WO2018092805A1 - Master batch composition and polypropylene resin composition containing same - Google Patents

Master batch composition and polypropylene resin composition containing same Download PDF

Info

Publication number
WO2018092805A1
WO2018092805A1 PCT/JP2017/041091 JP2017041091W WO2018092805A1 WO 2018092805 A1 WO2018092805 A1 WO 2018092805A1 JP 2017041091 W JP2017041091 W JP 2017041091W WO 2018092805 A1 WO2018092805 A1 WO 2018092805A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
succinate
component
weight
ethylene
Prior art date
Application number
PCT/JP2017/041091
Other languages
French (fr)
Japanese (ja)
Inventor
寛 梶岡
一寿 安元
Original Assignee
サンアロマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアロマー株式会社 filed Critical サンアロマー株式会社
Priority to CN201780069625.5A priority Critical patent/CN109923170B/en
Publication of WO2018092805A1 publication Critical patent/WO2018092805A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Definitions

  • the present invention relates to a master batch composition and a polypropylene resin composition containing the same.
  • Polypropylene is widely used for automotive applications because it is inexpensive and has excellent physical properties.
  • polypropylene has an amorphous component, it is known that the coefficient of linear expansion is large. Therefore, there has been a problem in automobile parts such as a gap formed at the joint between the polypropylene resin and another material.
  • Patent Document 1 between the intrinsic viscosity of the portion soluble polyolefin composition in xylene (IV s) at room temperature, and the intrinsic viscosity (IV A) of component (A) A wide molecular weight distribution with an IV s / IV A ratio of 2 to 2.5, (A) a polydispersity index of 5 to 15 and a melt flow rate of 80 to 200 g / 10 min (according to ASTM-D1238, condition L) A polyolefin composition comprising 40-60% of a propylene polymer (component A) and (B) 40-60% of a partially xylene-insoluble olefin polymer rubber (component B) comprising at least 65% by weight of ethylene. Proposed. The composition is said to have a low coefficient of linear expansion.
  • an object of the present invention is to provide a composition having a high elastic modulus, a high impact strength at a low temperature, and a low linear expansion coefficient.
  • a composition having a high elastic modulus, a high impact strength at a low temperature, and a low linear expansion coefficient can be provided.
  • a composition containing components (1) and (2) as essential components and, if necessary, known additives is referred to as a “masterbatch composition”.
  • the masterbatch composition can be used by mixing with other resins, but can also be used alone.
  • a resin composition containing “masterbatch composition” and at least one of an elastomer or a polypropylene-based resin different from the masterbatch composition and, if necessary, a filler is referred to as “polypropylene resin composition”.
  • X to Y includes X and Y which are their end values. “X or Y” means either X or Y, or both.
  • the masterbatch composition of the present invention comprises the following components.
  • Component (1) Propylene homopolymer
  • Component (2) Propylene-ethylene copolymer containing 55 to 80% by weight of ethylene-derived units
  • Component (1) Propylene Homopolymer
  • a propylene homopolymer (homopolypropylene) is used in order to satisfy the requirements of rigidity and heat resistance in the final product.
  • the propylene homopolymer of the present invention is not more than 2.0% by weight, preferably not more than 1.0% by weight, to the extent that the gist of the invention is not impaired due to the presence of recycled monomers in the production process or the incorporation of transition products.
  • a small amount of ethylene or one or more C4 to C10- ⁇ -olefin derived units may be included.
  • Component (2) Propylene-ethylene copolymer
  • the propylene-ethylene copolymer used in the present invention contains 55 to 80% by weight of ethylene-derived units.
  • a linear expansion coefficient increases that content of an ethylene origin unit is less than a lower limit. If the upper limit is exceeded, the linear expansion coefficient increases and the impact strength also decreases. Further, in the production, particularly when the content of the ethylene-derived unit is about 55% by weight, if the ratio of the component (2) is attempted to be 25 parts by weight or more, the polymer particles are easily bonded to each other and the line is blocked. . From this viewpoint, the content of ethylene-derived units is preferably 60 to 75% by weight.
  • the ratio is preferably 75 to 60:25 to 40.
  • the masterbatch composition includes an antioxidant, a chlorine absorbent, a heat stabilizer, a light stabilizer, an ultraviolet absorbent, an internal lubricant, an external lubricant, an antiblocking agent, an antistatic agent, and an antifogging agent.
  • Olefin Polymers such as Agents, Crystal Nucleating Agents, Flame Retardants, Dispersants, Copper Damage Inhibitors, Neutralizers, Plasticizers, Anti-Bubbling Agents, Crosslinkers, Peroxides, Oils and Other Organic and Inorganic Pigments
  • Conventional additives that are usually used may be added. The addition amount of each additive may be a known amount.
  • the master batch composition of the present invention particularly preferably contains a crystal nucleating agent.
  • a crystal nucleating agent those known in the art can be used.
  • the crystal nucleating agent include inorganic fillers having crystal nucleating action such as talc, and organic crystal nucleating agents such as ertel phosphate, metal carboxylate, benzylidene sorbitol, and triaminobenzene derivatives.
  • the amount of the crystal nucleating agent is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the composition.
  • Mw / Mn of XI Mw / Mn measured by GPC of xylene insoluble matter (XI) of the composition is 6-20.
  • Xylene insoluble matter is a crystalline component in the composition.
  • Mw / Mn which is an index of molecular weight distribution, is in a wide range. That is, there are many high molecular weight components, and these components promote the orientation of polymer chains during molding. For this reason, a low linear expansion coefficient can be achieved. Furthermore, the high molecular weight component improves impact resistance, particularly impact resistance at low temperatures. From this viewpoint, Mw / Mn is preferably 7 to 20.
  • Mw / Mn of XI is obtained by obtaining a component insoluble in xylene at 25 ° C. and measuring the component by GPC (gel permeation chromatography) method.
  • the intrinsic viscosity (XSIV) of the xylene-soluble component (XS) of the composition is also an indicator of the molecular weight of the component having no crystallinity in the composition.
  • XSIV is obtained by obtaining a component soluble in xylene at 25 ° C. and measuring the intrinsic viscosity of the component by a conventional method.
  • XSIV is relatively low at 1 to 3 dl / g.
  • the low XSIV is easy to stretch the component (2) in the injection-molded product, which is advantageous for achieving a low linear expansion coefficient.
  • the intrinsic viscosity is preferably 1.5 to 2.5 dl / g.
  • melt flow rate (hereinafter also referred to as “MFR”) at 230 ° C. and a load of 21.18 N of the master batch composition is 1 to 50 g / 10 min.
  • MFR melt flow rate
  • the MFR value is less than the lower limit, the MFR of the polypropylene resin composition using the masterbatch composition is lowered, and molding such as injection molding becomes difficult.
  • the melt flow rate is preferably 5 to 35 g / 10 min.
  • the master batch composition of the present invention preferably has a flexural modulus of 1000 to 1500 MPa, more preferably 1100 to 1300 MPa.
  • the master batch composition of the present invention preferably has a linear expansion coefficient in the MD direction of ⁇ 30 to 80 ° C. of 60 to 80 ⁇ 10 ⁇ 6 / K, and 65 to 78 ⁇ 10 ⁇ 6. / K is preferable.
  • the linear expansion coefficient can be measured by performing thermal mechanical analysis (TMA) after annealing the molded product.
  • the master batch composition of the present invention preferably has a Charpy impact strength at room temperature of 20 to 50 kJ / m 2 and a Charpy impact strength at a low temperature ( ⁇ 30 ° C.) of 3 to 6 kJ / m 2. It is preferable that
  • the masterbatch composition of the present invention contains the raw material monomer of component (1) and the raw material monomer of component (2), and (A) magnesium, titanium, halogen, and a succinate compound as an internal electron donor. And (B) an organoaluminum compound, and (C) a catalyst comprising a catalyst containing an external electron donor compound.
  • the polymer polymerized using a catalyst containing a succinate compound as an internal electron donor has a wide molecular weight distribution, and a high molecular weight component and a low molecular weight component are uniformly dispersed.
  • the molecular weight distribution is a physical quantity and can be determined by measurement. However, this measured value cannot represent the degree of dispersion of the high molecular weight component and the low molecular weight component.
  • a polymer having a molecular weight distribution (measured value) similar to that of the present invention at first glance is obtained. It is also possible to obtain.
  • the polymer obtained in this way and the polymer of the present invention differ in the degree of dispersion of the high molecular weight component and the low molecular weight component, and the present invention achieves a uniform degree of dispersion.
  • the difference is remarkable in performances such as a low linear expansion coefficient and high impact resistance.
  • Solid catalyst (component A) Component (A) can be prepared by a known method, for example, by bringing a magnesium compound, a titanium compound and an electron donor compound into contact with each other.
  • titanium compound used for the preparation of the component (A) a tetravalent titanium compound represented by the general formula: Ti (OR) g X 4-g is preferable.
  • R is a hydrocarbon group
  • X is a halogen, and 0 ⁇ g ⁇ 4.
  • titanium compounds include titanium halides such as TiCl 4 , TiBr 4 , and TiI 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (O n —C 4 H).
  • Magnesium compounds used for the preparation of component (A) include magnesium compounds having a magnesium-carbon bond or magnesium-hydrogen bond, such as dimethyl magnesium, diethyl magnesium, dipropyl magnesium, dibutyl magnesium, diamyl magnesium, dihexyl magnesium, di- Examples include decylmagnesium, ethylmagnesium chloride, propylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, amylmagnesium chloride, butylethoxymagnesium, ethylbutylmagnesium, butylmagnesium hydride and the like.
  • magnesium compounds can also be used, for example, in the form of a complex compound with organic aluminum or the like, and may be liquid or solid.
  • Further preferred magnesium compounds include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, magnesium fluoride; methoxy magnesium chloride, ethoxy magnesium chloride, isopropoxy magnesium chloride, butoxy magnesium chloride, octoxy magnesium chloride, and the like.
  • Alkoxymagnesium halides Alkoxymagnesium halides; allyloxymagnesium halides such as phenoxymagnesium chloride and methylphenoxymagnesium chloride; alkoxymagnesiums such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, n-octoxymagnesium and 2-ethylhexoxymagnesium; phenoxy Allyloxy Magnesium like Magnesium, Dimethylphenoxy Magnesium ; Magnesium laurate, such as carboxylic acid salts of magnesium such as magnesium stearate and the like.
  • the electron donor compound used for the preparation of the component (A) is generally referred to as “internal electron donor”.
  • an internal electron donor that gives a broad molecular weight distribution.
  • the molecular weight distribution can be increased by performing polymerization in multiple stages, but it is difficult to increase the molecular weight distribution when the molecular weight of XI is low.
  • the molecular weight distribution can be increased even when the molecular weight of XI is low.
  • a composition polymerized using the catalyst is a composition having the same molecular weight distribution obtained by pelletizing or powder blending a polymer polymerized using another catalyst, and a composition having the same molecular weight distribution by multistage polymerization. Excellent fluidity and large swell compared to products. This is because the composition produced using the catalyst is united in a state where the high molecular weight component and the low molecular weight component are close to the molecular level, but the latter resin composition does not mix in the state close to the molecular level. This is thought to be due to the apparent molecular weight distribution.
  • preferred internal electron donors will be described.
  • a succinate compound is used as an internal electron donor.
  • the succinate compound means a diester of succinic acid or a substituted succinic acid.
  • the succinate compound will be described in detail.
  • the succinate compound preferably used in the present invention is represented by the following formula (I).
  • radicals R 1 and R 2 are the same or different from one another and optionally contain heteroatoms, C 1 -C 20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkyl
  • An aryl group; the groups R 3 to R 6 are the same or different from each other and are hydrogen or, optionally, a heteroatom, a C 1 to C 20 linear or branched alkyl, alkenyl, cycloalkyl, aryl
  • the groups R 3 to R 6 which are arylalkyl or alkylaryl groups and are bonded to the same carbon atom or different carbon atoms may be bonded together to form a ring.
  • R 1 and R 2 are preferably C 1 -C 8 alkyl, cycloalkyl, aryl, arylalkyl, and alkylaryl groups. Particularly preferred are compounds wherein R 1 and R 2 are selected from primary alkyls, especially branched primary alkyls. Examples of suitable R 1 and R 2 groups are C 1 -C 8 alkyl groups such as methyl, ethyl, n-propyl, n-butyl, isobutyl, neopentyl, 2-ethylhexyl. Ethyl, isobutyl, and neopentyl are particularly preferred.
  • One preferred group of compounds represented by formula (I) is a branched alkyl, cycloalkyl, aryl, arylalkyl, wherein R 3 to R 5 are hydrogen and R 6 has 3 to 10 carbon atoms And an alkylaryl group.
  • Preferred examples of such mono-substituted succinate compounds include diethyl-sec-butyl succinate, diethyl hexyl succinate, diethyl cyclopropyl succinate, diethyl norbornyl succinate, diethyl perihydrosuccinate, diethyl Trimethylsilyl succinate, diethyl methoxy succinate, diethyl-p-methoxyphenyl succinate, diethyl-p-chlorophenyl succinate, diethyl phenyl succinate, diethyl cyclohexyl succinate, diethyl benzyl succinate, diethyl cyclohexyl Methyl succinate, diethyl-t-butyl succinate, diethyl isobutyl succinate, diethyl isopropyl succinate, diethyl neopentyl succinate, diethyl isopenty Succinate, diethyl (1-
  • Another preferred group of compounds within the scope of formula (I) are C 1 -C 20 linear, wherein at least two groups from R 3 to R 6 are different from hydrogen and optionally contain heteroatoms Or a branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, or alkylaryl group. Particularly preferred are compounds in which two groups different from hydrogen are bonded to the same carbon atom. Specifically, R 3 and R 4 are different from hydrogen, and R 5 and R 6 are hydrogen atoms.
  • disubstituted succinates are diethyl-2,2-dimethylsuccinate, diethyl-2-ethyl-2-methylsuccinate, diethyl-2-benzyl-2-isopropylsuccinate, diethyl -2-cyclohexylmethyl-2-isobutyl succinate, diethyl-2-cyclopentyl-2-n-butyl succinate, diethyl-2,2-diisobutyl succinate, diethyl-2-cyclohexyl-2-ethyl succinate , Diethyl-2-isopropyl-2-methylsuccinate, diethyl-2-tetradecyl-2-ethylsuccinate, diethyl-2-isobutyl-2-ethylsuccinate, diethyl-2- (1-trifluoro Methylethyl) -2-methylsuccinate, diethyl-2-isopentyl-2- Sobuty
  • R 3 and R 5 are groups different from hydrogen.
  • R 4 and R 6 may be a hydrogen atom or a group different from hydrogen, but it is preferable that either one is a hydrogen atom (trisubstituted succinate).
  • Preferred examples of such compounds are diethyl-2,3-bis (trimethylsilyl) succinate, diethyl-2,2-sec-butyl-3-methylsuccinate, diethyl-2- (3,3,3- Trifluoropropyl) -3-methylsuccinate, diethyl-2,3-bis (2-ethylbutyl) succinate, diethyl-2,3-diethyl-2-isopropylsuccinate, diethyl-2,3-diisopropyl-2 -Methyl succinate, diethyl-2,3-dicyclohexyl-2-methyldiethyl-2,3-dibenzylsuccinate, diethyl-2,3-diisopropylsuccinate, diethyl-2,3-bis (cyclohexylmethyl) ) Succinate, diethyl-2,3-di-t-butylsuccinate, diethyl-2,3-diisobuty
  • compounds in which some of the groups R 3 to R 6 are bonded together to form a ring can also be preferably used.
  • compounds listed in JP-T-2002-542347 for example, 1- (ethoxycarbonyl) -1- (ethoxyacetyl) -2,6-dimethylcyclohexane, 1- (ethoxycarbonyl) -1- ( Ethoxyacetyl) -2,5-monodimethylcyclopentane, 1- (ethoxycarbonyl) -1- (ethoxyacetylmethyl) -2 monomethylcyclohexane, 1- (ethoxycarbonyl) -1- (ethoxy (cyclohexyl) acetyl) cyclohexane Can be mentioned.
  • cyclic succinate compounds such as diisobutyl 3,6-dimethylcyclohexane-1,2-dicarboxylate and diisobutyl cyclohexane-1,2-dicarboxylate as disclosed in WO2009 / 069483 are also suitable. Can be used.
  • a compound disclosed in International Publication No. 2009/057747 is also preferable.
  • the heteroatoms may be group 15 atoms including nitrogen and phosphorus atoms or group 16 atoms including oxygen and sulfur atoms preferable.
  • Examples of the compound in which the groups R 3 to R 6 contain a Group 15 atom include compounds disclosed in JP-A-2005-306910.
  • examples of the compound in which the groups R 3 to R 6 contain a Group 16 atom include compounds disclosed in JP-A No. 2004-131537.
  • an internal electron donor that gives a molecular weight distribution equivalent to that of the succinate compound may be used in combination.
  • examples of such internal electron donors include diphenyl dicarboxylic acid esters described in JP 2013-28704 A, cyclohexene dicarboxylic acid esters described in JP 2014-201602 A, and JP 2013-28705 A.
  • Organoaluminum compound (component B) Organoaluminum compound (component B)
  • Trialkylaluminum such as triethylaluminum, tributylaluminum
  • Trialkenyl aluminum such as triisoprenyl aluminum: Dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide; Alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide and butylaluminum sesquibutoxide
  • Partially halogenated alkylaluminums such as alkylaluminum dihalogenides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum dibromide and the like
  • Dialkylaluminum hydrides such as diethylaluminum hydride, dibutylaluminum hydride; Parti
  • Electron donor compound (component C) The electron donor compound of component (C) is generally referred to as an “external electron donor”. Such an electron donor compound is preferably an organosilicon compound. The following is mentioned as a preferable organosilicon compound.
  • Trimethylmethoxysilane trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-amylmethyldiethoxysilane, diphenyldimethoxysilane, phenylmethyl Dimethoxysilane, diphenyldiethoxysilane, bis-o-tolyldimethoxysilane, bism-tolyldimethoxysilane, bisp-tolyldimethoxysilane, bisp-tolyldiethoxysilane, bisethylphenyldimethoxysilane, dicyclopentyldimethoxysilane, dicyclohexyldimethoxy Silane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldie
  • ethyltriethoxysilane n-propyltriethoxysilane, n-propyltrimethoxysilane, t-butyltriethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-butylethyldimethoxysilane, t-butylpropyldimethoxysilane, t-butylt-butoxydimethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane, isobutylmethyldimethoxysilane, i-butylsec-butyldimethoxysilane, ethyl (perhydroisoquinoline 2- Yl) dimethoxysilane, bis (decahydroisoquinolin-2-yl) dimethoxysilane, tri (iso
  • Polymerization Polymerization is performed by bringing the raw material monomer into contact with the catalyst prepared as described above. At this time, it is preferable to first perform prepolymerization using the catalyst.
  • Preliminary polymerization is a step of forming a polymer chain as a foothold for subsequent polymerization of raw material monomers on a solid catalyst component.
