WO2018092900A1 - Wheel cylinder for drum brake and drum brake for vehicle - Google Patents

Wheel cylinder for drum brake and drum brake for vehicle Download PDF

Info

Publication number
WO2018092900A1
WO2018092900A1 PCT/JP2017/041610 JP2017041610W WO2018092900A1 WO 2018092900 A1 WO2018092900 A1 WO 2018092900A1 JP 2017041610 W JP2017041610 W JP 2017041610W WO 2018092900 A1 WO2018092900 A1 WO 2018092900A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
brake shoe
brake
shoe
drum
Prior art date
Application number
PCT/JP2017/041610
Other languages
French (fr)
Japanese (ja)
Inventor
智之 馬杉
真吾 岩崎
岩井 俊介
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2018092900A1 publication Critical patent/WO2018092900A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • F16D65/56Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut

Definitions

  • the present invention relates to a drum brake wheel cylinder and a vehicle drum brake.
  • Patent Document 1 a vehicular drum brake having a strut with an adjuster for automatically adjusting the shoe clearance of the brake shoe is known (for example, Patent Document 1).
  • drum brake could be made smaller.
  • one of the problems of the present invention is to obtain a drum brake wheel cylinder and a vehicle drum brake that can eliminate, for example, a strut with an adjuster.
  • a drum brake wheel cylinder includes, for example, a housing provided with a cylinder hole and a first brake shoe that is accommodated in the cylinder hole so as to be movable in an axial direction in a pressurized state of a pressure chamber in the cylinder hole.
  • a first piston that presses in one of the axial directions
  • a second piston that is accommodated in the cylinder hole so as to be movable in the axial direction and presses the second brake shoe in the axial direction in the axial direction.
  • the rotation angle about the axis with respect to the housing increases.
  • the one piston that is rotationally displaced by the ratchet mechanism and the brake shoe that is pressed by the piston are disposed between the first piston and the second piston. Arranged.
  • a single wheel cylinder can have a shoe clearance adjustment function for two brake shoes with a simple configuration, for example, because the movable parts of the wheel cylinder can function as a strut with an adjuster.
  • a strut with an adjuster provided separately from the wheel cylinder is not required. Therefore, for example, the vehicle drum brake can be configured more compactly. Further, for example, the labor and cost required for manufacturing the vehicle drum brake can be reduced by reducing the number of parts. Contributes to improved workability when replacing brake shoes (lining).
  • the ratio of the increase amount of the length of the movable part to the increase amount of the stroke of one of the plurality of extension mechanisms is different from the ratio of the other extension mechanism. Different.
  • drum brake wheel cylinder for example, even when the length of the movable part increases with time, the change with time (displacement) of the relative position of the movable part with respect to the housing is set smaller. can do.
  • the first brake shoe is a leading shoe for forward rotation of the wheel
  • the second brake shoe is a trailing shoe for forward rotation of the wheel.
  • the ratio of the extension mechanism is equal to the ratio between the first piston and the first brake shoe.
  • the ratio of the extension mechanism provided between the first piston and the second piston is greater than the ratio of the other extension mechanism.
  • drum brake wheel cylinder for example, when the wear speed of the brake shoe lining serving as the leading shoe against forward rotation is greater than the wear speed of the brake shoe lining serving as the trailing shoe, It becomes possible to set the change with time of the relative position of the movable part smaller.
  • the movable component is And a strut between the first brake shoe and the second brake shoe.
  • Such a wheel cylinder eliminates, for example, a strut with an adjuster provided separately from the wheel cylinder in a vehicle drum brake having the lever (for example, a parking brake operating lever). Therefore, for example, the vehicle drum brake can be configured more compactly. Further, for example, the labor and cost required for manufacturing the vehicle drum brake can be reduced by reducing the number of parts.
  • FIG. 1 is an exemplary and schematic side view of the vehicle brake according to the embodiment from the outside in the vehicle width direction.
  • FIG. 2 is an exemplary and schematic side view of the wheel cylinder of the vehicle brake according to the embodiment from the outside in the vehicle width direction.
  • FIG. 3 is an exemplary and schematic top view of the wheel cylinder of the vehicle brake according to the embodiment from above the vehicle.
  • FIG. 4 is an exemplary and schematic rear view of the wheel cylinder of the vehicle brake according to the embodiment from the front of the vehicle.
  • FIG. 5 is a schematic and exemplary cross-sectional view showing the internal configuration of the wheel cylinder of the vehicle brake according to the embodiment, and is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a schematic and exemplary cross-sectional view at the same position as FIG. 5 showing the internal configuration of the wheel cylinder of the vehicle brake according to the modification.
  • the rear side in the vehicle front-rear direction is indicated by an arrow X
  • the inner side in the vehicle width direction (axle direction) is indicated by an arrow Y
  • the upper side in the vehicle vertical direction is indicated by an arrow Z.
  • the brake device 1 which is an example of a vehicle brake is applied to the right rear wheel (non-driving wheel)
  • the present invention can be similarly applied to other wheels. It is.
  • FIG. 1 is a side view of the brake device 1 from the outside in the vehicle width direction.
  • the brake device 1 is accommodated inside a peripheral wall (not shown) of a cylindrical wheel.
  • the brake device 1 is a so-called drum brake.
  • the brake device 1 includes two brake shoes 3 ⁇ / b> L and 3 ⁇ / b> T that are separated in the front-rear direction.
  • the two brake shoes 3L and 3T extend in an arc shape along the inner peripheral surface 2a of the cylindrical drum 2.
  • the drum 2 rotates integrally with the wheel around a rotation center C along the vehicle width direction.
  • the brake device 1 moves the two brake shoes 3L and 3T so as to contact the inner peripheral surface 2a of the cylindrical drum 2, and brakes the drum 2 and thus the wheel by friction between the brake shoes 3L and 3T and the drum 2.
  • the wheel rotation direction Rw when the vehicle moves forward is the clockwise direction in FIG. 1
  • the right brake shoe 3L in FIG. 1 is an example of a leading shoe
  • the left brake shoe 3T is a trailing shoe. It is an example.
  • the brake shoes 3L and 3T are examples of a braking member.
  • the brake shoe 3L is an example of a first brake shoe
  • the brake shoe 3T is an example of a second brake shoe.
  • the brake device 1 is an example of a vehicle brake.
  • the brake device 1 includes a wheel cylinder 100 that operates by hydraulic pressure and a motor (not shown) that operates by energization as actuators that move the brake shoes 3L and 3T.
  • the wheel cylinder 100 and the motor can move the two brake shoes 3L and 3T, respectively.
  • the wheel cylinder 100 is used, for example, for braking during traveling, and the motor is used, for example, for braking during parking. That is, the brake device 1 is an example of an electric parking brake.
  • the motor may be used for braking during traveling.
  • the brake device 1 includes a disk-shaped back plate 4.
  • the back plate 4 is provided in a posture intersecting with the rotation center C. That is, the back plate 4 extends substantially along the direction intersecting with the rotation center C, specifically, substantially along the direction orthogonal to the rotation center C.
  • the back plate 4 directly or indirectly supports each component of the brake device 1.
  • the back plate 4 supports components positioned outward in the vehicle width direction from the back plate 4 as shown in FIG. Further, the back plate 4 supports a component (not shown) positioned inward in the vehicle width direction with respect to the back plate 4.
  • the components positioned inward in the vehicle width direction supported by the back plate 4 include, for example, a motor for an electric parking brake, and a motion conversion mechanism that converts the rotation of the motor into a linear movement of the cable 62 (or rod). (Not shown).
  • the back plate 4 is an example of a support member.
  • the cable 62 can also be referred to as an operating member.
  • the back plate 4 is coupled to a connection member (not shown) with the vehicle body.
  • the connection member is, for example, a part of the suspension (for example, an arm, a link, an attachment member, etc.).
  • the opening 4a provided in the back plate 4 is used for coupling with the connection member.
  • the brake device 1 of FIG. 1 can be used for both drive wheels and non-drive wheels. When the brake device 1 is used for a drive wheel, an axle shaft (not shown) passes through an opening 4b provided in the approximate center of the back plate 4.
  • the rotation center C1 is substantially parallel to the rotation center C of the wheel.
  • the rotation center C1 can also be referred to as a rotation support point.
  • the wheel cylinder 100 is supported on the upper part of the back plate 4.
  • the wheel cylinder 100 has two pressing portions 110l and 110t that can project in the vehicle front-rear direction (left-right direction in FIG. 1).
  • the wheel cylinder 100 projects the two pressing portions 110l and 110t in accordance with the pressurization of the internal pressure chamber.
  • the protruding two pressing portions 110l and 110t press the upper portions 3b of the brake shoes 3L and 3T, respectively. Due to the protrusion of the two movable parts, the two brake shoes 3L and 3T each rotate about the rotation center C1 and move so that the upper parts 3b are separated from each other in the vehicle front-rear direction. As a result, the two brake shoes 3L and 3T move outward in the radial direction of the rotation center C of the wheel. A belt-like lining 3c along the cylindrical surface is provided on the outer periphery of each brake shoe 3L, 3T.
  • the lining 3c and the inner peripheral surface 2a of the drum 2 come into contact with each other by the movement of the two brake shoes 3L and 3T outward in the radial direction of the rotation center C.
  • the friction between the lining 3c and the inner peripheral surface 2a brakes the drum 2 and thus the wheel.
  • the stroke between the non-braking position and the braking position of the brake shoes 3L and 3T is very small, for example, 1 mm or less.
  • the brake device 1 includes a return member 5.
  • the return member 5 removes the two brake shoes 3L and 3T from the drum 2 Is returned from a position in contact with the inner peripheral surface 2a (braking position) to a position not in contact with the inner peripheral surface 2a of the drum 2 (nonbraking position).
  • the return member 5 is an elastic member such as a coil spring, for example, and forces the brake shoes 3L and 3T to approach the other brake shoes 3L and 3T, that is, a direction away from the inner peripheral surface 2a of the drum 2. Giving the power of.
  • the return member 5 can also be called an urging member or an elastic member.
  • the brake device 1 includes a moving mechanism 6. Based on the operation of a drive mechanism (not shown) including a motor and a motion conversion mechanism, the moving mechanism 6 moves the two brake shoes 3L and 3T from the non-braking position to the braking position.
  • a drive mechanism not shown
  • the moving mechanism 6 moves the two brake shoes 3L and 3T from the non-braking position to the braking position.
  • the moving mechanism 6 is provided outside the back plate 4 in the vehicle width direction.
  • the moving mechanism 6 includes a lever 61, a cable 62, and a wheel cylinder 100.
  • the lever 61 is provided between one of the two brake shoes 3L and 3T, for example, the left brake shoe 3T in FIG. 1 and the back plate 4, and rotates around the rotation center C2 in the brake shoe 3T. Supported as possible.
  • the rotation center C2 is located at the end of the brake shoe 3L opposite to the rotation center C1 (upper side in FIG. 1) and is substantially parallel to the rotation center C1.
  • the cable 62 moves substantially along the back plate 4 and moves the lower end 61a of the lever 61 on the side far from the rotation center C2 on the other hand, for example, in a direction approaching the right brake shoe 3L in FIG.
  • the operating position PL1 where the lever 61 is moved by the cable 62 is indicated by a two-dot chain line in FIG.
  • the lever 61 has a protrusion 61b that contacts the inner peripheral surface of the brake shoe 3T. By this protrusion 61b, an initial position PL0 in a state before being moved by the cable 62 of the lever 61 is determined.
  • the protrusion 61b can also be referred to as an initial position setting unit.
  • the movable part 110 movably accommodated in the wheel cylinder 100 includes a lever 61 that is moved by the cable 62, a brake shoe 3L that is different from the brake shoe 3T connected to the lever 61, and It can be stretched by interposing between the two.
  • the connection position P 1 between the lever 61 and the movable part 110 is set between the rotation center C 2 and the connection position P 2 between the cable 62 and the lever 61.
  • connection position P2 between the cable 62 and the lever 61 corresponds to a force point
  • the rotation center C2 corresponds to a fulcrum
  • the connection position P1 between the lever 61 and the movable part 110 corresponds to an action point.
  • the brake shoe 3L is in contact with the inner peripheral surface 2a and the lever 61 moves to the right in FIG. 1, that is, in the direction in which the movable part 110 pushes the brake shoe 3L (arrow b)
  • the movable part 110 is moved.
  • the lever 61 rotates in the direction opposite to the direction in which the lever 61 moves, that is, counterclockwise in FIG.
  • connection position P1 with the movable part 110 serves as a fulcrum.
  • the movable part 110 of the wheel cylinder 100 functions as a strut interposed between the brake shoes 3L and 3T together with the lever 61 when the brake device 1 operates as an electric brake.
  • FIG. 2 is a side view of the wheel cylinder 100
  • FIG. 3 is a top view of the wheel cylinder 100
  • FIG. 4 is a rear view of the wheel cylinder 100
  • FIG. 5 is a VV cross-sectional view of FIG.
  • the axial direction of the central axis Ax of the cylinder hole 10a is simply referred to as an axial direction
  • the brake shoe 3L side (the right side in FIG. 5) is axially shifted in the axial direction.
  • the side is referred to as the other axial direction (left side in FIG. 5).
  • the wheel cylinder 100 includes a housing 10 provided with a cylinder hole 10a.
  • the housing 10 is fixed to the back plate 4 (FIG. 1).
  • the first piston 20 and the second piston 30 are accommodated in the cylinder hole 10a so as to be movable along the axial direction of the central axis Ax of the cylinder hole 10a.
  • the central axis Ax extends substantially along the vehicle front-rear direction as an example, but is not limited thereto.
  • the pressure chamber Rp is formed between the first piston 20 and the second piston 30 in the cylinder hole 10a.
  • the first piston 20 projects in one axial direction
  • the second piston 30 projects in the other axial direction. That is, the first piston 20 can function as the pressing portion 110l, and the second piston 30 can function as the pressing portion 110t.
  • the first piston 20 In the depressurized state of the pressure chamber Rp, the first piston 20 returns to the other side in the axial direction by receiving the force of the return member 5 or the like via the brake shoe 3L (FIG. 1), and the second piston 30 is moved to the brake shoe 3T (FIG. By returning to one side in the axial direction by receiving the force of the return member 5 or the like via 1).
  • the first piston 20 and the second piston 30 can move integrally along the axial direction of the cylinder hole 10a. That is, the first piston 20 and the second piston 30 can function as the movable part 110 (strut). In the present embodiment, only the first piston 20 and the second piston 30 function as the movable part 110. However, the present invention is not limited to this. For example, the first piston 20 and the second piston 30 There may be another component that moves integrally as the movable component 110.
  • the first piston 20 has a linear motion part 21, a rotatable part 22, and a linear motion part 23.
  • the second piston 30 has a linear motion part 31.
  • the linear motion part 21 is restricted from turning around the central axis Ax.
  • the linear motion part 21 is provided with a connection part 21a with the brake shoe 3L.
  • the connecting portion 21a allows relative movement in the vehicle vertical direction with respect to the brake shoe 3L, restricts relative movement in the vehicle width direction with respect to the brake shoe 3L, and around the central axis Ax with respect to the brake shoe 3L.
  • the brake shoe 3L is connected in a state in which relative rotation is limited. That is, in the present embodiment, as an example, the rotation of the linear motion portion 21 around the central axis Ax is limited by the brake shoe 3L.
  • the linear motion part 21 can also be referred to as a rotation restriction part or a non-rotation part. Note that the rotation of the linear motion portion 21 around the central axis Ax may be limited by a member other than the brake shoe 3L, such as the housing 10, for example.
  • the rotatable part 22 has a slide part 22a and a protruding part 22b.
  • the slide portion 22a is accommodated in the cylinder hole 10a so as to be slidable along the central axis Ax.
  • An annular concave groove 22c is provided on the outer peripheral surface of the slide portion 22a.
  • a seal member 24 is accommodated in the concave groove 22c. The seal member 24 seals a gap between the inner peripheral surface of the cylinder hole 10a and the outer peripheral surface of the slide portion 22a, and suppresses leakage of hydraulic oil from the gap.
  • the seal member 24 slides in the axial direction together with the slide portion 22a.
  • the protruding portion 22b protrudes from the slide portion 22a in one axial direction with an outer diameter smaller than the outer diameter of the slide portion 22a.
  • the linear motion part 21 and the rotatable part 22 are connected via a screw mechanism.
  • the linear motion portion 21 is provided with a male screw portion 21b
  • the rotatable portion 22 is provided with a female screw portion 22d that meshes with the male screw portion 21b.
  • May be provided, and the rotatable part 22 may be provided with a male screw part.
  • the first extension mechanism 41 is configured by the male screw portion 21b and the female screw portion 22d.
  • the amount of increase in the length of the sub-assembly of the linear motion part 21 and the rotatable part 22 per unit rotation angle of the rotatable part 22 is determined by the pitch of the screw part.
  • the rotation of the linear motion part 31 of the second piston 30 around the central axis Ax is restricted.
  • the linear motion part 31 is provided with a connection part 31a with the brake shoe 3T.
  • the connecting portion 31a allows relative movement in the vehicle vertical direction with respect to the brake shoe 3L, restricts relative movement in the vehicle width direction with respect to the brake shoe 3T, and around the central axis Ax with respect to the brake shoe 3T.
  • the brake shoe 3T is connected in a state in which relative rotation is limited. That is, in the present embodiment, as an example, the rotation of the linear motion portion 31 around the central axis Ax is limited by the brake shoe 3T.
  • the linear motion part 31 may also be referred to as a rotation restriction part or a non-rotation part. Note that the rotation of the linear motion portion 31 around the central axis Ax may be limited by a member other than the brake shoe 3T, such as the housing 10 or the like.
  • An annular groove 31 d is provided on the outer peripheral surface of the linear motion portion 31.
  • the sealing member 33 is accommodated in the concave groove 31d.
  • the seal member 33 seals a gap between the inner peripheral surface of the cylinder hole 10a and the outer peripheral surface of the linear motion portion 31, and suppresses leakage of hydraulic oil from the gap.
  • the seal member 33 slides in the axial direction together with the linear motion portion 31.
  • Rotation around the central axis Ax is also restricted for the linear motion part 23 of the first piston 20.
  • the linear motion part 23 is provided with a connection part 23 a, and the connection part 23 a meshes with a connection part 31 b provided on the linear motion part 31 of the second piston 30.
  • the relative rotation about the central axis Ax between the linear motion part 23 and the linear motion part 31 is restricted by the meshing of the connection part 23a and the connection part 31b.
  • the rotation of the linear motion portion 31 around the central axis Ax is limited by the brake shoe 3L. Accordingly, the rotation of the linear motion portion 23 around the central axis Ax is limited by the brake shoe 3L.
  • the rotation of the linear motion portion 23 around the central axis Ax may be limited by a member other than the brake shoe 3T, such as the housing 10.
  • the connecting portion 23a and the connecting portion 31b are connected in a state that restricts relative rotation around the central axis Ax and allows relative movement in the direction along the central axis Ax.
  • the linear motion part 23 and the rotatable part 22 are connected via a screw mechanism.
  • the linear motion portion 23 is provided with a male screw portion 23b
  • the rotatable portion 22 is provided with a female screw portion 22e that meshes with the male screw portion 23b.
  • the linearly-moving portion 23 may be provided with a female screw portion
  • the rotatable portion 22 may be provided with a male screw portion.
  • the second extending mechanism 42 is constituted by the male screw portion 23b and the female screw portion 22d.
  • the amount of increase in the length of the sub-assembly of the linear motion portion 23 and the rotatable portion 22 per unit rotation angle of the rotatable portion 22 in the second extension mechanism 42 is determined by the pitch of the screw portion.
  • the first elongating mechanism 41 and the second elongating mechanism 42 have opposite screw spiral directions.
  • the first extension mechanism 41 and the second extension mechanism 42 have a ratio of the increase amount of the length of the movable part 110 corresponding to the increase amount of the stroke of the first piston 20 or the second piston 30. Is different. Therefore, when the brake shoe 3L and the brake shoe 3T have different wear speeds of the lining 3c over time, the rate of increase in the length of the movable part 110 in one axial direction and the length in the other axial direction are increased. By making the increase rate different from this, it is possible to set the change (shift) with time of the relative position (for example, the central position in the axial direction) of the movable part 110 with respect to the housing 10 to be smaller.
  • the rate of increase of the first extension mechanism 41 located near the brake shoe 3L serving as the leading shoe for the forward rotation of the wheel and the drum 2 is higher than the rate of increase of the second extension mechanism 42.
  • the screw pitch of the first extension mechanism 41 (that is, the advance amount per one screw rotation) is set to be larger than the screw pitch of the second extension mechanism 42.
  • the wear speed of the lining 3 c of the brake shoe 3 ⁇ / b> L serving as a leading shoe against forward rotation may be greater than the wear speed of the lining 3 c of the brake shoe 3 ⁇ / b> T serving as a trailing shoe.
  • the change (deviation) can be set smaller.
  • the ratio of the wear speed of the lining 3c of the leading shoe and the wear speed of the lining 3c of the trailing shoe is known by, for example, a statistical method for each vehicle type, vehicle, region, etc.
  • the increasing rate of the first extension mechanism 41 and the second extension mechanism 42 for example, the screw pitch in the screw mechanism, can be set according to the ratio, for example, in proportion to the ratio.
  • the rotation drive mechanism 50 includes a linear motion member 51, a swing member 52, a biasing member 53, and a one-way rotation portion 54.
  • the linear motion member 51 is supported by the first piston 20 and reciprocates along the central axis Ax together with the first piston 20.
  • the rotation of the linear motion member 51 around the central axis Ax is limited by other members.
  • the swing member 52 is swingably supported by the housing 10 and swings about the swing center C ⁇ b> 3 according to a linear reciprocation along the central axis Ax of the linear motion member 51.
  • the biasing member 53 biases the linear motion member 51 or the swing member 52 so that the linear motion member 51 follows the return of the first piston 20.
  • the linear motion member 51, the swing member 52, and the urging member 53 constitute a direct motion swing conversion mechanism.
  • An annular seal member 55 is interposed between the linear motion member 51 and the first piston 20 (projecting portion 22b) to prevent foreign matter from entering.
  • the one-way rotating portion 54 is configured to rotate mainly in one direction by rotating by the forward movement of the swinging member 52 and not rotating by the backward movement of the swinging member 52.
  • a claw 52a (latch) provided on the swinging member 52 and a plurality of teeth 54a provided on the one-way rotating portion 54 (gear) are used in one rotation direction (clockwise direction in FIG. 4).
  • the pivotable part 22 is configured to rotate in accordance with the rotation of the one-way rotating part 54.
  • the one-way rotating part 54 is fixed to the rotatable part 22.
  • the rotatable portion 22 only needs to rotate according to the rotation of the one-way rotating portion 54, and may not be integrated with the one-way rotating portion 54.
  • the gap (shoe clearance) between the outer peripheral surface of the lining 3c of the brake shoes 3L and 3T and the inner peripheral surface 2a of the drum 2 increases with time, the amount of movement of the brake shoes 3L and 3T increases.
  • the stroke of the linear motion member 51 that operates in conjunction with the first piston 20, that is, the stroke between the pressure-removed state and the pressurized state of the pressure chamber Rp increases.
  • both the first extension mechanism 41 and the second extension mechanism 42 are movable according to the rotation of the rotatable portion 22 by setting the screw spiral direction in the screw mechanism.
  • the length of the part 110 in the direction along the central axis Ax is increased. Therefore, according to the present embodiment, the length of the movable part 110 increases as the shoe clearance increases due to the operation of the rotation drive mechanism 50, the first extension mechanism 41, and the second extension mechanism 42, and the shoe clearance Can be reduced. Therefore, according to the present embodiment, the shoe clearance can be maintained within a certain range.
  • the range includes an appropriate value depending on the specifications of each part of the rotation drive mechanism 50, the first extension mechanism 41, and the second extension mechanism 42, including the interval (angular interval) between the teeth 54 a of the unidirectional rotation unit 54. Can be adjusted.
  • the first extension mechanism 41 has the linear motion portion 21 and the rotatable portion 22.
  • the second extension mechanism 42 increases the length of the subassembly (two parts) of the linear motion part 23 and the rotatable part 22. That is, in both the first extension mechanism 41 and the second extension mechanism 42, the length of the movable part 110 is increased as the stroke between the pressure-removed state and the pressurized state of the first piston 20 is increased.
  • the pivotable portion 22 of the first piston 20 is rotationally displaced by the ratchet mechanism, so that the axial interval between the first piston 20 and the second piston 30 and the pistons 20 and 30 correspond to these.
  • the distance between the brake shoes 3L and 3T in the axial direction can be appropriately adjusted according to the stroke. That is, one wheel cylinder 100 can be provided with a shoe clearance adjusting function for the two brake shoes 3L and 3T with a simple configuration.
  • the movable component 110 functions as a strut that intervenes with the lever 61 between the two brake shoes 3L and 3T when the lever 61 is braked. Therefore, according to this embodiment, the strut with an adjuster provided separately from the wheel cylinder 100 becomes unnecessary.
  • both the first extension mechanism 41 and the second extension mechanism 42 are configured to increase the length of the movable part 110 in accordance with an increase in the stroke of the first piston 20, but this is not limitative.
  • both the first extension mechanism 41 and the second extension mechanism 42 may be configured to increase the length of the movable part 110 in accordance with an increase in the stroke of the second piston 30.
  • the first extension mechanism 41 increases the length of the movable part 110 in accordance with an increase in the stroke of the first piston 20, and the second extension mechanism 42 has a movable part in accordance with an increase in the stroke of the second piston 30.
  • the length of 110 may be increased.
  • the first extension mechanism 41 and the second extension mechanism 42 have a ratio of the increase amount of the length of the movable part 110 corresponding to the increase amount of the stroke of the first piston 20 or the second piston 30. Is different. Therefore, according to this embodiment, when the brake shoe 3L and the brake shoe 3T have different wear speeds of the lining 3c with time, the rate of increase in the length of the movable part 110 in one axial direction is as follows: By changing the rate of increase in the length in the other axial direction, even if the length of the movable part 110 is increased, the change (shift) with time of the relative position of the movable part 110 with respect to the housing 10 is changed. , Can be set smaller.
  • the first extension mechanism 41 and the second extension mechanism 42 have a ratio of the increase amount of the length of the movable part 110 corresponding to the increase amount of the stroke of the first piston 20 or the second piston 30. Is different. Therefore, according to the present embodiment, for example, by appropriately setting the ratio of the increase amount, the change (deviation) with time of the relative position (for example, the central position in the axial direction) of the movable part 110 with respect to the housing 10 is set to be smaller. It becomes possible to do.
  • the ratio of the first extension mechanism 41 positioned near the brake shoe 3 ⁇ / b> L serving as a leading shoe for the forward rotation of the wheel and the drum 2 is larger than the ratio of the second extension mechanism 42. It is configured as follows. Therefore, according to the present embodiment, for example, when the wear rate of the lining 3c of the brake shoe 3L serving as a leading shoe against forward rotation is higher than the wear rate of the lining 3c of the brake shoe 3T serving as a trailing shoe, the housing Thus, it is possible to set the change with time of the relative position of the movable part 110 with respect to 10 smaller.
  • FIG. 6 is a cross-sectional view of a modified wheel cylinder 100A at the same position as in FIG.
  • the second piston 30 ⁇ / b> A has a linear motion portion 31 and a rotatable portion 32.
  • the connecting portion 32a of the rotatable portion 32 and the connecting portion 22f of the rotatable portion 22 of the first piston 20A restrict relative rotation around the central axis Ax and extend in the direction along the central axis Ax. Connected in a state that allows relative movement.
  • the second extension mechanism 42 ⁇ / b> A includes a female screw part 31 c provided in the linear motion part 31 and a male screw part 32 b provided in the rotatable part 32.
  • the second extension mechanism 42A has a full axial length between the linear motion portion 31 and the rotatable portion 32, that is, the second piston 30A.
  • the total length, and thus the total length of the movable part 110A is set to increase.
  • the ratio of the increase amount of the length of the movable part 110A to the increase amount of the stroke of the first piston 20A of the first extension mechanism 41 is different from the ratio of the second extension mechanism 42A.
  • the same effect as the said embodiment is acquired.
  • the first extension mechanism 41 and the second extension mechanism 42A can have the same screw spiral direction.
  • the configuration in which the operating member that moves the braking member is the cable 62 is exemplified.
  • the operating member may be other than the cable 62, such as a rod or a lever.
  • the actuating member may move the braking member by pushing instead of pulling.
  • the extension mechanism only needs to change the length of the movable component in accordance with the stroke of the piston, and is not limited to the disclosed configuration.
  • stretching mechanism can be comprised by changing suitably.
  • the present invention can also be applied to a parking brake that brakes by moving the lever 61 by manual operation. In this case, the lever 61 is operated via a cable 62 connected to a manual operation member such as a hand lever or a foot pedal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

