an iron-based alloy coating method using a heating process using a glow (glow) formed on the screen by the amount of gas input and power. Specifically, it aims to provide a new alloy coating on the outermost surface of the coating layer using nitrogen and carbon in atomic units, and to provide a product having high hardness and low friction characteristics manufactured by the above method.
  • an embodiment of the present invention is to form a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation, and to form an impregnated carbonization layer using a screen plasma on the chromium-based coating layer It provides an iron-based alloy coating method comprising the step of.
  • the iron-based alloy may be an iron-based alloy coating method characterized in that it comprises a bearing steel or stainless steel.
  • the chromium-based coating layer is characterized in that it contains chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V) Alloy coating method.
  • the step of forming a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation the step of injecting the iron-based alloy and the pack mixture in a pack (pack), charging the pack into a vacuum chamber
  • a chromium-based coating layer forming step of forming a chromium-based coating layer on the iron-based alloy while heating is maintained in the charging step a heating step of heating the pack charged in the vacuum chamber, and the heating step, wherein the pack mixture is formed of chromium.
  • It may be an iron-based alloy coating method comprising a powder, an active agent and an inert agent.
  • the chromium-based powder of the pack mixture is chromium (Cr) powder, chromium (Cr) powder and iron (Fe) powder or chromium (Cr) powder, iron (Fe) powder and vanadium (V) It may be an iron-based alloy coating method characterized in that it comprises a powder.
  • the pack mixture is characterized in that it comprises 10.5 wt% to 52.9 wt% of the chromium-based powder, 0.1 wt% to 3 wt% of the active agent and 47 wt% to 89.4 wt% of the inert agent. It may be an iron-based alloy coating method.
  • the step of forming the nitriding carbide layer using the screen plasma on the chromium-based coating layer, charging the iron-based alloy coated with the chromium-based coating layer in a vacuum chamber and covers the iron-based alloy with a double screen The ion cleaning step of reducing the chromium-based oxide film present on the iron-based alloy by injecting a first hydrogen gas into the vacuum chamber, a process current is applied to the dual screen and the second hydrogen gas, nitrogen in the vacuum chamber Generating a mixed plasma by injecting a gas and a hydrocarbon gas; and coating the mixed plasma on a chromium-based coating layer formed on the surface of the iron-based alloy to form an impregnated carbonized layer.
  • the ion cleaning step includes applying a first current to the dual screen to heat the vacuum chamber, injecting first hydrogen into the vacuum chamber, and applying the second screen to the dual screen. Generating a hydrogen plasma around the dual screen by applying a current; and reducing and removing the chromium-based oxide film present on the iron-based alloy.
  • the first current may be 3 A to 5 A and the second current may be iron-based alloy coating method, characterized in that 5 A to 15 A.
  • the chromium-based oxide film is characterized in that it contains chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V) Alloy coating method.
  • the process current may be an iron-based alloy coating method, characterized in that 20 to 30 A.
  • the content ratio of the nitrogen gas to hydrogen gas may be an iron-based alloy coating method, characterized in that 1: 3 to 4: 1.
  • the hydrocarbon gas may be an iron-based alloy coating method, characterized in that the CH 4 or C 2 H 2 and 1 sccm to 10 sccm gas amount is pulse-injected by repeating the injection section and the stop section. have.
  • another embodiment of the present invention provides a product having a high hardness and low friction characteristics produced by the iron-based alloy coating method.
  • the hardness of the product may be a product having high hardness and low friction characteristics, characterized in that 1450 HV to 2400 HV.
  • the friction coefficient of the product may be a product having a high hardness and low friction characteristics, characterized in that 0.3 to 0.4.
  • glow discharge can be formed around the screen at a high density, so that the inside of the vacuum chamber can be sufficiently raised to the process temperature without a heater.
  • the precipitated carbonization process may not be inhibited by removing the chromium-based oxide film present on the iron-based alloy using the ion cleaning process in the screen plasma process.
  • the product manufactured by the iron-based alloy coating method has a hardness value of 1450 HV or more hardness, it may have a characteristic that the friction coefficient can be lowered to 0.4 or less.
  • FIG. 1 is a cross-sectional view showing a conventional screen plasma apparatus.
  • FIG. 2 is a cross-sectional view showing a screen plasma apparatus according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a dual screen according to an embodiment of the present invention.
  • FIG. 4 is a graph showing X-ray diffraction patterns of SUJ2 having a chromium-based coating layer and a precipitated carbonization layer according to an embodiment of the present invention.
  • FIG. 5 is a graph showing X-ray diffraction patterns of SUJ2 having a chromium-based coating layer and a carburized layer according to an embodiment of the present invention.
  • FIG. 6 is a graph showing X-ray diffraction patterns of SUS316 having a chromium-based coating layer and a precipitated carbonization layer according to an embodiment of the present invention.
  • FIG. 7 is a graph illustrating X-ray diffraction patterns of SUS316 having a chromium-based coating layer and a carburized layer according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the element content according to the depth of Preparation Example 1 (SUJ2-Cr-SPNC) according to an embodiment of the present invention.
  • FIG. 10 is an image showing a cross-sectional shape of Preparation Example 2 (SUJ2-Cr-Fe-SPNC) according to an embodiment of the present invention.
  • FIG. 11 is a graph showing the element content according to the depth of Preparation Example 2 (SUJ2-Cr-Fe-SPNC) according to an embodiment of the present invention.
  • FIG. 12 is an image showing a cross-sectional shape of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
  • FIG. 13 is a graph showing the element content according to the depth of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
  • Comparative Example 1 (SUJ2-Cr-SPC) according to an embodiment of the present invention.
  • Comparative Example 1 (SUJ2-Cr-SPC) according to an embodiment of the present invention.
  • Comparative Example 4 (SUJ2-Cr-Fe-SPC) according to an embodiment of the present invention.
  • FIG 17 is a graph showing the element content according to the depth of Comparative Example 4 (SUJ2-Cr-Fe-SPC) according to an embodiment of the present invention.
  • Comparative Example 5 (SUJ2-Cr-Fe-V-SPC) according to an embodiment of the present invention.
  • FIG. 20 is an image showing a cross-sectional shape of Preparation Example 4 (SUS316-Cr-SPNC) according to an embodiment of the present invention.
  • FIG. 21 is a graph showing the element content according to the depth of Preparation Example 4 (SUS316-Cr-SPNC) according to an embodiment of the present invention.
  • FIG. 22 is an image showing a cross-sectional shape of Preparation Example 5 (SUS316-Cr-Fe-SPNC) according to an embodiment of the present invention.
  • FIG. 23 is a graph showing the element content according to the depth of Preparation Example 5 (SUS316-Cr-Fe-SPNC) according to an embodiment of the present invention.
  • 25 is a graph showing the element content according to the depth of Preparation Example 6 (SUS316-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
  • Figure 26 is an image showing the cross-sectional shape of Comparative Example 6 (SUS316-Cr-SPC) according to an embodiment of the present invention.
  • FIG. 27 is a graph showing the element content according to the depth of Comparative Example 6 (SUS316-Cr-SPC) according to an embodiment of the present invention.
  • Comparative Example 8 SUS316-Cr-Fe-V-SPC
  • FIG. 31 is a graph showing the element content according to the depth of Comparative Example 8 (SUS316-Cr-Fe-V-SPC) according to an embodiment of the present invention.
  • 35 is a graph illustrating a friction coefficient of Comparative Example 1 (SUJ2-Cr-SPC) according to an embodiment of the present invention.
  • FIG. 36 is a graph illustrating a friction coefficient of Comparative Example 4 (SUJ2-Cr-Fe-SPC) according to an embodiment of the present invention.
  • 40 is a graph measuring the coefficient of friction of Preparation Example 4 (SUS316-Cr-SPNC) according to an embodiment of the present invention.
  • FIG 43 is a graph illustrating a coefficient of friction of Comparative Example 6 (SUS316-Cr-SPC) according to an embodiment of the present invention.
  • Example 44 is a graph illustrating a friction coefficient of Comparative Example 7 (SUS316-Cr-Fe-SPC) according to an embodiment of the present invention.
  • first component is expressed as being “connected (connected, contacted, coupled)" to a second component, it is said that the first component is “directly connected” to the second component or a third component. Means that it can be “indirectly connected” through. Singular expressions include plural expressions unless the context clearly indicates otherwise. Also, the terms “comprise” or “have” mean that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features, It does not mean that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is excluded.
  • the iron-based alloy coating method is to form a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation, and forming a nitriding carbonized layer using a screen plasma on the chromium-based coating layer It may include.
  • a chromium-based coating layer is formed on the iron-based alloy surface by using pack cementation.
  • the method for forming a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation may include a charging step, a heating step of heating the pack charged in the vacuum chamber, and a chromium-based coating layer forming step of forming a chromium-based coating layer on the iron alloy while the heating is maintained in the heating step.
  • the iron-based alloy and the pack mixture are first introduced into a pack.
  • Pack cementation is a method of manufacturing a coating layer in which a metal part to be processed is put into a pack mixture and heated at a high temperature for a predetermined time to form a surface layer on the metal part, and at the same time obtain a diffusion coating layer on the surface layer of the metal part.
  • Pack cementation of the present invention can be used as a method for forming a chromium-based coating layer on the surface of the iron-based alloy.
  • the iron-based alloy may include, but is not limited to, bearing steel or stainless steel.
  • the bearing steel is a high carbon chromium special steel
  • the stainless steel is an alloy steel containing nickel and chromium to supplement the corrosion resistance of iron.
  • the iron-based alloy of the present invention may be SUJ2 bearing steel or SUS316 stainless steel.
  • the pack mixture may include a chromium-based powder, an active agent and an inert agent.
  • the chromium-based powder of the pack mixture is chromium (Cr) powder, chromium (Cr) powder and iron (Fe) powder or chromium (Cr) powder, iron (Fe) powder and vanadium (V) It may include a powder, but is not limited thereto.
  • the chromium-based powder of the present invention is a reactant used when preparing a chromium-based coating layer, and may improve hardness, corrosion resistance, and lubricity of an iron-based alloy. It can be effective.
  • the active agent in the present invention may contribute to the formation of the chromium-based coating layer while reacting with the chromium powder to form a chromium-based coating layer, it may include a halogenated compound salt.
  • the halogenated compound salt may include potassium tetrafluoroborate (KBF 4 ), ammonium chloride (NH 4 Cl), fluoroammonium (NH 4 F), fluorine sodium (NaF) or sodium chloride (NaCl), It is not limited to this.
  • the active agent of the present invention may be potassium tetrafluoroborate (KBF 4 ).
  • the inert agent of the present invention can prevent the sintering of the iron-based alloy in the process of forming the chromium-based coating layer.
  • the inert agent may include, but is not limited to, aluminum oxide (Al 2 O 3 ), silica (SiO 2 ), silicon carbide (SiC) or chromium oxide (Cr 2 O 3 ). .
  • the inert agent of the present invention may be aluminum oxide (Al 2 O 3 ).
  • the pack mixture may include 10.5 wt% to 52.9 wt% of the chromium-based powder, 0.1 wt% to 3 wt% of the active agent, and 47 wt% to 89.4 wt% of the inert agent, but It is not limited.
  • the content of the chromium-based powder may include 10.5 wt% to 52.9 wt% of the total content of the pack mixture.
  • the content of the chromium-based powder is less than 10.5 wt%, the chromium-based coating layer may be formed too thin or the hardness value of the chromium-based coating layer may not reach the target value, which is not preferable.
  • the content of the chromium-based powder is more than 52.9 wt%, the chromium-based powder is agglomerated with the inert agent, and unnecessary substances are added to the surface of the iron-based alloy, which may cause excessive pores in the iron-based alloy, which is not preferable.
  • the content of chromium metal powder of the present invention may be 30 wt%.
  • the content of the active agent may include 0.1 wt% to 3 wt% of the total content of the pack mixture.
  • the content of the activator is less than 0.1 wt% or more than 3 wt%, considering the content of the chromium-based powder described above, a non-uniform chromium-based coating layer is formed or staining occurs inside the chromium-based coating layer, so that the mechanical properties of the chromium-based coating layer The problem of deterioration may arise, which is undesirable.
  • the content of the active agent of the present invention may be 1 wt%.
  • the content of the inert agent may include 47 wt% to 89.4 wt% of the total content of the pack mixture. If the content of the inert agent is less than 47 wt%, the penetration and diffusion of chromium, which will form the chromium-based coating layer, may not be achieved. If the content of the inert agent is more than 89.4 wt%, the formation of the chromium-based coating layer may be delayed. The mechanical properties of the chromium-based coating layer may be less than the target value is not preferable.
  • the content of the inert agent of the present invention may be 69 wt%.
  • the pack loaded in the vacuum chamber is heated.
  • a chromium-based coating layer is formed on the iron-based alloy while the heating process is maintained.
  • the chromium-based coating layer may be formed of a chromium-based halogen compound gas by reacting chromium-based powder of the components constituting the pack mixture with the activator while the heating temperature is maintained, wherein the chromium-based halogen gas is the surface of the iron-based alloy Adsorbed on, it may be formed while penetrating and diffusing into the iron-based alloy.
  • the chromium-based coating layer is formed on the surface of the iron-based alloy by using pack cementation, and then an impregnated carbonization layer is formed on the chromium-based coating layer by using a screen plasma.
  • the screen plasma apparatus includes a vacuum chamber 10, a double screen 70, a vacuum pump 40, and a cathode power supply 50.
  • a vacuum chamber 10 a vacuum chamber 10
  • a double screen 70 a vacuum pump 40
  • a cathode power supply 50 a cathode power supply 50.
  • the method of forming an immersion carbonization layer using the screen plasma on the chromium-based coating layer is charged with the iron-based alloy (2) coated with the chromium-based coating layer in the vacuum chamber 10 and the iron-based alloy Covering (2) with a double screen 70, an ion cleaning step of reducing the chromium-based oxide film present on the iron-based alloy 2 by injecting a first hydrogen gas into the vacuum chamber 10, the double Applying a process current to the screen 70, injecting a second hydrogen gas, nitrogen gas and hydrocarbon gas into the vacuum chamber 10 to generate a mixed plasma and the mixed plasma is formed on the surface of the iron-based alloy (2) It may include the step of coating on the chromium-based coating layer to form a precipitated carbonization layer.
  • the iron-based alloy (2) coated with a chromium-based coating layer is charged into the vacuum chamber 10 and the iron-based alloy (2) is covered with a double screen 70, and then the vacuum pump 40 is operated to operate the vacuum chamber ( 10)
  • the atmosphere inside is formed at a vacuum level of 1 ⁇ 10 -3 Torr to 1 ⁇ 10 -1 Torr.
  • the inner wall of the vacuum chamber 10 shows a positive (+) relative charge
  • the double screen 70 shows a negative (-) relative charge, so that an electric field is formed between the inner wall of the vacuum chamber 10 and the double screen 70. Is generated.
  • the vacuum degree of the vacuum chamber 10 is less than 1 ⁇ 10 ⁇ 1 Torr, it is not preferable that impurities in the vacuum chamber 10 are not sufficiently removed, and impurities are sufficiently formed even if a vacuum atmosphere is formed within 1 ⁇ 10 ⁇ 3 Torr. Since it can be removed, creating a vacuum atmosphere above 1 ⁇ 10 ⁇ 3 Torr is undesirable because it is unnecessary in the process.
  • the iron-based alloy (2) is covered with a double screen (70).
  • FIG 3 is a perspective view of a dual screen 70 according to an embodiment of the present invention.
  • the dual screen 70 is a screen used in a screen plasma process, and includes an outer cylinder 71 and an inner cylinder 72, and has a cylindrical structure with an open bottom.
  • the dual screen 70 may serve as an electrode for generating glow discharge in the vacuum chamber 10.
  • a first hydrogen gas is injected into the vacuum chamber 10 to reduce the chromium-based oxide film present on the iron-based alloy 2, which is called ion cleaning.
  • the internal temperature of the vacuum chamber 10 is raised to 100 ° C.
  • the vacuum chamber 10 when the vacuum chamber 10 is preheated to 100 ° C. by applying a first current, the vacuum chamber 10 is cooled from low to high temperature by using a high density glow generated between the screens. When the temperature change occurs, it is possible to prevent cracking due to thermal expansion, and oxygen and moisture may be discharged while burning the carbon inside the vacuum chamber 10.
  • the first current is 3 A to 5 A.
  • the first current is applied to the dual screen 70 so that the intensity of the first current for heating the internal temperature of the vacuum chamber 10 to 100 ° C is preferably 3 A to 5 A.
  • the first current may be 5 A.
  • the first hydrogen of the present invention may be a gas source for generating a hydrogen plasma.
  • a second current is applied to the dual screen 70 to generate a hydrogen plasma around the dual screen 20.
  • the heating process may be performed to increase the temperature of the vacuum chamber 10 to the process temperature by using a glow formed on the screen with a very small amount of gas input and power without a separate external heater.
  • the hydrogen plasma may comprise hydrogen plasma species including H ⁇ , H ⁇ or H ⁇ .
  • the second current is 5 A to 15 A.
  • the second current may be applied to the dual screen 70 to heat the internal temperature of the vacuum chamber 10 to 250 ° C., and the intensity of the second current that may generate hydrogen plasma is preferably 5 A to 15 A.
  • the first current may be 15 A.
  • the hydrogen plasma may be located in the center of the vacuum chamber by the force of the vacuum pump.
  • the chromium oxide film present on the iron-based alloy 2 is reduced and removed.
  • the iron-based alloy 2 coated with a chromium-based coating layer by pack cementation may have a chromium-based oxide film formed on a surface thereof when contacted with external air before being charged into the vacuum chamber 10.
  • the chromium-based oxide film may be a cause of inhibiting the nitriding carbonization process, the corrosion resistance of the iron-based alloy may be improved, but there is a disadvantage in reducing the magnetic conductivity. Therefore, in the present invention, the hydrogen plasma located at the center of the vacuum chamber 10 may react with the chromium oxide film to reduce and remove the chromium oxide film.
  • the chromium-based oxide film may include chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V), but is not limited thereto. It is not intended to be.
  • a process current is applied to the double screen 70, the second hydrogen gas, nitrogen gas and hydrocarbon gas is injected into the vacuum chamber 10 to generate a mixed plasma.
  • the mixed plasma may be nitrogen plasma, hydrogen plasma and hydrocarbon plasma.
  • the process current may be 20 A to 30 A.
  • Process current may be applied to the dual screen 70 to heat the internal temperature of the vacuum chamber 10 to 450 °C to 550 °C to generate the intensity of the process current is preferably 20 A to 30 A. .
  • the second hydrogen gas and the hydrocarbon gas are injected into the vacuum chamber 10
  • the second hydrogen gas and the hydrocarbon gas are formed in the vacuum chamber 10 in a high temperature and a vacuum atmosphere, so that the vacuum chamber 10 As soon as it is injected, it is plasmaized by the energy of temperature and pressure, and the hydrogen plasma and hydrocarbon plasma are concentrated around the double screen 70.
  • the hydrocarbon gas may include CH 4 or C 2 H 2 , and the amount of 1 sccm to 10 sccm gas may be pulse-injected by repeating the injection section and the stop section.
  • the ionization rate of the hydrocarbon gas can be increased by pulse injection of the hydrocarbon gas, and the diffusion layer of carbon and nitrogen can be formed deeper than the same time zone.
  • the hydrogen plasma may include hydrogen plasma species including H ⁇ , H ⁇ , or H ⁇
  • the hydrocarbon gas may be pulse injected by repeating a section in which the gas is injected for 2 seconds and stopped for 5 seconds.
  • the nitrogen gas has a relatively high ionization energy than the hydrogen gas, so that the plasma is not smoothed.
  • the plasma plasma hydrogenated already collides with the nitrogen gas to smoothly generate the nitrogen plasma.
  • the hydrogen plasma may improve the fluidity of the nitrogen plasma.
  • the nitrogen plasma of the present invention may include nitrogen species including N + , N, N 2 + or NH 3 .
  • the content ratio of nitrogen gas to hydrogen gas may be 1: 3 to 4: 1. More preferably, when the iron-based alloy is a bearing steel, the content ratio of nitrogen gas to hydrogen gas is 1: 3 to 1: 2, and in the case of stainless steel, the content ratio of nitrogen gas to hydrogen gas is 1: 1 to 4: 1. desirable.
  • the bearing steel since it is more difficult to diffuse nitrogen into the base material than the stainless steel, it is preferable to induce nitrogen diffusion by increasing the content of hydrogen gas to improve the fluidity of the nitrogen plasma. Therefore, a content ratio of nitrogen gas to hydrogen gas of 1: 3 to 1: 2 in which the content of hydrogen is higher than the content of nitrogen is preferable.
  • the stainless steel it is an iron-based alloy that is advantageous to contain nitrogen, the content of nitrogen gas to hydrogen gas of 1: 1 to 4: 1 where the content of nitrogen is higher than the content of hydrogen in order to perform nitrogen diffusion more densely Rain is preferred.
  • the mixed plasma is coated on the chromium-based coating layer formed on the surface of the iron-based alloy (2) to form an precipitated carbonization layer.
  • the nitrogen plasma and hydrocarbon plasma are located in the center of the vacuum chamber 10 under the influence of the vacuum pump 40, the nitrogen plasma and hydrocarbon plasma is sucked gas by the vacuum pump 40
  • the vacuum pump 40 In order to penetrate the iron-based alloy (2) coated with the chromium-based coating layer located in the center of the vacuum chamber 10 in the direction of the impregnated carbonization layer may be formed on the surface of the iron-based alloy (2).
  • the hardness of the product may be 1450 HV to 2400 HV.
  • the present invention can increase the hardness of the iron-based alloy using a pack cementation and screen plasma process. Therefore, the hardness of the product based on the iron-based alloy prepared in the above process may be 1450 HV to 2400 HV.
  • the friction coefficient of the product may be 0.3 to 0.4.
  • the present invention can reduce the coefficient of friction of the iron-based alloy using a pack cementation and screen plasma process. Therefore, the coefficient of friction of the product based on the iron-based alloy prepared in the above process may be 0.3 to 0.4.
  • a pack mixture including 30 wt% chromium powder, 1 wt% potassium tetrafluoroborate and 69 wt% aluminum oxide was prepared.
  • SUJ2 and the pack mixture were put into a pack, the pack was charged into a vacuum chamber, and the inside of the vacuum chamber was evacuated to a vacuum of 1 Torr.
  • purging was performed by supplying argon gas three times in the vacuum chamber, and lowering the flow rate of the supplied argon gas to maintain the inside of the vacuum chamber at 1 atmosphere.
  • the chromium coating layer was manufactured by maintaining the temperature inside the vacuum chamber at 950 ° C. for 10 hours.
