WO2018092902A1 - Curable liquid developer - Google Patents

Curable liquid developer Download PDF

Info

Publication number
WO2018092902A1
WO2018092902A1 PCT/JP2017/041651 JP2017041651W WO2018092902A1 WO 2018092902 A1 WO2018092902 A1 WO 2018092902A1 JP 2017041651 W JP2017041651 W JP 2017041651W WO 2018092902 A1 WO2018092902 A1 WO 2018092902A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid developer
monomer
curable liquid
polymer compound
Prior art date
Application number
PCT/JP2017/041651
Other languages
French (fr)
Japanese (ja)
Inventor
圭 井上
憲治 西口
田邊 浩
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017183477A external-priority patent/JP2018087964A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018092902A1 publication Critical patent/WO2018092902A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components

Definitions

  • the present invention relates to a curable liquid developer used in an image forming apparatus using an electrophotographic method such as electrophotographic method, electrostatic recording method, and electrostatic printing.
  • the surface of an image carrier such as a photoconductor is uniformly charged (charging process), and an electrostatic latent image is formed on the surface of the image carrier by exposure (exposure process).
  • the electrostatic latent image is developed with a developer made of colored particles (development process), the developer image is transferred to a recording medium such as paper or plastic film (transfer process), and the transferred developer image is fixed to the recording medium. (Fixing step) to obtain a printed matter.
  • the developer is a liquid obtained by dispersing colored particles composed of a material containing a colorant such as a pigment and a binder resin in a dry state, and a liquid in which the colored particles are dispersed in an electrically insulating liquid as a carrier liquid.
  • a liquid developer is known as an advantageous developer for color image reproducibility. Since the liquid developer hardly causes aggregation of colored particles in the developer, fine toner particles can be used. Therefore, the liquid developer can easily obtain characteristics excellent in fine line image reproducibility and gradation reproducibility.
  • a method of curing an electrically insulating liquid by polymerization has been proposed.
  • a curable liquid developer a monomer or oligomer having a reactive functional group is used as an electrically insulating liquid, and a polymerization initiator is further dissolved.
  • the curable liquid developer include those that are cured by irradiating light such as ultraviolet rays to react with a reactive functional group, and can cope with high speed.
  • Such curable liquid developers are proposed in Patent Documents 1 and 2.
  • Patent Documents 1 and 2 the above-mentioned problems are solved by combining an electrically insulating liquid with a high-resistance cationic polymerizable monomer such as vinyl ether and a curing initiator to form a curable liquid developer.
  • a toner charge control agent capable of achieving high electrophoretic mobility has been demanded due to the recent increase in process speed.
  • Known toner charge control agents for negatively charging toner particles include lecithin (for example, Patent Documents 1 to 3) and barium sulfonate-based control agents such as barium petronate (for example, Patent Documents 1 and 3).
  • the present invention provides a toner charge control agent that has a small curing inhibition property and can achieve a high electrophoretic mobility, has a high curability, and can be used to increase the process speed of an image forming apparatus. Is to provide.
  • the present invention is a curable liquid developer comprising a cationic polymerizable liquid monomer, a polymerization initiator, and toner particles insoluble in the cationic polymerizable liquid monomer,
  • a curable liquid developer comprising a polymer compound having at least one of monomer units represented by the following formulas (1) and (2).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group
  • a and B represent a divalent linking group
  • X ⁇ represents a halogen atom.
  • An ion or an anion having a COO ⁇ group or an SO 3 ⁇ group in the structure is represented
  • Y ⁇ represents an anion having a COO ⁇ group or an SO 3 ⁇ group in the structure.
  • the curable liquid developer of the present invention (hereinafter also simply referred to as a liquid developer) is a curable liquid developer containing a cationic polymerizable liquid monomer, a polymerization initiator, and toner particles insoluble in the cationic polymerizable liquid monomer. There, It contains a polymer compound having at least one of monomer units represented by the following formulas (1) and (2).
  • R 1 to R 4 each independently represents either a hydrogen atom or an alkyl group
  • a and B represent a divalent linking group
  • X ⁇ represents a halogen atom.
  • An ion or an anion having a COO ⁇ group or an SO 3 ⁇ group in the structure is represented
  • Y ⁇ represents an anion having a COO ⁇ group or an SO 3 ⁇ group in the structure.
  • the monomer unit represented by Formula (1) or Formula (2) has excellent positive charge acceptability. Therefore, by dissolving or dispersing the polymer compound having the monomer unit in the cationic polymerizable liquid monomer, the polymer compound having the monomer unit is adsorbed on the toner particles, and the toner particles are positively charged. Accept. As a result, the toner particles are negatively charged. That is, the polymer compound having the monomer unit acts as a toner charge control agent for negatively charging the toner particles.
  • a cationically polymerizable monomer such as vinyl ether
  • a polymerization initiator or the like the presence of a basic compound such as moisture or amine in the system inhibits the polymerization reaction and inhibits curing.
  • certain additives and impurities can inhibit the absorption of light into the polymerization initiator and sensitizer, and can inhibit the curing process by inhibiting the energy transfer process from the sensitizer to the polymerization initiator. It is also possible to become.
  • phospholipids such as lecithin, metal soaps such as naphthenic acid metal salts, metal sulfonates, and the like have been used for a long time as toner charge control agents for negatively charging toner particles.
  • metal soaps such as naphthenic acid metal salts, metal sulfonates, and the like have been used for a long time as toner charge control agents for negatively charging toner particles.
  • these compounds when used in a cationic polymerizable liquid developer, there is a problem that they have a high property of inhibiting cationic polymerization and cause curing inhibition.
  • the cause of these toner charge control agents causing cure inhibition has not been clarified, but it is expected that they are caused by any one or some combination of the above inhibition factors.
  • the polymer compound having at least one of the monomer units represented by the above formulas (1) and (2) has a smaller property of inhibiting cationic polymerization than the conventional toner charge control agent,
  • the present invention has been reached. That is, by using a polymer compound having at least one of the monomer units represented by the above formulas (1) and (2) as a toner charge control agent of a cationic polymerizable liquid developer, A liquid developer having high electrophoretic mobility of particles and high curability can be provided.
  • the alkyl group for R 1 is preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • R 1 in the above formulas (1) and (2) can be arbitrarily selected from the substituents and hydrogen atoms listed above, but from the viewpoint of production (polymerizability) of the polymer compound, a hydrogen atom and a methyl group Is preferred.
  • the alkyl group in R 2 to R 4 is preferably an alkyl group having 1 to 30 carbon atoms, and more preferably an alkyl group having 1 to 18 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-octyl group, a 2-ethylhexyl group, a dodecyl group, and an octadecyl group. These alkyl groups may be further substituted and may be bonded to each other to form a ring.
  • A is a divalent linking group that bonds the polymer main chain to the quaternary ammonium moiety, and includes an alkylene group, an arylene group, an aralkylene group, a-COOR 5 -b, a-CONHR 5 -b or a-OR 5 -b (wherein a represents the bonding site with the carbon atom to which R 1 is bonded, b represents the bonding site with the quaternary ammonium moiety, and R 5 represents alkylene.
  • a group or an arylene group The alkylene group in the linking group A may be either linear or branched, and is preferably an alkylene group having 1 to 4 carbon atoms.
  • a methylene group, ethylene group, propylene group, various butylene groups, etc. are mentioned.
  • the arylene group in the linking group A include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, And naphthalene-2,6-diyl group.
  • the aralkylene group in the linking group A include an aralkylene group having 7 to 15 carbon atoms.
  • the linking group A is a-COOR 5 -b, a-CONHR 5 -b, or a-OR 5 -b (wherein, a represents a bonding site to the carbon atom to which R 1 is bonded, and b represents a quaternary ammonium represents a binding site to site, for R 5 represents an alkylene group or an arylene group), as the alkylene group for R 5, it may be straight-chain or branched, having 1 to 4 carbon atoms An alkylene group is preferred. For example, a methylene group, ethylene group, propylene group, various butylene groups, etc. are mentioned.
  • Examples of the arylene group for R 5 include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, a naphthalene-1,4-diyl group, and a naphthalene-1,5-diyl group. And naphthalene-2,6-diyl group.
  • the linking group A may be further substituted, and the substitution is not particularly limited as long as it does not significantly lower the charging characteristics of the polymer compound and the curability of the liquid developer.
  • the linking group A is not particularly limited as described above, but is preferably a-COOR 5 -b from the viewpoint of availability of raw materials and ease of production.
  • B is a quaternary ammonium sites and its counter anion Y - is a divalent linking group that binds, for example, alkylene groups or arylene groups.
  • the alkylene group in the linking group B may be linear or branched, and is preferably an alkylene group having 1 to 4 carbon atoms. For example, a methylene group, ethylene group, propylene group, various butylene groups, etc. are mentioned.
  • the arylene group in the linking group B includes 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, and naphthalene.
  • the linking group B may be further substituted, and the substitution is not particularly limited as long as it does not significantly lower the charging characteristics of the polymer compound and the curability of the liquid developer.
  • the linking group B is not particularly limited as described above, but is more preferably a simple alkylene group such as a methylene group, an ethylene group or a propylene group from the viewpoint of availability of raw materials and ease of production.
  • X ⁇ is a counter anion of a quaternary ammonium moiety, and is a halogen ion or an anion having a COO ⁇ group or SO 3 ⁇ group in the structure.
  • halogen ion in X ⁇ include fluorine ion, chlorine ion, bromine ion, or iodine ion.
  • anion having a COO ⁇ group in X ⁇ include an acetic acid anion, a propionic acid anion, and a benzoic acid anion.
  • anion having an SO 3 — group in X ⁇ examples include methanesulfonate anion, trifluoromethanesulfonate anion, benzenesulfonate anion, p-toluenesulfonate anion, and methylsulfate anion.
  • Y ⁇ is a counter anion at the quaternary ammonium moiety, and is covalently bonded to the quaternary ammonium moiety via the divalent linking group B.
  • Y - is an anion having a COO - group or SO 3 - group in the structure.
  • the anion having a COO ⁇ group in Y ⁇ include an acetic acid anion, a propionic acid anion, and a benzoic acid anion.
  • anion containing an SO 3 — group in Y ⁇ examples include methanesulfonate anion, trifluoromethanesulfonate anion, benzenesulfonate anion, p-toluenesulfonate anion, and methylsulfate anion.
  • the polymer compound is a copolymer having at least one monomer unit represented by the formula (1) and the formula (2) and a monomer unit represented by the following formula (3). Also good.
  • R 6 represents any one of a hydrogen atom and an alkyl group
  • R 7 represents any one of an alkyl group, a carboxylic acid ester group, a carboxylic acid amide group, an alkoxy group and an aryl group.
  • the alkyl group for R 6 is preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • R 6 can be arbitrarily selected from the substituents listed above and a hydrogen atom, but is preferably a hydrogen atom or a methyl group from the viewpoint of production (polymerizability) of the copolymer.
  • the alkyl group for R 7 is preferably an alkyl group having 1 to 30 carbon atoms.
  • examples thereof include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-decyl group, an n-hexadecyl group, an octadecyl group, a docosyl group, and a triacontyl group.
  • examples of the aryl group for R 7 include aryl groups such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the carboxylate group in R 7 is —COOR 8 (wherein R 8 is any one of an alkyl group having 1 to 30 carbon atoms, a phenyl group, and a hydroxyalkyl group having 1 to 30 carbon atoms) Represents.).
  • ester groups such as ester groups, docosyl ester groups, triacontyl ester groups, phenyl ester groups, and 2-hydroxyethyl ester groups.
  • Examples include amide groups such as decylamide group, N-octadecylamide group, N-docosylamide group, N-triacontylamide group, and N-phenylamide group.
  • examples of the alkoxy group for R 7 include an alkoxy group having 1 to 30 carbon atoms and a hydroxyalkoxy group having 1 to 30 carbon atoms.
  • alkoxy groups such as octadecyloxy group, docosyloxy group, triacontyloxy group, and 2-hydroxyethoxy group.
  • the substituent of R 7 may be further substituted and is not particularly limited as long as it does not significantly lower the charge characteristics of the copolymer and the curability of the liquid developer.
  • examples of the substituent which may be substituted include an alkoxy group such as a methoxy group and an ethoxy group, an acyl group such as an acetyl group, and a halogen atom such as a fluorine atom and a chlorine atom.
  • R 6 and R 7 can be arbitrarily selected from the substituents listed above, but the copolymer is dissolved and dispersed in a low-polar cation polymerizable liquid monomer as a toner charge control agent. In order to improve the solubility in the cationically polymerizable liquid monomer, the dispersibility, and the reverse micelle forming ability, it is preferable to select a substituent having a long-chain alkyl.
  • the content ratio of at least one of the monomer units represented by the above formulas (1) and (2) is 0.01 mol% or more and 50 mol% with respect to all the monomer units constituting the polymer compound.
  • the content is preferably 1 mol% or less and more preferably 1 mol% or more and 30 mol% or less.
  • the copolymer composition ratio in the copolymer is not particularly limited, but at least one of the monomer units represented by the above formulas (1) and (2) is a single monomer represented by the above formula (3).
  • the molar ratio to the body unit is preferably 0.01: 99.99 to 50:50, and more preferably 1:99 to 30:70.
  • the weight average molecular weight (Mw) of the polymer compound is not particularly limited, but when used as a toner charge control agent dissolved and dispersed in a cationically polymerizable liquid monomer, the weight average molecular weight (Mw) is 3000 to 300,000. The following degree is preferable, More preferably, it is 3000-150,000.
  • the content of the polymer compound in the liquid developer is such that the monomer unit represented by the formula (1) or (2) is 10 nmol% or more and 0.1 mmol% or less per unit mass of the toner particles.
  • the content when the polymer compound is dissolved or dispersed in the cationically polymerizable liquid monomer as a toner charge control agent is 0.01 to 100 parts by mass of toner particles (solid content). It may be set to about 10 parts by mass or more.
  • the method for producing the polymer compound will be described in detail below.
  • the manufacturing method of a high molecular compound will not be specifically limited if the thing of said structure is obtained, For example, it can manufacture by the following methods. That is, (i) a method for producing a vinyl monomer corresponding to the above formula (1) or (2) and then polymerizing the vinyl monomer, and (ii) a main polymer of the above formula (1) or (2) After synthesizing the polymer compound corresponding to the chain, it can be produced by a method in which the site corresponding to formula (1) or formula (2) is bonded by polymer reaction. It is preferable to manufacture by the method shown in (i) from the viewpoint of availability of monomers and control of the amount of functional groups.
  • the vinyl monomer for introducing the monomer unit represented by the above formula (1) or formula (2) into the polymer compound includes a vinyl ether derivative and an acrylate derivative depending on the structure of the substituent R 1 and the linking group A.
  • acrylate derivatives, acrylamide derivatives, methacrylamide derivatives, ⁇ -olefin derivatives, aromatic vinyl derivatives, etc. can be used, but from the viewpoint of ease of production of monomers, it is preferable to use acrylate derivatives or methacrylate derivatives. .
  • a commercially available product can be used as the corresponding acrylate derivative or methacrylate derivative.
  • Examples of the polymerization method of the vinyl monomer include radical polymerization and ionic polymerization, and living polymerization for the purpose of molecular weight distribution control and structure control can also be used.
  • radical polymerization can be performed by using a radical polymerization initiator, irradiation with light such as radiation or laser light, combined use of a photopolymerization initiator and light irradiation, heating, or the like.
  • the radical polymerization initiator is not particularly limited as long as it can generate radicals and initiate a polymerization reaction, and is selected from compounds that generate radicals by the action of heat, light, radiation, redox reaction, and the like.
  • azo compounds examples thereof include azo compounds, organic peroxides, inorganic peroxides, organometallic compounds, photopolymerization initiators, and the like. More specifically, azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) and 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide (BPO), tert- Organic peroxides such as butyl peroxypivalate and tert-butyl peroxyisopropyl carbonate, inorganic peroxides such as potassium persulfate and ammonium persulfate, hydrogen peroxide-iron (II) salt system, BPO-dimethylaniline system, Examples thereof include redox initiators such as cerium (IV) salt-alcohol.
  • AIBN 2,2′-azobisisobutyronitrile
  • BPO benzoyl peroxide
  • tert- Organic peroxides such as butyl peroxypivalate and
  • the photopolymerization initiator examples include acetophenone series, benzoin ether series, and ketal series. Two or more of these radical polymerization initiators may be used in combination.
  • the polymerization temperature of the vinyl monomer varies depending on the type of polymerization initiator used, and is not particularly limited. However, polymerization is generally performed at a temperature of ⁇ 30 ° C. to 150 ° C., and more preferable. The temperature range is 40 ° C to 120 ° C.
  • the polymerization initiator used at this time is used in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the monomer, so that a polymer compound having a target molecular weight distribution can be obtained. Is preferably adjusted.
  • any method such as solution polymerization, suspension polymerization, emulsion polymerization, dispersion polymerization, precipitation polymerization, and bulk polymerization can be used, and it is not particularly limited.
  • the obtained polymer compound can be purified as necessary. There is no restriction
  • the structure of the produced polymer compound can be identified using various instrumental analyses.
  • a nuclear magnetic resonance apparatus (NMR), gel permeation chromatography (GPC), an inductively coupled plasma optical emission spectrometer (ICP-OES), or the like can be used.
  • the method for producing the copolymer is not particularly limited as long as the above structure is obtained, and is the same as the polymer compound.
  • the vinyl monomer corresponding to said Formula (1) or Formula (2) and the vinyl monomer corresponding to said Formula (3) these are superposed
  • the liquid developer includes at least a cationic polymerizable liquid monomer, a polymerization initiator, toner particles insoluble in the cationic polymerizable liquid monomer, and monomer units represented by the above formula (1) or formula (2). It is comprised from the high molecular compound which has at least one.
  • the toner particles preferably contain a binder resin and a colorant as constituent components.
  • the polymer compound is a toner charge control agent, and the polymer compound is dissolved or dispersed in a cationically polymerizable liquid monomer.
  • the liquid developer is obtained by dispersing the toner particles in a cationic polymerizable liquid monomer.
  • the cationically polymerizable liquid monomer is preferably prepared and used so as to have the same physical property values as those of a normal carrier liquid for a liquid developer.
  • the volume resistivity at 25 ° C. is preferably 1 ⁇ 10 9 ⁇ ⁇ cm to 1 ⁇ 10 15 ⁇ ⁇ cm.
  • the volume resistivity is measured by an impedance method. Specifically, the measurement is performed as follows using a dielectric measurement system (125596WB, manufactured by Solartron).
  • a measuring cell (SC-C1R-C, manufactured by Toyo Technica Co., Ltd.) filled with 1.2 mL of sample is connected to a measuring apparatus and adjusted to 25 ° C. Measurement is performed while changing the frequency in the range of 1 MHz to 0.1 Hz at an applied voltage of 3 V (effective value).
  • the obtained complex impedance is represented by a Nyquist plot, and the values of the resistance component and the capacitor component of the sample are calculated by fitting with an RC parallel equivalent circuit. Further, the volume resistivity is obtained from the cell constant of the measurement cell.
  • the viscosity of the cationic polymerizable liquid monomer is preferably 0.5 mPa ⁇ s or more and less than 100 mPa ⁇ s at 25 ° C., more preferably 0.5 mPa ⁇ s or more and less than 30 mPa ⁇ s.
  • the viscosity is measured by a rotational rheometer method. Specifically, using a viscoelasticity measuring device (Physica MCR300, manufactured by Anton Paar Co., Ltd.), measurement is performed as follows.
  • the cationic polymerizable liquid monomer may be selected from a range that does not dissolve the binder resin. Specifically, it may be selected from a combination of a cationic polymerizable liquid monomer and a binder resin such that the binder resin to be dissolved is 1 part by mass or less with respect to 100 parts by mass of the cationic polymerizable liquid monomer.
  • the cationic polymerizable liquid monomer include cyclic ether compounds such as vinyl ether compounds, acrylic compounds, epoxy compounds, and oxetane compounds. Among these, it is preferable to use a vinyl ether compound from the viewpoint of safety to the human body, high sensitivity, high resistance, and low viscosity.
  • the vinyl ether compound refers to a compound having a vinyl ether structure (—CH ⁇ CH—O—C—).
  • the vinyl ether structure is preferably represented by R′—CH ⁇ CH—O—C— (R ′ is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group. ).
  • R ′ is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
  • the vinyl ether compound is a compound having no hetero atom other than the vinyl ether structure.
  • the hetero atom means an atom other than a carbon atom and a hydrogen atom.
  • the electron density is likely to be biased in the molecule due to the difference in electronegativity between the heteroatom and the carbon atom.
  • the resistance tends to decrease because the trajectory tends to be a path of conduction electrons or holes.
  • the vinyl ether compound does not have a carbon-carbon double bond other than the vinyl ether structure in the vinyl ether compound.
  • a carbon-carbon double bond has an electron-occupied orbital with a high energy level and a non-electron-occupied orbital with a low energy level, but these tend to be a path for electrons and holes and easily reduce resistance.
  • a vinyl ether compound is what is represented by a following formula (A).
  • n represents the number of vinyl ether structures in one molecule and is an integer of 1 to 4.
  • R is an n-valent hydrocarbon group.