  • the prepolymerization can be performed by a known method.
  • the prepolymerization is usually performed at 40 ° C or lower, preferably 30 ° C or lower, more preferably 20 ° C or lower.
  • the prepolymerized catalyst is introduced into the polymerization reaction system to perform main polymerization of the raw material monomers.
  • the raw material monomer of component (1) and the raw material monomer of component (2) are preferably polymerized using two or more reactors.
  • the polymerization may be carried out in liquid phase, gas phase or liquid-gas phase.
  • the polymerization temperature is preferably from room temperature to 150 ° C, more preferably from 40 ° C to 100 ° C.
  • the polymerization pressure is preferably in the range of 3.3 to 6.0 MPa when carried out in the liquid phase, and in the range of 0.5 to 3.0 MPa when carried out in the gas phase.
  • Conventional molecular weight regulators known in the art such as chain transfer agents (eg, hydrogen or ZnEt 2 ) may be used.
  • a polymerization vessel having a gradient of monomer concentration and polymerization conditions may be used.
  • a monomer in which at least two polymerization regions are connected can be used, and the monomer can be polymerized by gas phase polymerization.
  • a monomer is supplied and polymerized in a polymerization region including a riser, and a monomer is supplied and polymerized in a downcomer connected to the riser.
  • the polymer product is recovered while circulating.
  • This method comprises means for completely or partially preventing the gas mixture present in the riser from entering the downcomer.
  • a gas and / or liquid mixture having a different composition from the gas mixture present in the riser is introduced into the downcomer.
  • the above polymerization method for example, the method described in JP-T-2002-520426 can be applied.
  • the polypropylene resin composition of the present invention comprises at least one of an elastomer different from the component (2) of the master batch composition or a polypropylene resin different from the master batch composition in the master batch composition. It is obtained by mixing.
  • the total amount of the polypropylene resin different from the elastomer and the masterbatch composition is preferably 5 to 40% by weight, more preferably 5 to 30% by weight in the polypropylene resin composition.
  • Elastomer is a polymer having elasticity and is added mainly for the purpose of improving the impact resistance of the composition.
  • the elastomer used in the present invention include a copolymer of ethylene and ⁇ -olefin.
  • the ⁇ -olefin include ⁇ -olefins having 3 to 12 carbon atoms, and specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like are preferable.
  • the elastomer preferably has a lower density than the polymer of component (1) and component (2).
  • the density of the elastomer is non but 0.850 ⁇ 0.890g / cm 3 limited, and more preferably 0.860 ⁇ 0.880g / cm 3.
  • Such an elastomer can be prepared, for example, by polymerizing a monomer using a homogeneous catalyst such as metallocene or half metallocene as described in JP-A-2015-113363.
  • the MFR of the elastomer is preferably 0.1 to 50 g / 10 min at a load of 190 ° C. and 21.6 N.
  • Polypropylene resin different from the masterbatch composition A polypropylene resin different from the masterbatch composition is added for the purpose of improving the fluidity, rigidity, impact resistance and the like of the composition.
  • Polypropylene resins different from the masterbatch composition include propylene homopolymers, propylene random copolymers containing more than 0% by weight and less than 5% by weight of ethylene or one or more C4-C10- ⁇ -olefins, propylene Examples thereof include a polymerization mixture (also referred to as HECO) obtained by polymerizing ethylene and one or more C3-C10- ⁇ olefins in the presence of a polymer.
  • the masterbatch composition of the present invention is also a kind of HECO, and HECO added to the masterbatch composition can be produced by the same method as the masterbatch composition, but both are different in composition.
  • the polypropylene resin composition of the present invention may contain a filler.
  • the filler is added mainly for the purpose of improving the rigidity of the material.
  • the filler include inorganic fillers such as talc, clay, calcium carbonate, magnesium hydroxide, and glass fiber, and organic fillers such as carbon fiber and cellulose fiber.
  • inorganic fillers such as talc, clay, calcium carbonate, magnesium hydroxide, and glass fiber
  • organic fillers such as carbon fiber and cellulose fiber.
  • surface treatment of the fillers and preparation of a masterbatch of filler and resin may be performed as necessary.
  • talc is preferable because it is easily mixed with a propylene (co) polymer and a copolymer of ethylene and ⁇ -olefin, and the rigidity of the molded product is easily improved.
  • the amount of the filler is preferably more than 5% by weight and 40% by weight or less in the polypropylene resin composition, and more preferably 10 to 35% by weight.
  • the polypropylene resin composition of the present invention includes an antioxidant, a chlorine absorbent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an internal lubricant, an external lubricant, an antiblocking agent, an antistatic agent, Olefins such as antifogging agents, crystal nucleating agents, flame retardants, dispersants, copper damage prevention agents, neutralizing agents, plasticizers, antifoaming agents, crosslinking agents, peroxides, oil-extended and other organic and inorganic pigments You may add the usual additive normally used for a polymer. The addition amount of each additive may be a known amount.
  • the polypropylene resin composition of the present invention can be produced by melt-kneading the above components.
  • the kneading method is not limited, but a method using a kneader such as an extruder is preferred.
  • the kneading conditions are not particularly limited, but the cylinder temperature is preferably 180 to 250 ° C.
  • the polypropylene resin composition thus obtained is preferably in the form of pellets.
  • a polypropylene resin composition can be produced as a molded product by measuring a dry blend of the above components in an injection molding machine and kneading in a melt kneading part (cylinder).
  • the polypropylene resin composition of the present invention is obtained by mixing the masterbatch composition with other components.
  • the phase structure of the polypropylene resin composition is such that the propylene-ethylene copolymer component derived from the masterbatch composition and an elastomer (in some cases the masterbatch composition and Is considered to be a structure in which a copolymer of ethylene and ⁇ -olefin derived from different HECOs is dispersed, and the effect of the present invention is exhibited by forming the phase structure.
  • the masterbatch composition and the polypropylene resin composition of the present invention are suitable for injection molding. Since the polypropylene resin composition of the present invention has high rigidity, high impact resistance, and a low linear expansion coefficient, it is suitable for automobile parts.
  • General injection conditions are a cylinder temperature of 200 to 230 ° C., a mold temperature of 20 to 50 ° C., and an injection speed of 30 to 50 mm / second.
  • Masterbatch composition [Example 1] A masterbatch composition comprising 65.5% by weight of a polypropylene homopolymer as component (1) and 34.5% by weight of a propylene-ethylene copolymer having 65.7% by weight of ethylene-derived units as component (2) as follows: The thing was manufactured.
  • a solid catalyst component was prepared according to the preparation method described in Examples of JP2011-500907A. Specifically, it was prepared as follows.
  • the solid catalyst, triethylaluminum (TEAL) and dicyclopentyldimethoxysilane (DCPMS) are mixed in an amount such that the weight ratio of TEAL to the solid catalyst is 18 and the weight ratio of TEAL / DCPMS is 10 at room temperature. Touched for a minute. The resulting catalyst system was prepolymerized by holding it in liquid propylene in suspension for 5 minutes at 20 ° C.
  • the obtained prepolymer is introduced into a first-stage liquid phase polymerization reactor to obtain a propylene homopolymer, and then the obtained polymer is introduced into a second-stage gas phase polymerization reactor.
  • the polymer (propylene-ethylene copolymer) was polymerized. During the polymerization, temperature and pressure were adjusted, and hydrogen was used as a molecular weight modifier.
  • the polymerization temperature and the ratio of the reactants are as follows: polymerization temperature and hydrogen concentration in the first reactor are 70 ° C. and 0.31 mol%, respectively, polymerization temperature, H2 / C2, C2 / C in the second reactor. (C2 + C3) were 80 ° C., 0.16 molar ratio, and 0.69 molar ratio, respectively.
  • the residence time distribution of the 1st stage and the 2nd stage was adjusted so that the quantity of a copolymer component might be 34.5 weight part in 100 weight part of polymers.
  • the pellets were injection molded into various test pieces using an injection molding machine (manufactured by FANUC, model number ROBOSHOT S-2000i 100B).
  • the molding conditions were a cylinder temperature of 200 ° C., a mold temperature of 40 ° C., and an injection speed of 200 mm / second.
  • Various physical properties were evaluated using the test pieces. The evaluation method will be described later.
  • Example 2 The hydrogen concentration in the first reactor is 0.28 mol%, and H2 / C2 and C2 / (C2 + C3) in the second reactor are 0.22 mol ratio and 0.59 mol ratio, respectively.
  • a polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distribution in the first and second stages was adjusted so that the amount of the component was 32.9 parts by weight in 100 parts by weight of the polymer.
  • a masterbatch composition for this example was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer.
  • Example 3 Pellets were prepared by melt kneading in the same manner as in Example 1 except that talc was further added to the polypropylene polymer obtained in Example 2, and evaluated.
  • the amount of talc (trade name HTP05L, manufactured by IMI Fabi) was 1 part by weight per 100 parts by weight of the polymer.
  • Example 1 A solid catalyst in which Ti and diisobutyl phthalate as an internal donor were supported on MgCl 2 was prepared by the method described in Example 5 of European Patent No. 728769. Next, using the above solid catalyst, triethylaluminum (TEAL) as the organoaluminum compound and dicyclopentyldimethoxysilane (DCPMS) as the external electron donor compound, the weight ratio of TEAL to the solid catalyst is 20, and the weight ratio of TEAL / DCPMS. was contacted at 12 ° C. for 24 minutes. The resulting catalyst system was preliminarily polymerized by keeping it in suspension in liquid propylene at 20 ° C. for 5 minutes.
  • TEAL triethylaluminum
  • DCPMS dicyclopentyldimethoxysilane
  • a propylene homopolymer was produced by multistage polymerization using two liquid phase polymerization reactors.
  • the hydrogen concentration in the first polymerization reactor was 0.16 mol%
  • the hydrogen concentration in the second polymerization reactor was 1.70 mol%
  • the polymerization pressure was adjusted at a polymerization temperature of 70 ° C.
  • the residence time distribution was adjusted so as to be 50:50.
  • propylene homopolymer was introduced into a gas phase polymerization reactor, and a copolymer (propylene / ethylene copolymer) was polymerized in the same manner as in Example 1.
  • a copolymer propylene / ethylene copolymer
  • temperature and pressure were adjusted, and hydrogen was used as a molecular weight modifier.
  • the polymerization temperature, H2 / C2, and C2 / (C2 + C3) were 80 ° C., 0.12 molar ratio, and 0.68 molar ratio, respectively.
  • the residence time distributions in the first and second stages were adjusted so that the amount of the copolymer component was 30.0 parts by weight per 100 parts by weight of the polymer.
  • Example 1 Using the polypropylene polymer thus obtained, a comparative masterbatch composition was produced and evaluated in the same manner as in Example 1.
  • Comparative Example 2 Pellets were prepared by melt-kneading in the same manner as in Example 1 except that talc was further added to the polypropylene polymer obtained in Comparative Example 1, and evaluated.
  • the amount of talc (trade name HTP05L, manufactured by IMI Fabi) was 1 part by weight per 100 parts by weight of the polymer.
  • Example 3 The hydrogen concentration in the first-stage reactor was 0.44 mol%, the hydrogen concentration in the second-stage reactor, and C2 / (C2 + C3) were 2.04 mol% and 0.37 mol ratio, respectively.
  • a polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distributions in the first and second stages were adjusted so that the amount of the polymer became 35.6 parts by weight in 100 parts by weight of the polymer.
  • a comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer thus obtained.
  • Example 4 Using the same prepolymerization catalyst as in Example 1, a propylene homopolymer was produced in a first-stage reactor at a polymerization temperature and a hydrogen concentration of 70 ° C. and 0.29 mol%, respectively, and unreacted monomers were purged. Thereafter, ethylene was introduced into the second stage polymerization reactor to produce an ethylene homopolymer.
  • the polymerization temperature of the second-stage reactor, H2 / C2 was 80 ° C. and 0.16 molar ratio, respectively, the pressure was adjusted, and the amount of ethylene homopolymer was 29.8 parts by weight per 100 parts by weight of the polymer.
  • the residence time distribution in the first and second stages was adjusted so that a polypropylene polymer was obtained.
  • a comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 except that the polymer was used.
  • Example 5 The hydrogen concentration in the first-stage reactor was 0.34 mol%, the hydrogen concentration in the second-stage reactor, and C2 / (C2 + C3) were 4.13 mol% and 0.19 mol ratio, respectively.
  • a polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distributions of the first and second stages were adjusted so that the amount of the polymer became 31.5 parts by weight in 100 parts by weight of the polymer.
  • a comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer thus obtained.
  • Polypropylene resin composition [Example 4] The residence time distribution of the first and second stages is adjusted so that the hydrogen concentration in the first stage reactor is 0.59 mol% and the amount of the copolymer component is 30.7 parts by weight per 100 parts by weight of the polymer.
  • a polypropylene polymer was produced in the same manner as in Example 1 except that.
  • a master batch composition was produced in the same manner as in Example 1 using this polypropylene polymer.
  • the master batch composition, talc (trade name HTP05L, manufactured by IMI Fabi) and elastomer (trade name Engage 8200, manufactured by Dow Chemical) were melt-kneaded in the same manner as in Example 1 to prepare pellets. Subsequently, the polypropylene resin composition was evaluated in the same manner as in Example 1.
  • Example 5 The hydrogen concentration in the first-stage reactor is 0.59 mol%, and H2 / C2 and C2 / (C2 + C3) in the second-stage reactor are 0.14 mol ratio and 0.56 mol ratio, respectively.
  • a polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distribution in the first and second stages was adjusted so that the amount of the component was 29.5 parts by weight in 100 parts by weight of the polymer. Next, using this polypropylene polymer, a polypropylene resin composition was produced and evaluated in the same manner as in Example 4.
  • Example 6 The hydrogen concentration in the first reactor is 0.59 mol%, and the H2 / C2 and C2 / (C2 + C3) in the second reactor are 0.12 mol% and 0.59 mol ratio, respectively.
  • a polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distribution in the first and second stages was adjusted so that the amount of the component was 32.3 parts by weight in 100 parts by weight of the polymer.
  • a polypropylene resin composition was produced and evaluated in the same manner as in Example 4 except that the master batch composition and the content of talc were changed as shown in Table 2.
  • Example 7 The residence time distributions in the first and second stages were adjusted so that the hydrogen concentration in the first stage reactor was 0.39 mol% and the amount of the copolymer component was 37.5 parts by weight in 100 parts by weight of the polymer. Except for the above, a polypropylene polymer was produced in the same manner as in Example 4. Next, using this polypropylene polymer, a masterbatch composition, talc and MFR of 1750 g / 10 minutes, and a propylene homopolymer having a xylene-soluble content of 2.3 wt% at 25 ° C. were blended in the amounts shown in Table 2. A polypropylene resin composition was produced and evaluated in the same manner as in Example 4 except that.
  • ⁇ Total ethylene content in masterbatch composition> Using the spectrum obtained above, the total ethylene of the masterbatch composition was obtained by the method described in the literature of Kakugo, Y. Naito, K. Mizunuma and T. Miyatake, Macromolecules, 15, 1150-1152 (1982). The amount (% by weight) was determined.
  • Amount of copolymer (component 2) in masterbatch composition The following formula was used.
  • Amount of component (2) (% by weight) total ethylene amount / (ethylene concentration in copolymer / 100)
  • the component (2) estimated from the ethylene content of the masterbatch composition
  • the IV of component (2) was calculated from the ratio, the IV of the entire masterbatch composition, and the IV value of component (1), assuming the additivity of IV.
  • PL GPC220 manufactured by Polymer Laboratories was used as the apparatus, 1,2,4-trichlorobenzene containing an antioxidant was used as the mobile phase, and UT-G (1), UT-807 (Showa Denko KK) was used as the column. 1) and UT-806M (2) connected in series were used, and a differential refractometer was used as a detector.
  • the same solvent as the mobile phase was used as a solvent for the sample solution of xylene-insoluble matter, and a measurement sample was prepared by dissolving at a sample concentration of 1 mg / mL for 2 hours while shaking at a temperature of 150 ° C.
  • the master batch composition of the present invention has a low linear expansion coefficient, high rigidity, and high impact resistance. Further, it is clear that the polypropylene resin composition produced using the master batch composition also has a low linear expansion coefficient, high rigidity, and high impact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A master batch composition which is obtained by polymerizing propylene and ethylene with use of (A) a solid catalyst that contains, as essential components, magnesium, titanium, a halogen and an electron donor compound selected from among succinate compounds, (B) an organic aluminum compound and (C) a catalyst that contains an external electron donor compound, and which is configured such that: a propylene homopolymer is contained as a component (1) and a propylene-ethylene copolymer containing 55-80% by weight of a unit derived from ethylene is contained as a component (2); the weight ratio of the component (1) to the component (2) is 85-60:15-40; and the requirements (1)-(3) described below are satisfied. This composition has high elastic modulus, high impact strength at low temperatures and low linear expansion coefficient. Requirement (1): The xylene-insoluble fraction of this composition has an Mw/Mn of 6-20 as determined by GPC. Requirement (2): The xylene-soluble fraction of this composition has a limiting viscosity of 1-3 dl/g. Requirement (3): This composition has a melt flow rate of 1-50 g/10 minutes (at 230°C under a load of 21.18 N).

Description

マスターバッチ組成物およびこれを含むポリプロピレン樹脂組成物Masterbatch composition and polypropylene resin composition containing the same
 本発明はマスターバッチ組成物およびこれを含むポリプロピレン樹脂組成物に関する。 The present invention relates to a master batch composition and a polypropylene resin composition containing the same.
 ポリプロピレンは、安価でありかつ優れた物理的特性を有するため自動車用途として幅広く使用されている。しかしながら、ポリプロピレンは非晶成分を有しているため、線膨張係数が大きいことが知られている。そのため、自動車部品において、ポリプロピレン樹脂と他の材料との接合部に隙間が生じるなどの問題があった。また、線膨張係数を小さくする目的で、タルク等の無機充填剤を多量に添加する試みがなされているが、重量増につながり、自動車の軽量化による燃費の向上の視点から好ましくない。 Polypropylene is widely used for automotive applications because it is inexpensive and has excellent physical properties. However, since polypropylene has an amorphous component, it is known that the coefficient of linear expansion is large. Therefore, there has been a problem in automobile parts such as a gap formed at the joint between the polypropylene resin and another material. Attempts have been made to add a large amount of an inorganic filler such as talc for the purpose of reducing the linear expansion coefficient, but this leads to an increase in weight, which is not preferable from the viewpoint of improving fuel consumption by reducing the weight of an automobile.