In the present invention a vehicle brake is, for example, equipped with: a movable component that includes a first piston for pressing a first brake shoe and a second piston for pressing a second brake shoe, and that is interposed between the first brake shoe and the second brake shoe so as to be able to move integrally inside a cylinder hole in a state in which a pressure chamber is in a non-pressurized state; a ratchet mechanism that rotationally displaces the first piston or the second piston such that the angle of rotation around an axis with respect to a housing increases as the stroke between the non-pressurized state and the pressurized state increases; and multiple extension mechanisms that increase the length of the movable component in the axial direction as the angle of rotation increases. One of the extension mechanisms is arranged between the one piston that is rotationally displaced by the ratchet mechanism and the brake shoe pressed by that piston, and the other extension mechanism is arranged between the first piston and the second piston.

Description

ドラムブレーキ用ホイールシリンダおよび車両用ドラムブレーキDrum brake wheel cylinder and vehicle drum brake
 本発明は、ドラムブレーキ用ホイールシリンダおよび車両用ドラムブレーキに関する。 The present invention relates to a drum brake wheel cylinder and a vehicle drum brake.
 従来、ブレーキシューのシュークリアランスを自動調整するためのアジャスタ付きストラットを有した車両用ドラムブレーキが、知られている(例えば、特許文献1)。 Conventionally, a vehicular drum brake having a strut with an adjuster for automatically adjusting the shoe clearance of the brake shoe is known (for example, Patent Document 1).
特開平11-351295号公報JP 11-351295 A
 この種のアジャスタ付きストラットは、構成部品のがたつきや、セット位置による影響を受け易く、安定したクリアランス調整が難しい場合がある。 ¡Struts with adjusters of this type are easily affected by rattling of component parts and set position, and stable clearance adjustment may be difficult.
 また、ドラムブレーキを、より小型に構成することができれば、有益である。 Also, it would be beneficial if the drum brake could be made smaller.
 そこで、本発明の課題の一つは、例えば、アジャスタ付きストラットを無くすことが可能なドラムブレーキ用ホイールシリンダおよび車両用ドラムブレーキを得ることである。 Therefore, one of the problems of the present invention is to obtain a drum brake wheel cylinder and a vehicle drum brake that can eliminate, for example, a strut with an adjuster.
 本開示のドラムブレーキ用ホイールシリンダは、例えば、シリンダ孔が設けられたハウジングと、上記シリンダ孔に軸方向に移動可能に収容され上記シリンダ孔内の圧力室の与圧状態で第一ブレーキシューを上記軸方向の一方に押圧する第一ピストンと、上記シリンダ孔に上記軸方向に移動可能に収容され上記与圧状態で第二ブレーキシューを上記軸方向の他方に押圧する第二ピストンと、を含み、上記圧力室の除圧状態では上記シリンダ孔内で上記軸方向に一体に移動可能に上記第一ブレーキシューと上記第二ブレーキシューとの間に介在する可動部品と、上記第一ピストンまたは上記第二ピストンの上記除圧状態と上記与圧状態との間のストロークが大きいほど上記ハウジングに対する軸回りの回転角度が大きくなるように上記第一ピストン及び上記第二ピストンの一方を回転変位させるラチェット機構と、上記回転角度が大きいほど上記可動部品の上記軸方向の長さを長くする複数の伸長機構と、を備え、一つの上記伸長機構は、上記ラチェット機構により回転変位される上記一方のピストンと該ピストンに押圧される上記ブレーキシューとの間に配設され、他の上記伸長機構は上記第一ピストンと上記第二ピストンとの間に配設される。 A drum brake wheel cylinder according to the present disclosure includes, for example, a housing provided with a cylinder hole and a first brake shoe that is accommodated in the cylinder hole so as to be movable in an axial direction in a pressurized state of a pressure chamber in the cylinder hole. A first piston that presses in one of the axial directions, and a second piston that is accommodated in the cylinder hole so as to be movable in the axial direction and presses the second brake shoe in the axial direction in the axial direction. A movable part interposed between the first brake shoe and the second brake shoe so as to be integrally movable in the axial direction within the cylinder hole in a pressure-removed state of the pressure chamber, and the first piston or As the stroke between the pressure-removed state and the pressure-applied state of the second piston increases, the rotation angle about the axis with respect to the housing increases. A ratchet mechanism that rotationally displaces one of the second piston and the second piston, and a plurality of extension mechanisms that increase the axial length of the movable part as the rotation angle increases. The one piston that is rotationally displaced by the ratchet mechanism and the brake shoe that is pressed by the piston are disposed between the first piston and the second piston. Arranged.
 このようなドラムブレーキ用ホイールシリンダによれば、ラチェット機構によって一つのピストンが回転変位されることで、第一ピストンと第二ピストンとの軸方向間隔、及び各ピストンとこれらに対応する各ブレーキシューとの軸方向間隔を上記ストロークに応じて適切に調節できるようになる。すなわち、一つのホイールシリンダに、簡素な構成にて、二つのブレーキシューにかかるシュークリアランス調整機能を持たせることができ、例えば、ホイールシリンダの可動部品をアジャスタ付きストラットとして機能させることができるため、ホイールシリンダとは別に設けられていたアジャスタ付きストラットが不要となる。よって、例えば、車両用ドラムブレーキをより小型に構成することができる。また、例えば、部品点数を削減できる分、車両用ドラムブレーキの製造に要する手間やコストを減らすことができる。ブレーキシュー(ライニング)交換の作業性向上にも寄与する。 According to such a drum brake wheel cylinder, one piston is rotationally displaced by the ratchet mechanism, so that the axial distance between the first piston and the second piston, and each piston and each brake shoe corresponding thereto. Can be adjusted appropriately according to the stroke. In other words, a single wheel cylinder can have a shoe clearance adjustment function for two brake shoes with a simple configuration, for example, because the movable parts of the wheel cylinder can function as a strut with an adjuster. A strut with an adjuster provided separately from the wheel cylinder is not required. Therefore, for example, the vehicle drum brake can be configured more compactly. Further, for example, the labor and cost required for manufacturing the vehicle drum brake can be reduced by reducing the number of parts. Contributes to improved workability when replacing brake shoes (lining).
 また、上記ドラムブレーキ用ホイールシリンダは、例えば、上記複数の伸長機構のうちの一つの、上記ストロークの増加量に対する上記可動部品の長さの増加量の比率が、他の伸長機構の上記比率と異なる。 Further, in the drum brake wheel cylinder, for example, the ratio of the increase amount of the length of the movable part to the increase amount of the stroke of one of the plurality of extension mechanisms is different from the ratio of the other extension mechanism. Different.
 このようなドラムブレーキ用ホイールシリンダによれば、例えば、可動部品の長さが経時的に増加した場合にあっても、ハウジングに対する可動部品の相対位置の経時的な変化(ずれ)をより小さく設定することができる。 According to such a drum brake wheel cylinder, for example, even when the length of the movable part increases with time, the change with time (displacement) of the relative position of the movable part with respect to the housing is set smaller. can do.
 また、上記ドラムブレーキ用ホイールシリンダでは、例えば、上記第一ブレーキシューは、ホイールの前進回転に対するリーディングシューであり、上記第二ブレーキシューは、当該ホイールの前進回転に対するトレーリングシューであり、二つの上記伸長機構のうち、上記第一ピストンと上記第一ブレーキシューとの間に上記伸長機構が配設される場合は当該伸長機構の上記比率が、また、上記第一ピストンと上記第一ブレーキシューとの間に上記伸長機構が配設されない場合は上記第一ピストンと上記第二ピストンとの間に配設される伸長機構の上記比率が、もう一つの上記伸長機構の上記比率よりも大きい。 In the drum brake wheel cylinder, for example, the first brake shoe is a leading shoe for forward rotation of the wheel, and the second brake shoe is a trailing shoe for forward rotation of the wheel. Among the extension mechanisms, when the extension mechanism is disposed between the first piston and the first brake shoe, the ratio of the extension mechanism is equal to the ratio between the first piston and the first brake shoe. When the extension mechanism is not provided between the first and second pistons, the ratio of the extension mechanism provided between the first piston and the second piston is greater than the ratio of the other extension mechanism.
 このようなドラムブレーキ用ホイールシリンダによれば、例えば、前進回転に対するリーディングシューとなるブレーキシューのライニングの摩耗速度が、トレーリングシューとなるブレーキシューのライニングの摩耗速度よりも大きい場合において、ハウジングに対する可動部品の相対位置の経時的な変化をより小さく設定することが可能となる。 According to such a drum brake wheel cylinder, for example, when the wear speed of the brake shoe lining serving as the leading shoe against forward rotation is greater than the wear speed of the brake shoe lining serving as the trailing shoe, It becomes possible to set the change with time of the relative position of the movable part smaller.
 また、上記ドラムブレーキ用ホイールシリンダでは、例えば、上記第一ブレーキシューおよび上記第二ブレーキシューのうち一方と回動可能に連結されたレバーが制動操作された際に、上記可動部品が、上記レバーと上記第一ブレーキシューおよび上記第二ブレーキシューのうち他方との間にストラットとして介在する。 In the drum brake wheel cylinder, for example, when a lever that is pivotably connected to one of the first brake shoe and the second brake shoe is braked, the movable component is And a strut between the first brake shoe and the second brake shoe.
 このようなホイールシリンダによれば、上記レバー(例えばパーキングブレーキ作動用レバーなど)を備えた車両用ドラムブレーキにおいて、例えば、ホイールシリンダとは別に設けられていたアジャスタ付きストラットが不要となる。よって、例えば、車両用ドラムブレーキをより小型に構成することができる。また、例えば、部品点数を削減できる分、車両用ドラムブレーキの製造に要する手間やコストを減らすことができる。 Such a wheel cylinder eliminates, for example, a strut with an adjuster provided separately from the wheel cylinder in a vehicle drum brake having the lever (for example, a parking brake operating lever). Therefore, for example, the vehicle drum brake can be configured more compactly. Further, for example, the labor and cost required for manufacturing the vehicle drum brake can be reduced by reducing the number of parts.
図1は、実施形態の車両用ブレーキの車幅方向外方からの例示的かつ模式的な側面図である。FIG. 1 is an exemplary and schematic side view of the vehicle brake according to the embodiment from the outside in the vehicle width direction. 図2は、実施形態の車両用ブレーキのホイールシリンダの車幅方向外方からの例示的かつ模式的な側面図である。FIG. 2 is an exemplary and schematic side view of the wheel cylinder of the vehicle brake according to the embodiment from the outside in the vehicle width direction. 図3は、実施形態の車両用ブレーキのホイールシリンダの車両上方からの例示的かつ模式的な上面図である。FIG. 3 is an exemplary and schematic top view of the wheel cylinder of the vehicle brake according to the embodiment from above the vehicle. 図4は、実施形態の車両用ブレーキのホイールシリンダの車両前方からの例示的かつ模式的な背面図である。FIG. 4 is an exemplary and schematic rear view of the wheel cylinder of the vehicle brake according to the embodiment from the front of the vehicle. 図5は、実施形態の車両用ブレーキのホイールシリンダの内部構成を示す模式的かつ例示的な断面図であって、図2のV-V断面図である。FIG. 5 is a schematic and exemplary cross-sectional view showing the internal configuration of the wheel cylinder of the vehicle brake according to the embodiment, and is a cross-sectional view taken along the line VV of FIG. 図6は、変形例の車両用ブレーキのホイールシリンダの内部構成を示す図5と同等位置での模式的かつ例示的な断面図である。FIG. 6 is a schematic and exemplary cross-sectional view at the same position as FIG. 5 showing the internal configuration of the wheel cylinder of the vehicle brake according to the modification.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 Hereinafter, exemplary embodiments of the present invention will be disclosed. The configuration of the embodiment shown below, and the operation and result (effect) brought about by the configuration are examples. The present invention can be realized by configurations other than those disclosed in the following embodiments. According to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the configuration.
 以下の実施形態や変形例には、同様の構成要素が含まれている。よって、以下では、同様の構成要素には共通の符号が付与されるとともに、重複する説明が省略される場合がある。また、本明細書において、序数は、部品や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。 The following embodiments and modifications include similar components. Therefore, in the following, the same reference numerals are given to the same components, and redundant description may be omitted. Moreover, in this specification, the ordinal number is given for convenience in order to distinguish parts, parts, and the like, and does not indicate priority or order.
 また、各図では、便宜上、車両前後方向の後方が矢印Xで示され、車幅方向(車軸方向)の内方が矢印Yで示され、車両上下方向の上方が矢印Zで示される。 In each figure, for the sake of convenience, the rear side in the vehicle front-rear direction is indicated by an arrow X, the inner side in the vehicle width direction (axle direction) is indicated by an arrow Y, and the upper side in the vehicle vertical direction is indicated by an arrow Z.
 また、以下では、車両用ブレーキの一例であるブレーキ装置1が、右側の後輪(非駆動輪)に適用された場合が例示されるが、本発明は、他の車輪にも同様に適用可能である。 Moreover, although the case where the brake device 1 which is an example of a vehicle brake is applied to the right rear wheel (non-driving wheel) will be exemplified below, the present invention can be similarly applied to other wheels. It is.
(実施形態)(ブレーキ装置の構成)