  • n is preferably an integer of 1 to 3.
  • R is preferably a linear or branched saturated or unsaturated aliphatic hydrocarbon group having 1 to 50 carbon atoms, a saturated or unsaturated alicyclic hydrocarbon group having 5 to 50 carbon atoms, and 6 carbon atoms.
  • a group selected from an aromatic hydrocarbon group having 50 to 50, and the alicyclic hydrocarbon group and the aromatic hydrocarbon group have a saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms. You may do it.
  • R is more preferably a linear or branched saturated aliphatic hydrocarbon group having 4 to 25 carbon atoms.
  • dodecyl vinyl ether B-3
  • dicyclopentadiene vinyl ether B-8
  • cyclohexane-1,4-dimethanol divinyl ether B-17
  • triethylene glycol divinyl ether B- 18
  • tricyclodecane vinyl ether B-10
  • trimethylolpropane trivinyl ether B-24
  • 2-ethyl-1,3-hexanediol divinyl ether B-25
  • 2-butyl-2-ethyl-1,3-propanediol divinyl ether B-27
  • neopentyl glycol divinyl ether B-23
  • pentaerythritol tetravinyl ether B-28
  • 1,2-de Didiol divinyl ether B-30
  • the liquid developer contains a polymerization initiator for polymerizing and curing the cationic polymerizable liquid monomer.
  • the polymerization initiator is not particularly limited as long as it is a compound capable of generating cationic species capable of initiating cationic polymerization of a cationic polymerizable liquid monomer by reacting with externally input energy such as light and heat. It is preferable to select a photopolymerization initiator from the viewpoint of energy efficiency of the curing step and polymerizability of the cationic polymerizable liquid monomer.
  • the photopolymerization initiator should be one that significantly lowers the volume resistivity of the liquid developer, significantly inhibits the action of the toner charge control agent of the polymer compound, or significantly increases the viscosity of the liquid developer.
  • the photoinitiator represented by following formula (4) is preferable.
  • R 11 and R 12 are bonded to each other to form a ring structure, x represents an integer of 1 to 8, and y represents an integer of 3 to 17. ]
  • the photopolymerization initiator represented by the above formula (4) is photolyzed by ultraviolet irradiation to generate a sulfonic acid that is a strong acid. It is also possible to use a sensitizer together and cause the initiator to decompose and generate sulfonic acid, triggered by absorption of ultraviolet rays by the sensitizer.
  • Examples of the ring structure formed by combining R 11 and R 12 include a 5-membered ring and a 6-membered ring.
  • ring structure formed by combining R 11 and R 12 are succinimide structure, phthalimide structure, norbornene dicarboximide structure, naphthalene dicarboximide structure, cyclohexane dicarboximide structure, epoxy Examples thereof include a cyclohexene dicarboximide structure.
  • the ring structure may have an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, or the like as a substituent.
  • C x F y in the above formula (4) includes a linear alkyl group (RF1) in which a hydrogen atom is substituted with a fluorine atom, a branched alkyl group (RF2) in which a hydrogen atom is substituted with a fluorine atom, a hydrogen atom And a cycloalkyl group (RF3) substituted with a fluorine atom, and an aryl group (RF4) wherein a hydrogen atom is substituted with a fluorine atom.
  • RF1 linear alkyl group
  • RF2 branched alkyl group
  • RF3 cycloalkyl group
  • RF4 aryl group
  • linear alkyl group (RF1) in which a hydrogen atom is substituted with a fluorine atom
  • a linear alkyl group (RF1) or a branched alkyl group (RF2) is preferable.
  • an aryl group (RF4) More preferably, they are a linear alkyl group (RF1) and an aryl group (RF4).
  • the said polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • the content of the polymerization initiator is not particularly limited, but is preferably 0.01 parts by mass or more and 5 parts by mass or less, more preferably 0.05 parts by mass with respect to 100 parts by mass of the cationic polymerizable liquid monomer.
  • the amount is 1 part by mass or less, more preferably 0.1 part by mass or more and 0.5 part by mass or less.
  • (C-23), (C-24), (C-25), (C-26), and (C-27) are preferable because they can easily obtain high fixability in combination with a sensitizer. .
  • the toner particles preferably contain a binder resin and a colorant as constituent components. Moreover, you may contain additives, such as a charge adjuvant, as needed.
  • Binder resin a known binder resin can be used as long as it has fixability to an adherend such as paper or plastic film and is insoluble in the cationic polymerizable liquid monomer.
  • an indicator is that the binder resin to be dissolved is 1 part by mass or less with respect to 100 parts by mass of the cationically polymerizable liquid monomer at a temperature of 25 ° C.
  • binder resin examples include resins such as epoxy resins, polyester resins, (meth) acrylic resins, styrene- (meth) acrylic resins, alkyd resins, polyethylene resins, ethylene- (meth) acrylic resins, and rosin-modified resins. Can be mentioned. Moreover, these can be used individually or in combination of 2 or more types as needed. Although it does not specifically limit as content of binder resin, It is preferable that they are 50 mass parts or more and 1000 mass parts or less with respect to 100 mass parts of coloring agents.
  • the colorant is not particularly limited, and all commercially available organic pigments, organic dyes, inorganic pigments, or pigments dispersed in an insoluble resin as a dispersion medium, or the pigment surface A resin-grafted resin can be used.
  • Specific examples of the pigment include, for example, the following ones exhibiting a yellow color.
  • Examples of the pigment exhibiting blue or cyan include the following. C. I. Pigment blue 2, 3, 15: 2, 15: 3, 15: 4, 16, 17; I. Bat Blue 6; C.I. I. Acid Blue 45, a copper phthalocyanine pigment in which 1 to 5 phthalimidomethyl groups are substituted on the phthalocyanine skeleton.
  • Examples of the green pigment include the following. C. I. Pigment Green 7, 8, 36.
  • Examples of the orange pigment include the following. C. I. Pigment Orange 66, 51.
  • black pigments include the following. Carbon black, titanium black, aniline black.
  • Examples of white pigments include the following. Basic lead carbonate, zinc oxide, titanium oxide, strontium titanate.
  • a dispersing means corresponding to the toner particle production method may be used.
  • the apparatus that can be used as the dispersing means include a ball mill, a sand mill, an attritor, a roll mill, a jet mill, a homogenizer, a paint shaker, a kneader, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, and a wet jet mill. and so on.
  • a pigment dispersant when dispersing the pigment.
  • the pigment dispersant include a hydroxyl group-containing carboxylic acid ester, a salt of a long-chain polyaminoamide and a high molecular weight acid ester, a salt of a high molecular weight polycarboxylic acid, a high molecular weight unsaturated acid ester, a high molecular weight copolymer, a modified polyacrylate, a fatty acid
  • pigment dispersion aid it is also preferable to use a commercially available polymer dispersant such as Solsperse series manufactured by Lubrizol. Moreover, it is also possible to use the synergist according to various pigments as a pigment dispersion aid. The addition amount of these pigment dispersant and pigment dispersion aid is preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the pigment.
  • the toner particles may contain a charge auxiliary agent for the purpose of adjusting the chargeability of the toner particles.
  • a charge auxiliary agent known ones can be used as long as the granulation property of the toner particles and the pigment dispersibility in the toner particles are not significantly lowered and the polymerization property of the cationic polymerizable liquid monomer is not significantly inhibited.
  • Specific compounds include zirconium naphthenate, cobalt naphthenate, nickel naphthenate, iron naphthenate, zinc naphthenate, cobalt octylate, nickel octylate, zinc octylate, cobalt dodecylate, nickel dodecylate, zinc dodecylate.
  • Metal soaps such as aluminum stearate and cobalt 2-ethylhexanoate; metal sulfonates such as petroleum metal salts and metal salts of sulfosuccinates; phospholipids such as lecithin; metal complexes of t-butylsalicylate Salicylic acid metal salts such as polyvinylpyrrolidone resin, polyamide resin, sulfonic acid-containing resin, and hydroxybenzoic acid derivatives.
  • the method for incorporating the charge auxiliary agent in the toner particles is not particularly limited as long as the charge auxiliary agent can be retained in the toner particles.
  • a method of adding together with a binder resin and a colorant, or a method of granulating the toner particles and then bonding or adsorbing them to the surface of the toner particles by a chemical or physical method can be used.
  • an optimal method may be selected in accordance with the manufacturing method of the liquid developer.
  • the charge auxiliary agent desorbs into the cation polymerizable liquid monomer, it can be removed from the cation polymerizable liquid monomer by adsorption with an adsorbent, substitution of the cation polymerizable liquid monomer, or dialysis. It is also possible to use a method for removing the charge auxiliary agent.
  • the liquid developer may contain a sensitizer as necessary for the purpose of, for example, improving the acid generation efficiency of the photopolymerization initiator and increasing the photosensitive wavelength.
  • the sensitizer is not particularly limited as long as it sensitizes the photopolymerization initiator by an electron transfer mechanism or an energy transfer mechanism.
  • aromatic polycondensed compounds such as anthracene, 9,10-dialkoxyanthracene, pyrene, perylene, aromatic ketone compounds such as acetophenone, benzophenone, thioxanthone, diethylthioxanthone, Michler ketone, phenothiazine, N-aryloxazolidinone And the like.
  • the sensitizers can be used alone or in combination of two or more.
  • the content of the sensitizer is appropriately adjusted according to the purpose, but is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, more preferably 1 part by mass of the photopolymerization initiator. 1.0 parts by mass or more and 5.0 parts by mass or less.
  • the liquid developer may contain a sensitizing aid as necessary for the purpose of improving the electron transfer efficiency or energy transfer efficiency between the sensitizer and the photopolymerization initiator.
  • sensitizing aids include naphthalene series such as 1,4-dihydroxynaphthalene, 1,4-dimethoxynaphthalene, 1,4-diethoxynaphthalene, 4-methoxy-1-naphthol, 4-ethoxy-1-naphthol And benzene compounds such as 1,4-dihydroxybenzene, 1,4-dimethoxybenzene, 1,4-diethoxybenzene, 1-methoxy-4-phenol, 1-ethoxy-4-phenol, and the like.
  • the sensitizing aid can be used alone or in combination of two or more.
  • the content of the sensitizer is appropriately selected according to the purpose, but is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, more preferably 1 part by mass of the sensitizer. 0.5 parts by mass or more and 5.0 parts by mass or less.
  • the liquid developer may contain a cationic polymerization inhibitor for the purpose of improving storage stability and adjusting the curing rate.
  • a cationic polymerization inhibitor include alkali metal compounds and / or alkaline earth metal compounds, or amines.
  • the amines include alkanolamines, N, N-dimethylalkylamines, N, N-dimethylalkenylamines, N, N-dimethylalkynylamines and the like.
  • triethanolamine triisopropanolamine, tributanolamine, N-ethyldiethanolamine, propanolamine, n-butylamine, sec-butylamine, 2-aminoethanol, 2-methylaminoethanol, 3-methylamino-1 -Propanol, 3-methylamino-1,2-propanediol, 2-ethylaminoethanol, 4-ethylamino-1-butanol, 4- (n-butylamino) -1-butanol, 2- (t-butylamino) ) Ethanol, N, N-dimethylundecanolamine, N, N-dimethyldodecanolamine, N, N-dimethyltridecanolamine, N, N-dimethyltetradecanolamine, N, N-dimethylpentadecanol Amine, N, N-dimethylnonadecylami N, N-dimethylicosy
  • the liquid developer may contain a radical polymerization inhibitor.
  • the polymerization initiator may be slightly decomposed during storage with time to form a radical compound, which may cause polymerization due to the radical compound.
  • radical polymerization inhibitors include phenolic hydroxyl group-containing compounds, quinones such as methoquinone (hydroquinone monomethyl ether), hydroquinone, 4-methoxy-1-naphthol, hindered amine antioxidants, 1,1-diphenyl-2- Picrylhydrazyl free radicals, N-oxyl free radical compounds, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, thiourea derivatives , Various sugars, phosphate antioxidants, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, aromatic amines, phenylenediamines, imines, sulfonamides, urea derivatives, oximes, dicyandiamide and polyalkylenes Polya Polycondensates of emissions, sulfur-containing compounds such as phenothia
  • phenolic hydroxyl group-containing compounds N-oxyl free radical compounds, 1,1-diphenyl-2-picrylhydrazyl free radical, phenothiazine, quinones, and hindered amines are preferable. More preferred are N-oxyl free radical compounds.
  • the content of the radical polymerization inhibitor is preferably 1 ppm or more and 5000 ppm or less in terms of mass in the liquid developer.
  • the liquid developer contains various known additives as necessary according to the purpose of improving the compatibility of the recording medium, storage stability, image storage stability, and other performances. It may be used. For example, surfactants, lubricants, fillers, antifoaming agents, ultraviolet absorbers, antioxidants, antifading agents, antifungal agents, rust inhibitors, and the like can be used, and these can be appropriately selected and used. .
  • a method for producing the liquid developer is not particularly limited, and examples thereof include known methods such as a coacervation method and a wet pulverization method.
  • a pigment, a binder resin, other additives, and a dispersion medium are mixed and pulverized using a bead mill or the like to obtain a dispersion of toner particles.
  • a production method for obtaining a liquid developer by mixing the obtained dispersion of toner particles, a polymerization initiator, a toner charge control agent, a cationic polymerizable liquid monomer, and the like can be exemplified. Details of the coacervation method are described, for example, in JP-A No. 2003-241439, International Publication No.
  • the toner particles are electrically pulverized by kneading the pigment and the binder resin at a melting point of the binder resin or higher and then dry pulverizing the resulting pulverized material in the electrically insulating medium. Can be dispersed in. In the present invention, such a known method can be used.
  • the toner particles preferably have a volume average particle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less, more preferably 0.05 ⁇ m or more and 1 ⁇ m or less from the viewpoint of obtaining a high-definition image.
  • the toner particle concentration in the liquid developer can be arbitrarily adjusted according to the image forming apparatus to be used, but is preferably about 1% by mass to 70% by mass.
  • the liquid developer may be prepared and used so as to have the following physical property values. That is, the viscosity of the liquid developer is about 0.5 mPa ⁇ s or more and 30 mPa ⁇ s or less at 25 ° C. when the toner particle concentration is 2% by mass from the viewpoint that an appropriate electrophoretic mobility of toner particles can be obtained. It is good to.
  • the volume resistivity of the liquid developer at 25 ° C. is preferably about 1 ⁇ 10 9 ⁇ ⁇ cm to 1 ⁇ 10 15 ⁇ ⁇ cm from the viewpoint of not lowering the potential of the electrostatic latent image.
  • the measurement method and evaluation method used in the present invention are shown below.
  • (1) Composition analysis The following method was used to determine the structure of the polymer compound. Using ECA-400 (400 MHz) manufactured by JEOL Ltd., 1 H-NMR and 13 C-NMR spectra were measured. Measurement was performed at 25 ° C. in a deuterated solvent containing tetramethylsilane as an internal standard substance. The chemical shift value was shown as a ppm shift value ( ⁇ value) with tetramethylsilane as an internal standard substance being zero.
  • the molecular weight distribution of the polymer compound was calculated by gel permeation chromatography (GPC) in terms of monodisperse polymethyl methacrylate. The molecular weight was measured by GPC as shown below.
  • the sample solution was added to the eluent below so that the sample concentration was 1% by mass, and the solution was allowed to stand at room temperature for 24 hours and dissolved, and then filtered through a solvent-resistant membrane filter with a pore diameter of 0.45 ⁇ m. And measured under the following conditions.
  • volume average particle size of toner particles is determined using a dynamic light scattering (DLS) particle size distribution measuring device (trade name: Nanotrack 150, manufactured by Nikkiso Co., Ltd.). Measurements were made in a polymerizable liquid monomer.
  • DLS dynamic light scattering
  • the electrophoretic mobility of the produced liquid developer was measured as follows. A sample diluted with a cationically polymerizable liquid monomer so that the toner particle concentration was 1% by mass was held by a capillary force between parallel plate electrodes, which were opposed to each other with a metal electrode having a thickness of 300 ⁇ m and a width of 20 mm separated by 100 ⁇ m. The state of electrophoresis when a potential difference of 100 V was applied between parallel plate electrodes (electric field intensity 1 ⁇ 10 6 V / m) was photographed with a high-speed camera (FASTCAM SA-1 manufactured by Photoron) connected to an optical microscope. .
  • FASTCAM SA-1 manufactured by Photoron
  • the obtained image was taken into image processing software ImageJ (developer: Wayne Rasband (NIH)), and the average electrophoretic mobility of the particles was calculated by a particle image velocimetry (PIV method).
  • the migration polarity of the particles was negative when migrating to the positive electrode and positive when migrating to the negative electrode.
  • the electrophoretic mobility was evaluated according to the following criteria.
  • C Average migration mobility is 3 ⁇ 10 ⁇ 10 m 2 / V ⁇ s or more, less than 7 ⁇ 10 ⁇ 10 m 2 / V ⁇ s
  • the irradiation light quantity when the surface was completely cured without tack was measured and evaluated according to the following criteria.
  • a polymer compound 5 was produced in the same manner as the polymer compound 1 except that 48.1 parts of octyl methacrylate was used instead of octadecyl methacrylate.
  • a polymer compound 7 was produced in the same manner as the polymer compound 1 except that 12.8 parts of (vinylbenzyl) trimethylammonium chloride was used instead of [2- (methacryloyloxy) ethyl] trimethylammonium chloride.
  • Table 1 shows the composition ratios and weight average molecular weights (Mw) of the polymer compounds 1 to 8 produced as described above.
  • Mw weight average molecular weights
  • Example 1 [Manufacture of binder resin]
  • a reaction vessel equipped with a reflux condenser, water / alcohol separator, nitrogen gas inlet tube, thermometer and stirrer 1500 parts of bisphenol A ethylene oxide adduct (Sigma Aldrich) and 700 parts of terephthalic acid (Sigma Aldrich) was added, nitrogen gas was introduced while stirring, and dehydration / dealcoholization polycondensation reaction was performed at a temperature of 200 to 240 ° C. After 1 hour, the temperature of the reaction system was lowered to 100 ° C. or less to stop polycondensation.
  • the obtained polyester resin had a weight average molecular weight (Mw) of 9000, a number average molecular weight (Mn) of 2100, a glass transition temperature (Tg) of 68 ° C., and an acid value of 12.0 mgKOH / g.
  • toner particle dispersion In a reaction vessel equipped with a stirrer and a thermometer, 25 parts of the polyester resin and 75 parts of dodecyl vinyl ether (Exemplary Compound B-3) are charged and stirred at 200 rpm for 1 hour up to 130 ° C. in an oil bath. The temperature rose. After being held at 130 ° C. for 1 hour, it was gradually cooled at a temperature drop rate of 15 ° C. per hour to prepare a binder resin dispersion. The obtained binder resin dispersion was a white paste.
  • toner charge control agent solution In a reaction vessel equipped with a stirrer and a thermometer, 6.2 parts of the polymer compound 1 and 68.2 parts of tetrahydrofuran (THF) were charged, and the temperature was raised to 60 ° C. to dissolve the polymer compound 1. . After adding 71.3 parts of dodecyl vinyl ether, THF was distilled off under reduced pressure at 50 ° C. and 4 kPa to obtain a transparent toner charge control agent solution.
  • THF tetrahydrofuran
  • Examples 2 to 8 Liquid developers of Examples 2 to 8 were produced in the same manner as in Example 1 except that the polymer compounds 2 to 8 were used in place of the polymer compound 1, respectively.
  • Example 9 In the [preparing liquid developer] step of Example 1, 79.04 parts of dodecyl vinyl ether was used, and cyclohexane-1,4-dimethanol was used instead of 2-butyl-2-ethyl-1,3-propanediol divinyl ether. A liquid developer of Example 9 was produced in the same manner as in Example 1 except that 9.68 parts of divinyl ether (Exemplary Compound B-17) was used.
  • Example 10 Example 1 except that N-hydroxyphthalimidononafluorobutanesulfonate (Exemplary Compound C-11) is used instead of N-hydroxynaphthalimidenonafluorobutanesulfonate in the [Preparation of Liquid Developer] step of Example 1. In the same manner as described above, the liquid developer of Example 10 was produced.
  • Example 11 In the [Production of Toner Particle Dispersion] step of Example 1, in the same manner as in Example 1 except that Nucrel N1525 (ethylene-methacrylic acid resin, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used instead of the polyester resin. Thus, a liquid developer of Example 11 was produced.
  • Nucrel N1525 ethylene-methacrylic acid resin, manufactured by Mitsui DuPont Polychemical Co., Ltd.
  • Example 12 In the [Production of toner particle dispersion] step of Example 1, 1,12-octadecanediol divinyl ether (Exemplary Compound B-43) was used instead of dodecyl vinyl ether, and in the [Preparation of liquid developer] step, dodecyl vinyl ether was used. And the liquid of Example 12 in the same manner as in Example 1 except that 88.73 parts of 1,12-octadecanediol divinyl ether was used instead of 2-butyl-2-ethyl-1,3-propanediol divinyl ether. A developer was produced.
  • Example 13 A liquid developer of Example 13 was produced in the same manner as in Example 12 except that the polymer compound 3 was used instead of the polymer compound 1.
  • the volume resistivity of B-17) and 1,12-octadecanediol divinyl ether (Exemplary Compound B-43) at 25 ° C. was 2.7 ⁇ 10 12 ⁇ ⁇ cm and 9.4 ⁇ 10 12 ⁇ , respectively.
  • ⁇ Cm 1.3 ⁇ 10 10 ⁇ ⁇ cm and 8.4 ⁇ 10 12 ⁇ ⁇ cm.
  • Comparative Example 1 A liquid developer of Comparative Example 1 was produced in the same manner as in Example 1 except that the polymer compound 1 was not used as the toner charge control agent.
  • Comparative example 2 A liquid developer of Comparative Example 2 was produced in the same manner as in Example 1 above, except that lecithin (derived from soybeans manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the polymer compound 1 as the toner charge control agent.
  • lecithin derived from soybeans manufactured by Tokyo Chemical Industry Co., Ltd.
  • Comparative Example 3 A liquid developer of Comparative Example 3 was produced in the same manner as in Example 1 above, except that barium sulfonate (Molesco Amber SB-50N manufactured by Moresco) was used instead of the polymer compound 1 as the toner charge control agent.
  • barium sulfonate Molesco Amber SB-50N manufactured by Moresco
  • Comparative example 4 The liquid developer of Comparative Example 4 was used in the same manner as in Example 1 except that sodium di (2-ethylhexyl) sulfosuccinate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the polymer compound 1 as the toner charge control agent. Manufactured.
  • Table 2 below shows the electrophoretic mobility and curability evaluation results of the liquid developer produced above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

The purpose of the present invention is to provide a toner charge control agent capable of achieving a low curing inhibition property and high electrophoretic mobility, and provide a curable liquid developer having a highly curable property and capable of responding to increased processing speed of an image forming device. The curable liquid developer contains toner particles insoluble in a cationic polymerizable liquid monomer, a polymerization initiator, and a cationic polymerizable monomer, and is characterized by containing a high molecular compound having a monometric unit represented by a specific structural formula.