 この問題を解消するために、特許文献1には、室温でキシレン中に溶解性なポリオレフィン組成物の部分の固有粘度(IVs)と、成分(A)の固有粘度(IVA)との間のIVs/IVA比が2~2.5、(A)5~15の多分散性指数と、80~200g/10分の溶融流量(ASTM-D1238、条件Lに従う)を有する広い分子量分布プロピレンポリマー(成分A)を40~60%、および(B)少なくとも65重量%のエチレンを含む、部分的にキシレン不溶性なオレフィンポリマーゴム(成分B)を40~60%とからなるポリオレフィン組成物が提案されている。当該組成物は低い線膨張係数を有するとされる。 To solve this problem, Patent Document 1, between the intrinsic viscosity of the portion soluble polyolefin composition in xylene (IV s) at room temperature, and the intrinsic viscosity (IV A) of component (A) A wide molecular weight distribution with an IV s / IV A ratio of 2 to 2.5, (A) a polydispersity index of 5 to 15 and a melt flow rate of 80 to 200 g / 10 min (according to ASTM-D1238, condition L) A polyolefin composition comprising 40-60% of a propylene polymer (component A) and (B) 40-60% of a partially xylene-insoluble olefin polymer rubber (component B) comprising at least 65% by weight of ethylene. Proposed. The composition is said to have a low coefficient of linear expansion.
特表2002-528621号公報Special Table 2002-528621
 自動車用部品においては、高弾性率、低温における高衝撃強度、および低線膨張係数が求められ、一般にこれらはトレードオフの関係にあり、すべてをバランスよく満たすことは困難である。特許文献1に記載の組成物は、低温における衝撃強度が高くかつ低い線膨張係数を有するとされるが、弾性率が十分なレベルではない。かかる事情を鑑み、本発明は高弾性率、低温における高衝撃強度、および低線膨張係数を備える組成物を提供することを課題とする。 Automotive parts are required to have a high elastic modulus, high impact strength at low temperatures, and a low coefficient of linear expansion. In general, these are in a trade-off relationship, and it is difficult to satisfy all in a well-balanced manner. The composition described in Patent Document 1 is said to have a high impact strength at low temperatures and a low coefficient of linear expansion, but the elastic modulus is not at a sufficient level. In view of such circumstances, an object of the present invention is to provide a composition having a high elastic modulus, a high impact strength at a low temperature, and a low linear expansion coefficient.
 前記課題は以下の本発明によって解決される。
[1](A)マグネシウム、チタン、ハロゲン、およびスクシネート系化合物から選択される電子供与体化合物を必須成分として含有する固体触媒;
 (B)有機アルミニウム化合物;ならびに
 (C)外部電子供与体化合物
を含む触媒を用いて、プロピレンとエチレンとを重合させて得たマスターバッチ組成物であって、
 成分(1)として、プロピレン単独重合体、および
 成分(2)として、55~80重量%のエチレン由来単位を含むプロピレン-エチレンコポリマーを含み、
 成分(1):(2)の重量比が85~60:15~40であり、
 以下の要件:
 1)当該組成物のキシレン不溶分のGPCにより測定したMw/Mnが6~20である
 2)当該組成物のキシレン可溶分の極限粘度が1~3dl/gである
 3)当該組成物のメルトフローレート(230℃、荷重21.18N)が1~50g/10分である
 を満たす、マスターバッチ組成物。
[2]前記成分(2)におけるプロピレン-エチレンコポリマーのエチレン由来単位が60~75重量%である、請求項1に記載のマスターバッチ組成物。
[3]前記成分(1):(2)の重量比が75~60:25~40である、[1]または[2]に記載のマスターバッチ組成物。
[4]前記メルトフローレートが10~35g/10分である、[1]~[3]のいずれかに記載のマスターバッチ組成物。
[5]前記組成物100重量部に対し、0.01~5重量部の結晶造核剤を含む、[1]~[4]のいずれかに記載のマスターバッチ組成物。
[6]前記[1]~[5]のいずれかに記載のマスターバッチ組成物に、前記マスターバッチ組成物の成分(2)とは異なるエラストマーまたは前記マスターバッチ組成物とは異なるポリプロピレン系樹脂の少なくとも一方を混合してなる、ポリプロピレン樹脂組成物。
[7]前記[6]に記載の組成物中に5重量%を超え40重量%以下の充填剤を含む、ポリプロピレン樹脂組成物。
[8]前記[6]または[7]に記載のポリプロピレン樹脂組成物を射出成形してなる射出成形品。
The said subject is solved by the following this invention.
[1] (A) A solid catalyst containing, as an essential component, an electron donor compound selected from magnesium, titanium, halogen, and a succinate compound;
(B) an organoaluminum compound; and (C) a masterbatch composition obtained by polymerizing propylene and ethylene using a catalyst containing an external electron donor compound,
As component (1), a propylene homopolymer, and as component (2), a propylene-ethylene copolymer containing 55 to 80% by weight of ethylene-derived units,
The weight ratio of components (1) :( 2) is 85-60: 15-40,
The following requirements:
1) Mw / Mn measured by GPC of the xylene-insoluble part of the composition is 6 to 20 2) The intrinsic viscosity of the xylene-soluble part of the composition is 1 to 3 dl / g 3) of the composition A master batch composition satisfying a melt flow rate (230 ° C., load 21.18 N) of 1 to 50 g / 10 min.
[2] The master batch composition according to claim 1, wherein the ethylene-derived unit of the propylene-ethylene copolymer in the component (2) is 60 to 75% by weight.
[3] The master batch composition according to [1] or [2], wherein the weight ratio of the components (1) :( 2) is 75-60: 25-40.
[4] The master batch composition according to any one of [1] to [3], wherein the melt flow rate is 10 to 35 g / 10 minutes.
[5] The master batch composition according to any one of [1] to [4], comprising 0.01 to 5 parts by weight of a crystal nucleating agent with respect to 100 parts by weight of the composition.
[6] The masterbatch composition according to any one of the above [1] to [5], wherein an elastomer different from the component (2) of the masterbatch composition or a polypropylene resin different from the masterbatch composition is used. A polypropylene resin composition obtained by mixing at least one.
[7] A polypropylene resin composition containing a filler in an amount of more than 5% by weight and 40% by weight or less in the composition according to [6].
[8] An injection molded product obtained by injection molding the polypropylene resin composition according to [6] or [7].
 高弾性率、低温における高衝撃強度、および低線膨張係数を備える組成物を提供できる。 A composition having a high elastic modulus, a high impact strength at a low temperature, and a low linear expansion coefficient can be provided.
 本発明において、成分(1)および(2)を必須成分として含み、必要に応じて公知の添加剤を含む組成物を「マスターバッチ組成物」という。当該マスターバッチ組成物は、他の樹脂と混合して使用できるが単独でも使用できる。「マスターバッチ組成物」と当該マスターバッチ組成物とは異なるエラストマーまたはポリプロピレン系樹脂の少なくとも一方、および必要に応じて充填剤を含む樹脂組成物を「ポリプロピレン樹脂組成物」という。以下、本発明を詳細に説明する。本発明において「X~Y」はその端値であるXおよびYを含む。「XまたはY」はX、Yのいずれか一方、あるいは双方を意味する。 In the present invention, a composition containing components (1) and (2) as essential components and, if necessary, known additives is referred to as a “masterbatch composition”. The masterbatch composition can be used by mixing with other resins, but can also be used alone. A resin composition containing “masterbatch composition” and at least one of an elastomer or a polypropylene-based resin different from the masterbatch composition and, if necessary, a filler is referred to as “polypropylene resin composition”. Hereinafter, the present invention will be described in detail. In the present invention, “X to Y” includes X and Y which are their end values. “X or Y” means either X or Y, or both.
1.マスターバッチ組成物
 本発明のマスターバッチ組成物は、以下の成分を含む。
 成分(1):プロピレン単独重合体
 成分(2):55~80重量%のエチレン由来単位を含むプロピレン-エチレンコポリマー
1. Masterbatch composition The masterbatch composition of the present invention comprises the following components.
Component (1): Propylene homopolymer Component (2): Propylene-ethylene copolymer containing 55 to 80% by weight of ethylene-derived units
 (1)成分(1):プロピレン単独重合体
 本発明の成分(1)としては、最終製品において剛性と耐熱性の要求を満たすため、プロピレン単独重合体(ホモポリプロピレン)が用いられる。本発明のプロピレン単独重合体には、製造プロセスにおけるリサイクルモノマーの存在や移行品の混入等により、発明の趣旨を損なわない程度に、2.0重量%以下、好ましくは1.0重量%以下の少量のエチレンまたは1種類以上のC4~C10-α-オレフィン由来単位が含まれていてもよい。
(1) Component (1): Propylene Homopolymer As component (1) of the present invention, a propylene homopolymer (homopolypropylene) is used in order to satisfy the requirements of rigidity and heat resistance in the final product. The propylene homopolymer of the present invention is not more than 2.0% by weight, preferably not more than 1.0% by weight, to the extent that the gist of the invention is not impaired due to the presence of recycled monomers in the production process or the incorporation of transition products. A small amount of ethylene or one or more C4 to C10-α-olefin derived units may be included.
 (2)成分(2):プロピレン-エチレンコポリマー
 本発明で用いるプロピレン-エチレンコポリマーはエチレン由来単位を55~80重量%含む。エチレン由来単位の含有量が下限値未満であると線膨張係数が増加する。また、上限値を超えると線膨張係数が増加し、衝撃強度も低下する。さらに製造において、特にエチレン由来単位の含有量が55重量%程度である場合に、成分(2)の比率を25重量部以上にしようとすると、重合粒子同士が接着しやすくなりラインの閉塞をもたらす。この観点からエチレン由来単位の含有量60~75重量%が好ましい。
(2) Component (2): Propylene-ethylene copolymer The propylene-ethylene copolymer used in the present invention contains 55 to 80% by weight of ethylene-derived units. A linear expansion coefficient increases that content of an ethylene origin unit is less than a lower limit. If the upper limit is exceeded, the linear expansion coefficient increases and the impact strength also decreases. Further, in the production, particularly when the content of the ethylene-derived unit is about 55% by weight, if the ratio of the component (2) is attempted to be 25 parts by weight or more, the polymer particles are easily bonded to each other and the line is blocked. . From this viewpoint, the content of ethylene-derived units is preferably 60 to 75% by weight.
 (3)組成比
 成分(1)と(2)の重量比は(1):(2)=85~60:15~40である。成分(2)の量がこの上限を超えると剛性の低下が著しくなり、下限未満であると耐衝撃性の低下が著しくなる。この観点から、前記比率は好ましくは、75~60:25~40である。
(3) Composition ratio The weight ratio of the components (1) and (2) is (1) :( 2) = 85-60: 15-40. When the amount of the component (2) exceeds this upper limit, the rigidity is remarkably reduced, and when it is less than the lower limit, the impact resistance is remarkably reduced. From this viewpoint, the ratio is preferably 75 to 60:25 to 40.
 (4)他の成分
 さらにマスターバッチ組成物には、酸化防止剤、塩素吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、アンチブロッキング剤、帯電防止剤、防曇剤、結晶造核剤、難燃剤、分散剤、銅害防止剤、中和剤、可塑剤、気泡防止剤、架橋剤、過酸化物、油展および他の有機および無機顔料などのオレフィン重合体に通常用いられる慣用の添加剤を添加してもよい。各添加剤の添加量は公知の量としてよい。
(4) Other components Further, the masterbatch composition includes an antioxidant, a chlorine absorbent, a heat stabilizer, a light stabilizer, an ultraviolet absorbent, an internal lubricant, an external lubricant, an antiblocking agent, an antistatic agent, and an antifogging agent. Olefin Polymers such as Agents, Crystal Nucleating Agents, Flame Retardants, Dispersants, Copper Damage Inhibitors, Neutralizers, Plasticizers, Anti-Bubbling Agents, Crosslinkers, Peroxides, Oils and Other Organic and Inorganic Pigments Conventional additives that are usually used may be added. The addition amount of each additive may be a known amount.
 本発明のマスターバッチ組成物は、結晶造核剤を含むことが特に好ましい。結晶造核剤としては、当該分野において公知のものを使用できる。結晶造核剤としては、例えばタルク等の結晶造核作用を有する無機系充填剤、リン酸エルテル、カルボン酸金属塩、ベンジリデンソルビトール、トリアミノベンゼン誘導体等の有機系結晶造核剤が挙げられる。結晶造核剤の量は、組成物100重量部に対して0.01~5重量部であることが好ましい。 The master batch composition of the present invention particularly preferably contains a crystal nucleating agent. As the crystal nucleating agent, those known in the art can be used. Examples of the crystal nucleating agent include inorganic fillers having crystal nucleating action such as talc, and organic crystal nucleating agents such as ertel phosphate, metal carboxylate, benzylidene sorbitol, and triaminobenzene derivatives. The amount of the crystal nucleating agent is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the composition.
 (5)特性
 1)XIのMw/Mn
 当該組成物のキシレン不溶分(XI)のGPCにより測定したMw/Mnは6~20である。キシレン不溶分は当該組成物における結晶性成分である。本発明においては分子量分布の指標であるMw/Mnが広い範囲にある。すなわち高分子量成分が多く存在し、当該成分が成形時にポリマー鎖の配向を促進する。このため低線膨張係数を達成できる。さらに高分子量成分により耐衝撃性、特に低温での耐衝撃性が向上する。この観点からMw/Mnは7~20が好ましい。XIのMw/Mnは25℃のキシレンに不溶な成分を得て、当該成分をGPC(ゲル浸透クロマトグラフィー)法にて測定することで求められる。
(5) Characteristics 1) Mw / Mn of XI
Mw / Mn measured by GPC of xylene insoluble matter (XI) of the composition is 6-20. Xylene insoluble matter is a crystalline component in the composition. In the present invention, Mw / Mn, which is an index of molecular weight distribution, is in a wide range. That is, there are many high molecular weight components, and these components promote the orientation of polymer chains during molding. For this reason, a low linear expansion coefficient can be achieved. Furthermore, the high molecular weight component improves impact resistance, particularly impact resistance at low temperatures. From this viewpoint, Mw / Mn is preferably 7 to 20. Mw / Mn of XI is obtained by obtaining a component insoluble in xylene at 25 ° C. and measuring the component by GPC (gel permeation chromatography) method.
 2)XSIV
 当該組成物のキシレン可溶分(XS)の極限粘度(XSIV)は、当該組成物における結晶性を持たない成分の分子量の指標でもある。XSIVは25℃のキシレンに可溶な成分を得て、当該成分の極限粘度を定法にて測定することで求められる。本発明においてXSIVは1~3dl/gと比較的低い。XSIVが低いことは射出成形品において成分(2)が引き伸ばされ易く低線膨張係数を達成に有利であるが、低すぎると耐衝撃性が悪化する。したがって、XSIVがこの範囲にあることで低線膨張係数と高耐衝撃性の両立を達成できると考えられる。この観点から、前記極限粘度は好ましくは1.5~2.5dl/gである。
2) XSIV
The intrinsic viscosity (XSIV) of the xylene-soluble component (XS) of the composition is also an indicator of the molecular weight of the component having no crystallinity in the composition. XSIV is obtained by obtaining a component soluble in xylene at 25 ° C. and measuring the intrinsic viscosity of the component by a conventional method. In the present invention, XSIV is relatively low at 1 to 3 dl / g. The low XSIV is easy to stretch the component (2) in the injection-molded product, which is advantageous for achieving a low linear expansion coefficient. However, if it is too low, the impact resistance deteriorates. Therefore, it is considered that the low linear expansion coefficient and the high impact resistance can be achieved when XSIV is within this range. From this viewpoint, the intrinsic viscosity is preferably 1.5 to 2.5 dl / g.
 3)メルトフローレート
 マスターバッチ組成物の230℃、荷重21.18Nにおけるメルトフローレート(以下「MFR」ともいう)は1~50g/10分である。MFRがこの範囲にあることで優れた成形性を達成できる。MFRが上限値を超えると、成分(1)のMFRが非常に高く(分子量が低く)なる結果、耐衝撃性が低下すると共に、製造も困難となる。またMFR値が下限値未満であるとマスターバッチ組成物を使用したポリプロピレン樹脂組成物のMFRが低下し、射出成形等の成形が困難となる。この観点から、メルトフローレートは好ましくは5~35g/10分である。
3) Melt flow rate The melt flow rate (hereinafter also referred to as “MFR”) at 230 ° C. and a load of 21.18 N of the master batch composition is 1 to 50 g / 10 min. When the MFR is within this range, excellent moldability can be achieved. If the MFR exceeds the upper limit value, the MFR of the component (1) becomes very high (molecular weight is low), resulting in reduced impact resistance and difficulty in production. On the other hand, if the MFR value is less than the lower limit, the MFR of the polypropylene resin composition using the masterbatch composition is lowered, and molding such as injection molding becomes difficult. From this viewpoint, the melt flow rate is preferably 5 to 35 g / 10 min.
 4)弾性率
 本発明のマスターバッチ組成物は、曲げ弾性率が1000~1500MPaであることが好ましく、1100~1300MPaであることがより好ましい。
4) Elastic modulus The master batch composition of the present invention preferably has a flexural modulus of 1000 to 1500 MPa, more preferably 1100 to 1300 MPa.
 5)線膨張係数
 本発明のマスターバッチ組成物は、-30~80℃でのMD方向の線膨張係数が60~80×10-6/Kであることが好ましく、65~78×10-6/Kであることが好ましい。線膨張係数は成形品をアニールした後、熱機械分析(TMA)を行うことで測定できる。
5) Linear Expansion Coefficient The master batch composition of the present invention preferably has a linear expansion coefficient in the MD direction of −30 to 80 ° C. of 60 to 80 × 10 −6 / K, and 65 to 78 × 10 −6. / K is preferable. The linear expansion coefficient can be measured by performing thermal mechanical analysis (TMA) after annealing the molded product.
 6)衝撃強度
 本発明のマスターバッチ組成物は、室温でのシャルピー衝撃強度が20~50kJ/mであることが好ましく、低温(-30℃)でのシャルピー衝撃強度が3~6kJ/mであることが好ましい。
6) Impact strength The master batch composition of the present invention preferably has a Charpy impact strength at room temperature of 20 to 50 kJ / m 2 and a Charpy impact strength at a low temperature (−30 ° C.) of 3 to 6 kJ / m 2. It is preferable that
 (6)製造方法
 本発明のマスターバッチ組成物は成分(1)の原料モノマーおよび成分(2)の原料モノマーを、(A)マグネシウム、チタン、ハロゲン、および内部電子供与体としてスクシネート系化合物を含有する固体触媒、(B)有機アルミニウム化合物、ならびに(C)外部電子供与体化合物を含む触媒を用いて重合する工程を含む方法で製造される。
(6) Production method The masterbatch composition of the present invention contains the raw material monomer of component (1) and the raw material monomer of component (2), and (A) magnesium, titanium, halogen, and a succinate compound as an internal electron donor. And (B) an organoaluminum compound, and (C) a catalyst comprising a catalyst containing an external electron donor compound.