  • the charged SUJ2 After charging the SUJ2 having the chromium coating layer prepared in a vacuum chamber, the charged SUJ2 is covered with a double screen, and the degree of vacuum in the vacuum chamber is maintained at a level of 5 ⁇ 10 ⁇ 3 Torr for 30 minutes. Thereafter, 500 sccm of the first hydrogen gas is added to the vacuum chamber to maintain the vacuum at 0.1 Torr. Next, a current of 5 A is applied to the screen and a high density glow generated between the screens is used to preheat the vacuum chamber to prevent cracking due to thermal expansion when a temperature change occurs from low to high temperatures. Next, a current of 15 A is applied for 30 minutes to raise the temperature inside the vacuum chamber to 250 ° C.
  • chromium, iron and vanadium powder was carried out under the same conditions except that the chromium-iron-vanadium coating layer prepared in the SUS316 to produce a carbonized carbon layer It was.
  • carburizing screen on the coating layer is an iron-based alloy (SUJ2-Cr-SPC) coating prepared
  • a carburized layer was prepared in SUJ2 in which a chromium coating layer was prepared under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 1.
  • the carburized layer was prepared in SUJ2 under the same conditions except that the pack cementation was not performed in Preparation Example 1, and the nitrogen gas was not used when the screen plasma was used and the hydrocarbon gas was continuously injected.
  • the iron-based alloy (SUJ2-Cr-Fe-SPC) manufactured by coating a carburizing layer on the coating layer
  • the carburized layer was prepared in SUJ2 in which the chromium-iron coating layer was prepared under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 2.
  • the iron- based alloy (SUJ2-Cr-Fe-V-SPC) having a carburized layer coated on the coating layer was manufactured.
  • Example 3 a carburized layer was prepared in SUJ2 in which a chromium-iron-vanadium coating layer was prepared under the same conditions except for continuously injecting a hydrocarbon gas without using nitrogen gas.
  • an iron-based alloy needle carbide layer is coated (SUS316-Cr-SPC) on the coating layer
  • the carburized layer was prepared in SUS316, in which the chromium coating layer was prepared under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 4.
  • an iron-based alloy SUS316-Cr-Fe-SPC having a carburized layer coated on the coating layer was manufactured.
  • the carburized layer was prepared in SUS316, in which the chromium-iron coating layer was manufactured under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 5.
  • Example 6 a carburized layer was prepared on SUS316 in which a chromium-iron-vanadium coating layer was prepared under the same conditions except for continuously injecting a hydrocarbon gas without using nitrogen gas.
  • 4 is a manufacturing example 1 (SUJ2-Cr-SPNC) coated with an immersion carbide layer on SUJ2 coated with a chromium-based coating layer by pack cementation, Preparation Example 2 (SUJ2-Cr-Fe-SPNC) and Preparation Example 3 (SUJ2 X-ray diffraction patterns of -Cr-Fe-V-SPNC).
  • 5 is Comparative Example 1 (SUJ2-Cr-SPC), Comparative Example 4 (SUJ2-Cr-Fe-SPC) and Comparative Example 5 (coated with a carburized layer on SUJ2 coated with a chromium-based coating layer by pack cementation). X-ray diffraction patterns of SUJ2-Cr-Fe-V-SPC).
  • the SUJ2 having the precipitated carbonization layer formed by the screen plasma has a different crystal structure from that of the SUJ2 having the carbonaceous layer formed therein, and the crystal structure differs depending on the chromium-based material for preparing the coating layer by pack cementation. It confirmed that it represents.
  • various desired crystal phases can be produced by using pack cementation and screen plasma.
  • the pack cementation and the screen plasma can be performed together in a process for manufacturing a coating layer on SUJ2.
  • FIG. 6 is a manufacturing example 4 (SUS316-Cr-SPNC), Manufacture Example 5 (SUS316-Cr-Fe-SPNC) and Manufacture Example 6 (SUS316) coated with an immersion carbide layer on the SUS316 coated with a chromium-based coating layer by the pack cementation X-ray diffraction patterns of -Cr-Fe-V-SPNC).
  • Figure 7 is Comparative Example 6 (SUS316-Cr-SPC), Comparative Example 7 (SUS316-Cr-Fe-SPC) and Comparative Example 8 ( X-ray diffraction patterns of SUS316-Cr-Fe-V-SPC).
  • the SUS316 having the carbonaceous layer formed with the screen plasma has a different crystal structure from that of the SUS316 having the carburized layer, and has a different crystal structure depending on the chromium-based material for preparing the coating layer by pack cementation. It confirmed that it represents. As a result, it can be determined that various desired crystal phases can be produced by using pack cementation and screen plasma. In addition, it can be determined that the pack cementation and the screen plasma can be performed together in a process for manufacturing a coating layer on SUS316.
  • a sample having a cross section was prepared by mounting SUJ2 including the coating layer and etching with hydrochloric acid.
  • the cross-sectional shape of the sample was analyzed using an optical microscope and elemental content analysis was performed by glow discharge optical emission spectrometry (GD-OES).
  • FIG. 8 is an image showing the cross-sectional shape of Preparation Example 1 (SUJ2-Cr-SPNC), Figure 9 is a graph showing the element content according to the depth of Preparation Example 1.
  • 10 is an image showing the cross-sectional shape of Preparation Example 2 (SUJ2-Cr-Fe-SPNC), Figure 11 is a graph showing the element content according to the depth of Preparation Example 2.
  • Figure 12 is an image showing the cross-sectional shape of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC),
  • Figure 13 is a graph showing the element content according to the depth of Preparation Example 3.
  • FIG. 14 is an image showing the cross-sectional shape of Comparative Example 1 (SUJ2-Cr-SPC), Figure 15 is a graph showing the element content of the coating layer of Comparative Example 1.
  • Figure 16 is an image showing the cross-sectional shape of Comparative Example 4 (SUJ2-Cr-Fe-SPC),
  • Figure 17 is a graph showing the element content of the coating layer of Comparative Example 4.
  • Figure 18 is an image showing the cross-sectional shape of Comparative Example 5 (SUJ2-Cr-Fe-V-SPC),
  • Figure 19 is a graph showing the element content of the coating layer of Comparative Example 5.
  • the depth of the chromizing SUJ2 becomes deeper, and the precipitated carbon layer formed by screen plasma or The thickness of the carburized layer may be determined to be about 1 ⁇ m.
  • FIG. 20 is an image showing the cross-sectional shape of Preparation Example 4 (SUS316-Cr-SPNC), Figure 21 is a graph showing the element content according to the depth of Preparation Example 4.
  • 22 is an image showing the cross-sectional shape of Preparation Example 5 (SUS316-Cr-Fe-SPNC), Figure 23 is a graph showing the element content according to the depth of Preparation Example 5.
  • 24 is an image showing the cross-sectional shape of Preparation Example 6 (SUS316-Cr-Fe-V-SPNC), Figure 25 is a graph showing the element content according to the depth of Preparation Example 6.
  • the amount of chromium element was higher than that of other elements, and it was confirmed that the chromium coating layer was present at 60 ⁇ m or more.
  • the vanadium coating layer was present at 70 wt% or more at the outermost surface, and it was confirmed that a coating layer having a uniform content of elements was formed after the depth of 10 ⁇ m from the outermost surface of the coating layer of Preparation Example 5.
  • FIG. 26 is an image showing the cross-sectional shape of Comparative Example 6 (SUS316-Cr-SPC), Figure 27 is a graph showing the element content of the coating layer of Comparative Example 6.
  • Figure 28 is an image showing the cross-sectional shape of Comparative Example 7 (SUS316-Cr-Fe-SPC), Figure 29 is a graph showing the element content of the coating layer of Comparative Example 7.
  • Figure 30 is an image showing the cross-sectional shape of Comparative Example 8 (SUS316-Cr-Fe-V-SPC), Figure 31 is a graph showing the element content of the coating layer of Comparative Example 8.
  • the depth of SUS316 to be chromized becomes deeper, and the precipitated carbon layer formed by screen plasma or The thickness of the carburized layer may be determined to be about 1 ⁇ m.
  • the friction coefficient of the coating layer was a ball-on-disk method for measuring the relative friction coefficient between the product and the hard bearing ball.
  • the ball-on-disk method uses a 6 mm diameter STB 2 ball.
  • a linear velocity of 10 mm / sec and 1N load is used, and the relative humidity is a method of measuring the coefficient of friction in a constant temperature and humidity chamber to maintain a 50% wear condition.
  • FIG. 32 is a graph measuring the coefficient of friction of Preparation Example 1 (SUJ2-Cr-SPNC)
  • Figure 33 is a graph measuring the coefficient of friction of Preparation Example 2 (SUJ2-Cr-Fe-SPNC)
  • Figure 34 is a graph This is a graph measuring the friction coefficient of Example 3 (SUJ2-Cr-Fe-V-SPNC).
  • 35 is a graph measuring the friction coefficient of Comparative Example 1 (SUJ2-Cr-SPC)
  • FIG. 36 is a graph measuring the friction coefficient of Comparative Example 4 (SUJ2-Cr-Fe-SPC)
  • FIG. 37 is a comparison. It is a graph which measured the friction coefficient of Example 5 (SUJ2-Cr-Fe-V-SPC).
  • the coefficient of friction of Preparation Example 1 in which the chromium coating layer and the carbonization layer are present is 0.5
  • the coefficient of friction of Comparative Example 2 in which the chromium coating layer and the carbonization layer is present is 0.6
  • the friction coefficient of Preparation Example 2 in which the chromium-iron coating layer and the precipitated carbonization layer is 0.6 is 0.6
  • the friction coefficient of Comparative Example 4 in which the chromium-iron coating layer and the carbonization layer is present is 0.7.
  • the coefficient of friction of Preparation Example 3 in which the chromium-iron-vanadium coating layer and the precipitated carbonization layer are present is 0.4
  • the coefficient of friction of Comparative Example 5, in which the chromium-iron-vanadium coating layer and the carbide-carburized layer is present is 0.6.
  • SUJ2 which has an impregnated carbonized layer, penetrates nitrogen and carbon in the screen plasma, and penetrates only carbon, thereby lowering the coefficient of friction than SUJ2, which has formed a carburized layer. It can be judged that it is preferable to form an precipitated carbonized layer.
  • FIG. 38 is a graph illustrating a friction coefficient of Comparative Example 2 (SUJ2-SPNC) in which an impregnated carbon layer was formed of screen plasma without performing pack cementation
  • FIG. 39 is carburized with screen plasma without performing pack cementation. It is a graph which measured the friction coefficient of the comparative example 3 (SUJ2-SPC) which formed the flower layer.
  • the SUJ2 having only the screen plasma and the precipitated carbonized layer or the carbonized layer may be determined to have a higher friction coefficient than the SUJ2 having both the pack cementation and the screen plasma.
  • Friction coefficient analysis of SUS316 including a coating layer made of a pack cementation and plasma screen
  • the friction coefficient of the coating layer was a ball-on-disk method for measuring the relative friction coefficient between the product and the high hardness stainless steel ball.
  • the ball-on-disk method uses a 6 mm diameter STS 316 ball.
  • a linear velocity of 10 mm / sec and 1N load is used, and the relative humidity is a method of measuring the coefficient of friction in a constant temperature and humidity chamber to maintain a 50% wear condition.
  • FIG. 40 is a graph measuring the coefficient of friction of Preparation Example 4 (SUS316-Cr-SPNC), Figure 41 is a graph measuring the coefficient of friction of Preparation Example 5 (SUS316-Cr-Fe-SPNC), Figure 42 It is a graph which measured the friction coefficient of Example 6 (SUS316-Cr-Fe-V-SPNC).
  • FIG. 43 is a graph measuring friction coefficient of Comparative Example 6 (SUS316-Cr-SPC)
  • FIG. 44 is a graph measuring friction coefficient of Comparative Example 7 (SUS316-Cr-Fe-SPC)
  • FIG. 45 is a comparison. It is a graph which measured the friction coefficient of Example 8 (SUS316-Cr-Fe-V-SPC).
  • the coefficient of friction of Preparation Example 4 in which the chromium coating layer and the carbonization layer are present is 0.6
  • the coefficient of friction of Comparative Example 6 in which the chromium coating layer and the carbonization layer is present is 0.6.
  • the friction coefficient of Preparation Example 5 in which the chromium-iron coating layer and the precipitated carbonization layer are 0.4 is 0.4
  • the friction coefficient of Comparative Example 7 in which the chromium-iron coating layer and the carbonization layer is present is 0.6.
  • the coefficient of friction of Preparation Example 6 in which the chromium-iron-vanadium coating layer and the precipitated carbonization layer are present is 0.7
  • the coefficient of friction of Comparative Example 8 in which the chromium-iron-vanadium coating layer and the carbonization layer is present is 0.7.
  • Such a result may be determined that the friction coefficient is lowered when the chromium-based material is mixed and coated with the chromium-based material in the pack cementation.
  • SUS316 in which an impregnated carbonization layer is formed by penetrating nitrogen and carbon on the chromium-iron coating layer in a screen plasma infiltrates only carbon, thereby lowering the coefficient of friction than SUS316 in which the carbonization layer is formed. And it can be judged that it is preferable to penetrate all carbon to form an impregnated carbonization layer.
  • Micro Vickers hardness measurement method is a method of measuring the hardness of the material by calculating the size engraved by applying a certain load to the material to be measured with a pyramidal diamond indenter.
  • Table 1 is a table showing the hardness values of the embodiments subjected to the pack cementation and screen plasma using the SUJ2 iron alloy, or the screen plasma only.
  • Hardness was measured using the same method as Experimental Example 7 to analyze the hardness of SUS316 having a coating layer.
  • Table 2 is a table showing the hardness values of the embodiments subjected to the pack cementation and screen plasma using the SUS316 iron-based alloy.
  • the hardness value was higher than 800 HV, which is the hardness value of general SUS316.
  • a chromium-based coating layer and an immersion carbonization layer on an iron-based alloy using pack cementation and screen plasma.
  • the iron-based alloy is used as SUS316
  • the chromated chromium-based coating layer may be formed to a thickness of 60 ⁇ m or more.
  • the friction coefficient of the iron-based alloy formed with the chromium-based coating layer and the precipitated carbonization layer was shown to exhibit a characteristic of lowering to a minimum of 0.4 level, and exhibited improved hardness characteristics of 1450 HV or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to a method for coating an iron-based alloy and, more specifically, to a method for forming a chromium-based coating layer on a surface of an iron-based alloy by pack cementation, and a nitrocarburized layer on the chromium-based coating layer by using screen plasma. Therefore, by using pack cementation and screen plasma to form a chromium-based coating layer and a nitrocarburized layer on an iron-based alloy, the present invention can produce a product having high hardness and excellent low frictional properties.

Description

철계 합금의 코팅 방법 및 이에 의하여 제조된 고경도 및 저마찰 특성을 갖는 제품Coating method of iron-based alloy and products having high hardness and low friction characteristics produced thereby
본 발명은 철계 합금의 코팅 방법 및 이에 의하여 제조된 고경도 및 저마찰 특성을 갖는 제품에 관한 것으로, 더욱 상세하게는 철계 합금 표면에 팩 시멘테이션으로 크롬계 코팅층을 형성한 후, 크롬계 코팅층이 형성된 철계 합금 상에 스크린 플라즈마 침질탄화법으로 침질탄화층을 코팅하는 철계 합금의 코팅 방법 및 이에 의하여 제조된 고경도 및 저마찰 특성을 갖는 제품에 관한 것이다.The present invention relates to a method for coating an iron-based alloy and a product having high hardness and low friction characteristics, and more particularly, after forming a chromium-based coating layer by pack cementation on the surface of the iron-based alloy, the chromium-based coating layer is The present invention relates to a coating method of an iron-based alloy for coating an iron-based alloy layer by screen plasma immersion carbonization on a formed iron-based alloy, and a product having high hardness and low friction characteristics.
일반적으로 팩 시멘테이션(pack cementation)은 일종의 CVD(Chemical Vapor Deposition) 기술로서, 팩 내에 철계 합금 및 팩 혼합물 분말을 장입한 후 상기 팩을 가열하여 상기 철계 합금을 코팅하는 방법이다. 상기 팩 혼합물 분말은 크로뮴(Cr), 알루미늄(Al), 규소(Si) 등과 같은 반응 금속, 염화암모늄(NH4Cl)과 같은 활성제, 및 알루미나(Al2O3) 같은 불활성제를 포함하는 분말이다. 상기 팩이 가열되면, 상기 반응 금속 및 상기 활성제가 반응하고 기체 상태가 된 상기 반응 금속은 상기 철계 합금 표면에 침투하여, 상기 반응 금속을 주성분으로 하는 코팅층이 형성된다. 상기 불활성제는 코팅이 진행되는 동안 상기 철계 합금의 소결을 방지한다.In general, pack cementation is a kind of chemical vapor deposition (CVD) technique, in which an iron-based alloy and a pack mixture powder are charged into a pack, and then the pack is heated to coat the iron-based alloy. The pack mixture powder is a powder containing a reactive metal such as chromium (Cr), aluminum (Al), silicon (Si), etc., an active agent such as ammonium chloride (NH 4 Cl), and an inert such as alumina (Al 2 O 3 ). to be. When the pack is heated, the reaction metal and the activator react with each other, and the reaction metal, which has become a gaseous state, penetrates into the surface of the iron-based alloy to form a coating layer containing the reaction metal as a main component. The inert agent prevents sintering of the iron-based alloy during coating.
팩 시멘테이션은 오랫동안 사용되어 온 코팅 방법으로 여러 가지 장점이 있다. 팩 시멘테이션은 간단하고 경제적이며 밀착력이 우수한 코팅층을 형성하는 코팅 방법이다. 그리고 팩 시멘테이션에 의해 코팅된 철계 합금은 개선된 경도, 내식성, 내마모성, 내산화성 등과 같은 기계적 물성을 가진다. 또한 팩 시멘테이션에 의해 3차원 형상의 철계 합금에 대해서도 전면적으로 균일한 코팅층이 형성될 수 있다.Pack cementation is a coating method that has been used for a long time and has many advantages. Pack cementation is a coating method for forming a coating layer that is simple, economical and has good adhesion. And the iron-based alloy coated by the pack cementation has mechanical properties such as improved hardness, corrosion resistance, wear resistance, oxidation resistance and the like. In addition, a uniform coating layer may be formed on the entire surface of the iron-based alloy having a three-dimensional shape by pack cementation.
팩 시멘테이션은 반응 금속의 종류에 따라 크로마이징(chromizing), 알루미나이징(aluminizing), 실리코나이징(siliconizing) 등으로 분류될 수 있다. 상기 크로마이징과 관련하여, 등록특허 제10-1384374호(발명의 명칭: 팩 시멘테이션으로 금속 소결 부품을 코팅하는 방법 및 팩 시멘테이션 코팅한 금속 소결 부품, 특허문헌 1)가 개시되어 있다. 상기 알루미나이징과 관련하여, 미국 공개특허 제2011-0293365호(발명의 명칭: Cement plant refractory anchor, 특허문헌 2)가 개시되어 있다. 그리고 상기 실리코나이징과 관련하여, 미국 등록특허 제5275983호(발명의 명칭: Pack mixture composition for SiC pack cementation coating of carbonaceous substrates, 특허문헌 3)가 개시되어 있다.Pack cementation may be classified into chromizing, aluminizing, siliconizing, etc. according to the kind of reactive metal. In connection with the above chromizing, Patent No. 10-1384374 (name of the invention: a method for coating a metal sintered part by pack cementation and a pack cementation coated metal sintered part, Patent Document 1) is disclosed. In connection with the aluminizing, US Patent Publication No. 2011-0293365 (name: Cement plant refractory anchor, Patent Document 2) is disclosed. And, in connection with the siliconizing, US Patent No. 5275983 (Pack name of the invention: Pack mixture composition for SiC pack cementation coating of carbonaceous substrates, Patent Document 3) is disclosed.
한편 베어링, 부싱 등의 부품들은 고속으로 회전하는 장치에 사용되므로 고경도의 표면뿐만 아니라 저마찰 특성을 요한다. 그러나, 철계 합금은 고경도의 표면을 가지나 베어링, 부싱 등의 소재로 이용되기에는 마찰 계수가 높은 문제점이 있었다.On the other hand, parts such as bearings and bushings are used in a device that rotates at high speed, and require low friction characteristics as well as high hardness surfaces. However, iron-based alloys have a high hardness surface but have a high friction coefficient to be used as materials for bearings and bushings.
이러한 문제점을 해결하기 위해, 상기 플라즈마 방법을 이용하여 질소 및 탄소를 침질탄화시켜 철계 합금의 마찰계수를 감소시키고자 하였다.In order to solve this problem, it was intended to reduce the friction coefficient of the iron-based alloy by carbonizing nitrogen and carbon using the plasma method.
그러나 상기 플라즈마 방법은 철계 합금에 직접적인 아크(arc)가 발생하여 철계 합금의 표면이 손상되고, 철계 합금 표면에 생성되는 글로우(glow) 때문에 내부 온도가 균일하지 않아 질탄화층의 편차가 심한 문제점이 있었다.However, in the plasma method, an arc occurs directly on the iron-based alloy, which damages the surface of the iron-based alloy, and the internal temperature is not uniform due to a glow generated on the surface of the iron-based alloy. there was.
이러한 문제점을 해결하기 위해 스크린 플라즈마 방법을 이용하여 질소 원자 및 탄소 원자를 침투시켜 철계 합금의 표면에 새로운 카바이드 및 질화물의 복합 형성으로 경도를 향상시키고 마찰계수를 감소시키고자 하였다.In order to solve this problem, a screen plasma method is used to penetrate nitrogen atoms and carbon atoms to improve hardness and reduce friction coefficients by forming new carbide and nitride complexes on the surface of iron-based alloys.
스크린 플라즈마 침질탄화는, 철계 합금의 표면에 직접 플라즈마를 발생시켜 질소 및 탄소를 침투시키는 방법인 통상의 플라즈마 방법과 달리, 철계 합금으로부터 이격된 스크린에 플라즈마를 발생시켜 질소를 침투시켜 침질탄화층을 제조하는 방법이다.Screen plasma immersion carbonization is a method of generating plasma directly on the surface of an iron-based alloy to penetrate nitrogen and carbon. Unlike the conventional plasma method, plasma is generated through a screen separated from the iron-based alloy to infiltrate nitrogen to form an immersion carbonization layer. It is a method of manufacturing.
도 1은 일반적인 스크린 플라즈마 장치를 도시한다. 상기 스크린 플라즈마 장치는 진공 챔버(10), 스크린(20), 히터(30), 진공 펌프(40), 캐소드 전원부(50), 및 히터 전원부(60)를 구비한다. 도 1이 참조되어 일반적인 스크린 플라즈마 침질탄화가 설명된다.1 shows a typical screen plasma apparatus. The screen plasma apparatus includes a vacuum chamber 10, a screen 20, a heater 30, a vacuum pump 40, a cathode power supply 50, and a heater power supply 60. Referring to FIG. 1, a general screen plasma precipitated carbonization is described.
