WO2018092910A1 - Treating method and treating apparatus for unsaturated hydrocarbon - Google Patents

Treating method and treating apparatus for unsaturated hydrocarbon Download PDF

Info

Publication number
WO2018092910A1
WO2018092910A1 PCT/JP2017/041722 JP2017041722W WO2018092910A1 WO 2018092910 A1 WO2018092910 A1 WO 2018092910A1 JP 2017041722 W JP2017041722 W JP 2017041722W WO 2018092910 A1 WO2018092910 A1 WO 2018092910A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
unsaturated hydrocarbon
distillation column
coating
handling
Prior art date
Application number
PCT/JP2017/041722
Other languages
French (fr)
Japanese (ja)
Inventor
白井 泰雪
巌 竹田
Original Assignee
国立大学法人東北大学
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 日本ゼオン株式会社 filed Critical 国立大学法人東北大学
Priority to JP2018551722A priority Critical patent/JP7058846B2/en
Publication of WO2018092910A1 publication Critical patent/WO2018092910A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for handling unsaturated hydrocarbons and an apparatus for handling unsaturated hydrocarbons.
  • unsaturated hydrocarbons such as 1,3-butadiene and isoprene are used as raw materials for polymers as monomers.
  • a method for obtaining such an unsaturated hydrocarbon with high purity for example, by distilling a hydrocarbon mixture such as C 4 fraction and C 5 fraction obtained when cracking naphtha to produce ethylene.
  • distillation towers such as a plate tower and a packed tower, are used for distillation of a hydrocarbon mixture.
  • the unsaturated hydrocarbon described above has a problem that the polymer to be produced adheres to members constituting various facilities during the handling.
  • the unsaturated hydrocarbons are separated and recovered using the above-described distillation column, the unsaturated hydrocarbons are unintentionally polymerized in the distillation column.
  • the polymer precipitated by this polymerization reaction firmly adheres to the members inside the distillation column and causes various problems such as reducing the separation performance of the distillation column by inhibiting the flow of liquid and gas. For this reason, it has been necessary to periodically stop the operation of the separation and recovery apparatus including the distillation column so as to be removed by cleaning with a physical external force or the like.
  • the amount of the sulfur-containing compound in the raw material is within a predetermined range in terms of sulfur in order to suppress the precipitation of such a polymer and suppress the decrease in efficiency due to the periodic shutdown of the separation and recovery device.
  • a technology has been proposed.
  • an object of this invention is to provide the handling method and handling apparatus of unsaturated hydrocarbon which can handle unsaturated hydrocarbon efficiently over a long period of time.
  • the present inventor has intensively studied for the purpose of solving the above problems. Therefore, the present inventor has prevented the above-described polymer from adhering to the surface of the member by coating the surface of the member constituting equipment such as a distillation tower with a metal oxide and / or a semi-metal oxide. Thus, the present inventors have found that the desired treatment or operation can be efficiently performed over a long period of time by stabilizing the flow of liquid and gas, and the present invention has been completed.
  • the present invention aims to advantageously solve the above-mentioned problems, and the method for handling unsaturated hydrocarbons of the present invention includes a distillation column, a heat exchanger, a reactor, a pump, piping, and a valve.
  • a facility selected from the group consisting of: handling a composition containing the unsaturated hydrocarbon, wherein at least one member of the facility in contact with the composition comprises a metal oxide and It is a member having a film containing at least one of metalloid oxides.
  • the polymer deposited by polymerization of unsaturated hydrocarbon is difficult to adhere to the member covered with the metal oxide and / or metalloid oxide film. Therefore, if the equipment provided with this member is used, unsaturated hydrocarbons can be handled efficiently over a long period of time.
  • the unsaturated hydrocarbon can be an unsaturated hydrocarbon having 4 to 10 carbon atoms.
  • the composition is mixed with a hydrocarbon mixture having a 1,3-butadiene concentration of 0.1% by mass to 99.9% by mass or an isoprene concentration of 0.1%. It can be set as the hydrocarbon mixture which is the mass% or more and 99.9 mass% or less.
  • the average thickness of the coating is preferably 0.5 ⁇ m or more and 100 ⁇ m or less. If the average thickness of the coating is within the above range, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period.
  • the average thickness of the coating on the member surface can be measured by a high-frequency glow discharge luminescence surface analysis method (rf-GD-OES method).
  • the metal oxide is at least one selected from the group consisting of chromium oxide, aluminum oxide, tin oxide, zirconium oxide and yttrium oxide.
  • the metalloid oxide is preferably at least one selected from the group consisting of boron oxide, silicon oxide, germanium oxide, arsenic oxide, tellurium oxide and polonium oxide. If any of the metal oxides and metalloid oxides described above is used as the coating on the surface of the member, the polymer will be further prevented from sticking to the member, and the unsaturated hydrocarbon will be handled efficiently over a longer period of time. Can do.
  • the member having a coating containing at least one of a metal oxide and a semi-metal oxide comprises a base material and the coating on the surface of the base material, A member whose base material contains at least one of iron and titanium can be used.
  • the contact angle with water of the member having a coating containing at least one of a metal oxide and a metalloid oxide is preferably 70 ° or less. If the contact angle with water on the surface of the member is 70 ° or less, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period of time.
  • the contact angle of the member surface with water can be measured by a droplet method.
  • the surface of the member is arbitrarily selected under the conditions of measurement temperature: 23 ° C. ⁇ 3 ° C., humidity: 50% RH ⁇ 20% RH, droplet volume: 1 ⁇ L, waiting time from landing to measurement: 5 seconds. It is possible to obtain a contact angle with water on the surface of the member as an average value.
  • the composition further contains an alkali metal salt. If the composition contains an alkali metal salt, it is possible to further suppress the fixation of the polymer to the member, and to handle unsaturated hydrocarbons efficiently over a longer period of time.
  • the reason why the composition can contain the alkali metal salt can further suppress the adhesion of the polymer to the member is as follows. That is, when the composition contains an alkali metal salt, alkali metal ions such as sodium ions and potassium ions derived from the alkali metal salt are adsorbed to the coating on the member surface by electrostatic interaction, and the member surface Increases hydrophilicity dramatically. Since the hydrophilicity of the surface of the member is remarkably improved in this manner, the affinity with the polymer of the unsaturated hydrocarbon that is hydrophobic is greatly reduced, so that the adhesion of the polymer can be further suppressed.
  • the alkali metal salt is NaNO 3 , NaNO 2 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , KNO 3 , KNO. 2 , at least one selected from the group consisting of K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 and K 2 SO 4 is preferred. If the composition contains any of the alkali metal salts described above, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period of time.
  • the method for handling unsaturated hydrocarbons of the present invention is, for example, a method for separating and recovering the target unsaturated hydrocarbons from starting materials, and the step of handling the composition comprises the step of treating the unsaturated hydrocarbons. It can be set as the process of distilling the mixture containing. That is, the method for handling unsaturated hydrocarbons of the present invention is a method for separating and recovering the target unsaturated hydrocarbons from the starting material, and distillation of the mixture containing the unsaturated hydrocarbons using a distillation column. And at least one member in contact with the mixture of the distillation column is a member having a coating containing at least one of a metal oxide and a metalloid oxide. According to this method, unsaturated hydrocarbons can be separated and recovered efficiently over a long period of time.
  • the starting material when the target unsaturated hydrocarbon is separated and recovered from the starting material, the starting material can be made into a C 4 fraction or a C 5 fraction. .
  • the step of distilling the mixture when separating and recovering the target unsaturated hydrocarbons from the starting material can be the step of performing extractive distillation.
  • the apparatus which handles the unsaturated hydrocarbon of this invention is equipped with the equipment which handles the composition containing the said unsaturated hydrocarbon,
  • the equipment is at least one selected from the group consisting of a distillation column, a heat exchanger, a reactor, a pump, piping, and a valve, and at least one member of the equipment that contacts the composition is a metal It is a member having a film containing at least one of an oxide and a metalloid oxide.
  • the average thickness of the coating is preferably 0.5 ⁇ m or more and 100 ⁇ m or less. If the average thickness of the coating is within the above range, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period.
  • the metal oxide is at least one selected from the group consisting of chromium oxide, aluminum oxide, tin oxide, zirconium oxide and yttrium oxide.
  • the metalloid oxide is preferably at least one selected from the group consisting of boron oxide, silicon oxide, germanium oxide, arsenic oxide, tellurium oxide and polonium oxide. If any of the metal oxides and metalloid oxides described above is used as the coating on the surface of the member, the polymer will be further prevented from sticking to the member, and the unsaturated hydrocarbon will be handled efficiently over a longer period of time. Can do.
  • the member having a coating containing at least one of a metal oxide and a metalloid oxide comprises a base material and the coating on the base material surface, and the base A member whose material contains at least one of iron and titanium can be used.
  • the contact angle of the member having a coating containing at least one of a metal oxide and a semimetal oxide with water is preferably 70 ° or less. If the contact angle with water on the surface of the member is 70 ° or less, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period of time.
  • the apparatus for handling unsaturated hydrocarbons of the present invention is, for example, an apparatus for separating and recovering unsaturated hydrocarbons, wherein the equipment is a distillation column, and the distillation column contains the unsaturated hydrocarbons. Distillation of the mixture can be performed. That is, the apparatus for handling unsaturated hydrocarbons of the present invention is an apparatus for separating and recovering unsaturated hydrocarbons comprising a distillation column for distilling a mixture containing unsaturated hydrocarbons, wherein the mixture of the distillation towers It can be set as the apparatus whose at least 1 of the member which contacts with is a member which has a film containing at least one of a metal oxide and a metalloid oxide. According to this apparatus, unsaturated hydrocarbons can be separated and recovered efficiently over a long period of time.
  • the distillation column can be an extractive distillation column.
  • the handling method and handling apparatus of unsaturated hydrocarbon which can handle unsaturated hydrocarbon efficiently over a long period of time can be provided.
  • the method of the present invention is a method for handling unsaturated hydrocarbons.
  • the apparatus of this invention is an apparatus which handles unsaturated hydrocarbon, Comprising: For example, when handling unsaturated hydrocarbon using the method of this invention, it can be used.
  • the method of handling the unsaturated hydrocarbon of this invention includes the process of handling the composition containing unsaturated hydrocarbon using a predetermined installation.
  • the apparatus which handles the unsaturated hydrocarbon of the present invention includes a predetermined facility for carrying out the process for handling the composition.
  • the process of handling the composition containing an unsaturated hydrocarbon using a predetermined facility is not particularly limited as long as the predetermined facility is a treatment or operation in contact with the composition (for example, inside).
  • Examples of the process of handling the composition using a predetermined facility include a process of distilling the composition in a distillation tower; a process of heating or cooling the composition by passing through a heat exchanger; and a composition in the reactor.
  • a chemical reaction such as an unsaturated hydrocarbon polymerization reaction
  • a step of transferring a composition by a pump such as a compressor
  • a step of transferring a composition through a pipe a transfer direction of the composition by a valve, a pressure, And / or a step of controlling the flow rate.
  • the composition containing the unsaturated hydrocarbon described above is not particularly limited as long as it contains an unsaturated hydrocarbon, and may be a composition consisting of only one or more kinds of unsaturated hydrocarbons.
  • the composition may include an unsaturated hydrocarbon and a substance other than the unsaturated hydrocarbon. Examples of the composition containing unsaturated hydrocarbons include starting materials such as C 4 fraction and C 5 fraction mentioned in “Method for separating and recovering unsaturated hydrocarbon” described later.
  • the predetermined equipment described above is a member in which a part or the whole of the surface is covered with a coating containing at least one of a metal oxide and a metalloid oxide at a portion that comes into contact with the composition containing an unsaturated hydrocarbon ( Hereinafter, it may be referred to as “oxide-coated member”).
  • the coating on the surface of the oxide-coated member does not easily desorb from the member surface, and exists stably without being involved in unnecessary chemical reactions. And according to the said film, when handling unsaturated hydrocarbon, the adhesion to the member surface of the polymer which precipitates in the predetermined equipment mentioned above can be suppressed.
  • the temperature of the composition in the step of handling the composition containing an unsaturated hydrocarbon using predetermined equipment can be 30 ° C. or higher, and can be 40 ° C. or higher. Moreover, it can be 200 degrees C or less, and can be 180 degrees C or less. If the method and / or equipment of the present invention is used, even when the temperature of the composition is within the range in which the polymer is likely to precipitate, the adhesion of the polymer to the member surface can be sufficiently suppressed. .
  • a method for separating and recovering a target unsaturated hydrocarbon from a starting material (a method for separating and recovering unsaturated hydrocarbons) is given as an example.
  • An apparatus for separating and recovering unsaturated hydrocarbons (unsaturated hydrocarbon separation and recovery apparatus) will be described as an example, but the present invention is not limited thereto.
  • the method for separating and recovering unsaturated hydrocarbons (hereinafter, sometimes abbreviated as “the method for separating and recovering unsaturated hydrocarbons of the present invention”), which is an embodiment of the method of the present invention, comprises the target unsaturated hydrocarbon. It can be used when the unsaturated hydrocarbon is separated and recovered from the starting material.
  • the unsaturated hydrocarbon separation and recovery apparatus (hereinafter, may be abbreviated as “unsaturated hydrocarbon separation and recovery apparatus of the present invention”), which is an embodiment of the apparatus of the present invention, is the above-described unsaturated carbonization. It can be suitably used when unsaturated hydrocarbons are separated and recovered using a hydrogen separation and recovery method.
  • Method for separating and recovering unsaturated hydrocarbons of the present invention when the unsaturated hydrocarbons are separated and recovered from the starting material, one or more times of distillation using a distillation column is performed on the mixture containing unsaturated hydrocarbons. Perform processing operations. And it is characterized by performing at least once of this distillation process using the distillation tower provided with the oxide coating
  • the above-mentioned coating on the surface of the oxide-coated member does not easily desorb from the surface of the member even under severe conditions in the distillation column, and stably exists without being involved in unnecessary chemical reactions.
  • the said film can suppress that the polymer which precipitates in a distillation tower in isolation
  • the starting material is not particularly limited as long as it contains an unsaturated hydrocarbon.
  • an unsaturated hydrocarbon having 4 carbon atoms such as a C 4 fraction obtained when cracking naphtha to produce ethylene.
  • any C 4 hydrocarbon mixture containing; such as the C 4 fraction and C 5 fraction obtained in producing ethylene in the same manner, any C 5 hydrocarbon containing an unsaturated hydrocarbon having 5 carbon atoms A hydrogen mixture; a crude mixture containing an unreacted unsaturated hydrocarbon obtained by collecting after an arbitrary polymerization reaction, and the like can be used.
  • a C 4 fraction and a C 5 fraction can be preferably used as a starting material.
  • the unsaturated hydrocarbon to be separated and recovered contained in the above starting materials is not particularly limited.
  • the number of carbon atoms is 4 or more and 10 or less, such as isoprene, piperylene, dicyclopentadiene, 1,3-butadiene.
  • the mixture containing unsaturated hydrocarbons to be subjected to distillation treatment is the above-mentioned starting material or a fraction obtained by distilling the above-mentioned starting material.
  • the mixture is, for example, a hydrocarbon mixture containing 1,3-butadiene at a concentration of 0.1% by mass or more and 99.9% by mass or less, or isoprene of 0.1% by mass or more and 99.9% by mass. It can be a hydrocarbon mixture containing at the following concentrations.
  • the mixture containing unsaturated hydrocarbon further contains an alkali metal salt. If the mixture contains an alkali metal salt, it is possible to further suppress the adhesion of the polymer to the member and to efficiently separate and recover unsaturated hydrocarbons over a longer period.