 内部電子供与体としてスクシネート系化合物を含有する触媒を用いて重合されたポリマーは、広分子量分布でありかつ高分子量成分と低分子量成分が均一に分散している。分子量分布は物理量であり測定により決定できる。しかしながらこの測定値では、高分子量成分と低分子量成分の分散度合いを表すことはできない。例えば、パウダーブレンドやペレットブレンドにより高分子量成分と低分子量成分をブレンドする、あるいは多段階重合において段階数をより増やすことにより、一見、本発明と同じような分子量分布(測定値)を有するポリマーを得ることも可能である。しかしこのようにして得たポリマーと、本発明のポリマーでは高分子量成分と低分子量成分の分散度合いが異なり、本発明では均一な分散度合いが達成されている。その差は、例えば低線膨張係数や高耐衝撃性等の性能において顕著である。 The polymer polymerized using a catalyst containing a succinate compound as an internal electron donor has a wide molecular weight distribution, and a high molecular weight component and a low molecular weight component are uniformly dispersed. The molecular weight distribution is a physical quantity and can be determined by measurement. However, this measured value cannot represent the degree of dispersion of the high molecular weight component and the low molecular weight component. For example, by blending a high molecular weight component and a low molecular weight component by powder blend or pellet blend, or by increasing the number of steps in multi-stage polymerization, a polymer having a molecular weight distribution (measured value) similar to that of the present invention at first glance is obtained. It is also possible to obtain. However, the polymer obtained in this way and the polymer of the present invention differ in the degree of dispersion of the high molecular weight component and the low molecular weight component, and the present invention achieves a uniform degree of dispersion. The difference is remarkable in performances such as a low linear expansion coefficient and high impact resistance.
 1)固体触媒(成分A)
 成分(A)は、公知の方法、例えばマグネシウム化合物とチタン化合物と電子供与体化合物を相互接触させることにより調製できる。
1) Solid catalyst (component A)
Component (A) can be prepared by a known method, for example, by bringing a magnesium compound, a titanium compound and an electron donor compound into contact with each other.
 成分(A)の調製に用いられるチタン化合物として、一般式:Ti(OR)4-gで表される4価のチタン化合物が好適である。式中、Rは炭化水素基、Xはハロゲン、0≦g≦4である。チタン化合物として、より具体的にはTiCl、TiBr、TiIなどのテトラハロゲン化チタン;Ti(OCH)Cl、Ti(OC)Cl、Ti(O-C)Cl、Ti(OC)Br、Ti(OisoC)Brなどのトリハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(O-CCl、Ti(OCBrなどのジハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(O-CCl、Ti(OCBrなどのモノハロゲン化トリアルコキシチタン;Ti(OCH、Ti(OC、Ti(O-Cなどのテトラアルコキシチタンなどが挙げられる。これらの中で好ましいものはハロゲン含有チタン化合物、特にテトラハロゲン化チタンであり、より特に好ましいものは、四塩化チタンである。 As the titanium compound used for the preparation of the component (A), a tetravalent titanium compound represented by the general formula: Ti (OR) g X 4-g is preferable. In the formula, R is a hydrocarbon group, X is a halogen, and 0 ≦ g ≦ 4. More specifically, titanium compounds include titanium halides such as TiCl 4 , TiBr 4 , and TiI 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (O n —C 4 H). 9) Cl 3, Ti (OC 2 H 5) Br 3, Ti (OisoC 4 H 9) trihalide, alkoxy titanium such as Br 3; Ti (OCH 3) 2 Cl 2, Ti (OC 2 H 5) 2 Cl 2 , dihalogenated alkoxytitanium such as Ti (O n —C 4 H 9 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Br 2 ; Ti (OCH 3 ) 3 Cl, Ti (OC 2 H 5 ) 3 Cl , Ti (O n —C 4 H 9 ) 3 Cl, Ti (OC 2 H 5 ) 3 Br and other monohalogenated trialkoxytitanium; Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , tetraalkoxytitanium such as Ti (O n —C 4 H 9 ) 4 and the like. Among these, preferred are halogen-containing titanium compounds, particularly titanium tetrahalides, and more particularly preferred is titanium tetrachloride.
 成分(A)の調製に用いられるマグネシウム化合物としては、マグネシウム-炭素結合やマグネシウム-水素結合を有するマグネシウム化合物、例えばジメチルマグネシウム、ジエチルマグネシウム、ジプロピルマグネシウム、ジブチルマグネシウム、ジアミルマグネシウム、ジヘキシルマグネシウム、ジデシルマグネシウム、エチル塩化マグネシウム、プロピル塩化マグネシウム、ブチル塩化マグネシウム、ヘキシル塩化マグネシウム、アミル塩化マグネシウム、ブチルエトキシマグネシウム、エチルブチルマグネシウム、ブチルマグネシウムハイドライドなどが挙げられる。これらのマグネシウム化合物は、例えば有機アルミニウム等との錯化合物の形で用いることもでき、また、液状であっても固体状であってもよい。さらに好適なマグネシウム化合物として、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、フッ化マグネシウムのようなハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、イソプロポキシ塩化マグネシウム、ブトキシ塩化マグネシウム、オクトキシ塩化マグネシウムのようなアルコキシマグネシウムハライド;フェノキシ塩化マグネシウム、メチルフェノキシ塩化マグネシウムのようなアリロキシマグネシウムハライド;エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、n-オクトキシマグネシウム、2-エチルヘキソキシマグネシウムのようなアルコキシマグネシウム;フェノキシマグネシウム、ジメチルフェノキシマグネシウムのようなアリロキシマグネシウム;ラウリン酸マグネシウム、ステアリン酸マグネシウムのようなマグネシウムのカルボン酸塩などを挙げることができる。 Magnesium compounds used for the preparation of component (A) include magnesium compounds having a magnesium-carbon bond or magnesium-hydrogen bond, such as dimethyl magnesium, diethyl magnesium, dipropyl magnesium, dibutyl magnesium, diamyl magnesium, dihexyl magnesium, di- Examples include decylmagnesium, ethylmagnesium chloride, propylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, amylmagnesium chloride, butylethoxymagnesium, ethylbutylmagnesium, butylmagnesium hydride and the like. These magnesium compounds can also be used, for example, in the form of a complex compound with organic aluminum or the like, and may be liquid or solid. Further preferred magnesium compounds include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, magnesium fluoride; methoxy magnesium chloride, ethoxy magnesium chloride, isopropoxy magnesium chloride, butoxy magnesium chloride, octoxy magnesium chloride, and the like. Alkoxymagnesium halides; allyloxymagnesium halides such as phenoxymagnesium chloride and methylphenoxymagnesium chloride; alkoxymagnesiums such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, n-octoxymagnesium and 2-ethylhexoxymagnesium; phenoxy Allyloxy Magnesium like Magnesium, Dimethylphenoxy Magnesium ; Magnesium laurate, such as carboxylic acid salts of magnesium such as magnesium stearate and the like.
 成分(A)の調製に用いられる電子供与体化合物は、一般には「内部電子供与体」と称される。本発明においては、広い分子量分布を与える内部電子供与体を用いることが好ましい。一般に、多段階で重合を行うことにより分子量分布を大きくできることが知られているが、XIの分子量が低い場合は分子量分布を大きくすることが困難である。しかし、特定の内部電子供与体を用いることでXIの分子量が低い場合でも分子量分布を大きくすることが可能となる。当該触媒を用いて重合された組成物は、別な触媒を用いて重合されたポリマーをペレットあるいはパウダーブレンドして得た同じ分子量分布を有する組成物、さらに多段重合して同じ分子量分布を有する組成物に比べて優れた流動性と大きなスウェルを示す。これは、当該触媒を用いて製造した組成物は高分子量成分と低分子量成分が分子レベルに近い状態で一体となっているが、後者の樹脂組成物は分子レベルに近い状態では混ざり合ってはおらず見かけ上同一の分子量分布を示しているにすぎないためと考えられる。以下、好ましい内部電子供与体について説明する。 The electron donor compound used for the preparation of the component (A) is generally referred to as “internal electron donor”. In the present invention, it is preferable to use an internal electron donor that gives a broad molecular weight distribution. In general, it is known that the molecular weight distribution can be increased by performing polymerization in multiple stages, but it is difficult to increase the molecular weight distribution when the molecular weight of XI is low. However, by using a specific internal electron donor, the molecular weight distribution can be increased even when the molecular weight of XI is low. A composition polymerized using the catalyst is a composition having the same molecular weight distribution obtained by pelletizing or powder blending a polymer polymerized using another catalyst, and a composition having the same molecular weight distribution by multistage polymerization. Excellent fluidity and large swell compared to products. This is because the composition produced using the catalyst is united in a state where the high molecular weight component and the low molecular weight component are close to the molecular level, but the latter resin composition does not mix in the state close to the molecular level. This is thought to be due to the apparent molecular weight distribution. Hereinafter, preferred internal electron donors will be described.
 本発明においては内部電子供与体としてスクシネート系化合物を用いる。本発明でスクシネート系化合物とはコハク酸のジエステルまたは置換コハク酸のジエステルをいう。以下、スクシネート系化合物について詳しく説明する。本発明で好ましく使用されるスクシネート系化合物は、以下の式(I)で表される。 In the present invention, a succinate compound is used as an internal electron donor. In the present invention, the succinate compound means a diester of succinic acid or a substituted succinic acid. Hereinafter, the succinate compound will be described in detail. The succinate compound preferably used in the present invention is represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、基RおよびRは、互いに同一かまたは異なり、場合によってはヘテロ原子を含む、C~C20の線状または分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、またはアルキルアリール基であり;基R~Rは、互いに同一かまたは異なり、水素、或いは場合によってはヘテロ原子を含む、C~C20の線状または分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、またはアルキルアリール基であり、同じ炭素原子または異なる炭素原子に結合している基R~Rは一緒に結合して環を形成してもよい。 In which the radicals R 1 and R 2 are the same or different from one another and optionally contain heteroatoms, C 1 -C 20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkyl An aryl group; the groups R 3 to R 6 are the same or different from each other and are hydrogen or, optionally, a heteroatom, a C 1 to C 20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, The groups R 3 to R 6 which are arylalkyl or alkylaryl groups and are bonded to the same carbon atom or different carbon atoms may be bonded together to form a ring.
 RおよびRは、好ましくは、C~Cのアルキル、シクロアルキル、アリール、アリールアルキル、およびアルキルアリール基である。RおよびRが第1級アルキル、特に分岐第1級アルキルから選択される化合物が特に好ましい。好適なRおよびR基の例は、C~Cのアルキル基であり、例えば、メチル、エチル、n-プロピル、n-ブチル、イソブチル、ネオペンチル、2-エチルヘキシルである。エチル、イソブチル、およびネオペンチルが特に好ましい。 R 1 and R 2 are preferably C 1 -C 8 alkyl, cycloalkyl, aryl, arylalkyl, and alkylaryl groups. Particularly preferred are compounds wherein R 1 and R 2 are selected from primary alkyls, especially branched primary alkyls. Examples of suitable R 1 and R 2 groups are C 1 -C 8 alkyl groups such as methyl, ethyl, n-propyl, n-butyl, isobutyl, neopentyl, 2-ethylhexyl. Ethyl, isobutyl, and neopentyl are particularly preferred.
 式(I)によって示される化合物の好ましい群の1つは、R~Rが水素であり、Rが、3~10個の炭素原子を有する、分岐アルキル、シクロアルキル、アリール、アリールアルキル、およびアルキルアリール基であるものである。このような単置換スクシネート化合物の好ましい具体例は、ジエチル-sec-ブチルスクシネート、ジエチルテキシルスクシネート、ジエチルシクロプロピルスクシネート、ジエチルノルボニルスクシネート、ジエチルペリヒドロスクシネート、ジエチルトリメチルシリルスクシネート、ジエチルメトキシスクシネート、ジエチル-p-メトキシフェニルスクシネート、ジエチル-p-クロロフェニルスクシネート、ジエチルフェニルスクシネート、ジエチルシクロヘキシルスクシネート、ジエチルベンジルスクシネート、ジエチルシクロヘキシルメチルスクシネート、ジエチル-t-ブチルスクシネート、ジエチルイソブチルスクシネート、ジエチルイソプロピルスクシネート、ジエチルネオペンチルスクシネート、ジエチルイソペンチルスクシネート、ジエチル(1-トリフルオロメチルエチル)スクシネート、ジエチルフルオレニルスクシネート、1-エトキシカルボジイソブチルフェニルスクシネート、ジイソブチル-sec-ブチルスクシネート、ジイソブチルテキシルスクシネート、ジイソブチルシクロプロピルスクシネート、ジイソブチルノルボニルスクシネート、ジイソブチルペリヒドロスクシネート、ジイソブチルトリメチルシリルスクシネート、ジイソブチルメトキシスクシネート、ジイソブチル-p-メトキシフェニルスクシネート、ジイソブチル-p-クロロフェニルスクシネート、ジイソブチルシクロヘキシルスクシネート、ジイソブチルベンジルスクシネート、ジイソブチルシクロヘキシルメチルスクシネート、ジイソブチル-t-ブチルスクシネート、ジイソブチルイソブチルスクシネート、ジイソブチルイソプロピルスクシネート、ジイソブチルネオペンチルスクシネート、ジイソブチルイソペンチルスクシネート、ジイソブチル(1-トリフルオロメチルエチル)スクシネート、ジイソブチルフルオレニルスクシネート、ジネオペンチル-sec-ブチルスクシネート、ジネオペンチルテキシルスクシネート、ジネオペンチルシクロプロピルスクシネート、ジネオペンチルノルボニルスクシネート、ジネオペンチルペリヒドロスクシネート、ジネオペンチルトリメチルシリルスクシネート、ジネオペンチルメトキシスクシネート、ジネオペンチル-p-メトキシフェニルスクシネート、ジネオペンチル-p-クロロフェニルスクシネート、ジネオペンチルフェニルスクシネート、ジネオペンチルシクロヘキシルスクシネート、ジネオペンチルベンジルスクシネート、ジネオペンチルシクロヘキシルメチルスクシネート、ジネオペンチル-t-ブチルスクシネート、ジネオペンチルイソブチルスクシネート、ジネオペンチルイソプロピルスクシネート、ジネオペンチルネオペンチルスクシネート、ジネオペンチルイソペンチルスクシネート、ジネオペンチル(1-トリフルオロメチルエチル)スクシネート、ジネオペンチルフルオレニルスクシネートである。 One preferred group of compounds represented by formula (I) is a branched alkyl, cycloalkyl, aryl, arylalkyl, wherein R 3 to R 5 are hydrogen and R 6 has 3 to 10 carbon atoms And an alkylaryl group. Preferred examples of such mono-substituted succinate compounds include diethyl-sec-butyl succinate, diethyl hexyl succinate, diethyl cyclopropyl succinate, diethyl norbornyl succinate, diethyl perihydrosuccinate, diethyl Trimethylsilyl succinate, diethyl methoxy succinate, diethyl-p-methoxyphenyl succinate, diethyl-p-chlorophenyl succinate, diethyl phenyl succinate, diethyl cyclohexyl succinate, diethyl benzyl succinate, diethyl cyclohexyl Methyl succinate, diethyl-t-butyl succinate, diethyl isobutyl succinate, diethyl isopropyl succinate, diethyl neopentyl succinate, diethyl isopenty Succinate, diethyl (1-trifluoromethylethyl) succinate, diethyl fluorenyl succinate, 1-ethoxycarbodiisobutylphenyl succinate, diisobutyl-sec-butyl succinate, diisobutyl hexyl succinate, diisobutylcyclopropyl succinate , Diisobutyl norbornyl succinate, diisobutyl perhydrosuccinate, diisobutyl trimethylsilyl succinate, diisobutyl methoxy succinate, diisobutyl-p-methoxyphenyl succinate, diisobutyl-p-chlorophenyl succinate, diisobutyl cyclohexyls Succinate, diisobutylbenzyl succinate, diisobutylcyclohexylmethyl succinate, diisobutyl-t-butylsuccine Diisobutyl isobutyl succinate, diisobutyl isopropyl succinate, diisobutyl neopentyl succinate, diisobutyl isopentyl succinate, diisobutyl (1-trifluoromethylethyl) succinate, diisobutyl fluorenyl succinate, dineopentyl-sec- Butyl succinate, dineopentyl texyl succinate, dineopentyl cyclopropyl succinate, dineopentyl norbornyl succinate, dineopentyl perhydrosuccinate, dineopentyltrimethylsilyl succinate Pentylmethoxy succinate, dineopentyl-p-methoxyphenyl succinate, dineopentyl-p-chlorophenyl succinate, dineopentylphenyl succinate, cine Opentyl cyclohexyl succinate, dineopentyl benzyl succinate, dineopentyl cyclohexyl methyl succinate, dineopentyl-t-butyl succinate, dineopentyl isobutyl succinate, dineopentyl isopropyl succinate, di Neopentyl neopentyl succinate, dineopentyl isopentyl succinate, dineopentyl (1-trifluoromethylethyl) succinate, dineopentyl fluorenyl succinate.