먼저, 상기 진공 챔버(10)를 1×10-3 Torr 정도의 진공 압력 분위기가 조성되도록 진공 펌프(40)를 가동시킨 후, 스크린(20)과 연결되어 있는 캐소드 전원부(50)을 가동시켜 스크린(20)을 가열시키고, 히터(30)와 연결되어 있는 히터 전원부(60)를 가동시켜 히터(30)가 가열되서 진공 챔버(10) 내의 온도를 공정 온도로 상승시킨다. 이 때, 진공 챔버(10) 내벽은 플러스(+) 상대 전하가 나타나고, 스크린(20)은 마이너스(-) 상대 전하가 나타나서, 진공 챔버(10) 내벽과 스크린(20) 사이에 전기장이 생성된다.First, the vacuum chamber 40 is operated to create a vacuum pressure atmosphere of about 1 × 10 -3 Torr in the vacuum chamber 10, and then the cathode power supply unit 50 connected to the screen 20 is operated to operate the screen. The heater 20 is heated and the heater 30 is connected to the heater 30 so that the heater 30 is heated to raise the temperature in the vacuum chamber 10 to the process temperature. At this time, the inner wall of the vacuum chamber 10 shows a positive (+) relative charge, and the screen 20 shows a negative (-) relative charge, so that an electric field is generated between the inner wall of the vacuum chamber 10 and the screen 20. .
그 다음으로는, 질소, 탄화수소 및 수소 가스를 진공 챔버(10) 내부에 주입시킨다. 이 때, 수소 가스는 진공 챔버(10) 내부가 고온 및 진공 분위기로 형성되어 있어 진공 챔버(10)에 주입되자마자 온도 및 압력의 에너지를 받아 플라즈마화 되고, 수소 플라즈마 및 탄화수소 플라즈마는 스크린(20) 주변에 밀집된다.Next, nitrogen, hydrocarbon and hydrogen gas are injected into the vacuum chamber 10. At this time, the hydrogen gas is formed in a high temperature and a vacuum atmosphere inside the vacuum chamber 10, and as soon as it is injected into the vacuum chamber 10 receives the energy of the temperature and pressure is plasmaized, hydrogen plasma and hydrocarbon plasma is screened (20) Dense around.
질소 가스는 이온화 에너지가 수소 가스보다 상대적으로 커서 플라즈마화가 원활히 이루어지지 않는다. 그러나, 이미 플라즈마화 된 수소 플라즈마가 질소 가스와 충돌하여 질소 플라즈마가 원활히 생성될 수 있도록 하는 역할을 수행한다.Nitrogen gas has a relatively high ionization energy than hydrogen gas, and thus, plasma is not smoothed. However, the plasma plasma hydrogenated already collides with the nitrogen gas and serves to smoothly generate the nitrogen plasma.
상기 질소 및 탄화수소 플라즈마는 진공 챔버(10) 중심부에 위치하는 철계 합금(2)에 침투하여 철계 합금이 침질탄화된다.The nitrogen and hydrocarbon plasmas penetrate into the iron-based alloy 2 located at the center of the vacuum chamber 10, and the iron-based alloy is carbonized.
상기와 같은 스크린 플라즈마 장치를 이용한 스크린 플라즈마 침질탄화는 진공 챔버의 온도를 공정 온도까지 높이기 위해 추가 장치인 히터를 이용하여 진공 챔버를 가열해야 하는 문제점이 있었다. 또한, 철계 합금을 공기 중에 노출시키면 표면에 철계 산화막이 자연적으로 형성되는데 철계 산화막이 침질탄화 공정을 저해하는 원인이 되고, 철계 합금의 자기 전도성을 저하시켜 철계 산화막을 제거해야 하는 문제점이 있었다.Screen plasma immersion carbonization using the screen plasma apparatus as described above has a problem of heating the vacuum chamber by using a heater, which is an additional device, to increase the temperature of the vacuum chamber to the process temperature. In addition, when the iron-based alloy is exposed to air, the iron-based oxide film is naturally formed on the surface, which causes the iron-based oxide film to inhibit the nitriding carbonization process, and there is a problem that the iron-based oxide film is removed by lowering the magnetic conductivity of the iron-based alloy.
또한, 종래의 스크린 플라즈마 장치는 고전류의 전원을 인가하며 캐소딕(cathodic)을 걸어주어야 함으로 인해 글로우(glow) 내에서 질소 및 탄화수소 가스의 반응에 의해 침투형 원소의 고밀도 투입공정이 불가능하여 입자 가속기나 고전압을 장치에 투입하여 철계 합금에 침질화층을 형성해야 하는 문제점이 있었다.In addition, the conventional screen plasma apparatus applies a high-current power source and applies a cathodic, so that a high-density input process of the penetrating element is not possible due to the reaction of nitrogen and hydrocarbon gas in the glow, thereby accelerating the particle accelerator. B. There was a problem in that a high voltage is applied to the device to form an immersion layer on the iron-based alloy.
따라서, 철계 합금의 경도를 높이고 마찰계수를 저하시키면서, 철계 산화막을 제어할 수 있으면서 추가 가열과정이 필요하지 않는 철계 합금 코팅 방법에 대한 기술개발이 요구되고 있는 실정이다.Therefore, there is a demand for technology development of an iron-based alloy coating method that can control the iron-based oxide film while increasing the hardness of the iron-based alloy and lowering the friction coefficient, and does not require an additional heating process.
[선행기술문헌][Preceding technical literature]
[특허문허][Patent patent]
(특허문헌 1) 대한민국 등록특허 제 10-1384374호(Patent Document 1) Republic of Korea Patent No. 10-1384374
(특허문헌 2) 미국 공개특허 제2011-0293365호(Patent Document 2) United States Patent Publication No. 2011-0293365
(특허문헌 3) 미국 등록특허 제5275983호(Patent Document 3) US Patent No. 5275983
본 발명이 이루고자 하는 기술적 과제는 종래의 산세 작업등 외부에서 처리해야만 제거 가능했던 스테인레스 소재 등에 자연적으로 형성되는 Cr2O3 등 강력한 산화막을 제어할 수 있으면서 가열과정에서 별도의 외부 히터 없이 매우 적은 양의 가스 투입 및 전력량으로 스크린에 형성되는 글로우(glow)를 이용한 가열 공정을 이용한 철계 합금 코팅 방법을 제공하는 것이다. 구체적으로는 원자단위의 질소 및 탄소를 이용하여 코팅층의 최표면에 새로운 합금 코팅을 부여하는 방법 및 상기 방법으로 제조된 고경도 및 저마찰 특성을 갖는 제품을 제공하는 것을 일목적으로 한다.The technical problem to be achieved by the present invention is to control a strong oxide film, such as Cr 2 O 3 is naturally formed in a stainless steel material that can be removed only by processing outside the conventional pickling operation, while a very small amount without a separate external heater in the heating process It is to provide an iron-based alloy coating method using a heating process using a glow (glow) formed on the screen by the amount of gas input and power. Specifically, it aims to provide a new alloy coating on the outermost surface of the coating layer using nitrogen and carbon in atomic units, and to provide a product having high hardness and low friction characteristics manufactured by the above method.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일실시예는 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성하는 단계 및 상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성하는 단계를 포함하는 철계 합금 코팅 방법을 제공한다.In order to achieve the above object, an embodiment of the present invention is to form a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation, and to form an impregnated carbonization layer using a screen plasma on the chromium-based coating layer It provides an iron-based alloy coating method comprising the step of.
본 발명의 실시예에 있어서, 상기 철계 합금은 베어링 강 또는 스테인리스 강을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the iron-based alloy may be an iron-based alloy coating method characterized in that it comprises a bearing steel or stainless steel.
본 발명의 실시예에 있어서, 상기 크롬계 코팅층은 크롬(Cr), 크롬(Cr) 및 철(Fe) 또는 크롬(Cr), 철(Fe) 및 바나듐(V)을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the chromium-based coating layer is characterized in that it contains chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V) Alloy coating method.
본 발명의 실시예에 있어서, 상기 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성하는 단계는, 팩(pack)에 철계 합금 및 팩 혼합물을 투입하는 단계, 상기 팩을 진공 챔버에 장입하는 장입 단계, 상기 진공 챔버에 장입된 팩을 가열하는 가열 단계 및 상기 가열 단계에서 가열이 유지되는 동안 상기 철계 합금에 크롬계 코팅층이 형성되는 크롬계 코팅층 형성 단계를 포함하고, 상기 팩 혼합물은 크롬계 분말, 활성제 및 불활성제를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the step of forming a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation, the step of injecting the iron-based alloy and the pack mixture in a pack (pack), charging the pack into a vacuum chamber And a chromium-based coating layer forming step of forming a chromium-based coating layer on the iron-based alloy while heating is maintained in the charging step, a heating step of heating the pack charged in the vacuum chamber, and the heating step, wherein the pack mixture is formed of chromium. It may be an iron-based alloy coating method comprising a powder, an active agent and an inert agent.
본 발명의 실시예에 있어서, 상기 팩 혼합물의 크롬계 분말은 크롬(Cr) 분말, 크롬(Cr) 분말 및 철(Fe) 분말 또는 크롬(Cr) 분말, 철(Fe) 분말 및 바나듐(V) 분말을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the chromium-based powder of the pack mixture is chromium (Cr) powder, chromium (Cr) powder and iron (Fe) powder or chromium (Cr) powder, iron (Fe) powder and vanadium (V) It may be an iron-based alloy coating method characterized in that it comprises a powder.
본 발명의 실시예에 있어서, 상기 팩 혼합물은 상기 크롬계 분말 10.5 wt% 내지 52.9 wt%, 상기 활성제 0.1 wt% 내지 3 wt% 및 상기 불활성제 47 wt% 내지 89.4 wt%를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the pack mixture is characterized in that it comprises 10.5 wt% to 52.9 wt% of the chromium-based powder, 0.1 wt% to 3 wt% of the active agent and 47 wt% to 89.4 wt% of the inert agent. It may be an iron-based alloy coating method.
본 발명의 실시예에 있어서, 상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성하는 단계는, 크롬계 코팅층이 코팅된 철계 합금을 진공 챔버에 장입하고 상기 철계 합금을 이중 스크린으로 커버하는 단계, 상기 진공 챔버 내에 제1수소 가스를 주입하여 상기 철계 합금 상에 존재하는 크롬계 산화막을 환원하는 이온 클리닝 단계, 상기 이중 스크린에 공정 전류를 인가하고 상기 진공 챔버 내에 제2수소 가스, 질소 가스 및 탄화수소 가스를 주입하여 혼합 플라즈마를 발생시키는 단계 및 상기 혼합 플라즈마가 철계 합금 표면에 형성된 크롬계 코팅층 상에 코팅되어 침질탄화층을 형성하는 단계를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the step of forming the nitriding carbide layer using the screen plasma on the chromium-based coating layer, charging the iron-based alloy coated with the chromium-based coating layer in a vacuum chamber and covers the iron-based alloy with a double screen The ion cleaning step of reducing the chromium-based oxide film present on the iron-based alloy by injecting a first hydrogen gas into the vacuum chamber, a process current is applied to the dual screen and the second hydrogen gas, nitrogen in the vacuum chamber Generating a mixed plasma by injecting a gas and a hydrocarbon gas; and coating the mixed plasma on a chromium-based coating layer formed on the surface of the iron-based alloy to form an impregnated carbonized layer. have.
본 발명의 실시예에 있어서, 상기 이온 클리닝 단계는, 상기 이중 스크린에 제1전류를 인가하여 상기 진공 챔버를 가열하는 단계, 상기 진공 챔버 내에 제1수소를 주입하는 단계, 상기 이중 스크린에 제2전류를 인가하여 상기 이중 스크린 주위에 수소 플라즈마를 발생시키는 단계 및 상기 철계 합금 상에 존재하는 크롬계 산화막을 환원시켜 제거하는 단계를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the ion cleaning step includes applying a first current to the dual screen to heat the vacuum chamber, injecting first hydrogen into the vacuum chamber, and applying the second screen to the dual screen. Generating a hydrogen plasma around the dual screen by applying a current; and reducing and removing the chromium-based oxide film present on the iron-based alloy.
본 발명의 실시예에 있어서, 상기 제1전류는 3 A 내지 5 A이고 상기 제2전류는 5 A 내지 15 A인 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the first current may be 3 A to 5 A and the second current may be iron-based alloy coating method, characterized in that 5 A to 15 A.
본 발명의 실시예에 있어서, 상기 크롬계 산화막은 크롬(Cr), 크롬(Cr) 및 철(Fe) 또는 크롬(Cr), 철(Fe) 및 바나듐(V)을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the chromium-based oxide film is characterized in that it contains chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V) Alloy coating method.
본 발명의 실시예에 있어서, 상기 공정 전류는 20 A 내지 30 A인 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the process current may be an iron-based alloy coating method, characterized in that 20 to 30 A.
본 발명의 실시예에 있어서, 상기 질소 가스 대 수소 가스의 함량비는 1:3 내지 4:1인 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the content ratio of the nitrogen gas to hydrogen gas may be an iron-based alloy coating method, characterized in that 1: 3 to 4: 1.
본 발명의 실시예에 있어서, 상기 탄화수소 가스는 CH4 또는 C2H2를 포함하고 1 sccm 내지 10 sccm 가스량이 주입 구간 및 정지 구간을 반복하여 펄스 주입되는 것을 특징으로 하는 철계 합금 코팅 방법일 수 있다.In an embodiment of the present invention, the hydrocarbon gas may be an iron-based alloy coating method, characterized in that the CH 4 or C 2 H 2 and 1 sccm to 10 sccm gas amount is pulse-injected by repeating the injection section and the stop section. have.
상기와 같은 목적을 달성하기 위하여, 본 발명의 다른 실시예는 철계 합금 코팅 방법으로 제조된 고경도 및 저마찰 특성을 갖는 제품을 제공한다.In order to achieve the above object, another embodiment of the present invention provides a product having a high hardness and low friction characteristics produced by the iron-based alloy coating method.
본 발명의 실시예에 있어서, 상기 제품의 경도는 1450 HV 내지 2400 HV인 것을 특징으로 하는 고경도 및 저마찰 특성을 갖는 제품일 수 있다.In an embodiment of the present invention, the hardness of the product may be a product having high hardness and low friction characteristics, characterized in that 1450 HV to 2400 HV.
본 발명의 실시예에 있어서, 상기 제품의 마찰계수는 0.3 내지 0.4인 것을 특징으로 하는 고경도 및 저마찰 특성을 갖는 제품일 수 있다.In an embodiment of the present invention, the friction coefficient of the product may be a product having a high hardness and low friction characteristics, characterized in that 0.3 to 0.4.
상기와 같은 구성을 가지는 본 발명에 따르면, 팩 시멘테이션으로 크로마이징된 철계 합금 상에 스크린 플라즈마를 이용하여 침질탄화층을 제조할 수 있다.According to the present invention having the configuration as described above, it is possible to produce an impregnated carbonized layer using a screen plasma on the iron-based alloy chromation by pack cementation.
또한 본 발명에 따르면, 상기 스크린 플라즈마에서 스크린을 이중 구조로 사용하여 스크린 주위에 글로우(glow) 방전이 고밀도로 형성될 수 있어서 히터 없이도 충분히 진공 챔버 내부를 공정 온도까지 올릴 수 있다.In addition, according to the present invention, by using the screen in a double structure in the screen plasma, glow discharge can be formed around the screen at a high density, so that the inside of the vacuum chamber can be sufficiently raised to the process temperature without a heater.
또한 본 발명에 따르면, 상기 스크린 플라즈마 공정에서 이온클리닝 공정을 이용하여 철계 합금 상에 존재하는 크롬계 산화막을 제거하여 침질탄화 공정이 저해되지 않을 수 있다.In addition, according to the present invention, the precipitated carbonization process may not be inhibited by removing the chromium-based oxide film present on the iron-based alloy using the ion cleaning process in the screen plasma process.
또한 본 발명에 따르면, 철계 합금 코팅 방법으로 제조된 제품은 경도가 1450 HV 이상의 경도값을 가지며, 마찰계수가 0.4 이하로 저하될 수 있는 특성을 가질 수 있다.In addition, according to the present invention, the product manufactured by the iron-based alloy coating method has a hardness value of 1450 HV or more hardness, it may have a characteristic that the friction coefficient can be lowered to 0.4 or less.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 종래의 일반적인 스크린 플라즈마 장치를 나타낸 단면도이다.1 is a cross-sectional view showing a conventional screen plasma apparatus.
도 2는 본 발명의 일실시예에 따른 스크린 플라즈마 장치를 나타낸 단면도이다.2 is a cross-sectional view showing a screen plasma apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 이중 스크린을 나타낸 사시도이다.3 is a perspective view of a dual screen according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 크롬계 코팅층 및 침질탄화층이 형성된 SUJ2들의 X-선 회절패턴들을 나타낸 그래프이다.FIG. 4 is a graph showing X-ray diffraction patterns of SUJ2 having a chromium-based coating layer and a precipitated carbonization layer according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 크롬계 코팅층이 및 침탄화층이 형성된 SUJ2들의 X-선 회절패턴들을 나타낸 그래프이다.FIG. 5 is a graph showing X-ray diffraction patterns of SUJ2 having a chromium-based coating layer and a carburized layer according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 크롬계 코팅층 및 침질탄화층이 형성된 SUS316들의 X-선 회절패턴들을 나타낸 그래프이다.FIG. 6 is a graph showing X-ray diffraction patterns of SUS316 having a chromium-based coating layer and a precipitated carbonization layer according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 크롬계 코팅층 및 침탄화층이 형성된SUS316들의 X-선 회절패턴들을 나타낸 그래프이다.7 is a graph illustrating X-ray diffraction patterns of SUS316 having a chromium-based coating layer and a carburized layer according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 제조예 1(SUJ2-Cr-SPNC)의 단면 형상을 나타낸 이미지이다.8 is an image showing a cross-sectional shape of Preparation Example 1 (SUJ2-Cr-SPNC) according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 제조예 1(SUJ2-Cr-SPNC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.9 is a graph showing the element content according to the depth of Preparation Example 1 (SUJ2-Cr-SPNC) according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 제조예 2(SUJ2-Cr-Fe-SPNC)의 단면 형상을 나타낸 이미지이다.10 is an image showing a cross-sectional shape of Preparation Example 2 (SUJ2-Cr-Fe-SPNC) according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 제조예 2(SUJ2-Cr-Fe-SPNC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.11 is a graph showing the element content according to the depth of Preparation Example 2 (SUJ2-Cr-Fe-SPNC) according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 제조예 3(SUJ2-Cr-Fe-V-SPNC)의 단면 형상을 나타낸 이미지이다.12 is an image showing a cross-sectional shape of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 제조예 3(SUJ2-Cr-Fe-V-SPNC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.13 is a graph showing the element content according to the depth of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
도 14는 본 발명의 일실시예에 따른 비교예 1(SUJ2-Cr-SPC)의 단면 형상을 나타낸 이미지이다.14 is an image showing a cross-sectional shape of Comparative Example 1 (SUJ2-Cr-SPC) according to an embodiment of the present invention.
도 15는 본 발명의 일실시예에 따른 비교예 1(SUJ2-Cr-SPC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.15 is a graph showing the element content according to the depth of Comparative Example 1 (SUJ2-Cr-SPC) according to an embodiment of the present invention.
도 16은 본 발명의 일실시예에 따른 비교예 4(SUJ2-Cr-Fe-SPC)의 단면 형상을 나타낸 이미지이다.16 is an image showing a cross-sectional shape of Comparative Example 4 (SUJ2-Cr-Fe-SPC) according to an embodiment of the present invention.
도 17은 본 발명의 일실시예에 따른 비교예 4(SUJ2-Cr-Fe-SPC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.17 is a graph showing the element content according to the depth of Comparative Example 4 (SUJ2-Cr-Fe-SPC) according to an embodiment of the present invention.
도 18은 본 발명의 일실시예에 따른 비교예 5(SUJ2-Cr-Fe-V-SPC)의 단면 형상을 나타낸 이미지이다.18 is an image showing a cross-sectional shape of Comparative Example 5 (SUJ2-Cr-Fe-V-SPC) according to an embodiment of the present invention.
도 19는 본 발명의 일실시예에 따른 비교예 5(SUJ2-Cr-Fe-V-SPC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.19 is a graph showing the element content according to the depth of Comparative Example 5 (SUJ2-Cr-Fe-V-SPC) according to an embodiment of the present invention.
도 20은 본 발명의 일실시예에 따른 제조예 4(SUS316-Cr-SPNC)의 단면 형상을 나타낸 이미지이다.20 is an image showing a cross-sectional shape of Preparation Example 4 (SUS316-Cr-SPNC) according to an embodiment of the present invention.
도 21은 본 발명의 일실시예에 따른 제조예 4(SUS316-Cr-SPNC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.21 is a graph showing the element content according to the depth of Preparation Example 4 (SUS316-Cr-SPNC) according to an embodiment of the present invention.
도 22는 본 발명의 일실시예에 따른 제조예 5(SUS316-Cr-Fe-SPNC)의 단면 형상을 나타낸 이미지이다.22 is an image showing a cross-sectional shape of Preparation Example 5 (SUS316-Cr-Fe-SPNC) according to an embodiment of the present invention.
도 23은 본 발명의 일실시예에 따른 제조예 5(SUS316-Cr-Fe-SPNC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.23 is a graph showing the element content according to the depth of Preparation Example 5 (SUS316-Cr-Fe-SPNC) according to an embodiment of the present invention.
도 24는 본 발명의 일실시예에 따른 제조예 6(SUS316-Cr-Fe-V-SPNC)의 단면 형상을 나타낸 이미지이다.24 is an image showing a cross-sectional shape of Preparation Example 6 (SUS316-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
도 25는 본 발명의 일실시예에 따른 제조예 6(SUS316-Cr-Fe-V-SPNC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.25 is a graph showing the element content according to the depth of Preparation Example 6 (SUS316-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
도 26은 본 발명의 일실시예에 따른 비교예 6(SUS316-Cr-SPC)의 단면 형상을 나타낸 이미지이다.Figure 26 is an image showing the cross-sectional shape of Comparative Example 6 (SUS316-Cr-SPC) according to an embodiment of the present invention.
도 27은 본 발명의 일실시예에 따른 비교예 6(SUS316-Cr-SPC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.27 is a graph showing the element content according to the depth of Comparative Example 6 (SUS316-Cr-SPC) according to an embodiment of the present invention.