  • the alkali metal salt is not particularly limited, but from the viewpoint of further suppressing the fixation of the polymer to the member, NaNO 3 , NaNO 2 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , KNO 3 , KNO 2 , K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , and K 2 SO 4 are preferable, and NaNO 2 is more preferable.
  • these alkali metal salts may be used individually by 1 type, or may use 2 or more types together.
  • distillation operations In order to obtain the target unsaturated hydrocarbon from the above-mentioned starting materials, it is preferable to perform distillation operations a plurality of times in order to separate a plurality of components having different boiling points.
  • at least one of such distillation operations is performed using a distillation column equipped with an oxide-coated member.
  • the member on which the film is provided is not particularly limited as long as it is a member that comes into contact with the mixture containing unsaturated hydrocarbons during distillation. Examples of such members include shelf boards, distillation column main bodies, nozzles, seal pans, trayware, distributors, collectors, and chimney trays.
  • the method for separating and recovering unsaturated hydrocarbons of the present invention was obtained by, for example, an extractive distillation step in which a starting material is subjected to extractive distillation to obtain a fraction containing the target unsaturated hydrocarbon, and the extractive distillation step.
  • the distillation column provided with the oxide-coated member may be used for the extractive distillation in the extractive distillation process described above, or the impurities are removed in the impurity removal process described above. You may use for.
  • An example of a distillation column that can be used in the method for separating and recovering unsaturated hydrocarbons of the present invention is, for example, an extractive distillation column as shown in FIG.
  • an “oxide-coated shelf” a film containing at least one of a metal oxide and a semi-metal oxide, and a part or all of the surface thereof is used.
  • a covered shelf board a film containing at least one of a metal oxide and a semi-metal oxide, and a part or all of the surface thereof.
  • the distillation column 1 shown in FIG. 1 is liquefied by the column main body 2, the condenser 3 that cools and liquefies the gas (vapor) discharged from the top of the column main body 2, and the condenser 3.
  • Each shelf board 7 has a plurality of holes.
  • the number of shelves 7 can be 50 to 300 stages.
  • the solvent a solvent described later in the section of “Unsaturated hydrocarbon separation and recovery device” can be used.
  • the solvent contains the above-mentioned alkali metal salt and the polymerization inhibitor described later in the section of “Unsaturated hydrocarbon separation and recovery device”, and these are added to the mixture containing the unsaturated hydrocarbon. You can also.
  • the mixture containing unsaturated hydrocarbons and the solvent supplied as needed are heated by the reboiler 6 to become a gas, which mainly passes through the holes provided in the shelf 7 and rises in the tower body 2.
  • a gas which mainly passes through the holes provided in the shelf 7 and rises in the tower body 2.
  • at least one shelf is an oxide-coated shelf.
  • an oxide-coated shelf board is used as a shelf board, it is possible to prevent clogging of the holes of the shelf board due to the deposited polymer, and distillation is performed continuously for a long period of time. Even in this case, the gas flow can be kept particularly good.
  • the film in the oxide-coated member is composed of a metal oxide and / or a semimetal oxide.
  • metal oxides include chromium oxides such as chromium (II) oxide, chromium (III) oxide, chromium (IV) oxide, and chromium (VI) oxide; aluminum oxides such as alumina (Al 2 O 3 ); Tin oxides such as tin (II) and tin oxide (VI); zirconium oxides such as zirconia (ZrO 2 ); yttrium oxides such as yttrium oxide (III).
  • the metalloid oxide boron oxide such as diboron trioxide (B 2 O 3 ), silicon oxide such as silica (SiO 2 ); germanium oxide such as germanium (IV) oxide, arsenic trioxide ( Ar 2 oxides such as As 2 O 3 ) and diarsenic pentoxide (As 2 O 5 ); tellurium oxides such as tellurium dioxide (TeO 2 ) and tellurium trioxide (TeO 3 ); polonium monoxide (PoO), dioxide Polonium oxides such as polonium (PoO 2 ) and polonium trioxide (PoO 3 ). These may be used alone or in combination of two or more. Among these, from the viewpoint of further suppressing the fixation of the polymer to the member, the coating preferably contains at least one of chromium oxide and silicon oxide, and more preferably contains chromium oxide.
  • the average thickness of the coating of the oxide-coated member is not particularly limited, but is preferably 0.5 ⁇ m or more and more preferably 10 ⁇ m or more from the viewpoint of further suppressing the fixation of the polymer to the member. Preferably, it is 30 ⁇ m or more.
  • the average thickness of the oxide-coated member is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the material of the base material on which the above-described film is formed is not particularly limited, but a base material containing iron and / or titanium is preferably used.
  • the thickness of the base material can be appropriately adjusted in consideration of the type of member using the base material on which the coating is formed, and the manufacturing cost and rigidity of the oxide-coated member.
  • the contact angle of the oxide-coated member with water is preferably 70 ° or less. If the contact angle between the surface of the oxide-coated member and water is 70 ° or less, the adhesion of the polymer to the member can be further suppressed, and unsaturated hydrocarbons can be handled efficiently over a longer period.
  • the lower limit of the contact angle of the oxide-coated member with water is not particularly limited, but is usually 30 ° or more.
  • the method for providing the oxide film on the surface of the base material is not particularly limited. For example, after immersing the base material in a solution containing a metal oxide and / or a semi-metal ion oxide, firing, and further repeating the soaking and firing, an oxide film is provided on the surface of the base material be able to. In addition, by including metaphosphoric acid etc. in the solution used for immersion, the contact angle with water mentioned above can be lowered
  • a method for providing an oxide film on the surface of the base material for example, the methods described in JP-A-63-57883, JP-A-10-18052 and JP-A-3220012 can be used.
  • the unsaturated hydrocarbon separation and recovery apparatus of the present invention is preferably used when separating and recovering unsaturated hydrocarbons from a starting material using the unsaturated hydrocarbon separation and recovery method of the present invention described above. it can.
  • An example of the separation and recovery apparatus of the present invention has a configuration as shown in FIG. In the following, the separation and recovery apparatus of FIG. 2 will be described by taking as an example the case where the starting material is a C 4 hydrocarbon mixture and the unsaturated hydrocarbon to be separated and recovered is 1,3-butadiene.
  • the separation / recovery device 100 shown in FIG. 2 is an extractive distillation in which a C 4 hydrocarbon mixture as a starting material is subjected to extractive distillation to obtain a fraction (A) containing 1,3-butadiene and an extract (B). 1, from the distilling unit 20 for recovering 1,3-butadiene and the solvent in the extract (B) obtained in the extractive distillation unit 10, and from the fraction (A) obtained in the extractive distillation unit 10 to 1,3- And an impurity removing unit 30 for removing impurities other than butadiene.
  • the distillation tower having the above-described oxide-coated member is used as the distillation tower used in at least one of the extractive distillation section 10, the diffusion section 20, and the impurity removal section 30.
  • a distillation column having an oxide-coated member as an extractive distillation column used in the extractive distillation unit 10
  • a distillation column having an oxide-coated shelf More preferred.
  • the distillation tower which has an oxide covering shelf board is used as an extraction distillation tower used for the extractive distillation part 10 is demonstrated.
  • the extractive distillation section 10 is, for example, C 4 and evaporated tower 11 to vaporize the hydrocarbon mixture, an extractive distillation to distillate C 4 hydrocarbon mixture vaporized in the evaporating tower 11 (C) and extract ( D) and a first extraction distillation column 12 (distillation column having an oxide-coated shelf plate, for example, having a structure shown in FIG. 1), and a stripping column 13 for removing the solvent from the extract (D).
  • the compressor 14 for pressurizing the fraction obtained by removing the solvent from the extract (D), and the fraction pressurized by the compressor 14 are subjected to extractive distillation to obtain the fraction (A) and the extract (B).
  • a second extractive distillation column 15 (a distillation column having an oxide-coated shelf plate, for example, having the structure shown in FIG. 1).
  • the solvent supplied to the first extractive distillation column 12 is a known solvent used for extractive distillation of a C 4 hydrocarbon mixture such as dimethylformamide (DMF) described in, for example, JP-A-2003-128595. These solvents can be used.
  • DMF dimethylformamide
  • the alkali metal salt mentioned above it is preferable to supply the alkali metal salt mentioned above to the 1st extractive distillation column 12 from a viewpoint which suppresses adhesion of the polymer to a member further.
  • a known polymerization inhibitor (except for those corresponding to alkali metal salts) may be supplied to the first extractive distillation column 12 from the viewpoint of suppressing the formation of a polymer.
  • the supply method of the alkali metal salt and the polymerization inhibitor described above is not particularly limited, it is preferably dissolved in the solvent described above and supplied to the first extractive distillation column 12 together with the solvent.
  • the solvent is removed from the bottom of the tower, and a fraction containing 1,3-butadiene and vinylacetylene is distilled from the top of the tower.
  • recovered by the stripping tower 13 can be reused by the 1st extractive distillation tower 12, the 2nd extractive distillation tower 15, etc. arbitrarily.
  • the solvent is supplied to the upper stage from the supply stage of the fraction containing 1,3-butadiene and vinylacetylene distilled from the stripping tower 13, and the 1,3-butadiene and vinylacetylene etc.
  • the fraction (A) containing 1,3-butadiene is distilled from the top of the column by extractive distillation, and vinyl acetylene, etc., which is more soluble than 1,3-butadiene in the solvent.
  • the containing extract (B) is removed from the bottom of the column.
  • a known solvent used for extractive distillation of a C 4 hydrocarbon mixture such as DMF described in, for example, Japanese Patent Application Laid-Open No.
  • the above-mentioned alkali metal salt to the second extractive distillation column 15 from the viewpoint of further suppressing the fixation of the polymer to the member.
  • a known polymerization inhibitor may be supplied to the second extractive distillation column 15 from the viewpoint of suppressing the formation of a polymer.
  • the supply method of the alkali metal salt and the polymerization inhibitor described above is not particularly limited, it is preferably dissolved in the solvent described above and supplied to the second extractive distillation column 15 together with the solvent.
  • the diffusion unit 20 includes, for example, a first diffusion tower 21 for recovering 1,3-butadiene mixed in the extract (B) and an extract (B) after recovering 1,3-butadiene. And a second stripping tower 22 for recovering the solvent from the tank.
  • a fraction containing 1,3-butadiene mixed in the extract (B) is distilled off from the top of the tower, and a bottom liquid containing vinyl acetylene and the like from the bottom of the tower. Can be removed.
  • the fraction containing 1,3-butadiene distilled from the top of the first stripping tower 21 can be optionally returned to the second extractive distillation tower 15.
  • a fraction (high VA fraction) containing vinyl acetylene and the like contained in the bottoms from the first stripping tower 21 is distilled from the tower top and from the tower bottom. Let the solvent out.
  • recovered with the 2nd stripping tower 22 can be reused by the 1st extractive distillation tower 12, the 2nd extractive distillation tower 15, etc. arbitrarily.
  • the impurity removal unit 30 includes, for example, a low boiling point removal column 31 that removes impurities having a lower boiling point than 1,3-butadiene contained in the fraction (A) obtained in the second extractive distillation column 15. And a high boiler removal column 32 for removing impurities having a boiling point higher than that of 1,3-butadiene.
  • a fraction containing low boiling impurities such as methylacetylene (low boiling fraction) is distilled from the top of the tower, and 1,3-butadiene is enriched from the bottom of the tower. Let the effluent be removed.
  • a fraction further enriched with 1,3-butadiene is distilled off from the top of the tower, and a fraction containing high boiling impurities such as 1,2-butadiene (high The boiling fraction) is removed from the bottom of the column.
  • the unsaturated hydrocarbon separation and recovery apparatus of the present invention has been described using an example.
  • the unsaturated hydrocarbon separation and recovery apparatus of the present invention is not limited to the above example.
  • 1,3-butadiene is separated and recovered from a C 4 hydrocarbon mixture as a starting material.
  • a C 5 hydrocarbon mixture is used. It is also possible to separate and recover isoprene from the starting material as a starting material, and to use as a starting material a crude mixture containing unreacted unsaturated hydrocarbons obtained by recovery after any polymerization reaction.
  • the desired unsaturated hydrocarbon can also be separated and recovered from the above.
  • Example 1 ⁇ Oxide-coated shelf board>
  • a shelf board (base material: SUS, average thickness of the coating film: 30 ⁇ m) having a coating film mainly composed of chromium (III) oxide was prepared. In addition, it was 63 degrees when the contact angle with the water of an oxide covering shelf board was measured.
  • ⁇ Separation and recovery of 1,3-butadiene> In the separation / recovery device 100 shown in FIG.
  • the first extractive distillation column 12 was heated by a reboiler located at the bottom of the first extractive distillation column 12 to perform first-stage extractive distillation. And the fraction (C) containing butanes, butenes, etc. was taken out from the top of the first extractive distillation column 12. On the other hand, from the bottom of the first extractive distillation column 12, an extract (D) containing 1,3-butadiene and vinylacetylene was taken out. Further, the extracted liquid (D) taken out was supplied to a substantially middle stage of the stripping tower 13, and distilled by heating with a reboiler arranged at the bottom of the stripping tower 13.
  • DMF separated from the extract (D) was discharged from the bottom of the stripping tower 13.
  • a fraction containing a large amount of 1,3-butadiene and vinylacetylene was taken out from the top of the stripping tower 13.
  • the fraction containing a large amount of 1,3-butadiene and vinylacetylene is combined with DMF (NaNO 2 (sodium nitrite) at a concentration of 20 ppm by weight) as an extraction solvent (solvent), and the second extractive distillation column 15
  • DMF NaNO 2 (sodium nitrite) at a concentration of 20 ppm by weight
  • the second stage extractive distillation was performed by supplying it to the vicinity of the lower stage and heating with a reboiler arranged at the bottom of the second extractive distillation tower 15.
  • the second extractive distillation column 15 used was the distillation column 1 shown in FIG. 1 (however, the number of shelves was 60, and the above-mentioned oxide-coated shelves were used for all shelves).
  • the supply position of the fraction was substantially in the middle of the second extractive distillation column 15, and the supply position of DMF was above the supply position of the fraction.
  • the column bottom pressure was maintained at 5 atm as an absolute pressure, and the column bottom temperature was controlled at 128 ° C.
  • the tower top temperature in this case was 45 ° C. From the top of the second extractive distillation column 15, a gas containing a high concentration of 1,3-butadiene was taken out as a fraction (A).
  • impurities such as vinyl acetylene having a volatility (solubility) of butadiene or less were taken out from the bottom of the second extractive distillation column 12 as an extract (B).
  • the extract (B) was sent to the stripping unit 20, and a fraction containing 1,3-butadiene mixed in the extract (B) was collected in the first stripping tower 21.
  • This fraction containing 1,3-butadiene was returned from the first stripping tower 21 to the second extractive distillation tower 15.
  • a high VA fraction containing vinylacetylene at a high concentration was discharged from the top of the tower, and separated DMF was discharged from the bottom of the tower.
  • the taken out liquid was supplied to a substantially middle stage of the high boiler removal column 32 and distilled by heating with a reboiler arranged at the bottom of the high boiler removal tower 32.
  • the column bottom pressure was maintained at 5 atm as an absolute pressure, and the column bottom temperature was maintained at 60 ° C.
  • impurities having a higher boiling point than butadiene such as cis-2-butene and pentene, were taken out from the bottom of the high boiler removal column 32 as a high boiling fraction.
  • a fraction further enriched with 1,3-butadiene was taken out from the top of the high boiler removal column 32. It was confirmed that the concentration of 1,3-butadiene in the fraction obtained from the top of the high boiler removal column 32 was 99% by mass or more.
  • Extractive distillation was carried out in the same manner as in Example 1 except that an extractive distillation column provided with a shelf made of SUS not coated with oxide was used as the second extractive distillation column 15 instead of the oxide-coated shelf. A process and an impurity removal process were performed. In addition, when the contact angle with the water of the shelf board which consists of SUS was measured, it was 80 degrees. And after performing the extraction distillation process and impurity removal process which were mentioned above continuously for 300 days, when the shelf of the 2nd extractive distillation tower 15 was observed, the quantity of the fixed polymer was carried out in any shelf surface. More than Example 1 (about twice), clogging of the holes in the shelf board was confirmed.
  • an unsaturated hydrocarbon handling method and handling apparatus capable of separating and recovering unsaturated hydrocarbons efficiently over a long period of time.