Description

硬化型液体現像剤Curing type liquid developer
 本発明は、電子写真法、静電記録法、静電印刷などの電子写真方式を利用する画像形成装置に用いられる硬化型液体現像剤に関する。 The present invention relates to a curable liquid developer used in an image forming apparatus using an electrophotographic method such as electrophotographic method, electrostatic recording method, and electrostatic printing.
 電子写真方式とは、感光体などの像担持体の表面を一様に帯電させ(帯電工程)、像担持体の表面に露光により静電潜像を形成させ(露光工程)、形成された静電潜像を着色粒子よりなる現像剤で現像し(現像工程)、紙やプラスチックフィルムなどの記録媒体に該現像剤像を転写し(転写工程)、転写された現像剤像を記録媒体に定着して(定着工程)、印刷物を得る方法である。
 この場合、現像剤は、顔料などの着色剤及びバインダー樹脂を含む材料で構成される着色粒子を、乾燥状態で用いる乾式現像剤と、着色粒子をキャリア液としての電気絶縁性液体に分散した液体現像剤とに大別される。
 近年、電子写真方式を利用する複写機、ファクシミリ、及びプリンターなどの画像形成装置に対し、カラー化や高速プリントに対するニーズが高まってきている。カラー印刷においては、高解像度かつ高画質な画像が求められるため、高解像度かつ高画質な画像を形成することが可能な現像剤であって、高速プリントに対応できる現像剤が求められる。
 カラー画像の再現性に関して有利な現像剤として、液体現像剤が知られている。液体現像剤は、現像剤中の着色粒子の凝集が生じにくいため、微細なトナー粒子を用いることができる。そのため、液体現像剤は、細線画像の再現性や階調再現性に優れた特性が得られやすい。これらの優れた特長を生かした、液体現像剤を用いた電子写真技術を利用した高画質高速デジタル印刷装置の開発が盛んになりつつある。このような状況下で、より良い特性を有する液体現像剤の開発が求められている。
 従来、液体現像剤として、炭化水素系有機溶媒やシリコーンオイルなどの電気絶縁性液体中に着色樹脂粒子を分散させたものが知られている。しかしながら、電気絶縁性液体が紙やプラスチックフィルムなどの記録媒体上に残存すると、著しい画像品位の低下を招いてしまうことがあり、電気絶縁性液体を除去する必要があった。電気絶縁性液体の除去には、熱エネルギーを加えて電気絶縁性液体を揮発除去する方法が一般的である。しかしながら、その際、装置外に有機溶媒の蒸気が放出される可能性があったり、多大なエネルギーが必要とされたりと、環境や省エネルギーといった観点からは必ずしも好ましいものではなかった。
 この対策として、電気絶縁性液体を重合により硬化させる方法が提案されている。硬化型の液体現像剤としては、電気絶縁性液体として反応性官能基を持ったモノマー又はオリゴマーを使用し、さらに重合開始剤を溶解させたものを用いる。なお、この硬化型の液体現像剤は、紫外線などの光を照射して反応性官能基を反応させて硬化させるものが例示でき、高速対応も可能である。この様な硬化型の液体現像剤が、特許文献1及び2で提案されている。特許文献1及び2では、電気絶縁性液体にビニルエーテルなどの高抵抗なカチオン重合性のモノマーと硬化の開始剤とを組み合わせて、硬化型液体現像剤とすることにより、上記課題を解決している。
 一方、近年のプロセススピードの高速化から、高い電気泳動移動度を達成できるトナー電荷制御剤の開発が求められている。
 トナー粒子を負に帯電させるトナー電荷制御剤として、レシチン(例えば特許文献1~3)や、バリウムペトロネートなどのバリウムスルホネート系制御剤(例えば特許文献1及び3)が知られている。
In the electrophotographic system, the surface of an image carrier such as a photoconductor is uniformly charged (charging process), and an electrostatic latent image is formed on the surface of the image carrier by exposure (exposure process). The electrostatic latent image is developed with a developer made of colored particles (development process), the developer image is transferred to a recording medium such as paper or plastic film (transfer process), and the transferred developer image is fixed to the recording medium. (Fixing step) to obtain a printed matter.
In this case, the developer is a liquid obtained by dispersing colored particles composed of a material containing a colorant such as a pigment and a binder resin in a dry state, and a liquid in which the colored particles are dispersed in an electrically insulating liquid as a carrier liquid. Broadly divided into developers.
In recent years, there is an increasing need for colorization and high-speed printing for image forming apparatuses such as copying machines, facsimiles, and printers that use electrophotography. In color printing, a high-resolution and high-quality image is required. Therefore, a developer capable of forming a high-resolution and high-quality image and corresponding to high-speed printing is required.
A liquid developer is known as an advantageous developer for color image reproducibility. Since the liquid developer hardly causes aggregation of colored particles in the developer, fine toner particles can be used. Therefore, the liquid developer can easily obtain characteristics excellent in fine line image reproducibility and gradation reproducibility. Development of a high-quality, high-speed digital printing apparatus using an electrophotographic technique using a liquid developer, which takes advantage of these excellent features, is becoming popular. Under such circumstances, development of a liquid developer having better characteristics is demanded.
Conventionally, a liquid developer in which colored resin particles are dispersed in an electrically insulating liquid such as a hydrocarbon-based organic solvent or silicone oil is known. However, if the electrically insulating liquid remains on a recording medium such as paper or plastic film, the image quality may be significantly deteriorated, and the electrically insulating liquid needs to be removed. For removing the electrically insulating liquid, a method of volatilizing and removing the electrically insulating liquid by applying heat energy is generally used. However, in that case, there is a possibility that the vapor of the organic solvent may be released to the outside of the apparatus, and a great amount of energy is required, which is not necessarily preferable from the viewpoint of environment and energy saving.
As a countermeasure against this, a method of curing an electrically insulating liquid by polymerization has been proposed. As a curable liquid developer, a monomer or oligomer having a reactive functional group is used as an electrically insulating liquid, and a polymerization initiator is further dissolved. Examples of the curable liquid developer include those that are cured by irradiating light such as ultraviolet rays to react with a reactive functional group, and can cope with high speed. Such curable liquid developers are proposed in Patent Documents 1 and 2. In Patent Documents 1 and 2, the above-mentioned problems are solved by combining an electrically insulating liquid with a high-resistance cationic polymerizable monomer such as vinyl ether and a curing initiator to form a curable liquid developer. .
On the other hand, development of a toner charge control agent capable of achieving high electrophoretic mobility has been demanded due to the recent increase in process speed.
Known toner charge control agents for negatively charging toner particles include lecithin (for example, Patent Documents 1 to 3) and barium sulfonate-based control agents such as barium petronate (for example, Patent Documents 1 and 3).
特許第3442406号公報Japanese Patent No. 3442406 特開2015-127812号公報Japanese Patent Laying-Open No. 2015-127812 特許第3267716号公報Japanese Patent No. 3267716
 しかし、上記のような従来のトナー電荷制御剤を硬化型液体現像剤に用いた場合、これらの材料にはカチオン重合を阻害する性質があるため、硬化のためにより多くの重合開始剤やエネルギーを必要とするという問題があった。
 上記問題を解決するために、重合阻害性(硬化阻害性)が小さく、高い電気泳動移動度を達成できるトナー電荷制御剤の開発が求められていた。
 従って、本発明は、硬化阻害性が小さく、高い電気泳動移動度を達成できるトナー電荷制御剤を提供し、硬化性が高く、画像形成装置のプロセススピードの高速化に対応できる硬化型液体現像剤を提供するものである。
However, when the conventional toner charge control agent as described above is used for a curable liquid developer, these materials have a property of inhibiting cationic polymerization, so that more polymerization initiator and energy are required for curing. There was a problem of need.
In order to solve the above problems, development of a toner charge control agent that has a small polymerization inhibition (curing inhibition) and can achieve high electrophoretic mobility has been demanded.
Accordingly, the present invention provides a toner charge control agent that has a small curing inhibition property and can achieve a high electrophoretic mobility, has a high curability, and can be used to increase the process speed of an image forming apparatus. Is to provide.
 本発明は、カチオン重合性液状モノマー、重合開始剤、及び該カチオン重合性液状モノマーに不溶なトナー粒子を含む硬化型液体現像剤であって、
 下記式(1)及び式(2)で表される単量体単位の少なくとも一つを有する高分子化合物を含有することを特徴とする硬化型液体現像剤である。
The present invention is a curable liquid developer comprising a cationic polymerizable liquid monomer, a polymerization initiator, and toner particles insoluble in the cationic polymerizable liquid monomer,
A curable liquid developer comprising a polymer compound having at least one of monomer units represented by the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000004

[前記式(1)及び(2)中、R~Rはそれぞれ独立して、水素原子及びアルキル基のいずれかを表し、A及びBは二価の連結基を表し、Xはハロゲンイオン、又は構造中にCOO基若しくはSO 基を有するアニオンを表し、Yは構造中にCOO基又はSO 基を有するアニオンを表す。]
Figure JPOXMLDOC01-appb-C000004

[In the formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group, A and B represent a divalent linking group, and X represents a halogen atom. An ion or an anion having a COO group or an SO 3 group in the structure is represented, and Y represents an anion having a COO group or an SO 3 group in the structure. ]
 本発明によれば、硬化性が高く、画像形成装置のプロセススピードの高速化に対応できる硬化型液体現像剤を提供することができる。 According to the present invention, it is possible to provide a curable liquid developer that has high curability and can cope with an increase in the process speed of the image forming apparatus.
 本発明において、数値範囲を表す「○○以上××以下」や「○○~××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
 また、単量体単位とは、重合体又は樹脂中の単量体物質の反応した形態をいう。
 以下、本発明を詳細に説明するがこれらに限定されるわけではない。
 本発明の硬化型液体現像剤(以下単に、液体現像剤ともいう)は、カチオン重合性液状モノマー、重合開始剤、及び該カチオン重合性液状モノマーに不溶なトナー粒子を含む硬化型液体現像剤であって、
 下記式(1)及び式(2)で表される単量体単位の少なくとも一つを有する高分子化合物を含有することを特徴とする。
In the present invention, the description of “XX or more and XX or less” or “XX to XX” representing a numerical range means a numerical range including a lower limit and an upper limit as end points unless otherwise specified.
Moreover, a monomer unit means the form which the monomer substance in a polymer or resin reacted.
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
The curable liquid developer of the present invention (hereinafter also simply referred to as a liquid developer) is a curable liquid developer containing a cationic polymerizable liquid monomer, a polymerization initiator, and toner particles insoluble in the cationic polymerizable liquid monomer. There,
It contains a polymer compound having at least one of monomer units represented by the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000005

[上記式(1)及び(2)中、R~Rはそれぞれ独立して、水素原子及びアルキル基のいずれかを表し、A及びBは二価の連結基を表し、Xはハロゲンイオン、又は構造中にCOO基若しくはSO 基を有するアニオンを表し、Yは構造中にCOO基又はSO 基を有するアニオンを表す。]
Figure JPOXMLDOC01-appb-C000005

[In the above formulas (1) and (2), R 1 to R 4 each independently represents either a hydrogen atom or an alkyl group, A and B represent a divalent linking group, and X represents a halogen atom. An ion or an anion having a COO group or an SO 3 group in the structure is represented, and Y represents an anion having a COO group or an SO 3 group in the structure. ]
 以下、式(1)又は式(2)で表される単量体単位、及び、該単量体単位を有する高分子化合物について詳細に説明する。
 式(1)又は式(2)で表される単量体単位は優れた正電荷受容性を有している。
 したがって、該単量体単位を有する高分子化合物を、カチオン重合性液状モノマー中に溶解又は分散させることにより、該単量体単位を有する高分子化合物がトナー粒子に吸着し、トナー粒子から正電荷を受容する。その結果、トナー粒子が負に帯電する。すなわち、該単量体単位を有する高分子化合物が、トナー粒子を負帯電させるためのトナー電荷制御剤として作用する。
 一方、ビニルエーテルなどのカチオン重合性モノマーを、重合開始剤などを用いて重合、硬化させる場合、系中の水分やアミンなどの塩基性化合物の存在が重合反応を阻害し、硬化阻害を起こす。また、ある種の添加剤や不純物などが重合開始剤や増感剤への光吸収を阻害したり、増感剤から重合開始剤へのエネルギー移動過程を阻害したりすることにより硬化阻害の要因になることも考えられる。
 液体現像剤において、トナー粒子を負帯電させるためのトナー電荷制御剤として、レシチンなどのリン脂質や、ナフテン酸金属塩などの金属石鹸、金属スルホネートなどが古くから使用されている。しかし、これらの化合物を、カチオン重合性の液体現像剤に用いた場合、カチオン重合を阻害する性質が高く、硬化阻害の原因となるという問題が発生する。これらのトナー電荷制御剤が硬化阻害を引き起こす原因は明らかになっていないが、上記の阻害要因のどれか、又はいくつかの組み合わせによって引き起こされているのではないかと予想される。
Hereinafter, the monomer unit represented by Formula (1) or Formula (2) and the polymer compound having the monomer unit will be described in detail.
The monomer unit represented by Formula (1) or Formula (2) has excellent positive charge acceptability.
Therefore, by dissolving or dispersing the polymer compound having the monomer unit in the cationic polymerizable liquid monomer, the polymer compound having the monomer unit is adsorbed on the toner particles, and the toner particles are positively charged. Accept. As a result, the toner particles are negatively charged. That is, the polymer compound having the monomer unit acts as a toner charge control agent for negatively charging the toner particles.
On the other hand, when a cationically polymerizable monomer such as vinyl ether is polymerized and cured using a polymerization initiator or the like, the presence of a basic compound such as moisture or amine in the system inhibits the polymerization reaction and inhibits curing. In addition, certain additives and impurities can inhibit the absorption of light into the polymerization initiator and sensitizer, and can inhibit the curing process by inhibiting the energy transfer process from the sensitizer to the polymerization initiator. It is also possible to become.
In liquid developers, phospholipids such as lecithin, metal soaps such as naphthenic acid metal salts, metal sulfonates, and the like have been used for a long time as toner charge control agents for negatively charging toner particles. However, when these compounds are used in a cationic polymerizable liquid developer, there is a problem that they have a high property of inhibiting cationic polymerization and cause curing inhibition. The cause of these toner charge control agents causing cure inhibition has not been clarified, but it is expected that they are caused by any one or some combination of the above inhibition factors.
 上記式(1)及び式(2)で表される単量体単位の少なくとも一つを有する高分子化合物は、従来のトナー電荷制御剤に比べ、カチオン重合を阻害する性質が小さいことを見出し、本発明に至った。
 すなわち、上記式(1)及び式(2)で表される単量体単位の少なくとも一つを有する高分子化合物を、カチオン重合性の液体現像剤のトナー電荷制御剤として使用することにより、トナー粒子の電気泳動移動度が高く、硬化性の高い液体現像剤を提供することができる。
It has been found that the polymer compound having at least one of the monomer units represented by the above formulas (1) and (2) has a smaller property of inhibiting cationic polymerization than the conventional toner charge control agent, The present invention has been reached.
That is, by using a polymer compound having at least one of the monomer units represented by the above formulas (1) and (2) as a toner charge control agent of a cationic polymerizable liquid developer, A liquid developer having high electrophoretic mobility of particles and high curability can be provided.
 上記式(1)及び式(2)中、R1におけるアルキル基としては、炭素数1~4のアルキル基が好ましい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、及びn-ブチル基などが挙げられる。
 上記式(1)及び式(2)中のR1は上記に列挙した置換基、及び水素原子から任意に選択できるが、高分子化合物の製造(重合性)の観点から水素原子、及びメチル基である場合が好ましい。
In the above formulas (1) and (2), the alkyl group for R 1 is preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
R 1 in the above formulas (1) and (2) can be arbitrarily selected from the substituents and hydrogen atoms listed above, but from the viewpoint of production (polymerizability) of the polymer compound, a hydrogen atom and a methyl group Is preferred.
 上記式(1)及び式(2)中、R~Rにおけるアルキル基としては、炭素数1~30のアルキル基が好ましく、炭素数1~18のアルキル基がより好ましい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-オクチル基、2-エチルヘキシル基、ドデシル基、及びオクタデシル基などが挙げられる。これらのアルキル基はさらに置換されていてもよく、互いに結合し、環を形成していてもよい。 In the above formulas (1) and (2), the alkyl group in R 2 to R 4 is preferably an alkyl group having 1 to 30 carbon atoms, and more preferably an alkyl group having 1 to 18 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-octyl group, a 2-ethylhexyl group, a dodecyl group, and an octadecyl group. These alkyl groups may be further substituted and may be bonded to each other to form a ring.
 上記式(1)及び式(2)中、Aは高分子主鎖と4級アンモニウム部位を結合する二価の連結基であり、アルキレン基、アリーレン基、アラルキレン基、a-COOR-b、a-CONHR-b、又はa-OR-b(ただし、aはRが結合した炭素原子との結合部位を表し、bは4級アンモニウム部位との結合部位を表し、Rはアルキレン基又はアリーレン基を表す)などが挙げられる。
 連結基Aにおけるアルキレン基としては、直鎖状及び分岐状のいずれであってもよく、炭素数1~4のアルキレン基が好ましい。例えば、メチレン基、エチレン基、プロピレン基、各種ブチレン基などが挙げられる。
 連結基Aにおけるアリーレン基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、及びナフタレン-2,6-ジイル基などが挙げられる。
 連結基Aにおけるアラルキレン基としては、例えば、炭素数7~15のアラルキレン基が挙げられる。
 連結基Aがa-COOR-b、a-CONHR-b、又はa-OR-b(ここで、aはRが結合した炭素原子との結合部位を表し、bは4級アンモニウム部位との結合部位を表し、Rはアルキレン基又はアリーレン基を表す)の場合、Rにおけるアルキレン基としては、直鎖状及び分岐状のいずれであってもよく、炭素数1~4のアルキレン基が好ましい。例えば、メチレン基、エチレン基、プロピレン基、各種ブチレン基などが挙げられる。
 また、Rにおけるアリーレン基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、及びナフタレン-2,6-ジイル基などが挙げられる。
In the above formulas (1) and (2), A is a divalent linking group that bonds the polymer main chain to the quaternary ammonium moiety, and includes an alkylene group, an arylene group, an aralkylene group, a-COOR 5 -b, a-CONHR 5 -b or a-OR 5 -b (wherein a represents the bonding site with the carbon atom to which R 1 is bonded, b represents the bonding site with the quaternary ammonium moiety, and R 5 represents alkylene. A group or an arylene group).
The alkylene group in the linking group A may be either linear or branched, and is preferably an alkylene group having 1 to 4 carbon atoms. For example, a methylene group, ethylene group, propylene group, various butylene groups, etc. are mentioned.
Examples of the arylene group in the linking group A include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, And naphthalene-2,6-diyl group.
Examples of the aralkylene group in the linking group A include an aralkylene group having 7 to 15 carbon atoms.
The linking group A is a-COOR 5 -b, a-CONHR 5 -b, or a-OR 5 -b (wherein, a represents a bonding site to the carbon atom to which R 1 is bonded, and b represents a quaternary ammonium represents a binding site to site, for R 5 represents an alkylene group or an arylene group), as the alkylene group for R 5, it may be straight-chain or branched, having 1 to 4 carbon atoms An alkylene group is preferred. For example, a methylene group, ethylene group, propylene group, various butylene groups, etc. are mentioned.
Examples of the arylene group for R 5 include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, a naphthalene-1,4-diyl group, and a naphthalene-1,5-diyl group. And naphthalene-2,6-diyl group.
 該連結基Aはさらに置換されていてもよく、該置換は高分子化合物の帯電特性や、液体現像剤の硬化性を著しく低下させるものでなければ特に制限されない。
 連結基Aは上記のように特に限定されるものではないが、原料の入手や製造の容易性の観点からa-COOR-bである場合がより好ましい。
The linking group A may be further substituted, and the substitution is not particularly limited as long as it does not significantly lower the charging characteristics of the polymer compound and the curability of the liquid developer.
The linking group A is not particularly limited as described above, but is preferably a-COOR 5 -b from the viewpoint of availability of raw materials and ease of production.
 上記式(2)中、Bは4級アンモニウム部位とそのカウンターアニオン部Yを結合する二価の連結基であり、例えば、アルキレン基又はアリーレン基などが挙げられる。
 連結基Bにおけるアルキレン基としては、直鎖状、分岐状のいずれであってもよく、炭素数1~4のアルキレン基が好ましい。
 例えば、メチレン基、エチレン基、プロピレン基、各種ブチレン基などが挙げられる。
 連結基Bにおけるアリーレン基としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、及びナフタレン-2,6-ジイル基などが挙げられる。
 該連結基Bはさらに置換されていてもよく、該置換は高分子化合物の帯電特性や、液体現像剤の硬化性を著しく低下させるものでなければ特に制限されない。
 連結基Bは上記のように特に限定されるものではないが、原料の入手や製造の容易性の観点からメチレン基、エチレン基又はプロピレン基などの単純なアルキレン基である場合がより好ましい。
In the above formula (2), B is a quaternary ammonium sites and its counter anion Y - is a divalent linking group that binds, for example, alkylene groups or arylene groups.
The alkylene group in the linking group B may be linear or branched, and is preferably an alkylene group having 1 to 4 carbon atoms.
For example, a methylene group, ethylene group, propylene group, various butylene groups, etc. are mentioned.
The arylene group in the linking group B includes 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, and naphthalene. -2,6-diyl group and the like.
The linking group B may be further substituted, and the substitution is not particularly limited as long as it does not significantly lower the charging characteristics of the polymer compound and the curability of the liquid developer.
The linking group B is not particularly limited as described above, but is more preferably a simple alkylene group such as a methylene group, an ethylene group or a propylene group from the viewpoint of availability of raw materials and ease of production.
 上記式(1)中、Xは4級アンモニウム部位のカウンターアニオンであり、ハロゲンイオン、又は構造中にCOO基若しくはSO 基を有するアニオンである。
 Xにおけるハロゲンイオンとしては、例えば、フッ素イオン、塩素イオン、臭素イオン、又はヨウ素イオンが挙げられる。
 XにおけるCOO基を有するアニオンとしては、例えば、酢酸アニオン、プロピオン酸アニオン、又は安息香酸アニオンなどが挙げられる。
 XにおけるSO 基を有するアニオンとしては、例えば、メタンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン、又はメチル硫酸アニオンなどが挙げられる。
In the above formula (1), X is a counter anion of a quaternary ammonium moiety, and is a halogen ion or an anion having a COO group or SO 3 group in the structure.
Examples of the halogen ion in X include fluorine ion, chlorine ion, bromine ion, or iodine ion.
Examples of the anion having a COO group in X include an acetic acid anion, a propionic acid anion, and a benzoic acid anion.
Examples of the anion having an SO 3 group in X include methanesulfonate anion, trifluoromethanesulfonate anion, benzenesulfonate anion, p-toluenesulfonate anion, and methylsulfate anion.
 上記式(2)中、Yは4級アンモニウム部位のカウンターアニオンであり、二価の連結基Bを経て4級アンモニウム部位と共有結合している。Yは構造中にCOO基又はSO 基を有するアニオンである。
 YにおけるCOO基を有するアニオンとしては、例えば、酢酸アニオン、プロピオン酸アニオン、又は安息香酸アニオンなどが挙げられる。
 YにおけるSO 基を含むアニオンとしては、例えば、メタンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン、又はメチル硫酸アニオンなどが挙げられる。
In the above formula (2), Y is a counter anion at the quaternary ammonium moiety, and is covalently bonded to the quaternary ammonium moiety via the divalent linking group B. Y - is an anion having a COO - group or SO 3 - group in the structure.
Examples of the anion having a COO group in Y include an acetic acid anion, a propionic acid anion, and a benzoic acid anion.
Examples of the anion containing an SO 3 group in Y include methanesulfonate anion, trifluoromethanesulfonate anion, benzenesulfonate anion, p-toluenesulfonate anion, and methylsulfate anion.
 上記高分子化合物は、式(1)及び式(2)で表される単量体単位の少なくとも一つと、下記式(3)で表される単量体単位とを有する共重合体であってもよい。 The polymer compound is a copolymer having at least one monomer unit represented by the formula (1) and the formula (2) and a monomer unit represented by the following formula (3). Also good.
Figure JPOXMLDOC01-appb-C000006