 図1は、ブレーキ装置1の車幅方向外方からの側面図である。ブレーキ装置1は、円筒状のホイールの周壁(不図示)の内側に収容されている。ブレーキ装置1は、所謂ドラムブレーキである。図1に示されるように、ブレーキ装置1は、前後に離間した二つのブレーキシュー3L,3Tを備えている。二つのブレーキシュー3L,3Tは、円筒状のドラム2の内周面2aに沿って円弧状に伸びている。ドラム2は、車幅方向に沿う回転中心C回りに、ホイールと一体に回転する。ブレーキ装置1は、二つのブレーキシュー3L,3Tを、円筒状のドラム2の内周面2aに接触するよう移動させ、ブレーキシュー3L,3Tとドラム2との摩擦によって、ドラム2ひいてはホイールを制動する。なお、車両の前進時におけるホイールの回転方向Rwが図1の時計回り方向である場合、図1の右側のブレーキシュー3Lが、リーディングシューの一例であり、左側のブレーキシュー3Tが、トレーリングシューの一例である。ブレーキシュー3L,3Tは、制動部材の一例である。また、ブレーキシュー3Lは、第一ブレーキシューの一例であり、ブレーキシュー3Tは、第二ブレーキシューの一例である。ブレーキ装置1は、車両用ブレーキの一例である。
(Embodiment) (Configuration of Brake Device)
FIG. 1 is a side view of the brake device 1 from the outside in the vehicle width direction. The brake device 1 is accommodated inside a peripheral wall (not shown) of a cylindrical wheel. The brake device 1 is a so-called drum brake. As shown in FIG. 1, the brake device 1 includes two brake shoes 3 </ b> L and 3 </ b> T that are separated in the front-rear direction. The two brake shoes 3L and 3T extend in an arc shape along the inner peripheral surface 2a of the cylindrical drum 2. The drum 2 rotates integrally with the wheel around a rotation center C along the vehicle width direction. The brake device 1 moves the two brake shoes 3L and 3T so as to contact the inner peripheral surface 2a of the cylindrical drum 2, and brakes the drum 2 and thus the wheel by friction between the brake shoes 3L and 3T and the drum 2. To do. When the wheel rotation direction Rw when the vehicle moves forward is the clockwise direction in FIG. 1, the right brake shoe 3L in FIG. 1 is an example of a leading shoe, and the left brake shoe 3T is a trailing shoe. It is an example. The brake shoes 3L and 3T are examples of a braking member. The brake shoe 3L is an example of a first brake shoe, and the brake shoe 3T is an example of a second brake shoe. The brake device 1 is an example of a vehicle brake.
 ブレーキ装置1は、ブレーキシュー3L,3Tを動かすアクチュエータとして、油圧によって作動するホイールシリンダ100と、通電によって作動するモータ(不図示)と、を備えている。ホイールシリンダ100およびモータは、それぞれ、二つのブレーキシュー3L,3Tを動かすことができる。ホイールシリンダ100は、例えば、走行中の制動に用いられ、モータは、例えば、駐車時の制動に用いられる。すなわち、ブレーキ装置1は、電動パーキングブレーキの一例である。なお、モータは、走行中の制動に用いられてもよい。 The brake device 1 includes a wheel cylinder 100 that operates by hydraulic pressure and a motor (not shown) that operates by energization as actuators that move the brake shoes 3L and 3T. The wheel cylinder 100 and the motor can move the two brake shoes 3L and 3T, respectively. The wheel cylinder 100 is used, for example, for braking during traveling, and the motor is used, for example, for braking during parking. That is, the brake device 1 is an example of an electric parking brake. The motor may be used for braking during traveling.
 ブレーキ装置1は、円盤状のバックプレート4を備えている。バックプレート4は、回転中心Cと交差した姿勢で設けられている。すなわち、バックプレート4は、回転中心Cと交差する方向に略沿って、具体的には回転中心Cと直交する方向に略沿って、広がっている。 The brake device 1 includes a disk-shaped back plate 4. The back plate 4 is provided in a posture intersecting with the rotation center C. That is, the back plate 4 extends substantially along the direction intersecting with the rotation center C, specifically, substantially along the direction orthogonal to the rotation center C.
 バックプレート4は、ブレーキ装置1の各構成部品を直接的または間接的に支持する。バックプレート4は、図1に示されるような当該バックプレート4よりも車幅方向外方に位置される部品を支持する。また、バックプレート4は、当該バックプレート4よりも車幅方向内方に位置される部品(不図示)を支持する。バックプレート4に支持される車幅方向内方に位置される部品は、例えば、電動パーキングブレーキ用のモータや、モータの回動をケーブル62(あるいはロッド)の直動に変換する運動変換機構(不図示)等である。バックプレート4は、支持部材の一例である。また、ケーブル62は、作動部材とも称されうる。 The back plate 4 directly or indirectly supports each component of the brake device 1. The back plate 4 supports components positioned outward in the vehicle width direction from the back plate 4 as shown in FIG. Further, the back plate 4 supports a component (not shown) positioned inward in the vehicle width direction with respect to the back plate 4. The components positioned inward in the vehicle width direction supported by the back plate 4 include, for example, a motor for an electric parking brake, and a motion conversion mechanism that converts the rotation of the motor into a linear movement of the cable 62 (or rod). (Not shown). The back plate 4 is an example of a support member. The cable 62 can also be referred to as an operating member.
 また、バックプレート4は、車体との接続部材(不図示)に結合されている。接続部材は、例えば、サスペンションの一部(例えば、アーム、リンク、取付部材等)である。バックプレート4に設けられた開口部4aは、接続部材との結合に用いられる。図1のブレーキ装置1は、駆動輪および非駆動輪のいずれにも用いることができる。ブレーキ装置1が駆動輪に用いられる場合、バックプレート4の略中央に設けられた開口部4bを不図示の車軸が貫通する。 Further, the back plate 4 is coupled to a connection member (not shown) with the vehicle body. The connection member is, for example, a part of the suspension (for example, an arm, a link, an attachment member, etc.). The opening 4a provided in the back plate 4 is used for coupling with the connection member. The brake device 1 of FIG. 1 can be used for both drive wheels and non-drive wheels. When the brake device 1 is used for a drive wheel, an axle shaft (not shown) passes through an opening 4b provided in the approximate center of the back plate 4.
(ホイールシリンダによるブレーキシューの作動)
 図1に示されるように、ブレーキシュー3L,3Tの下端部3aは、回動中心C1回りに回動可能に、バックプレート4に支持されている。回動中心C1は、ホイールの回転中心Cと略平行である。回動中心C1は、回動支持点とも称されうる。
(Brake shoe operation by wheel cylinder)
As shown in FIG. 1, the lower ends 3a of the brake shoes 3L and 3T are supported by the back plate 4 so as to be rotatable around a rotation center C1. The rotation center C1 is substantially parallel to the rotation center C of the wheel. The rotation center C1 can also be referred to as a rotation support point.
 ホイールシリンダ100は、バックプレート4の上部に支持されている。ホイールシリンダ100は、車両前後方向(図1の左右方向)に突出可能な二つの押圧部110l,110tを有する。ホイールシリンダ100は、内部の圧力室の与圧に応じて、二つの押圧部110l,110tを突出させる。 The wheel cylinder 100 is supported on the upper part of the back plate 4. The wheel cylinder 100 has two pressing portions 110l and 110t that can project in the vehicle front-rear direction (left-right direction in FIG. 1). The wheel cylinder 100 projects the two pressing portions 110l and 110t in accordance with the pressurization of the internal pressure chamber.
 突出した二つの押圧部110l,110tは、それぞれ、ブレーキシュー3L,3Tの上部3bを押す。二つの可動部の突出により、二つのブレーキシュー3L,3Tは、それぞれ、回動中心C1回りに回動し、上部3b同士が車両前後方向に互いに離間するように移動する。これにより、二つのブレーキシュー3L,3Tは、ホイールの回転中心Cの径方向外方に移動する。各ブレーキシュー3L,3Tの外周部には、円筒面に沿う帯状のライニング3cが設けられている。よって、二つのブレーキシュー3L,3Tの、回転中心Cの径方向外方への移動により、ライニング3cとドラム2の内周面2aとが接触する。ライニング3cと内周面2aとの摩擦により、ドラム2ひいてはホイールが制動される。なお、ブレーキシュー3L,3Tの非制動位置と制動位置との間のストロークは微少であり、例えば1mm以下である。 The protruding two pressing portions 110l and 110t press the upper portions 3b of the brake shoes 3L and 3T, respectively. Due to the protrusion of the two movable parts, the two brake shoes 3L and 3T each rotate about the rotation center C1 and move so that the upper parts 3b are separated from each other in the vehicle front-rear direction. As a result, the two brake shoes 3L and 3T move outward in the radial direction of the rotation center C of the wheel. A belt-like lining 3c along the cylindrical surface is provided on the outer periphery of each brake shoe 3L, 3T. Therefore, the lining 3c and the inner peripheral surface 2a of the drum 2 come into contact with each other by the movement of the two brake shoes 3L and 3T outward in the radial direction of the rotation center C. The friction between the lining 3c and the inner peripheral surface 2a brakes the drum 2 and thus the wheel. Note that the stroke between the non-braking position and the braking position of the brake shoes 3L and 3T is very small, for example, 1 mm or less.
 また、ブレーキ装置1は、復帰部材5を備えている。復帰部材5は、ホイールシリンダ100内の圧力室が除圧され、押圧部110l,110tによる二つのブレーキシュー3L,3Tの押圧が解除された場合に、二つのブレーキシュー3L,3Tを、ドラム2の内周面2aと接触する位置(制動位置)からドラム2の内周面2aと接触しない位置(非制動位置)へ戻す。復帰部材5は、例えば、コイルスプリング等の弾性部材であり、各ブレーキシュー3L,3Tに、もう一方のブレーキシュー3L,3Tに近付く方向の力、すなわち、ドラム2の内周面2aから離れる方向の力を与えている。復帰部材5は、付勢部材や弾性部材とも称されうる。 Further, the brake device 1 includes a return member 5. When the pressure chamber in the wheel cylinder 100 is depressurized and the pressing of the two brake shoes 3L and 3T by the pressing portions 110l and 110t is released, the return member 5 removes the two brake shoes 3L and 3T from the drum 2 Is returned from a position in contact with the inner peripheral surface 2a (braking position) to a position not in contact with the inner peripheral surface 2a of the drum 2 (nonbraking position). The return member 5 is an elastic member such as a coil spring, for example, and forces the brake shoes 3L and 3T to approach the other brake shoes 3L and 3T, that is, a direction away from the inner peripheral surface 2a of the drum 2. Giving the power of. The return member 5 can also be called an urging member or an elastic member.
(モータによるブレーキシューの作動)
 また、ブレーキ装置1は、移動機構6を備えている。モータおよび運動変換機構を含む駆動機構(不図示)の作動に基づいて、移動機構6は、二つのブレーキシュー3L,3Tを非制動位置から制動位置に移動させる。
(Brake shoe operation by motor)
The brake device 1 includes a moving mechanism 6. Based on the operation of a drive mechanism (not shown) including a motor and a motion conversion mechanism, the moving mechanism 6 moves the two brake shoes 3L and 3T from the non-braking position to the braking position.
 移動機構6は、バックプレート4の車幅方向外方に設けられている。移動機構6は、レバー61と、ケーブル62と、ホイールシリンダ100と、を含む。 The moving mechanism 6 is provided outside the back plate 4 in the vehicle width direction. The moving mechanism 6 includes a lever 61, a cable 62, and a wheel cylinder 100.
 レバー61は、二つのブレーキシュー3L,3Tのうち一方、例えば図1で左側のブレーキシュー3Tと、バックプレート4との間に設けられ、当該ブレーキシュー3Tに、回動中心C2回りに回動可能に支持されている。回動中心C2は、ブレーキシュー3Lの、回動中心C1とは反対側(図1では上側)の端部に位置され、回動中心C1と略平行である。ケーブル62は、バックプレート4に略沿って移動し、レバー61の、回動中心C2から遠い側の下端部61aを、他方、例えば図1では右側のブレーキシュー3Lに近付く方向に、動かす。レバー61がケーブル62によって動かされた作動位置PL1は、図1中に二点鎖線で示されている。 The lever 61 is provided between one of the two brake shoes 3L and 3T, for example, the left brake shoe 3T in FIG. 1 and the back plate 4, and rotates around the rotation center C2 in the brake shoe 3T. Supported as possible. The rotation center C2 is located at the end of the brake shoe 3L opposite to the rotation center C1 (upper side in FIG. 1) and is substantially parallel to the rotation center C1. The cable 62 moves substantially along the back plate 4 and moves the lower end 61a of the lever 61 on the side far from the rotation center C2 on the other hand, for example, in a direction approaching the right brake shoe 3L in FIG. The operating position PL1 where the lever 61 is moved by the cable 62 is indicated by a two-dot chain line in FIG.
 レバー61は、ブレーキシュー3Tの内周面に当接する突起61bを有している。この突起61bにより、レバー61のケーブル62によって動かされる前の状態での初期位置PL0が定まっている。突起61bは、初期位置設定部とも称されうる。 The lever 61 has a protrusion 61b that contacts the inner peripheral surface of the brake shoe 3T. By this protrusion 61b, an initial position PL0 in a state before being moved by the cable 62 of the lever 61 is determined. The protrusion 61b can also be referred to as an initial position setting unit.
 そして、本実施形態では、ホイールシリンダ100に移動可能に収容された可動部品110が、ケーブル62によって動かされるレバー61と、当該レバー61と連結されたブレーキシュー3Tとは別のブレーキシュー3Lと、の間に介在して突っ張ることができる。ここで、レバー61と可動部品110との接続位置P1は、回動中心C2と、ケーブル62とレバー61との接続位置P2と、の間に設定されている。 In the present embodiment, the movable part 110 movably accommodated in the wheel cylinder 100 includes a lever 61 that is moved by the cable 62, a brake shoe 3L that is different from the brake shoe 3T connected to the lever 61, and It can be stretched by interposing between the two. Here, the connection position P 1 between the lever 61 and the movable part 110 is set between the rotation center C 2 and the connection position P 2 between the cable 62 and the lever 61.