Abstract

The purpose of the present invention is to provide a method for treating an unsaturated hydrocarbon, the method being capable of effectively treating the unsaturated hydrocarbon for a long period of time. This method for treating unsaturated hydrocarbon comprises a step of treating a composition containing the unsaturated hydrocarbon by using at least one piece of equipment selected from the group consisting of a distillation tower, a heat exchanger, a reactor, a pump, a pipe, and a valve. In the piece of equipment, at least one of members in contact with the composition is a member having a film including at least one among a metal oxide and a semi-metal oxide.

Description

不飽和炭化水素の取り扱い方法および取り扱い装置Unsaturated hydrocarbon handling method and handling equipment
 本発明は、不飽和炭化水素を取り扱う方法、および不飽和炭化水素を取り扱う装置に関するものである。 The present invention relates to a method for handling unsaturated hydrocarbons and an apparatus for handling unsaturated hydrocarbons.
 合成ゴムや塗料などの様々な分野において、1,3-ブタジエンやイソプレンなどの不飽和炭化水素は、単量体として重合体の原料に用いられている。このような不飽和炭化水素を高純度で得る方法として、例えば、ナフサをクラッキングしてエチレンを生産する際に得られるC4留分やC5留分などの炭化水素混合物を蒸留することで、所望の不飽和炭化水素を分離回収する方法が従来から用いられている。そして、炭化水素混合物の蒸留には、棚段塔、充填塔などの蒸留塔が用いられている。 In various fields such as synthetic rubber and paint, unsaturated hydrocarbons such as 1,3-butadiene and isoprene are used as raw materials for polymers as monomers. As a method for obtaining such an unsaturated hydrocarbon with high purity, for example, by distilling a hydrocarbon mixture such as C 4 fraction and C 5 fraction obtained when cracking naphtha to produce ethylene, Conventionally, a method for separating and recovering a desired unsaturated hydrocarbon has been used. And distillation towers, such as a plate tower and a packed tower, are used for distillation of a hydrocarbon mixture.
 ここで、上述した不飽和炭化水素には、その取り扱いの際に、生成する重合物が各種設備を構成する部材に付着してしまうという問題があった。例えば、上述した蒸留塔を用いて不飽和炭化水素の分離回収を行うと、蒸留塔内で不飽和炭化水素が意図せず重合してしまう。そしてこの重合反応により析出する重合物は、蒸留塔内部の部材に強靭に固着し、液体および気体の流れを阻害して蒸留塔の分離性能を低下させるなど様々な問題を引き起こす。そのため、物理的な外力による清掃等で除去すべく、蒸留塔を含む分離回収装置の操業を定期的に停止させる必要があった。 Here, the unsaturated hydrocarbon described above has a problem that the polymer to be produced adheres to members constituting various facilities during the handling. For example, when unsaturated hydrocarbons are separated and recovered using the above-described distillation column, the unsaturated hydrocarbons are unintentionally polymerized in the distillation column. The polymer precipitated by this polymerization reaction firmly adheres to the members inside the distillation column and causes various problems such as reducing the separation performance of the distillation column by inhibiting the flow of liquid and gas. For this reason, it has been necessary to periodically stop the operation of the separation and recovery apparatus including the distillation column so as to be removed by cleaning with a physical external force or the like.
 このような重合物の析出を抑制して、分離回収装置の定期的な操業停止による効率の低下を抑えるべく、特許文献1では、原料中の硫黄含有化合物の量を硫黄換算で所定の範囲内とする技術が提案されている。 In Patent Document 1, the amount of the sulfur-containing compound in the raw material is within a predetermined range in terms of sulfur in order to suppress the precipitation of such a polymer and suppress the decrease in efficiency due to the periodic shutdown of the separation and recovery device. A technology has been proposed.
特開2003-128595号公報JP 2003-128595 A
 一方で、より簡便に、上述した重合物による不具合を解消する新たな技術が求められていた。そこで、本発明は、長期間に亘り効率的に不飽和炭化水素を取り扱うことが可能な、不飽和炭化水素の取り扱い方法および取り扱い装置を提供することを目的とする。 On the other hand, there has been a demand for a new technology that more easily solves the above-described problems caused by the polymer. Then, an object of this invention is to provide the handling method and handling apparatus of unsaturated hydrocarbon which can handle unsaturated hydrocarbon efficiently over a long period of time.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そこで、本発明者は、蒸留塔などの設備を構成する部材の表面を、金属酸化物および/または半金属酸化物で被覆することにより、部材表面に上述した重合物が固着するのを抑制して、液体および気体の流れを安定化させて長期間に亘り効率的に所望の処理または操作を行うことができることを見出し、本発明を完成するに至った。 The present inventor has intensively studied for the purpose of solving the above problems. Therefore, the present inventor has prevented the above-described polymer from adhering to the surface of the member by coating the surface of the member constituting equipment such as a distillation tower with a metal oxide and / or a semi-metal oxide. Thus, the present inventors have found that the desired treatment or operation can be efficiently performed over a long period of time by stabilizing the flow of liquid and gas, and the present invention has been completed.
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の不飽和炭化水素を取り扱う方法は、蒸留塔、熱交換器、反応器、ポンプ、配管、およびバルブからなる群から選ばれる少なくとも1つの設備を用いて、前記不飽和炭化水素を含有する組成物を取り扱う工程を含み、前記設備の、前記組成物と接触する部材の少なくとも一つが、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する部材であることを特徴とする。このように、金属酸化物および/または半金属酸化物の被膜で被覆された部材には、不飽和炭化水素の重合により析出した重合物が固着し難い。そのため、この部材を備える設備を用いれば、長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。 That is, the present invention aims to advantageously solve the above-mentioned problems, and the method for handling unsaturated hydrocarbons of the present invention includes a distillation column, a heat exchanger, a reactor, a pump, piping, and a valve. Using at least one facility selected from the group consisting of: handling a composition containing the unsaturated hydrocarbon, wherein at least one member of the facility in contact with the composition comprises a metal oxide and It is a member having a film containing at least one of metalloid oxides. Thus, the polymer deposited by polymerization of unsaturated hydrocarbon is difficult to adhere to the member covered with the metal oxide and / or metalloid oxide film. Therefore, if the equipment provided with this member is used, unsaturated hydrocarbons can be handled efficiently over a long period of time.
 ここで、本発明の不飽和炭化水素を取り扱う方法では、前記不飽和炭化水素を、炭素数4以上10以下の不飽和炭化水素とすることができる。 Here, in the method for handling unsaturated hydrocarbons of the present invention, the unsaturated hydrocarbon can be an unsaturated hydrocarbon having 4 to 10 carbon atoms.
 そして、本発明の不飽和炭化水素を取り扱う方法では、前記組成物を、1,3-ブタジエン濃度が0.1質量%以上99.9質量%以下である炭化水素混合物またはイソプレン濃度が0.1質量%以上99.9質量%以下である炭化水素混合物とすることができる。 Then, in the method for handling unsaturated hydrocarbons of the present invention, the composition is mixed with a hydrocarbon mixture having a 1,3-butadiene concentration of 0.1% by mass to 99.9% by mass or an isoprene concentration of 0.1%. It can be set as the hydrocarbon mixture which is the mass% or more and 99.9 mass% or less.
 更に、本発明の不飽和炭化水素を取り扱う方法では、前記被膜の平均厚みが0.5μm以上100μm以下であることが好ましい。被膜の平均厚みが上述の範囲内であれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。
 なお、本発明において、部材表面の被膜の平均厚みは、高周波グロー放電発光表面分析法(rf-GD-OES法)により測定することができる。
Furthermore, in the method for handling unsaturated hydrocarbons of the present invention, the average thickness of the coating is preferably 0.5 μm or more and 100 μm or less. If the average thickness of the coating is within the above range, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period.
In the present invention, the average thickness of the coating on the member surface can be measured by a high-frequency glow discharge luminescence surface analysis method (rf-GD-OES method).
 また、本発明の不飽和炭化水素を取り扱う方法では、前記金属酸化物が、クロム酸化物、アルミニウム酸化物、スズ酸化物、ジルコニウム酸化物およびイットリウム酸化物からなる群から選ばれる少なくとも1種であり、前記半金属酸化物が、ホウ素酸化物、ケイ素酸化物、ゲルマニウム酸化物、ヒ素酸化物、テルル酸化物およびポロニウム酸化物からなる群から選ばれる少なくとも1種であることが好ましい。部材表面の被膜として、上述した金属酸化物および半金属酸化物の何れかを用いれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。 In the method for handling unsaturated hydrocarbons of the present invention, the metal oxide is at least one selected from the group consisting of chromium oxide, aluminum oxide, tin oxide, zirconium oxide and yttrium oxide. The metalloid oxide is preferably at least one selected from the group consisting of boron oxide, silicon oxide, germanium oxide, arsenic oxide, tellurium oxide and polonium oxide. If any of the metal oxides and metalloid oxides described above is used as the coating on the surface of the member, the polymer will be further prevented from sticking to the member, and the unsaturated hydrocarbon will be handled efficiently over a longer period of time. Can do.
 ここで、本発明の不飽和炭化水素を取り扱う方法では、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材として、母材と、前記母材表面の前記被膜からなり、前記母材が鉄およびチタンの少なくとも一方を含有する部材を用いることができる。
 また、本発明の不飽和炭化水素を取り扱う方法では、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材の水との接触角が70°以下であることが好ましい。部材表面の水との接触角が70°以下であれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。
 なお、本発明において、部材表面の水との接触角は、液滴法で測定することができる。具体的には、測定温度:23℃±3℃、湿度:50%RH±20%RH、液滴量:1μL、着液から測定までの待ち時間:5秒、の条件で、部材表面の任意の10点において測定を行い、それらの平均値として部材表面の水との接触角を得ることができる。
Here, in the method for handling unsaturated hydrocarbons of the present invention, the member having a coating containing at least one of a metal oxide and a semi-metal oxide comprises a base material and the coating on the surface of the base material, A member whose base material contains at least one of iron and titanium can be used.
In the method for handling unsaturated hydrocarbons of the present invention, the contact angle with water of the member having a coating containing at least one of a metal oxide and a metalloid oxide is preferably 70 ° or less. If the contact angle with water on the surface of the member is 70 ° or less, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period of time.
In the present invention, the contact angle of the member surface with water can be measured by a droplet method. Specifically, the surface of the member is arbitrarily selected under the conditions of measurement temperature: 23 ° C. ± 3 ° C., humidity: 50% RH ± 20% RH, droplet volume: 1 μL, waiting time from landing to measurement: 5 seconds. It is possible to obtain a contact angle with water on the surface of the member as an average value.
 そして、本発明の不飽和炭化水素を取り扱う方法では、前記組成物が、さらにアルカリ金属塩を含むことが好ましい。組成物がアルカリ金属塩を含めば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。
 なお、組成物がアルカリ金属塩を含むことで、部材への重合物の固着を一層抑制することができる理由は、定かではないが以下の通りであると推察される。すなわち、組成物がアルカリ金属塩を含むことで、当該アルカリ金属塩に由来するナトリウムイオンやカリウムイオン等のアルカリ金属イオンが、上述した部材表面の被膜に静電相互作用により吸着し、部材表面の親水性を飛躍的に高める。このように部材表面の親水性が顕著に向上することにより、疎水性である不飽和炭化水素の重合物との親和性が大幅に低下するため、重合物の固着を更に抑制することができる。
And in the method of handling the unsaturated hydrocarbon of the present invention, it is preferable that the composition further contains an alkali metal salt. If the composition contains an alkali metal salt, it is possible to further suppress the fixation of the polymer to the member, and to handle unsaturated hydrocarbons efficiently over a longer period of time.
In addition, it is speculated that the reason why the composition can contain the alkali metal salt can further suppress the adhesion of the polymer to the member is as follows. That is, when the composition contains an alkali metal salt, alkali metal ions such as sodium ions and potassium ions derived from the alkali metal salt are adsorbed to the coating on the member surface by electrostatic interaction, and the member surface Increases hydrophilicity dramatically. Since the hydrophilicity of the surface of the member is remarkably improved in this manner, the affinity with the polymer of the unsaturated hydrocarbon that is hydrophobic is greatly reduced, so that the adhesion of the polymer can be further suppressed.
 更に、本発明の不飽和炭化水素を取り扱う方法では、前記アルカリ金属塩が、NaNO3、NaNO2、Na3PO4、Na2HPO4、NaH2PO4、Na2SO4、KNO3、KNO2、K3PO4、K2HPO4、KH2PO4およびK2SO4からなる群から選ばれる少なくとも1つであることが好ましい。組成物が、上述した何れかのアルカリ金属塩を含めば、部材への重合物の固着をより一層抑制し、更に長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。 Furthermore, in the method for handling unsaturated hydrocarbons of the present invention, the alkali metal salt is NaNO 3 , NaNO 2 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , KNO 3 , KNO. 2 , at least one selected from the group consisting of K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 and K 2 SO 4 is preferred. If the composition contains any of the alkali metal salts described above, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period of time.
 また、本発明の不飽和炭化水素を取り扱う方法は、例えば、出発原料から目的とする不飽和炭化水素を分離回収するための方法であり、前記組成物を取り扱う工程を、前記不飽和炭化水素を含有する混合物の蒸留を行う工程とすることができる。すなわち、本発明の不飽和炭化水素を取り扱う方法は、出発原料から目的とする不飽和炭化水素を分離回収する方法であって、蒸留塔を用いて、前記不飽和炭化水素を含有する混合物の蒸留を行う工程を含み、前記蒸留塔の、前記混合物と接触する部材の少なくとも一つが、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する部材である、方法とすることができる。この方法によれば、長期間に亘り効率的に不飽和炭化水素を分離回収することができる。 The method for handling unsaturated hydrocarbons of the present invention is, for example, a method for separating and recovering the target unsaturated hydrocarbons from starting materials, and the step of handling the composition comprises the step of treating the unsaturated hydrocarbons. It can be set as the process of distilling the mixture containing. That is, the method for handling unsaturated hydrocarbons of the present invention is a method for separating and recovering the target unsaturated hydrocarbons from the starting material, and distillation of the mixture containing the unsaturated hydrocarbons using a distillation column. And at least one member in contact with the mixture of the distillation column is a member having a coating containing at least one of a metal oxide and a metalloid oxide. According to this method, unsaturated hydrocarbons can be separated and recovered efficiently over a long period of time.
 ここで、本発明の不飽和炭化水素を取り扱う方法では、出発原料から目的とする不飽和炭化水素を分離回収するに際し、前記出発原料を、C4留分またはC5留分とすることができる。 Here, in the method for handling unsaturated hydrocarbons of the present invention, when the target unsaturated hydrocarbon is separated and recovered from the starting material, the starting material can be made into a C 4 fraction or a C 5 fraction. .
 そして、本発明の不飽和炭化水素を取り扱う方法では、出発原料から目的とする不飽和炭化水素を分離回収するに際し、前記混合物の蒸留を行う工程を、抽出蒸留を行う工程とすることができる。 In the method for handling unsaturated hydrocarbons of the present invention, the step of distilling the mixture when separating and recovering the target unsaturated hydrocarbons from the starting material can be the step of performing extractive distillation.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の不飽和炭化水素を取り扱う装置は、前記不飽和炭化水素を含有する組成物を取り扱う設備を備え、前記設備が、蒸留塔、熱交換器、反応器、ポンプ、配管、およびバルブからなる群から選択される少なくとも1つであり、前記設備の、前記組成物と接触する部材の少なくとも一つが、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する部材であることを特徴とする。このように、金属酸化物および/または半金属酸化物の被膜で被覆された部材を備える設備を用いれば、長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。 Moreover, this invention aims at solving the said subject advantageously, The apparatus which handles the unsaturated hydrocarbon of this invention is equipped with the equipment which handles the composition containing the said unsaturated hydrocarbon, The equipment is at least one selected from the group consisting of a distillation column, a heat exchanger, a reactor, a pump, piping, and a valve, and at least one member of the equipment that contacts the composition is a metal It is a member having a film containing at least one of an oxide and a metalloid oxide. As described above, if a facility including a member coated with a metal oxide and / or metalloid oxide film is used, unsaturated hydrocarbons can be handled efficiently over a long period of time.
 ここで、本発明の不飽和炭化水素を取り扱う装置では、前記被膜の平均厚みが0.5μm以上100μm以下であることが好ましい。被膜の平均厚みが上述の範囲内であれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。 Here, in the apparatus for handling unsaturated hydrocarbons of the present invention, the average thickness of the coating is preferably 0.5 μm or more and 100 μm or less. If the average thickness of the coating is within the above range, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period.
 そして、本発明の不飽和炭化水素を取り扱う装置では、前記金属酸化物が、クロム酸化物、アルミニウム酸化物、スズ酸化物、ジルコニウム酸化物およびイットリウム酸化物からなる群から選ばれる少なくとも1種であり、前記半金属酸化物が、ホウ素酸化物、ケイ素酸化物、ゲルマニウム酸化物、ヒ素酸化物、テルル酸化物およびポロニウム酸化物からなる群から選ばれる少なくとも1種であることが好ましい。部材表面の被膜として、上述した金属酸化物および半金属酸化物の何れかを用いれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。 In the apparatus for handling unsaturated hydrocarbons of the present invention, the metal oxide is at least one selected from the group consisting of chromium oxide, aluminum oxide, tin oxide, zirconium oxide and yttrium oxide. The metalloid oxide is preferably at least one selected from the group consisting of boron oxide, silicon oxide, germanium oxide, arsenic oxide, tellurium oxide and polonium oxide. If any of the metal oxides and metalloid oxides described above is used as the coating on the surface of the member, the polymer will be further prevented from sticking to the member, and the unsaturated hydrocarbon will be handled efficiently over a longer period of time. Can do.