 式(I)の範囲内の化合物の他の好ましい群は、R~Rからの少なくとも2つの基が、水素とは異なり、場合によってはヘテロ原子を含む、C~C20の線状または分岐のアルキル、アルケニル、シクロアルキル、アリール、アリールアルキル、またはアルキルアリール基から選択されるものである。水素とは異なる2つの基が同じ炭素原子に結合している化合物が特に好ましい。具体的には、RおよびRが水素とは異なる基であり、RおよびRが水素原子である化合物である。このような二置換スクシネートの好ましい具体例は、ジエチル-2,2-ジメチルスクシネート、ジエチル-2-エチル-2-メチルスクシネート、ジエチル-2-ベンジル-2-イソプロピルスクシネート、ジエチル-2-シクロヘキシルメチル-2-イソブチルスクシネート、ジエチル-2-シクロペンチル-2-n-ブチルスクシネート、ジエチル-2、2-ジイソブチルスクシネート、ジエチル-2-シクロヘキシル-2-エチルスクシネート、ジエチル-2-イソプロピル-2-メチルスクシネート、ジエチル-2-テトラデシル-2-エチルスクシネート、ジエチル-2-イソブチル-2-エチルスクシネート、ジエチル-2-(1-トリフルオロメチルエチル)-2-メチルスクシネート、ジエチル-2-イソペンチル-2-イソブチルスクシネート、ジエチル-2-フェニル-2-n-ブチルスクシネート、ジイソブチル-2,2-ジメチルスクシネート、ジイソブチル-2-エチル-2-メチルスクシネート、ジイソブチル-2-ベンジル-2-イソプロピルスクシネート、ジイソブチル-2-シクロヘキシルメチル-2-イソブチルスクシネート、ジイソブチル-2-シクロペンチル-2-n-ブチルスクシネート、ジイソブチル-2,2-ジイソブチルスクシネート、ジイソブチル-2-シクロヘキシル-2-エチルスクシネート、ジイソブチル-2-イソプロピル-2-メチルスクシネート、ジイソブチル-2-テトラデシル-2-エチルスクシネート、ジイソブチル-2-イソブチル-2-エチルスクシネート、ジイソブチル-2-(1-トリフルオロメチルエチル)-2-メチルスクシネート、ジイソブチル-2-イソペンチル-2-イソブチルスクシネート、ジイソブチル-2-フェニル-2-n-ブチルスクシネート、ジネオペンチル-2,2-ジメチルスクシネート、ジネオペンチル-2-エチル-2-メチルスクシネート、ジネオペンチル-2-ベンジル-2-イソプロピルスクシネート、ジネオペンチル-2-シクロヘキシルメチル-2-イソブチルスクシネート、ジネオペンチル-2-シクロペンチル-2-n-ブチルスクシネート、ジネオペンチル-2,2-ジイソブチルスクシネート、ジネオペンチル-2-シクロヘキシル-2-エチルスクシネート、ジネオペンチル-2-イソプロピル-2-メチルスクシネート、ジネオペンチル-2-テトラデシル-2-エチルスクシネート、ジネオペンチル-2-イソブチル-2-エチルスクシネート、ジネオペンチル-2-(1-トリフルオロメチルエチル)-2-メチルスクシネート、ジネオペンチル-2-イソペンチル-2-イソブチルスクシネート、ジネオペンチル-2-フェニル-2-n-ブチルスクシネートである。 Another preferred group of compounds within the scope of formula (I) are C 1 -C 20 linear, wherein at least two groups from R 3 to R 6 are different from hydrogen and optionally contain heteroatoms Or a branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, or alkylaryl group. Particularly preferred are compounds in which two groups different from hydrogen are bonded to the same carbon atom. Specifically, R 3 and R 4 are different from hydrogen, and R 5 and R 6 are hydrogen atoms. Preferred examples of such disubstituted succinates are diethyl-2,2-dimethylsuccinate, diethyl-2-ethyl-2-methylsuccinate, diethyl-2-benzyl-2-isopropylsuccinate, diethyl -2-cyclohexylmethyl-2-isobutyl succinate, diethyl-2-cyclopentyl-2-n-butyl succinate, diethyl-2,2-diisobutyl succinate, diethyl-2-cyclohexyl-2-ethyl succinate , Diethyl-2-isopropyl-2-methylsuccinate, diethyl-2-tetradecyl-2-ethylsuccinate, diethyl-2-isobutyl-2-ethylsuccinate, diethyl-2- (1-trifluoro Methylethyl) -2-methylsuccinate, diethyl-2-isopentyl-2- Sobutyl succinate, diethyl-2-phenyl-2-n-butyl succinate, diisobutyl-2,2-dimethyl succinate, diisobutyl-2-ethyl-2-methyl succinate, diisobutyl-2-benzyl- 2-isopropyl succinate, diisobutyl-2-cyclohexylmethyl-2-isobutyl succinate, diisobutyl-2-cyclopentyl-2-n-butyl succinate, diisobutyl-2,2-diisobutyl succinate, diisobutyl-2 -Cyclohexyl-2-ethyl succinate, diisobutyl-2-isopropyl-2-methyl succinate, diisobutyl-2-tetradecyl-2-ethyl succinate, diisobutyl-2-isobutyl-2-ethyl succinate, diisobutyl -2- (1-trifluoro Tilethyl) -2-methyl succinate, diisobutyl-2-isopentyl-2-isobutyl succinate, diisobutyl-2-phenyl-2-n-butyl succinate, dineopentyl-2,2-dimethyl succinate, dineopentyl -2-Ethyl-2-methyl succinate, dineopentyl-2-benzyl-2-isopropyl succinate, dineopentyl-2-cyclohexylmethyl-2-isobutyl succinate, dineopentyl-2-cyclopentyl-2-n-butyl Succinate, dineopentyl-2,2-diisobutyl succinate, dineopentyl-2-cyclohexyl-2-ethyl succinate, dineopentyl-2-isopropyl-2-methyl succinate, dineopentyl-2-tetradecyl-2-ethyl succinate , Dineopentyl-2-isobutyl-2-ethylsuccinate, dineopentyl-2- (1-trifluoromethylethyl) -2-methylsuccinate, dineopentyl-2-isopentyl-2-isobutylsuccinate, dineopentyl -2-Phenyl-2-n-butyl succinate.
 さらに、水素とは異なる少なくとも2つの基が異なる炭素原子に結合している化合物も特に好ましい。具体的にはRおよびRが水素と異なる基である化合物である。この場合、RおよびRは水素原子であってもよいし水素とは異なる基であってもよいが、いずれか一方が水素原子であること(三置換スクシネート)が好ましい。このような化合物の好ましい具体例は、ジエチル-2,3-ビス(トリメチルシリル)スクシネート、ジエチル-2,2-sec-ブチル-3-メチルスクシネート、ジエチル-2-(3,3,3-トリフルオロプロピル)-3-メチルスクシネート、ジエチル-2,3-ビス(2-エチルブチル)スクシネート、ジエチル-2,3-ジエチル-2-イソプロピルスクシネート、ジエチル-2,3-ジイソプロピル-2-メチルスクシネート、ジエチル-2,3-ジシクロヘキシル-2-メチルジエチル-2,3-ジベンジルスクシネート、ジエチル-2,3-ジイソプロピルスクシネート、ジエチル-2,3-ビス(シクロヘキシルメチル)スクシネート、ジエチル-2,3-ジ-t-ブチルスクシネート、ジエチル-2,3-ジイソブチルスクシネート、ジエチル-2,3-ジネオペンチルスクシネート、ジエチル-2,3-ジイソペンチルスクシネート、ジエチル-2,3-(1-トリフルオロメチルエチル)スクシネート、ジエチル-2,3-テトラデシルスクシネート、ジエチル-2,3-フルオレニルスクシネート、ジエチル-2-イソプロピル-3-イソブチルスクシネート、ジエチル-2-tert-ブチル-3-イソプロピルスクシネート、ジエチル-2-イソプロピル-3-シクロヘキシルスクシネート、ジエチル-2-イソペンチル-3-シクロヘキシルスクシネート、ジエチル-2-テトラデシル-3-シクロヘキシルメチルスクシネート、ジエチル-2-シクロヘキシル-3-シクロペンチルスクシネート、ジイソブチル-2,3-ジエチル-2-イソプロピルスクシネート、ジイソブチル-2,3-ジイソプロピル-2-メチルスクシネート、ジイソブチル-2,3-ジシクロヘキシル-2-メチルスクシネート、ジイソブチル-2,3-ジベンジルスクシネート、ジイソブチル-2,3-ジイソプロピルスクシネート、ジイソブチル-2,3-ビス(シクロヘキシルメチル)スクシネート、ジイソブチル-2,3-ジ-t-ブチルスクシネート、ジイソブチル-2,3-ジイソブチルスクシネート、ジイソブチル-2,3-ジネオペンチルスクシネート、ジイソブチル-2,3-ジイソペンチルスクシネート、ジイソブチル-2,3-(1-トリフルオロメチルエチル)スクシネート、ジイソブチル-2,3-テトラデシルスクシネート、ジイソブチル-2,3-フルオレニルスクシネート、ジイソブチル-2-イソプロピル-3-イソブチルスクシネート、ジイソブチル-2-tert-ブチル-3-イソプロピルスクシネート、ジイソブチル-2-イソプロピル-3-シクロヘキシルスクシネート、ジイソブチル-2-イソペンチル-3-シクロヘキシルスクシネート、ジイソブチル-2-テトラデシル-3-シクロヘキシルメチルスクシネート、ジイソブチル-2-シクロヘキシル-3-シクロペンチルスクシネート、ジネオペンチル-2,3-ビス(トリメチルシリル)スクシネート、ジネオペンチル-2,2-sec-ブチル-3-メチルスクシネート、ジネオペンチル-2-(3,3,3-トリフルオロプロピル)-3-メチルスクシネート、ジネオペンチル-2,3-ビス(2-エチルブチル)スクシネート、ジネオペンチル-2,3-ジエチル-2-イソプロピルスクシネート、ジネオペンチル-2,3-ジイソプロピル-2-メチルスクシネート、ジネオペンチル-2,3-ジシクロヘキシル-2-メチルスクシネート、ジネオペンチル-2,3-ジベンジルスクシネート、ジネオペンチル-2,3-ジイソプロピルスクシネート、ジネオペンチル-2,3-ビス(シクロヘキシルメチル)スクシネート、ジネオペンチル-2,3-ジ-t-ブチルスクシネート、ジネオペンチル-2,3-ジイソブチルスクシネート、ジネオペンチル-2,3-ジネオペンチルスクシネート、ジネオペンチル-2,3-ジイソペンチルスクシネート、ジネオペンチル-2,3-(1-トリフルオロメチルエチル)スクシネート、ジネオペンチル-2,3-テトラデシルスクシネート、ジネオペンチル-2,3-フルオレニルスクシネート、ジネオペンチル-2-イソプロピル-3-イソブチルスクシネート、ジネオペンチル-2-tert-ブチル-3-イソプロピルスクシネート、ジネオペンチル-2-イソプロピル-3-シクロヘキシルスクシネート、ジネオペンチル-2-イソペンチル-3-シクロヘキシルスクシネート、ジネオペンチル-2-テトラデシル-3-シクロヘキシルメチルスクシネート、ジネオペンチル-2-シクロヘキシル-3―シクロペンチルスクシネートである。 Furthermore, compounds in which at least two groups different from hydrogen are bonded to different carbon atoms are particularly preferred. Specifically, it is a compound in which R 3 and R 5 are groups different from hydrogen. In this case, R 4 and R 6 may be a hydrogen atom or a group different from hydrogen, but it is preferable that either one is a hydrogen atom (trisubstituted succinate). Preferred examples of such compounds are diethyl-2,3-bis (trimethylsilyl) succinate, diethyl-2,2-sec-butyl-3-methylsuccinate, diethyl-2- (3,3,3- Trifluoropropyl) -3-methylsuccinate, diethyl-2,3-bis (2-ethylbutyl) succinate, diethyl-2,3-diethyl-2-isopropylsuccinate, diethyl-2,3-diisopropyl-2 -Methyl succinate, diethyl-2,3-dicyclohexyl-2-methyldiethyl-2,3-dibenzylsuccinate, diethyl-2,3-diisopropylsuccinate, diethyl-2,3-bis (cyclohexylmethyl) ) Succinate, diethyl-2,3-di-t-butylsuccinate, diethyl-2,3-diisobuty Succinate, diethyl-2,3-dineopentyl succinate, diethyl-2,3-diisopentyl succinate, diethyl-2,3- (1-trifluoromethylethyl) succinate, diethyl-2,3- Tetradecyl succinate, diethyl-2,3-fluorenyl succinate, diethyl-2-isopropyl-3-isobutyl succinate, diethyl-2-tert-butyl-3-isopropyl succinate, diethyl-2- Isopropyl-3-cyclohexyl succinate, diethyl-2-isopentyl-3-cyclohexyl succinate, diethyl-2-tetradecyl-3-cyclohexylmethyl succinate, diethyl-2-cyclohexyl-3-cyclopentyl succinate, diisobutyl -2,3-diethyl-2-iso Ropil succinate, diisobutyl-2,3-diisopropyl-2-methyl succinate, diisobutyl-2,3-dicyclohexyl-2-methyl succinate, diisobutyl-2,3-dibenzyl succinate, diisobutyl-2 , 3-diisopropyl succinate, diisobutyl-2,3-bis (cyclohexylmethyl) succinate, diisobutyl-2,3-di-t-butyl succinate, diisobutyl-2,3-diisobutyl succinate, diisobutyl-2 , 3-Dineopentyl succinate, diisobutyl-2,3-diisopentyl succinate, diisobutyl-2,3- (1-trifluoromethylethyl) succinate, diisobutyl-2,3-tetradecyl succinate Diisobutyl-2,3-fluorenyl succinate Diisobutyl-2-isopropyl-3-isobutyl succinate, diisobutyl-2-tert-butyl-3-isopropyl succinate, diisobutyl-2-isopropyl-3-cyclohexyl succinate, diisobutyl-2-isopentyl-3- Cyclohexyl succinate, diisobutyl-2-tetradecyl-3-cyclohexylmethyl succinate, diisobutyl-2-cyclohexyl-3-cyclopentyl succinate, dineopentyl-2,3-bis (trimethylsilyl) succinate, dineopentyl-2,2- sec-butyl-3-methyl succinate, dineopentyl-2- (3,3,3-trifluoropropyl) -3-methyl succinate, dineopentyl-2,3-bis (2-ethylbutyl) succinate, cine Pentyl-2,3-diethyl-2-isopropyl succinate, dineopentyl-2,3-diisopropyl-2-methyl succinate, dineopentyl-2,3-dicyclohexyl-2-methyl succinate, dineopentyl-2,3 Dibenzyl succinate, dineopentyl-2,3-diisopropyl succinate, dineopentyl-2,3-bis (cyclohexylmethyl) succinate, dineopentyl-2,3-di-t-butyl succinate, dineopentyl-2, 3-diisobutyl succinate, dineopentyl-2,3-dineopentyl succinate, dineopentyl-2,3-diisopentyl succinate, dineopentyl-2,3- (1-trifluoromethylethyl) succinate, dineopentyl -2,3-tetradeci Succinate, dineopentyl-2,3-fluorenyl succinate, dineopentyl-2-isopropyl-3-isobutyl succinate, dineopentyl-2-tert-butyl-3-isopropyl succinate, dineopentyl-2-isopropyl-3- They are cyclohexyl succinate, dineopentyl-2-isopentyl-3-cyclohexyl succinate, dineopentyl-2-tetradecyl-3-cyclohexyl methyl succinate, and dineopentyl-2-cyclohexyl-3-cyclopentyl succinate.
 式(I)の化合物のうち、基R~Rのうちのいくつかが一緒に結合して環を形成している化合物も好ましく用いることができる。このような化合物として特表2002-542347に挙げられている化合物、例えば、1-(エトキシカルボニル)-1-(エトキシアセチル)-2,6-ジメチルシクロヘキサン、1-(エトキシカルボニル)-1-(エトキシアセチル)-2,5一ジメチルシクロペンタン、1-(エトキシカルボニル)-1-(エトキシアセチルメチル)-2一メチルシクロへキサン、1-(エトキシカルボニル)-1-(エトキシ(シクロヘキシル)アセチル)シクロヘキサンを挙げることができる。他には、例えば国際公開第2009/069483に開示されているような3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジイソブチル、シクロヘキサン-1,2-ジカルボン酸ジイソブチル等の環状スクシネート化合物も好適に用いることができる。他の環状スクシネート化合物の例としては、国際公開2009/057747号に開示されている化合物も好ましい。 Of the compounds of formula (I), compounds in which some of the groups R 3 to R 6 are bonded together to form a ring can also be preferably used. As such compounds, compounds listed in JP-T-2002-542347, for example, 1- (ethoxycarbonyl) -1- (ethoxyacetyl) -2,6-dimethylcyclohexane, 1- (ethoxycarbonyl) -1- ( Ethoxyacetyl) -2,5-monodimethylcyclopentane, 1- (ethoxycarbonyl) -1- (ethoxyacetylmethyl) -2 monomethylcyclohexane, 1- (ethoxycarbonyl) -1- (ethoxy (cyclohexyl) acetyl) cyclohexane Can be mentioned. In addition, for example, cyclic succinate compounds such as diisobutyl 3,6-dimethylcyclohexane-1,2-dicarboxylate and diisobutyl cyclohexane-1,2-dicarboxylate as disclosed in WO2009 / 069483 are also suitable. Can be used. As another example of the cyclic succinate compound, a compound disclosed in International Publication No. 2009/057747 is also preferable.
 式(I)の化合物のうち、基R~Rがヘテロ原子を含む場合、ヘテロ原子は窒素およびリン原子を含む第15族原子あるいは酸素およびイオウ原子を含む第16族原子であることが好ましい。基R~Rが第15族原子を含む化合物としては、特開2005-306910号に開示される化合物が挙げられる。一方、基R~Rが第16族原子を含む化合物としては、特開2004-131537号に開示される化合物が挙げられる。 Of the compounds of formula (I), when the groups R 3 to R 6 contain heteroatoms, the heteroatoms may be group 15 atoms including nitrogen and phosphorus atoms or group 16 atoms including oxygen and sulfur atoms preferable. Examples of the compound in which the groups R 3 to R 6 contain a Group 15 atom include compounds disclosed in JP-A-2005-306910. On the other hand, examples of the compound in which the groups R 3 to R 6 contain a Group 16 atom include compounds disclosed in JP-A No. 2004-131537.
 この他に、スクシネート系化合物と同等の分子量分布を与える内部電子供与体を併用してもよい。そのような内部電子供与体としては、例えば特開2013-28704号公報に記載のジフェニルジカルボン酸エステル、特開2014-201602号公報に記載のシクロヘキセンジカルボン酸エステル、特開2013-28705号公報に記載のジシクロアルキルジカルボン酸エステル、特許第4959920号に記載のジオールジベンゾエート、国際公開第2010/078494に記載の1,2-フェニレンジベンゾエートが挙げられる。 In addition, an internal electron donor that gives a molecular weight distribution equivalent to that of the succinate compound may be used in combination. Examples of such internal electron donors include diphenyl dicarboxylic acid esters described in JP 2013-28704 A, cyclohexene dicarboxylic acid esters described in JP 2014-201602 A, and JP 2013-28705 A. And didiol dibenzoate described in Japanese Patent No. 4959920, and 1,2-phenylene dibenzoate described in WO 2010/078494.
 2)有機アルミニウム化合物(成分B)
 成分(B)の有機アルミニウム化合物としては以下が挙げられる。
 トリエチルアルミニウム、トリブチルアルミニウムなどのトリアルキルアルミニウム;
 トリイソプレニルアルミニウムのようなトリアルケニルアルミニウム:
 ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;
 エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;
 エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのようなアルキルアルミニウムジハロゲニドなどの部分的にハロゲン化されたアルキルアルミニウム;
 ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;
 エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどの部分的に水素化されたアルキルアルミニウム;
 エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウム。
2) Organoaluminum compound (component B)
The following are mentioned as an organoaluminum compound of a component (B).
Trialkylaluminum such as triethylaluminum, tributylaluminum;
Trialkenyl aluminum such as triisoprenyl aluminum:
Dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide;
Alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide and butylaluminum sesquibutoxide;
Partially halogenated alkylaluminums such as alkylaluminum dihalogenides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum dibromide and the like;
Dialkylaluminum hydrides such as diethylaluminum hydride, dibutylaluminum hydride;
Partially hydrogenated alkylaluminums such as alkylaluminum dihydrides such as ethylaluminum dihydride, propylaluminum dihydride;
Partially alkoxylated and halogenated alkylaluminums such as ethylaluminum ethoxychloride, butylaluminum butoxychloride, ethylaluminum ethoxybromide.