[上記式(3)中、Rは水素原子及びアルキル基のいずれかを表し、Rはアルキル基、カルボン酸エステル基、カルボン酸アミド基、アルコキシ基及びアリール基のいずれかを表す。]
Figure JPOXMLDOC01-appb-C000006

[In the above formula (3), R 6 represents any one of a hydrogen atom and an alkyl group, and R 7 represents any one of an alkyl group, a carboxylic acid ester group, a carboxylic acid amide group, an alkoxy group and an aryl group. ]
 上記式(3)中、Rにおけるアルキル基としては、炭素数1~4のアルキル基が好ましい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、及びn-ブチル基などが挙げられる。
 上記式(3)中、Rは上記に列挙した置換基、及び水素原子から任意に選択できるが、共重合体の製造(重合性)の観点から水素原子、及びメチル基である場合が好ましい。
 上記式(3)中、Rにおけるアルキル基としては、炭素数1~30のアルキル基が好ましい。例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基、n-デシル基、n-ヘキサデシル基、オクタデシル基、ドコシル基、及びトリアコンチル基などが挙げられる。
 上記式(3)中、Rにおけるアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基などのアリール基が挙げられる。
 上記式(3)中、Rにおけるカルボン酸エステル基としては、-COOR(ただし、Rは炭素数1~30のアルキル基、フェニル基及び炭素数1~30のヒドロキシアルキル基のいずれかを表す。)が挙げられる。具体的には、メチルエステル基、エチルエステル基、n-プロピルエステル基、イソプロピルエステル基、n-ブチルエステル基、tert-ブチルエステル基、オクチルエステル基、2-エチルヘキシルエステル基、ドデシルエステル基、オクタデシルエステル基、ドコシルエステル基、トリアコンチルエステル基、フェニルエステル基、及び2-ヒドロキシエチルエステル基などのエステル基が挙げられる。
 上記式(3)中、Rにおけるカルボン酸アミド基としては、-CO-NR10(ただし、R及びR10はそれぞれ独立して、水素原子、炭素数1~30のアルキル基及びフェニル基のいずれかを表す。)が挙げられる。具体的には、N-メチルアミド基、N,N-ジメチルアミド基、N,N-ジエチルアミド基、N-イソプロピルアミド基、N-tert-ブチルアミド基、N-n-デシルアミド基、N-n-ヘキサデシルアミド基、N-オクタデシルアミド基、N-ドコシルアミド基、N-トリアコンチルアミド基、及びN-フェニルアミド基などのアミド基が挙げられる。
 上記式(3)中、Rにおけるアルコキシ基としては、炭素数1~30のアルコキシ基又は炭素数1~30のヒドロキシアルコキシ基が挙げられる。具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、ドコシルオキシ基、トリアコンチルオキシ基、及び2-ヒドロキシエトキシ基などのアルコキシ基が挙げられる。
In the above formula (3), the alkyl group for R 6 is preferably an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
In the above formula (3), R 6 can be arbitrarily selected from the substituents listed above and a hydrogen atom, but is preferably a hydrogen atom or a methyl group from the viewpoint of production (polymerizability) of the copolymer. .
In the above formula (3), the alkyl group for R 7 is preferably an alkyl group having 1 to 30 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-decyl group, an n-hexadecyl group, an octadecyl group, a docosyl group, and a triacontyl group.
In the above formula (3), examples of the aryl group for R 7 include aryl groups such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
In the above formula (3), the carboxylate group in R 7 is —COOR 8 (wherein R 8 is any one of an alkyl group having 1 to 30 carbon atoms, a phenyl group, and a hydroxyalkyl group having 1 to 30 carbon atoms) Represents.). Specifically, methyl ester group, ethyl ester group, n-propyl ester group, isopropyl ester group, n-butyl ester group, tert-butyl ester group, octyl ester group, 2-ethylhexyl ester group, dodecyl ester group, octadecyl Examples include ester groups such as ester groups, docosyl ester groups, triacontyl ester groups, phenyl ester groups, and 2-hydroxyethyl ester groups.
In the above formula (3), as the carboxylic acid amide group in R 7 , —CO—NR 9 R 10 (wherein R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, and Represents any of phenyl groups). Specifically, N-methylamide group, N, N-dimethylamide group, N, N-diethylamide group, N-isopropylamide group, N-tert-butylamide group, Nn-decylamide group, Nn-hexa Examples include amide groups such as decylamide group, N-octadecylamide group, N-docosylamide group, N-triacontylamide group, and N-phenylamide group.
In the above formula (3), examples of the alkoxy group for R 7 include an alkoxy group having 1 to 30 carbon atoms and a hydroxyalkoxy group having 1 to 30 carbon atoms. Specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-hexyloxy group, cyclohexyloxy group, n-octyloxy group, 2-ethylhexyloxy group, dodecyloxy group And alkoxy groups such as octadecyloxy group, docosyloxy group, triacontyloxy group, and 2-hydroxyethoxy group.
 上記式(3)中、Rの置換基は、さらに置換されていてもよく、共重合体の帯電特性や、液体現像剤の硬化性を著しく低下させるものでなければ特に制限されない。この場合、置換してもよい置換基としては、メトキシ基及びエトキシ基などのアルコキシ基、アセチル基などのアシル基、フッ素原子、塩素原子などのハロゲン原子が挙げられる。
 上記式(3)中、R及びRは上記に列挙した置換基から任意に選択できるが、該共重合体をトナー電荷制御剤として低極性のカチオン重合性液状モノマー中に溶解、分散させて使用する場合は、カチオン重合性液状モノマー中での溶解性や、分散性、逆ミセル形成能を向上させるために長鎖アルキルを有するような置換基を選択するのが好ましい。
In the above formula (3), the substituent of R 7 may be further substituted and is not particularly limited as long as it does not significantly lower the charge characteristics of the copolymer and the curability of the liquid developer. In this case, examples of the substituent which may be substituted include an alkoxy group such as a methoxy group and an ethoxy group, an acyl group such as an acetyl group, and a halogen atom such as a fluorine atom and a chlorine atom.
In the above formula (3), R 6 and R 7 can be arbitrarily selected from the substituents listed above, but the copolymer is dissolved and dispersed in a low-polar cation polymerizable liquid monomer as a toner charge control agent. In order to improve the solubility in the cationically polymerizable liquid monomer, the dispersibility, and the reverse micelle forming ability, it is preferable to select a substituent having a long-chain alkyl.
 上記式(1)及び(2)で表される単量体単位の少なくとも一つの含有割合が、上記高分子化合物を構成している全単量体単位に対して、0.01mol%以上50mol%以下であることが好ましく、1mol%以上30mol%以下であることがより好ましい。
 また、共重合体における、共重合組成比は特に限定されないが、上記式(1)及び(2)で表される単量体単位の少なくとも一つの、上記式(3)で表される単量体単位に対するモル比が、0.01:99.99~50:50であることが好ましく、1:99~30:70であることがより好ましい。
 高分子化合物における組成比が上記範囲にある場合、トナー電荷制御剤としての機能が充分に発揮されると共に、カチオン重合性液状モノマー中へ優れた溶解性又は分散性を示す。
The content ratio of at least one of the monomer units represented by the above formulas (1) and (2) is 0.01 mol% or more and 50 mol% with respect to all the monomer units constituting the polymer compound. The content is preferably 1 mol% or less and more preferably 1 mol% or more and 30 mol% or less.
Further, the copolymer composition ratio in the copolymer is not particularly limited, but at least one of the monomer units represented by the above formulas (1) and (2) is a single monomer represented by the above formula (3). The molar ratio to the body unit is preferably 0.01: 99.99 to 50:50, and more preferably 1:99 to 30:70.
When the composition ratio in the polymer compound is in the above range, the function as a toner charge control agent is sufficiently exerted, and excellent solubility or dispersibility in the cationic polymerizable liquid monomer is exhibited.
 上記高分子化合物の重量平均分子量(Mw)は特に限定されないが、トナー電荷制御剤としてカチオン重合性液状モノマー中に溶解、分散させて使用する場合、重量平均分子量(Mw)は、3000以上30万以下程度が好ましく、より好ましくは3000以上15万以下である。
 また、液体現像剤中の、上記高分子化合物の含有量は、トナー粒子単位質量当たり、上記式(1)又は式(2)で表される単量体単位が10nmol%以上0.1mmol%以下であることが好ましい。
 含有量を上記範囲にすることで、所望のトナー粒子の帯電量及び電気泳動移動度を得ることができ、かつ、液体現像剤の電気抵抗を維持しやすく、現像性及び転写性などに影響を及ぼさない。
 また、液体現像剤において、上記高分子化合物をトナー電荷制御剤としてカチオン重合性液状モノマー中に溶解又は分散させる場合の含有量は、トナー粒子(固形分)100質量部に対して、0.01質量部以上10質量部以下程度にするとよい。
The weight average molecular weight (Mw) of the polymer compound is not particularly limited, but when used as a toner charge control agent dissolved and dispersed in a cationically polymerizable liquid monomer, the weight average molecular weight (Mw) is 3000 to 300,000. The following degree is preferable, More preferably, it is 3000-150,000.
The content of the polymer compound in the liquid developer is such that the monomer unit represented by the formula (1) or (2) is 10 nmol% or more and 0.1 mmol% or less per unit mass of the toner particles. It is preferable that
By setting the content in the above range, it is possible to obtain a desired charge amount and electrophoretic mobility of toner particles, and it is easy to maintain the electric resistance of the liquid developer, which affects developability and transferability. Does not reach.
In the liquid developer, the content when the polymer compound is dissolved or dispersed in the cationically polymerizable liquid monomer as a toner charge control agent is 0.01 to 100 parts by mass of toner particles (solid content). It may be set to about 10 parts by mass or more.
 以下に上記高分子化合物の製造方法について詳細に説明する。
 高分子化合物の製造方法は、上記の構造のものが得られれば特に限定されるものではないが、例えば以下のような方法で製造することができる。
 すなわち、(i)上記式(1)又は式(2)に対応するビニルモノマーを製造後、これを重合し製造する方法と、(ii)上記式(1)又は式(2)の高分子主鎖に対応する高分子化合物を合成後、高分子反応により、式(1)又は式(2)に対応する部位を結合する方法で製造することができる。
 モノマーの入手容易性や、官能基量の制御の点から(i)に示す方法で製造されるのが好ましい。以下、(i)に示す方法について詳細に説明する。
 上記式(1)又は式(2)で表される単量体単位を高分子化合物中に導入するためのビニルモノマーとしては、置換基R、連結基Aの構造により、ビニルエーテル誘導体、アクリレート誘導体、メタクリレート誘導体、アクリルアミド誘導体、メタクリルアミド誘導体、α―オレフィン誘導体、芳香族ビニル誘導体などを使用することができるが、モノマーの製造容易性の観点から、アクリレート誘導体又はメタクリルレート誘導体を使用するのが好ましい。
 対応するアクリレート誘導体又はメタクリレート誘導体は市販品を使用することができる。
The method for producing the polymer compound will be described in detail below.
Although the manufacturing method of a high molecular compound will not be specifically limited if the thing of said structure is obtained, For example, it can manufacture by the following methods.
That is, (i) a method for producing a vinyl monomer corresponding to the above formula (1) or (2) and then polymerizing the vinyl monomer, and (ii) a main polymer of the above formula (1) or (2) After synthesizing the polymer compound corresponding to the chain, it can be produced by a method in which the site corresponding to formula (1) or formula (2) is bonded by polymer reaction.
It is preferable to manufacture by the method shown in (i) from the viewpoint of availability of monomers and control of the amount of functional groups. Hereinafter, the method shown in (i) will be described in detail.
The vinyl monomer for introducing the monomer unit represented by the above formula (1) or formula (2) into the polymer compound includes a vinyl ether derivative and an acrylate derivative depending on the structure of the substituent R 1 and the linking group A. , Methacrylate derivatives, acrylamide derivatives, methacrylamide derivatives, α-olefin derivatives, aromatic vinyl derivatives, etc. can be used, but from the viewpoint of ease of production of monomers, it is preferable to use acrylate derivatives or methacrylate derivatives. .
A commercially available product can be used as the corresponding acrylate derivative or methacrylate derivative.
 上記ビニルモノマーの重合方法としては、ラジカル重合、イオン重合が挙げられ、また、分子量分布制御や構造制御を目的とするリビング重合を用いることもできる。工業的にはラジカル重合を用いることが好ましい。
 ラジカル重合は、ラジカル重合開始剤の使用、放射線、レーザー光などの光の照射、光重合開始剤と光の照射との併用、加熱などにより行うことができる。
 上記ラジカル重合開始剤としては、ラジカルを発生し、重合反応を開始させることができるものであれば良く、熱、光、放射線、酸化還元反応などの作用によってラジカルを発生する化合物から選ばれる。
 例えば、アゾ化合物、有機過酸化物、無機過酸化物、有機金属化合物、光重合開始剤などが挙げられる。
 より具体的には、2,2’-アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)などのアゾ化合物、過酸化ベンゾイル(BPO)、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシイソプロピルカーボネートなどの有機過酸化物、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物、過酸化水素-鉄(II)塩系、BPO-ジメチルアニリン系、セリウム(IV)塩-アルコール系などのレドックス開始剤などが挙げられる。光重合開始剤としては、アセトフェノン系、ベンゾインエーテル系、ケタール系などが挙げられる。これらラジカル重合開始剤は、2種以上を併用してもよい。
 上記ビニルモノマーの重合温度は、用いる重合開始剤の種類により好ましい温度範囲は異なり、特に制限されるものではないが、-30℃~150℃の温度で重合することが一般的であり、より好ましい温度範囲は40℃~120℃である。
 この際使用される重合開始剤の使用量は、上記モノマー100質量部に対して、0.1質量部以上20質量部以下で、目標とする分子量分布の高分子化合物が得られるように使用量を調節するのが好ましい。
 また、その重合法としては、溶液重合、懸濁重合、乳化重合、分散重合、沈殿重合、及び塊状重合などいずれの方法を用いることも可能であり、特に限定するものではない。
 得られた高分子化合物は必要に応じて精製処理を行うことができる。精製方法としては特に制限はなく、再沈殿、透析、カラムクロマトグラフィーなどの方法を使用することができる。
 製造した高分子化合物の構造は各種機器分析を用いて同定することができる。使用できる分析機器としては核磁気共鳴装置(NMR)、ゲルパーミエーションクロマトグラフィー(GPC)、誘導結合プラズマ発光分析装置(ICP-OES)などを使用することができる。
 上記共重合体の製造方法も、上記の構造のものが得られれば特に限定されるものではなく、上記高分子化合物と同様である。
 例えば、上記式(1)又は式(2)に対応するビニルモノマー、及び、上記式(3)に対応するビニルモノマーを製造後、これらを重合し製造する方法が挙げられる。
 このとき、上記式(1)又は式(2)に対応するビニルモノマー、及び、上記式(3)に対応するビニルモノマー以外の重合性モノマーをさらに加えて重合することも可能である。
Examples of the polymerization method of the vinyl monomer include radical polymerization and ionic polymerization, and living polymerization for the purpose of molecular weight distribution control and structure control can also be used. Industrially, it is preferable to use radical polymerization.
The radical polymerization can be performed by using a radical polymerization initiator, irradiation with light such as radiation or laser light, combined use of a photopolymerization initiator and light irradiation, heating, or the like.
The radical polymerization initiator is not particularly limited as long as it can generate radicals and initiate a polymerization reaction, and is selected from compounds that generate radicals by the action of heat, light, radiation, redox reaction, and the like.
Examples thereof include azo compounds, organic peroxides, inorganic peroxides, organometallic compounds, photopolymerization initiators, and the like.
More specifically, azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) and 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide (BPO), tert- Organic peroxides such as butyl peroxypivalate and tert-butyl peroxyisopropyl carbonate, inorganic peroxides such as potassium persulfate and ammonium persulfate, hydrogen peroxide-iron (II) salt system, BPO-dimethylaniline system, Examples thereof include redox initiators such as cerium (IV) salt-alcohol. Examples of the photopolymerization initiator include acetophenone series, benzoin ether series, and ketal series. Two or more of these radical polymerization initiators may be used in combination.
The polymerization temperature of the vinyl monomer varies depending on the type of polymerization initiator used, and is not particularly limited. However, polymerization is generally performed at a temperature of −30 ° C. to 150 ° C., and more preferable. The temperature range is 40 ° C to 120 ° C.
The polymerization initiator used at this time is used in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the monomer, so that a polymer compound having a target molecular weight distribution can be obtained. Is preferably adjusted.
As the polymerization method, any method such as solution polymerization, suspension polymerization, emulsion polymerization, dispersion polymerization, precipitation polymerization, and bulk polymerization can be used, and it is not particularly limited.
The obtained polymer compound can be purified as necessary. There is no restriction | limiting in particular as a purification method, Methods, such as reprecipitation, dialysis, and column chromatography, can be used.
The structure of the produced polymer compound can be identified using various instrumental analyses. As an analytical instrument that can be used, a nuclear magnetic resonance apparatus (NMR), gel permeation chromatography (GPC), an inductively coupled plasma optical emission spectrometer (ICP-OES), or the like can be used.
The method for producing the copolymer is not particularly limited as long as the above structure is obtained, and is the same as the polymer compound.
For example, after manufacturing the vinyl monomer corresponding to said Formula (1) or Formula (2) and the vinyl monomer corresponding to said Formula (3), these are superposed | polymerized and the method of manufacturing is mentioned.
At this time, it is also possible to perform polymerization by further adding a vinyl monomer corresponding to the above formula (1) or (2) and a polymerizable monomer other than the vinyl monomer corresponding to the above formula (3).
 以下に、本発明の液体現像剤に含有される各構成成分について説明する。
 液体現像剤は、少なくとも、カチオン重合性液状モノマー、重合開始剤、該カチオン重合性液状モノマーに不溶なトナー粒子、及び、上記式(1)又は式(2)で表される単量体単位の少なくとも一つを有する高分子化合物から構成されている。
 また、トナー粒子は、バインダー樹脂及び着色剤を構成成分として含有することが好ましい。
 上記高分子化合物はトナー電荷制御剤であり、該高分子化合物はカチオン重合性液状モノマー中に溶解又は分散されている。
 そして、液体現像剤は、該トナー粒子がカチオン重合性液状モノマー中に分散されてなる。
Hereinafter, each component contained in the liquid developer of the present invention will be described.
The liquid developer includes at least a cationic polymerizable liquid monomer, a polymerization initiator, toner particles insoluble in the cationic polymerizable liquid monomer, and monomer units represented by the above formula (1) or formula (2). It is comprised from the high molecular compound which has at least one.
The toner particles preferably contain a binder resin and a colorant as constituent components.
The polymer compound is a toner charge control agent, and the polymer compound is dissolved or dispersed in a cationically polymerizable liquid monomer.
The liquid developer is obtained by dispersing the toner particles in a cationic polymerizable liquid monomer.
[カチオン重合性液状モノマー]
 カチオン重合性液状モノマーは、通常の液体現像剤用のキャリア液と同様の物性値を有するように調製して使用することが好ましい。具体的には、25℃での体積抵抗率は1×10Ω・cm以上1×1015Ω・cm以下であることが好ましい。
 体積抵抗率が上記範囲を満たす場合、静電潜像の電位降下が抑制され、高い光学濃度を得ることができ、画像ボケがより抑制される。
 なお、本発明において、上記体積抵抗率は、インピーダンス法で測定する。
 具体的には、誘電体測定システム(125596WB、ソーラトロン製)を用いて、下記のように測定する。
 試料1.2mLを充填した測定セル(SC-C1R-C、(株)東陽テクニカ製)を測定装置に接続し、25℃に調整する。印加電圧3V(実効値)で1MHz~0.1Hzの範囲で周波数を変化させながら測定を行う。得られた複素インピーダンスをナイキストプロットで表し、RC並列等価回路でフィッティングすることにより、試料の抵抗成分、コンデンサ成分の値を算出する。さらに、測定セルのセル定数から体積抵抗率を求める。
[Cationically polymerizable liquid monomer]
The cationically polymerizable liquid monomer is preferably prepared and used so as to have the same physical property values as those of a normal carrier liquid for a liquid developer. Specifically, the volume resistivity at 25 ° C. is preferably 1 × 10 9 Ω · cm to 1 × 10 15 Ω · cm.
When the volume resistivity satisfies the above range, the potential drop of the electrostatic latent image is suppressed, a high optical density can be obtained, and the image blur is further suppressed.
In the present invention, the volume resistivity is measured by an impedance method.
Specifically, the measurement is performed as follows using a dielectric measurement system (125596WB, manufactured by Solartron).
A measuring cell (SC-C1R-C, manufactured by Toyo Technica Co., Ltd.) filled with 1.2 mL of sample is connected to a measuring apparatus and adjusted to 25 ° C. Measurement is performed while changing the frequency in the range of 1 MHz to 0.1 Hz at an applied voltage of 3 V (effective value). The obtained complex impedance is represented by a Nyquist plot, and the values of the resistance component and the capacitor component of the sample are calculated by fitting with an RC parallel equivalent circuit. Further, the volume resistivity is obtained from the cell constant of the measurement cell.
 一方、カチオン重合性液状モノマーの粘度は、25℃で0.5mPa・s以上100mPa・s未満であることが好ましく、より好ましくは0.5mPa・s以上30mPa・s未満である。
 粘度が上記範囲を満たす場合、トナー粒子の電気泳動速度が低下しにくく、プリント速度を維持することができる。
 なお、上記粘度は、回転式レオメーター法で測定する。
 具体的には、粘弾性測定装置(Physica MCR300、(株)アントンパール製)を用いて、下記のように測定する。
 コーンプレート型測定治具(75mm径、1°)を取り付けた測定装置に試料約2mLを充填し、25℃に調整する。1000s-1から10s-1へ連続的にせん断速度を変化させながら粘度を測定し、10s-1の時の値を粘度とする。
On the other hand, the viscosity of the cationic polymerizable liquid monomer is preferably 0.5 mPa · s or more and less than 100 mPa · s at 25 ° C., more preferably 0.5 mPa · s or more and less than 30 mPa · s.
When the viscosity satisfies the above range, the electrophoretic speed of the toner particles is difficult to decrease, and the printing speed can be maintained.
The viscosity is measured by a rotational rheometer method.
Specifically, using a viscoelasticity measuring device (Physica MCR300, manufactured by Anton Paar Co., Ltd.), measurement is performed as follows.
About 2 mL of the sample is filled in a measuring apparatus equipped with a cone plate type measuring jig (75 mm diameter, 1 °) and adjusted to 25 ° C. The viscosity is measured while continuously changing the shear rate from 1000 s −1 to 10 s −1, and the value at 10 s −1 is taken as the viscosity.
 カチオン重合性液状モノマーは、バインダー樹脂を溶解しない範囲から選択するとよい。具体的には、カチオン重合性液状モノマー100質量部に対し、溶解するバインダー樹脂が1質量部以下であるようなカチオン重合性液状モノマーとバインダー樹脂の組み合わせから選択するとよい。
 カチオン重合性液状モノマーとしては、ビニルエーテル化合物、アクリル系化合物、エポキシ化合物及びオキセタン化合物などの環状エーテル化合物が挙げられる。
 これらのうち、人体への安全性、高感度、高抵抗、及び低粘度という観点から、ビニルエーテル化合物を用いることが好ましい。
 カチオン重合性液状モノマーとして、ビニルエーテル化合物を用いる場合、本発明の特性を損なわない程度に、その他の重合性液状モノマーを併用してもよい。
 ビニルエーテル化合物とは、ビニルエーテル構造(-CH=CH-O-C-)を有する化合物を示す。
 該ビニルエーテル構造は好ましくは、R’-CH=CH-O-C-で表される(R’は、水素原子又は炭素数1~3のアルキル基であり、好ましくは水素原子又はメチル基である)。
 本発明において、ビニルエーテル化合物は、上記ビニルエーテル構造以外にヘテロ原子を有しない化合物であることも好ましい態様の一つである。
 ここでヘテロ原子とは炭素原子と水素原子以外の原子のことをいう。
 ビニルエーテル化合物中にヘテロ原子が含有された場合、ヘテロ原子と炭素原子の電気陰性度の差により分子内に電子密度の偏りが生じやすくなる場合や、ヘテロ原子が有する非共有電子対や空の電子軌道が伝導電子やホールの通り道になりやすい場合があるためか、抵抗が低下しやすくなる。
 さらに、ビニルエーテル化合物が、ビニルエーテル化合物中にビニルエーテル構造以外の炭素-炭素二重結合を有しないものであることも好ましい態様の一つである。炭素-炭素二重結合は、エネルギー準位の高い電子占有軌道とエネルギー準位の低い非電子占有軌道を有するが、これらは電子やホールの通り道となりやすく、抵抗を下げることにつながりやすい。ビニルエーテル化合物中にビニルエーテル構造以外の炭素-炭素二重結合が含有された場合、このような機構により抵抗が低下しやすい。
 また、ビニルエーテル化合物が、下記式(A)で表されるものであることも好ましい態様の一つである。
The cationic polymerizable liquid monomer may be selected from a range that does not dissolve the binder resin. Specifically, it may be selected from a combination of a cationic polymerizable liquid monomer and a binder resin such that the binder resin to be dissolved is 1 part by mass or less with respect to 100 parts by mass of the cationic polymerizable liquid monomer.
Examples of the cationic polymerizable liquid monomer include cyclic ether compounds such as vinyl ether compounds, acrylic compounds, epoxy compounds, and oxetane compounds.
Among these, it is preferable to use a vinyl ether compound from the viewpoint of safety to the human body, high sensitivity, high resistance, and low viscosity.
When a vinyl ether compound is used as the cationic polymerizable liquid monomer, other polymerizable liquid monomers may be used in combination so long as the characteristics of the present invention are not impaired.
The vinyl ether compound refers to a compound having a vinyl ether structure (—CH═CH—O—C—).
The vinyl ether structure is preferably represented by R′—CH═CH—O—C— (R ′ is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group. ).
In the present invention, it is also one of preferred embodiments that the vinyl ether compound is a compound having no hetero atom other than the vinyl ether structure.
Here, the hetero atom means an atom other than a carbon atom and a hydrogen atom.
When a heteroatom is contained in a vinyl ether compound, the electron density is likely to be biased in the molecule due to the difference in electronegativity between the heteroatom and the carbon atom. The resistance tends to decrease because the trajectory tends to be a path of conduction electrons or holes.
Furthermore, it is also one of preferred embodiments that the vinyl ether compound does not have a carbon-carbon double bond other than the vinyl ether structure in the vinyl ether compound. A carbon-carbon double bond has an electron-occupied orbital with a high energy level and a non-electron-occupied orbital with a low energy level, but these tend to be a path for electrons and holes and easily reduce resistance. When a carbon-carbon double bond other than the vinyl ether structure is contained in the vinyl ether compound, the resistance is likely to decrease due to such a mechanism.
Moreover, it is also one of the preferable aspects that a vinyl ether compound is what is represented by a following formula (A).
Figure JPOXMLDOC01-appb-C000007