 更に、本発明の不飽和炭化水素を取り扱う装置では、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材として、母材と、前記母材表面の前記被膜からなり、前記母材が鉄およびチタンの少なくとも一方を含有する部材を用いることができる。
 また、本発明の不飽和炭化水素を取り扱う装置では、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材の水との接触角が70°以下であることが好ましい。部材表面の水との接触角が70°以下であれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。
Furthermore, in the apparatus for handling unsaturated hydrocarbons of the present invention, the member having a coating containing at least one of a metal oxide and a metalloid oxide comprises a base material and the coating on the base material surface, and the base A member whose material contains at least one of iron and titanium can be used.
In the apparatus for handling unsaturated hydrocarbons of the present invention, the contact angle of the member having a coating containing at least one of a metal oxide and a semimetal oxide with water is preferably 70 ° or less. If the contact angle with water on the surface of the member is 70 ° or less, the adhesion of the polymer to the member can be further suppressed, and the unsaturated hydrocarbon can be handled efficiently over a longer period of time.
 また、本発明の不飽和炭化水素を取り扱う装置は、例えば、不飽和炭化水素を分離回収するための装置であり、前記設備を蒸留塔とし、前記蒸留塔で、前記不飽和炭化水素を含有する混合物の蒸留を行うことができる。すなわち、本発明の不飽和炭化水素を取り扱う装置は、不飽和炭化水素を含有する混合物の蒸留を行う蒸留塔を備える、不飽和炭化水素の分離回収装置であって、前記蒸留塔の、前記混合物と接触する部材の少なくとも一つが、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する部材である、装置とすることができる。この装置によれば、長期間に亘り効率的に不飽和炭化水素を分離回収することができる。 The apparatus for handling unsaturated hydrocarbons of the present invention is, for example, an apparatus for separating and recovering unsaturated hydrocarbons, wherein the equipment is a distillation column, and the distillation column contains the unsaturated hydrocarbons. Distillation of the mixture can be performed. That is, the apparatus for handling unsaturated hydrocarbons of the present invention is an apparatus for separating and recovering unsaturated hydrocarbons comprising a distillation column for distilling a mixture containing unsaturated hydrocarbons, wherein the mixture of the distillation towers It can be set as the apparatus whose at least 1 of the member which contacts with is a member which has a film containing at least one of a metal oxide and a metalloid oxide. According to this apparatus, unsaturated hydrocarbons can be separated and recovered efficiently over a long period of time.
 ここで、本発明の不飽和炭化水素を取り扱う装置では、当該装置が不飽和炭化水素の分離回収装置である場合、前記蒸留塔を抽出蒸留塔とすることができる。 Here, in the apparatus for handling unsaturated hydrocarbons of the present invention, when the apparatus is an apparatus for separating and recovering unsaturated hydrocarbons, the distillation column can be an extractive distillation column.
 本発明によれば、長期間に亘り効率的に不飽和炭化水素を取り扱うことが可能な、不飽和炭化水素の取り扱い方法および取り扱い装置を提供することができる。
 また、本発明によれば、長期間に亘り効率的に不飽和炭化水素を分離回収することが可能な、不飽和炭化水素の分離回収方法および分離回収装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the handling method and handling apparatus of unsaturated hydrocarbon which can handle unsaturated hydrocarbon efficiently over a long period of time can be provided.
In addition, according to the present invention, it is possible to provide an unsaturated hydrocarbon separation / recovery method and separation / recovery device capable of efficiently separating and recovering unsaturated hydrocarbons over a long period of time.
本発明の分離回収方法および分離回収装置に用いる蒸留塔の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the distillation tower used for the separation collection method and separation collection apparatus of this invention. 本発明に従う不飽和炭化水素の分離回収装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the separation-and-recovery apparatus of unsaturated hydrocarbon according to this invention.
 以下、本発明の実施形態について詳細に説明する。
 本発明の方法は、不飽和炭化水素を取り扱う方法である。そして、本発明の装置は、不飽和炭化水素を取り扱う装置であって、例えば、本発明の方法を用いて不飽和炭化水素を取り扱う際に使用することができる。
Hereinafter, embodiments of the present invention will be described in detail.
The method of the present invention is a method for handling unsaturated hydrocarbons. And the apparatus of this invention is an apparatus which handles unsaturated hydrocarbon, Comprising: For example, when handling unsaturated hydrocarbon using the method of this invention, it can be used.
 そして、本発明の不飽和炭化水素を取り扱う方法は、所定の設備を用いて不飽和炭化水素を含有する組成物を取り扱う工程を含む。また、本発明の不飽和炭化水素を取り扱う装置は、上記組成物を取り扱う工程を実施するための所定の設備を備える。
 ここで、所定の設備を用いて不飽和炭化水素を含有する組成物を取り扱う工程は、所定の設備が、(例えばその内部において)組成物と接触する処理または操作であれば特に限定されない。所定の設備を用いて組成物を取り扱う工程としては、例えば、蒸留塔内で組成物を蒸留する工程;熱交換器を通過させることで組成物を加熱または冷却する工程;反応器内で組成物を化学反応(不飽和炭化水素の重合反応など)に供する工程;ポンプ(コンプレッサーなど)により組成物を移送する工程;配管内を通して組成物を移送する工程;バルブにより組成物の移送方向、圧力、および/または流量の制御を行う工程:が挙げられる。
 なお、上述した不飽和炭化水素を含有する組成物は、不飽和炭化水素を含有していれば特に限定されず、1種又は複数種の不飽和炭化水素のみからなる組成物であってもよいし、不飽和炭化水素と不飽和炭化水素以外の物質を含む組成物であってもよい。そして、不飽和炭化水素を含有する組成物としては、例えば、後述する「不飽和炭化水素の分離回収方法」で挙げる、C4留分およびC5留分などの出発原料が挙げられる。
And the method of handling the unsaturated hydrocarbon of this invention includes the process of handling the composition containing unsaturated hydrocarbon using a predetermined installation. Moreover, the apparatus which handles the unsaturated hydrocarbon of the present invention includes a predetermined facility for carrying out the process for handling the composition.
Here, the process of handling the composition containing an unsaturated hydrocarbon using a predetermined facility is not particularly limited as long as the predetermined facility is a treatment or operation in contact with the composition (for example, inside). Examples of the process of handling the composition using a predetermined facility include a process of distilling the composition in a distillation tower; a process of heating or cooling the composition by passing through a heat exchanger; and a composition in the reactor. A chemical reaction (such as an unsaturated hydrocarbon polymerization reaction); a step of transferring a composition by a pump (such as a compressor); a step of transferring a composition through a pipe; a transfer direction of the composition by a valve, a pressure, And / or a step of controlling the flow rate.
The composition containing the unsaturated hydrocarbon described above is not particularly limited as long as it contains an unsaturated hydrocarbon, and may be a composition consisting of only one or more kinds of unsaturated hydrocarbons. In addition, the composition may include an unsaturated hydrocarbon and a substance other than the unsaturated hydrocarbon. Examples of the composition containing unsaturated hydrocarbons include starting materials such as C 4 fraction and C 5 fraction mentioned in “Method for separating and recovering unsaturated hydrocarbon” described later.
 上述した所定の設備は、不飽和炭化水素を含有する組成物と接触する箇所に、金属酸化物および半金属酸化物の少なくとも一方を含む被膜で、表面の一部又は全部が覆われた部材(以下、「酸化物被覆部材」と称する場合がある。)を備える。上述の酸化物被覆部材表面の被膜は、部材表面から容易に脱離することはなく、また不要な化学反応に関与せずに安定に存在する。そして、当該被膜によれば、不飽和炭化水素の取扱いに際し、上述した所定の設備内に析出する重合物の、部材表面への固着を抑制することができる。
 なお、本発明において、所定の設備を用いて不飽和炭化水素を含有する組成物を取り扱う工程における、当該組成物の温度は、30℃以上とすることができ、40℃以上とすることができ、また200℃以下とすることができ、180℃以下とすることができる。本発明の方法および/または設備を用いれば、組成物の温度が上述した様な重合物が析出し易い範囲内であっても、重合物の部材表面への固着を十分に抑制することができる。
The predetermined equipment described above is a member in which a part or the whole of the surface is covered with a coating containing at least one of a metal oxide and a metalloid oxide at a portion that comes into contact with the composition containing an unsaturated hydrocarbon ( Hereinafter, it may be referred to as “oxide-coated member”). The coating on the surface of the oxide-coated member does not easily desorb from the member surface, and exists stably without being involved in unnecessary chemical reactions. And according to the said film, when handling unsaturated hydrocarbon, the adhesion to the member surface of the polymer which precipitates in the predetermined equipment mentioned above can be suppressed.
In the present invention, the temperature of the composition in the step of handling the composition containing an unsaturated hydrocarbon using predetermined equipment can be 30 ° C. or higher, and can be 40 ° C. or higher. Moreover, it can be 200 degrees C or less, and can be 180 degrees C or less. If the method and / or equipment of the present invention is used, even when the temperature of the composition is within the range in which the polymer is likely to precipitate, the adhesion of the polymer to the member surface can be sufficiently suppressed. .
 以下、本発明の方法として、出発原料から目的とする不飽和炭化水素を分離回収する方法(不飽和炭化水素の分離回収方法)を一例に挙げ、そして、本発明の装置として、出発原料から目的とする不飽和炭化水素を分離回収する装置(不飽和炭化水素の分離回収装置)を一例に挙げて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, as an example of the method of the present invention, a method for separating and recovering a target unsaturated hydrocarbon from a starting material (a method for separating and recovering unsaturated hydrocarbons) is given as an example. An apparatus for separating and recovering unsaturated hydrocarbons (unsaturated hydrocarbon separation and recovery apparatus) will be described as an example, but the present invention is not limited thereto.
 本発明の方法の一態様である不飽和炭化水素の分離回収方法(以下、「本発明の不飽和炭化水素の分離回収方法」と略記する場合がある。)は、目的の不飽和炭化水素を含む出発原料から、当該不飽和炭化水素を分離回収する際に用いることができる。また、本発明の装置の一態様である不飽和炭化水素の分離回収装置(以下、「本発明の不飽和炭化水素の分離回収装置」と略記する場合がある。)は、上述した不飽和炭化水素の分離回収方法を用いて不飽和炭化水素を分離回収する際に好適に用いることができる。 The method for separating and recovering unsaturated hydrocarbons (hereinafter, sometimes abbreviated as “the method for separating and recovering unsaturated hydrocarbons of the present invention”), which is an embodiment of the method of the present invention, comprises the target unsaturated hydrocarbon. It can be used when the unsaturated hydrocarbon is separated and recovered from the starting material. In addition, the unsaturated hydrocarbon separation and recovery apparatus (hereinafter, may be abbreviated as “unsaturated hydrocarbon separation and recovery apparatus of the present invention”), which is an embodiment of the apparatus of the present invention, is the above-described unsaturated carbonization. It can be suitably used when unsaturated hydrocarbons are separated and recovered using a hydrogen separation and recovery method.
(不飽和炭化水素の分離回収方法)
 本発明の不飽和炭化水素の分離回収方法では、出発原料から不飽和炭化水素を分離回収するに際し、一回又は複数回、不飽和炭化水素を含有する混合物に対して、蒸留塔を用いた蒸留処理の操作を行う。そして、この蒸留処理の少なくとも一回を、不飽和炭化水素を含有する混合物と接触する箇所に、上述した酸化物被覆部材を備える蒸留塔を用いて行うことを特徴とする。
 上述の酸化物被覆部材表面の被膜は、蒸留塔内の過酷な条件下においても、部材表面から容易に脱離することはなく、また不要な化学反応に関与せずに安定に存在する。そして、当該被膜は、不飽和炭化水素の分離回収において蒸留塔内に析出する重合物が部材表面へ固着することを抑制しうる。そのため、本発明の不飽和炭化水素の分離回収方法を用いれば、分離回収を長期間に亘り連続して行った場合であっても、液体および気体の流れが不安定になり難い。したがって、分離回収装置の操業停止を伴う大規模な清掃の頻度を低下させることができる。
(Method for separating and recovering unsaturated hydrocarbons)
In the method for separating and recovering unsaturated hydrocarbons of the present invention, when the unsaturated hydrocarbons are separated and recovered from the starting material, one or more times of distillation using a distillation column is performed on the mixture containing unsaturated hydrocarbons. Perform processing operations. And it is characterized by performing at least once of this distillation process using the distillation tower provided with the oxide coating | coated member mentioned above in the location which contacts the mixture containing unsaturated hydrocarbon.
The above-mentioned coating on the surface of the oxide-coated member does not easily desorb from the surface of the member even under severe conditions in the distillation column, and stably exists without being involved in unnecessary chemical reactions. And the said film can suppress that the polymer which precipitates in a distillation tower in isolation | separation collection | recovery of unsaturated hydrocarbon adheres to the member surface. Therefore, if the method for separating and recovering unsaturated hydrocarbons of the present invention is used, the flow of liquid and gas is unlikely to become unstable even when separation and recovery are continuously performed for a long period of time. Therefore, it is possible to reduce the frequency of large-scale cleaning that accompanies the operation stop of the separation and recovery device.
<出発原料>
 出発原料は、不飽和炭化水素を含有するものであれば特に限定されず、例えば、ナフサをクラッキングしてエチレンを生産する際に得られるC4留分などの、炭素数4の不飽和炭化水素を含有する任意のC4炭化水素混合物;上記C4留分と同様にエチレンを生産する際に得られるC5留分などの、炭素数5の不飽和炭化水素を含有する任意のC5炭化水素混合物;任意の重合反応後に回収して得られる、未反応の不飽和炭化水素を含む粗混合物、などを用いることができる。
 これらの中でも、出発原料としては、C4留分およびC5留分を好適に用いることができる。
<Starting material>
The starting material is not particularly limited as long as it contains an unsaturated hydrocarbon. For example, an unsaturated hydrocarbon having 4 carbon atoms such as a C 4 fraction obtained when cracking naphtha to produce ethylene. any C 4 hydrocarbon mixture containing; such as the C 4 fraction and C 5 fraction obtained in producing ethylene in the same manner, any C 5 hydrocarbon containing an unsaturated hydrocarbon having 5 carbon atoms A hydrogen mixture; a crude mixture containing an unreacted unsaturated hydrocarbon obtained by collecting after an arbitrary polymerization reaction, and the like can be used.
Among these, as a starting material, a C 4 fraction and a C 5 fraction can be preferably used.
<不飽和炭化水素およびそれを含有する混合物>
 上述した出発原料中に含まれる、分離回収の対象である不飽和炭化水素としては、特に限定されないが、例えば、イソプレン、ピペリレン、ジシクロペンタジエン、1,3-ブタジエンなどの炭素数4以上10以下の不飽和炭化水素が挙げられる。
 なお、蒸留処理の対象となる不飽和炭化水素を含有する混合物は、上述の出発原料や、上述の出発原料を蒸留して得られる留分である。より具体的に、混合物は、例えば、1,3-ブタジエンを0.1質量%以上99.9質量%以下の濃度で含む炭化水素混合物や、イソプレンを0.1質量%以上99.9質量%以下の濃度で含む炭化水素混合物とすることができる。
 また、不飽和炭化水素を含有する混合物は、さらに、アルカリ金属塩を含むことが好ましい。混合物がアルカリ金属塩を含めば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を分離回収することができる。
 ここで、アルカリ金属塩としては、特に限定されないが、部材への重合物の固着をより一層抑制する観点から、NaNO3、NaNO2、Na3PO4、Na2HPO4、NaH2PO4、Na2SO4、KNO3、KNO2、K3PO4、K2HPO4、KH2PO4、K2SO4が好ましく、NaNO2がより好ましい。
 なお、これらのアルカリ金属塩は、1種類を単独で使用しても、2種類以上を併用してもよい。
<Unsaturated hydrocarbon and mixture containing the same>
The unsaturated hydrocarbon to be separated and recovered contained in the above starting materials is not particularly limited. For example, the number of carbon atoms is 4 or more and 10 or less, such as isoprene, piperylene, dicyclopentadiene, 1,3-butadiene. Of unsaturated hydrocarbons.
The mixture containing unsaturated hydrocarbons to be subjected to distillation treatment is the above-mentioned starting material or a fraction obtained by distilling the above-mentioned starting material. More specifically, the mixture is, for example, a hydrocarbon mixture containing 1,3-butadiene at a concentration of 0.1% by mass or more and 99.9% by mass or less, or isoprene of 0.1% by mass or more and 99.9% by mass. It can be a hydrocarbon mixture containing at the following concentrations.
Moreover, it is preferable that the mixture containing unsaturated hydrocarbon further contains an alkali metal salt. If the mixture contains an alkali metal salt, it is possible to further suppress the adhesion of the polymer to the member and to efficiently separate and recover unsaturated hydrocarbons over a longer period.
Here, the alkali metal salt is not particularly limited, but from the viewpoint of further suppressing the fixation of the polymer to the member, NaNO 3 , NaNO 2 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , KNO 3 , KNO 2 , K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , and K 2 SO 4 are preferable, and NaNO 2 is more preferable.
In addition, these alkali metal salts may be used individually by 1 type, or may use 2 or more types together.
<蒸留塔を用いた蒸留>
 上述した出発原料から目的とする不飽和炭化水素を得るためには、沸点の異なる複数の成分を分離するため、蒸留の操作を複数回行うことが好ましい。本発明の不飽和炭化水素の分離回収方法では、このような蒸留の操作のうちの少なくとも1回を、酸化物被覆部材を備える蒸留塔を用いて行う。
 なお、蒸留塔において、被膜がその表面に設けられる部材は、蒸留の際に、不飽和炭化水素を含有する混合物と接触する部材であれば特に限定されない。このような部材としては、例えば、棚板、蒸留塔本体胴、ノズル、シールパン、トレイウェア、ディストリビュータ、コレクター、チムニートレイが挙げられる。
<Distillation using distillation tower>
In order to obtain the target unsaturated hydrocarbon from the above-mentioned starting materials, it is preferable to perform distillation operations a plurality of times in order to separate a plurality of components having different boiling points. In the method for separating and recovering unsaturated hydrocarbons of the present invention, at least one of such distillation operations is performed using a distillation column equipped with an oxide-coated member.