 3)電子供与体化合物(成分C)
 成分(C)の電子供与体化合物は、一般に「外部電子供与体」と称される。このような電子供与体化合物としては有機ケイ素化合物が好ましい。好ましい有機ケイ素化合物として以下が挙げられる。
 トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、t-アミルメチルジエトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジエトキシシラン、ビスo-トリルジメトキシシラン、ビスm-トリルジメトキシシラン、ビスp-トリルジメトキシシラン、ビスp-トリルジエトキシシラン、ビスエチルフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、メチルトリメトキシシラン、n-プロピルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、フェニルトリメトキシシラン、γ-クロルプロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、t-ブチルトリエトキシシラン、テキシルトリメトキシシラン、n-ブチルトリエトキシシラン、iso-ブチルトリエトキシシラン、フェニルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、クロルトリエトキシシラン、エチルトリイソプロポキシシラン、ビニルトリブトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、2-ノルボルナントリメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、ケイ酸エチル、ケイ酸ブチル、トリメチルフエノキシシラン、メチルトリアリルオキシシラン、ビニルトリス(β-メトキシエトキシシラン)、ビニルトリアセトキシシラン、ジメチルテトラエトキシジシロキサン。
3) Electron donor compound (component C)
The electron donor compound of component (C) is generally referred to as an “external electron donor”. Such an electron donor compound is preferably an organosilicon compound. The following is mentioned as a preferable organosilicon compound.
Trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-amylmethyldiethoxysilane, diphenyldimethoxysilane, phenylmethyl Dimethoxysilane, diphenyldiethoxysilane, bis-o-tolyldimethoxysilane, bism-tolyldimethoxysilane, bisp-tolyldimethoxysilane, bisp-tolyldiethoxysilane, bisethylphenyldimethoxysilane, dicyclopentyldimethoxysilane, dicyclohexyldimethoxy Silane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysilane, ethyltrimethoxysilane, ethyl Riethoxysilane, vinyltrimethoxysilane, methyltrimethoxysilane, n-propyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, phenyltrimethoxysilane, γ-chloropropyltrimethoxysilane, methyltriethoxysilane, ethyl Triethoxysilane, vinyltriethoxysilane, t-butyltriethoxysilane, texyltrimethoxysilane, n-butyltriethoxysilane, iso-butyltriethoxysilane, phenyltriethoxysilane, γ-aminopropyltriethoxysilane, chloro Triethoxysilane, ethyltriisopropoxysilane, vinyltributoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 2-norbornanetrimethoxy Lan, 2-norbornanetriethoxysilane, 2-norbornanemethyldimethoxysilane, ethyl silicate, butyl silicate, trimethylphenoxysilane, methyltriallyloxysilane, vinyltris (β-methoxyethoxysilane), vinyltriacetoxysilane, Dimethyltetraethoxydisiloxane.
 中でも、エチルトリエトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリメトキシシラン、t-ブチルトリエトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、t-ブチルエチルジメトキシシラン、t-ブチルプロピルジメトキシシラン、t-ブチルt-ブトキシジメトキシシラン、t-ブチルトリメトキシシラン、i-ブチルトリメトキシシラン、イソブチルメチルジメトキシシラン、i-ブチルセク-ブチルジメトキシシラン、エチル(パーヒドロイソキノリン2-イル)ジメトキシシラン、ビス(デカヒドロイソキノリン-2-イル)ジメトキシシラン、トリ(イソプロペニロキシ)フェニルシラン、テキシルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリブトキシシラン、ジフェニルジメトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、i-ブチルi-プロピルジメトキシシラン、シクロペンチルt-ブトキシジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルi-ブチルジメトキシシラン、シクロペンチルi-ブチルジメトキシシラン、シクロペンチルイソプロピルジメトキシシラン、ジ-sec-ブチルジメトキシシラン、ジエチルアミノトリエトキシシラン、テトラエトキシシラン、テトラメトキシシラン、イソブチルトリエトキシシラン、フェニルメチルジメトキシシラン、フェニルトリエトキシラン、ビスp-トリルジメトキシシラン、p-トリルメチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルエチルジメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、ジフェニルジエトキシシラン、メチル(3、3、3-トリフルオロプロピル)ジメトキシシラン、ケイ酸エチルなどが好ましい。 Among them, ethyltriethoxysilane, n-propyltriethoxysilane, n-propyltrimethoxysilane, t-butyltriethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-butylethyldimethoxysilane, t-butylpropyldimethoxysilane, t-butylt-butoxydimethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane, isobutylmethyldimethoxysilane, i-butylsec-butyldimethoxysilane, ethyl (perhydroisoquinoline 2- Yl) dimethoxysilane, bis (decahydroisoquinolin-2-yl) dimethoxysilane, tri (isopropenyloxy) phenylsilane, texyltrimethoxysilane, vinyltriethoxysilane, phenyltri Toxisilane, phenyltrimethoxysilane, vinyltributoxysilane, diphenyldimethoxysilane, diisopropyldimethoxysilane, diisobutyldimethoxysilane, i-butyli-propyldimethoxysilane, cyclopentyl t-butoxydimethoxysilane, dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, Cyclohexyl i-butyldimethoxysilane, cyclopentyl i-butyldimethoxysilane, cyclopentylisopropyldimethoxysilane, di-sec-butyldimethoxysilane, diethylaminotriethoxysilane, tetraethoxysilane, tetramethoxysilane, isobutyltriethoxysilane, phenylmethyldimethoxysilane, Phenyltriethoxylane, bis p-tolyldimeth Sisilane, p-tolylmethyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylethyldimethoxysilane, 2-norbornanetriethoxysilane, 2-norbornanemethyldimethoxysilane, diphenyldiethoxysilane, methyl (3,3,3-trifluoropropyl) dimethoxy Silane and ethyl silicate are preferred.
 4)重合
 上記のとおりに調製した触媒に原料モノマーを接触させて重合する。この際、まず前記触媒を用いて予備重合を行うことが好ましい。予備重合とは、その後の原料モノマーの本重合の足がかりとなるポリマー鎖を固体触媒成分に形成させる工程である。予備重合は公知の方法で行うことができる。予備重合は、通常は40℃以下、好ましくは30℃以下、より好ましくは20℃以下で行われる。
4) Polymerization Polymerization is performed by bringing the raw material monomer into contact with the catalyst prepared as described above. At this time, it is preferable to first perform prepolymerization using the catalyst. Preliminary polymerization is a step of forming a polymer chain as a foothold for subsequent polymerization of raw material monomers on a solid catalyst component. The prepolymerization can be performed by a known method. The prepolymerization is usually performed at 40 ° C or lower, preferably 30 ° C or lower, more preferably 20 ° C or lower.
 次いで、予備重合した触媒を重合反応系内に導入して、原料モノマーの本重合を行う。本重合は、成分(1)の原料モノマーおよび成分(2)の原料モノマーを、2つ以上の反応器を用いて重合することが好ましい。重合は、液相中、気相中または液-気相中で実施してよい。重合温度は常温~150℃が好ましく、40℃~100℃がより好ましい。重合圧力は、液相中で行われる場合には好ましくは3.3~6.0MPaの範囲であり、気相中で行われる場合には0.5~3.0MPaの範囲である。連鎖移動剤(たとえば、水素又はZnEt)などの当該分野で公知の慣用の分子量調節剤を用いてもよい。 Next, the prepolymerized catalyst is introduced into the polymerization reaction system to perform main polymerization of the raw material monomers. In the main polymerization, the raw material monomer of component (1) and the raw material monomer of component (2) are preferably polymerized using two or more reactors. The polymerization may be carried out in liquid phase, gas phase or liquid-gas phase. The polymerization temperature is preferably from room temperature to 150 ° C, more preferably from 40 ° C to 100 ° C. The polymerization pressure is preferably in the range of 3.3 to 6.0 MPa when carried out in the liquid phase, and in the range of 0.5 to 3.0 MPa when carried out in the gas phase. Conventional molecular weight regulators known in the art such as chain transfer agents (eg, hydrogen or ZnEt 2 ) may be used.
 また、モノマー濃度や重合条件の勾配を有する重合器を用いてもよい。このような重合器では、例えば、少なくとも2つの重合領域が接続されたものを使用し、気相重合でモノマーを重合することができる。具体的には、触媒の存在下、上昇管からなる重合領域にてモノマーを供給して重合し、上昇管に接続された下降管にてモノマーを供給して重合し、上昇管と下降管とを循環しながら、ポリマー生成物を回収する。この方法は、上昇管中に存在する気体混合物が下降管に入るのを全面的または部分的に防止する手段を備える。また、上昇管中に存在する気体混合物とは異なる組成を有する気体および/または液体混合物を下降管中に導入する。上記の重合方法として、例えば、特表2002-520426号公報に記載された方法を適用することができる。 Also, a polymerization vessel having a gradient of monomer concentration and polymerization conditions may be used. In such a polymerization vessel, for example, a monomer in which at least two polymerization regions are connected can be used, and the monomer can be polymerized by gas phase polymerization. Specifically, in the presence of a catalyst, a monomer is supplied and polymerized in a polymerization region including a riser, and a monomer is supplied and polymerized in a downcomer connected to the riser. The polymer product is recovered while circulating. This method comprises means for completely or partially preventing the gas mixture present in the riser from entering the downcomer. Also, a gas and / or liquid mixture having a different composition from the gas mixture present in the riser is introduced into the downcomer. As the above polymerization method, for example, the method described in JP-T-2002-520426 can be applied.
2.ポリプロピレン樹脂組成物
 本発明のポリプロピレン樹脂組成物は、前記マスターバッチ組成物に、前記マスターバッチ組成物の成分(2)とは異なるエラストマーまたは当該マスターバッチ組成物とは異なるポリプロピレン系樹脂の少なくとも一方を混合して得られる。エラストマーおよび当該マスターバッチ組成物とは異なるポリプロピレン系樹脂の合計量は、ポリプロピレン樹脂組成物中、5~40重量%であることが好ましく、5~30重量%であることがより好ましい。
2. Polypropylene resin composition The polypropylene resin composition of the present invention comprises at least one of an elastomer different from the component (2) of the master batch composition or a polypropylene resin different from the master batch composition in the master batch composition. It is obtained by mixing. The total amount of the polypropylene resin different from the elastomer and the masterbatch composition is preferably 5 to 40% by weight, more preferably 5 to 30% by weight in the polypropylene resin composition.
 (1)エラストマー
 エラストマーとは弾性を有するポリマーであり、主に組成物の耐衝撃性を向上する目的で添加される。本発明で用いるエラストマーとしては、エチレンとα-オレフィンとの共重合体が挙げられる。α-オレフィンとしては、炭素数3~12のα-オレフィンが挙げられ、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等が好ましい。エラストマーは、成分(1)および成分(2)のポリマーよりも低い密度を有することが好ましい。例えばエラストマーの密度は限定されないが0.850~0.890g/cmであることが好ましく、0.860~0.880g/cmであることがより好ましい。このようなエラストマーは、例えば特開2015-113363号に記載のとおりメタロセンまたはハーフメタロセン等の均一系触媒を用いてモノマーを重合することにより調製できる。エラストマーのMFRは、190℃、21.6Nの荷重で0.1~50g/10分であることが好ましい。
(1) Elastomer An elastomer is a polymer having elasticity and is added mainly for the purpose of improving the impact resistance of the composition. Examples of the elastomer used in the present invention include a copolymer of ethylene and α-olefin. Examples of the α-olefin include α-olefins having 3 to 12 carbon atoms, and specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like are preferable. The elastomer preferably has a lower density than the polymer of component (1) and component (2). For example, preferably the density of the elastomer is non but 0.850 ~ 0.890g / cm 3 limited, and more preferably 0.860 ~ 0.880g / cm 3. Such an elastomer can be prepared, for example, by polymerizing a monomer using a homogeneous catalyst such as metallocene or half metallocene as described in JP-A-2015-113363. The MFR of the elastomer is preferably 0.1 to 50 g / 10 min at a load of 190 ° C. and 21.6 N.
 (2)マスターバッチ組成物とは異なるポリプロピレン系樹脂
 当該マスターバッチ組成物とは異なるポリプロピレン系樹脂は、組成物の流動性、剛性、耐衝撃性等を向上する目的で添加される。マスターバッチ組成物とは異なるポリプロピレン系樹脂としては、プロピレン単独重合体、0重量%を超え5重量%以下のエチレンまたは1種類以上のC4~C10-α-オレフィンを含むプロピレンランダム共重合体、プロピレン重合体の存在下、エチレンと1種類以上のC3~C10-αオレフィンを重合して得た重合混合物(HECOとも呼ばれる)が挙げられる。本発明のマスターバッチ組成物もHECOの一種であり、マスターバッチ組成物に添加されるHECOもマスターバッチ組成物と同様の方法で製造することができるが、両者は組成において異なる。
(2) Polypropylene resin different from the masterbatch composition A polypropylene resin different from the masterbatch composition is added for the purpose of improving the fluidity, rigidity, impact resistance and the like of the composition. Polypropylene resins different from the masterbatch composition include propylene homopolymers, propylene random copolymers containing more than 0% by weight and less than 5% by weight of ethylene or one or more C4-C10-α-olefins, propylene Examples thereof include a polymerization mixture (also referred to as HECO) obtained by polymerizing ethylene and one or more C3-C10-α olefins in the presence of a polymer. The masterbatch composition of the present invention is also a kind of HECO, and HECO added to the masterbatch composition can be produced by the same method as the masterbatch composition, but both are different in composition.
 (3)充填剤
 本発明のポリプロピレン樹脂組成物は、充填剤を含んでいてもよい。充填剤は主に材料の剛性を向上する目的で添加される。充填剤としては例えばタルク、クレー、炭酸カルシウム、水酸化マグネシウム、ガラスファイバー等の無機充填剤、カーボンファイバー、セルロースファイバー等の有機充填剤が挙げられる。これらの充填剤の分散性を向上させるため、必要に応じて、充填剤の表面処理や充填剤と樹脂とのマスターバッチの調製を行ってもよい。充填剤の中でも、プロピレン(共)重合体およびエチレンとα-オレフィンとの共重合体に容易に混ざり、成形体の剛性を向上させやすいことから、タルクが好ましい。充填剤の量は、ポリプロピレン樹脂組成物中、5重量%を超え40重量%以下であることが好ましく、10~35重量%がより好ましい。
(3) Filler The polypropylene resin composition of the present invention may contain a filler. The filler is added mainly for the purpose of improving the rigidity of the material. Examples of the filler include inorganic fillers such as talc, clay, calcium carbonate, magnesium hydroxide, and glass fiber, and organic fillers such as carbon fiber and cellulose fiber. In order to improve the dispersibility of these fillers, surface treatment of the fillers and preparation of a masterbatch of filler and resin may be performed as necessary. Among the fillers, talc is preferable because it is easily mixed with a propylene (co) polymer and a copolymer of ethylene and α-olefin, and the rigidity of the molded product is easily improved. The amount of the filler is preferably more than 5% by weight and 40% by weight or less in the polypropylene resin composition, and more preferably 10 to 35% by weight.
 (4)他の成分
 本発明のポリプロピレン樹脂組成物には、酸化防止剤、塩素吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、アンチブロッキング剤、帯電防止剤、防曇剤、結晶造核剤、難燃剤、分散剤、銅害防止剤、中和剤、可塑剤、気泡防止剤、架橋剤、過酸化物、油展および他の有機および無機顔料などのオレフィン重合体に通常用いられる慣用の添加剤を添加してもよい。各添加剤の添加量は公知の量としてよい。
(4) Other components The polypropylene resin composition of the present invention includes an antioxidant, a chlorine absorbent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an internal lubricant, an external lubricant, an antiblocking agent, an antistatic agent, Olefins such as antifogging agents, crystal nucleating agents, flame retardants, dispersants, copper damage prevention agents, neutralizing agents, plasticizers, antifoaming agents, crosslinking agents, peroxides, oil-extended and other organic and inorganic pigments You may add the usual additive normally used for a polymer. The addition amount of each additive may be a known amount.
 (5)製造方法
 本発明のポリプロピレン樹脂組成物は、前記成分を溶融混練して製造できる。混練方法は限定されないが、押出機等の混練機を用いる方法が好ましい。混練条件は特に限定されないが、シリンダー温度を180~250℃とすることが好ましい。このようにして得られたポリプロピレン樹脂組成物はペレット状であることが好ましい。あるいは、前記成分のドライブレンドを射出成形機中に計量して溶融混練部(シリンダー)で混練することにより、成形品としてポリプロピレン樹脂組成物を製造できる。このように本発明のポリプロピレン樹脂組成物はマスターバッチ組成物を他の成分と混合して得られる。ポリプロピレン樹脂組成物の相構造は、マスターバッチ組成物由来のプロピレン単独重合体を主成分とするマトリックス中に、マスターバッチ組成物由来のプロピレン-エチレンコポリマー成分とエラストマー(場合によってはマスターバッチ組成物とは異なるHECOに由来するエチレンとα-オレフィンとの共重合体)が分散した構造と考えられ当該相構造を形成することで本発明の効果が奏される。
(5) Production method The polypropylene resin composition of the present invention can be produced by melt-kneading the above components. The kneading method is not limited, but a method using a kneader such as an extruder is preferred. The kneading conditions are not particularly limited, but the cylinder temperature is preferably 180 to 250 ° C. The polypropylene resin composition thus obtained is preferably in the form of pellets. Alternatively, a polypropylene resin composition can be produced as a molded product by measuring a dry blend of the above components in an injection molding machine and kneading in a melt kneading part (cylinder). Thus, the polypropylene resin composition of the present invention is obtained by mixing the masterbatch composition with other components. The phase structure of the polypropylene resin composition is such that the propylene-ethylene copolymer component derived from the masterbatch composition and an elastomer (in some cases the masterbatch composition and Is considered to be a structure in which a copolymer of ethylene and α-olefin derived from different HECOs is dispersed, and the effect of the present invention is exhibited by forming the phase structure.
 (6)射出成形
 本発明のマスターバッチ組成物およびポリプロピレン樹脂組成物は射出成形に好適である。本発明のポリプロピレン樹脂組成物は、高剛性、高耐衝撃性、低線膨張係数を有するので自動車部品に好適である。一般的な射出条件は、シリンダー温度200~230℃、金型温度20~50℃、射出速度30~50mm/秒である。
(6) Injection molding The masterbatch composition and the polypropylene resin composition of the present invention are suitable for injection molding. Since the polypropylene resin composition of the present invention has high rigidity, high impact resistance, and a low linear expansion coefficient, it is suitable for automobile parts. General injection conditions are a cylinder temperature of 200 to 230 ° C., a mold temperature of 20 to 50 ° C., and an injection speed of 30 to 50 mm / second.
 1.マスターバッチ組成物
 [実施例1]
 以下のようにして、成分(1)としてポリプロピレン単独重合体65.5重量%、成分(2)としてエチレン由来単位を65.7重量%有するプロピレン-エチレンコポリマー34.5重量%からなるマスターバッチ組成物を製造した。
1. Masterbatch composition [Example 1]
A masterbatch composition comprising 65.5% by weight of a polypropylene homopolymer as component (1) and 34.5% by weight of a propylene-ethylene copolymer having 65.7% by weight of ethylene-derived units as component (2) as follows: The thing was manufactured.