[式(A)中、nは、一分子中のビニルエーテル構造の数を示し、1~4の整数である。Rはn価の炭化水素基である。]
 nは、1~3の整数であることが好ましい。
 Rは、好ましくは、炭素数1~50の直鎖又は分岐の飽和又は不飽和の脂肪族炭化水素基、炭素数5~50の飽和又は不飽和の脂環式炭化水素基、及び炭素数6~50の芳香族炭化水素基から選択される基であり、該脂環式炭化水素基及び該芳香族炭化水素基は、炭素数1~30の飽和又は不飽和の脂肪族炭化水素基を有していてもよい。
 Rは、より好ましくは炭素数4~25の直鎖又は分岐の飽和脂肪族炭化水素基である。
Figure JPOXMLDOC01-appb-C000007

[In the formula (A), n represents the number of vinyl ether structures in one molecule and is an integer of 1 to 4. R is an n-valent hydrocarbon group. ]
n is preferably an integer of 1 to 3.
R is preferably a linear or branched saturated or unsaturated aliphatic hydrocarbon group having 1 to 50 carbon atoms, a saturated or unsaturated alicyclic hydrocarbon group having 5 to 50 carbon atoms, and 6 carbon atoms. A group selected from an aromatic hydrocarbon group having 50 to 50, and the alicyclic hydrocarbon group and the aromatic hydrocarbon group have a saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms. You may do it.
R is more preferably a linear or branched saturated aliphatic hydrocarbon group having 4 to 25 carbon atoms.
 以下に、ビニルエーテル化合物の具体例〔例示化合物B-1~B-61〕を挙げるが、本発明はこれらの例に制限されるものではない。 Specific examples of the vinyl ether compound [Exemplary compounds B-1 to B-61] are listed below, but the present invention is not limited to these examples.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 これらのなかでも好ましいものとして、ドデシルビニルエーテル(B-3)、ジシクロペンタジエンビニルエーテル(B-8)、シクロヘキサン-1,4-ジメタノールジビニルエーテル(B-17)、トリエチレングリコールジビニルエーテル(B-18)、トリシクロデカンビニルエーテル(B-10)、トリメチロールプロパントリビニルエーテル(B-24)、2-エチル-1,3-ヘキサンジオールジビニルエーテル(B-25)、2,4-ジエチル-1,5-ペンタンジオールジビニルエーテル(B-26)、2-ブチル-2-エチル-1,3-プロパンジオールジビニルエーテル(B-27)、ネオペンチルグリコールジビニルエーテル(B-23)、ペンタエリスリトールテトラビニルエーテル(B-28)、1,2-デカンジオールジビニルエーテル(B-30)、1,2-ドデカンジオールジビニルエーテル(B-31)、1,12-ドデカンジオールジビニルエーテル(B-32)、1,12-オクタデカンジオールジビニルエーテル(B-43)、フィタントリオールトリビニルエーテル(B-51)などが挙げられる。 Among these, preferred are dodecyl vinyl ether (B-3), dicyclopentadiene vinyl ether (B-8), cyclohexane-1,4-dimethanol divinyl ether (B-17), triethylene glycol divinyl ether (B- 18), tricyclodecane vinyl ether (B-10), trimethylolpropane trivinyl ether (B-24), 2-ethyl-1,3-hexanediol divinyl ether (B-25), 2,4-diethyl-1, 5-pentanediol divinyl ether (B-26), 2-butyl-2-ethyl-1,3-propanediol divinyl ether (B-27), neopentyl glycol divinyl ether (B-23), pentaerythritol tetravinyl ether ( B-28), 1,2-de Didiol divinyl ether (B-30), 1,2-dodecanediol divinyl ether (B-31), 1,12-dodecanediol divinyl ether (B-32), 1,12-octadecanediol divinyl ether (B-43) ), Phytanetriol trivinyl ether (B-51) and the like.
[重合開始剤]
 液体現像剤は上記カチオン重合性液状モノマーを重合し、硬化させるために重合開始剤を含有する。
 該重合開始剤としては、光や熱などの外部から投入されるエネルギーに反応し、カチオン重合性液状モノマーのカチオン重合を開始できるカチオン種を発生できる化合物であれば特に制限はない。硬化工程のエネルギー効率や、カチオン重合性液状モノマーの重合性の観点から、光重合開始剤を選択することが好ましい。
 該光重合開始剤としては、液体現像剤の体積抵抗率を著しく低下させたり、上記高分子化合物のトナー電荷制御剤の作用を著しく阻害したり、液体現像剤の粘度を著しく上昇させるものでなければ特に制限はないが、下記式(4)で表される光重合開始剤が好ましい。
[Polymerization initiator]
The liquid developer contains a polymerization initiator for polymerizing and curing the cationic polymerizable liquid monomer.
The polymerization initiator is not particularly limited as long as it is a compound capable of generating cationic species capable of initiating cationic polymerization of a cationic polymerizable liquid monomer by reacting with externally input energy such as light and heat. It is preferable to select a photopolymerization initiator from the viewpoint of energy efficiency of the curing step and polymerizability of the cationic polymerizable liquid monomer.
The photopolymerization initiator should be one that significantly lowers the volume resistivity of the liquid developer, significantly inhibits the action of the toner charge control agent of the polymer compound, or significantly increases the viscosity of the liquid developer. Although there is no restriction | limiting in particular, The photoinitiator represented by following formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000018

[式(4)中、R11とR12は互いに結合して環構造を形成し、xは1~8の整数を表し、yは3~17の整数を表す。]
Figure JPOXMLDOC01-appb-C000018

[In Formula (4), R 11 and R 12 are bonded to each other to form a ring structure, x represents an integer of 1 to 8, and y represents an integer of 3 to 17. ]
 上記式(4)で表される光重合開始剤は、紫外線照射により光分解し、強酸であるスルホン酸を発生する。また、増感剤を併用し、増感剤が紫外線を吸収することをトリガーとして、開始剤の分解、スルホン酸の発生を行わせることも可能である。
 上記R11とR12とが結合して形成される環構造としては、5員環、6員環を例示することができる。上記R11とR12とが結合して形成される環構造の具体例として、コハク酸イミド構造、フタル酸イミド構造、ノルボルネンジカルボキシイミド構造、ナフタレンジカルボキシイミド構造、シクロヘキサンジカルボキシイミド構造、エポキシシクロヘキセンジカルボキシイミド構造などが例示できる。
 また、該環構造は、置換基として、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基などを有してもよい。
The photopolymerization initiator represented by the above formula (4) is photolyzed by ultraviolet irradiation to generate a sulfonic acid that is a strong acid. It is also possible to use a sensitizer together and cause the initiator to decompose and generate sulfonic acid, triggered by absorption of ultraviolet rays by the sensitizer.
Examples of the ring structure formed by combining R 11 and R 12 include a 5-membered ring and a 6-membered ring. Specific examples of the ring structure formed by combining R 11 and R 12 are succinimide structure, phthalimide structure, norbornene dicarboximide structure, naphthalene dicarboximide structure, cyclohexane dicarboximide structure, epoxy Examples thereof include a cyclohexene dicarboximide structure.
The ring structure may have an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, or the like as a substituent.
 上記式(4)中のCとしては、水素原子がフッ素原子で置換された直鎖アルキル基(RF1)、水素原子がフッ素原子で置換された分岐鎖アルキル基(RF2)、水素原子がフッ素原子で置換されたシクロアルキル基(RF3)、及び水素原子がフッ素原子で置換されたアリール基(RF4)が挙げられる。
 水素原子がフッ素原子で置換された直鎖アルキル基(RF1)としては、例えば、トリフルオロメチル基(x=1、y=3)、ペンタフルオロエチル基(x=2、y=5)、ヘプタフルオロn-プロピル基(x=3、y=7)ノナフルオロn-ブチル基(x=4、y=9)、パーフルオロn-ヘキシル基(x=6、y=13)、及びパーフルオロn-オクチル基(x=8、y=17)などが挙げられる。
 水素原子がフッ素原子で置換された分岐鎖アルキル基(RF2)としては、例えば、パーフルオロイソプロピル基(x=3、y=7)、パーフルオロ-tert-ブチル基(x=4、y=9)、及びパーフルオロ-2-エチルヘキシル基(x=8、y=17)などが挙げられる。
 水素原子がフッ素原子で置換されたシクロアルキル基(RF3)としては、例えば、パーフルオロシクロブチル基(x=4、y=7)、パーフルオロシクロペンチル基(x=5、y=9)、パーフルオロシクロヘキシル基(x=6、y=11)、及びパーフルオロ(1-シクロヘキシル)メチル基(x=7、y=13)などが挙げられる。
 水素原子がフッ素原子で置換されたアリール基(RF4)としては、例えば、ペンタフルオロフェニル基(x=6、y=5)、及び3-トリフルオロメチルテトラフルオロフェニル基(x=7、y=7)などが挙げられる。
 上記式(4)中のCのうち、入手のしやすさ、及びスルホン酸エステル部分の分解性の観点から、好ましくは、直鎖アルキル基(RF1)、分岐鎖アルキル基(RF2)、及びアリール基(RF4)である。さらに好ましくは、直鎖アルキル基(RF1)、及びアリール基(RF4)である。特に好ましくはトリフルオロメチル基(x=1、y=3)、ペンタフルオロエチル基(x=2、y=5)、ヘプタフルオロn-プロピル基(x=3、y=7)、ノナフルオロn-ブチル基(x=4、y=9)、及びペンタフルオロフェニル基(x=6、y=5)である。
C x F y in the above formula (4) includes a linear alkyl group (RF1) in which a hydrogen atom is substituted with a fluorine atom, a branched alkyl group (RF2) in which a hydrogen atom is substituted with a fluorine atom, a hydrogen atom And a cycloalkyl group (RF3) substituted with a fluorine atom, and an aryl group (RF4) wherein a hydrogen atom is substituted with a fluorine atom.
Examples of the linear alkyl group (RF1) in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group (x = 1, y = 3), a pentafluoroethyl group (x = 2, y = 5), and hepta. Fluoro n-propyl group (x = 3, y = 7) nonafluoro n-butyl group (x = 4, y = 9), perfluoro n-hexyl group (x = 6, y = 13), and perfluoro n- An octyl group (x = 8, y = 17) etc. are mentioned.
Examples of the branched alkyl group (RF2) in which a hydrogen atom is substituted with a fluorine atom include a perfluoroisopropyl group (x = 3, y = 7), a perfluoro-tert-butyl group (x = 4, y = 9). And a perfluoro-2-ethylhexyl group (x = 8, y = 17).
Examples of the cycloalkyl group (RF3) in which a hydrogen atom is substituted with a fluorine atom include a perfluorocyclobutyl group (x = 4, y = 7), a perfluorocyclopentyl group (x = 5, y = 9), Examples thereof include a fluorocyclohexyl group (x = 6, y = 11) and a perfluoro (1-cyclohexyl) methyl group (x = 7, y = 13).
Examples of the aryl group (RF4) in which a hydrogen atom is substituted with a fluorine atom include a pentafluorophenyl group (x = 6, y = 5) and a 3-trifluoromethyltetrafluorophenyl group (x = 7, y = 7).
Of the C x F y in the above formula (4), from the viewpoint of availability and decomposability of the sulfonic acid ester moiety, a linear alkyl group (RF1) or a branched alkyl group (RF2) is preferable. And an aryl group (RF4). More preferably, they are a linear alkyl group (RF1) and an aryl group (RF4). Particularly preferably, trifluoromethyl group (x = 1, y = 3), pentafluoroethyl group (x = 2, y = 5), heptafluoro n-propyl group (x = 3, y = 7), nonafluoro n- A butyl group (x = 4, y = 9), and a pentafluorophenyl group (x = 6, y = 5).
 上記重合開始剤は、1種単独で、又は2種以上を組み合わせて使用することができる。
 上記重合開始剤の含有量は、特に限定されないが、カチオン重合性液状モノマー100質量部に対して、0.01質量部以上5質量部以下であることが好ましく、より好ましくは0.05質量部以上1質量部以下であり、さらに好ましくは0.1質量部以上0.5質量部以下である。
The said polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
The content of the polymerization initiator is not particularly limited, but is preferably 0.01 parts by mass or more and 5 parts by mass or less, more preferably 0.05 parts by mass with respect to 100 parts by mass of the cationic polymerizable liquid monomer. The amount is 1 part by mass or less, more preferably 0.1 part by mass or more and 0.5 part by mass or less.
 上記式(4)で表される光重合開始剤の具体例〔例示化合物C-1~C-27〕を以下に挙げるが、本発明はこれらの例に制限されるものではない。 Specific examples of the photopolymerization initiator represented by the above formula (4) [Exemplary compounds C-1 to C-27] are listed below, but the present invention is not limited to these examples.
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000020