In the distillation tower, the member on which the film is provided is not particularly limited as long as it is a member that comes into contact with the mixture containing unsaturated hydrocarbons during distillation. Examples of such members include shelf boards, distillation column main bodies, nozzles, seal pans, trayware, distributors, collectors, and chimney trays.
 そして、本発明の不飽和炭水素の分離回収方法は、例えば、出発原料を抽出蒸留して、目的の不飽和炭化水素を含む留分を得る抽出蒸留工程と、前記抽出蒸留工程で得られた前記留分から目的の不飽和炭化水素以外の不純物を除去する不純物除去工程、を含む。ここで、本発明の不飽和炭水素の分離回収方法では、酸化物被覆部材を備える蒸留塔を、上述した抽出蒸留工程における抽出蒸留に用いてもよいし、上述した不純物除去工程の不純物の除去に用いてもよい。 The method for separating and recovering unsaturated hydrocarbons of the present invention was obtained by, for example, an extractive distillation step in which a starting material is subjected to extractive distillation to obtain a fraction containing the target unsaturated hydrocarbon, and the extractive distillation step. An impurity removing step of removing impurities other than the target unsaturated hydrocarbon from the fraction. Here, in the method for separating and recovering unsaturated hydrocarbons of the present invention, the distillation column provided with the oxide-coated member may be used for the extractive distillation in the extractive distillation process described above, or the impurities are removed in the impurity removal process described above. You may use for.
[蒸留塔]
 本発明の不飽和炭化水素を分離回収する方法に用いることができる蒸留塔の一例は、例えば、図1に示すような抽出蒸留塔である。
 なお、以下では、図1の抽出蒸留塔において、酸化物被覆部材として、「酸化物被覆棚板」(金属酸化物および半金属酸化物の少なくとも一方を含む被膜で、表面の一部又は全部が覆われた棚板)を用いた場合について説明するが、本発明はこれに限定されるものではない。
[Distillation tower]
An example of a distillation column that can be used in the method for separating and recovering unsaturated hydrocarbons of the present invention is, for example, an extractive distillation column as shown in FIG.
In the following, in the extractive distillation column of FIG. 1, as an oxide-coated member, an “oxide-coated shelf” (a film containing at least one of a metal oxide and a semi-metal oxide, and a part or all of the surface thereof is used. Although the case where a covered shelf board) is used will be described, the present invention is not limited to this.
-蒸留塔の構成例-
 ここで、図1に示す蒸留塔1は、塔本体2と、この塔本体2の塔頂から排出される気体(蒸気)を冷却して液化する凝縮器3と、凝縮器3により液化された留分を貯留する還流ドラム4と、還流ドラム4に貯留された前記留分の一部を前記塔本体の塔頂近傍に再供給する還流ライン5と、前記塔本体2の塔底に配置される再沸器6と、前記塔本体2の内部空間を区切る複数の棚板7とを有する。なお、それぞれの棚板7は、複数の孔を有している。また、棚板7の数は、模式的に7段としているが、特に限定されない。例えば、蒸留に必要なエネルギーコストを考慮して、棚板7の数は、50~300段とすることができる。
 蒸留塔1を用いて、不飽和炭化水素を含有する混合物を蒸留するに際し、不飽和炭化水素を含有する混合物は必要に応じて気化され、塔本体2に供給される。なお、塔本体2には、必要に応じて任意の溶剤を供給してもよい。ここで、溶剤としては、「不飽和炭化水素の分離回収装置」の項で後述する溶剤を使用することができる。また溶剤には、上述したアルカリ金属塩や、「不飽和炭化水素の分離回収装置」の項で後述する重合禁止剤を含めることで、これらを、不飽和炭化水素を含有する混合物に添加することもできる。そして、不飽和炭化水素を含有する混合物および必要に応じて供給される溶剤は、再沸器6により加熱されて気体となり、主として棚板7に設けられた孔を通り、塔本体2内を上昇する。ここで、本発明の不飽和炭化水素の分離回収方法で用いる蒸留塔においては、少なくとも1つの棚板が、酸化物被覆棚板であることが好ましい。図1の蒸留塔を使用するに際し、棚板として酸化物被覆棚板を用いれば、析出する重合物により棚板の孔が目詰まりするのを防止することができ、長期間連続で蒸留を行った場合であっても、特に気体の流れを良好に保つことができる。
-Example configuration of distillation tower-
Here, the distillation column 1 shown in FIG. 1 is liquefied by the column main body 2, the condenser 3 that cools and liquefies the gas (vapor) discharged from the top of the column main body 2, and the condenser 3. A reflux drum 4 for storing a fraction, a reflux line 5 for re-feeding a part of the fraction stored in the reflux drum 4 to the vicinity of the top of the tower body, and a tower bottom of the tower body 2. A reboiler 6 and a plurality of shelves 7 partitioning the internal space of the tower body 2. Each shelf board 7 has a plurality of holes. Moreover, although the number of the shelf boards 7 is typically 7 steps | paragraphs, it is not specifically limited. For example, considering the energy cost required for distillation, the number of shelves 7 can be 50 to 300 stages.
When distilling a mixture containing unsaturated hydrocarbons using the distillation column 1, the mixture containing unsaturated hydrocarbons is vaporized as necessary and supplied to the column body 2. In addition, you may supply arbitrary solvents to the tower main body 2 as needed. Here, as the solvent, a solvent described later in the section of “Unsaturated hydrocarbon separation and recovery device” can be used. In addition, the solvent contains the above-mentioned alkali metal salt and the polymerization inhibitor described later in the section of “Unsaturated hydrocarbon separation and recovery device”, and these are added to the mixture containing the unsaturated hydrocarbon. You can also. The mixture containing unsaturated hydrocarbons and the solvent supplied as needed are heated by the reboiler 6 to become a gas, which mainly passes through the holes provided in the shelf 7 and rises in the tower body 2. To do. Here, in the distillation column used in the method for separating and recovering unsaturated hydrocarbons of the present invention, it is preferable that at least one shelf is an oxide-coated shelf. When using the distillation column of FIG. 1, if an oxide-coated shelf board is used as a shelf board, it is possible to prevent clogging of the holes of the shelf board due to the deposited polymer, and distillation is performed continuously for a long period of time. Even in this case, the gas flow can be kept particularly good.
-酸化物被覆部材-
 酸化物被覆部材における被膜は、金属酸化物および/または半金属酸化物で構成される。金属酸化物としては、酸化クロム(II)、酸化クロム(III)、酸化クロム(IV)、および酸化クロム(VI)などのクロム酸化物;アルミナ(Al23)などのアルミニウム酸化物;酸化スズ(II)および酸化スズ(VI)などのスズ酸化物;ジルコニア(ZrO2)などのジルコニウム酸化物;酸化イットリウム(III)などのイットリウム酸化物;が挙げられる。半金属酸化物としては、三酸化二ホウ素(B23)などのホウ素酸化物、シリカ(SiO2)などのケイ素酸化物;酸化ゲルマニウム(IV)などのゲルマニウム酸化物、三酸化二ヒ素(As23)および五酸化二ヒ素(As25)などのヒ素酸化物;二酸化テルル(TeO2)および三酸化テルル(TeO3)などのテルル酸化物;一酸化ポロニウム(PoO)、二酸化ポロニウム(PoO2)、および三酸化ポロニウム(PoO3)などのポロニウム酸化物;が挙げられる。これらは1種類を単独で使用しても、2種類以上を併用してもよい。これらの中でも、部材への重合物の固着を一層抑制する観点からは、被膜は、クロム酸化物およびケイ素酸化物の少なくとも一方を含むことが好ましく、クロム酸化物を含むことがより好ましい。
-Oxide-coated member-
The film in the oxide-coated member is composed of a metal oxide and / or a semimetal oxide. Examples of metal oxides include chromium oxides such as chromium (II) oxide, chromium (III) oxide, chromium (IV) oxide, and chromium (VI) oxide; aluminum oxides such as alumina (Al 2 O 3 ); Tin oxides such as tin (II) and tin oxide (VI); zirconium oxides such as zirconia (ZrO 2 ); yttrium oxides such as yttrium oxide (III). As the metalloid oxide, boron oxide such as diboron trioxide (B 2 O 3 ), silicon oxide such as silica (SiO 2 ); germanium oxide such as germanium (IV) oxide, arsenic trioxide ( Ar 2 oxides such as As 2 O 3 ) and diarsenic pentoxide (As 2 O 5 ); tellurium oxides such as tellurium dioxide (TeO 2 ) and tellurium trioxide (TeO 3 ); polonium monoxide (PoO), dioxide Polonium oxides such as polonium (PoO 2 ) and polonium trioxide (PoO 3 ). These may be used alone or in combination of two or more. Among these, from the viewpoint of further suppressing the fixation of the polymer to the member, the coating preferably contains at least one of chromium oxide and silicon oxide, and more preferably contains chromium oxide.
 ここで、酸化物被覆部材の被膜の平均厚みは、特に限定されないが、部材への重合物の固着を一層抑制する観点から、0.5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることが更に好ましい。一方で、上述した重合物の固着抑制効果とコストとのバランスを考慮すると、酸化物被覆部材の被膜の平均厚みは、100μm以下であることが好ましく、50μm以下であることがより好ましい。 Here, the average thickness of the coating of the oxide-coated member is not particularly limited, but is preferably 0.5 μm or more and more preferably 10 μm or more from the viewpoint of further suppressing the fixation of the polymer to the member. Preferably, it is 30 μm or more. On the other hand, in consideration of the balance between the above-described effect of suppressing sticking of the polymer and cost, the average thickness of the oxide-coated member is preferably 100 μm or less, and more preferably 50 μm or less.
 また、上述した被膜が形成される母材の材質は、特に限定されないが、鉄および/またはチタンを含む母材が好適に用いられる。母材の厚みは、被膜が形成された母材を用いる部材の種類、並びに、酸化物被覆部材の製造コストおよび剛性を考慮して、適宜調整することができる。
 さらに、酸化物被覆部材の水との接触角は、70°以下であることが好ましい。酸化物被覆部材の表面と水との接触角が70°以下であれば、部材への重合物の固着を一層抑制し、より長期間に亘り効率的に不飽和炭化水素を取り扱うことができる。なお、酸化物被覆部材の水との接触角の下限は特に限定されないが、通常30°以上である。
Further, the material of the base material on which the above-described film is formed is not particularly limited, but a base material containing iron and / or titanium is preferably used. The thickness of the base material can be appropriately adjusted in consideration of the type of member using the base material on which the coating is formed, and the manufacturing cost and rigidity of the oxide-coated member.
Furthermore, the contact angle of the oxide-coated member with water is preferably 70 ° or less. If the contact angle between the surface of the oxide-coated member and water is 70 ° or less, the adhesion of the polymer to the member can be further suppressed, and unsaturated hydrocarbons can be handled efficiently over a longer period. The lower limit of the contact angle of the oxide-coated member with water is not particularly limited, but is usually 30 ° or more.
 そして、母材の表面に酸化物の被膜を設ける方法は特に限定されない。例えば、母材を金属酸化物および/または半金属イオン酸化物を含有する溶液に浸漬させた後、焼成して、さらに浸漬および焼成を繰り返すことで、母材の表面に酸化物の被膜を設けることができる。なお、浸漬に用いる溶液中にメタリン酸等を含めることで、上述した水との接触角を下げることができ、重合物の固着を一層抑制することができる。
 母材の表面に酸化物の被膜を設ける方法としては、例えば、特開昭63-57783号公報、特開平10-18052号公報、特許第3220012号に記載された方法を用いることができる。
The method for providing the oxide film on the surface of the base material is not particularly limited. For example, after immersing the base material in a solution containing a metal oxide and / or a semi-metal ion oxide, firing, and further repeating the soaking and firing, an oxide film is provided on the surface of the base material be able to. In addition, by including metaphosphoric acid etc. in the solution used for immersion, the contact angle with water mentioned above can be lowered | hung, and adhesion of a polymer can be suppressed further.
As a method for providing an oxide film on the surface of the base material, for example, the methods described in JP-A-63-57883, JP-A-10-18052 and JP-A-3220012 can be used.
(不飽和炭化水素の分離回収装置)
 また、本発明の不飽和炭化水素の分離回収装置は、上述した本発明の不飽和炭化水素の分離回収方法を用いて、出発原料から不飽和炭化水素を分離回収する際に好適に用いることができる。そして、本発明の分離回収装置の一例は、例えば図2に示すような構成を有している。以下、図2の分離回収装置について、出発原料をC4炭化水素混合物とし、分離回収対象の不飽和炭化水素を1,3-ブタジエンとした場合を例に挙げて説明する。
(Unsaturated hydrocarbon separation and recovery equipment)
In addition, the unsaturated hydrocarbon separation and recovery apparatus of the present invention is preferably used when separating and recovering unsaturated hydrocarbons from a starting material using the unsaturated hydrocarbon separation and recovery method of the present invention described above. it can. An example of the separation and recovery apparatus of the present invention has a configuration as shown in FIG. In the following, the separation and recovery apparatus of FIG. 2 will be described by taking as an example the case where the starting material is a C 4 hydrocarbon mixture and the unsaturated hydrocarbon to be separated and recovered is 1,3-butadiene.
 ここで、図2に示す分離回収装置100は、出発原料としてのC4炭化水素混合物を抽出蒸留して1,3-ブタジエンを含む留分(A)と抽出液(B)とを得る抽出蒸留部10と、抽出蒸留部10で得た抽出液(B)中の1,3-ブタジエンおよび溶剤を回収する放散部20と、抽出蒸留部10で得た留分(A)から1,3-ブタジエン以外の不純物を除去する不純物除去部30とを備えている。そして、分離回収装置100においては、抽出蒸留部10、放散部20、不純物除去部30の少なくとも何れかに用いられる蒸留塔として、上述した酸化物被覆部材を有する蒸留塔を使用する。ここで、分離回収装置100においては、抽出蒸留部10に用いる抽出蒸留塔として、酸化物被覆部材を有する蒸留塔を使用することが好ましく、酸化物被覆棚板を有する蒸留塔を使用することがより好ましい。以下、抽出蒸留部10に用いる抽出蒸留塔として、酸化物被覆棚板を有する蒸留塔を用いた場合について説明する。 Here, the separation / recovery device 100 shown in FIG. 2 is an extractive distillation in which a C 4 hydrocarbon mixture as a starting material is subjected to extractive distillation to obtain a fraction (A) containing 1,3-butadiene and an extract (B). 1, from the distilling unit 20 for recovering 1,3-butadiene and the solvent in the extract (B) obtained in the extractive distillation unit 10, and from the fraction (A) obtained in the extractive distillation unit 10 to 1,3- And an impurity removing unit 30 for removing impurities other than butadiene. In the separation and recovery apparatus 100, the distillation tower having the above-described oxide-coated member is used as the distillation tower used in at least one of the extractive distillation section 10, the diffusion section 20, and the impurity removal section 30. Here, in the separation and recovery apparatus 100, it is preferable to use a distillation column having an oxide-coated member as an extractive distillation column used in the extractive distillation unit 10, and to use a distillation column having an oxide-coated shelf. More preferred. Hereinafter, the case where the distillation tower which has an oxide covering shelf board is used as an extraction distillation tower used for the extractive distillation part 10 is demonstrated.
<抽出蒸留部>
 ここで、抽出蒸留部10は、例えば、C4炭化水素混合物を気化させる蒸発塔11と、蒸発塔11で気化させたC4炭化水素混合物を抽出蒸留して留分(C)と抽出液(D)とに分離する第一抽出蒸留塔12(酸化物被覆棚板を有する蒸留塔。例えば、図1に示す構造を有する。)と、抽出液(D)から溶剤を除去する放散塔13と、抽出液(D)から溶剤を除去して得た留分を加圧するコンプレッサー14と、コンプレッサー14で加圧された留分を抽出蒸留して留分(A)と抽出液(B)とに分離する第二抽出蒸留塔15(酸化物被覆棚板を有する蒸留塔。例えば、図1に示す構造を有する。)とを備えている。
<Extraction distillation section>
Here, the extractive distillation section 10 is, for example, C 4 and evaporated tower 11 to vaporize the hydrocarbon mixture, an extractive distillation to distillate C 4 hydrocarbon mixture vaporized in the evaporating tower 11 (C) and extract ( D) and a first extraction distillation column 12 (distillation column having an oxide-coated shelf plate, for example, having a structure shown in FIG. 1), and a stripping column 13 for removing the solvent from the extract (D). The compressor 14 for pressurizing the fraction obtained by removing the solvent from the extract (D), and the fraction pressurized by the compressor 14 are subjected to extractive distillation to obtain the fraction (A) and the extract (B). And a second extractive distillation column 15 (a distillation column having an oxide-coated shelf plate, for example, having the structure shown in FIG. 1).
 そして、第一抽出蒸留塔12では、C4炭化水素混合物の供給段より上段に溶剤を供給してC4炭化水素混合物を抽出蒸留することにより、溶剤に対して1,3-ブタジエンよりも難溶性のブタン類およびブテン類などを含む留分(C)を塔頂から留出させると共に、1,3-ブタジエンおよびビニルアセチレンなどを含む抽出液(D)を塔底から缶出させる。なお、第一抽出蒸留塔12に供給する溶剤としては、例えば特開2003-128595号公報に記載されている、ジメチルホルムアミド(DMF)などのC4炭化水素混合物の抽出蒸留に使用されている既知の溶剤を用いることができる。また、第一抽出蒸留塔12には、部材への重合物の固着を一層抑制する観点から、上述したアルカリ金属塩を供給することが好ましい。加えて、第一抽出蒸留塔12には、重合物の生成を抑制する観点から、既知の重合禁止剤(ただし、アルカリ金属塩に該当するものを除く。)を供給してもよい。上述したアルカリ金属塩と重合禁止剤の供給方法は特に限定されないが、上述した溶剤に溶解させて、当該溶剤と共に第一抽出蒸留塔12に供給することが好ましい。 Then, in the first extractive distillation column 12, by supplying the solvent to the upper than the supply stage C 4 hydrocarbon mixture to extractive distillation to C 4 hydrocarbon mixture, than 1,3-butadiene in the solvent flame A fraction (C) containing soluble butanes and butenes is distilled from the top of the column, and an extract (D) containing 1,3-butadiene and vinylacetylene is taken out from the column bottom. The solvent supplied to the first extractive distillation column 12 is a known solvent used for extractive distillation of a C 4 hydrocarbon mixture such as dimethylformamide (DMF) described in, for example, JP-A-2003-128595. These solvents can be used. Moreover, it is preferable to supply the alkali metal salt mentioned above to the 1st extractive distillation column 12 from a viewpoint which suppresses adhesion of the polymer to a member further. In addition, a known polymerization inhibitor (except for those corresponding to alkali metal salts) may be supplied to the first extractive distillation column 12 from the viewpoint of suppressing the formation of a polymer. Although the supply method of the alkali metal salt and the polymerization inhibitor described above is not particularly limited, it is preferably dissolved in the solvent described above and supplied to the first extractive distillation column 12 together with the solvent.
 また、放散塔13では、塔底より溶剤を缶出させると共に、塔頂より1,3-ブタジエンおよびビニルアセチレンなどを含む留分を留出させる。なお、放散塔13で回収した溶剤は、任意に第一抽出蒸留塔12や第二抽出蒸留塔15などで再利用することができる。 In the stripping tower 13, the solvent is removed from the bottom of the tower, and a fraction containing 1,3-butadiene and vinylacetylene is distilled from the top of the tower. In addition, the solvent collect | recovered by the stripping tower 13 can be reused by the 1st extractive distillation tower 12, the 2nd extractive distillation tower 15, etc. arbitrarily.