도 28은 본 발명의 일실시예에 따른 비교예 7(SUS316-Cr-Fe-SPC)의 단면 형상을 나타낸 이미지이다.28 is an image showing a cross-sectional shape of Comparative Example 7 (SUS316-Cr-Fe-SPC) according to an embodiment of the present invention.
도 29는 본 발명의 일실시예에 따른 비교예 7(SUS316-Cr-Fe-SPC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.29 is a graph showing the element content according to the depth of Comparative Example 7 (SUS316-Cr-Fe-SPC) according to an embodiment of the present invention.
도 30은 본 발명의 일실시예에 따른 비교예 8(SUS316-Cr-Fe-V-SPC)의 단면 형상을 나타낸 이미지이다.30 is an image showing a cross-sectional shape of Comparative Example 8 (SUS316-Cr-Fe-V-SPC) according to an embodiment of the present invention.
도 31은 본 발명의 일실시예에 따른 비교예 8(SUS316-Cr-Fe-V-SPC)의 깊이에 따른 원소 함량을 나타낸 그래프이다.31 is a graph showing the element content according to the depth of Comparative Example 8 (SUS316-Cr-Fe-V-SPC) according to an embodiment of the present invention.
도 32는 본 발명의 일실시예에 따른 제조예 1(SUJ2-Cr-SPNC)의 마찰계수를 측정한 그래프이다.32 is a graph measuring the coefficient of friction of Preparation Example 1 (SUJ2-Cr-SPNC) according to an embodiment of the present invention.
도 33은 본 발명의 일실시예에 따른 제조예 2(SUJ2-Cr-Fe-SPNC)의 마찰계수를 측정한 그래프이다.33 is a graph measuring the coefficient of friction of Preparation Example 2 (SUJ2-Cr-Fe-SPNC) according to an embodiment of the present invention.
도 34는 본 발명의 일실시예에 따른 제조예 3(SUJ2-Cr-Fe-V-SPNC)의 마찰계수를 측정한 그래프이다.34 is a graph illustrating a friction coefficient of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
도 35는 본 발명의 일실시예에 따른 비교예 1(SUJ2-Cr-SPC)의 마찰계수를 측정한 그래프이다.35 is a graph illustrating a friction coefficient of Comparative Example 1 (SUJ2-Cr-SPC) according to an embodiment of the present invention.
도 36은 본 발명의 일실시예에 따른 비교예 4(SUJ2-Cr-Fe-SPC)의 마찰계수를 측정한 그래프이다.36 is a graph illustrating a friction coefficient of Comparative Example 4 (SUJ2-Cr-Fe-SPC) according to an embodiment of the present invention.
도 37은 본 발명의 일실시예에 따른 비교예 5(SUJ2-Cr-Fe-V-SPC)의 마찰계수를 측정한 그래프이다.37 is a graph illustrating a friction coefficient of Comparative Example 5 (SUJ2-Cr-Fe-V-SPC) according to an embodiment of the present invention.
도 38은 본 발명의 일실시예에 따른 비교예 2(SUJ2-SPNC)의 마찰계수를 측정한 그래프이다.38 is a graph illustrating a friction coefficient of Comparative Example 2 (SUJ2-SPNC) according to an embodiment of the present invention.
도 39는 본 발명의 일실시예에 따른 비교예 3(SUJ2-SPC)의 마찰계수를 측정한 그래프이다.39 is a graph illustrating a friction coefficient of Comparative Example 3 (SUJ2-SPC) according to an embodiment of the present invention.
도 40은 본 발명의 일실시예에 따른 제조예 4(SUS316-Cr-SPNC)의 마찰계수를 측정한 그래프이다.40 is a graph measuring the coefficient of friction of Preparation Example 4 (SUS316-Cr-SPNC) according to an embodiment of the present invention.
도 41은 본 발명의 일실시예에 따른 제조예 5(SUS316-Cr-Fe-SPNC)의 마찰계수를 측정한 그래프이다.41 is a graph measuring the coefficient of friction of Preparation Example 5 (SUS316-Cr-Fe-SPNC) according to an embodiment of the present invention.
도 42는 본 발명의 일실시예에 따른 제조예 6(SUS316-Cr-Fe-V-SPNC)의 마찰계수를 측정한 그래프이다.42 is a graph illustrating a friction coefficient of Preparation Example 6 (SUS316-Cr-Fe-V-SPNC) according to an embodiment of the present invention.
도 43은 본 발명의 일실시예에 따른 비교예 6(SUS316-Cr-SPC)의 마찰계수를 측정한 그래프이다.43 is a graph illustrating a coefficient of friction of Comparative Example 6 (SUS316-Cr-SPC) according to an embodiment of the present invention.
도 44는 본 발명의 일실시예에 따른 비교예 7(SUS316-Cr-Fe-SPC)의 마찰계수를 측정한 그래프이다.44 is a graph illustrating a friction coefficient of Comparative Example 7 (SUS316-Cr-Fe-SPC) according to an embodiment of the present invention.
도 45는 본 발명의 일실시예에 따른 비교예 8(SUS316-Cr-Fe-V-SPC)의 마찰계수를 측정한 그래프이다.45 is a graph illustrating a friction coefficient of Comparative Example 8 (SUS316-Cr-Fe-V-SPC) according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본 명세서에서 사용되는 용어는 다양한 실시예를 설명하기 위한 것이지, 본 발명을 한정하기 위한 것이 아니다. 제1구성요소가 제2구성요소에 "연결(접속, 접촉, 결합)"되어 있다고 표현될 때, 이는 상기 제1구성요소가 상기 제2구성요소에 "직접적으로 연결"되거나 또는 제3구성요소를 통해 "간접적으로 연결"될 수 있다는 것을 의미한다. 단수의 표현은, 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현들을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것이 존재한다는 것을 의미하지, 하나 또는 그 이상의 다른, 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것의 존재 또는 부가 가능성이 배제된다는 것을 의미하지 않는다.The terminology used herein is for the purpose of describing various embodiments only and is not intended to be limiting of the invention. When a first component is expressed as being "connected (connected, contacted, coupled)" to a second component, it is said that the first component is "directly connected" to the second component or a third component. Means that it can be "indirectly connected" through. Singular expressions include plural expressions unless the context clearly indicates otherwise. Also, the terms "comprise" or "have" mean that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features, It does not mean that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is excluded.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, the terms “comprise” or “have” are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
이하, 철계 합금 코팅 방법에 대하여 설명한다.Hereinafter, the iron-based alloy coating method will be described.
본 발명의 실시예에 있어서, 철계 합금 코팅 방법은 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성하는 단계 및 상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성하는 단계를 포함할 수 있다.In an embodiment of the present invention, the iron-based alloy coating method is to form a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation, and forming a nitriding carbonized layer using a screen plasma on the chromium-based coating layer It may include.
먼저, 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성한다.First, a chromium-based coating layer is formed on the iron-based alloy surface by using pack cementation.
본 발명의 실시예에 있어서, 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성하는 방법은, 팩(pack)에 철계 합금 및 팩 혼합물을 투입하는 단계, 상기 팩을 진공 챔버에 장입하는 장입 단계, 상기 진공 챔버에 장입된 팩을 가열하는 가열 단계 및 상기 가열 단계에서 가열이 유지되는 동안 상기 철계 합금에 크롬계 코팅층이 형성되는 크롬계 코팅층 형성 단계를 포함할 수 있다.In an embodiment of the present invention, the method for forming a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation, the step of injecting the iron-based alloy and the pack mixture in the pack (pack), charging the pack in a vacuum chamber It may include a charging step, a heating step of heating the pack charged in the vacuum chamber, and a chromium-based coating layer forming step of forming a chromium-based coating layer on the iron alloy while the heating is maintained in the heating step.
팩 시멘테이션으로 철계 합금 표면에 크롬계 코팅층을 형성하기 위해서는 먼저 팩(pack)에 철계 합금 및 팩 혼합물을 투입한다.In order to form a chromium-based coating layer on the surface of the iron-based alloy by pack cementation, the iron-based alloy and the pack mixture are first introduced into a pack.
팩 시멘테이션은 팩 혼합물 속에 처리하고자 하는 금속 부품을 넣고 고온에서 일정 시간 가열하여 금속 부품 상에 표면층을 형성하고 동시에 금속 부품의 표면층에 확산 코팅층을 얻을 수 있는 코팅층 제조방법이다.Pack cementation is a method of manufacturing a coating layer in which a metal part to be processed is put into a pack mixture and heated at a high temperature for a predetermined time to form a surface layer on the metal part, and at the same time obtain a diffusion coating layer on the surface layer of the metal part.
본 발명의 팩 시멘테이션은 철계 합금 표면에 크롬계 코팅층을 형성하기 위한 방법으로 사용될 수 있다.Pack cementation of the present invention can be used as a method for forming a chromium-based coating layer on the surface of the iron-based alloy.
본 발명의 실시예에 있어서, 상기 철계 합금은 베어링 강 또는 스테인리스 강을 포함할 수 있지만, 이에 제한되는 것은 아니다.In an embodiment of the present invention, the iron-based alloy may include, but is not limited to, bearing steel or stainless steel.
베어링 강은 고탄소크롬 특수강이며, 스테인리스 강은 철의 내식성을 보완하기 위해 니켈 및 크롬 등을 함유한 합금강이다.The bearing steel is a high carbon chromium special steel, and the stainless steel is an alloy steel containing nickel and chromium to supplement the corrosion resistance of iron.
예를 들어, 본 발명의 철계 합금은 SUJ2 베어링 강 또는 SUS316 스테인리스 강일 수 있다.For example, the iron-based alloy of the present invention may be SUJ2 bearing steel or SUS316 stainless steel.
본 발명의 실시예에 있어서, 상기 팩 혼합물은 크롬계 분말, 활성제 및 불활성제를 포함할 수 있다.In an embodiment of the present invention, the pack mixture may include a chromium-based powder, an active agent and an inert agent.
본 발명의 실시예에 있어서, 상기 팩 혼합물의 크롬계 분말은 크롬(Cr) 분말, 크롬(Cr) 분말 및 철(Fe) 분말 또는 크롬(Cr) 분말, 철(Fe) 분말 및 바나듐(V) 분말을 포함할 수 있지만, 이에 제한되는 것은 아니다.In an embodiment of the present invention, the chromium-based powder of the pack mixture is chromium (Cr) powder, chromium (Cr) powder and iron (Fe) powder or chromium (Cr) powder, iron (Fe) powder and vanadium (V) It may include a powder, but is not limited thereto.
통상적으로 크롬 금속은 경도, 내식성 및 윤활성이 우수한 특성을 나타내기 때문에, 본 발명의 상기 크롬계 분말은 크롬계 코팅층을 제조할 때 사용되는 반응물로, 철계 합금의 경도, 내식성 및 윤활성을 향상시킬 수 있는 효과가 있을 수 있다.In general, since chromium metal exhibits excellent hardness, corrosion resistance, and lubricity, the chromium-based powder of the present invention is a reactant used when preparing a chromium-based coating layer, and may improve hardness, corrosion resistance, and lubricity of an iron-based alloy. It can be effective.
또한, 본 발명에서 상기 활성제는 크롬계 코팅층을 이루게 될 크롬 분말과 반응하면서 크롬계 코팅층 형성에 기여할 수 있으며, 할로겐화합물계염을 포함할 수 있다. 구체적으로, 상기 할로겐화합물계염은 테트라플루오르붕산칼륨(KBF4), 염화암모늄(NH4Cl), 플루오르암모늄(NH4F), 플루오르소듐(NaF) 또는 염화소듐(NaCl)을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In addition, the active agent in the present invention may contribute to the formation of the chromium-based coating layer while reacting with the chromium powder to form a chromium-based coating layer, it may include a halogenated compound salt. Specifically, the halogenated compound salt may include potassium tetrafluoroborate (KBF 4 ), ammonium chloride (NH 4 Cl), fluoroammonium (NH 4 F), fluorine sodium (NaF) or sodium chloride (NaCl), It is not limited to this.
예를 들어, 본 발명의 활성제는 테트라플루오르붕산칼륨(KBF4)일 수 있다.For example, the active agent of the present invention may be potassium tetrafluoroborate (KBF 4 ).
또한, 본 발명의 불활성제는 크롬계 코팅층이 형성되는 과정에서 철계 합금의 소결을 방지할 수 있다. 구체적으로, 상기 불활성제는 산화알루미늄(Al2O3), 실리카(SiO2), 탄화규소(SiC) 또는 산화크롬(Cr2O3)을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In addition, the inert agent of the present invention can prevent the sintering of the iron-based alloy in the process of forming the chromium-based coating layer. Specifically, the inert agent may include, but is not limited to, aluminum oxide (Al 2 O 3 ), silica (SiO 2 ), silicon carbide (SiC) or chromium oxide (Cr 2 O 3 ). .
예를 들어, 본 발명의 불활성제는 산화알루미늄(Al2O3)일 수 있다.For example, the inert agent of the present invention may be aluminum oxide (Al 2 O 3 ).
본 발명의 실시예에 있어서, 상기 팩 혼합물은 상기 크롬계 분말 10.5 wt% 내지 52.9 wt%, 상기 활성제 0.1 wt% 내지 3 wt% 및 상기 불활성제 47 wt% 내지 89.4 wt%를 포함할 수 있으나 이에 제한되는 것은 아니다.In an embodiment of the present invention, the pack mixture may include 10.5 wt% to 52.9 wt% of the chromium-based powder, 0.1 wt% to 3 wt% of the active agent, and 47 wt% to 89.4 wt% of the inert agent, but It is not limited.
여기서, 상기 크롬계 분말의 함량은 상기 팩 혼합물의 전체 함량 중 10.5 wt% 내지 52.9 wt%를 포함할 수 있다. 크롬계 분말의 함량이 10.5 wt% 미만일 경우에는 크롬계 코팅층이 너무 얇게 형성되거나 크롬계 코팅층의 경도값이 목표치에 미달될 수 있어 바람직하지 않다. 반면 크롬계 분말의 함량이 52.9 wt%를 초과하면, 크롬계 분말이 불활성제와 뭉쳐지면서 철계 합금의 표면에 불필요한 물질이 첨가되고, 이에 따라 철계 합금에 지나치게 기공이 생길 수 있어 바람직하지 않다.Here, the content of the chromium-based powder may include 10.5 wt% to 52.9 wt% of the total content of the pack mixture. When the content of the chromium-based powder is less than 10.5 wt%, the chromium-based coating layer may be formed too thin or the hardness value of the chromium-based coating layer may not reach the target value, which is not preferable. On the other hand, when the content of the chromium-based powder is more than 52.9 wt%, the chromium-based powder is agglomerated with the inert agent, and unnecessary substances are added to the surface of the iron-based alloy, which may cause excessive pores in the iron-based alloy, which is not preferable.
예를 들어, 본 발명의 크롬 금속 분말의 함량은 30 wt%일 수 있다.For example, the content of chromium metal powder of the present invention may be 30 wt%.
그리고, 상기 활성제의 함량은 상기 팩 혼합물의 전체 함량 중 0.1 wt% 내지 3 wt%를 포함할 수 있다. 활성제의 함량이 0.1 wt% 미만이거나 3 wt%를 초과하면, 전술한 크롬계 분말의 함량을 고려할 때, 불균일한 크롬계 코팅층이 형성되거나 크롬계 코팅층 내부에 얼룩이 발생하여 크롬계 코팅층의 기계적 물성이 저하되는 문제가 생길 수 있어 바람직하지 않다.In addition, the content of the active agent may include 0.1 wt% to 3 wt% of the total content of the pack mixture. When the content of the activator is less than 0.1 wt% or more than 3 wt%, considering the content of the chromium-based powder described above, a non-uniform chromium-based coating layer is formed or staining occurs inside the chromium-based coating layer, so that the mechanical properties of the chromium-based coating layer The problem of deterioration may arise, which is undesirable.
예를 들어, 본 발명의 활성제의 함량은 1 wt%일 수 있다.For example, the content of the active agent of the present invention may be 1 wt%.
또한, 상기 불활성제의 함량은 상기 팩 혼합물의 전체 함량 중 47 wt% 내지 89.4 wt%를 포함할 수 있다. 불활성제의 함량이 47 wt% 미만이면 크롬계 코팅층을 이루게 될 크롬의 침투 및 확산이 원하는 정도로 이루어지지 않을 수 있고, 불활성제의 함량이 89.4 wt%를 초과하면, 크롬계 코팅층의 형성이 늦어져 크롬계 코팅층의 기계적 물성이 목표치에 미달될 수 있어 바람직하지 않다.In addition, the content of the inert agent may include 47 wt% to 89.4 wt% of the total content of the pack mixture. If the content of the inert agent is less than 47 wt%, the penetration and diffusion of chromium, which will form the chromium-based coating layer, may not be achieved. If the content of the inert agent is more than 89.4 wt%, the formation of the chromium-based coating layer may be delayed. The mechanical properties of the chromium-based coating layer may be less than the target value is not preferable.
예를 들어, 본 발명의 불활성제의 함량은 69 wt%일 수 있다.For example, the content of the inert agent of the present invention may be 69 wt%.
그 다음으로는, 상기 팩을 진공 챔버에 장입한 후, 상기 진공 챔버에 장입된 팩을 가열한다.Next, after charging the pack in a vacuum chamber, the pack loaded in the vacuum chamber is heated.
그 다음으로는, 상기 가열 과정이 유지되는 동안 상기 철계 합금에 크롬계 코팅층이 형성된다.Next, a chromium-based coating layer is formed on the iron-based alloy while the heating process is maintained.
본 발명에서 크롬계 코팅층은 가열 온도가 유지되는 동안, 팩 혼합물을 이루는 성분 중 크롬계 분말이 활성제와 반응하여 크롬계 할로겐화합물 기체로 형성될 수 있고, 상기 크롬계 할로겐화합물 기체들이 철계 합금의 표면에 흡착되어 상기 철계 합금의 내부로 침투 및 확산되면서 형성될 수 있다.In the present invention, the chromium-based coating layer may be formed of a chromium-based halogen compound gas by reacting chromium-based powder of the components constituting the pack mixture with the activator while the heating temperature is maintained, wherein the chromium-based halogen gas is the surface of the iron-based alloy Adsorbed on, it may be formed while penetrating and diffusing into the iron-based alloy.
본 발명에서 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성한 다음으로, 상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성한다.In the present invention, the chromium-based coating layer is formed on the surface of the iron-based alloy by using pack cementation, and then an impregnated carbonization layer is formed on the chromium-based coating layer by using a screen plasma.
도 2는 본 발명의 일실시예에 따른 스크린 플라즈마 장치를 도시한 단면도이다. 상기 스크린 플라즈마 장치는 진공 챔버(10), 이중 스크린(70), 진공 펌프(40) 및 캐소드 전원부(50)를 구비한다. 도 2가 참조되어 본 발명의 스크린 플라즈마 침질탄화가 설명된다.2 is a cross-sectional view showing a screen plasma apparatus according to an embodiment of the present invention. The screen plasma apparatus includes a vacuum chamber 10, a double screen 70, a vacuum pump 40, and a cathode power supply 50. With reference to FIG. 2, screen plasma immersion carbonization of the present invention is described.
본 발명의 실시예에 있어서, 상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성하는 방법은 크롬계 코팅층이 코팅된 철계 합금(2)을 진공 챔버(10)에 장입하고 상기 철계 합금(2)을 이중 스크린(70)으로 커버하는 단계, 상기 진공 챔버(10) 내에 제1수소 가스를 주입하여 상기 철계 합금(2) 상에 존재하는 크롬계 산화막을 환원하는 이온 클리닝 단계, 상기 이중 스크린(70)에 공정 전류를 인가하고, 상기 진공 챔버(10) 내에 제2수소 가스, 질소 가스 및 탄화수소 가스를 주입하여 혼합 플라즈마를 발생시키는 단계 및 상기 혼합 플라즈마가 철계 합금(2) 표면에 형성된 크롬계 코팅층 상에 코팅되어 침질탄화층을 형성하는 단계를 포함할 수 있다.In an embodiment of the present invention, the method of forming an immersion carbonization layer using the screen plasma on the chromium-based coating layer is charged with the iron-based alloy (2) coated with the chromium-based coating layer in the vacuum chamber 10 and the iron-based alloy Covering (2) with a double screen 70, an ion cleaning step of reducing the chromium-based oxide film present on the iron-based alloy 2 by injecting a first hydrogen gas into the vacuum chamber 10, the double Applying a process current to the screen 70, injecting a second hydrogen gas, nitrogen gas and hydrocarbon gas into the vacuum chamber 10 to generate a mixed plasma and the mixed plasma is formed on the surface of the iron-based alloy (2) It may include the step of coating on the chromium-based coating layer to form a precipitated carbonization layer.
먼저, 크롬계 코팅층이 코팅된 철계 합금(2)을 진공 챔버(10)에 장입하고 상기 철계 합금(2)을 이중 스크린(70)으로 커버한 후, 진공 펌프(40)을 작동시켜 진공 챔버(10) 내부의 분위기를 1×10-3 Torr 내지 1×10-1 Torr 수준의 진공도로 조성한다. 이 때, 진공 챔버(10) 내벽은 플러스(+) 상대 전하가 나타나고, 이중 스크린(70)은 마이너스(-) 상대 전하가 나타나서, 진공 챔버(10) 내벽과 이중 스크린(70) 사이에 전기장이 생성된다.First, the iron-based alloy (2) coated with a chromium-based coating layer is charged into the vacuum chamber 10 and the iron-based alloy (2) is covered with a double screen 70, and then the vacuum pump 40 is operated to operate the vacuum chamber ( 10) The atmosphere inside is formed at a vacuum level of 1 × 10 -3 Torr to 1 × 10 -1 Torr. At this time, the inner wall of the vacuum chamber 10 shows a positive (+) relative charge, and the double screen 70 shows a negative (-) relative charge, so that an electric field is formed between the inner wall of the vacuum chamber 10 and the double screen 70. Is generated.
진공 챔버(10)의 진공도가 1×10-1 Torr 미만일 경우에는, 진공 챔버(10) 내의 불순물이 충분히 제거되기 어려워 바람직하지 않고, 1×10-3 Torr 이내로 진공 분위기를 조성하여도 불순물이 충분히 제거될 수 있기 때문에, 1×10-3 Torr 초과로 진공 분위기를 조성하는 것은 공정상 불필요 하므로 바람직하지 않다.If the vacuum degree of the vacuum chamber 10 is less than 1 × 10 −1 Torr, it is not preferable that impurities in the vacuum chamber 10 are not sufficiently removed, and impurities are sufficiently formed even if a vacuum atmosphere is formed within 1 × 10 −3 Torr. Since it can be removed, creating a vacuum atmosphere above 1 × 10 −3 Torr is undesirable because it is unnecessary in the process.