 このような構成において、モータの作動によりケーブル62が引かれて図1の右方へ動くことにより、レバー61が、初期位置PL0からブレーキシュー3Lに近付く方向へ動くと(矢印a、作動位置PL1)、レバー61はホイールシリンダ100の可動部品110を介してブレーキシュー3Lを押す(矢印b)。これにより、ブレーキシュー3Lは、非制動位置から回動中心C1回りに回動し(矢印c)、ドラム2の内周面2aと接触する制動位置へ動く。この状態では、ケーブル62とレバー61との接続位置P2は力点、回動中心C2は支点、レバー61と可動部品110との接続位置P1は作用点に相当する。さらに、ブレーキシュー3Lが、内周面2aに接触した状態で、レバー61が図1の右方、すなわち、可動部品110がブレーキシュー3Lを押す方向へ動くと(矢印b)、可動部品110が突っ張ることにより、レバー61は可動部品110との接続位置P1を支点として、レバー61の動く方向とは逆方向、すなわち、図1での反時計回りに回動する(矢印d)。これにより、ブレーキシュー3Tは、非制動位置から回動中心C1回りに回動し、ドラム2の内周面2aと接触する制動位置へ動く。このようにして、移動機構6の作動により、ブレーキシュー3L,3Tは、いずれも非制動位置から制動位置へ動く。なお、ブレーキシュー3Lがドラム2の内周面2aに接触した以降の状態では、レバー61と可動部品110との接続位置P1が支点となる。また、ブレーキシュー3Lが非制動位置に戻ると同時にレバー61の突起61bがブレーキシュー3Tの内周面に当接し、レバー61が初期位置に戻る。このように、本実施形態では、ホイールシリンダ100の可動部品110が、ブレーキ装置1が電動ブレーキとして作動する際に、レバー61とともにブレーキシュー3L,3T間に介在するストラットとして機能する。 In such a configuration, when the cable 62 is pulled by the operation of the motor and moves to the right in FIG. 1, the lever 61 moves from the initial position PL0 toward the brake shoe 3L (arrow a, operating position PL1). ), The lever 61 pushes the brake shoe 3L through the movable part 110 of the wheel cylinder 100 (arrow b). As a result, the brake shoe 3L rotates around the rotation center C1 from the non-braking position (arrow c) and moves to the braking position where it contacts the inner peripheral surface 2a of the drum 2. In this state, the connection position P2 between the cable 62 and the lever 61 corresponds to a force point, the rotation center C2 corresponds to a fulcrum, and the connection position P1 between the lever 61 and the movable part 110 corresponds to an action point. Furthermore, when the brake shoe 3L is in contact with the inner peripheral surface 2a and the lever 61 moves to the right in FIG. 1, that is, in the direction in which the movable part 110 pushes the brake shoe 3L (arrow b), the movable part 110 is moved. By stretching the lever 61, the lever 61 rotates in the direction opposite to the direction in which the lever 61 moves, that is, counterclockwise in FIG. 1 (arrow d), with the connection position P1 with the movable part 110 as a fulcrum. As a result, the brake shoe 3T rotates around the rotation center C1 from the non-braking position and moves to the braking position where it comes into contact with the inner peripheral surface 2a of the drum 2. Thus, the brake shoes 3L and 3T are both moved from the non-braking position to the braking position by the operation of the moving mechanism 6. In the state after the brake shoe 3L comes into contact with the inner peripheral surface 2a of the drum 2, the connection position P1 between the lever 61 and the movable part 110 serves as a fulcrum. At the same time as the brake shoe 3L returns to the non-braking position, the protrusion 61b of the lever 61 contacts the inner peripheral surface of the brake shoe 3T, and the lever 61 returns to the initial position. As described above, in this embodiment, the movable part 110 of the wheel cylinder 100 functions as a strut interposed between the brake shoes 3L and 3T together with the lever 61 when the brake device 1 operates as an electric brake.
(ホイールシリンダの構成)
 図2は、ホイールシリンダ100の側面図、図3は、ホイールシリンダ100の上面図、図4は、ホイールシリンダ100の後面図、図5は、図2のV-V断面図である。なお、ホイールシリンダ100の説明においては、シリンダ孔10aの中心軸Axの軸方向を、単に軸方向と称し、当該軸方向においてブレーキシュー3L側(図5では右側)を軸方向一方、ブレーキシュー3T側を軸方向他方(図5では左側)と称する。
(Configuration of wheel cylinder)
2 is a side view of the wheel cylinder 100, FIG. 3 is a top view of the wheel cylinder 100, FIG. 4 is a rear view of the wheel cylinder 100, and FIG. 5 is a VV cross-sectional view of FIG. In the description of the wheel cylinder 100, the axial direction of the central axis Ax of the cylinder hole 10a is simply referred to as an axial direction, and the brake shoe 3L side (the right side in FIG. 5) is axially shifted in the axial direction. The side is referred to as the other axial direction (left side in FIG. 5).
 図5に示されるように、ホイールシリンダ100は、シリンダ孔10aが設けられたハウジング10を備えている。ハウジング10は、バックプレート4(図1)に固定されている。 As shown in FIG. 5, the wheel cylinder 100 includes a housing 10 provided with a cylinder hole 10a. The housing 10 is fixed to the back plate 4 (FIG. 1).
 シリンダ孔10a内には、第一ピストン20および第二ピストン30が、シリンダ孔10aの中心軸Axの軸方向に沿って移動可能に、収容されている。中心軸Axは、本実施形態では、一例として、車両前後方向に略沿って延びているが、これには限定されない。 The first piston 20 and the second piston 30 are accommodated in the cylinder hole 10a so as to be movable along the axial direction of the central axis Ax of the cylinder hole 10a. In the present embodiment, the central axis Ax extends substantially along the vehicle front-rear direction as an example, but is not limited thereto.
 シリンダ孔10a内には、第一ピストン20と第二ピストン30との間に、圧力室Rpが構成される。圧力室Rpの与圧状態では、第一ピストン20は軸方向一方に突出し、第二ピストン30は軸方向他方に突出する。すなわち、第一ピストン20は、押圧部110lとして機能することができ、第二ピストン30は、押圧部110tとして機能することができる。 The pressure chamber Rp is formed between the first piston 20 and the second piston 30 in the cylinder hole 10a. In the pressurized state of the pressure chamber Rp, the first piston 20 projects in one axial direction, and the second piston 30 projects in the other axial direction. That is, the first piston 20 can function as the pressing portion 110l, and the second piston 30 can function as the pressing portion 110t.
 圧力室Rpの除圧状態では、第一ピストン20はブレーキシュー3L(図1)を介して復帰部材5等の力を受けることにより軸方向他方に戻り、第二ピストン30はブレーキシュー3T(図1)を介して復帰部材5等の力を受けることにより軸方向一方に戻る。 In the depressurized state of the pressure chamber Rp, the first piston 20 returns to the other side in the axial direction by receiving the force of the return member 5 or the like via the brake shoe 3L (FIG. 1), and the second piston 30 is moved to the brake shoe 3T (FIG. By returning to one side in the axial direction by receiving the force of the return member 5 or the like via 1).
 そして、圧力室Rpの除圧状態において、第一ピストン20と第二ピストン30は、一体となってシリンダ孔10aの軸方向に沿って移動することができる。すなわち、第一ピストン20および第二ピストン30は、可動部品110(ストラット)として機能することができる。なお、本実施形態では、可動部品110として機能するのは、第一ピストン20および第二ピストン30のみであるが、これには限定されず、例えば、第一ピストン20と第二ピストン30との間に、可動部品110として一体に移動する別の部品が介在してもよい。 And in the pressure-removed state of the pressure chamber Rp, the first piston 20 and the second piston 30 can move integrally along the axial direction of the cylinder hole 10a. That is, the first piston 20 and the second piston 30 can function as the movable part 110 (strut). In the present embodiment, only the first piston 20 and the second piston 30 function as the movable part 110. However, the present invention is not limited to this. For example, the first piston 20 and the second piston 30 There may be another component that moves integrally as the movable component 110.
(伸長機構)
 図5に示されるように、第一ピストン20は、直動部21、回動可能部22、および直動部23を有している。また、第二ピストン30は、直動部31を有している。
(Extension mechanism)
As shown in FIG. 5, the first piston 20 has a linear motion part 21, a rotatable part 22, and a linear motion part 23. The second piston 30 has a linear motion part 31.
 直動部21は、中心軸Ax回りの回動が制限されている。直動部21には、ブレーキシュー3Lとの接続部21aが設けられている。接続部21aは、ブレーキシュー3Lとの車両上下方向の相対的な移動を許容し、ブレーキシュー3Lとの車幅方向の相対的な移動を制限し、かつブレーキシュー3Lとの中心軸Ax回りの相対的な回動を制限する状態で、当該ブレーキシュー3Lと接続されている。すなわち、本実施形態では、一例として、ブレーキシュー3Lによって、直動部21の中心軸Ax回りの回動が制限されている。直動部21は、回動制限部や非回動部とも称されうる。なお、直動部21の中心軸Ax回りの回動は、例えばハウジング10等、ブレーキシュー3L以外の部材によって制限されてもよい。 The linear motion part 21 is restricted from turning around the central axis Ax. The linear motion part 21 is provided with a connection part 21a with the brake shoe 3L. The connecting portion 21a allows relative movement in the vehicle vertical direction with respect to the brake shoe 3L, restricts relative movement in the vehicle width direction with respect to the brake shoe 3L, and around the central axis Ax with respect to the brake shoe 3L. The brake shoe 3L is connected in a state in which relative rotation is limited. That is, in the present embodiment, as an example, the rotation of the linear motion portion 21 around the central axis Ax is limited by the brake shoe 3L. The linear motion part 21 can also be referred to as a rotation restriction part or a non-rotation part. Note that the rotation of the linear motion portion 21 around the central axis Ax may be limited by a member other than the brake shoe 3L, such as the housing 10, for example.
 回動可能部22は、スライド部22aと、突出部22bとを有する。スライド部22aは、シリンダ孔10a内に、中心軸Axに沿ってスライド可能に収容されている。スライド部22aの外周面には、環状の凹溝22cが設けられている。凹溝22cには、シール部材24が収容されている。シール部材24は、シリンダ孔10aとの内周面とスライド部22aの外周面との間の隙間をシールし、当該隙間からの作動油の漏れを抑制する。シール部材24は、スライド部22aとともに、軸方向にスライドする。 The rotatable part 22 has a slide part 22a and a protruding part 22b. The slide portion 22a is accommodated in the cylinder hole 10a so as to be slidable along the central axis Ax. An annular concave groove 22c is provided on the outer peripheral surface of the slide portion 22a. A seal member 24 is accommodated in the concave groove 22c. The seal member 24 seals a gap between the inner peripheral surface of the cylinder hole 10a and the outer peripheral surface of the slide portion 22a, and suppresses leakage of hydraulic oil from the gap. The seal member 24 slides in the axial direction together with the slide portion 22a.
 突出部22bは、スライド部22aから、スライド部22aの外径よりも小さい外径で軸方向一方に突出している。 The protruding portion 22b protrudes from the slide portion 22a in one axial direction with an outer diameter smaller than the outer diameter of the slide portion 22a.
 直動部21と回動可能部22とは、ねじ機構を介して接続されている。本実施形態では、一例として、直動部21には雄ねじ部21bが設けられ、回動可能部22には雄ねじ部21bと噛み合う雌ねじ部22dが設けられているが、直動部21に雌ねじ部が設けられ、回動可能部22に雄ねじ部が設けられてもよい。 The linear motion part 21 and the rotatable part 22 are connected via a screw mechanism. In this embodiment, as an example, the linear motion portion 21 is provided with a male screw portion 21b, and the rotatable portion 22 is provided with a female screw portion 22d that meshes with the male screw portion 21b. May be provided, and the rotatable part 22 may be provided with a male screw part.
 このような構成において、回動可能部22が、後述する回転駆動機構50の作動に応じて回動する場合、直動部21の回動が制限されているため、雄ねじ部21bと雌ねじ部22dとの噛み合いにより、直動部21と回動可能部22とのサブアセンブリの全長が変化する。ここで、本実施形態では、回転駆動機構50による回動可能部22の所定方向(図4の方向Rs)への回動により、直動部21と回動可能部22とのサブアセンブリの全長が長くなるよう、ねじ機構におけるねじの螺旋の向きが設定されている。直動部21と回動可能部22とのサブアセンブリの全長が増加すると、圧力室Rpの除圧状態においてブレーキシュー3L,3Tから軸方向の両側に押された可動部品110の全長も増加することになる。すなわち、雄ねじ部21bと雌ねじ部22dとによって、第一伸長機構41が構成されている。第一伸長機構41における、回動可能部22の単位回転角度あたりの直動部21と回動可能部22とのサブアセンブリの長さの増加量は、ねじ部のピッチにより定まる。 In such a configuration, when the rotatable portion 22 rotates according to the operation of the rotation drive mechanism 50 described later, since the rotation of the linear motion portion 21 is restricted, the male screw portion 21b and the female screw portion 22d. , The total length of the sub-assembly of the linear motion portion 21 and the rotatable portion 22 changes. Here, in the present embodiment, the total length of the sub-assembly of the linear motion portion 21 and the rotatable portion 22 by the rotation of the rotatable portion 22 in the predetermined direction (direction Rs in FIG. 4) by the rotation drive mechanism 50. The direction of the spiral of the screw in the screw mechanism is set so that is longer. When the total length of the sub-assembly of the linear motion portion 21 and the rotatable portion 22 increases, the total length of the movable part 110 pushed from the brake shoes 3L, 3T to both sides in the axial direction also increases in the pressure chamber Rp depressurization state. It will be. That is, the first extension mechanism 41 is configured by the male screw portion 21b and the female screw portion 22d. In the first extension mechanism 41, the amount of increase in the length of the sub-assembly of the linear motion part 21 and the rotatable part 22 per unit rotation angle of the rotatable part 22 is determined by the pitch of the screw part.
 第二ピストン30の直動部31は、中心軸Ax回りの回動が制限されている。直動部31には、ブレーキシュー3Tとの接続部31aが設けられている。接続部31aは、ブレーキシュー3Lとの車両上下方向の相対的な移動を許容し、ブレーキシュー3Tとの車幅方向の相対的な移動を制限し、かつブレーキシュー3Tとの中心軸Ax回りの相対的な回動を制限する状態で、当該ブレーキシュー3Tと接続されている。すなわち、本実施形態では、一例として、ブレーキシュー3Tによって、直動部31の中心軸Ax回りの回動が制限されている。直動部31は、回動制限部や非回動部とも称されうる。なお、直動部31の中心軸Ax回りの回動は、例えばハウジング10等、ブレーキシュー3T以外の部材によって制限されてもよい。 The rotation of the linear motion part 31 of the second piston 30 around the central axis Ax is restricted. The linear motion part 31 is provided with a connection part 31a with the brake shoe 3T. The connecting portion 31a allows relative movement in the vehicle vertical direction with respect to the brake shoe 3L, restricts relative movement in the vehicle width direction with respect to the brake shoe 3T, and around the central axis Ax with respect to the brake shoe 3T. The brake shoe 3T is connected in a state in which relative rotation is limited. That is, in the present embodiment, as an example, the rotation of the linear motion portion 31 around the central axis Ax is limited by the brake shoe 3T. The linear motion part 31 may also be referred to as a rotation restriction part or a non-rotation part. Note that the rotation of the linear motion portion 31 around the central axis Ax may be limited by a member other than the brake shoe 3T, such as the housing 10 or the like.