 更に、第二抽出蒸留塔15では、放散塔13から留出した1,3-ブタジエンおよびビニルアセチレンなどを含む留分の供給段より上段に溶剤を供給して1,3-ブタジエンおよびビニルアセチレンなどを含む留分を抽出蒸留することにより、1,3-ブタジエンを含む留分(A)を塔頂から留出させると共に、溶剤に対して1,3-ブタジエンよりも易溶性のビニルアセチレンなどを含む抽出液(B)を塔底から缶出させる。なお、第二抽出蒸留塔15に供給する溶剤としては、例えば特開2003-128595号公報に記載されている、DMFなどのC4炭化水素混合物の抽出蒸留に使用されている既知の溶剤を用いることができる。また、第二抽出蒸留塔15には、部材への重合物の固着を一層抑制する観点から、上述したアルカリ金属塩を供給することが好ましい。加えて、第二抽出蒸留塔15には、重合物の生成を抑制する観点から、既知の重合禁止剤(ただし、アルカリ金属塩に該当するものを除く。)を供給してもよい。上述したアルカリ金属塩と重合禁止剤の供給方法は特に限定されないが、上述した溶剤に溶解させて、当該溶剤と共に第二抽出蒸留塔15に供給することが好ましい。 Further, in the second extractive distillation column 15, the solvent is supplied to the upper stage from the supply stage of the fraction containing 1,3-butadiene and vinylacetylene distilled from the stripping tower 13, and the 1,3-butadiene and vinylacetylene etc. The fraction (A) containing 1,3-butadiene is distilled from the top of the column by extractive distillation, and vinyl acetylene, etc., which is more soluble than 1,3-butadiene in the solvent. The containing extract (B) is removed from the bottom of the column. As the solvent supplied to the second extractive distillation column 15, a known solvent used for extractive distillation of a C 4 hydrocarbon mixture such as DMF described in, for example, Japanese Patent Application Laid-Open No. 2003-128595 is used. be able to. Moreover, it is preferable to supply the above-mentioned alkali metal salt to the second extractive distillation column 15 from the viewpoint of further suppressing the fixation of the polymer to the member. In addition, a known polymerization inhibitor (except for those corresponding to alkali metal salts) may be supplied to the second extractive distillation column 15 from the viewpoint of suppressing the formation of a polymer. Although the supply method of the alkali metal salt and the polymerization inhibitor described above is not particularly limited, it is preferably dissolved in the solvent described above and supplied to the second extractive distillation column 15 together with the solvent.
<放散部>
 また、放散部20は、例えば、抽出液(B)中に混入した1,3-ブタジエンを回収するための第一放散塔21と、1,3-ブタジエンを回収した後の抽出液(B)から溶剤を回収する第二放散塔22とを備えている。
<Dissipation part>
The diffusion unit 20 includes, for example, a first diffusion tower 21 for recovering 1,3-butadiene mixed in the extract (B) and an extract (B) after recovering 1,3-butadiene. And a second stripping tower 22 for recovering the solvent from the tank.
 そして、第一放散塔21では、抽出液(B)中に混入していた1,3-ブタジエンを含む留分を塔頂より留出させると共に、塔底よりビニルアセチレンなどを含有する缶出液を缶出させる。なお、第一放散塔21の塔頂から留出した1,3-ブタジエンを含む留分は、任意に第二抽出蒸留塔15へと返送することができる。 In the first stripping tower 21, a fraction containing 1,3-butadiene mixed in the extract (B) is distilled off from the top of the tower, and a bottom liquid containing vinyl acetylene and the like from the bottom of the tower. Can be removed. The fraction containing 1,3-butadiene distilled from the top of the first stripping tower 21 can be optionally returned to the second extractive distillation tower 15.
 また、第二放散塔22では、第一放散塔21からの缶出液中に含まれていたビニルアセチレンなどを含む留分(高VA留分)を塔頂より留出させると共に、塔底より溶剤を缶出させる。なお、第二放散塔22で回収した溶剤は、任意に第一抽出蒸留塔12や第二抽出蒸留塔15などで再利用することができる。 In the second stripping tower 22, a fraction (high VA fraction) containing vinyl acetylene and the like contained in the bottoms from the first stripping tower 21 is distilled from the tower top and from the tower bottom. Let the solvent out. In addition, the solvent collect | recovered with the 2nd stripping tower 22 can be reused by the 1st extractive distillation tower 12, the 2nd extractive distillation tower 15, etc. arbitrarily.
<不純物除去部>
 不純物除去部30は、例えば、第二抽出蒸留塔15で得た留分(A)中に含まれている、1,3-ブタジエンよりも低沸点の不純物を除去する低沸点物除去塔31と、1,3-ブタジエンよりも高沸点の不純物を除去する高沸点物除去塔32とを備えている。
<Impurity removal section>
The impurity removal unit 30 includes, for example, a low boiling point removal column 31 that removes impurities having a lower boiling point than 1,3-butadiene contained in the fraction (A) obtained in the second extractive distillation column 15. And a high boiler removal column 32 for removing impurities having a boiling point higher than that of 1,3-butadiene.
 そして、低沸点物除去塔31では、例えばメチルアセチレン等の低沸点の不純物を含む留分(低沸点留分)を塔頂より留出させると共に、塔底より1,3-ブタジエンが富化された缶出液を缶出させる。 In the low boiler removal column 31, for example, a fraction containing low boiling impurities such as methylacetylene (low boiling fraction) is distilled from the top of the tower, and 1,3-butadiene is enriched from the bottom of the tower. Let the effluent be removed.
 また、高沸点物除去塔32では、1,3-ブタジエンが更に富化された留分を塔頂より留出させると共に、例えば1,2-ブタジエン等の高沸点の不純物を含む留分(高沸点留分)を塔底より缶出させる。 Further, in the high boiler removal column 32, a fraction further enriched with 1,3-butadiene is distilled off from the top of the tower, and a fraction containing high boiling impurities such as 1,2-butadiene (high The boiling fraction) is removed from the bottom of the column.
 以上、一例を用いて本発明の不飽和炭化水素の分離回収装置について説明したが、本発明の不飽和炭化水素の分離回収装置は上記一例に限定されるものではない。例えば、上述した一例では、出発原料としてのC4炭化水素混合物から、1,3-ブタジエンを分離回収しているが、本発明の不飽和炭化水素の分離回収装置では、C5炭化水素混合物を出発原料とし、当該出発原料からイソプレンを分離回収することもできるし、また、任意の重合反応後に回収して得られる、未反応の不飽和炭化水素を含む粗混合物を出発原料とし、当該出発原料から所望の不飽和炭化水素を分離回収することもできる。 As described above, the unsaturated hydrocarbon separation and recovery apparatus of the present invention has been described using an example. However, the unsaturated hydrocarbon separation and recovery apparatus of the present invention is not limited to the above example. For example, in the above-described example, 1,3-butadiene is separated and recovered from a C 4 hydrocarbon mixture as a starting material. However, in the unsaturated hydrocarbon separation and recovery apparatus of the present invention, a C 5 hydrocarbon mixture is used. It is also possible to separate and recover isoprene from the starting material as a starting material, and to use as a starting material a crude mixture containing unreacted unsaturated hydrocarbons obtained by recovery after any polymerization reaction. The desired unsaturated hydrocarbon can also be separated and recovered from the above.
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
(実施例1)
<酸化物被覆棚板>
 酸化物被覆棚板としては、酸化クロム(III)を主成分とする被膜を有する棚板(母材:SUS、被膜の平均厚み:30μm)を準備した。なお、酸化物被覆棚板の水との接触角を測定すると、63°であった。
<1,3-ブタジエンの分離回収>
 図2に示す分離回収装置100であって、第二抽出蒸留塔15として、上述した酸化物被覆棚板を有する蒸留塔を備える分離回収装置を用いて、ナフサをクラッキングしてエチレンを生産する際に得られるC4留分よりなるC4炭化水素混合物から、1,3-ブタジエンの分離回収を行った。具体的な手順を以下に示す。
Example 1
<Oxide-coated shelf board>
As the oxide-coated shelf board, a shelf board (base material: SUS, average thickness of the coating film: 30 μm) having a coating film mainly composed of chromium (III) oxide was prepared. In addition, it was 63 degrees when the contact angle with the water of an oxide covering shelf board was measured.
<Separation and recovery of 1,3-butadiene>
In the separation / recovery device 100 shown in FIG. 2, when the second extraction distillation column 15 includes a separation / recovery device having the above-described distillation column having an oxide-coated shelf, cracking naphtha to produce ethylene Then, 1,3-butadiene was separated and recovered from the C 4 hydrocarbon mixture comprising the C 4 fraction obtained in the above. The specific procedure is shown below.
[抽出蒸留工程]
 まず、出発原料としてのC4留分(1,3-ブタジエン濃度:40質量%)を蒸発塔11に供給し、C4留分を気化した。
 次いで、気化されたC4留分を、抽出溶媒(溶剤)としてのDMF(NaNO2(亜硝酸ナトリウム)を20重量ppmの濃度で含有)と共に、第一抽出蒸留塔に供給した。C4留分の供給位置は第一抽出蒸留塔12の略中段であり、DMFの供給位置はガス化されたC4留分の供給位置よりも上段とした。これらの供給と共に、第一抽出蒸留塔12の塔底に配置された再沸器で加熱して第一段目の抽出蒸留を行った。そして、第一抽出蒸留塔12の塔頂からは、ブタン類およびブテン類などを含む留分(C)を取り出した。一方、第一抽出蒸留塔12の塔底からは、1,3-ブタジエンおよびビニルアセチレンを含む抽出液(D)を取り出した。
 さらに、取り出された抽出液(D)を放散塔13の略中段に供給し、放散塔13の塔底に配置された再沸器で加熱して蒸留を行った。そして、放散塔13の塔底からは、抽出液(D)から分離されたDMFを排出した。一方、放散塔13の塔頂からは、1,3-ブタジエンおよびビニルアセチレンを多く含む留分を取り出した。
 次いで、1,3-ブタジエンおよびビニルアセチレンを多く含む留分を、抽出溶媒(溶剤)としてのDMF(NaNO2(亜硝酸ナトリウム)を20重量ppmの濃度で含有)と共に、第二抽出蒸留塔15の下段近傍に供給し、第二抽出蒸留塔15の塔底に配置された再沸器で加熱して第二段目の抽出蒸留を行った。なお、この第二抽出蒸留塔15としては、図1に示す蒸留塔1(ただし、棚段数は60段。全ての棚板に上述の酸化物被覆棚板を使用。)を用いた。また、上記留分の供給位置は第二抽出蒸留塔15の略中段であり、DMFの供給位置は、上記留分の供給位置よりも上段とした。第二抽出蒸留塔15では、塔底圧力を絶対圧力で5気圧に保持し、塔底温度を128℃に制御した。この場合の塔頂温度は45℃であった。そして、第二抽出蒸留塔15の塔頂からは、高濃度の1,3-ブタジエンを含むガスを留分(A)として取り出した。一方、第二抽出蒸留塔12の塔底からは、揮発度(溶解度)がブタジエン以下の、ビニルアセチレンなどの不純物を抽出液(B)として取り出した。
 なお、抽出液(B)は、放散部20に送り、第一放散塔21において、抽出液(B)に混入していた1,3-ブタジエンを含む留分を回収した。この1,3-ブタジエンを含む留分は第一放散塔21から第二抽出蒸留塔15へと返送した。また、第二放散塔22においては、塔頂からビニルアセチレンを高濃度で含む高VA留分を排出すると共に、塔底からは分離されたDMFを排出した。
[Extraction distillation process]
First, a C 4 fraction (1,3-butadiene concentration: 40% by mass) as a starting material was supplied to the evaporation tower 11 to vaporize the C 4 fraction.
Next, the vaporized C 4 fraction was supplied to the first extractive distillation column together with DMF (containing NaNO 2 (sodium nitrite) at a concentration of 20 ppm by weight) as an extraction solvent (solvent). The supply position of the C 4 fraction is substantially the middle stage of the first extractive distillation column 12, and the supply position of the DMF is set above the supply position of the gasified C 4 fraction. Along with these supplies, the first extractive distillation column 12 was heated by a reboiler located at the bottom of the first extractive distillation column 12 to perform first-stage extractive distillation. And the fraction (C) containing butanes, butenes, etc. was taken out from the top of the first extractive distillation column 12. On the other hand, from the bottom of the first extractive distillation column 12, an extract (D) containing 1,3-butadiene and vinylacetylene was taken out.
Further, the extracted liquid (D) taken out was supplied to a substantially middle stage of the stripping tower 13, and distilled by heating with a reboiler arranged at the bottom of the stripping tower 13. Then, DMF separated from the extract (D) was discharged from the bottom of the stripping tower 13. On the other hand, a fraction containing a large amount of 1,3-butadiene and vinylacetylene was taken out from the top of the stripping tower 13.
Next, the fraction containing a large amount of 1,3-butadiene and vinylacetylene is combined with DMF (NaNO 2 (sodium nitrite) at a concentration of 20 ppm by weight) as an extraction solvent (solvent), and the second extractive distillation column 15 The second stage extractive distillation was performed by supplying it to the vicinity of the lower stage and heating with a reboiler arranged at the bottom of the second extractive distillation tower 15. The second extractive distillation column 15 used was the distillation column 1 shown in FIG. 1 (however, the number of shelves was 60, and the above-mentioned oxide-coated shelves were used for all shelves). In addition, the supply position of the fraction was substantially in the middle of the second extractive distillation column 15, and the supply position of DMF was above the supply position of the fraction. In the second extractive distillation column 15, the column bottom pressure was maintained at 5 atm as an absolute pressure, and the column bottom temperature was controlled at 128 ° C. The tower top temperature in this case was 45 ° C. From the top of the second extractive distillation column 15, a gas containing a high concentration of 1,3-butadiene was taken out as a fraction (A). On the other hand, impurities such as vinyl acetylene having a volatility (solubility) of butadiene or less were taken out from the bottom of the second extractive distillation column 12 as an extract (B).
The extract (B) was sent to the stripping unit 20, and a fraction containing 1,3-butadiene mixed in the extract (B) was collected in the first stripping tower 21. This fraction containing 1,3-butadiene was returned from the first stripping tower 21 to the second extractive distillation tower 15. In the second stripping tower 22, a high VA fraction containing vinylacetylene at a high concentration was discharged from the top of the tower, and separated DMF was discharged from the bottom of the tower.
[不純物除去工程]
 上述した抽出蒸留工程で取り出された留分(A)を、低沸点物除去塔31の略中段に供給し、低沸点物除去塔31の塔底に配置された再沸器で加熱して蒸留を行った。低沸点物除去塔31では、塔底圧力を絶対圧力で4気圧に保持し、塔底温度を50℃に保持した。そして、低沸点物除去塔31の塔底からは、1,3-ブタジエンが富化された缶出液を取り出した。一方、低沸点物除去塔31の塔頂からは、ブタジエンよりも低沸点の不純物であるメチルアセチレンを低沸点留分として取り出した。
 次いで、取り出された缶出液を高沸点物除去塔32の略中段に供給し、高沸点物除去塔32の塔底に配置された再沸器で加熱して蒸留を行った。高沸点物除去塔32では、塔底圧力を絶対圧力で5気圧に保持し、塔底温度を60℃に保持した。そして、高沸点物除去塔32の塔底からは、ブタジエンよりも高沸点の不純物、例えばシス-2-ブテンやペンテンを高沸点留分として取り出した。一方、高沸点物除去塔32の塔頂からは、1,3-ブタジエンが更に富化された留分を取り出した。高沸点物除去塔32の塔頂から得られた留分中の1,3-ブタジエンの濃度は99質量%以上であることを確認した。
[Impurity removal process]
The fraction (A) taken out in the extractive distillation step described above is supplied to a substantially middle stage of the low boiler removal column 31 and heated by a reboiler arranged at the bottom of the low boiler removal column 31 to distill. Went. In the low boiler removal column 31, the bottom pressure was kept at 4 atm as an absolute pressure, and the bottom temperature was kept at 50 ° C. Then, from the bottom of the low boiler removal column 31, the bottoms enriched with 1,3-butadiene were taken out. On the other hand, methylacetylene, which is an impurity having a lower boiling point than butadiene, was taken out from the top of the low boiler removal column 31 as a low boiling fraction.
Subsequently, the taken out liquid was supplied to a substantially middle stage of the high boiler removal column 32 and distilled by heating with a reboiler arranged at the bottom of the high boiler removal tower 32. In the high boiler removal column 32, the column bottom pressure was maintained at 5 atm as an absolute pressure, and the column bottom temperature was maintained at 60 ° C. Then, impurities having a higher boiling point than butadiene, such as cis-2-butene and pentene, were taken out from the bottom of the high boiler removal column 32 as a high boiling fraction. On the other hand, from the top of the high boiler removal column 32, a fraction further enriched with 1,3-butadiene was taken out. It was confirmed that the concentration of 1,3-butadiene in the fraction obtained from the top of the high boiler removal column 32 was 99% by mass or more.
[連続運転]
 上述した抽出蒸留工程および不純物除去工程を300日間連続で行った後、第二抽出蒸留塔15の棚板を観察したところ、いずれの棚板表面においても、固着した重合物の量は僅かであり、棚板の孔の目詰まりも確認されなかった。
[Continuous operation]
After the extraction distillation step and the impurity removal step described above were performed continuously for 300 days, the shelf plate of the second extractive distillation column 15 was observed, and the amount of the adhered polymer was slight on any shelf plate surface. No clogging of the holes in the shelf was confirmed.
(比較例1)
 第二抽出蒸留塔15として、酸化物被覆棚板に替えて、酸化物で被覆されていないSUSからなる棚板を備える抽出蒸留塔を用いた以外は、実施例1と同様にして、抽出蒸留工程および不純物除去工程を行った。なおSUSからなる棚板の水との接触角を測定すると、80°であった。
 そして、上述した抽出蒸留工程および不純物除去工程を300日間連続で行った後、第二抽出蒸留塔15の棚板を観察したところ、いずれの棚板表面においても、固着した重合物の量は実施例1よりも多く(約2倍)、棚板の孔の目詰まりが確認された。
(Comparative Example 1)
Extractive distillation was carried out in the same manner as in Example 1 except that an extractive distillation column provided with a shelf made of SUS not coated with oxide was used as the second extractive distillation column 15 instead of the oxide-coated shelf. A process and an impurity removal process were performed. In addition, when the contact angle with the water of the shelf board which consists of SUS was measured, it was 80 degrees.
And after performing the extraction distillation process and impurity removal process which were mentioned above continuously for 300 days, when the shelf of the 2nd extractive distillation tower 15 was observed, the quantity of the fixed polymer was carried out in any shelf surface. More than Example 1 (about twice), clogging of the holes in the shelf board was confirmed.
 本発明によれば、長期間に亘り効率的に不飽和炭化水素を分離回収することが可能な、不飽和炭化水素の取り扱い方法および取り扱い装置を提供することができる。 According to the present invention, it is possible to provide an unsaturated hydrocarbon handling method and handling apparatus capable of separating and recovering unsaturated hydrocarbons efficiently over a long period of time.
1 蒸留塔
2 塔本体
3 凝縮器
4 還流ドラム
5 還流ライン
6 再沸器
7 棚板
10 抽出蒸留部
11 蒸発塔
12 第一抽出蒸留塔
13 放散塔
14 コンプレッサー
15 第二抽出蒸留塔
20 放散部
21 第一放散塔
22 第二放散塔
30 不純物除去部
31 低沸点物除去塔
32 高沸点物除去塔
100 分離回収装置
DESCRIPTION OF SYMBOLS 1 Distillation tower 2 Tower body 3 Condenser 4 Reflux drum 5 Reflux line 6 Reboiler 7 Shelf board 10 Extraction distillation part 11 Evaporation tower 12 First extraction distillation tower 13 Stripping tower 14 Compressor 15 Second extraction distillation tower 20 Stripping section 21 First stripping tower 22 Second stripping tower 30 Impurity removal unit 31 Low boiling point removal tower 32 High boiling point removal tower 100 Separation and recovery device