본 발명의 실시예에 있어서, 팩 시멘테이션으로 크롬계 코팅층이 코팅된 철계 합금(2)을 진공 챔버(10)에 장입한 후, 상기 철계 합금(2)을 이중 스크린(70)으로 덮는다.In the embodiment of the present invention, after loading the iron-based alloy (2) coated with the chromium-based coating layer in the pack cementation in the vacuum chamber 10, the iron-based alloy (2) is covered with a double screen (70).
도 3은 본 발명의 일실시예에 따른 이중 스크린(70)을 나타낸 사시도이다.3 is a perspective view of a dual screen 70 according to an embodiment of the present invention.
도 3을 참조하면, 이중 스크린(70)은 스크린 플라즈마 공정에서 사용하는 스크린으로서, 외통(71) 및 내통(72)으로 구성되어 있으며, 하부가 개방된 원통형의 구조를 가지고 있다.Referring to FIG. 3, the dual screen 70 is a screen used in a screen plasma process, and includes an outer cylinder 71 and an inner cylinder 72, and has a cylindrical structure with an open bottom.
본 발명의 실시예에 있어서, 이중 스크린(70)은 진공 챔버(10) 내에서 글로우(glow) 방전이 발생시키는 전극 역할을 할 수 있다.In an embodiment of the present invention, the dual screen 70 may serve as an electrode for generating glow discharge in the vacuum chamber 10.
그 다음으로는, 상기 진공 챔버(10) 내에 제1수소 가스를 주입하여 상기 철계 합금(2) 상에 존재하는 크롬계 산화막을 환원시키는데, 이 과정을 이온클리닝이라고 한다.Next, a first hydrogen gas is injected into the vacuum chamber 10 to reduce the chromium-based oxide film present on the iron-based alloy 2, which is called ion cleaning.
상기 이온클리닝 방법은, 상기 이중 스크린(70)에 제1전류를 인가하여 상기 진공 챔버(10)를 가열하는 단계, 상기 진공 챔버(10) 내에 제1수소를 주입하는 단계, 상기 이중 스크린(70)에 제2전류를 인가하여 상기 이중 스크린(70) 주위에 수소 플라즈마를 발생시키는 단계 및 상기 철계 합금(2) 상에 존재하는 크롬계 산화막을 환원시켜 제거하는 단계를 포함할 수 있다.In the ion cleaning method, applying the first current to the dual screen 70 to heat the vacuum chamber 10, injecting the first hydrogen into the vacuum chamber 10, the dual screen 70 ) To generate a hydrogen plasma around the double screen 70 and to reduce and remove the chromium-based oxide film present on the iron-based alloy 2).
먼저 이중 스크린(70)에 제1전류를 인가하면, 진공 챔버(10)의 내부 온도가 100 ℃까지 상승된다.First, when the first current is applied to the dual screen 70, the internal temperature of the vacuum chamber 10 is raised to 100 ° C.
본 발명의 실시예에 있어서, 제1전류를 인가하여 진공 챔버(10)를 100 ℃로 예열하면, 스크린 사이에서 발생하는 고밀도의 글로우(glow)를 이용하여 진공 챔버(10)가 저온에서 고온으로 온도 변화가 일어날 때 열팽창에 의한 균열을 방지할 수 있고, 상기 진공 챔버(10) 내부에 있는 탄소를 태우면서 산소 및 수분을 배출시킬 수 있다.In an embodiment of the present invention, when the vacuum chamber 10 is preheated to 100 ° C. by applying a first current, the vacuum chamber 10 is cooled from low to high temperature by using a high density glow generated between the screens. When the temperature change occurs, it is possible to prevent cracking due to thermal expansion, and oxygen and moisture may be discharged while burning the carbon inside the vacuum chamber 10.
본 발명의 실시예에 있어서, 상기 제1전류는 3 A 내지 5 A이다. 제1전류가 상기 이중스크린(70)에 인가되어 진공 챔버(10)의 내부 온도를 100 ℃까지 가열시키는 제1전류의 세기는 3 A 내지 5 A가 바람직하다.In an embodiment of the present invention, the first current is 3 A to 5 A. The first current is applied to the dual screen 70 so that the intensity of the first current for heating the internal temperature of the vacuum chamber 10 to 100 ° C is preferably 3 A to 5 A.
예를 들어, 제1전류는 5 A일 수 있다.For example, the first current may be 5 A.
그 다음으로는, 상기 진공 챔버(10) 내에 제1수소를 주입한다.Next, first hydrogen is injected into the vacuum chamber 10.
본 발명의 제1수소는 수소 플라즈마를 발생시키기 위한 가스원일 수 있다.The first hydrogen of the present invention may be a gas source for generating a hydrogen plasma.
그 다음으로는, 상기 이중 스크린(70)에 제2전류를 인가하여 상기 이중 스크린(20) 주위에 수소 플라즈마를 발생시킨다.Next, a second current is applied to the dual screen 70 to generate a hydrogen plasma around the dual screen 20.
본 발명의 실시예에 있어서 상기 이중 스크린(70)에 제2전류를 인가하면, 이중 스크린(70)의 외통(71) 및 내통(72) 사이에 글로우(glow) 방전이 발생하여, 상기 수소 플라즈마는 이중 스크린(70)의 외통(71) 및 내통(72) 사이에 존재하는 공간(S)에 수집될 수 있다. 이에 따라, 수소 플라즈마의 밀도는 단일의 스크린 플라즈마 장치보다 고밀도로 형성될 수 있다. 따라서, 별도의 외부 히터 없이 매우 적은 양의 가스 투입 및 전력량으로 스크린에 형성되는 글로우(glow)를 이용하여 공정 온도까지 진공 챔버(10)의 온도를 높이는 가열 과정을 진행할 수 있다.In the embodiment of the present invention, when a second current is applied to the dual screen 70, a glow discharge is generated between the outer cylinder 71 and the inner cylinder 72 of the dual screen 70, thereby generating the hydrogen plasma. May be collected in the space S existing between the outer cylinder 71 and the inner cylinder 72 of the dual screen 70. Accordingly, the density of the hydrogen plasma can be formed at a higher density than a single screen plasma apparatus. Therefore, the heating process may be performed to increase the temperature of the vacuum chamber 10 to the process temperature by using a glow formed on the screen with a very small amount of gas input and power without a separate external heater.
예를 들어, 수소 플라즈마는 Hα, Hβ 또는 Hγ를 포함하는 수소 플라즈마종을 포함할 수 있다.For example, the hydrogen plasma may comprise hydrogen plasma species including H α , H β or H γ .
본 발명의 실시예에 있어서, 상기 제2전류는 5 A 내지 15 A이다. 제2전류가 상기 이중스크린(70)에 인가되어 진공 챔버(10)의 내부 온도를 250 ℃까지 가열시켜 수소 플라즈마를 발생시킬 수 있는 제2전류의 세기는 5 A 내지 15 A가 바람직하다.In an embodiment of the present invention, the second current is 5 A to 15 A. The second current may be applied to the dual screen 70 to heat the internal temperature of the vacuum chamber 10 to 250 ° C., and the intensity of the second current that may generate hydrogen plasma is preferably 5 A to 15 A.
예를 들어, 제1전류는 15 A일 수 있다.For example, the first current may be 15 A.
본 발명의 실시예에 있어서, 상기 수소 플라즈마는 진공 펌프에 의한 힘으로 진공 챔버의 중심부에 위치할 수 있다.In an embodiment of the present invention, the hydrogen plasma may be located in the center of the vacuum chamber by the force of the vacuum pump.
그 다음으로는, 상기 철계 합금(2) 상에 존재하는 크롬계 산화막을 환원시켜 제거한다.Next, the chromium oxide film present on the iron-based alloy 2 is reduced and removed.
본 발명에서 팩 시멘테이션으로 크롬계 코팅층이 코팅된 철계 합금(2)은 진공 챔버(10)에 장입되기 전 외부 공기와 접촉하였을 때 표면에 크롬계 산화막이 형성될 수 있다.In the present invention, the iron-based alloy 2 coated with a chromium-based coating layer by pack cementation may have a chromium-based oxide film formed on a surface thereof when contacted with external air before being charged into the vacuum chamber 10.
상기 크롬계 산화막은 침질탄화 공정을 저해하는 원인이 될 수 있으며, 철계 합금의 내식성은 좋아질 수 있으나 자기 전도성을 저하시키는 단점이 있다. 따라서, 본 발명에서 진공 챔버(10)의 중심부에 위치된 수소 플라즈마가 상기 크롬계 산화막과 반응하여 크롬계 산화막을 환원시켜 제거할 수 있다.The chromium-based oxide film may be a cause of inhibiting the nitriding carbonization process, the corrosion resistance of the iron-based alloy may be improved, but there is a disadvantage in reducing the magnetic conductivity. Therefore, in the present invention, the hydrogen plasma located at the center of the vacuum chamber 10 may react with the chromium oxide film to reduce and remove the chromium oxide film.
본 발명의 실시예에 있어서, 상기 크롬계 산화막은 크롬(Cr), 크롬(Cr) 및 철(Fe) 또는 크롬(Cr), 철(Fe) 및 바나듐(V)을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In an embodiment of the present invention, the chromium-based oxide film may include chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V), but is not limited thereto. It is not intended to be.
본 발명의 이온 클리닝 공정 다음으로는, 이중 스크린(70)에 공정 전류를 인가하고, 진공 챔버(10) 내에 제2수소 가스, 질소 가스 및 탄화수소 가스를 주입하여 혼합 플라즈마를 발생시킨다.Next, the ion cleaning process of the present invention, a process current is applied to the double screen 70, the second hydrogen gas, nitrogen gas and hydrocarbon gas is injected into the vacuum chamber 10 to generate a mixed plasma.
예를 들어, 상기 혼합 플라즈마는 질소 플라즈마, 수소 플라즈마 및 탄화수소 플라즈마일 수 있다.For example, the mixed plasma may be nitrogen plasma, hydrogen plasma and hydrocarbon plasma.
본 발명의 실시예에 있어서, 상기 공정 전류는 20 A 내지 30 A일 수 있다. 공정 전류가 상기 이중스크린(70)에 인가되어 진공 챔버(10)의 내부 온도를 450 ℃ 내지 550 ℃까지 가열시켜 상기 혼합 플라즈마를 발생시킬 수 있는 공정 전류의 세기는 20 A 내지 30 A가 바람직하다.In an embodiment of the present invention, the process current may be 20 A to 30 A. Process current may be applied to the dual screen 70 to heat the internal temperature of the vacuum chamber 10 to 450 ℃ to 550 ℃ to generate the intensity of the process current is preferably 20 A to 30 A. .
본 발명에서 상기 진공 챔버(10) 내에 제 2 수소 가스 및 탄화수소 가스가 주입되면, 제2수소 가스 및 탄화수소 가스는 진공 챔버(10) 내부가 고온 및 진공 분위기로 형성되어 있어 진공 챔버(10)에 주입되자마자 온도 및 압력의 에너지를 받아 플라즈마화 되고, 수소 플라즈마 및 탄화수소 플라즈마는 이중 스크린(70) 주변에 밀집된다.In the present invention, when the second hydrogen gas and the hydrocarbon gas are injected into the vacuum chamber 10, the second hydrogen gas and the hydrocarbon gas are formed in the vacuum chamber 10 in a high temperature and a vacuum atmosphere, so that the vacuum chamber 10 As soon as it is injected, it is plasmaized by the energy of temperature and pressure, and the hydrogen plasma and hydrocarbon plasma are concentrated around the double screen 70.
상기 탄화수소 가스는 CH4 또는 C2H2를 포함하고 1 sccm 내지 10 sccm 가스량이 주입 구간 및 정지 구간을 반복하여 펄스 주입될 수 있다.The hydrocarbon gas may include CH 4 or C 2 H 2 , and the amount of 1 sccm to 10 sccm gas may be pulse-injected by repeating the injection section and the stop section.
본 발명의 실시예에 있어서, 상기 탄화수소 가스를 펄스 주입함으로써 탄화수소 가스의 이온화율을 높일 수 있고, 탄소 및 질소의 확산층을 동일 시간대보다 더 깊은 깊이로 형성시킬 수 있다.In the embodiment of the present invention, the ionization rate of the hydrocarbon gas can be increased by pulse injection of the hydrocarbon gas, and the diffusion layer of carbon and nitrogen can be formed deeper than the same time zone.
예를 들어, 수소 플라즈마는 Hα, Hβ 또는 Hγ를 포함하는 수소 플라즈마종을 포함할 수 있으며, 탄화수소 가스는 2 초 동안 주입되고 5초 동안 정지되는 구간을 반복하여 펄스 주입될 수 있다.For example, the hydrogen plasma may include hydrogen plasma species including H α , H β, or H γ , and the hydrocarbon gas may be pulse injected by repeating a section in which the gas is injected for 2 seconds and stopped for 5 seconds.
본 발명에서, 질소 가스는 이온화 에너지가 수소 가스보다 상대적으로 커서 플라즈마화가 원활히 이루어지지 않는다. 그러나, 이미 플라즈마화 된 수소 플라즈마가 질소 가스와 충돌하여 질소 플라즈마를 원활히 생성할 수 있도록 하는 역할을 수행한다. 수소 플라즈마는 질소 플라즈마의 유동성을 향상시킬 수 있다.In the present invention, the nitrogen gas has a relatively high ionization energy than the hydrogen gas, so that the plasma is not smoothed. However, the plasma plasma hydrogenated already collides with the nitrogen gas to smoothly generate the nitrogen plasma. The hydrogen plasma may improve the fluidity of the nitrogen plasma.
예를 들어 본 발명의 질소 플라즈마는 N+, N, N2 + 또는 NH3를 포함하는 질소종을 포함할 수 있다.For example, the nitrogen plasma of the present invention may include nitrogen species including N + , N, N 2 + or NH 3 .
본 발명의 실시예에 있어서, 상기 질소 가스 대 수소 가스의 함량비는 1:3 내지 4:1일 수 있다. 더욱 바람직하게는 철계 합금이 베어링 강일 경우에는 질소 가스 대 수소 가스의 함량비가 1:3 내지 1:2가 바람직하며, 스테인리스 강일 경우에는 질소 가스 대 수소 가스의 함량비가 1:1 내지 4:1이 바람직하다.In an embodiment of the present invention, the content ratio of nitrogen gas to hydrogen gas may be 1: 3 to 4: 1. More preferably, when the iron-based alloy is a bearing steel, the content ratio of nitrogen gas to hydrogen gas is 1: 3 to 1: 2, and in the case of stainless steel, the content ratio of nitrogen gas to hydrogen gas is 1: 1 to 4: 1. desirable.
상기 베어링 강의 경우, 상기 스테인리스 강보다 모재로의 질소 확산이 보다 어렵기 때문에, 수소 가스의 함량을 높여주어서 질소 플라즈마의 유동성을 향상시켜 질소 확산을 유도하는 것이 바람직하다. 따라서, 수소의 함량이 질소의 함량보다 높은 1:3 내지 1:2의 질소 가스 대 수소 가스의 함량비가 바람직하다. 또한, 상기 스테인리스 강일 경우, 질소를 함유하는데 유리한 철계 합금으로, 질소 확산을 보다 더 고밀도로 수행하기 위해 질소의 함량이 수소의 함량보다 높은 1:1 내지 4:1의 질소 가스 대 수소 가스의 함량비가 바람직하다.In the case of the bearing steel, since it is more difficult to diffuse nitrogen into the base material than the stainless steel, it is preferable to induce nitrogen diffusion by increasing the content of hydrogen gas to improve the fluidity of the nitrogen plasma. Therefore, a content ratio of nitrogen gas to hydrogen gas of 1: 3 to 1: 2 in which the content of hydrogen is higher than the content of nitrogen is preferable. In addition, in the case of the stainless steel, it is an iron-based alloy that is advantageous to contain nitrogen, the content of nitrogen gas to hydrogen gas of 1: 1 to 4: 1 where the content of nitrogen is higher than the content of hydrogen in order to perform nitrogen diffusion more densely Rain is preferred.
마지막으로, 상기 혼합 플라즈마가 철계 합금(2) 표면에 형성된 크롬계 코팅층 상에 코팅되어 침질탄화층을 형성한다.Finally, the mixed plasma is coated on the chromium-based coating layer formed on the surface of the iron-based alloy (2) to form an precipitated carbonization layer.
본 발명의 실시예에 있어서, 상기 질소 플라즈마 및 탄화수소 플라즈마는 진공 펌프(40)의 영향력으로 진공 챔버(10)의 중심부에 위치하고, 상기 질소 플라즈마 및 탄화수소 플라즈마는 진공 펌프(40)가 기체를 빨아들이는 방향으로 이동하여 진공 챔버(10) 중심부에 위치하는 크롬계 코팅층이 코팅된 철계 합금(2)에 침투하여 상기 철계 합금(2) 표면에 침질탄화층이 형성될 수 있다.In the embodiment of the present invention, the nitrogen plasma and hydrocarbon plasma are located in the center of the vacuum chamber 10 under the influence of the vacuum pump 40, the nitrogen plasma and hydrocarbon plasma is sucked gas by the vacuum pump 40 In order to penetrate the iron-based alloy (2) coated with the chromium-based coating layer located in the center of the vacuum chamber 10 in the direction of the impregnated carbonization layer may be formed on the surface of the iron-based alloy (2).
이하, 철계 합금의 코팅 방법으로 코팅된 고경도 및 저마찰 특성을 갖는 제품에 대하여 설명한다.Hereinafter, a product having high hardness and low friction characteristics coated by the iron-based coating method will be described.
본 발명의 실시예에 있어서, 상기 제품의 경도는 1450 HV 내지 2400 HV일 수 있다.In an embodiment of the present invention, the hardness of the product may be 1450 HV to 2400 HV.
통상적인 철계 합금의 경도는 800 HV 정도 인데, 본 발명은 팩 시멘테이션 및 스크린 플라즈마 공정을 이용하여 철계 합금의 경도를 높일 수 있다. 따라서 상기 공정으로 제조된 철계 합금을 모재로 하는 제품의 경도는 1450 HV 내지 2400 HV일 수 있다.Conventional iron-based alloy hardness of about 800 HV, the present invention can increase the hardness of the iron-based alloy using a pack cementation and screen plasma process. Therefore, the hardness of the product based on the iron-based alloy prepared in the above process may be 1450 HV to 2400 HV.
본 발명의 실시예에 있어서, 상기 제품의 마찰계수는 0.3 내지 0.4일 수 있다.In an embodiment of the present invention, the friction coefficient of the product may be 0.3 to 0.4.
본 발명은 팩 시멘테이션 및 스크린 플라즈마 공정을 이용하여 철계 합금의 마찰계수를 저감시킬 수 있다. 따라서 상기 공정으로 제조된 철계 합금을 모재로 하는 제품의 마찰계수는 0.3 내지 0.4일 수 있다.The present invention can reduce the coefficient of friction of the iron-based alloy using a pack cementation and screen plasma process. Therefore, the coefficient of friction of the product based on the iron-based alloy prepared in the above process may be 0.3 to 0.4.
이하, 본 발명의 제조예 및 실험예를 기재한다. 그러나, 이들 제조예 및 실험예는 본 발명의 구성 및 효과를 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이에 한정되는 것은 아님을 명시한다.Hereinafter, the preparation examples and experimental examples of the present invention. However, these preparation examples and experimental examples are intended to explain the configuration and effects of the present invention in more detail, and the scope of the present invention is not limited thereto.
[제조예 1][Production Example 1]
베어링 강(SUJ2) 철계 합금에 크롬( Cr ) 코팅층을 형성한 후, 상기 코팅층 상에 침질탄화(SPNC, Screen Plasma Nitro-carburizing)층이 코팅된 철계 합금(SUJ2-Cr-SPNC) 제조 After forming a chromium ( Cr ) coating layer on the bearing steel (SUJ2) iron -based alloy, manufacturing a ferrous alloy (SUJ2-Cr-SPNC) coated with a screen plasma nitro-carburizing (SPNC) layer on the coating layer
1-1. 팩 시멘테이션을 이용한 크롬 코팅층 제조1-1. Preparation of Chrome Coating Layer Using Pack Cementation
철계 모재로 SUJ2를 준비한 후, 크롬 분말 30 wt%, 테트라플루오르붕산칼륨 1 wt% 및 산화알루미늄 69 wt%를 포함하는 팩 혼합물을 제조하였다. 다음으로, SUJ2 및 팩 혼합물을 팩에 투입하고, 팩을 진공 챔버에 장입한 후 진공 챔버 내부를 1 Torr의 진공도로 진공화하였다. 다음으로, 진공 챔버 내부에 아르곤 가스를 3회 공급하여 퍼징을 수행하고, 공급되는 아르곤 가스의 유량을 낮추어 진공 챔버 내부가 1 기압으로 유지되게 하였다. 다음으로, 진공 챔버 내부의 온도를 950 ℃로 설정한 상태로 10 시간을 유지하여 크롬 코팅층을 제조하였다.After preparing SUJ2 as an iron base material, a pack mixture including 30 wt% chromium powder, 1 wt% potassium tetrafluoroborate and 69 wt% aluminum oxide was prepared. Next, SUJ2 and the pack mixture were put into a pack, the pack was charged into a vacuum chamber, and the inside of the vacuum chamber was evacuated to a vacuum of 1 Torr. Next, purging was performed by supplying argon gas three times in the vacuum chamber, and lowering the flow rate of the supplied argon gas to maintain the inside of the vacuum chamber at 1 atmosphere. Next, the chromium coating layer was manufactured by maintaining the temperature inside the vacuum chamber at 950 ° C. for 10 hours.
1-2. 스크린 플라즈마를 이용하여 크롬 코팅층이 제조된 SUJ2에 침질탄화층 제조1-2. Manufacture of nitriding carbide layer on SUJ2 with chromium coating layer using screen plasma
상기 크롬 코팅층이 제조된 SUJ2를 진공 챔버에 장입한 후, 장입된 SUJ2를 이중 스크린으로 커버하고, 상기 진공 챔버 내의 진공도를 5×10-3 Torr 수준으로 30 분간 유지한다. 이후 진공 챔버에 제1수소 가스를 500 sccm 투입하여 진공도를 0.1 Torr로 유지하도록 한다. 다음으로, 스크린에 5 A의 전류를 인가하여 스크린 사이에서 발생하는 고밀도의 글로우(glow)를 이용하여 진공 챔버가 저온에서 고온으로 온도 변화가 일어날 때 열팽창에 의한 균열 방지를 위해 예열한다. 다음으로, 15 A의 전류를 30 분간 인가하여 진공 챔버 내부의 온도를 250 ℃까지 상승시킨다. 연속적으로 챔버에 20 A 전류를 인가하여 진공 챔버 내부의 온도를 450 ℃까지 상승시킨 후 같은 전류를 인가한 상태에서 질소 가스 250 sccm, 제2수소 가스 350 sccm을 1 시간 동안 투입 한다. 탄화수소 가스는 5 sccm을 2 초 주입한 후 5 초 정지하는 간격으로 펄스 주입하는 과정을 1 시간 동안 수행하여 크롬 코팅층이 제조된 SUJ2에 침질탄화층을 제조하였다.After charging the SUJ2 having the chromium coating layer prepared in a vacuum chamber, the charged SUJ2 is covered with a double screen, and the degree of vacuum in the vacuum chamber is maintained at a level of 5 × 10 −3 Torr for 30 minutes. Thereafter, 500 sccm of the first hydrogen gas is added to the vacuum chamber to maintain the vacuum at 0.1 Torr. Next, a current of 5 A is applied to the screen and a high density glow generated between the screens is used to preheat the vacuum chamber to prevent cracking due to thermal expansion when a temperature change occurs from low to high temperatures. Next, a current of 15 A is applied for 30 minutes to raise the temperature inside the vacuum chamber to 250 ° C. 20 A current was continuously applied to the chamber to raise the temperature inside the vacuum chamber to 450 ° C., and then 250 sccm of nitrogen gas and 350 sccm of second hydrogen gas were added for 1 hour while the same current was applied. Hydrocarbon gas was injected for 2 hours after the injection of 5 sccm for 2 seconds and then pulsed at intervals of 5 seconds to prepare an impregnated carbonized layer on SUJ2 having a chromium coating layer.