 なお、直動部31の外周面には、環状の凹溝31dが設けられている。凹溝31dは、シール部材33が収容されている。シール部材33は、シリンダ孔10aとの内周面と直動部31の外周面との間の隙間をシールし、当該隙間からの作動油の漏れを抑制する。シール部材33は、直動部31とともに、軸方向にスライドする。 An annular groove 31 d is provided on the outer peripheral surface of the linear motion portion 31. The sealing member 33 is accommodated in the concave groove 31d. The seal member 33 seals a gap between the inner peripheral surface of the cylinder hole 10a and the outer peripheral surface of the linear motion portion 31, and suppresses leakage of hydraulic oil from the gap. The seal member 33 slides in the axial direction together with the linear motion portion 31.
 第一ピストン20の直動部23も、中心軸Ax回りの回動が制限されている。直動部23には接続部23aが設けられており、当該接続部23aは、第二ピストン30の直動部31に設けられた接続部31bと噛み合っている。接続部23aと接続部31bとの噛み合いにより、直動部23と直動部31との中心軸Ax回りの相対的な回動が制限されている。上述したように、直動部31の中心軸Ax回りの回動はブレーキシュー3Lによって制限されている。したがって、直動部23の中心軸Ax回りの回動は、ブレーキシュー3Lによって制限されている。なお、直動部23の中心軸Ax回りの回動は、例えばハウジング10等、ブレーキシュー3T以外の部材によって制限されてもよい。接続部23aと接続部31bとは、中心軸Ax回りの相対的な回動を制限し、かつ中心軸Axに沿う方向の相対的な移動を許容する状態で、接続されている。 Rotation around the central axis Ax is also restricted for the linear motion part 23 of the first piston 20. The linear motion part 23 is provided with a connection part 23 a, and the connection part 23 a meshes with a connection part 31 b provided on the linear motion part 31 of the second piston 30. The relative rotation about the central axis Ax between the linear motion part 23 and the linear motion part 31 is restricted by the meshing of the connection part 23a and the connection part 31b. As described above, the rotation of the linear motion portion 31 around the central axis Ax is limited by the brake shoe 3L. Accordingly, the rotation of the linear motion portion 23 around the central axis Ax is limited by the brake shoe 3L. Note that the rotation of the linear motion portion 23 around the central axis Ax may be limited by a member other than the brake shoe 3T, such as the housing 10. The connecting portion 23a and the connecting portion 31b are connected in a state that restricts relative rotation around the central axis Ax and allows relative movement in the direction along the central axis Ax.
 直動部23と回動可能部22とは、ねじ機構を介して接続されている。本実施形態では、一例として、直動部23には雄ねじ部23bが設けられ、回動可能部22には雄ねじ部23bと噛み合う雌ねじ部22eが設けられている。しかしながら、これとは逆に、直動部23に雌ねじ部が設けられ、回動可能部22に雄ねじ部が設けられてもよい。 The linear motion part 23 and the rotatable part 22 are connected via a screw mechanism. In the present embodiment, as an example, the linear motion portion 23 is provided with a male screw portion 23b, and the rotatable portion 22 is provided with a female screw portion 22e that meshes with the male screw portion 23b. However, conversely, the linearly-moving portion 23 may be provided with a female screw portion, and the rotatable portion 22 may be provided with a male screw portion.
 このような構成において、回動可能部22が、後述する回転駆動機構50の作動に応じて回動する場合、直動部23の回動が制限されているため、雄ねじ部23bと雌ねじ部22dとの噛み合いにより、直動部23と回動可能部22とのサブアセンブリの全長が変化する。ここで、本実施形態では、回転駆動機構50による回動可能部22の所定方向(図4の方向Rs)への回動により、直動部23と回動可能部22とのサブアセンブリの全長が長くなるよう、ねじ機構におけるねじの螺旋の向きが設定されている。直動部23と回動可能部22とのサブアセンブリの全長が増加すると、圧力室Rpの除圧状態においてブレーキシュー3L,3Tから軸方向の両側に押された可動部品110の全長も増加することになる。すなわち、雄ねじ部23bと雌ねじ部22dとによって、第二伸長機構42が構成されている。第二伸長機構42における、回動可能部22の単位回転角度あたりの直動部23と回動可能部22とのサブアセンブリの長さの増加量は、ねじ部のピッチにより定まる。なお、本実施形態では、第一伸長機構41と第二伸長機構42とで、ねじの螺旋の向きが逆である。 In such a configuration, when the rotatable portion 22 rotates according to the operation of the rotation drive mechanism 50 described later, since the rotation of the linear motion portion 23 is restricted, the male screw portion 23b and the female screw portion 22d. , The total length of the sub-assembly of the linear motion portion 23 and the rotatable portion 22 changes. Here, in the present embodiment, the total length of the sub-assembly of the linear motion portion 23 and the rotatable portion 22 by the rotation of the rotatable portion 22 in the predetermined direction (direction Rs in FIG. 4) by the rotation drive mechanism 50. The direction of the spiral of the screw in the screw mechanism is set so that is longer. When the total length of the sub-assembly of the linear motion portion 23 and the rotatable portion 22 increases, the total length of the movable part 110 pushed from the brake shoes 3L, 3T to both sides in the axial direction also increases in the pressure chamber Rp depressurization state. It will be. That is, the second extending mechanism 42 is constituted by the male screw portion 23b and the female screw portion 22d. The amount of increase in the length of the sub-assembly of the linear motion portion 23 and the rotatable portion 22 per unit rotation angle of the rotatable portion 22 in the second extension mechanism 42 is determined by the pitch of the screw portion. In the present embodiment, the first elongating mechanism 41 and the second elongating mechanism 42 have opposite screw spiral directions.
 また、本実施形態では、第一伸長機構41と第二伸長機構42とで、第一ピストン20または第二ピストン30のストロークの増加量に応じた可動部品110の長さの増加量の比率が、異なっている。よって、ブレーキシュー3Lとブレーキシュー3Tとで、ライニング3cの経時的な摩耗の進行速度が異なる場合に、可動部品110の軸方向一方への長さの増加率と、軸方向他方への長さの増加率とを異ならせることにより、ハウジング10に対する可動部品110の相対位置(例えば軸方向の中央位置)の経時的な変化(ずれ)をより小さく設定することができる。 In the present embodiment, the first extension mechanism 41 and the second extension mechanism 42 have a ratio of the increase amount of the length of the movable part 110 corresponding to the increase amount of the stroke of the first piston 20 or the second piston 30. Is different. Therefore, when the brake shoe 3L and the brake shoe 3T have different wear speeds of the lining 3c over time, the rate of increase in the length of the movable part 110 in one axial direction and the length in the other axial direction are increased. By making the increase rate different from this, it is possible to set the change (shift) with time of the relative position (for example, the central position in the axial direction) of the movable part 110 with respect to the housing 10 to be smaller.
 また、本実施形態では、ホイールおよびドラム2の前進回転に対するリーディングシューとなるブレーキシュー3Lの近くに位置された第一伸長機構41の増加率が、第二伸長機構42の増加率よりも高くなるよう構成されている。具体的には、第一伸長機構41のねじのピッチ(すなわち、ねじ一回転当たりの進み量)が、第二伸長機構42のねじのピッチよりも大きく設定されている。ブレーキ装置1では、前進回転に対するリーディングシューとなるブレーキシュー3Lのライニング3cの摩耗速度が、トレーリングシューとなるブレーキシュー3Tのライニング3cの摩耗速度よりも大きくなる場合がある。このような場合に、第一伸長機構41の増加率が第二伸長機構42の増加率よりも高い構成によって、ハウジング10に対する可動部品110の相対位置(例えば軸方向の中央位置)の経時的な変化(ずれ)をより小さく設定することができる。この場合、例えば、車種や、車両、地域毎等に、リーディングシューのライニング3cの摩耗速度とトレーリングシューのライニング3cの摩耗速度の比率が、例えば統計的手法等によって判明しているような場合にあっては、第一伸長機構41および第二伸長機構42の増加率、例えばねじ機構におけるねじのピッチは、当該比率に応じて、例えば比率と比例するように、設定されうる。 Further, in the present embodiment, the rate of increase of the first extension mechanism 41 located near the brake shoe 3L serving as the leading shoe for the forward rotation of the wheel and the drum 2 is higher than the rate of increase of the second extension mechanism 42. It is configured as follows. Specifically, the screw pitch of the first extension mechanism 41 (that is, the advance amount per one screw rotation) is set to be larger than the screw pitch of the second extension mechanism 42. In the brake device 1, the wear speed of the lining 3 c of the brake shoe 3 </ b> L serving as a leading shoe against forward rotation may be greater than the wear speed of the lining 3 c of the brake shoe 3 </ b> T serving as a trailing shoe. In such a case, with the configuration in which the increase rate of the first extension mechanism 41 is higher than the increase rate of the second extension mechanism 42, the relative position (for example, the axial center position) of the movable part 110 with respect to the housing 10 over time. The change (deviation) can be set smaller. In this case, for example, the ratio of the wear speed of the lining 3c of the leading shoe and the wear speed of the lining 3c of the trailing shoe is known by, for example, a statistical method for each vehicle type, vehicle, region, etc. In this case, the increasing rate of the first extension mechanism 41 and the second extension mechanism 42, for example, the screw pitch in the screw mechanism, can be set according to the ratio, for example, in proportion to the ratio.
(回転駆動機構)
 図2~5に示されるように、回転駆動機構50は、直動部材51、揺動部材52、付勢部材53、および一方向回動部54を有している。直動部材51は、第一ピストン20に支持され、第一ピストン20とともに中心軸Axに沿って往復する。なお、直動部材51の中心軸Ax回りの回動は、他の部材によって制限されている。揺動部材52は、ハウジング10に揺動可能に支持され、直動部材51の中心軸Axに沿った線形的な往復動作に応じて揺動中心C3回りに揺動する。付勢部材53は、直動部材51が第一ピストン20の戻りに追従するよう、直動部材51または揺動部材52を付勢する。直動部材51、揺動部材52、および付勢部材53により、直動揺動変換機構が構成されている。なお、直動部材51と第一ピストン20(突出部22b)との間には、異物侵入の防止等のための環状シール部材55が介装されている。
(Rotation drive mechanism)
As shown in FIGS. 2 to 5, the rotation drive mechanism 50 includes a linear motion member 51, a swing member 52, a biasing member 53, and a one-way rotation portion 54. The linear motion member 51 is supported by the first piston 20 and reciprocates along the central axis Ax together with the first piston 20. The rotation of the linear motion member 51 around the central axis Ax is limited by other members. The swing member 52 is swingably supported by the housing 10 and swings about the swing center C <b> 3 according to a linear reciprocation along the central axis Ax of the linear motion member 51. The biasing member 53 biases the linear motion member 51 or the swing member 52 so that the linear motion member 51 follows the return of the first piston 20. The linear motion member 51, the swing member 52, and the urging member 53 constitute a direct motion swing conversion mechanism. An annular seal member 55 is interposed between the linear motion member 51 and the first piston 20 (projecting portion 22b) to prevent foreign matter from entering.
 一方向回動部54は、揺動部材52の往動によって回動し、揺動部材52の復動によっては回動しないことにより、主として一方向に回動するよう構成されている。具体的には、揺動部材52に設けられた爪52a(ラッチ)と、一方向回動部54(歯車)に設けられた複数の歯54aとによって、一回転方向(図4の時計回り方向、方向Rs)には噛み合うものの、他回転方向(図4の反時計回り方向、方向Rsの反対方向)には噛み合わないラチェット機構が構成されている。 The one-way rotating portion 54 is configured to rotate mainly in one direction by rotating by the forward movement of the swinging member 52 and not rotating by the backward movement of the swinging member 52. Specifically, a claw 52a (latch) provided on the swinging member 52 and a plurality of teeth 54a provided on the one-way rotating portion 54 (gear) are used in one rotation direction (clockwise direction in FIG. 4). , A ratchet mechanism that engages in the direction Rs) but does not engage in the other rotation direction (counterclockwise direction in FIG. 4, the direction opposite to the direction Rs).
 回動可能部22は、一方向回動部54の回転に応じて回転するよう、構成されている。本実施形態では、一例として、図5に示されるように、一方向回動部54は回動可能部22と固定されている。なお、回動可能部22は、一方向回動部54の回動に応じて回動すればよく、一方向回動部54とは一体化されていなくてもよい。 The pivotable part 22 is configured to rotate in accordance with the rotation of the one-way rotating part 54. In the present embodiment, as an example, as shown in FIG. 5, the one-way rotating part 54 is fixed to the rotatable part 22. Note that the rotatable portion 22 only needs to rotate according to the rotation of the one-way rotating portion 54, and may not be integrated with the one-way rotating portion 54.
 ブレーキ装置1では、経時的に、ブレーキシュー3L,3Tのライニング3cの外周面とドラム2の内周面2aとの隙間(シュークリアランス)が増加すると、ブレーキシュー3L,3Tの移動量が増加する。この場合、第一ピストン20ひいてはこれと連動して動作する直動部材51のストローク、すなわち、圧力室Rpの除圧状態と与圧状態との間のストロークが増加する。 In the brake device 1, as the gap (shoe clearance) between the outer peripheral surface of the lining 3c of the brake shoes 3L and 3T and the inner peripheral surface 2a of the drum 2 increases with time, the amount of movement of the brake shoes 3L and 3T increases. . In this case, the stroke of the linear motion member 51 that operates in conjunction with the first piston 20, that is, the stroke between the pressure-removed state and the pressurized state of the pressure chamber Rp increases.