Claims (19)

  1.  不飽和炭化水素を取り扱う方法であって、
     蒸留塔、熱交換器、反応器、ポンプ、配管、およびバルブからなる群から選ばれる少なくとも1つの設備を用いて、前記不飽和炭化水素を含有する組成物を取り扱う工程を含み、前記設備の、前記組成物と接触する部材の少なくとも一つが、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する部材である、方法。
    A method of handling unsaturated hydrocarbons,
    Handling the composition containing the unsaturated hydrocarbon using at least one facility selected from the group consisting of a distillation column, a heat exchanger, a reactor, a pump, piping, and valves, The method wherein at least one member in contact with the composition is a member having a coating comprising at least one of a metal oxide and a metalloid oxide.
  2.  前記不飽和炭化水素が、炭素数4以上10以下の不飽和炭化水素である、請求項1に記載の方法。 The method according to claim 1, wherein the unsaturated hydrocarbon is an unsaturated hydrocarbon having 4 to 10 carbon atoms.
  3.  前記組成物が、1,3-ブタジエン濃度が0.1質量%以上99.9質量%以下である炭化水素混合物またはイソプレン濃度が0.1質量%以上99.9質量%以下である炭化水素混合物である、請求項1または2に記載の方法。 The composition is a hydrocarbon mixture having a 1,3-butadiene concentration of 0.1% by mass or more and 99.9% by mass or less, or a hydrocarbon mixture having an isoprene concentration of 0.1% by mass or more and 99.9% by mass or less. The method according to claim 1 or 2, wherein
  4.  前記被膜の平均厚みが0.5μm以上100μm以下である、請求項1~3の何れかに記載の方法。 The method according to any one of claims 1 to 3, wherein the average thickness of the coating is 0.5 μm or more and 100 μm or less.
  5.  前記金属酸化物が、クロム酸化物、アルミニウム酸化物、スズ酸化物、ジルコニウム酸化物およびイットリウム酸化物からなる群から選ばれる少なくとも1種であり、前記半金属酸化物が、ホウ素酸化物、ケイ素酸化物、ゲルマニウム酸化物、ヒ素酸化物、テルル酸化物およびポロニウム酸化物からなる群から選ばれる少なくとも1種である、請求項1~4の何れかに記載の方法。 The metal oxide is at least one selected from the group consisting of chromium oxide, aluminum oxide, tin oxide, zirconium oxide and yttrium oxide, and the metalloid oxide is boron oxide, silicon oxide The method according to any one of claims 1 to 4, which is at least one selected from the group consisting of an oxide, germanium oxide, arsenic oxide, tellurium oxide and polonium oxide.
  6.  金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材が、母材と、前記母材表面の前記被膜からなり、
     前記母材が鉄およびチタンの少なくとも一方を含有する、請求項1~5の何れかに記載の方法。
    The member having a coating containing at least one of a metal oxide and a metalloid oxide comprises a base material and the coating on the base material surface,
    The method according to any one of claims 1 to 5, wherein the base material contains at least one of iron and titanium.
  7.  金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材の水との接触角が70°以下である、請求項1~6の何れかに記載の方法。 The method according to any one of claims 1 to 6, wherein a contact angle with water of the member having a coating containing at least one of a metal oxide and a metalloid oxide is 70 ° or less.
  8.  前記組成物が、さらにアルカリ金属塩を含む、請求項1~7の何れかに記載の方法。 The method according to any one of claims 1 to 7, wherein the composition further comprises an alkali metal salt.
  9.  前記アルカリ金属塩が、NaNO3、NaNO2、Na3PO4、Na2HPO4、NaH2PO4、Na2SO4、KNO3、KNO2、K3PO4、K2HPO4、KH2PO4およびK2SO4からなる群から選ばれる少なくとも1つである、請求項8に記載の方法。 The alkali metal salt is NaNO 3 , NaNO 2 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , KNO 3 , KNO 2 , K 3 PO 4 , K 2 HPO 4 , KH 2. The method according to claim 8, which is at least one selected from the group consisting of PO 4 and K 2 SO 4 .
  10.  出発原料から目的とする不飽和炭化水素を分離回収するための方法であって、前記組成物を取り扱う工程が、前記不飽和炭化水素を含有する混合物の蒸留を行う工程である、請求項1~9の何れかに記載の方法。 A method for separating and recovering a target unsaturated hydrocarbon from a starting material, wherein the step of handling the composition is a step of distilling the mixture containing the unsaturated hydrocarbon. 10. The method according to any one of 9.
  11.  前記出発原料が、C4留分またはC5留分である、請求項10に記載の方法。 The starting material is a C 4 fraction or C 5 fraction, The method of claim 10.
  12.  前記混合物の蒸留を行う工程が、抽出蒸留を行う工程である、請求項10または11に記載の方法。 The method according to claim 10 or 11, wherein the step of distilling the mixture is a step of performing extractive distillation.
  13.  不飽和炭化水素を取り扱う装置であって、
     前記不飽和炭化水素を含有する組成物を取り扱う設備を備え、前記設備が、蒸留塔、熱交換器、反応器、ポンプ、配管、およびバルブからなる群から選択される少なくとも1つであり、
     前記設備の、前記組成物と接触する部材の少なくとも一つが、金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する部材である、装置。
    An apparatus for handling unsaturated hydrocarbons,
    A facility for handling the composition containing the unsaturated hydrocarbon, wherein the facility is at least one selected from the group consisting of a distillation column, a heat exchanger, a reactor, a pump, piping, and a valve;
    The apparatus in which at least one member of the equipment that comes into contact with the composition is a member having a coating containing at least one of a metal oxide and a metalloid oxide.
  14.  前記被膜の平均厚みが0.5μm以上100μm以下である、請求項13に記載の装置。 The apparatus according to claim 13, wherein the average thickness of the coating is 0.5 μm or more and 100 μm or less.
  15.  前記金属酸化物が、クロム酸化物、アルミニウム酸化物、スズ酸化物、ジルコニウム酸化物およびイットリウム酸化物からなる群から選ばれる少なくとも1種であり、前記半金属酸化物が、ホウ素酸化物、ケイ素酸化物、ゲルマニウム酸化物、ヒ素酸化物、テルル酸化物およびポロニウム酸化物からなる群から選ばれる少なくとも1種である、請求項13または14に記載の装置。 The metal oxide is at least one selected from the group consisting of chromium oxide, aluminum oxide, tin oxide, zirconium oxide and yttrium oxide, and the metalloid oxide is boron oxide, silicon oxide The device according to claim 13 or 14, which is at least one selected from the group consisting of an oxide, germanium oxide, arsenic oxide, tellurium oxide and polonium oxide.
  16.  金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材が、母材と、前記母材表面の前記被膜からなり、
     前記母材が鉄およびチタンの少なくとも一方を含有する、請求項13~15の何れかに記載の装置。
    The member having a coating containing at least one of a metal oxide and a metalloid oxide comprises a base material and the coating on the base material surface,
    The apparatus according to any one of claims 13 to 15, wherein the base material contains at least one of iron and titanium.
  17.  金属酸化物および半金属酸化物の少なくとも一方を含む被膜を有する前記部材の水との接触角が70°以下である、請求項13~16の何れかに記載の装置。 The apparatus according to any one of claims 13 to 16, wherein a contact angle with water of the member having a coating containing at least one of a metal oxide and a metalloid oxide is 70 ° or less.
  18.  不飽和炭化水素を分離回収するための装置であって、
     前記設備が蒸留塔であり、前記蒸留塔は、前記不飽和炭化水素を含有する混合物の蒸留を行う、請求項13~17の何れかに記載の装置。
    An apparatus for separating and recovering unsaturated hydrocarbons,
    The apparatus according to any one of claims 13 to 17, wherein the facility is a distillation column, and the distillation column performs distillation of the mixture containing the unsaturated hydrocarbon.
  19.  前記蒸留塔が抽出蒸留塔である、請求項18に記載の装置。 The apparatus according to claim 18, wherein the distillation column is an extractive distillation column.
PCT/JP2017/041722 2016-11-21 2017-11-20 Treating method and treating apparatus for unsaturated hydrocarbon WO2018092910A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551722A JP7058846B2 (en) 2016-11-21 2017-11-20 Handling method and equipment for unsaturated hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226163 2016-11-21
JP2016226163 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092910A1 true WO2018092910A1 (en) 2018-05-24