 
Figure JPOXMLDOC01-appb-C000020

 
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 これらの中でも、(C-23)、(C-24)、(C-25)、(C-26)、及び(C-27)は、増感剤との組合せで高い定着性を得やすく好ましい。 Among these, (C-23), (C-24), (C-25), (C-26), and (C-27) are preferable because they can easily obtain high fixability in combination with a sensitizer. .
[トナー粒子]
 トナー粒子は、バインダー樹脂及び着色剤を構成成分として含有していることが好ましい。また、必要に応じて電荷補助剤などの添加剤を含有してもよい。
(バインダー樹脂)
 バインダー樹脂としては、紙又はプラスチックフィルムなどの被着体に対して定着性を有し、カチオン重合性液状モノマーに不溶であれば公知のバインダー樹脂が使用できる。
 ここで、「カチオン重合性液状モノマーに不溶」に関し、温度25℃で、カチオン重合性液状モノマー100質量部に対し、溶解するバインダー樹脂が1質量部以下であることが指標として挙げられる。
 該バインダー樹脂の具体例として、エポキシ樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、スチレン-(メタ)アクリル樹脂、アルキド樹脂、ポリエチレン樹脂、エチレン-(メタ)アクリル樹脂、及びロジン変性樹脂などの樹脂が挙げられる。また、必要に応じ、これらは単独又は2種以上併用することができる。
 バインダー樹脂の含有量としては特に限定されないが、着色剤100質量部に対して、50質量部以上1000質量部以下であることが好ましい。
[Toner particles]
The toner particles preferably contain a binder resin and a colorant as constituent components. Moreover, you may contain additives, such as a charge adjuvant, as needed.
(Binder resin)
As the binder resin, a known binder resin can be used as long as it has fixability to an adherend such as paper or plastic film and is insoluble in the cationic polymerizable liquid monomer.
Here, regarding “insoluble in the cationically polymerizable liquid monomer”, an indicator is that the binder resin to be dissolved is 1 part by mass or less with respect to 100 parts by mass of the cationically polymerizable liquid monomer at a temperature of 25 ° C.
Specific examples of the binder resin include resins such as epoxy resins, polyester resins, (meth) acrylic resins, styrene- (meth) acrylic resins, alkyd resins, polyethylene resins, ethylene- (meth) acrylic resins, and rosin-modified resins. Can be mentioned. Moreover, these can be used individually or in combination of 2 or more types as needed.
Although it does not specifically limit as content of binder resin, It is preferable that they are 50 mass parts or more and 1000 mass parts or less with respect to 100 mass parts of coloring agents.
(着色剤)
 着色剤としては、特に限定されるものではなく、一般に市販されているすべての有機顔料、有機染料、無機顔料、若しくは顔料を、分散媒として不溶性の樹脂などに分散させたもの、又は、顔料表面に樹脂をグラフト化したものなどを用いることができる。
 該顔料の具体例としては、例えば、黄色を呈するものとして、以下のものが挙げられる。
 C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、185;C.I.バットイエロー1、3、20。
 赤又はマゼンタ色を呈するものとして、以下のものが挙げられる。
 C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48:2、48:3,48:4、49、50、51、52、53、54、55、57:1、58、60、63、64、68、81:1、83、87、88、89、90、112、114、122、123、146、147、150、163、184、202、206、207、209、238、269;C.I.ピグメントバイオレット19;C.I.バットレッド1、2、10、13、15、23、29、35。
 青又はシアン色を呈する顔料として、以下のものが挙げられる。
 C.I.ピグメントブルー2、3、15:2、15:3、15:4、16、17;C.I.バットブルー6;C.I.アシッドブルー45、フタロシアニン骨格にフタルイミドメチル基を1~5個置換した銅フタロシアニン顔料。
 緑色を呈する顔料として、以下のものが挙げられる。
 C.I.ピグメントグリーン7、8、36。
 オレンジ色を呈する顔料として、以下のものが挙げられる。
 C.I.ピグメントオレンジ66、51。
 黒色を呈する顔料として、以下のものが挙げられる。
 カーボンブラック、チタンブラック、アニリンブラック。
 白色を呈する顔料として、以下のものが挙げられる。
 塩基性炭酸鉛、酸化亜鉛、酸化チタン、チタン酸ストロンチウム。
 トナー粒子中における顔料の分散には、トナー粒子の製造方法に応じた分散手段を用いればよい。分散手段として用いることができる装置としては、例えば、ボールミル、サンドミル、アトライター、ロールミル、ジェットミル、ホモジナイザー、ペイントシェーカー、ニーダー、アジテータ、ヘンシェルミキサー、コロイドミル、超音波ホモジナイザー、パールミル、及び湿式ジェットミルなどがある。
(Coloring agent)
The colorant is not particularly limited, and all commercially available organic pigments, organic dyes, inorganic pigments, or pigments dispersed in an insoluble resin as a dispersion medium, or the pigment surface A resin-grafted resin can be used.
Specific examples of the pigment include, for example, the following ones exhibiting a yellow color.
C. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 62, 65, 73, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 151, 154, 155, 168, 174, 175, 176, 180, 181, 185; I. Bat yellow 1, 3, 20
Examples of those exhibiting red or magenta color include the following.
C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 30, 31, 32, 37, 38, 39, 40, 41, 48: 2, 48: 3, 48: 4, 49, 50, 51, 52, 53, 54, 55, 57: 1, 58, 60, 63, 64, 68, 81: 1, 83, 87, 88, 89, 90, 112, 114, 122, 123, 146, 147, 150, 163, 184, 202, 206, 207, 209, 238, 269; I. Pigment violet 19; C.I. I. Bat red 1, 2, 10, 13, 15, 23, 29, 35.
Examples of the pigment exhibiting blue or cyan include the following.
C. I. Pigment blue 2, 3, 15: 2, 15: 3, 15: 4, 16, 17; I. Bat Blue 6; C.I. I. Acid Blue 45, a copper phthalocyanine pigment in which 1 to 5 phthalimidomethyl groups are substituted on the phthalocyanine skeleton.
Examples of the green pigment include the following.
C. I. Pigment Green 7, 8, 36.
Examples of the orange pigment include the following.
C. I. Pigment Orange 66, 51.
Examples of black pigments include the following.
Carbon black, titanium black, aniline black.
Examples of white pigments include the following.
Basic lead carbonate, zinc oxide, titanium oxide, strontium titanate.
For the dispersion of the pigment in the toner particles, a dispersing means corresponding to the toner particle production method may be used. Examples of the apparatus that can be used as the dispersing means include a ball mill, a sand mill, an attritor, a roll mill, a jet mill, a homogenizer, a paint shaker, a kneader, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, and a wet jet mill. and so on.
 顔料の分散を行う際に顔料分散剤を添加することも可能である。顔料分散剤としては、水酸基含有カルボン酸エステル、長鎖ポリアミノアマイドと高分子量酸エステルの塩、高分子量ポリカルボン酸の塩、高分子量不飽和酸エステル、高分子共重合物、変性ポリアクリレート、脂肪族多価カルボン酸、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル燐酸エステル、及び顔料誘導体などを挙げることができる。また、Lubrizol社のSolsperseシリーズなどの市販の高分子分散剤を用いることも好ましい。
 また、顔料分散助剤として、各種顔料に応じたシナジストを用いることも可能である。
 これらの顔料分散剤及び顔料分散助剤の添加量は、顔料100質量部に対し、1質量部以上50質量部以下であることが好ましい。
It is also possible to add a pigment dispersant when dispersing the pigment. Examples of the pigment dispersant include a hydroxyl group-containing carboxylic acid ester, a salt of a long-chain polyaminoamide and a high molecular weight acid ester, a salt of a high molecular weight polycarboxylic acid, a high molecular weight unsaturated acid ester, a high molecular weight copolymer, a modified polyacrylate, a fatty acid An aromatic polyvalent carboxylic acid, a naphthalenesulfonic acid formalin condensate, a polyoxyethylene alkyl phosphate ester, a pigment derivative, and the like. It is also preferable to use a commercially available polymer dispersant such as Solsperse series manufactured by Lubrizol.
Moreover, it is also possible to use the synergist according to various pigments as a pigment dispersion aid.
The addition amount of these pigment dispersant and pigment dispersion aid is preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the pigment.
[電荷補助剤]
 上記トナー粒子中には、トナー粒子の帯電性を調整する目的で、電荷補助剤を含有することができる。
 電荷補助剤としては、トナー粒子の造粒性やトナー粒子中の顔料分散性を著しく低下させたり、カチオン重合性液状モノマーの重合性を著しく阻害したりしない範囲において、公知のものが利用できる。
 具体的な化合物としては、ナフテン酸ジルコニウム、ナフテン酸コバルト、ナフテン酸ニッケル、ナフテン酸鉄、ナフテン酸亜鉛、オクチル酸コバルト、オクチル酸ニッケル、オクチル酸亜鉛、ドデシル酸コバルト、ドデシル酸ニッケル、ドデシル酸亜鉛、ステアリン酸アルミニウム、及び2-エチルヘキサン酸コバルトなどの金属石鹸類;石油系スルホン酸金属塩及びスルホコハク酸エステルの金属塩などのスルホン酸金属塩類;レシチンなどのリン脂質;t-ブチルサリチル酸金属錯体などのサリチル酸金属塩類;ポリビニルピロリドン樹脂、ポリアミド樹脂、スルホン酸含有樹脂、及びヒドロキシ安息香酸誘導体などが挙げられる。
 電荷補助剤をトナー粒子中に含有させる方法は、電荷補助剤がトナー粒子中に保持できれば特に制限されない。
 例えば、トナー粒子の造粒工程において、バインダー樹脂及び着色剤などと共に添加する方法や、トナー粒子を造粒後、トナー粒子表面に対して、化学的又は物理的手法により、結合又は吸着させる方法などを使用することができる。これらの手法は液体現像剤の製造法に合わせて最適な手法を選択するとよい。
 トナー粒子中に添加される電荷補助剤は、トナー粒子から脱離し、カチオン重合性液状モノマー中に溶解、又は分散すると液体現像剤の体積抵抗率を低下させたり、カチオン重合性液状モノマー中のトナー電荷制御剤の作用を阻害したりする可能性がある。そのため、カチオン重合性液状モノマーへの溶解性を低下させ、かつ、トナー粒子の構成材料への親和性を向上させるような構造を選択するとよい。
 また、電荷補助剤のカチオン重合性液状モノマー中への脱離が顕著な場合は、吸着剤による吸着、カチオン重合性液状モノマーの置換、透析などの手法により、カチオン重合性液状モノマー中から脱理した電荷補助剤を除去する方法を用いることもできる。
[Charge aid]
The toner particles may contain a charge auxiliary agent for the purpose of adjusting the chargeability of the toner particles.
As the charge auxiliary agent, known ones can be used as long as the granulation property of the toner particles and the pigment dispersibility in the toner particles are not significantly lowered and the polymerization property of the cationic polymerizable liquid monomer is not significantly inhibited.
Specific compounds include zirconium naphthenate, cobalt naphthenate, nickel naphthenate, iron naphthenate, zinc naphthenate, cobalt octylate, nickel octylate, zinc octylate, cobalt dodecylate, nickel dodecylate, zinc dodecylate. , Metal soaps such as aluminum stearate and cobalt 2-ethylhexanoate; metal sulfonates such as petroleum metal salts and metal salts of sulfosuccinates; phospholipids such as lecithin; metal complexes of t-butylsalicylate Salicylic acid metal salts such as polyvinylpyrrolidone resin, polyamide resin, sulfonic acid-containing resin, and hydroxybenzoic acid derivatives.
The method for incorporating the charge auxiliary agent in the toner particles is not particularly limited as long as the charge auxiliary agent can be retained in the toner particles.
For example, in the step of granulating toner particles, a method of adding together with a binder resin and a colorant, or a method of granulating the toner particles and then bonding or adsorbing them to the surface of the toner particles by a chemical or physical method. Can be used. For these methods, an optimal method may be selected in accordance with the manufacturing method of the liquid developer.
When the charge auxiliary agent added to the toner particles is detached from the toner particles and dissolved or dispersed in the cation polymerizable liquid monomer, the volume resistivity of the liquid developer is lowered or the toner in the cation polymerizable liquid monomer is reduced. There is a possibility of inhibiting the action of the charge control agent. Therefore, it is preferable to select a structure that lowers the solubility in the cationically polymerizable liquid monomer and improves the affinity of the toner particles to the constituent materials.
In addition, if the charge auxiliary agent desorbs into the cation polymerizable liquid monomer, it can be removed from the cation polymerizable liquid monomer by adsorption with an adsorbent, substitution of the cation polymerizable liquid monomer, or dialysis. It is also possible to use a method for removing the charge auxiliary agent.
[増感剤、及び増感助剤]
 液体現像剤は、例えば、光重合開始剤の酸発生効率の向上、感光波長の長波長化などの目的で、必要に応じ、増感剤を含有してもよい。増感剤としては、光重合開始剤に対し、電子移動機構又はエネルギー移動機構で増感させるものであれば、特に限定されない。
 具体的には、アントラセン、9,10-ジアルコキシアントラセン、ピレン、ペリレンなどの芳香族多縮環化合物、アセトフェノン、ベンゾフェノン、チオキサントン、ジエチルチオキサントン、ミヒラーケトンなどの芳香族ケトン化合物、フェノチアジン、N-アリールオキサゾリジノンなどのヘテロ環化合物が挙げられる。
 該増感剤は、1種又は2種以上を組み合わせて使用することができる。
 該増感剤の含有量は目的に応じて適宜調整されるが、光重合開始剤1質量部に対して、0.1質量部以上10.0質量部以下であることが好ましく、より好ましくは1.0質量部以上5.0質量部以下である。
[Sensitizer and sensitizer]
The liquid developer may contain a sensitizer as necessary for the purpose of, for example, improving the acid generation efficiency of the photopolymerization initiator and increasing the photosensitive wavelength. The sensitizer is not particularly limited as long as it sensitizes the photopolymerization initiator by an electron transfer mechanism or an energy transfer mechanism.
Specifically, aromatic polycondensed compounds such as anthracene, 9,10-dialkoxyanthracene, pyrene, perylene, aromatic ketone compounds such as acetophenone, benzophenone, thioxanthone, diethylthioxanthone, Michler ketone, phenothiazine, N-aryloxazolidinone And the like.
The sensitizers can be used alone or in combination of two or more.
The content of the sensitizer is appropriately adjusted according to the purpose, but is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, more preferably 1 part by mass of the photopolymerization initiator. 1.0 parts by mass or more and 5.0 parts by mass or less.
 また、液体現像剤は、上記増感剤と光重合開始剤の間の電子移動効率又はエネルギー移動効率を向上させる目的で、必要に応じて、増感助剤を含有してもよい。
 増感助剤の例としては、1,4-ジヒドロキシナフタレン、1,4-ジメトキシナフタレン、1,4-ジエトキシナフタレン、4-メトキシ-1-ナフトール、4-エトキシ-1-ナフトールなどのナフタレン系化合物、1,4-ジヒドロキシベンゼン、1,4-ジメトキシベンゼン、1,4-ジエトキシベンゼン、1-メトキシ-4-フェノール、1-エトキシ-4-フェノールなどのベンゼン系化合物などが挙げられる。
 該増感助剤は、1種又は2種以上を組み合わせて使用することができる。
 該増感助剤の含有量は目的に応じて適宜選択されるが、増感剤1質量部に対して、0.1質量部以上10.0質量部以下であることが好ましく、より好ましくは0.5質量部以上5.0質量部以下である。
In addition, the liquid developer may contain a sensitizing aid as necessary for the purpose of improving the electron transfer efficiency or energy transfer efficiency between the sensitizer and the photopolymerization initiator.
Examples of sensitizing aids include naphthalene series such as 1,4-dihydroxynaphthalene, 1,4-dimethoxynaphthalene, 1,4-diethoxynaphthalene, 4-methoxy-1-naphthol, 4-ethoxy-1-naphthol And benzene compounds such as 1,4-dihydroxybenzene, 1,4-dimethoxybenzene, 1,4-diethoxybenzene, 1-methoxy-4-phenol, 1-ethoxy-4-phenol, and the like.
The sensitizing aid can be used alone or in combination of two or more.
The content of the sensitizer is appropriately selected according to the purpose, but is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, more preferably 1 part by mass of the sensitizer. 0.5 parts by mass or more and 5.0 parts by mass or less.
[カチオン重合禁止剤]
 液体現像剤は、保存安定性の向上や、硬化速度の調整を目的として、カチオン重合禁止剤を含有してもよい。
 カチオン重合禁止剤としては、アルカリ金属化合物及び/又はアルカリ土類金属化合物、又は、アミン類を挙げることができる。
 アミン類としては、アルカノールアミン類、N,N-ジメチルアルキルアミン類、N,N-ジメチルアケニルアミン類、N,N-ジメチルアルキニルアミン類などが挙げられる。
 具体的には、トリエタノールアミン、トリイソプロパノールアミン、トリブタノールアミン、N-エチルジエタノールアミン、プロパノールアミン、n-ブチルアミン、sec-ブチルアミン、2-アミノエタノール、2-メチルアミノエタノール、3-メチルアミノ-1-プロパノール、3-メチルアミノ-1,2-プロパンジオール、2-エチルアミノエタノール、4-エチルアミノ-1-ブタノール、4-(n-ブチルアミノ)-1-ブタノール、2-(t-ブチルアミノ)エタノール、N,N-ジメチルウンデカノールアミン、N,N-ジメチルドデカノールアミン、N,N-ジメチルトリデカノールアミン、N,N-ジメチルテトラデカノールアミン、N,N-ジメチルペンタデカノールアミン、N,N-ジメチルノナデシルアミン、N,N-ジメチルイコシルアミン、N,N-ジメチルエイコシルアミン、N,N-ジメチルヘンイコシルアミン、N,N-ジメチルドコシルアミン、N,N-ジメチルトリコシルアミン、N,N-ジメチルテトラコシルアミン、N,N-ジメチルペンタコシルアミン、N,N-ジメチルペンタノールアミン、N,N-ジメチルヘキサノールアミン、N,N-ジメチルヘプタノールアミン、N,N-ジメチルオクタノールアミン、N,N-ジメチルノナノールアミン、N,N-ジメチルデカノールアミン、N,N-ジメチルノニルアミン、N,N-ジメチルデシルアミン、N,N-ジメチルウンデシルアミン、N,N-ジメチルドデシルアミン、N,N-ジメチルトリデシルアミン、N,N-ジメチルテトラデシルアミン、N,N-ジメチルペンタデシルアミン、N,N-ジメチルヘキサデシルアミン、N,N-ジメチルヘプタデシルアミン、N,N-ジメチルオクタデシルアミンが挙げられる。これらの他にも、4級アンモニウム塩なども使用することができる。
 カチオン重合禁止剤の含有量は、液体現像剤中に、質量基準で、1ppm以上5000ppm以下であることが好ましい。
[Cation polymerization inhibitor]
The liquid developer may contain a cationic polymerization inhibitor for the purpose of improving storage stability and adjusting the curing rate.
Examples of the cationic polymerization inhibitor include alkali metal compounds and / or alkaline earth metal compounds, or amines.
Examples of the amines include alkanolamines, N, N-dimethylalkylamines, N, N-dimethylalkenylamines, N, N-dimethylalkynylamines and the like.
Specifically, triethanolamine, triisopropanolamine, tributanolamine, N-ethyldiethanolamine, propanolamine, n-butylamine, sec-butylamine, 2-aminoethanol, 2-methylaminoethanol, 3-methylamino-1 -Propanol, 3-methylamino-1,2-propanediol, 2-ethylaminoethanol, 4-ethylamino-1-butanol, 4- (n-butylamino) -1-butanol, 2- (t-butylamino) ) Ethanol, N, N-dimethylundecanolamine, N, N-dimethyldodecanolamine, N, N-dimethyltridecanolamine, N, N-dimethyltetradecanolamine, N, N-dimethylpentadecanol Amine, N, N-dimethylnonadecylami N, N-dimethylicosylamine, N, N-dimethyleicosylamine, N, N-dimethylhencosylamine, N, N-dimethyldocosylamine, N, N-dimethyltricosylamine, N, N- Dimethyltetracosylamine, N, N-dimethylpentacosylamine, N, N-dimethylpentanolamine, N, N-dimethylhexanolamine, N, N-dimethylheptanolamine, N, N-dimethyloctanolamine, N, N-dimethylnonanolamine, N, N-dimethyldecanolamine, N, N-dimethylnonylamine, N, N-dimethyldecylamine, N, N-dimethylundecylamine, N, N-dimethyldodecylamine, N , N-dimethyltridecylamine, N, N-dimethyltetradecylamine, N, N-dimethyl Pentadecyl amine, N, N-dimethyl hexadecylamine, N, N-dimethyl-hepta-decyl amine, N, N-dimethyl octadecyl amine. Besides these, quaternary ammonium salts and the like can also be used.
The content of the cationic polymerization inhibitor is preferably 1 ppm or more and 5000 ppm or less based on mass in the liquid developer.
[ラジカル重合禁止剤]
 液体現像剤は、ラジカル重合禁止剤を含有してもよい。
 例えば、ビニルエーテル化合物を含有する液体現像剤は、経時保存中に重合開始剤が極々僅かに分解し、ラジカル化合物化し、そのラジカル化合物に起因する重合を引き起こす場合がある。それを防止するためにラジカル重合禁止剤を含有することが好ましい。
 ラジカル重合禁止剤としては、例えば、フェノール系水酸基含有化合物、メトキノン(ヒドロキノンモノメチルエーテル)、ハイドロキノン、4-メトキシ-1-ナフトールなどのキノン類、ヒンダードアミン系酸化防止剤、1,1-ジフェニル-2-ピクリルヒドラジル フリーラジカル、N-オキシル フリーラジカル化合物類、含窒素複素環メルカプト系化合物、チオエーテル系酸化防止剤、ヒンダードフェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、チオシアン酸塩類、チオ尿素誘導体、各種糖類、リン酸系酸化防止剤、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体、芳香族アミン、フェニレンジアミン類、イミン類、スルホンアミド類、尿素誘導体、オキシム類、ジシアンジアミドとポリアルキレンポリアミンの重縮合物、フェノチアジンなどの含硫黄化合物、テトラアザアンヌレン(TAA)をベースとする錯化剤、ヒンダードアミン類などが挙げられる。
 液体現像剤の増粘防止の観点から、フェノール系水酸基含有化合物、N-オキシル フリーラジカル化合物類、1,1-ジフェニル-2-ピクリルヒドラジル フリーラジカル、フェノチアジン、キノン類、ヒンダードアミン類が好ましい。より好ましくは、N-オキシル フリーラジカル化合物類である。
 ラジカル重合禁止剤の含有量は、液体現像剤中に、質量基準で、1ppm以上5000ppm以下であることが好ましい。
[Radical polymerization inhibitor]
The liquid developer may contain a radical polymerization inhibitor.
For example, in a liquid developer containing a vinyl ether compound, the polymerization initiator may be slightly decomposed during storage with time to form a radical compound, which may cause polymerization due to the radical compound. In order to prevent this, it is preferable to contain a radical polymerization inhibitor.
Examples of radical polymerization inhibitors include phenolic hydroxyl group-containing compounds, quinones such as methoquinone (hydroquinone monomethyl ether), hydroquinone, 4-methoxy-1-naphthol, hindered amine antioxidants, 1,1-diphenyl-2- Picrylhydrazyl free radicals, N-oxyl free radical compounds, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, thiourea derivatives , Various sugars, phosphate antioxidants, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, aromatic amines, phenylenediamines, imines, sulfonamides, urea derivatives, oximes, dicyandiamide and polyalkylenes Polya Polycondensates of emissions, sulfur-containing compounds such as phenothiazine, complexing agent to tetraazacyclododecane Anne based Len (TAA), and the like hindered amines.