 特開2011-500907号の実施例に記載の調製法に従い、固体触媒成分を調製した。具体的には以下のとおりに調製した。 A solid catalyst component was prepared according to the preparation method described in Examples of JP2011-500907A. Specifically, it was prepared as follows.
 窒素でパージした500mLの4つ口丸底フラスコ中に、250mLのTiClを0℃において導入した。撹拌しながら、10.0gの微細球状MgCl・1.8COH(米国特許4,399,054の実施例2に記載の方法にしたがって、しかしながら10000rpmに代えて3000rpmで運転して製造した)、および9.1ミリモルのジエチル-2,3-(ジイソプロピル)スクシネートを加えた。温度を100℃に上昇し、120分間保持した。次に、撹拌を停止し、固体生成物を沈降させ、上澄み液を吸い出した。次に、以下の操作を2回繰り返した:250mLの新しいTiClを加え、混合物を120℃において60分間反応させ、上澄み液を吸い出した。固体を、60℃において無水ヘキサン(6×100mL)で6回洗浄した。 In a 500 mL 4-neck round bottom flask purged with nitrogen, 250 mL of TiCl 4 was introduced at 0 ° C. While stirring, 10.0 g of fine spherical MgCl 2 .1.8C 2 H 5 OH (produced according to the method described in Example 2 of US Pat. No. 4,399,054, but operated at 3000 rpm instead of 10000 rpm) ) And 9.1 mmol of diethyl-2,3- (diisopropyl) succinate was added. The temperature was raised to 100 ° C. and held for 120 minutes. Next, stirring was stopped, the solid product was allowed to settle, and the supernatant liquid was siphoned off. The following procedure was then repeated twice: 250 mL of fresh TiCl 4 was added and the mixture was allowed to react at 120 ° C. for 60 minutes and the supernatant was siphoned off. The solid was washed 6 times with anhydrous hexane (6 × 100 mL) at 60 ° C.
 上記固体触媒と、トリエチルアルミニウム(TEAL)およびジシクロペンチルジメトキシシラン(DCPMS)を、固体触媒に対するTEALの重量比が18であり、TEAL/DCPMSの重量比が10となるような量で、室温において5分間接触させた。得られた触媒系を、液体プロピレン中において懸濁状態で20℃において5分間保持することによって予備重合を行った。 The solid catalyst, triethylaluminum (TEAL) and dicyclopentyldimethoxysilane (DCPMS) are mixed in an amount such that the weight ratio of TEAL to the solid catalyst is 18 and the weight ratio of TEAL / DCPMS is 10 at room temperature. Touched for a minute. The resulting catalyst system was prepolymerized by holding it in liquid propylene in suspension for 5 minutes at 20 ° C.
 得られた予備重合物を、一段目の液相重合反応器に導入してプロピレン単独重合体を得た後、得られた重合体を二段目の気相重合反応器に導入して共重合体(プロピレンーエチレン共重合体)を重合した。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。重合温度と反応物の比率は、一段目の反応器では、重合温度、水素濃度が、それぞれ70℃、0.31モル%、二段目の反応器では、重合温度、H2/C2、C2/(C2+C3)が、それぞれ80℃、0.16モル比、0.69モル比であった。また、共重合体成分の量が重合体100重量部中34.5重量部となるように一段目と二段目の滞留時間分布を調整した。 The obtained prepolymer is introduced into a first-stage liquid phase polymerization reactor to obtain a propylene homopolymer, and then the obtained polymer is introduced into a second-stage gas phase polymerization reactor. The polymer (propylene-ethylene copolymer) was polymerized. During the polymerization, temperature and pressure were adjusted, and hydrogen was used as a molecular weight modifier. The polymerization temperature and the ratio of the reactants are as follows: polymerization temperature and hydrogen concentration in the first reactor are 70 ° C. and 0.31 mol%, respectively, polymerization temperature, H2 / C2, C2 / C in the second reactor. (C2 + C3) were 80 ° C., 0.16 molar ratio, and 0.69 molar ratio, respectively. Moreover, the residence time distribution of the 1st stage and the 2nd stage was adjusted so that the quantity of a copolymer component might be 34.5 weight part in 100 weight part of polymers.
 得られたポリプロピレン重合体100重量部に、酸化防止剤として、BASF社B225を0.2重量部、中和剤として、淡南化学(株)製カルシウムステアレートを0.05重量部配合し、ヘンシェルミキサーで1分間撹拌、混合した後、スクリュー直径15mmの2軸押出機(株式会社テクノベル製、型番KZW15TW-30MG)を用いて、シリンダー温度200℃で溶融混練して押出した。ストランドを水中で冷却した後、ペレタイザーでカットし、ペレットを得た。次いで、射出成型機(ファナック社製、型番ロボショットS-2000i 100B)を用いて、当該ペレットを各種試験片に射出成形した。成形条件は、シリンダー温度200℃、金型温度40℃、射出速度200mm/秒であった。試験片を用い、各種物性を評価した。評価方法は後述する。 To 100 parts by weight of the obtained polypropylene polymer, 0.2 parts by weight of BASF B225 as an antioxidant, 0.05 parts by weight of calcium stearate manufactured by Tamnan Chemical Co., Ltd. as a neutralizer, After stirring and mixing with a Henschel mixer for 1 minute, the mixture was melt-kneaded at a cylinder temperature of 200 ° C. and extruded using a twin screw extruder (manufactured by Technobell, model number KZW15TW-30MG) with a screw diameter of 15 mm. The strand was cooled in water and then cut with a pelletizer to obtain a pellet. Next, the pellets were injection molded into various test pieces using an injection molding machine (manufactured by FANUC, model number ROBOSHOT S-2000i 100B). The molding conditions were a cylinder temperature of 200 ° C., a mold temperature of 40 ° C., and an injection speed of 200 mm / second. Various physical properties were evaluated using the test pieces. The evaluation method will be described later.
 [実施例2]
 一段目の反応器の水素濃度を0.28モル%、二段目の反応器のH2/C2、C2/(C2+C3)を、それぞれ0.22モル比、0.59モル比とし、共重合体成分の量が重合体100重量部中32.9重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例1と同様にしてポリプロピレン重合体を製造した。当該ポリプロピレン重合体を用いて実施例1と同様にして本例用のマスターバッチ組成物を製造し、評価した。
[Example 2]
The hydrogen concentration in the first reactor is 0.28 mol%, and H2 / C2 and C2 / (C2 + C3) in the second reactor are 0.22 mol ratio and 0.59 mol ratio, respectively. A polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distribution in the first and second stages was adjusted so that the amount of the component was 32.9 parts by weight in 100 parts by weight of the polymer. A masterbatch composition for this example was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer.
 [実施例3]
 実施例2で得たポリプロピレン重合体にさらにタルクを添加した以外は実施例1と同様にして溶融混練してペレットを調製し、評価した。タルク(商品名HTP05L、IMI Fabi社製)の配合量は重合体100重量部に対して1重量部であった。
[Example 3]
Pellets were prepared by melt kneading in the same manner as in Example 1 except that talc was further added to the polypropylene polymer obtained in Example 2, and evaluated. The amount of talc (trade name HTP05L, manufactured by IMI Fabi) was 1 part by weight per 100 parts by weight of the polymer.
 [比較例1]
 MgCl上にTiと内部ドナーとしてのジイソブチルフタレートを担持させた固体触媒を、欧州特許第728769号公報の実施例5に記載された方法により調製した。次いで、上記固体触媒と、有機アルミニウム化合物としてトリエチルアルミニウム(TEAL)と、外部電子供与体化合物としてジシクロペンチルジメトキシシラン(DCPMS)を用い、固体触媒に対するTEALの重量比が20、TEAL/DCPMSの重量比が10となるような量で、12℃において24分間接触させた。得られた触媒系を、液体プロピレン中において懸濁状態で20℃にて5分間保持することによって予備重合を行った。
[Comparative Example 1]
A solid catalyst in which Ti and diisobutyl phthalate as an internal donor were supported on MgCl 2 was prepared by the method described in Example 5 of European Patent No. 728769. Next, using the above solid catalyst, triethylaluminum (TEAL) as the organoaluminum compound and dicyclopentyldimethoxysilane (DCPMS) as the external electron donor compound, the weight ratio of TEAL to the solid catalyst is 20, and the weight ratio of TEAL / DCPMS. Was contacted at 12 ° C. for 24 minutes. The resulting catalyst system was preliminarily polymerized by keeping it in suspension in liquid propylene at 20 ° C. for 5 minutes.
 得られた予備重合物を用い、プロピレン単独重合体を二つの液相重合反応器を用いて多段重合で製造した。一つ目の重合反応器の水素濃度を0.16モル%、二つ目の重合反応器の水素濃度を1.70モル%とし、重合温度70℃で、重合圧力を調整し、それぞれの比率が50:50になるように滞留時間分布を調整した。 Using the resulting prepolymer, a propylene homopolymer was produced by multistage polymerization using two liquid phase polymerization reactors. The hydrogen concentration in the first polymerization reactor was 0.16 mol%, the hydrogen concentration in the second polymerization reactor was 1.70 mol%, the polymerization pressure was adjusted at a polymerization temperature of 70 ° C., and the respective ratios The residence time distribution was adjusted so as to be 50:50.
 続いて得られたプロピレン単独重合体を気相重合反応器に導入して、実施例1と同様に共重合体(プロピレン・エチレン共重合体)を重合した。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。二段目の反応器では、重合温度、H2/C2、C2/(C2+C3)が、それぞれ80℃、0.12モル比、0.68モル比であった。また、共重合体成分の量が重合体100重量部中30.0重量部となるように一段目と二段目の滞留時間分布を調整した。 Subsequently, the obtained propylene homopolymer was introduced into a gas phase polymerization reactor, and a copolymer (propylene / ethylene copolymer) was polymerized in the same manner as in Example 1. During the polymerization, temperature and pressure were adjusted, and hydrogen was used as a molecular weight modifier. In the second-stage reactor, the polymerization temperature, H2 / C2, and C2 / (C2 + C3) were 80 ° C., 0.12 molar ratio, and 0.68 molar ratio, respectively. Further, the residence time distributions in the first and second stages were adjusted so that the amount of the copolymer component was 30.0 parts by weight per 100 parts by weight of the polymer.
 このようにして得たポリプロピレン重合体を用いて実施例1と同様にして比較用マスターバッチ組成物を製造し、評価した。 Using the polypropylene polymer thus obtained, a comparative masterbatch composition was produced and evaluated in the same manner as in Example 1.
 [比較例2]
 比較例1で得たポリプロピレン重合体にさらにタルクを添加した以外は実施例1と同様にして溶融混練してペレットを調製し、評価した。タルク(商品名HTP05L、IMI Fabi社製)の配合量は重合体100重量部に対して1重量部であった。
[Comparative Example 2]
Pellets were prepared by melt-kneading in the same manner as in Example 1 except that talc was further added to the polypropylene polymer obtained in Comparative Example 1, and evaluated. The amount of talc (trade name HTP05L, manufactured by IMI Fabi) was 1 part by weight per 100 parts by weight of the polymer.
 [比較例3]
 一段目の反応器の水素濃度を0.44モル%、二段目の反応器の水素濃度、C2/(C2+C3)を、それぞれ2.04モル%、0.37モル比とし、共重合体成分の量が重合体100重量部中35.6重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例1と同様にしてポリプロピレン重合体を製造した。このようにして得たポリプロピレン重合体を用いて実施例1と同様にして比較用マスターバッチ組成物を製造し、評価した。
[Comparative Example 3]
The hydrogen concentration in the first-stage reactor was 0.44 mol%, the hydrogen concentration in the second-stage reactor, and C2 / (C2 + C3) were 2.04 mol% and 0.37 mol ratio, respectively. A polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distributions in the first and second stages were adjusted so that the amount of the polymer became 35.6 parts by weight in 100 parts by weight of the polymer. A comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer thus obtained.
 [比較例4]
 実施例1と同じ予重合触媒を用い、一段目の反応器で、重合温度、水素濃度をそれぞれ70℃、0.29モル%として、プロピレン単独重合体を製造し、未反応モノマー類をパージした後、二段目の重合反応器にエチレンを導入してエチレン単独重合体を製造した。二段目の反応器の重合温度、H2/C2を、それぞれ80℃、0.16モル比とし、圧力を調整し、エチレン単独重合体の量が重合体100重量部中29.8重量部となるように一段目と二段目の滞留時間分布を調整してポリプロピレン重合体を得た。当該重合体を用いた以外は、実施例1と同様にして比較用のマスターバッチ組成物を製造し、評価した。
[Comparative Example 4]
Using the same prepolymerization catalyst as in Example 1, a propylene homopolymer was produced in a first-stage reactor at a polymerization temperature and a hydrogen concentration of 70 ° C. and 0.29 mol%, respectively, and unreacted monomers were purged. Thereafter, ethylene was introduced into the second stage polymerization reactor to produce an ethylene homopolymer. The polymerization temperature of the second-stage reactor, H2 / C2 was 80 ° C. and 0.16 molar ratio, respectively, the pressure was adjusted, and the amount of ethylene homopolymer was 29.8 parts by weight per 100 parts by weight of the polymer. The residence time distribution in the first and second stages was adjusted so that a polypropylene polymer was obtained. A comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 except that the polymer was used.
 [比較例5]
 一段目の反応器の水素濃度を0.34モル%、二段目の反応器の水素濃度、C2/(C2+C3)を、それぞれ4.13モル%、0.19モル比とし、共重合体成分の量が重合体100重量部中31.5重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例1と同様にしてポリプロピレン重合体を製造した。このようにして得たポリプロピレン重合体を用いて実施例1と同様にして比較用マスターバッチ組成物を製造し、評価した。
[Comparative Example 5]
The hydrogen concentration in the first-stage reactor was 0.34 mol%, the hydrogen concentration in the second-stage reactor, and C2 / (C2 + C3) were 4.13 mol% and 0.19 mol ratio, respectively. A polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distributions of the first and second stages were adjusted so that the amount of the polymer became 31.5 parts by weight in 100 parts by weight of the polymer. A comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer thus obtained.
 [比較例6]
 比較例1の予重合触媒を用い、一つ目の液相重合反応器の水素濃度を0.73モル%、二つ目の液相重合反応器の水素濃度を3.46モル%とし、気相重合反応器のH2/C2、C2/(C2+C3)を、それぞれ0.12モル比、0.68モル比とし、共重合体成分の量が重合体100重量部中49.0重量部となるように液相反応器と気相反応器の滞留時間分布を調整してポリプロピレン重合体を製造した。このようにして得たポリプロピレン重合体を用いて実施例1と同様にして比較用マスターバッチ組成物を製造し、評価した。
[Comparative Example 6]
Using the prepolymerization catalyst of Comparative Example 1, the hydrogen concentration in the first liquid phase polymerization reactor was 0.73 mol%, the hydrogen concentration in the second liquid phase polymerization reactor was 3.46 mol%, The H2 / C2 and C2 / (C2 + C3) of the phase polymerization reactor are 0.12 molar ratio and 0.68 molar ratio, respectively, and the amount of the copolymer component is 49.0 parts by weight in 100 parts by weight of the polymer. Thus, the polypropylene polymer was manufactured by adjusting the residence time distribution of the liquid phase reactor and the gas phase reactor. A comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer thus obtained.
 [比較例7]
 一段目の液相重合反応器の水素濃度を1.86モル%とし、共重合体成分の量が重合体100重量部中37.0重量部となるように液相反応器と気相反応器の滞留時間分布を調整した以外は、比較例6と同様にしてポリプロピレン重合体を製造した。このようにして得たポリプロピレン重合体を用いて実施例1と同様にして比較用マスターバッチ組成物を製造し、評価した。
[Comparative Example 7]
The liquid phase reactor and the gas phase reactor are adjusted so that the hydrogen concentration in the first stage liquid phase polymerization reactor is 1.86 mol% and the amount of the copolymer component is 37.0 parts by weight in 100 parts by weight of the polymer. A polypropylene polymer was produced in the same manner as in Comparative Example 6 except that the residence time distribution was adjusted. A comparative masterbatch composition was produced and evaluated in the same manner as in Example 1 using the polypropylene polymer thus obtained.
 以上の結果を表1に示す。 The results are shown in Table 1.
 2.ポリプロピレン樹脂組成物
 [実施例4]
 一段目の反応器の水素濃度を0.59モル%とし、共重合体成分の量が重合体100重量部中30.7重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例1と同様にしてポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用いて実施例1と同様にしてマスターバッチ組成物を製造した。当該マスターバッチ組成物とタルク(商品名HTP05L、IMI Fabi社製)とエラストマー(商品名Engage8200、Dow Chemical社製)を、実施例1と同様にして溶融混練してペレットを調製した。次いで実施例1と同様にして当該ポリプロピレン樹脂組成物を評価した。
2. Polypropylene resin composition [Example 4]
The residence time distribution of the first and second stages is adjusted so that the hydrogen concentration in the first stage reactor is 0.59 mol% and the amount of the copolymer component is 30.7 parts by weight per 100 parts by weight of the polymer. A polypropylene polymer was produced in the same manner as in Example 1 except that. Next, a master batch composition was produced in the same manner as in Example 1 using this polypropylene polymer. The master batch composition, talc (trade name HTP05L, manufactured by IMI Fabi) and elastomer (trade name Engage 8200, manufactured by Dow Chemical) were melt-kneaded in the same manner as in Example 1 to prepare pellets. Subsequently, the polypropylene resin composition was evaluated in the same manner as in Example 1.
 [実施例5]
 一段目の反応器の水素濃度を0.59モル%、二段目の反応器のH2/C2、C2/(C2+C3)を、それぞれ0.14モル比、0.56モル比とし、共重合体成分の量が重合体100重量部中29.5重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例1と同様にしてポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用いて実施例4と同様にしてポリプロピレン樹脂組成物を製造し、評価した。
[Example 5]
The hydrogen concentration in the first-stage reactor is 0.59 mol%, and H2 / C2 and C2 / (C2 + C3) in the second-stage reactor are 0.14 mol ratio and 0.56 mol ratio, respectively. A polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distribution in the first and second stages was adjusted so that the amount of the component was 29.5 parts by weight in 100 parts by weight of the polymer. Next, using this polypropylene polymer, a polypropylene resin composition was produced and evaluated in the same manner as in Example 4.
 [実施例6]
 一段目の反応器の水素濃度を0.59モル%、二段目の反応器のH2/C2、C2/(C2+C3)を、それぞれ0.12モル%、0.59モル比とし、共重合体成分の量が重合体100重量部中32.3重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例1と同様にしてポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用い、マスターバッチ組成物とタルクの含有量を表2に示すように変更した以外は、実施例4と同様にしてポリプロピレン樹脂組成物を製造し、評価した。
[Example 6]
The hydrogen concentration in the first reactor is 0.59 mol%, and the H2 / C2 and C2 / (C2 + C3) in the second reactor are 0.12 mol% and 0.59 mol ratio, respectively. A polypropylene polymer was produced in the same manner as in Example 1 except that the residence time distribution in the first and second stages was adjusted so that the amount of the component was 32.3 parts by weight in 100 parts by weight of the polymer. Next, using this polypropylene polymer, a polypropylene resin composition was produced and evaluated in the same manner as in Example 4 except that the master batch composition and the content of talc were changed as shown in Table 2.