Family

ID=62146395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041722 WO2018092910A1 (en) 2016-11-21 2017-11-20 Treating method and treating apparatus for unsaturated hydrocarbon

Country Status (2)

Country Link
JP (1) JP7058846B2 (en)
WO (1) WO2018092910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938752A (en) * 2019-11-07 2020-03-31 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂 Extraction process for improving recovery rate of germanium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251663A (en) * 1997-03-13 1998-09-22 Nippon Zeon Co Ltd Method for inhibiting polymerization of conjugated diene
JP2001187761A (en) * 1999-12-28 2001-07-10 Nippon Shokubai Co Ltd Apparatus and method for producing (meth)acrylic acid
JP2002363128A (en) * 2001-06-06 2002-12-18 Nippon Shokubai Co Ltd Method for preventing polymerization in readily polymerizable substance and method for producing (meth) acrylic acid or its ester
JP2003128595A (en) * 2001-10-25 2003-05-08 Nippon Zeon Co Ltd Method for separating and refining unsaturated hydrocarbon
JP2006328062A (en) * 2005-04-28 2006-12-07 Nippon Shokubai Co Ltd Method for storing n-alkenyl carboxylic acid tertiary amide
JP2009286775A (en) * 2008-05-30 2009-12-10 Rohm & Haas Co Method for producing purified (meth)acrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251663A (en) * 1997-03-13 1998-09-22 Nippon Zeon Co Ltd Method for inhibiting polymerization of conjugated diene
JP2001187761A (en) * 1999-12-28 2001-07-10 Nippon Shokubai Co Ltd Apparatus and method for producing (meth)acrylic acid
JP2002363128A (en) * 2001-06-06 2002-12-18 Nippon Shokubai Co Ltd Method for preventing polymerization in readily polymerizable substance and method for producing (meth) acrylic acid or its ester
JP2003128595A (en) * 2001-10-25 2003-05-08 Nippon Zeon Co Ltd Method for separating and refining unsaturated hydrocarbon
JP2006328062A (en) * 2005-04-28 2006-12-07 Nippon Shokubai Co Ltd Method for storing n-alkenyl carboxylic acid tertiary amide
JP2009286775A (en) * 2008-05-30 2009-12-10 Rohm & Haas Co Method for producing purified (meth)acrylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938752A (en) * 2019-11-07 2020-03-31 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂 Extraction process for improving recovery rate of germanium

Also Published As

Publication number Publication date
JP7058846B2 (en) 2022-04-25
JPWO2018092910A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
KR20120093826A (en) Nmp distilling apparatus
WO2018092910A1 (en) Treating method and treating apparatus for unsaturated hydrocarbon
TW201302698A (en) Extractive distillation process for recovering butadiene from C4 hydrocarbon mixtures
BR112012028644B1 (en) process for separating acrylic acid from a composition
US4341600A (en) Polymerization inhibitor for vinyltoluene
EP1868971B1 (en) Solvent extraction of butadiene
TWI775011B (en) cyclohexylsilane
JP6762957B2 (en) Production of tert-butyl ester of aliphatic carboxylic acid
US4278506A (en) Polymer solution purification
KR102014564B1 (en) Method for providing a vaporous purified crude c4 fraction as a feed stream for an extractive distillation process using a selective solvent
EP1443035B1 (en) Process and apparatus for separation and purification of conjugated diene
EP3010874B1 (en) Co-extraction systems for separation and purification of butadiene and isoprene
EP1437336B1 (en) Method of separating/purifying conjugated diene and separation/purification apparatus
MX2008016194A (en) Method for purifying polymerizable compounds.
JPS62178527A (en) Separation of aromatic groups from hydrocarbon mixture containing any aromatic group contents
US11203723B2 (en) Method and system for obtaining polymerizable aromatic compounds
JP7076465B2 (en) Simplified method for isolating pure 1,3-butadiene
US2510847A (en) Distillation of polymerizable diolefins
US4002554A (en) Process of minimizing or preventing fouling
JPS58110526A (en) Method and apparatus for preventing polymerization of vinylaromatic compound during vinylaromatic monomer distillation purification process
JP2006076811A (en) Method for recovering hydrofluoric acid
JP2003138276A (en) Separation and purification method and apparatus for conjugated diene
JP2003128595A (en) Method for separating and refining unsaturated hydrocarbon
US2847487A (en) Prewash for acetylene removal from butadiene stream
US8766029B2 (en) Process for providing a vaporous purified crude C4 cut as a feed steam for an extractive distillation with a selective solvent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870955

Country of ref document: EP

Kind code of ref document: A1