From the viewpoint of preventing thickening of the liquid developer, phenolic hydroxyl group-containing compounds, N-oxyl free radical compounds, 1,1-diphenyl-2-picrylhydrazyl free radical, phenothiazine, quinones, and hindered amines are preferable. More preferred are N-oxyl free radical compounds.
The content of the radical polymerization inhibitor is preferably 1 ppm or more and 5000 ppm or less in terms of mass in the liquid developer.
[その他の添加剤]
 液体現像剤には、上記説明した添加剤以外に、必要に応じて、記録媒体適合性、保存安定性、画像保存性、及びその他の諸性能向上の目的に応じて、公知の各種添加剤を用いてもよい。例えば、界面活性剤、滑剤、充填剤、消泡剤、紫外線吸収剤、酸化防止剤、退色防止剤、防ばい剤、及び防錆剤などが挙げられ、これらを適宜選択して用いることができる。
[Other additives]
In addition to the above-described additives, the liquid developer contains various known additives as necessary according to the purpose of improving the compatibility of the recording medium, storage stability, image storage stability, and other performances. It may be used. For example, surfactants, lubricants, fillers, antifoaming agents, ultraviolet absorbers, antioxidants, antifading agents, antifungal agents, rust inhibitors, and the like can be used, and these can be appropriately selected and used. .
 液体現像剤の製造方法としては、特に限定されることは無く、例えば、コアセルベーション法や湿式粉砕法などの公知の方法が挙げられる。
 一般的な製造方法としては、顔料、バインダー樹脂及びその他の添加剤、並びに、分散媒体を混合し、ビーズミルなどを用いて粉砕し、トナー粒子の分散体を得る。得られたトナー粒子の分散体、重合開始剤、トナー電荷制御剤、及びカチオン重合性液状モノマーなどを混合して液体現像剤を得る製造方法が例示できる。
 上記コアセルベーション法については、例えば、特開2003-241439号公報、国際公開第2007/000974号、又は国際公開第2007/000975号に詳細が記載されている。
 該コアセルベーション法では、顔料、樹脂、該樹脂を溶解する溶剤、及び該樹脂を溶解しない溶剤を混合し、該混合液から該樹脂を溶解する溶剤を除去して、溶解状態にあった該樹脂を析出させることにより、顔料を包埋したトナー粒子を、該樹脂を溶解しない溶剤中に分散させることができる。
 一方、上記湿式粉砕法については、例えば、国際公開第2006/126566号、又は国際公開第2007/108485号に詳細が記載されている。
 該湿式粉砕法では、顔料とバインダー樹脂とをバインダー樹脂の融点以上で混練した後乾式粉砕し、得られた粉砕物を電気絶縁性媒体中で湿式粉砕することにより、トナー粒子を電気絶縁性媒体中に分散させることができる。
 本発明においては、この様な公知の方法が利用可能である。
 上記トナー粒子は、高精細画像を得るという観点から、体積平均粒径が0.05μm以上5μm以下であることが好ましく、より好ましくは0.05μm以上1μm以下である。
 また、液体現像剤中のトナー粒子濃度は、用いる画像形成装置に応じて、任意に調整して用いることができるが、1質量%以上70質量%以下程度にするとよい。
A method for producing the liquid developer is not particularly limited, and examples thereof include known methods such as a coacervation method and a wet pulverization method.
As a general production method, a pigment, a binder resin, other additives, and a dispersion medium are mixed and pulverized using a bead mill or the like to obtain a dispersion of toner particles. A production method for obtaining a liquid developer by mixing the obtained dispersion of toner particles, a polymerization initiator, a toner charge control agent, a cationic polymerizable liquid monomer, and the like can be exemplified.
Details of the coacervation method are described, for example, in JP-A No. 2003-241439, International Publication No. 2007/000974, or International Publication No. 2007/000975.
In the coacervation method, a pigment, a resin, a solvent that dissolves the resin, and a solvent that does not dissolve the resin are mixed, the solvent that dissolves the resin is removed from the mixed solution, and the solution in a dissolved state is obtained. By precipitating the resin, the toner particles embedded with the pigment can be dispersed in a solvent that does not dissolve the resin.
On the other hand, details of the wet pulverization method are described in, for example, International Publication No. 2006/126666 or International Publication No. 2007/108485.
In the wet pulverization method, the toner particles are electrically pulverized by kneading the pigment and the binder resin at a melting point of the binder resin or higher and then dry pulverizing the resulting pulverized material in the electrically insulating medium. Can be dispersed in.
In the present invention, such a known method can be used.
The toner particles preferably have a volume average particle diameter of 0.05 μm or more and 5 μm or less, more preferably 0.05 μm or more and 1 μm or less from the viewpoint of obtaining a high-definition image.
The toner particle concentration in the liquid developer can be arbitrarily adjusted according to the image forming apparatus to be used, but is preferably about 1% by mass to 70% by mass.
[液体現像剤の特性]
 液体現像剤は、下記物性値を有するように調製して使用するとよい。
 すなわち、液体現像剤の粘度は、適度なトナー粒子の電気泳動移動度が得られるという観点から、トナー粒子の濃度が2質量%の場合、25℃において0.5mPa・s以上30mPa・s以下程度にするとよい。
 また、液体現像剤の25℃での体積抵抗率は、静電潜像の電位を降下させないという観点から、1×10Ω・cm以上1×1015Ω・cm以下程度にするとよい。
[Characteristics of liquid developer]
The liquid developer may be prepared and used so as to have the following physical property values.
That is, the viscosity of the liquid developer is about 0.5 mPa · s or more and 30 mPa · s or less at 25 ° C. when the toner particle concentration is 2% by mass from the viewpoint that an appropriate electrophoretic mobility of toner particles can be obtained. It is good to.
The volume resistivity of the liquid developer at 25 ° C. is preferably about 1 × 10 9 Ω · cm to 1 × 10 15 Ω · cm from the viewpoint of not lowering the potential of the electrostatic latent image.
 以下に本発明で用いられる測定方法、及び評価法について示す。
(1)組成分析
 上記高分子化合物の構造決定は以下の手法を用いた。
 日本電子(株)製ECA-400(400MHz)を用い、H-NMR、及び、13C-NMRのスペクトル測定を行った。
 内部標準物質としてテトラメチルシランを含む重水素化溶剤中、25℃で測定を行った。化学シフト値は内部標準物質であるテトラメチルシランを0としたppmシフト値(δ値)として示した。
The measurement method and evaluation method used in the present invention are shown below.
(1) Composition analysis The following method was used to determine the structure of the polymer compound.
Using ECA-400 (400 MHz) manufactured by JEOL Ltd., 1 H-NMR and 13 C-NMR spectra were measured.
Measurement was performed at 25 ° C. in a deuterated solvent containing tetramethylsilane as an internal standard substance. The chemical shift value was shown as a ppm shift value (δ value) with tetramethylsilane as an internal standard substance being zero.
(2)分子量分布測定
 上記高分子化合物の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によって、単分散ポリメタクリル酸メチル換算で算出した。GPCによる分子量の測定は以下に示すように行った。
 サンプル濃度が1質量%になるようにサンプルを下記溶離液に加え、室温で24時間静置し溶解させた溶液を、ポア径が0.45μmの耐溶剤性メンブレンフィルターでろ過したものをサンプル溶液とし、以下の条件で測定した。
装置:高速GPC GPC-104(昭和電工社製)
カラム:GPC HFIP-603、604の2連(昭和電工社製)
溶離液:ヘキサフルオロイソプロパノール(HFIP)(10mmol/L トリフルオロ酢酸ナトリウム含有)
流速:0.2mL/min
オーブン温度:40℃
試料注入量:20μL
 試料の分子量分布の算出にあたっては、標準ポリメタクリル酸メチル樹脂(アジレントテクノロジーズ社製 EasiVial PM ポリマースタンダードキット)により作成した分子量校正曲線を使用した。
(2) Measurement of molecular weight distribution The molecular weight distribution of the polymer compound was calculated by gel permeation chromatography (GPC) in terms of monodisperse polymethyl methacrylate. The molecular weight was measured by GPC as shown below.
The sample solution was added to the eluent below so that the sample concentration was 1% by mass, and the solution was allowed to stand at room temperature for 24 hours and dissolved, and then filtered through a solvent-resistant membrane filter with a pore diameter of 0.45 μm. And measured under the following conditions.
Equipment: High-speed GPC GPC-104 (made by Showa Denko)
Column: GPC HFIP-603, 604 (made by Showa Denko)
Eluent: hexafluoroisopropanol (HFIP) (containing 10 mmol / L sodium trifluoroacetate)
Flow rate: 0.2 mL / min
Oven temperature: 40 ° C
Sample injection volume: 20 μL
In calculating the molecular weight distribution of the sample, a molecular weight calibration curve prepared with a standard polymethyl methacrylate resin (EasiVial PM Polymer Standard Kit manufactured by Agilent Technologies) was used.
(3)体積平均粒径の測定
 トナー粒子の体積平均粒径は、動的光散乱法(DLS)粒子径分布測定装置(商品名:ナノトラック150、日機装社製)を用いて、対応するカチオン重合性液状モノマー中で測定を行った。
(3) Measurement of Volume Average Particle Size The volume average particle size of toner particles is determined using a dynamic light scattering (DLS) particle size distribution measuring device (trade name: Nanotrack 150, manufactured by Nikkiso Co., Ltd.). Measurements were made in a polymerizable liquid monomer.
(4)電気泳動移動度の評価
 作製した液体現像剤の電気泳動移動度の測定は以下に示すように行った。
 トナー粒子濃度が1質量%となるようにカチオン重合性液状モノマーで希釈したサンプルを、厚さ300μm、幅20mmの金属製電極を100μm離間し対向させた平行平板電極間に毛管力で保持した。
 平行平板電極間に100Vの電位差を印加(電界強度 1×10V/m)した際の電気泳動の様子を光学顕微鏡に接続した高速度カメラ(フォトロン社製 FASTCAM SA-1)で撮影した。
 得られた画像を画像処理ソフトImageJ(開発元:Wayne Rasband (NIH))に取り込み、粒子画像流速測定法(PIV法)により粒子の平均泳動移動度を算出した。粒子の泳動極性は正極に泳動した場合は負、負極に泳動した場合は正とした。
 電気泳動移動度の評価は下記基準によって判断した。
A:平均泳動移動度が1×10-9/V・s以上
B:平均泳動移動度が7×10-10/V・s以上、1×10-9/V・s未満
C:平均泳動移動度が3×10-10/V・s以上、7×10-10/V・s未満
D:平均泳動移動度が1×10-10/V・s以上、3×10-10/V・s未満
E:平均泳動移動度が1×10-10/V・s未満、又は明確な泳動を示さない
 平均泳動移動度が7×10-10/V・s以上(A又はBランク)であれば電気泳動移動度及び帯電量が高く、良好であると判断した。
(4) Evaluation of electrophoretic mobility The electrophoretic mobility of the produced liquid developer was measured as follows.
A sample diluted with a cationically polymerizable liquid monomer so that the toner particle concentration was 1% by mass was held by a capillary force between parallel plate electrodes, which were opposed to each other with a metal electrode having a thickness of 300 μm and a width of 20 mm separated by 100 μm.
The state of electrophoresis when a potential difference of 100 V was applied between parallel plate electrodes (electric field intensity 1 × 10 6 V / m) was photographed with a high-speed camera (FASTCAM SA-1 manufactured by Photoron) connected to an optical microscope. .
The obtained image was taken into image processing software ImageJ (developer: Wayne Rasband (NIH)), and the average electrophoretic mobility of the particles was calculated by a particle image velocimetry (PIV method). The migration polarity of the particles was negative when migrating to the positive electrode and positive when migrating to the negative electrode.
The electrophoretic mobility was evaluated according to the following criteria.
A: Average migration mobility is 1 × 10 −9 m 2 / V · s or more B: Average migration mobility is 7 × 10 −10 m 2 / V · s or more, 1 × 10 −9 m 2 / V · s Less than C: Average migration mobility is 3 × 10 −10 m 2 / V · s or more, less than 7 × 10 −10 m 2 / V · s D: Average migration mobility is 1 × 10 −10 m 2 / V · s s or more and less than 3 × 10 −10 m 2 / V · s E: the average migration mobility is less than 1 × 10 −10 m 2 / V · s or does not show clear migration, and the average migration mobility is 7 × 10 If it was −10 m 2 / V · s or higher (A or B rank), it was judged that the electrophoretic mobility and the charge amount were high and good.
(5)硬化性の評価
 室温25℃、湿度50%RHの環境下において、ポリエチレンテレフタレートフィルム(東レ製、ルミラー:75E20、厚み75μm)上に、液体現像剤を滴下し、ワイヤーバー(No.6)[供給先:松尾産業株式会社]を用いてバーコートを行い(形成された膜厚13.7μm)、ランプ出力120mW/cmの高圧水銀ランプにより波長365nmの光を照射して、硬化膜を形成した。表面にタック(粘着性)がなく完全に硬化した時の照射光量を測定し、以下の基準で評価した。
A:200mJ/cm未満
B:200mJ/cm以上、400mJ/cm未満
C:400mJ/cm以上、700mJ/cm未満
D:700mJ/cm以上、1000mJ/cm未満
E:1000mJ/cm以上、又は硬化せず
 照射光量が400mJ/cm未満(A又はBランク)であれば、硬化性が高く、良好であると判断した。
(5) Evaluation of curability In an environment of room temperature of 25 ° C. and humidity of 50% RH, a liquid developer was dropped on a polyethylene terephthalate film (manufactured by Toray, Lumirror: 75E20, thickness 75 μm), and a wire bar (No. 6). ) Bar coating using [Supplier: Matsuo Sangyo Co., Ltd.] (formed film thickness 13.7 μm), irradiating light with a wavelength of 365 nm with a high-pressure mercury lamp with a lamp output of 120 mW / cm 2 , and cured film Formed. The irradiation light quantity when the surface was completely cured without tack (adhesiveness) was measured and evaluated according to the following criteria.
A: 200mJ / cm 2 less B: 200mJ / cm 2 or more, 400 mJ / cm 2 less than C: 400mJ / cm 2 or more, 700 mJ / cm 2 less than D: 700mJ / cm 2 or more, 1000 mJ / cm 2 less than E: 1000 mJ / cm 2 or more, or the irradiation light quantity not cured is less than 400 mJ / cm 2 (a or B rank), high curability was judged to be good.
 以下に実施例を挙げて本説明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。実施例で記載する「部」はすべて質量部を示す。
(高分子化合物1の製造)
 冷却管、撹拌機、温度計及び窒素導入管を取り付けた反応容器に[2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリド(80%水溶液)15.8部、メタクリル酸オクタデシル82.1部、アゾビスイソブチロニトリル4.1部、及びn-ブタノール900部を仕込み、30分間窒素バブリングを行った。得られた反応混合物を窒素雰囲気下、65℃で8時間加熱し、重合反応を完結させた。反応液を室温まで冷却後、溶剤を減圧留去した。得られた残渣をクロロホルムに溶解し、透析膜(スペクトラムラボラトリーズ社製 Spectra/Por7 MWCO 1kDa)により透析精製を行った。溶媒を減圧留去後、50℃、0.1kPa以下で減圧乾燥させることにより高分子化合物1を得た。
 得られた高分子化合物1を前記分析法により分析を行ったところ、重量平均分子量(Mw)は23500であり、式(1)で表される単量体単位(ユニット1)は全単量体単位中に23mol%含有していることを確認した。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. All “parts” described in the examples represent parts by mass.
(Production of polymer compound 1)
In a reaction vessel equipped with a condenser, a stirrer, a thermometer and a nitrogen inlet tube, 15.8 parts of [2- (methacryloyloxy) ethyl] trimethylammonium chloride (80% aqueous solution), 82.1 parts of octadecyl methacrylate, azobis 4.1 parts of isobutyronitrile and 900 parts of n-butanol were charged, and nitrogen bubbling was performed for 30 minutes. The resulting reaction mixture was heated at 65 ° C. for 8 hours under a nitrogen atmosphere to complete the polymerization reaction. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained residue was dissolved in chloroform and purified by dialysis using a dialysis membrane (Spectra / Por7 MWCO 1 kDa manufactured by Spectrum Laboratories). After the solvent was distilled off under reduced pressure, polymer compound 1 was obtained by drying under reduced pressure at 50 ° C. and 0.1 kPa or less.
When the obtained polymer compound 1 was analyzed by the above analytical method, the weight average molecular weight (Mw) was 23500, and the monomer unit (unit 1) represented by the formula (1) was all monomers. It was confirmed that the unit contained 23 mol%.
(高分子化合物2の製造)
 [2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの代わりに[2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムメチルスルファート17.1部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物2を製造した。
(Production of polymer compound 2)
In the same manner as in the production of the polymer compound 1, except that 17.1-part of [2- (methacryloyloxy) ethyl] trimethylammonium methylsulfate is used instead of [2- (methacryloyloxy) ethyl] trimethylammonium chloride. Molecular compound 2 was produced.
(高分子化合物3の製造)
 [2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの代わりにN-カルボキシメチル-N,N-ジメチル-N-[2-(メタクリロイルオキシ)]エチルアンモニウムベタイン13.1部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物3を製造した。
(Production of polymer compound 3)
Other than using 13.1 parts of N-carboxymethyl-N, N-dimethyl-N- [2- (methacryloyloxy)] ethylammonium betaine instead of [2- (methacryloyloxy) ethyl] trimethylammonium chloride Polymer compound 3 was produced in the same manner as in the production of molecular compound 1.
(高分子化合物4の製造)
 [2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの代わりにN,N-ジメチル-N-[2-(メタクリロイルオキシ)エチル]-N-(3-スルホプロピル)アンモニウムベタイン17.0部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物4を製造した。
(Production of polymer compound 4)
Use 17.0 parts of N, N-dimethyl-N- [2- (methacryloyloxy) ethyl] -N- (3-sulfopropyl) ammonium betaine instead of [2- (methacryloyloxy) ethyl] trimethylammonium chloride. Except for the above, polymer compound 4 was produced in the same manner as in the production of polymer compound 1.
(高分子化合物5の製造)
 メタクリル酸オクタデシル代わりにメタクリル酸オクチル48.1部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物5を製造した。
(Production of polymer compound 5)
A polymer compound 5 was produced in the same manner as the polymer compound 1 except that 48.1 parts of octyl methacrylate was used instead of octadecyl methacrylate.
(高分子化合物6の製造)
 [2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの代わりにN-[2-(アクリロイルオキシ)]エチル-N-カルボキシメチル-N,N-ジメチルアンモニウムベタイン12.2部を、メタクリル酸オクタデシルの代わりにアクリル酸オクタデシル78.7部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物6を製造した。
(Production of polymer compound 6)
In place of [2- (methacryloyloxy) ethyl] trimethylammonium chloride, 12.2 parts of N- [2- (acryloyloxy)] ethyl-N-carboxymethyl-N, N-dimethylammonium betaine are used instead of octadecyl methacrylate. The polymer compound 6 was produced in the same manner as the polymer compound 1 except that 78.7 parts of octadecyl acrylate was used.
(高分子化合物7の製造)
 [2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの代わりに(ビニルベンジル)トリメチルアンモニウムクロリド12.8部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物7を製造した。
(Production of polymer compound 7)
A polymer compound 7 was produced in the same manner as the polymer compound 1 except that 12.8 parts of (vinylbenzyl) trimethylammonium chloride was used instead of [2- (methacryloyloxy) ethyl] trimethylammonium chloride.
(高分子化合物8の製造)
 [2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリド、及び、メタクリル酸オクタデシルの代わりに、N,N-ジメチル-N-ドデシル-N-[2-(メタクリロイルオキシ)エチル]アンモニウムクロリド109.8部を用いること以外、上記高分子化合物1の製造と同様にして高分子化合物8を製造した。
(Production of polymer compound 8)
In place of [2- (methacryloyloxy) ethyl] trimethylammonium chloride and octadecyl methacrylate, 109.8 parts of N, N-dimethyl-N-dodecyl-N- [2- (methacryloyloxy) ethyl] ammonium chloride were added. A polymer compound 8 was produced in the same manner as in the production of the polymer compound 1 except that it was used.
 上記のように製造した高分子化合物1~8の組成比、重量平均分子量(Mw)を表1に示す。なお、表1中の、「a」は式(1)又は式(2)中のRが結合した炭素原子との結合部位、「b」は4級アンモニウム部位との結合部位、「c」は式(3)中のRが結合した炭素原子との結合部位をそれぞれ示している。 Table 1 shows the composition ratios and weight average molecular weights (Mw) of the polymer compounds 1 to 8 produced as described above. In Table 1, “a” is the bonding site with the carbon atom to which R 1 in Formula (1) or Formula (2) is bonded, “b” is the binding site with the quaternary ammonium moiety, and “c”. Represents the bonding site to the carbon atom to which R 6 in Formula (3) is bonded.
Figure JPOXMLDOC01-appb-T000024