[제조예 2][Production Example 2]
베어링 강 철계 합금에 크롬-철( Cr -Fe) 코팅층을 형성한 후, 상기 코팅층 상에 침질탄화층이 코팅된 철계 합금(SUJ2-Cr-Fe-SPNC) 제조 After forming a chromium-iron ( Cr- Fe) coating layer on the bearing steel ferroalloy, an iron-based alloy (SUJ2-Cr-Fe-SPNC) coated with a carbonization layer on the coating layer was manufactured.
상기 제조예 1에서 크롬 분말 대신 크롬 및 철 분말을 사용한 것을 제외하고는 동일한 조건으로 수행하여 크롬-철 코팅층이 제조된 SUJ2에 침질탄화층을 제조하였다.Except for using chromium and iron powder instead of chromium powder in Preparation Example 1 was prepared in the carbonized layer on the SUJ2 chromium-iron coating layer prepared.
[제조예 3][Production Example 3]
베어링 강 철계 합금에 크롬-철-바나듐( Cr -Fe-V) 코팅층을 형성한 후, 상기 코팅층 상에 침질탄화층이 코팅된 철계 합금(SUJ2-Cr-Fe-V-SPNC) 제조 After forming a chromium-iron-vanadium ( Cr- Fe-V) coating layer on the bearing steel ferroalloy, an iron- based alloy (SUJ2-Cr-Fe-V-SPNC) coated with a carbonization layer on the coating layer was manufactured.
상기 제조예 1에서 크롬 분말 대신 크롬, 철 및 바나듐 분말을 사용한 것을 제외하고는 동일한 조건으로 수행하여 크롬-철-바나듐 코팅층이 제조된 SUJ2에 침질탄화층을 제조하였다.Except for using chromium, iron and vanadium powder instead of the chromium powder in Preparation Example 1 was prepared in the carbonized layer on the SUJ2 chromium-iron-vanadium coating layer prepared.
[제조예 4][Production Example 4]
스테인리스 강(SUS316) 철계 합금에 크롬 코팅층을 형성한 후, 상기 코팅층 상에 침질탄화층이 코팅된 철계 합금(SUS316-Cr-SPNC) 제조 After the chromium coating layer is formed on the stainless steel (SUS316) iron alloy, an iron alloy (SUS316-Cr-SPNC) coated with a carbonization layer on the coating layer is manufactured.
상기 제조예 1에서 베어링 강 대신 스테인리스 강을 사용한 것을 제외하고는 동일한 조건으로 수행하여 크롬 코팅층이 제조된 SUS316에 침질탄화층을 제조하였다.Except for using a stainless steel instead of the bearing steel in Preparation Example 1 was prepared in the carbonized layer on the SUS316 chromium coating layer prepared by the same conditions.
[제조예 5]Production Example 5
스테인리스 강 철계 합금에 크롬-철 코팅층을 형성한 후, 상기 코팅층 상에 침질탄화층이 코팅된 철계 합금(SUS316-Cr-Fe-SPNC) 제조 After the chromium-iron coating layer was formed on the stainless steel iron alloy, an iron-based alloy (SUS316-Cr-Fe-SPNC) coated with a carbonization layer on the coating layer was manufactured.
상기 제조예 1에서 베어링 강 대신 스테인리스 강을 사용하고, 크롬 분말 대신 크롬 및 철 분말을 사용한 것을 제외하고는 동일한 조건으로 수행하여 크롬-철 코팅층이 제조된 SUS316에 침질탄화층을 제조하였다.Except for using the stainless steel instead of the bearing steel in Preparation Example 1, and chromium and iron powder instead of chromium powder was carried out under the same conditions to prepare a immersion carbonized layer on SUS316 chromium-iron coating layer prepared.
[제조예 6][Manufacture example 6]
스테인리스 강 철계 합금에 크롬-철-바나듐 코팅층을 형성한 후, 상기 코팅층 상에 침질탄화층이 코팅된 철계 합금(SUS316-Cr-Fe-V-SPNC) 제조 After the chromium-iron-vanadium coating layer was formed on the stainless steel iron alloy, an iron- based alloy (SUS316-Cr-Fe-V-SPNC) coated with a carbonization layer on the coating layer was manufactured.
상기 제조예 1에서 베어링 강 대신 스테인리스 강을 사용하고, 크롬 분말 대신 크롬, 철 및 바나듐 분말을 사용한 것을 제외하고는 동일한 조건으로 수행하여 크롬-철-바나듐 코팅층이 제조된 SUS316에 침질탄화층을 제조하였다.Except for using the stainless steel instead of the bearing steel in Preparation Example 1, chromium, iron and vanadium powder was carried out under the same conditions except that the chromium-iron-vanadium coating layer prepared in the SUS316 to produce a carbonized carbon layer It was.
[비교예 1]Comparative Example 1
베어링 강 철계 합금에 크롬 코팅층을 형성한 후, 상기 코팅층 상에 침탄화(SPNC, Screen Plasma Carburizing)층이 코팅된 철계 합금(SUJ2-Cr-SPC) 제조 After the formation of the chromium coating layer on an iron-based alloy bearing steel, carburizing screen on the coating layer (SPNC, Screen Plasma Carburizing) layer is an iron-based alloy (SUJ2-Cr-SPC) coating prepared
상기 제조예 1에서 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 크롬 코팅층이 제조된 SUJ2에 침탄화층을 제조하였다.A carburized layer was prepared in SUJ2 in which a chromium coating layer was prepared under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 1.
[비교예 2]Comparative Example 2
베어링 강 철계 합금에 침질탄화층이 코팅된 철계 합금(SUJ2-SPNC) 제조Manufacture of ferrous alloy (SUJ2-SPNC) coated with a hardened carbide layer on bearing steel ferrous alloy
상기 제조예 1에서 팩 시멘테이션을 수행하지 않는 것을 제외하고는 동일한 조건으로 수행하여 SUJ2에 침질탄화층을 제조하였다.Except not performing the pack cementation in Preparation Example 1 was carried out under the same conditions to prepare a carbonized carbon layer in SUJ2.
[비교예 3]Comparative Example 3
베어링 강 철계 합금에 침탄화층이 코팅된 철계 합금(SUJ2-SPC) 제조Manufacturing ferroalloy (SUJ2-SPC) coated with carburized layer on bearing steel ferroalloy
상기 제조예 1에서 팩 시멘테이션을 수행하지 않고, 스크린 플라즈마 이용 시 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 SUJ2에 침탄화층을 제조하였다.The carburized layer was prepared in SUJ2 under the same conditions except that the pack cementation was not performed in Preparation Example 1, and the nitrogen gas was not used when the screen plasma was used and the hydrocarbon gas was continuously injected.
[비교예 4][Comparative Example 4]
베어링 강 철계 합금에 크롬-철 코팅층을 형성한 후, 상기 코팅층 상에 침탄화층이 코팅된 철계 합금(SUJ2-Cr-Fe-SPC) 제조 After forming a chromium-iron coating layer on the bearing steel iron alloy, the iron-based alloy (SUJ2-Cr-Fe-SPC) manufactured by coating a carburizing layer on the coating layer
상기 제조예 2에서 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 크롬-철 코팅층이 제조된 SUJ2에 침탄화층을 제조하였다.The carburized layer was prepared in SUJ2 in which the chromium-iron coating layer was prepared under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 2.
[비교예 5][Comparative Example 5]
베어링 강 철계 합금에 크롬-철-바나듐 코팅층을 형성한 후, 상기 코팅층 상에 침탄화층이 코팅된 철계 합금(SUJ2-Cr-Fe-V-SPC) 제조 After forming a chromium-iron-vanadium coating layer on the bearing steel iron alloy, the iron- based alloy (SUJ2-Cr-Fe-V-SPC) having a carburized layer coated on the coating layer was manufactured.
상기 제조예 3에서 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 크롬-철-바나듐 코팅층이 제조된 SUJ2에 침탄화층을 제조하였다.In Example 3, a carburized layer was prepared in SUJ2 in which a chromium-iron-vanadium coating layer was prepared under the same conditions except for continuously injecting a hydrocarbon gas without using nitrogen gas.
[비교예 6]Comparative Example 6
스테인리스 강 철계 합금에 크롬 코팅층을 형성한 후, 상기 코팅층 상에 탄화층이 코팅된 철계 합금(SUS316-Cr-SPC) 제조Producing stainless steel after forming the chromium coating on the iron-based alloy, an iron-based alloy needle carbide layer is coated (SUS316-Cr-SPC) on the coating layer
상기 제조예 4에서 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 크롬 코팅층이 제조된 SUS316에 침탄화층을 제조하였다.The carburized layer was prepared in SUS316, in which the chromium coating layer was prepared under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 4.
[비교예 7]Comparative Example 7
스테인리스 강 철계 합금에 크롬-철 코팅층을 형성한 후, 상기 코팅층 상에 침탄화층이 코팅된 철계 합금(SUS316-Cr-Fe-SPC) 제조 After the chromium-iron coating layer was formed on the stainless steel iron alloy, an iron-based alloy (SUS316-Cr-Fe-SPC) having a carburized layer coated on the coating layer was manufactured.
상기 제조예 5에서 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 크롬-철 코팅층이 제조된 SUS316에 침탄화층을 제조하였다.The carburized layer was prepared in SUS316, in which the chromium-iron coating layer was manufactured under the same conditions except that nitrogen gas was not used and the hydrocarbon gas was continuously injected in Preparation Example 5.
[비교예 8]Comparative Example 8
스테인리스 강 철계 합금에 크롬-철-바나듐 코팅층을 형성한 후, 상기 코팅층 상에 침탄화층이 코팅된 철계 합금(SUS316-Cr-Fe-SPC) 제조 After the chromium-iron-vanadium coating layer was formed on the stainless steel iron alloy, an iron- based alloy (SUS316-Cr-Fe-SPC) having a carburized layer coated thereon was manufactured.
상기 제조예 6에서 질소 가스를 사용하지 않고, 탄화수소 가스를 지속적으로 주입하는 것을 제외하고는 동일한 조건으로 수행하여 크롬-철-바나듐 코팅층이 제조된 SUS316에 침탄화층을 제조하였다.In Example 6, a carburized layer was prepared on SUS316 in which a chromium-iron-vanadium coating layer was prepared under the same conditions except for continuously injecting a hydrocarbon gas without using nitrogen gas.
[실험예 1]Experimental Example 1
SUJ2-크롬계 코팅층-SPNC 및 SUJ2-크롬계 코팅층-SPC의 결정구조 분석Crystal Structure Analysis of SUJ2-Chromium Coating Layer-SPNC and SUJ2-Chromium Coating Layer-SPC
팩 시멘테이션 및 스크린 플라즈마로 제조된 코팅층이 존재하는 SUJ2의 결정구조를 확인하기 위하여 X-선 회절분석을 실시하였다.X-ray diffraction analysis was performed to confirm the crystal structure of SUJ2 in which the coating layer prepared by pack cementation and screen plasma is present.
도 4는 팩 시멘테이션으로 크롬계 코팅층이 코팅된 SUJ2에 침질탄화층을 코팅한 제조예 1(SUJ2-Cr-SPNC), 제조예 2(SUJ2-Cr-Fe-SPNC) 및 제조예 3(SUJ2-Cr-Fe-V-SPNC)의 X-선 회절패턴들이다. 또한, 도 5는 팩 시멘테이션으로 크롬계 코팅층이 코팅된 SUJ2에 침탄화층을 코팅한 비교예 1(SUJ2-Cr-SPC), 비교예 4(SUJ2-Cr-Fe-SPC) 및 비교예 5(SUJ2-Cr-Fe-V-SPC)의 X-선 회절패턴들이다.4 is a manufacturing example 1 (SUJ2-Cr-SPNC) coated with an immersion carbide layer on SUJ2 coated with a chromium-based coating layer by pack cementation, Preparation Example 2 (SUJ2-Cr-Fe-SPNC) and Preparation Example 3 (SUJ2 X-ray diffraction patterns of -Cr-Fe-V-SPNC). 5 is Comparative Example 1 (SUJ2-Cr-SPC), Comparative Example 4 (SUJ2-Cr-Fe-SPC) and Comparative Example 5 (coated with a carburized layer on SUJ2 coated with a chromium-based coating layer by pack cementation). X-ray diffraction patterns of SUJ2-Cr-Fe-V-SPC).
도 4 내지 도 5를 참조하면, 스크린 플라즈마로 침질탄화층을 형성한 SUJ2는 침탄화층을 형성한 SUJ2와 상이한 결정구조를 나타내며, 팩 시멘테이션으로 코팅층을 제조하기 위한 크롬계 물질에 따라 상이한 결정구조를 나타내는 것을 확인하였다. 이러한 결과로, 팩 시멘테이션 및 스크린 플라즈마를 이용하여 원하는 결정상을 다양하게 제조할 수 있는 것으로 판단할 수 있다. 또한, 팩 시멘테이션 및 스크린 플라즈마를 SUJ2에 코팅층을 제조하기 위한 공정으로 함께 수행할 수 있는 것으로 판단할 수 있다.4 to 5, the SUJ2 having the precipitated carbonization layer formed by the screen plasma has a different crystal structure from that of the SUJ2 having the carbonaceous layer formed therein, and the crystal structure differs depending on the chromium-based material for preparing the coating layer by pack cementation. It confirmed that it represents. As a result, it can be determined that various desired crystal phases can be produced by using pack cementation and screen plasma. In addition, it can be determined that the pack cementation and the screen plasma can be performed together in a process for manufacturing a coating layer on SUJ2.
[실험예 2]Experimental Example 2
SUS316-크롬계 코팅층-SPNC 및 SUS316-크롬계 코팅층-SPC의 결정구조 분석Crystal Structure Analysis of SUS316-Chrome-based Coating Layer-SPNC and SUS316-Chrome-based Coating Layer-SPC
팩 시멘테이션 및 스크린 플라즈마로 제조된 코팅층이 존재하는 SUS316의 결정구조를 확인하기 위하여 X-선 회절분석을 실시하였다.X-ray diffraction analysis was performed to confirm the crystal structure of SUS316 in which the coating layer prepared by pack cementation and screen plasma is present.
도 6은 팩 시멘테이션으로 크롬계 코팅층이 코팅된 SUS316에 침질탄화층을 코팅한 제조예 4(SUS316-Cr-SPNC), 제조예 5(SUS316-Cr-Fe-SPNC) 및 제조예 6(SUS316-Cr-Fe-V-SPNC)의 X-선 회절패턴들이다. 또한, 도 7은 팩 시멘테이션으로 크롬계 코팅층이 코팅된 SUS316에 침탄화층을 코팅한 비교예 6(SUS316-Cr-SPC), 비교예 7(SUS316-Cr-Fe-SPC) 및 비교예 8(SUS316-Cr-Fe-V-SPC)의 X-선 회절패턴들이다.6 is a manufacturing example 4 (SUS316-Cr-SPNC), Manufacture Example 5 (SUS316-Cr-Fe-SPNC) and Manufacture Example 6 (SUS316) coated with an immersion carbide layer on the SUS316 coated with a chromium-based coating layer by the pack cementation X-ray diffraction patterns of -Cr-Fe-V-SPNC). In addition, Figure 7 is Comparative Example 6 (SUS316-Cr-SPC), Comparative Example 7 (SUS316-Cr-Fe-SPC) and Comparative Example 8 ( X-ray diffraction patterns of SUS316-Cr-Fe-V-SPC).
도 6 내지 도 7을 참조하면, 스크린 플라즈마로 침질탄화층을 형성한 SUS316은 침탄화층을 형성한 SUS316과 상이한 결정구조를 나타내며, 팩 시멘테이션으로 코팅층을 제조하기 위한 크롬계 물질에 따라 상이한 결정구조를 나타내는 것을 확인하였다. 이러한 결과로, 팩 시멘테이션 및 스크린 플라즈마를 이용하여 원하는 결정상을 다양하게 제조할 수 있는 것으로 판단할 수 있다. 또한, 팩 시멘테이션 및 스크린 플라즈마를 SUS316에 코팅층을 제조하기 위한 공정으로 함께 수행할 수 있는 것으로 판단할 수 있다.Referring to FIGS. 6 to 7, the SUS316 having the carbonaceous layer formed with the screen plasma has a different crystal structure from that of the SUS316 having the carburized layer, and has a different crystal structure depending on the chromium-based material for preparing the coating layer by pack cementation. It confirmed that it represents. As a result, it can be determined that various desired crystal phases can be produced by using pack cementation and screen plasma. In addition, it can be determined that the pack cementation and the screen plasma can be performed together in a process for manufacturing a coating layer on SUS316.
[실험예 3]Experimental Example 3
시멘테이션 및 스크린 플라즈마로 제조된 코팅층을 포함하는 SUJ2의 단면 형상 및 코팅층의 원소 함량 분석Analysis of the cross-sectional shape and elemental content of the coating layer of SUJ2 including the coating layer made of pack cementation and screen plasma
코팅층이 형성된 SUJ2의 단면 형상 및 깊이에 따른 원소 함량을 분석하기 위하여 코팅층을 포함하는 SUJ2를 마운팅(mounting)한 후 염산으로 에칭하여 단면이 드러난 샘플을 제작하였다. 상기 샘플의 단면 형상을 광학 현미경(Optical Microscope)을 사용하여 분석하였고, 글로우 방전 분광분석법(Glow Discharge Optical Emission Spectrometry, GD-OES)으로 원소 함량 분석을 실시하였다.In order to analyze the element content according to the cross-sectional shape and depth of the SUJ2 having a coating layer, a sample having a cross section was prepared by mounting SUJ2 including the coating layer and etching with hydrochloric acid. The cross-sectional shape of the sample was analyzed using an optical microscope and elemental content analysis was performed by glow discharge optical emission spectrometry (GD-OES).
도 8은 제조예 1(SUJ2-Cr-SPNC)의 단면 형상을 나타낸 이미지이고, 도 9는 제조예 1의 깊이에 따른 원소 함량을 나타낸 그래프이다. 또한, 도 10은 제조예 2(SUJ2-Cr-Fe-SPNC)의 단면 형상을 나타낸 이미지이고, 도 11은 제조예 2의 깊이에 따른 원소 함량을 나타낸 그래프이다. 또한, 도 12는 제조예 3(SUJ2-Cr-Fe-V-SPNC)의 단면 형상을 나타낸 이미지이고, 도 13은 제조예 3의 깊이에 따른 원소 함량을 나타낸 그래프이다.8 is an image showing the cross-sectional shape of Preparation Example 1 (SUJ2-Cr-SPNC), Figure 9 is a graph showing the element content according to the depth of Preparation Example 1. 10 is an image showing the cross-sectional shape of Preparation Example 2 (SUJ2-Cr-Fe-SPNC), Figure 11 is a graph showing the element content according to the depth of Preparation Example 2. In addition, Figure 12 is an image showing the cross-sectional shape of Preparation Example 3 (SUJ2-Cr-Fe-V-SPNC), Figure 13 is a graph showing the element content according to the depth of Preparation Example 3.
도 8 내지 도 13을 참조하면, 크롬 코팅층 및 침질탄화층이 존재하는 제조예 1의 최표면에서 질소, 탄소 및 크롬 원소의 함량이 5 wt% 이상 존재하는 것을 확인하였으며, 크롬 코팅층의 두께는 약 5 μm인 것을 확인하였다. 또한, SUJ2에 코팅된 코팅층이 균일하게 형성된 것을 확인하였다. 팩 시멘테이션으로 형성된 크롬계 코팅층에 철(Fe)이 포함된 제조예 2 및 제조예 3은 SUJ2의 최표면에 철(Fe)의 함량이 85 wt% 이상 존재하지만 그 두께는 매우 얇으며, 질소 및 탄소의 원소도 5 wt% 정도 존재하는 것을 확인하였다. 제조예 2 및 제조예 3의 코팅층의 최표면에서부터 1 μm 깊이 이후부터는 크롬 원소의 양이 다른 원소보다 많으며, 크롬 코팅층이 30 μm 이상으로 존재하는 것을 확인하였다. 또한, 제조예 3은 바나듐 코팅층이 25 μm 이상 존재하는 것을 확인하였다.8 to 13, it was confirmed that the content of nitrogen, carbon and chromium elements 5 wt% or more at the outermost surface of Preparation Example 1 in which the chromium coating layer and the precipitated carbonization layer are present, and the thickness of the chromium coating layer is about It confirmed that it was 5 micrometers. In addition, it was confirmed that the coating layer coated on SUJ2 was formed uniformly. In Preparation Example 2 and Example 3 containing iron (Fe) in the chromium-based coating layer formed by pack cementation, the iron (Fe) content was present at the outermost surface of SUJ2, but the thickness thereof was very thin. And it was confirmed that the element of carbon also exists about 5 wt%. Since the depth of 1 μm from the outermost surfaces of the coating layers of Preparation Examples 2 and 3, the amount of chromium element is higher than the other elements, it was confirmed that the chromium coating layer is present in more than 30 μm. In addition, Preparation Example 3 confirmed that the vanadium coating layer is present in 25 μm or more.