 ここで、本実施形態では、上述したように、第一伸長機構41および第二伸長機構42ともに、ねじ機構におけるねじの螺旋の向きの設定により、回動可能部22の回転に応じて、可動部品110の中心軸Axに沿う方向の長さが長くなるよう、構成されている。よって、本実施形態によれば、回転駆動機構50、第一伸長機構41、および第二伸長機構42の作動により、シュークリアランスの増加に伴って、可動部品110の長さが増加し、シュークリアランスを減少することができる。よって、本実施形態によれば、シュークリアランスを一定の範囲内に維持することができる。当該範囲は、一方向回動部54の歯54aの間隔(角度間隔)を含む、回転駆動機構50、第一伸長機構41、および第二伸長機構42の各部のスペックの設定により、適宜な値に調整することができる。 Here, in the present embodiment, as described above, both the first extension mechanism 41 and the second extension mechanism 42 are movable according to the rotation of the rotatable portion 22 by setting the screw spiral direction in the screw mechanism. The length of the part 110 in the direction along the central axis Ax is increased. Therefore, according to the present embodiment, the length of the movable part 110 increases as the shoe clearance increases due to the operation of the rotation drive mechanism 50, the first extension mechanism 41, and the second extension mechanism 42, and the shoe clearance Can be reduced. Therefore, according to the present embodiment, the shoe clearance can be maintained within a certain range. The range includes an appropriate value depending on the specifications of each part of the rotation drive mechanism 50, the first extension mechanism 41, and the second extension mechanism 42, including the interval (angular interval) between the teeth 54 a of the unidirectional rotation unit 54. Can be adjusted.
 以上、説明したように、本実施形態では、第一ピストン20の除圧状態と与圧状態との間のストロークが大きいほど、第一伸長機構41は、直動部21と回動可能部22とのサブアセンブリ(二つの部品)の長さを長くし、第二伸長機構42は、直動部23と回動可能部22とのサブアセンブリ(二つの部品)の長さを長くする。すなわち、第一伸長機構41および第二伸長機構42ともに、第一ピストン20の除圧状態と与圧状態との間のストロークが大きいほど、可動部品110の長さを長くする。換言すれば、ラチェット機構によって第一ピストン20の回動可能部22が回転変位されることで、第一ピストン20と第二ピストン30との軸方向間隔、及び各ピストン20,30とこれらに対応する各ブレーキシュー3L,3Tとの軸方向間隔を上記ストロークに応じて適切に調節できるようになる。すなわち、一つのホイールシリンダ100に、簡素な構成にて、二つのブレーキシュー3L,3Tにかかるシュークリアランス調整機能を持たせることができる。また、本実施形態では、可動部品110は、レバー61が制動操作された際に二つのブレーキシュー3L,3Tの間にレバー61とともに介在するストラットとして機能する。したがって、本実施形態によれば、ホイールシリンダ100とは別に設けられていたアジャスタ付きストラットが不要となる。よって、例えば、ブレーキ装置1をより小型に構成することができる。また、例えば、部品点数を削減できる分、ブレーキ装置1の製造に要する手間やコストを減らすことができる。なお、本実施形態では、第一伸長機構41および第二伸長機構42ともに、第一ピストン20のストロークの増加に応じて可動部品110の長さを増加するよう構成されたが、これには限定されず、例えば、第一伸長機構41および第二伸長機構42ともに、第二ピストン30のストロークの増加に応じて可動部品110の長さを増加するよう構成されてもよい。あるいは、第一伸長機構41は、第一ピストン20のストロークの増加に応じて可動部品110の長さを増加し、第二伸長機構42は、第二ピストン30のストロークの増加に応じて可動部品110の長さを増加してもよい。 As described above, in the present embodiment, as the stroke between the pressure-removed state and the pressurized state of the first piston 20 is larger, the first extension mechanism 41 has the linear motion portion 21 and the rotatable portion 22. The second extension mechanism 42 increases the length of the subassembly (two parts) of the linear motion part 23 and the rotatable part 22. That is, in both the first extension mechanism 41 and the second extension mechanism 42, the length of the movable part 110 is increased as the stroke between the pressure-removed state and the pressurized state of the first piston 20 is increased. In other words, the pivotable portion 22 of the first piston 20 is rotationally displaced by the ratchet mechanism, so that the axial interval between the first piston 20 and the second piston 30 and the pistons 20 and 30 correspond to these. The distance between the brake shoes 3L and 3T in the axial direction can be appropriately adjusted according to the stroke. That is, one wheel cylinder 100 can be provided with a shoe clearance adjusting function for the two brake shoes 3L and 3T with a simple configuration. In the present embodiment, the movable component 110 functions as a strut that intervenes with the lever 61 between the two brake shoes 3L and 3T when the lever 61 is braked. Therefore, according to this embodiment, the strut with an adjuster provided separately from the wheel cylinder 100 becomes unnecessary. Therefore, for example, the brake device 1 can be configured more compactly. Further, for example, the labor and cost required for manufacturing the brake device 1 can be reduced by the amount of parts that can be reduced. In the present embodiment, both the first extension mechanism 41 and the second extension mechanism 42 are configured to increase the length of the movable part 110 in accordance with an increase in the stroke of the first piston 20, but this is not limitative. For example, both the first extension mechanism 41 and the second extension mechanism 42 may be configured to increase the length of the movable part 110 in accordance with an increase in the stroke of the second piston 30. Alternatively, the first extension mechanism 41 increases the length of the movable part 110 in accordance with an increase in the stroke of the first piston 20, and the second extension mechanism 42 has a movable part in accordance with an increase in the stroke of the second piston 30. The length of 110 may be increased.
 また、本実施形態では、第一伸長機構41と第二伸長機構42とで、第一ピストン20または第二ピストン30のストロークの増加量に応じた可動部品110の長さの増加量の比率が異なっている。よって、本実施形態によれば、ブレーキシュー3Lとブレーキシュー3Tとで、ライニング3cの経時的な摩耗の進行速度が異なる場合に、可動部品110の軸方向一方への長さの増加率と、軸方向他方への長さの増加率とを異ならせることにより、可動部品110の長さが増加した場合にあっても、ハウジング10に対する可動部品110の相対位置の経時的な変化(ずれ)を、より小さく設定することができる。 In the present embodiment, the first extension mechanism 41 and the second extension mechanism 42 have a ratio of the increase amount of the length of the movable part 110 corresponding to the increase amount of the stroke of the first piston 20 or the second piston 30. Is different. Therefore, according to this embodiment, when the brake shoe 3L and the brake shoe 3T have different wear speeds of the lining 3c with time, the rate of increase in the length of the movable part 110 in one axial direction is as follows: By changing the rate of increase in the length in the other axial direction, even if the length of the movable part 110 is increased, the change (shift) with time of the relative position of the movable part 110 with respect to the housing 10 is changed. , Can be set smaller.
 また、本実施形態では、第一伸長機構41と第二伸長機構42とで、第一ピストン20または第二ピストン30のストロークの増加量に応じた可動部品110の長さの増加量の比率が、異なっている。よって、本実施形態によれば、例えば、増加量の比率の適宜な設定により、ハウジング10に対する可動部品110の相対位置(例えば軸方向の中央位置)の経時的な変化(ずれ)をより小さく設定することが可能となる。 In the present embodiment, the first extension mechanism 41 and the second extension mechanism 42 have a ratio of the increase amount of the length of the movable part 110 corresponding to the increase amount of the stroke of the first piston 20 or the second piston 30. Is different. Therefore, according to the present embodiment, for example, by appropriately setting the ratio of the increase amount, the change (deviation) with time of the relative position (for example, the central position in the axial direction) of the movable part 110 with respect to the housing 10 is set to be smaller. It becomes possible to do.
 また、本実施形態では、ホイールおよびドラム2の前進回転に対するリーディングシューとなるブレーキシュー3Lの近くに位置された第一伸長機構41の上記比率が、第二伸長機構42の上記比率よりも大きくなるよう構成されている。よって、本実施形態によれば、例えば、前進回転に対するリーディングシューとなるブレーキシュー3Lのライニング3cの摩耗速度が、トレーリングシューとなるブレーキシュー3Tのライニング3cの摩耗速度よりも大きい場合において、ハウジング10に対する可動部品110の相対位置の経時的な変化をより小さく設定することが可能となる。 Further, in the present embodiment, the ratio of the first extension mechanism 41 positioned near the brake shoe 3 </ b> L serving as a leading shoe for the forward rotation of the wheel and the drum 2 is larger than the ratio of the second extension mechanism 42. It is configured as follows. Therefore, according to the present embodiment, for example, when the wear rate of the lining 3c of the brake shoe 3L serving as a leading shoe against forward rotation is higher than the wear rate of the lining 3c of the brake shoe 3T serving as a trailing shoe, the housing Thus, it is possible to set the change with time of the relative position of the movable part 110 with respect to 10 smaller.
(変形例)
 図6は、変形例のホイールシリンダ100Aの図5と同等位置での断面図である。本変形例では、第二ピストン30Aが、直動部31と回動可能部32とを有している。回動可能部32の接続部32aと、第一ピストン20Aの回動可能部22の接続部22fとは、中心軸Ax回りの相対的な回動を制限し、かつ中心軸Axに沿う方向の相対的な移動を許容する状態で、接続されている。そして、第二伸長機構42Aが、直動部31に設けられた雌ねじ部31cと回動可能部32に設けられた雄ねじ部32bとを含んでいる。そして、本変形例においても、第二伸長機構42Aは、第一ピストン20Aのストロークが増加するほど、直動部31と回動可能部32との軸方向の全長、すなわち、第二ピストン30Aの全長、ひいては可動部品110Aの全長が増加するよう設定されている。また、第一伸長機構41の、第一ピストン20Aのストロークの増加量に対する可動部品110Aの長さの増加量の比率と、第二伸長機構42Aの比率とが、異なっている。このような変形例によっても、上記実施形態と同様の効果が得られる。なお、本変形例では、第一伸長機構41と第二伸長機構42Aとで、ねじの螺旋の向きを同じにできる。
(Modification)
FIG. 6 is a cross-sectional view of a modified wheel cylinder 100A at the same position as in FIG. In the present modification, the second piston 30 </ b> A has a linear motion portion 31 and a rotatable portion 32. The connecting portion 32a of the rotatable portion 32 and the connecting portion 22f of the rotatable portion 22 of the first piston 20A restrict relative rotation around the central axis Ax and extend in the direction along the central axis Ax. Connected in a state that allows relative movement. The second extension mechanism 42 </ b> A includes a female screw part 31 c provided in the linear motion part 31 and a male screw part 32 b provided in the rotatable part 32. Also in this modified example, as the stroke of the first piston 20A increases, the second extension mechanism 42A has a full axial length between the linear motion portion 31 and the rotatable portion 32, that is, the second piston 30A. The total length, and thus the total length of the movable part 110A, is set to increase. Further, the ratio of the increase amount of the length of the movable part 110A to the increase amount of the stroke of the first piston 20A of the first extension mechanism 41 is different from the ratio of the second extension mechanism 42A. Also by such a modification, the same effect as the said embodiment is acquired. In the present modification, the first extension mechanism 41 and the second extension mechanism 42A can have the same screw spiral direction.
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。 As mentioned above, although embodiment of this invention was illustrated, the said embodiment is an example and is not intending limiting the range of invention. The above embodiment can be implemented in various other forms, and various omissions, replacements, combinations, and changes can be made without departing from the spirit of the invention. In addition, the specifications (structure, type, direction, shape, size, length, width, thickness, height, number, arrangement, position, material, etc.) of each configuration, shape, etc. are appropriately changed. Can be implemented.
 また、上記実施形態では、制動部材を移動させる作動部材がケーブル62である構成が例示されたが、作動部材は、ロッドやレバーなど、ケーブル62以外のものであってもよい。また、作動部材は、引っ張るのではなく押すことにより、制動部材を移動させてもよい。また、伸長機構は、ピストンのストロークに応じて可動部品の長さが変化すればよく、開示された構成のものには限定されない。また、伸長機構の雄ねじ部と雌ねじ部は、適宜に入れ替えて構成できる。また、本発明は、手動操作によりレバー61を動かして制動するパーキングブレーキにも適用可能である。この場合、レバー61は、例えばハンドレバーやフットペダル等の手動操作部材に連結されたケーブル62を介して操作される。 In the above embodiment, the configuration in which the operating member that moves the braking member is the cable 62 is exemplified. However, the operating member may be other than the cable 62, such as a rod or a lever. The actuating member may move the braking member by pushing instead of pulling. Further, the extension mechanism only needs to change the length of the movable component in accordance with the stroke of the piston, and is not limited to the disclosed configuration. Moreover, the external thread part and the internal thread part of an extending | stretching mechanism can be comprised by changing suitably. Further, the present invention can also be applied to a parking brake that brakes by moving the lever 61 by manual operation. In this case, the lever 61 is operated via a cable 62 connected to a manual operation member such as a hand lever or a foot pedal.