 
Figure JPOXMLDOC01-appb-T000024

 
<実施例1>
[バインダー樹脂の製造]
 還流冷却器、水・アルコール分離装置、窒素ガス導入管、温度計及び撹拌機を備えた反応容器に、1500部のビスフェノールAのエチレンオキサイド付加物(シグマアルドリッチ社製)と、700部のテレフタル酸(シグマアルドリッチ社製)を入れ、撹拌しながら窒素ガスを導入し、200~240℃の温度で脱水・脱アルコール重縮合反応を行った。
 1時間後、反応系の温度を100℃以下に下げ、重縮合を停止させた。得られたポリエステル樹脂は、重量平均分子量(Mw)が9000、数平均分子量(Mn)が2100、ガラス転移点温度(Tg)が68℃、酸価が12.0mgKOH/gであった。
<Example 1>
[Manufacture of binder resin]
In a reaction vessel equipped with a reflux condenser, water / alcohol separator, nitrogen gas inlet tube, thermometer and stirrer, 1500 parts of bisphenol A ethylene oxide adduct (Sigma Aldrich) and 700 parts of terephthalic acid (Sigma Aldrich) was added, nitrogen gas was introduced while stirring, and dehydration / dealcoholization polycondensation reaction was performed at a temperature of 200 to 240 ° C.
After 1 hour, the temperature of the reaction system was lowered to 100 ° C. or less to stop polycondensation. The obtained polyester resin had a weight average molecular weight (Mw) of 9000, a number average molecular weight (Mn) of 2100, a glass transition temperature (Tg) of 68 ° C., and an acid value of 12.0 mgKOH / g.
[トナー粒子分散体の製造]
 撹拌機と温度計を取り付けた反応容器中に、上記ポリエステル樹脂25部とドデシルビニルエーテル(例示化合物B-3)75部を投入し、200rpmで撹拌しながら、オイルバス中で130℃まで1時間かけて昇温した。130℃で1時間保持した後、1時間あたり15℃の降温速度で徐冷し、バインダー樹脂分散液を作製した。得られたバインダー樹脂分散液は、白色のペースト状であった。
 上記バインダー樹脂分散液60部、5部のピグメントブルー15:3、及びドデシルビニルエーテル35部を、直径0.5mmのジルコニアビーズとともに遊星式ビーズミル(フリッチュ社製 クラシックラインP-6)に充填し、室温で200rpmにて4時間粉砕して、トナー粒子分散体(固形分20質量%)を得た。得られたトナー粒子分散体に含有されるトナー粒子は体積平均粒径0.91μmであった。
[Production of toner particle dispersion]
In a reaction vessel equipped with a stirrer and a thermometer, 25 parts of the polyester resin and 75 parts of dodecyl vinyl ether (Exemplary Compound B-3) are charged and stirred at 200 rpm for 1 hour up to 130 ° C. in an oil bath. The temperature rose. After being held at 130 ° C. for 1 hour, it was gradually cooled at a temperature drop rate of 15 ° C. per hour to prepare a binder resin dispersion. The obtained binder resin dispersion was a white paste.
60 parts of the above binder resin dispersion, 5 parts of Pigment Blue 15: 3, and 35 parts of dodecyl vinyl ether are filled together with zirconia beads having a diameter of 0.5 mm in a planetary bead mill (Fritsch Classic Line P-6) at room temperature. Was pulverized at 200 rpm for 4 hours to obtain a toner particle dispersion (solid content 20 mass%). The toner particles contained in the obtained toner particle dispersion had a volume average particle size of 0.91 μm.
[トナー電荷制御剤溶液の調製]
 撹拌機と温度計を取り付けた反応容器中に、6.2部の高分子化合物1とテトラヒドロフラン(THF)68.2部を投入し、60℃に昇温し、高分子化合物1を溶解させた。ここにドデシルビニルエーテル71.3部を投入後、50℃、4kPaでTHFを減圧留去し、透明なトナー電荷制御剤溶液を得た。
[Preparation of toner charge control agent solution]
In a reaction vessel equipped with a stirrer and a thermometer, 6.2 parts of the polymer compound 1 and 68.2 parts of tetrahydrofuran (THF) were charged, and the temperature was raised to 60 ° C. to dissolve the polymer compound 1. . After adding 71.3 parts of dodecyl vinyl ether, THF was distilled off under reduced pressure at 50 ° C. and 4 kPa to obtain a transparent toner charge control agent solution.
[液体現像剤の調製]
 上記トナー粒子分散体10.0部に、トナー電荷制御剤溶液0.125部、ドデシルビニルーテル16.10部、2-ブチル-2-エチル-1,3-プロパンジオールジビニルエーテル(例示化合物B-27)72.63部を混合後、光重合開始剤としてN-ヒドロキシナフタルイミドノナフルオロブタンスルホネート(例示化合物C-26)0.29部、増感剤として、2,4-ジエチルチオキサントン0.48部、及び、増感助剤として、1,4-ジエトキシナフタレン0.48部を混合、溶解することにより実施例1の液体現像剤を製造した。
[Preparation of liquid developer]
To 10.0 parts of the above toner particle dispersion, 0.125 parts of a toner charge control agent solution, 16.10 parts of dodecyl vinyl ether, 2-butyl-2-ethyl-1,3-propanediol divinyl ether (Exemplary Compound B- 27) After mixing 72.63 parts, 0.29 part of N-hydroxynaphthalimide nonafluorobutanesulfonate (Exemplary Compound C-26) as a photopolymerization initiator and 0.48 of 2,4-diethylthioxanthone as a sensitizer The liquid developer of Example 1 was produced by mixing and dissolving 0.48 parts of 1,4-diethoxynaphthalene as a sensitizing aid.
<実施例2~8>
 高分子化合物1の代わりに高分子化合物2~8をそれぞれ用いること以外、上記実施例1と同様にして実施例2~8の液体現像剤を製造した。
<Examples 2 to 8>
Liquid developers of Examples 2 to 8 were produced in the same manner as in Example 1 except that the polymer compounds 2 to 8 were used in place of the polymer compound 1, respectively.
<実施例9>
 実施例1の[液体現像剤の調製]工程において、ドデシルビニルエーテルを79.04部とし、2-ブチル-2-エチル-1,3-プロパンジオールジビニルエーテルの代わりにシクロヘキサン-1,4-ジメタノールジビニルエーテル(例示化合物B-17)9.68部を用いること以外、上記実施例1と同様にして実施例9の液体現像剤を製造した。
<Example 9>
In the [preparing liquid developer] step of Example 1, 79.04 parts of dodecyl vinyl ether was used, and cyclohexane-1,4-dimethanol was used instead of 2-butyl-2-ethyl-1,3-propanediol divinyl ether. A liquid developer of Example 9 was produced in the same manner as in Example 1 except that 9.68 parts of divinyl ether (Exemplary Compound B-17) was used.
<実施例10>
 実施例1の[液体現像剤の調製]工程において、N-ヒドロキシナフタルイミドノナフルオロブタンスルホネートの代わりにN-ヒドロキシフタルイミドノナフルオロブタンスルホネート(例示化合物C-11)を用いること以外、上記実施例1と同様にして実施例10の液体現像剤を製造した。
<Example 10>
Example 1 except that N-hydroxyphthalimidononafluorobutanesulfonate (Exemplary Compound C-11) is used instead of N-hydroxynaphthalimidenonafluorobutanesulfonate in the [Preparation of Liquid Developer] step of Example 1. In the same manner as described above, the liquid developer of Example 10 was produced.
<実施例11>
 実施例1の[トナー粒子分散体の製造]工程において、ポリエステル樹脂の代わりにニュクレルN1525(エチレン-メタクリル酸樹脂、三井・デュポンポリケミカル株式会社製)を用いること以外、上記実施例1と同様にして実施例11の液体現像剤を製造した。
<Example 11>
In the [Production of Toner Particle Dispersion] step of Example 1, in the same manner as in Example 1 except that Nucrel N1525 (ethylene-methacrylic acid resin, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used instead of the polyester resin. Thus, a liquid developer of Example 11 was produced.
<実施例12>
 実施例1の[トナー粒子分散体の製造]工程において、ドデシルビニルエーテルの代わりに1,12-オクタデカンジオールジビニルエーテル(例示化合物B-43)を用い、[液体現像剤の調製]工程において、ドデシルビニルエーテルと2-ブチル-2-エチル-1,3-プロパンジオールジビニルエーテルの代わりに1,12-オクタデカンジオールジビニルエーテル88.73部を用いること以外、上記実施例1と同様にして実施例12の液体現像剤を製造した。
<Example 12>
In the [Production of toner particle dispersion] step of Example 1, 1,12-octadecanediol divinyl ether (Exemplary Compound B-43) was used instead of dodecyl vinyl ether, and in the [Preparation of liquid developer] step, dodecyl vinyl ether was used. And the liquid of Example 12 in the same manner as in Example 1 except that 88.73 parts of 1,12-octadecanediol divinyl ether was used instead of 2-butyl-2-ethyl-1,3-propanediol divinyl ether. A developer was produced.
<実施例13>
 高分子化合物1の代わりに高分子化合物3を用いること以外、上記実施例12と同様にして実施例13の液体現像剤を製造した。
 なお、上記ドデシルビニルエーテル(例示化合物B-3)、2-ブチル-2-エチル-1,3-プロパンジオールジビニルエーテル(例示化合物B-27)、シクロヘキサン-1,4-ジメタノールジビニルエーテル(例示化合物B-17)及び、1,12-オクタデカンジオールジビニルエーテル(例示化合物B-43)の、25℃での体積抵抗率はそれぞれ、2.7×1012Ω・cm、9.4×1012Ω・cm、1.3×1010Ω・cm及び、8.4×1012Ω・cmであった。
<Example 13>
A liquid developer of Example 13 was produced in the same manner as in Example 12 except that the polymer compound 3 was used instead of the polymer compound 1.
The above dodecyl vinyl ether (Exemplary Compound B-3), 2-butyl-2-ethyl-1,3-propanediol divinyl ether (Exemplary Compound B-27), cyclohexane-1,4-dimethanol divinyl ether (Exemplary Compound) The volume resistivity of B-17) and 1,12-octadecanediol divinyl ether (Exemplary Compound B-43) at 25 ° C. was 2.7 × 10 12 Ω · cm and 9.4 × 10 12 Ω, respectively. · Cm, 1.3 × 10 10 Ω · cm and 8.4 × 10 12 Ω · cm.
<比較例1>
 トナー電荷制御剤として高分子化合物1を用いないこと以外、上記実施例1と同様にして比較例1の液体現像剤を製造した。
<Comparative Example 1>
A liquid developer of Comparative Example 1 was produced in the same manner as in Example 1 except that the polymer compound 1 was not used as the toner charge control agent.
<比較例2>
 トナー電荷制御剤として高分子化合物1の代わりにレシチン(東京化成社製 大豆由来)を用いること以外、上記実施例1と同様にして比較例2の液体現像剤を製造した。
<Comparative example 2>
A liquid developer of Comparative Example 2 was produced in the same manner as in Example 1 above, except that lecithin (derived from soybeans manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the polymer compound 1 as the toner charge control agent.
<比較例3>
 トナー電荷制御剤として高分子化合物1の代わりにバリウムスルホネート(モレスコ社製 モレスコアンバーSB-50N)を用いること以外、上記実施例1と同様にして比較例3の液体現像剤を製造した。
<Comparative Example 3>
A liquid developer of Comparative Example 3 was produced in the same manner as in Example 1 above, except that barium sulfonate (Molesco Amber SB-50N manufactured by Moresco) was used instead of the polymer compound 1 as the toner charge control agent.
<比較例4>
 トナー電荷制御剤として高分子化合物1の代わりに、ジ(2-エチルヘキシル)スルホこはく酸ナトリウム(東京化成社製)を用いること以外、上記実施例1と同様にして比較例4の液体現像剤を製造した。
<Comparative example 4>
The liquid developer of Comparative Example 4 was used in the same manner as in Example 1 except that sodium di (2-ethylhexyl) sulfosuccinate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the polymer compound 1 as the toner charge control agent. Manufactured.
 上記で製造した液体現像剤の電気泳動移動度、及び、硬化性の評価結果を下記表2に示した。 Table 2 below shows the electrophoretic mobility and curability evaluation results of the liquid developer produced above.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表2に示されるように、高分子化合物1~8をトナー電荷制御剤として液体現像剤に添加すると、高い電気泳動移動度と硬化性を有する硬化型液体現像剤となることがわかる。 As shown in Table 2, it can be seen that when the polymer compounds 1 to 8 are added to the liquid developer as a toner charge control agent, a curable liquid developer having high electrophoretic mobility and curability is obtained.
 本発明によれば、硬化性が高く、画像形成装置のプロセススピードの高速化に対応できる硬化型液体現像剤を提供することができる。 According to the present invention, it is possible to provide a curable liquid developer that has high curability and can cope with an increase in the process speed of the image forming apparatus.

Claims (8)

  1.  カチオン重合性液状モノマー、重合開始剤、及び該カチオン重合性液状モノマーに不溶なトナー粒子を含む硬化型液体現像剤であって、
     下記式(1)及び式(2)で表される単量体単位の少なくとも一つを有する高分子化合物を含有することを特徴とする硬化型液体現像剤。
    Figure JPOXMLDOC01-appb-C000001

    [前記式(1)及び(2)中、R~Rはそれぞれ独立して、水素原子及びアルキル基のいずれかを表し、A及びBは二価の連結基を表し、Xはハロゲンイオン、又は構造中にCOO基若しくはSO 基を有するアニオンを表し、Yは構造中にCOO基又はSO 基を有するアニオンを表す。]
    A curable liquid developer comprising a cationic polymerizable liquid monomer, a polymerization initiator, and toner particles insoluble in the cationic polymerizable liquid monomer,
    A curable liquid developer comprising a polymer compound having at least one of monomer units represented by the following formulas (1) and (2).
    Figure JPOXMLDOC01-appb-C000001

    [In the formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group, A and B represent a divalent linking group, and X represents a halogen atom. An ion or an anion having a COO group or an SO 3 group in the structure is represented, and Y represents an anion having a COO group or an SO 3 group in the structure. ]
  2.  前記高分子化合物が、前記式(1)及び式(2)で表される単量体単位の少なくとも一つと、下記式(3)で表される単量体単位とを有する共重合体である、請求項1に記載の硬化型液体現像剤。
    Figure JPOXMLDOC01-appb-C000002

    [前記式(3)中、Rは水素原子及びアルキル基のいずれかを表し、Rはアルキル基、カルボン酸エステル基、カルボン酸アミド基、アルコキシ基及びアリール基のいずれかを表す。]
    The polymer compound is a copolymer having at least one monomer unit represented by the formula (1) and the formula (2) and a monomer unit represented by the following formula (3). The curable liquid developer according to claim 1.
    Figure JPOXMLDOC01-appb-C000002

    [In the formula (3), R 6 represents any one of a hydrogen atom and an alkyl group, and R 7 represents any one of an alkyl group, a carboxylic acid ester group, a carboxylic acid amide group, an alkoxy group and an aryl group. ]
  3.  前記Aがアルキレン基、アリーレン基、アラルキレン基、a-COOR-b、a-CONHR-b、及びa-OR-b(ただし、aはRが結合した炭素原子との結合部位を表し、bは4級アンモニウム部位との結合部位を表し、Rはアルキレン基又はアリーレン基を表す)のいずれかを表し、Bがアルキレン基及びアリーレン基のいずれかを表す、請求項1又は2に記載の硬化型液体現像剤。 A represents an alkylene group, an arylene group, an aralkylene group, a-COOR 5 -b, a-CONHR 5 -b, and a-OR 5 -b (where a represents a bonding site with the carbon atom to which R 1 is bonded). Or b represents a bonding site with a quaternary ammonium moiety, R 5 represents an alkylene group or an arylene group, and B represents either an alkylene group or an arylene group. The curable liquid developer described in 1.
  4.  前記式(1)及び(2)で表される単量体単位の少なくとも一つの含有割合が、前記高分子化合物を構成している全単量体単位に対して、0.01mol%以上50mol%以下ある、請求項1~3のいずれか1項に記載の硬化型液体現像剤。 The content ratio of at least one of the monomer units represented by the formulas (1) and (2) is 0.01 mol% or more and 50 mol% with respect to all the monomer units constituting the polymer compound. The curable liquid developer according to any one of claims 1 to 3, which is as follows.
  5.  前記カチオン重合性液状モノマーがビニルエーテル化合物を含有する、請求項1~4のいずれか1項に記載の硬化型液体現像剤。 The curable liquid developer according to any one of claims 1 to 4, wherein the cationically polymerizable liquid monomer contains a vinyl ether compound.
  6.  前記重合開始剤が、下記式(4)で表される光重合開始剤を含有する、請求項1~5のいずれか1項に記載の硬化型液体現像剤。
    Figure JPOXMLDOC01-appb-C000003

    [前記式(4)中、R11とR12は互いに結合して環構造を形成し、xは1~8の整数を表し、yは3~17の整数を表す。]
    The curable liquid developer according to any one of claims 1 to 5, wherein the polymerization initiator contains a photopolymerization initiator represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000003

    [In Formula (4), R 11 and R 12 are bonded to each other to form a ring structure, x represents an integer of 1 to 8, and y represents an integer of 3 to 17. ]
  7.  前記トナー粒子が、ポリエステル樹脂を含有する、請求項1~6のいずれか1項に記載の硬化型液体現像剤。 The curable liquid developer according to any one of claims 1 to 6, wherein the toner particles contain a polyester resin.
  8.  前記カチオン重合性液状モノマーがビニルエーテル化合物を含有し、
     該ビニルエーテル化合物の25℃での体積抵抗率が、1×10Ω・cm以上1×1015Ω・cm以下である、請求項1~7のいずれか1項に記載の硬化型液体現像剤。
     
     
     
    The cationic polymerizable liquid monomer contains a vinyl ether compound;
    The curable liquid developer according to any one of claims 1 to 7, wherein the vinyl ether compound has a volume resistivity at 25 ° C of 1 × 10 9 Ω · cm to 1 × 10 15 Ω · cm. .


PCT/JP2017/041651 2016-11-21 2017-11-20 Curable liquid developer WO2018092902A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016225680 2016-11-21
JP2016-225680 2016-11-21
JP2017-183477 2017-09-25
JP2017183477A JP2018087964A (en) 2016-11-21 2017-09-25 Curable liquid developer

Publications (1)

Publication Number Publication Date
WO2018092902A1 true WO2018092902A1 (en) 2018-05-24

Family

ID=62145511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041651 WO2018092902A1 (en) 2016-11-21 2017-11-20 Curable liquid developer

Country Status (1)

Country Link
WO (1) WO2018092902A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431739A (en) * 1977-08-12 1979-03-08 Eastman Kodak Co Negatively charged liquid developer for electrophotography
JPS6139058A (en) * 1984-07-17 1986-02-25 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト Electrostatic copying suspension developing agent and manufacture thereof
JPH04336543A (en) * 1991-02-13 1992-11-24 Xerox Corp Liquid developer containing hardening liquid vehicle
JPH06236078A (en) * 1990-03-30 1994-08-23 Xerox Corp Liquid developer having hardening liquid vehicle
JPH07261467A (en) * 1994-02-24 1995-10-13 Xerox Corp Positively charged liquid developer
JPH07319223A (en) * 1994-05-26 1995-12-08 Xerox Corp Liquid developer and liquid electrostatic copy developer
JP2005107543A (en) * 2003-09-30 2005-04-21 Samsung Electronics Co Ltd Toner composition
JP2008110606A (en) * 2006-10-30 2008-05-15 Xerox Corp Birefringence sign material, image receiving substrate and item authenticating system
JP2012141463A (en) * 2010-12-29 2012-07-26 Fuji Xerox Co Ltd Liquid developer, developer cartridge, image forming method, and image forming apparatus
JP2013072983A (en) * 2011-09-27 2013-04-22 Fuji Xerox Co Ltd Liquid developer, developer cartridge, process cartridge, image forming device and image forming method
JP2013152348A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Liquid developer
JP2015127812A (en) * 2013-11-28 2015-07-09 キヤノン株式会社 Ultraviolet-ray curable liquid developer
JP2016130012A (en) * 2015-01-09 2016-07-21 キヤノン株式会社 Ultraviolet curable liquid composition, ultraviolet curable inkjet ink, ultraviolet curable wet electrophotographic liquid developer, ultraviolet curable electrostatic inkjet ink, and image formation method using the same
JP2016224408A (en) * 2015-05-27 2016-12-28 キヤノン株式会社 Liquid developer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431739A (en) * 1977-08-12 1979-03-08 Eastman Kodak Co Negatively charged liquid developer for electrophotography
JPS6139058A (en) * 1984-07-17 1986-02-25 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト Electrostatic copying suspension developing agent and manufacture thereof
JPH06236078A (en) * 1990-03-30 1994-08-23 Xerox Corp Liquid developer having hardening liquid vehicle
JPH04336543A (en) * 1991-02-13 1992-11-24 Xerox Corp Liquid developer containing hardening liquid vehicle
JPH07261467A (en) * 1994-02-24 1995-10-13 Xerox Corp Positively charged liquid developer
JPH07319223A (en) * 1994-05-26 1995-12-08 Xerox Corp Liquid developer and liquid electrostatic copy developer
JP2005107543A (en) * 2003-09-30 2005-04-21 Samsung Electronics Co Ltd Toner composition
JP2008110606A (en) * 2006-10-30 2008-05-15 Xerox Corp Birefringence sign material, image receiving substrate and item authenticating system
JP2012141463A (en) * 2010-12-29 2012-07-26 Fuji Xerox Co Ltd Liquid developer, developer cartridge, image forming method, and image forming apparatus
JP2013072983A (en) * 2011-09-27 2013-04-22 Fuji Xerox Co Ltd Liquid developer, developer cartridge, process cartridge, image forming device and image forming method
JP2013152348A (en) * 2012-01-25 2013-08-08 Seiko Epson Corp Liquid developer
JP2015127812A (en) * 2013-11-28 2015-07-09 キヤノン株式会社 Ultraviolet-ray curable liquid developer
JP2016130012A (en) * 2015-01-09 2016-07-21 キヤノン株式会社 Ultraviolet curable liquid composition, ultraviolet curable inkjet ink, ultraviolet curable wet electrophotographic liquid developer, ultraviolet curable electrostatic inkjet ink, and image formation method using the same
JP2016224408A (en) * 2015-05-27 2016-12-28 キヤノン株式会社 Liquid developer

Similar Documents

Publication Publication Date Title
JP6666038B2 (en) Liquid developer
JP6468947B2 (en) Ultraviolet curable liquid developer and method for producing the same
JP6501615B2 (en) Liquid developer and method for producing the liquid developer
JP6129144B2 (en) Ultraviolet curable liquid developer and image forming method
US9891546B2 (en) Ultraviolet-curable liquid developer
US9891547B2 (en) Ultraviolet-curable liquid developer
US20180210362A1 (en) Method of producing curable liquid developer and curable liquid developer
JP2018092129A (en) Liquid developer and method for manufacturing liquid developer
US9971268B2 (en) Curable liquid developer having a cationically polymerizable liquid monomer with a monofunctional vinyl ether compound
JP2022062022A (en) Photosensitive coloring resin composition, color filter and method for producing the same, and display device
US20180059566A1 (en) Uv-curable liquid developer, fixing method, image forming method, and uv-curable composition
US9798265B2 (en) Liquid developer
JP2016224103A (en) Liquid developer, manufacturing method of liquid developer, and new polymer compound having primary amino group
WO2018092902A1 (en) Curable liquid developer
JP2018087964A (en) Curable liquid developer
JP6516565B2 (en) Hardened liquid developer
WO2018097169A1 (en) Liquid developer and method for producing liquid developer
JP6505037B2 (en) UV curable liquid developer
WO2019088246A1 (en) Curable liquid developer and image forming method using said curable liquid developer
JP6505036B2 (en) UV curable liquid developer
JP7140609B2 (en) Liquid developer and method for producing the liquid developer
JP2019194633A (en) Liquid developer
JP2019174522A (en) Curable liquid developer
WO2016190441A1 (en) Uv-curable liquid developer, fixing method, image forming method, and uv-curable composition
JP2018156056A (en) Curable liquid developer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872797

Country of ref document: EP

Kind code of ref document: A1