도 14는 비교예 1(SUJ2-Cr-SPC)의 단면 형상을 나타낸 이미지이고, 도 15는 비교예 1의 코팅층의 원소 함량을 나타낸 그래프이다. 또한, 도 16은 비교예 4(SUJ2-Cr-Fe-SPC)의 단면 형상을 나타낸 이미지이고, 도 17은 비교예 4의 코팅층의 원소 함량을 나타낸 그래프이다. 또한, 도 18은 비교예 5(SUJ2-Cr-Fe-V-SPC)의 단면 형상을 나타낸 이미지이고, 도 19는 비교예 5의 코팅층의 원소 함량을 나타낸 그래프이다.14 is an image showing the cross-sectional shape of Comparative Example 1 (SUJ2-Cr-SPC), Figure 15 is a graph showing the element content of the coating layer of Comparative Example 1. In addition, Figure 16 is an image showing the cross-sectional shape of Comparative Example 4 (SUJ2-Cr-Fe-SPC), Figure 17 is a graph showing the element content of the coating layer of Comparative Example 4. In addition, Figure 18 is an image showing the cross-sectional shape of Comparative Example 5 (SUJ2-Cr-Fe-V-SPC), Figure 19 is a graph showing the element content of the coating layer of Comparative Example 5.
도 8 내지 도 19를 참조하면, 스크린 플라즈마로 침질탄화층이 형성된 SUJ2 및 침탄화층이 형성된 SUJ2의 단면 형상은 유사한 것으로 확인되었다. 또한, 제조예 1 및 비교예 1 또는 제조예 2 및 비교예 4의 코팅층의 원소 함량은 탄소를 제외하고 유사한 수준으로 확인되었다. 다만, 비교예 5는 제조예 3보다 크롬 및 바나듐의 원소가 코팅층의 더 깊은 곳까지 존재하며 그 깊이는 35 μm 이상인 것으로 확인되었다.8 to 19, it was confirmed that the cross-sectional shapes of SUJ2 having the nitriding carbonization layer and SUJ2 having the nitriding carbide layer formed by screen plasma were similar. In addition, the element content of the coating layer of Preparation Example 1 and Comparative Example 1 or Preparation Example 2 and Comparative Example 4 was confirmed at a similar level except for carbon. However, in Comparative Example 5, elements of chromium and vanadium existed to a deeper depth of the coating layer than Preparation Example 3, and the depth thereof was confirmed to be 35 μm or more.
이러한 결과를 바탕으로, 팩 시멘테이션에서 크롬계 물질로 크롬 및 철 또는 크롬, 철 또는 바나듐을 혼합하여 코팅하면, 크로마이징이 되는 SUJ2의 깊이가 더 깊어지며, 스크린 플라즈마로 형성되는 침질탄화층 또는 침탄화층의 두께는 약 1 μm인 것으로 판단할 수 있다.Based on these results, when chromium and iron or chromium, iron or vanadium are mixed and coated with chromium-based materials in the pack cementation, the depth of the chromizing SUJ2 becomes deeper, and the precipitated carbon layer formed by screen plasma or The thickness of the carburized layer may be determined to be about 1 μm.
[실험예 4]Experimental Example 4
시멘테이션 및 스크린 플라즈마로 제조된 코팅층을 포함하는 SUS316의 면 형상 및 코팅층의 원소 함량 분석 However element content analysis of the surface shape and the coating layer of the coating layer made of SUS316 including a pack cementation and plasma screen
코팅층이 형성된 SUS316의 단면 형상 및 깊이에 따른 원소 함량을 분석하기 위하여 코팅층을 포함하는 SUS316을 마운팅(mounting)한 후 왕수로 에칭하여 단면이 드러난 샘플을 제작하였다. 상기 샘플의 단면 형상을 광학 현미경(Optical Microscope)을 사용하여 분석하였고, 글로우 방전 분광분석법(Glow Discharge Optical Emission Spectrometry, GD-OES)으로 원소 함량 분석을 실시하였다.In order to analyze the element content according to the cross-sectional shape and depth of the SUS316 formed with the coating layer was mounted (SUS316) containing the coating layer (etched) and then etched with aqua regia to prepare a sample with the cross-section exposed. The cross-sectional shape of the sample was analyzed using an optical microscope and elemental content analysis was performed by glow discharge optical emission spectrometry (GD-OES).
도 20은 제조예 4(SUS316-Cr-SPNC)의 단면 형상을 나타낸 이미지이고, 도 21은 제조예 4의 깊이에 따른 원소 함량을 나타낸 그래프이다. 또한, 도 22는 제조예 5(SUS316-Cr-Fe-SPNC)의 단면 형상을 나타낸 이미지이고, 도 23은 제조예 5의 깊이에 따른 원소 함량을 나타낸 그래프이다. 또한, 도 24는 제조예 6(SUS316-Cr-Fe-V-SPNC)의 단면 형상을 나타낸 이미지이고, 도 25는 제조예 6의 깊이에 따른 원소 함량을 나타낸 그래프이다.20 is an image showing the cross-sectional shape of Preparation Example 4 (SUS316-Cr-SPNC), Figure 21 is a graph showing the element content according to the depth of Preparation Example 4. 22 is an image showing the cross-sectional shape of Preparation Example 5 (SUS316-Cr-Fe-SPNC), Figure 23 is a graph showing the element content according to the depth of Preparation Example 5. 24 is an image showing the cross-sectional shape of Preparation Example 6 (SUS316-Cr-Fe-V-SPNC), Figure 25 is a graph showing the element content according to the depth of Preparation Example 6.
도 20 내지 도 25를 참조하면, 제조예 4의 크롬 코팅층 및 침질탄화층이 존재하는 제조예 4의 최표면에서 크롬 원소의 함량이 20 wt% 이상 존재하는 것을 확인하였으며, 크롬 코팅층의 두께는 60 μm 이상인 것을 확인하였다. 또한, SUS316에 코팅된 코팅층이 균일하게 형성된 것을 확인하였다. 팩 시멘테이션으로 형성된 크롬계 코팅층에 철(Fe)이 포함된 제조예 5는 SUS316의 최표면에 철(Fe)의 함량이 90 wt% 이상 존재하지만 그 두께는 매우 얇으며, 질소 및 탄소의 원소도 5 wt% 정도 존재하는 것을 확인하였다. 제조예 5의 코팅층의 최표면에서부터 1 μm 깊이 이후부터는 크롬 원소의 양이 다른 원소보다 많으며, 크롬 코팅층이 60 μm 이상으로 존재하는 것을 확인하였다. 또한, 제조예 5는 바나듐 코팅층이 최표면에서 70 wt% 이상 존재하며, 제조예 5의 코팅층의 최표면에서부터 10 μm 깊이 이후부터 원소의 함량이 균일한 코팅층이 형성되는 것을 확인하였다.20 to 25, it was confirmed that the content of the elemental chromium 20 wt% or more in the outermost surface of Preparation Example 4 in which the chromium coating layer and the precipitated carbonization layer of Preparation Example 4 is present, the thickness of the chromium coating layer is 60 It confirmed that it was more than micrometer. In addition, it was confirmed that the coating layer coated on the SUS316 is formed uniformly. In Preparation Example 5 in which iron (Fe) is included in the chromium-based coating layer formed by pack cementation, iron (Fe) is present at the outermost surface of SUS316, but the thickness thereof is very thin. 5 wt% was confirmed to exist. After the depth of 1 μm from the outermost surface of the coating layer of Preparation Example 5, the amount of chromium element was higher than that of other elements, and it was confirmed that the chromium coating layer was present at 60 μm or more. In addition, in Preparation Example 5, the vanadium coating layer was present at 70 wt% or more at the outermost surface, and it was confirmed that a coating layer having a uniform content of elements was formed after the depth of 10 μm from the outermost surface of the coating layer of Preparation Example 5.
도 26은 비교예 6(SUS316-Cr-SPC)의 단면 형상을 나타낸 이미지이고, 도 27은 비교예 6의 코팅층의 원소 함량을 나타낸 그래프이다. 또한, 도 28은 비교예 7(SUS316-Cr-Fe-SPC)의 단면 형상을 나타낸 이미지이고, 도 29는 비교예 7의 코팅층의 원소 함량을 나타낸 그래프이다. 또한, 도 30은 비교예 8(SUS316-Cr-Fe-V-SPC)의 단면 형상을 나타낸 이미지이고, 도 31은 비교예 8의 코팅층의 원소 함량을 나타낸 그래프이다.26 is an image showing the cross-sectional shape of Comparative Example 6 (SUS316-Cr-SPC), Figure 27 is a graph showing the element content of the coating layer of Comparative Example 6. In addition, Figure 28 is an image showing the cross-sectional shape of Comparative Example 7 (SUS316-Cr-Fe-SPC), Figure 29 is a graph showing the element content of the coating layer of Comparative Example 7. In addition, Figure 30 is an image showing the cross-sectional shape of Comparative Example 8 (SUS316-Cr-Fe-V-SPC), Figure 31 is a graph showing the element content of the coating layer of Comparative Example 8.
도 20 내지 도 31을 참조하면, 스크린 플라즈마로 침질탄화층 또는 침탄화층이 형성된 SUS316의 단면 형상은 유사한 것으로 확인되었다. 또한, 제조예 4 및 비교예 6, 제조예 5 및 비교예 7 또는 제조예 6 및 비교예 8의 코팅층의 원소 함량은 탄소를 제외하고 유사한 수준으로 확인되었다.20 to 31, it was confirmed that the cross-sectional shape of the SUS316 in which the precipitated carbonized layer or the carbonized layer was formed by the screen plasma was similar. In addition, the element content of the coating layer of Preparation Example 4 and Comparative Example 6, Preparation Example 5 and Comparative Example 7 or Preparation Example 6 and Comparative Example 8 was confirmed at a similar level except for carbon.
이러한 결과를 바탕으로, 팩 시멘테이션에서 크롬계 물질로 크롬 및 철 또는 크롬, 철 또는 바나듐을 혼합하여 코팅하면, 크로마이징이 되는 SUS316의 깊이가 더 깊어지며, 스크린 플라즈마로 형성되는 침질탄화층 또는 침탄화층의 두께는 약 1 μm인 것으로 판단할 수 있다.Based on these results, when chromium and iron or chromium, iron or vanadium are mixed and coated with chromium-based materials in pack cementation, the depth of SUS316 to be chromized becomes deeper, and the precipitated carbon layer formed by screen plasma or The thickness of the carburized layer may be determined to be about 1 μm.
[실험예 5]Experimental Example 5
시멘테이션 및 스크린 플라즈마로 제조된 코팅층을 포함하는 SUJ2의 마찰계수 분석 Friction Coefficient Analysis of SUJ2 with Coatings Made by Pack Cementation and Screen Plasma
코팅층의 마찰계수는 제품과 고경도 베어링 볼의 상대마찰계수를 측정하는 볼온디스크(Ball-on-Disk) 방법을 이용하였다. 볼온디스크(Ball-on-Disk) 방법은 6 mm 직경의 STB 2 볼(ball)을 이용하여. 선속도 10 mm/sec, 1N 하중로 구동하고, 이 때 상대습도는 50 %의 마모조건을 유지되도록 항온 항습실에서 마찰계수를 측정하는 방법이다.The friction coefficient of the coating layer was a ball-on-disk method for measuring the relative friction coefficient between the product and the hard bearing ball. The ball-on-disk method uses a 6 mm diameter STB 2 ball. A linear velocity of 10 mm / sec and 1N load is used, and the relative humidity is a method of measuring the coefficient of friction in a constant temperature and humidity chamber to maintain a 50% wear condition.
도 32는 제조예 1(SUJ2-Cr-SPNC)의 마찰계수를 측정한 그래프이고, 도 33은 제조예 2(SUJ2-Cr-Fe-SPNC)의 마찰계수를 측정한 그래프이며, 도 34는 제조예 3(SUJ2-Cr-Fe-V-SPNC)의 마찰계수를 측정한 그래프이다. 도 35는 비교예 1(SUJ2-Cr-SPC)의 마찰계수를 측정한 그래프이고, 도 36은 비교예 4(SUJ2-Cr-Fe-SPC)의 마찰계수를 측정한 그래프이며, 도 37은 비교예 5(SUJ2-Cr-Fe-V-SPC)의 마찰계수를 측정한 그래프이다.32 is a graph measuring the coefficient of friction of Preparation Example 1 (SUJ2-Cr-SPNC), Figure 33 is a graph measuring the coefficient of friction of Preparation Example 2 (SUJ2-Cr-Fe-SPNC), Figure 34 is a graph This is a graph measuring the friction coefficient of Example 3 (SUJ2-Cr-Fe-V-SPNC). 35 is a graph measuring the friction coefficient of Comparative Example 1 (SUJ2-Cr-SPC), FIG. 36 is a graph measuring the friction coefficient of Comparative Example 4 (SUJ2-Cr-Fe-SPC), and FIG. 37 is a comparison. It is a graph which measured the friction coefficient of Example 5 (SUJ2-Cr-Fe-V-SPC).
도 32 내지 도 37을 참조하면, 크롬 코팅층 및 침질탄화층이 존재하는 제조예 1의 마찰계수는 0.5이며, 크롬 코팅층 및 침탄화층이 존재하는 비교예 2의 마찰계수는 0.6이다. 또한, 크롬-철 코팅층 및 침질탄화층이 존재하는 제조예 2의 마찰계수는 0.6이며, 크롬-철 코팅층 및 침탄화층이 존재하는 비교예 4의 마찰계수는 0.7이다. 또한, 크롬-철-바나듐 코팅층 및 침질탄화층이 존재하는 제조예 3의 마찰계수는 0.4이며, 크롬-철-바나듐 코팅층 및 침탄화층이 존재하는 비교예 5의 마찰계수는 0.6이다.32 to 37, the coefficient of friction of Preparation Example 1 in which the chromium coating layer and the carbonization layer are present is 0.5, and the coefficient of friction of Comparative Example 2 in which the chromium coating layer and the carbonization layer is present is 0.6. In addition, the friction coefficient of Preparation Example 2 in which the chromium-iron coating layer and the precipitated carbonization layer is 0.6 is 0.6, and the friction coefficient of Comparative Example 4 in which the chromium-iron coating layer and the carbonization layer is present is 0.7. In addition, the coefficient of friction of Preparation Example 3, in which the chromium-iron-vanadium coating layer and the precipitated carbonization layer are present is 0.4, and the coefficient of friction of Comparative Example 5, in which the chromium-iron-vanadium coating layer and the carbide-carburized layer is present, is 0.6.
이러한 결과로, 크롬-철-바나듐 코팅층 및 침질탄화층이 형성된 제조예 3의 마찰계수가 제조예 1 및 제조예 2보다 낮은 값을 나타내는 것을 확인하였다. 또한, 침질탄화층이 형성된 제조예 1, 제조예 2 및 제조예 3이 질소가 제외된 침탄화층이 형성된 비교예 1, 비교예 4 및 비교예 5보다 마찰계수가 낮은 값을 나타내는 것을 확인하였다. 이와 같은 결과는 팩 시멘테이션에서 크롬계 물질로 크롬 및 철 또는 크롬, 철 또는 바나듐을 혼합하여 코팅하면, 마찰계수가 낮아지는 것으로 판단할 수 있다. 특히 스크린 플라즈마에서 질소 및 탄소를 모투 침투시켜 침질탄화층이 형성된 SUJ2가 탄소만을 침투시켜 침탄화층이 형성된 SUJ2보다 마찰계수가 낮아지며, SUJ2의 마찰계수를 저감시키기 위해서는 SUJ2에 질소 및 탄소를 모두 침투시켜 침질탄화층을 형성하는 것이 바람직한 것으로 판단할 수 있다.As a result, it was confirmed that the friction coefficient of Preparation Example 3 in which the chromium-iron-vanadium coating layer and the precipitated carbonization layer were formed showed lower values than Preparation Examples 1 and 2. In addition, it was confirmed that Preparation Example 1, Preparation Example 2, and Preparation Example 3 in which the carbonaceous carbide layer was formed had a lower coefficient of friction than Comparative Examples 1, 4, and 5, in which the carbonization layer without nitrogen was formed. These results can be determined that the friction coefficient is lowered when the coating is mixed with chromium and iron or chromium, iron or vanadium in the chromium-based material in the pack cementation. In particular, SUJ2, which has an impregnated carbonized layer, penetrates nitrogen and carbon in the screen plasma, and penetrates only carbon, thereby lowering the coefficient of friction than SUJ2, which has formed a carburized layer. It can be judged that it is preferable to form an precipitated carbonized layer.
도 38은 팩 시멘테이션을 수행하지 않고 스크린 플라즈마로 침질탄화층을 형성한 비교예 2(SUJ2-SPNC)의 마찰계수를 측정한 그래프이고, 도 39는 팩 시멘테이션을 수행하지 않고 스크린 플라즈마로 침탄화층을 형성한 비교예 3(SUJ2-SPC)의 마찰계수를 측정한 그래프이다. FIG. 38 is a graph illustrating a friction coefficient of Comparative Example 2 (SUJ2-SPNC) in which an impregnated carbon layer was formed of screen plasma without performing pack cementation, and FIG. 39 is carburized with screen plasma without performing pack cementation. It is a graph which measured the friction coefficient of the comparative example 3 (SUJ2-SPC) which formed the flower layer.
도 32 및 도 38 내지 도 39를 참조하면, 팩 시멘테이션을 수행하지 않고 스크린 플라즈마로 침질탄화층을 형성한 비교예 2의 마찰계수는 0.6이며, 질소를 제외한 침탄화층을 형성한 비교예 3의 마찰계수는 또한 0.6이다.32 and 38 to 39, the frictional coefficient of Comparative Example 2 in which the nitriding carbonization layer was formed by screen plasma without performing pack cementation was 0.6, and the comparative example 3 in which the carbonization layer except for nitrogen was formed was The coefficient of friction is also 0.6.
이러한 결과로, 스크린 플라즈마만을 수행하여 침질탄화층 또는 침탄화층이 형성된 SUJ2는 팩 시멘테이션 및 스크린 플라즈마를 모두 수행한 SUJ2 보다 마찰계수가 높은 것으로 판단할 수 있다. 이와 같은 결과는 SUJ2의 마찰계수를 저감시키기 위해서는 팩 시멘테이션 및 스크린 플라즈마를 모두 수행하는 것이 바람직한 것으로 판단할 수 있다.As a result, the SUJ2 having only the screen plasma and the precipitated carbonized layer or the carbonized layer may be determined to have a higher friction coefficient than the SUJ2 having both the pack cementation and the screen plasma. These results can be determined that it is desirable to perform both the pack cementation and the screen plasma in order to reduce the friction coefficient of SUJ2.
[실험예 6]Experimental Example 6
시멘테이션 및 스크린 플라즈마로 제조된 코팅층을 포함하는 SUS316의 찰계수 분석 Friction coefficient analysis of SUS316 including a coating layer made of a pack cementation and plasma screen
코팅층의 마찰계수는 제품과 고경도 스테인리스 볼의 상대마찰계수를 측정하는 볼온디스크(Ball-on-Disk) 방법을 이용하였다. 볼온디스크(Ball-on-Disk) 방법은 6 mm 직경의 STS 316 볼(ball)을 이용하여. 선속도 10 mm/sec, 1N 하중로 구동하고, 이 때 상대습도는 50 %의 마모조건을 유지되도록 항온 항습실에서 마찰계수를 측정하는 방법이다.The friction coefficient of the coating layer was a ball-on-disk method for measuring the relative friction coefficient between the product and the high hardness stainless steel ball. The ball-on-disk method uses a 6 mm diameter STS 316 ball. A linear velocity of 10 mm / sec and 1N load is used, and the relative humidity is a method of measuring the coefficient of friction in a constant temperature and humidity chamber to maintain a 50% wear condition.
도 40은 제조예 4(SUS316-Cr-SPNC)의 마찰계수를 측정한 그래프이고, 도 41은 제조예 5(SUS316-Cr-Fe-SPNC)의 마찰계수를 측정한 그래프이며, 도 42는 제조예 6(SUS316-Cr-Fe-V-SPNC)의 마찰계수를 측정한 그래프이다. 도 43은 비교예 6(SUS316-Cr-SPC)의 마찰계수를 측정한 그래프이고, 도 44는 비교예 7(SUS316-Cr-Fe-SPC)의 마찰계수를 측정한 그래프이며, 도 45는 비교예 8(SUS316-Cr-Fe-V-SPC)의 마찰계수를 측정한 그래프이다.40 is a graph measuring the coefficient of friction of Preparation Example 4 (SUS316-Cr-SPNC), Figure 41 is a graph measuring the coefficient of friction of Preparation Example 5 (SUS316-Cr-Fe-SPNC), Figure 42 It is a graph which measured the friction coefficient of Example 6 (SUS316-Cr-Fe-V-SPNC). FIG. 43 is a graph measuring friction coefficient of Comparative Example 6 (SUS316-Cr-SPC), FIG. 44 is a graph measuring friction coefficient of Comparative Example 7 (SUS316-Cr-Fe-SPC), and FIG. 45 is a comparison. It is a graph which measured the friction coefficient of Example 8 (SUS316-Cr-Fe-V-SPC).
도 40 내지 도 45를 참조하면, 크롬 코팅층 및 침질탄화층이 존재하는 제조예 4의 마찰계수는 0.6이며, 크롬 코팅층 및 침탄화층이 존재하는 비교예 6의 마찰계수는 0.6이다. 또한, 크롬-철 코팅층 및 침질탄화층이 존재하는 제조예 5의 마찰계수는 0.4이며, 크롬-철 코팅층 및 침탄화층이 존재하는 비교예 7의 마찰계수는 0.6이다. 또한, 크롬-철-바나듐 코팅층 및 침질탄화층이 존재하는 제조예 6의 마찰계수는 0.7이며, 크롬-철-바나듐 코팅층 및 침탄화층이 존재하는 비교예 8의 마찰계수는 0.7이다.40 to 45, the coefficient of friction of Preparation Example 4 in which the chromium coating layer and the carbonization layer are present is 0.6, and the coefficient of friction of Comparative Example 6 in which the chromium coating layer and the carbonization layer is present is 0.6. In addition, the friction coefficient of Preparation Example 5 in which the chromium-iron coating layer and the precipitated carbonization layer are 0.4 is 0.4, and the friction coefficient of Comparative Example 7 in which the chromium-iron coating layer and the carbonization layer is present is 0.6. In addition, the coefficient of friction of Preparation Example 6 in which the chromium-iron-vanadium coating layer and the precipitated carbonization layer are present is 0.7, and the coefficient of friction of Comparative Example 8 in which the chromium-iron-vanadium coating layer and the carbonization layer is present is 0.7.