Claims (6)

  1.  シリンダ孔が設けられたハウジングと、
     前記シリンダ孔に軸方向に移動可能に収容され前記シリンダ孔内の圧力室の与圧状態で第一ブレーキシューを前記軸方向の一方に押圧する第一ピストンと、前記シリンダ孔に前記軸方向に移動可能に収容され前記与圧状態で第二ブレーキシューを前記軸方向の他方に押圧する第二ピストンと、を含み、前記圧力室の除圧状態では前記シリンダ孔内で前記軸方向に一体に移動可能に前記第一ブレーキシューと前記第二ブレーキシューとの間に介在する可動部品と、
     前記第一ピストンまたは前記第二ピストンの前記除圧状態と前記与圧状態との間のストロークが大きいほど前記ハウジングに対する軸回りの回転角度が大きくなるように前記第一ピストン及び前記第二ピストンの一方を回転変位させるラチェット機構と、
     前記回転角度が大きいほど前記可動部品の前記軸方向の長さを長くする複数の伸長機構と、
     を備え、
     一つの前記伸長機構は、前記ラチェット機構により回転変位される前記一方のピストンと該ピストンに押圧される前記ブレーキシューとの間に配設され、他の前記伸長機構は前記第一ピストンと前記第二ピストンとの間に配設される、ドラムブレーキ用ホイールシリンダ。
    A housing provided with a cylinder hole;
    A first piston that is movably accommodated in the cylinder hole in the axial direction and that presses the first brake shoe in one of the axial directions in a pressurized state of the pressure chamber in the cylinder hole, and the axial direction in the cylinder hole A second piston that is movably accommodated and presses the second brake shoe against the other in the axial direction in the pressurized state, and is integrated in the axial direction in the cylinder hole in the pressure-removed state of the pressure chamber. A movable part movably interposed between the first brake shoe and the second brake shoe;
    As the stroke between the depressurized state and the pressurized state of the first piston or the second piston increases, the rotation angle about the axis relative to the housing increases so that the rotation angle of the first piston and the second piston increases. A ratchet mechanism that rotationally displaces one of them,
    A plurality of extension mechanisms that increase the length of the movable part in the axial direction as the rotation angle increases;
    With
    One extension mechanism is disposed between the one piston rotated and displaced by the ratchet mechanism and the brake shoe pressed against the piston, and the other extension mechanism includes the first piston and the first piston. A drum cylinder for drum brakes arranged between two pistons.
  2.  前記複数の伸長機構のうちの一つの、前記ストロークの増加量に対する前記可動部品の長さの増加量の比率が、他の伸長機構の前記比率と異なる、請求項1に記載のドラムブレーキ用ホイールシリンダ。 The drum brake wheel according to claim 1, wherein a ratio of an increase amount of the length of the movable part to an increase amount of the stroke of one of the plurality of extension mechanisms is different from the ratio of the other extension mechanisms. Cylinder.
  3.  前記第一ブレーキシューは、ホイールの前進回転に対するリーディングシューであり、前記第二ブレーキシューは、当該ホイールの前進回転に対するトレーリングシューであり、
     二つの前記伸長機構のうち、前記第一ピストンと前記第一ブレーキシューとの間に前記伸長機構が配設される場合は当該伸長機構の前記比率が、また、前記第一ピストンと前記第一ブレーキシューとの間に前記伸長機構が配設されない場合は前記第一ピストンと前記第二ピストンとの間に配設される伸長機構の前記比率が、もう一つの前記伸長機構の前記比率よりも大きい、請求項2に記載のドラムブレーキ用ホイールシリンダ。
    The first brake shoe is a leading shoe for forward rotation of the wheel, and the second brake shoe is a trailing shoe for forward rotation of the wheel,
    Of the two extension mechanisms, when the extension mechanism is disposed between the first piston and the first brake shoe, the ratio of the extension mechanism is the ratio of the first piston and the first brake mechanism. When the extension mechanism is not disposed between the brake shoe and the brake shoe, the ratio of the extension mechanism disposed between the first piston and the second piston is greater than the ratio of the other extension mechanism. The wheel cylinder for a drum brake according to claim 2, which is large.
  4.  前記第一ブレーキシューおよび前記第二ブレーキシューのうち一方と回動可能に連結されたレバーが制動操作された際に、前記可動部品が、前記レバーと前記第一ブレーキシューおよび前記第二ブレーキシューのうち他方との間にストラットとして介在する、請求項1~3のいずれか一つに記載のドラムブレーキ用ホイールシリンダ。 When a lever that is pivotably connected to one of the first brake shoe and the second brake shoe is subjected to a braking operation, the movable part becomes the lever, the first brake shoe, and the second brake shoe. The wheel cylinder for a drum brake according to any one of claims 1 to 3, wherein the wheel cylinder is interposed as a strut between the other and the other.
  5.  請求項1~3のうちいずれか一つに記載のドラムブレーキ用ホイールシリンダと、
     前記第一ブレーキシューおよび前記第二ブレーキシューと、
     を備えた、車両用ドラムブレーキ。
    A wheel cylinder for a drum brake according to any one of claims 1 to 3,
    The first brake shoe and the second brake shoe;
    Drum brake for vehicles equipped with.
  6.  前記第一ブレーキシューおよび前記第二ブレーキシューのうち一方と回動可能に連結されたレバーを備え、
     前記レバーが制動操作された際に、前記可動部品が、前記レバーと前記第一ブレーキシューおよび前記第二ブレーキシューのうち他方との間にストラットとして介在するよう構成された、請求項5に記載の車両用ドラムブレーキ。
    Comprising a lever rotatably connected to one of the first brake shoe and the second brake shoe;
    The movable part is configured to be interposed as a strut between the lever and the other of the first brake shoe and the second brake shoe when the lever is braked. Vehicle drum brake.
PCT/JP2017/041610 2016-11-18 2017-11-20 Wheel cylinder for drum brake and drum brake for vehicle WO2018092900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-225502 2016-11-18
JP2016225502A JP2018080822A (en) 2016-11-18 2016-11-18 Wheel cylinder for drum brake and drum brake for vehicle

Publications (1)

Publication Number Publication Date
WO2018092900A1 true WO2018092900A1 (en) 2018-05-24

Family

ID=62146332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041610 WO2018092900A1 (en) 2016-11-18 2017-11-20 Wheel cylinder for drum brake and drum brake for vehicle

Country Status (2)

Country Link
JP (1) JP2018080822A (en)
WO (1) WO2018092900A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225738U (en) * 1988-08-09 1990-02-20
JPH0735217U (en) * 1993-12-10 1995-06-27 東京部品工業株式会社 Brake gap adjustment hole on the brake shoe
JP2001355661A (en) * 2000-06-13 2001-12-26 Nisshinbo Ind Inc Adjusting device for drum brake shoe clearance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225738U (en) * 1988-08-09 1990-02-20
JPH0735217U (en) * 1993-12-10 1995-06-27 東京部品工業株式会社 Brake gap adjustment hole on the brake shoe
JP2001355661A (en) * 2000-06-13 2001-12-26 Nisshinbo Ind Inc Adjusting device for drum brake shoe clearance

Also Published As

Publication number Publication date
JP2018080822A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP3904604B2 (en) Modular disc brake and its operating lever
JP6602306B2 (en) Geared motor, drum brake, brake device, and disc brake
US9746043B2 (en) Adjusting device for a disk brake, corresponding disk brake and method for operating a wear adjustment device for a disk brake
RU2431067C2 (en) Compact disk brake block for railway vehicle
US8678145B2 (en) Pneumatically or electromechanically actuated disc brake
WO2016027582A1 (en) Braking device
CN1161732A (en) Disk brake caliper
HU181319B (en) Brake lever for automatically adjusting drum brake
JP6277076B2 (en) Brake device
US9371078B2 (en) Caliper brake device for railway vehicles
KR20190032483A (en) Disc brake and brake actuation mechanism
KR101904681B1 (en) Parking brake unit
WO2018092900A1 (en) Wheel cylinder for drum brake and drum brake for vehicle
JP7461383B2 (en) Electromechanical drum brake with actuator with low stiffness elastic reserve
JP5889764B2 (en) Brake caliper and straddle-type vehicle equipped with the same
JP7399002B2 (en) Electric parking brake device
JP2010060122A (en) Adjuster rod rotation prevention mechanism
JP5313324B2 (en) Automatic clearance adjustment mechanism for wedge cam brakes
EP0610363A1 (en) Disc brake with variable width caliper and powered actuation
WO2013035626A1 (en) Drum brake device
JP5318981B2 (en) Automatic clearance adjustment mechanism for wedge cam brakes
JP2003194117A (en) Spring actuator device
WO2018181783A1 (en) Vehicle brake
WO2019189654A1 (en) Brake device
JP2011143764A (en) Brake for bicycle and bicycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871403

Country of ref document: EP

Kind code of ref document: A1