이러한 결과로, 크롬-철 코팅층 및 침질탄화층이 형성된 제조예 5의 마찰계수가 제조예 4 및 제조예 6보다 낮은 값을 나타내는 것을 확인하였다. 또한, 침질탄화층이 형성된 제조예 5가 질소를 제외한 침탄화층이 형성된 비교예 7보다 마찰계수가 낮은 값을 나타내는 것을 확인하였다. 크롬 코팅층 및 크롬-철-바나듐 코팅층을 포함하는 제조예 4 및 비교예 6 또는 제조예 6 및 비교예 8은 침질탄화층 및 침탄화층에 형성에 따른 마찰계수의 차이가 나타나지 않는 것으로 확인되었다.As a result, it was confirmed that the friction coefficient of Preparation Example 5 in which the chromium-iron coating layer and the precipitated carbonization layer were formed showed lower values than Preparation Examples 4 and 6. In addition, it was confirmed that Preparation Example 5 in which the carbonaceous carbide layer was formed had a lower friction coefficient than Comparative Example 7 in which the carbonaceous carbide layer except for nitrogen was formed. In Preparation Example 4 and Comparative Example 6 or Preparation Example 6 and Comparative Example 8 including a chromium coating layer and a chromium-iron-vanadium coating layer, it was confirmed that there is no difference in the friction coefficient depending on the formation of the carbonized layer and the carburized layer.
이와 같은 결과는 팩 시멘테이션에서 크롬계 물질로 크롬 및 철을 혼합하여 코팅하면, 마찰계수가 낮아지는 것으로 판단할 수 있다. 특히 스크린 플라즈마에서 크롬-철 코팅층 상에 질소 및 탄소를 모투 침투시켜 침질탄화층이 형성된 SUS316이 탄소만을 침투시켜 침탄화층이 형성된 SUS316보다 마찰계수가 낮아지며, SUS316의 마찰계수를 저감시키기 위해서는 SUS316에 질소 및 탄소를 모두 침투시켜 침질탄화층을 형성하는 것이 바람직한 것으로 판단할 수 있다.Such a result may be determined that the friction coefficient is lowered when the chromium-based material is mixed and coated with the chromium-based material in the pack cementation. In particular, SUS316 in which an impregnated carbonization layer is formed by penetrating nitrogen and carbon on the chromium-iron coating layer in a screen plasma infiltrates only carbon, thereby lowering the coefficient of friction than SUS316 in which the carbonization layer is formed. And it can be judged that it is preferable to penetrate all carbon to form an impregnated carbonization layer.
[실험예 7]Experimental Example 7
시멘테이션 및 스크린 플라즈마로 제조된 코팅층을 포함하는 SUJ2의 경도 분석 Hardness analysis of SUJ2 with a coating layer made of pack cementation and screen plasma
코팅층이 형성된 SUJ2의 경도를 분석하기 위해 마이크로 비커스 경도 측정 방법을 이용하여 경도를 측정하였다. 마이크로 비커스 경도 측정 방법은 경도를 측정하고자 하는 물질에 피라미드형 다이아몬드 인덴터로 일정 하중을 가해 새겨진 크기를 계산해서, 물질의 단단함을 측정하는 방법이다.In order to analyze the hardness of SUJ2 having a coating layer, the hardness was measured using a micro-Vickers hardness measurement method. Micro Vickers hardness measurement method is a method of measuring the hardness of the material by calculating the size engraved by applying a certain load to the material to be measured with a pyramidal diamond indenter.
표 1은 SUJ2 철계 합금을 이용하여 팩 시멘테이션 및 스크린 플라즈마를 실시하거나, 스크린 플라즈마만을 실시한 각 실시예들의 경도값을 나타낸 표이다.Table 1 is a table showing the hardness values of the embodiments subjected to the pack cementation and screen plasma using the SUJ2 iron alloy, or the screen plasma only.
실시예Example 경도 (HV)Hardness (HV) 실시예Example 경도 (HV)Hardness (HV)
제조예 1Preparation Example 1 23772377 비교예 2Comparative Example 2 11331133
비교예 1Comparative Example 1 23972397 비교예 3Comparative Example 3 705705
표 1을 참조하면, 팩 시멘테이션을 수행하지 않고 스크린 플라즈마를 이용하여 침질탄화층을 제조한 비교예 2 및 침탄화층을 제조한 비교예 3보다 팩 시멘테이션 및 스크린 플라즈마를 함께 수행하여 침질탄화층을 제조한 제조예 1 및 침탄화층을 제조한 비교예 1의 경도 값이 향상되었다.Referring to Table 1, the pack cementation and the screen plasma were performed together with the pack cementation and the screen plasma rather than Comparative Example 2, which produced the precipitated carbon layer using screen plasma, and Comparative Example 3, which prepared the carburized layer, without pack cementation. The hardness value of the manufacture example 1 which prepared the and the comparative example 1 which produced the carburized layer improved.
이러한 결과를 바탕으로, 팩 시멘테이션 및 스크린 플라즈마를 함께 수행하면 스크린 플라즈마 만을 수행할 때보다 SUJ2의 경도가 향상되는 것으로 판단할 수 있다.Based on these results, it can be determined that when the pack cementation and the screen plasma are performed together, the hardness of SUJ2 is improved compared to when only the screen plasma is performed.
[실험예 8]Experimental Example 8
시멘테이션 및 스크린 플라즈마로 제조된 코팅층을 포함하는 SUS316의 도 분석 Hardness analysis of SUS316 with coating layer made of pack cementation and screen plasma
코팅층이 형성된 SUS316의 경도를 분석하기 위해 상기 실험예 7과 동일한 방법을 이용하여 경도를 측정하였다.Hardness was measured using the same method as Experimental Example 7 to analyze the hardness of SUS316 having a coating layer.
표 2는 SUS316 철계 합금을 이용하여 팩 시멘테이션 및 스크린 플라즈마를 실시한 각 실시예들의 경도값을 나타낸 표이다.Table 2 is a table showing the hardness values of the embodiments subjected to the pack cementation and screen plasma using the SUS316 iron-based alloy.
실시예Example 경도 (HV)Hardness (HV) 실시예Example 경도 (HV)Hardness (HV)
제조예 4Preparation Example 4 15101510 비교예 6Comparative Example 6 16741674
제조예 5Preparation Example 5 14991499 비교예 7Comparative Example 7 18531853
제조예 6Preparation Example 6 14961496 비교예 8Comparative Example 8 11561156
표 2를 참조하면, 팩 시멘테이션 후 스크린 플라즈마를 이용하여 침질탄화 또느 침탄화층을 형성하였을 때, 일반적인 SUS316의 경도값인 800 HV 보다 높은 경도 값을 나타내는 것을 확인하였다.Referring to Table 2, it was confirmed that when the nitriding or carburizing layer was formed by using screen plasma after pack cementation, the hardness value was higher than 800 HV, which is the hardness value of general SUS316.
이러한 결과를 바탕으로, 팩 시멘테이션 및 스크린 플라즈마를 함께 수행하면 SUS316의 경도가 향상되는 것으로 판단할 수 있다.Based on these results, it can be determined that the hardness of SUS316 is improved when the pack cementation and the screen plasma are performed together.
따라서, 본 발명의 제조예 및 실험예를 참조하면, 팩 시멘테이션 및 스크린 플라즈마를 이용하여 철계 합금 상에 크롬계 코팅층 및 침질탄화층을 제조할 수 있다. 또한, 철계 합금을 SUS316으로 이용하면 크로마이징된 크롬계 코팅층이 60 μm 이상의 두께로 형성될 수 있다. 또한 크롬계 코팅층 및 침질탄화층이 형성된 철계 합금의 마찰계수는 최소 0.4 수준으로 낮아지는 특성을 나타내고, 1450 HV 이상의 향상된 경도 특성을 나타내는 것을 확인하였다.Therefore, referring to Preparation Examples and Experimental Examples of the present invention, it is possible to prepare a chromium-based coating layer and an immersion carbonization layer on an iron-based alloy using pack cementation and screen plasma. In addition, when the iron-based alloy is used as SUS316, the chromated chromium-based coating layer may be formed to a thickness of 60 μm or more. In addition, the friction coefficient of the iron-based alloy formed with the chromium-based coating layer and the precipitated carbonization layer was shown to exhibit a characteristic of lowering to a minimum of 0.4 level, and exhibited improved hardness characteristics of 1450 HV or more.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.
[부호의 설명][Description of the code]
1 : 스크린 플라즈마 장치1: screen plasma device
10 : 진공 챔버  10: vacuum chamber
20 : 스크린   20: screen
30 : 히터  30: heater
40 : 진공 펌프  40: vacuum pump
50 : 캐소드 전원부  50: cathode power supply
60 : 히터 전원부  60: heater power unit
70 : 이중 스크린  70: dual screen
71 : 외통     71: outer cylinder
72 : 내통     72: inner tube
2 : 철계 합금2: iron-based alloy

Claims (16)

  1. 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성하는 단계; 및Forming a chromium-based coating layer on the surface of the iron-based alloy using pack cementation; And
    상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성하는 단계;를 포함하는 철계 합금 코팅 방법.Iron-based alloy coating method comprising the step of: forming a precipitated carbonized layer using a screen plasma on the chromium-based coating layer.
  2. 제 1항에 있어서,The method of claim 1,
    상기 철계 합금은 베어링 강 또는 스테인리스 강을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The iron-based alloy coating method, characterized in that it comprises a bearing steel or stainless steel.
  3. 제 1항에 있어서,The method of claim 1,
    상기 크롬계 코팅층은 크롬(Cr), 크롬(Cr) 및 철(Fe) 또는 크롬(Cr), 철(Fe) 및 바나듐(V)을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The chromium-based coating layer is chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V), characterized in that the iron-based alloy coating method.
  4. 제 1항에 있어서,The method of claim 1,
    상기 팩 시멘테이션을 이용하여 철계 합금 표면에 크롬계 코팅층을 형성하는 단계는,Forming a chromium-based coating layer on the surface of the iron-based alloy using the pack cementation,
    팩(pack)에 철계 합금 및 팩 혼합물을 투입하는 단계;Injecting an iron-based alloy and a pack mixture into a pack;
    상기 팩을 진공 챔버에 장입하는 장입 단계;Charging the pack to a vacuum chamber;
    상기 진공 챔버에 장입된 팩을 가열하는 가열 단계; 및A heating step of heating the pack charged in the vacuum chamber; And
    상기 가열 단계에서 가열이 유지되는 동안 상기 철계 합금에 크롬계 코팅층이 형성되는 크롬계 코팅층 형성 단계;를 포함하고,And a chromium-based coating layer forming step of forming a chromium-based coating layer on the iron-based alloy while heating is maintained in the heating step.
    상기 팩 혼합물은 크롬계 분말, 상기 크롬계 분말과 반응하면서 상기 크롬계 코팅층 형성에 기여하는 활성제 및 상기 크롬계 코팅층이 형성되는 과정에서 상기 철계 합금의 소결을 방지하는 불활성제를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The pack mixture includes a chromium-based powder, an activator which reacts with the chromium-based powder and contributes to the formation of the chromium-based coating layer, and an inert agent preventing sintering of the iron-based alloy in the process of forming the chromium-based coating layer. Iron-based alloy coating method.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 팩 혼합물의 크롬계 분말은 크롬(Cr) 분말, 크롬(Cr) 분말 및 철(Fe) 분말 또는 크롬(Cr) 분말, 철(Fe) 분말 및 바나듐(V) 분말을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The chromium-based powder of the pack mixture includes chromium (Cr) powder, chromium (Cr) powder and iron (Fe) powder or chromium (Cr) powder, iron (Fe) powder and vanadium (V) powder. Iron-based alloy coating method.
  6. 제 4항에 있어서,The method of claim 4, wherein
    상기 팩 혼합물은 상기 크롬계 분말 10.5 wt% 내지 52.9 wt%, 상기 활성제 0.1 wt% 내지 3 wt% 및 상기 불활성제 47 wt% 내지 89.4 wt%를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The pack mixture comprises 10.5 wt% to 52.9 wt% of the chromium-based powder, 0.1 wt% to 3 wt% of the activator, and 47 wt% to 89.4 wt% of the inert agent.
  7. 제 1항에 있어서,The method of claim 1,
    상기 크롬계 코팅층 상에 스크린 플라즈마를 이용하여 침질탄화층을 형성하는 단계는,Forming an nitriding carbonization layer using the screen plasma on the chromium-based coating layer,
    크롬계 코팅층이 코팅된 철계 합금을 진공 챔버에 장입하고 상기 철계 합금을 이중 스크린으로 커버하는 단계;Charging the iron-based alloy coated with the chromium-based coating layer into a vacuum chamber and covering the iron-based alloy with a double screen;
    상기 진공 챔버 내에 제1수소 가스를 주입하여 상기 철계 합금 상에 존재하는 크롬계 산화막을 환원하는 이온 클리닝 단계;An ion cleaning step of reducing a chromium-based oxide film present on the iron-based alloy by injecting a first hydrogen gas into the vacuum chamber;
    상기 이중 스크린에 공정 전류를 인가하고, 상기 진공 챔버 내에 제2수소 가스, 질소 가스 및 탄화수소 가스를 주입하여 혼합 플라즈마를 발생시키는 단계; 및Applying a process current to the dual screen and injecting a second hydrogen gas, nitrogen gas and hydrocarbon gas into the vacuum chamber to generate a mixed plasma; And
    상기 혼합 플라즈마가 철계 합금 표면에 형성된 크롬계 코팅층 상에 코팅되어 침질탄화층을 형성하는 단계;를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The mixed plasma is coated on the chromium-based coating layer formed on the surface of the iron-based alloy to form an impregnated carbonization layer; Iron-based alloy coating method comprising a.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 이온 클리닝 단계는,The ion cleaning step,
    상기 이중 스크린에 제1전류를 인가하여 상기 진공 챔버를 가열하는 단계;Heating the vacuum chamber by applying a first current to the dual screen;
    상기 진공 챔버 내에 제1수소를 주입하는 단계;Injecting first hydrogen into the vacuum chamber;
    상기 이중 스크린에 제2전류를 인가하여 상기 이중 스크린 주위에 수소 플라즈마를 발생시키는 단계; 및Applying a second current to the dual screen to generate a hydrogen plasma around the dual screen; And
    상기 철계 합금 상에 존재하는 크롬계 산화막을 환원시켜 제거하는 단계;를 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.Reducing and removing the chromium-based oxide film present on the iron-based alloy; Iron-based alloy coating method comprising a.
  9. 제 8항에 있어서,The method of claim 8,
    상기 제1전류는 3 A 내지 5 A이고 상기 제2전류는 5 A 내지 15 A인 것을 특징으로 하는 철계 합금 코팅 방법.The first current is 3 A to 5 A and the second current is 5 A to 15 A, characterized in that the iron-based alloy coating method.
  10. 제 8항에 있어서,The method of claim 8,
    상기 크롬계 산화막은 크롬(Cr), 크롬(Cr) 및 철(Fe) 또는 크롬(Cr), 철(Fe) 및 바나듐(V)을 포함하는 것을 특징으로 하는 철계 합금 코팅 방법.The chromium-based oxide film is chromium (Cr), chromium (Cr) and iron (Fe) or chromium (Cr), iron (Fe) and vanadium (V), characterized in that the iron-based alloy coating method.
  11. 제 7항에 있어서,The method of claim 7, wherein
    상기 공정 전류는 20 A 내지 30 A인 것을 특징으로 하는 철계 합금 코팅 방법.The process current is iron coating method, characterized in that 20 to 30 A.
  12. 제 7항에 있어서,The method of claim 7, wherein
    상기 질소 가스 대 제2 수소 가스의 함량비는 1:3 내지 4:1인 것을 특징으로 하는 철계 합금 코팅 방법.And the content ratio of the nitrogen gas to the second hydrogen gas is 1: 3 to 4: 1.
  13. 제 7항에 있어서,The method of claim 7, wherein
    상기 탄화수소 가스는 CH4 또는 C2H2를 포함하고 1 sccm 내지 10 sccm 가스량이 주입 구간 및 정지 구간을 반복하여 펄스 주입되는 것을 특징으로 하는 철계 합금 코팅 방법.The hydrocarbon gas includes CH 4 or C 2 H 2 and the iron-based alloy coating method, characterized in that the pulse amount of 1 sccm to 10 sccm gas is repeatedly injected in the injection section and the stop section.
  14. 제 1항의 제조방법으로 제조된 고경도 및 저마찰 특성을 갖는 제품.A product having high hardness and low friction characteristics manufactured by the method of claim 1.
  15. 제 14항에 있어서,The method of claim 14,
    상기 제품의 경도는 1450 HV 내지 2400 HV인 것을 특징으로 하는 고경도 및 저마찰 특성을 갖는 제품.Hardness of the product is a product having high hardness and low friction characteristics, characterized in that 1450 HV to 2400 HV.
  16. 제 14항에 있어서,The method of claim 14,
    상기 제품의 마찰계수는 0.3 내지 0.4인 것을 특징으로 하는 고경도 및 저마찰 특성을 갖는 제품.The friction coefficient of the product is a product having high hardness and low friction characteristics, characterized in that 0.3 to 0.4.
PCT/KR2017/012944 2016-11-18 2017-11-15 Method for coating iron-based alloy and product produced thereby having high hardness and low frictional property WO2018093146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780071249.3A CN109983147B (en) 2016-11-18 2017-11-15 Coating method of iron-based alloy and product with high hardness and low friction characteristics prepared by method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160153964A KR101849997B1 (en) 2016-11-18 2016-11-18 Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby
KR10-2016-0153964 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018093146A1 true WO2018093146A1 (en) 2018-05-24

Family

ID=62088386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012944 WO2018093146A1 (en) 2016-11-18 2017-11-15 Method for coating iron-based alloy and product produced thereby having high hardness and low frictional property

Country Status (3)

Country Link
KR (1) KR101849997B1 (en)
CN (1) CN109983147B (en)
WO (1) WO2018093146A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210756A (en) * 2020-10-13 2021-01-12 辽宁科技大学 Preparation method of iron-based alloy surface strong-corrosion-resistance high-chromium composite nitriding layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228437B1 (en) * 2019-10-28 2021-03-16 (주)금강 Surface coating method of the ball valve using pack cementation
KR102464318B1 (en) * 2021-02-23 2022-11-09 (주)금강 Surface coating method of the ball valve using pack cementation for improving durability
CN115874140A (en) * 2021-09-27 2023-03-31 北京小米移动软件有限公司 Metal surface treatment method, metal component, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647845U (en) * 1992-12-04 1994-06-28 有限会社佐藤化成工業所 Semen collector for AIDS test
KR200293803Y1 (en) * 2002-08-07 2002-11-01 류희근 The Excrements picking
KR200473307Y1 (en) * 2014-04-24 2014-06-26 강성국 Device for gathering sample of feces
KR20160044369A (en) * 2014-10-15 2016-04-25 유상영 cervical specimen self gathering Apparatus
KR101794025B1 (en) * 2016-11-16 2017-11-06 김관기 specimen self-collectting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426751A (en) * 1990-05-18 1992-01-29 Mitsubishi Heavy Ind Ltd Surface modification treatment for austenitic stainless steel
JP2012511626A (en) * 2008-12-12 2012-05-24 ベスビウス クルーシブル カンパニー Cement plant fireproof anchor
KR101384374B1 (en) * 2012-03-06 2014-04-14 한국생산기술연구원 A method of coating of sintered metal parts by pack cementation and sintered metal parts coating of pack cemetation
CN202898513U (en) * 2012-10-09 2013-04-24 江苏丰东热技术股份有限公司 Large double temperature control active screen plasma nitriding device
KR101397340B1 (en) * 2013-03-13 2014-05-20 이승윤 Treatment method of metal surface and the resultant thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647845U (en) * 1992-12-04 1994-06-28 有限会社佐藤化成工業所 Semen collector for AIDS test
KR200293803Y1 (en) * 2002-08-07 2002-11-01 류희근 The Excrements picking
KR200473307Y1 (en) * 2014-04-24 2014-06-26 강성국 Device for gathering sample of feces
KR20160044369A (en) * 2014-10-15 2016-04-25 유상영 cervical specimen self gathering Apparatus
KR101794025B1 (en) * 2016-11-16 2017-11-06 김관기 specimen self-collectting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210756A (en) * 2020-10-13 2021-01-12 辽宁科技大学 Preparation method of iron-based alloy surface strong-corrosion-resistance high-chromium composite nitriding layer

Also Published As

Publication number Publication date
KR101849997B1 (en) 2018-04-20
CN109983147A (en) 2019-07-05
CN109983147B (en) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2018093146A1 (en) Method for coating iron-based alloy and product produced thereby having high hardness and low frictional property
WO2017142231A1 (en) Metal plate, mask for deposition and manufacturing method therefor
WO2021162422A1 (en) Ceramic component and method for manufacturing ceramic component
WO2014077632A1 (en) Inorganic paint composition, and method for forming inorganic paint film by using same
WO2018001258A1 (en) Probe for nucleic acid enrichment and capture, and design method thereof
WO2012047035A2 (en) Substrate processing device for supplying reaction gas through symmetry-type inlet and outlet
WO2019112107A1 (en) Silicon nitride anode material and manufacturing method therefor
WO2012169847A2 (en) Compound powder manufacturing apparatus, manufacturing method for iron-boron powder mixture using same, boron alloy powder mixture and method for preparing same, powder conjugates and method for manufacturing same, and steel pipe and method for producing same
WO2017111561A1 (en) Alloy-coated steel sheet and manufacturing method therefor
WO2019156451A1 (en) Group iv metal element-containing compound, preparation method therefor, precursor composition comprising same compound for film formation, and film forming method using same composition
WO2015190900A1 (en) Precursor compound for film formation, and thin film formation method using same
WO2018199507A1 (en) Electronic component carrier sheet, and adhesion device and thin film forming apparatus using same
WO2019231164A1 (en) Chemical vapor deposition silicon carbide bulk with improved etching characteristics
WO2020204290A1 (en) X-ray emitting device comprising a focusing electrode composed of a ceramic-based material
WO2009088183A1 (en) Escherichia coli having an improved ability to produce l-threonine, and a method for producing l-threonine in which the said escherichia coli is employed
WO2024043608A1 (en) Plated steel sheet for hot press forming having excellent impact resistance, hot press formed part, and manufacturing methods thereof
WO2023200154A1 (en) Ruthenium precursor composition, preparation method therefor, and formation method for ruthenium-containing film using same
WO2021066412A1 (en) Method for measuring concentration of additive breakdown products included in plating solution
WO2022158877A1 (en) Substrate including three-dimensional nanoplasmonic composite structure, method for manufacturing same, and rapid analysis method using same
WO2020218879A1 (en) Silicone-based adhesive protection film and optical member comprising same
WO2012047034A2 (en) Substrate processing device equipped with semicircle shaped antenna
WO2021162424A1 (en) Ceramic component and plasma etching apparatus comprising same
WO2019147022A1 (en) Ti alloy nano composite coating-film and manufacturing method therefor
WO2023287192A1 (en) Silicon precursor compound, composition for forming silicon-containing film comprising same, and method for forming film using composition for forming silicon-containing film
WO2024054065A1 (en) Shielding compound, thin film formation method using same, and semiconductor substrate and semiconductor device manufactured therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872524

Country of ref document: EP

Kind code of ref document: A1