 [実施例7]
 一段目の反応器の水素濃度を0.39モル%、共重合体成分の量が重合体100重量部中37.5重量部となるように一段目と二段目の滞留時間分布を調整した以外は、実施例4と同様にしてポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用い、マスターバッチ組成物とタルクとMFRが1750g/10分、25℃でのキシレン可溶分が2.3重量%であるプロピレン単独重合体を表2に示す量で配合した以外は、実施例4と同様にしてポリプロピレン樹脂組成物を製造し、評価した。
[Example 7]
The residence time distributions in the first and second stages were adjusted so that the hydrogen concentration in the first stage reactor was 0.39 mol% and the amount of the copolymer component was 37.5 parts by weight in 100 parts by weight of the polymer. Except for the above, a polypropylene polymer was produced in the same manner as in Example 4. Next, using this polypropylene polymer, a masterbatch composition, talc and MFR of 1750 g / 10 minutes, and a propylene homopolymer having a xylene-soluble content of 2.3 wt% at 25 ° C. were blended in the amounts shown in Table 2. A polypropylene resin composition was produced and evaluated in the same manner as in Example 4 except that.
 [比較例8]
 比較例1の予重合触媒を用い、一つ目の液相重合反応器の水素濃度を0.68モル%、二つ目の液相重合反応器の水素濃度を3.46モル%とし、気相重合反応器のH2/C2、C2/(C2+C3)を、それぞれ0.08モル比、0.68モル比とし、共重合体成分の量が重合体100重量部中26.8重量部となるように液相反応器と気相反応器の滞留時間分布を調整してポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用いて実施例4と同様にして比較用ポリプロピレン樹脂組成物を製造し、評価した。
[Comparative Example 8]
Using the prepolymerization catalyst of Comparative Example 1, the hydrogen concentration in the first liquid phase polymerization reactor was 0.68 mol%, the hydrogen concentration in the second liquid phase polymerization reactor was 3.46 mol%, The H2 / C2 and C2 / (C2 + C3) in the phase polymerization reactor are 0.08 molar ratio and 0.68 molar ratio, respectively, and the amount of the copolymer component is 26.8 parts by weight per 100 parts by weight of the polymer. Thus, the polypropylene polymer was manufactured by adjusting the residence time distribution of the liquid phase reactor and the gas phase reactor. Next, a comparative polypropylene resin composition was produced and evaluated in the same manner as in Example 4 using this polypropylene polymer.
 [比較例9]
 比較例1の予重合触媒を用い、一段目の重合反応器の水素濃度を1.44モル%とし、二段目の重合反応器の水素濃度、C2/(C2+C3)を、それぞれ1.75モル%、0.22モル比とし、共重合体成分の量が重合体100重量部中26.4重量部となるように液相反応器と気相反応器の滞留時間分布を調整してポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用いて実施例4と同様にして比較用ポリプロピレン樹脂組成物を製造し、評価した。
[Comparative Example 9]
Using the prepolymerization catalyst of Comparative Example 1, the hydrogen concentration in the first stage polymerization reactor was 1.44 mol%, and the hydrogen concentration in the second stage polymerization reactor, C2 / (C2 + C3), was 1.75 mol. % And 0.22 molar ratio, and adjusting the residence time distribution of the liquid phase reactor and the gas phase reactor so that the amount of the copolymer component is 26.4 parts by weight in 100 parts by weight of the polymer. A coalescence was produced. Next, a comparative polypropylene resin composition was produced and evaluated in the same manner as in Example 4 using this polypropylene polymer.
 [比較例10]
 一つ目の液相重合反応器の水素濃度を0.42モル%とし、共重合体成分の量が重合体100重量部中28.0重量部となるように液相反応器と気相反応器の滞留時間分布を調整した得られた重合体を使用した以外は、比較例8と同様にしてポリプロピレン重合体を製造した。次いでこのポリプロピレン重合体を用いて、マスターバッチ組成物とタルクの配合量を、表2に示す実施例6と同じ量に変更した以外は実施例4と同様にして比較用ポリプロピレン樹脂組組成物を製造し、評価した。
[Comparative Example 10]
The liquid phase reactor and the gas phase reaction are adjusted so that the hydrogen concentration in the first liquid phase polymerization reactor is 0.42 mol% and the amount of the copolymer component is 28.0 parts by weight in 100 parts by weight of the polymer. A polypropylene polymer was produced in the same manner as in Comparative Example 8, except that the polymer obtained by adjusting the residence time distribution of the vessel was used. Then, using this polypropylene polymer, a comparative polypropylene resin assembly composition was prepared in the same manner as in Example 4 except that the blending amount of the masterbatch composition and talc was changed to the same amount as in Example 6 shown in Table 2. Manufactured and evaluated.
 以上の結果を表2に示す。 The results are shown in Table 2.
 3.評価方法
 [MFR]
 JIS K 7210に準じ、230℃、荷重21.18Nの条件下で測定した。
3. Evaluation method [MFR]
According to JIS K 7210, the measurement was performed under the conditions of 230 ° C. and a load of 21.18 N.
 [マスターバッチ組成物中の共重合体中のエチレン濃度および共重合体の量]
 1、2、4-トリクロロベンゼン/重水素化ベンゼンの混合溶媒に溶解した試料について、Bruker社製AVANCEIII HD400(13C共鳴周波数100MHz)を用い、測定温度120℃、フリップ角45度、パルス間隔7秒、試料回転数20Hz、積算回数5000回の条件で13C-NMRのスペクトルを得た。
[Ethylene concentration in copolymer and amount of copolymer in masterbatch composition]
A sample dissolved in a mixed solvent of 1,2,4-trichlorobenzene / deuterated benzene was measured using a Bruker AVANCE III HD400 ( 13 C resonance frequency 100 MHz) at a measurement temperature of 120 ° C., a flip angle of 45 degrees, and a pulse interval of 7 A 13 C-NMR spectrum was obtained under the conditions of a second, a sample rotation number of 20 Hz, and an integration number of 5,000.
 <マスターバッチ組成物中の総エチレン量>
 上記で得られたスペクトルを用いて、Kakugo,Y.Naito、K.Mizunuma and T.Miyatake、Macromolecules、15、1150-1152(1982)の文献に記載された方法により、マスターバッチ組成物の総エチレン量(重量%)を求めた。
<Total ethylene content in masterbatch composition>
Using the spectrum obtained above, the total ethylene of the masterbatch composition was obtained by the method described in the literature of Kakugo, Y. Naito, K. Mizunuma and T. Miyatake, Macromolecules, 15, 1150-1152 (1982). The amount (% by weight) was determined.
 <共重合体(成分(2))中のエチレン濃度>
 上記で得られたTββの積分強度の替わりに下記式で求めた積分強度を使用した以外は、総エチレン量と同様の方法で計算を行い、共重合体中のエチレン濃度を求めた。
 T’ββ= 0.98×Sαγ×A/(1-0.98×A)
ここで、A= Sαγ/(Sαγ+Sαδ)
<Ethylene concentration in copolymer (component (2))>
The ethylene concentration in the copolymer was determined by calculating in the same manner as the total ethylene amount, except that the integrated strength obtained by the following formula was used instead of the integrated strength of Tββ obtained above.
T′ββ = 0.98 × Sαγ × A / (1−0.98 × A)
Where A = Sαγ / (Sαγ + Sαδ)
 <マスターバッチ組成物中の共重合体(成分2)の量>
 以下の式で求めた。
  成分(2)の量(重量%)= 総エチレン量/(共重合体中のエチレン濃度/100)
<Amount of copolymer (component 2) in masterbatch composition>
The following formula was used.
Amount of component (2) (% by weight) = total ethylene amount / (ethylene concentration in copolymer / 100)
 [キシレン可溶分の採取]
 ポリマー2.5gを、o-キシレン(溶媒)を250mL入れたフラスコに入れ、ホットプレートおよび還流装置を用いて、135℃で、窒素パージを行いながら、30分間、攪拌し、組成物を完全溶解させた後、25℃で1時間、冷却を行った。得られた溶液を、濾紙を用いて濾過した。濾過後の濾液を100mL採取し、アルミカップ等に移し、窒素パージを行いながら、140℃で蒸発乾固を行い、室温で30分間静置し、キシレン可溶分(XS)を得た。
[Collecting xylene solubles]
Place 2.5 g of polymer in a flask containing 250 mL of o-xylene (solvent) and stir for 30 minutes at 135 ° C. while purging with nitrogen using a hot plate and a reflux device to completely dissolve the composition. Then, cooling was performed at 25 ° C. for 1 hour. The resulting solution was filtered using filter paper. 100 mL of the filtrate after filtration was collected, transferred to an aluminum cup or the like, evaporated and dried at 140 ° C. while purging with nitrogen, and allowed to stand at room temperature for 30 minutes to obtain a xylene-soluble component (XS).
 [XSIV]
 上記のキシレン可溶分を試料とし、ウベローデ型粘度計(SS-780-H1、柴山科学器械製作所製)を用いて135℃テトラヒドロナフタレン中で極限粘度(IV)の測定を行った。
[XSIV]
Using the xylene solubles as a sample, the intrinsic viscosity (IV) was measured in 135 ° C. tetrahydronaphthalene using an Ubbelohde viscometer (SS-780-H1, manufactured by Shibayama Scientific Instruments).
 ただし比較例4のマスターバッチ組成物の成分(2)のエチレン単独重合体には、キシレンに可溶な成分が殆ど存在しないため、マスターバッチ組成物のエチレン含有量から見積もられる成分(2)の割合、マスターバッチ組成物全体のIV、成分(1)のIVの値より、IVの加成性を仮定して、成分(2)のIVを計算した。 However, since the ethylene homopolymer of the component (2) of the masterbatch composition of Comparative Example 4 has almost no component soluble in xylene, the component (2) estimated from the ethylene content of the masterbatch composition The IV of component (2) was calculated from the ratio, the IV of the entire masterbatch composition, and the IV value of component (1), assuming the additivity of IV.
 [キシレン不溶分の採取]
 上述したようにキシレン可溶分を濾過した際、濾紙上に残った残留物(キシレン不溶成分と溶媒の混合物)にアセトンを加えて濾過した後、濾過されなかった成分を、80℃設定の真空乾燥オーブンにて、蒸発乾固させ、キシレン不溶分(XI)を得た。
[Collecting xylene-insoluble matter]
As described above, when the xylene-soluble component is filtered, acetone is added to the residue (mixture of xylene-insoluble component and solvent) remaining on the filter paper and filtered, and then the unfiltered component is vacuumed at 80 ° C. In a drying oven, it was evaporated to dryness to obtain xylene-insoluble matter (XI).
 [キシレン不溶分のMwおよびMw/Mn]
 上記のキシレン不溶分を試料とし、以下のように、重量平均分子量(Mw)と分子量分布(Mw/Mn)の測定を行った。
[Mw and Mw / Mn of xylene insoluble matter]
Using the xylene-insoluble matter as a sample, the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) were measured as follows.
 装置としてポリマーラボラトリーズ社製PL GPC220を使用し、酸化防止剤を含む1,2,4-トリクロロベンゼンを移動相とし、カラムとして昭和電工(株)製UT-G(1本)、UT-807(1本)、UT-806M(2本)を直列に接続したものを使用し、検出器として示差屈折率計を使用した。また、キシレン不溶分の試料溶液の溶媒としては移動相と同じものを使用し、1mg/mLの試料濃度で、150℃の温度で振とうさせながら2時間溶解して測定試料を調製した。これにより得た試料溶液500μLをカラムに注入し、流速1.0mL/分、温度145℃、データ取り込み間隔1秒で測定した。カラムの較正には、分子量580~745万のポリスチレン標準試料(shodex STANDARD、昭和電工(株)製)を使用し、三次式近似で行った。Mark-Houkinsの係数は、ポリスチレン標準試料に関しては、K=1.21×10-4、α=0.707、ポリプロピレン系重合体に関しては、K=1.37×10-4、α=0.75を使用した。 PL GPC220 manufactured by Polymer Laboratories was used as the apparatus, 1,2,4-trichlorobenzene containing an antioxidant was used as the mobile phase, and UT-G (1), UT-807 (Showa Denko KK) was used as the column. 1) and UT-806M (2) connected in series were used, and a differential refractometer was used as a detector. Moreover, the same solvent as the mobile phase was used as a solvent for the sample solution of xylene-insoluble matter, and a measurement sample was prepared by dissolving at a sample concentration of 1 mg / mL for 2 hours while shaking at a temperature of 150 ° C. 500 μL of the sample solution thus obtained was injected into the column and measured at a flow rate of 1.0 mL / min, a temperature of 145 ° C., and a data acquisition interval of 1 second. For column calibration, a polystyrene standard sample (shodex STANDARD, manufactured by Showa Denko KK) having a molecular weight of 580 to 7.45 million was used and approximated by a cubic equation. The Mark-Houkins coefficients are K = 1.21 × 10 −4 and α = 0.707 for the polystyrene standard sample, and K = 1.37 × 10 −4 and α = 0. 75 was used.
 [曲げ弾性率]
 JIS K6921-2に従い室温(23℃)において曲げ試験を行った。クロスヘッド速度2mm/分で測定した。
[Bending elastic modulus]
A bending test was performed at room temperature (23 ° C.) according to JIS K6921-2. Measurements were made at a crosshead speed of 2 mm / min.
 [シャルピー衝撃強度]
 得られたポリプロピレン樹脂成形体(物性評価用試験片)を切削加工した試験片(80(長さ)×10(幅)×4(厚み)mm)を、ISO179-1に準拠し、23℃とー30℃におけるシャルピー衝撃強度を測定した。
[Charpy impact strength]
A test piece (80 (length) × 10 (width) × 4 (thickness) mm 3 ) obtained by cutting the obtained polypropylene resin molded article (test piece for evaluating physical properties) was 23 ° C. in accordance with ISO 179-1. The Charpy impact strength at -30 ° C was measured.
 [線膨張係数]
 得られたポリプロピレン樹脂成形体(物性評価用試験片、厚み4mm)の中心部(幅10mm)を樹脂の流動方向(MD)に沿って10mmの長さに切り出し、80℃のオーブン内に24時間放置したものを試料としてJIS K7197に準拠して測定した。
 <試験装置> Ulvac MTS9000 (真空理工製)
 <試験条件> 昇温速度:5℃/分
        荷重  :5.0g重
        測定温度:-30℃~80℃
[Linear expansion coefficient]
The center part (width 10 mm) of the obtained polypropylene resin molded article (physical property evaluation test piece, thickness 4 mm) was cut into a length of 10 mm along the flow direction (MD) of the resin, and placed in an 80 ° C. oven for 24 hours. Measurement was performed in accordance with JIS K7197 using the samples left as they were.
<Test equipment> Ulvac MTS9000 (manufactured by Vacuum Riko)
<Test conditions> Temperature increase rate: 5 ° C / min Load: 5.0 g weight Measurement temperature: -30 ° C to 80 ° C
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のマスターバッチ組成物は、低線膨張係数、高剛性、高耐衝撃性を有することが明らかである。さらに、マスターバッチ組成物を用いて製造したポリプロピレン樹脂組成物も低線膨張係数、高剛性、高耐衝撃性を有することが明らかである。 It is clear that the master batch composition of the present invention has a low linear expansion coefficient, high rigidity, and high impact resistance. Further, it is clear that the polypropylene resin composition produced using the master batch composition also has a low linear expansion coefficient, high rigidity, and high impact resistance.

Claims (8)

  1.  (A)マグネシウム、チタン、ハロゲン、およびスクシネート系化合物から選択される電子供与体化合物を必須成分として含有する固体触媒;
     (B)有機アルミニウム化合物;ならびに
     (C)外部電子供与体化合物
    を含む触媒を用いて、プロピレンとエチレンとを重合させて得たマスターバッチ組成物であって、
     成分(1)として、プロピレン単独重合体、および
     成分(2)として、55~80重量%のエチレン由来単位を含むプロピレン-エチレンコポリマーを含み、
     成分(1):(2)の重量比が85~60:15~40であり、
     以下の要件:
     1)当該組成物のキシレン不溶分のGPCにより測定したMw/Mnが6~20である
     2)当該組成物のキシレン可溶分の極限粘度が1~3dl/gである
     3)当該組成物のメルトフローレート(230℃、荷重21.18N)が1~50g/10分である
     を満たす、マスターバッチ組成物。
    (A) a solid catalyst containing, as an essential component, an electron donor compound selected from magnesium, titanium, halogen, and a succinate compound;
    (B) an organoaluminum compound; and (C) a masterbatch composition obtained by polymerizing propylene and ethylene using a catalyst containing an external electron donor compound,
    As component (1), a propylene homopolymer, and as component (2), a propylene-ethylene copolymer containing 55 to 80% by weight of ethylene-derived units,
    The weight ratio of components (1) :( 2) is 85-60: 15-40,
    The following requirements:
    1) Mw / Mn measured by GPC of the xylene-insoluble part of the composition is 6 to 20 2) The intrinsic viscosity of the xylene-soluble part of the composition is 1 to 3 dl / g 3) of the composition A master batch composition satisfying a melt flow rate (230 ° C., load 21.18 N) of 1 to 50 g / 10 min.
  2.  前記成分(2)におけるプロピレン-エチレンコポリマーのエチレン由来単位が60~75重量%である、請求項1に記載のマスターバッチ組成物。 The master batch composition according to claim 1, wherein the ethylene-derived unit of the propylene-ethylene copolymer in the component (2) is 60 to 75% by weight.
  3.  前記成分(1):(2)の重量比が75~60:25~40である、請求項1または2に記載のマスターバッチ組成物。 The master batch composition according to claim 1 or 2, wherein the weight ratio of the components (1) :( 2) is 75-60: 25-40.
  4.  前記メルトフローレートが10~35g/10分である、請求項1~3のいずれかに記載のマスターバッチ組成物。 The master batch composition according to any one of claims 1 to 3, wherein the melt flow rate is 10 to 35 g / 10 minutes.
  5.  前記組成物100重量部に対し、0.01~5重量部の結晶造核剤を含む、請求項1~4のいずれかに記載のマスターバッチ組成物。 The master batch composition according to any one of claims 1 to 4, comprising 0.01 to 5 parts by weight of a crystal nucleating agent with respect to 100 parts by weight of the composition.
  6.  請求項1~5のいずれかに記載のマスターバッチ組成物に、前記マスターバッチ組成物の成分(2)とは異なるエラストマーまたは前記マスターバッチ組成物とは異なるポリプロピレン系樹脂の少なくとも一方を混合してなる、ポリプロピレン樹脂組成物。 The masterbatch composition according to any one of claims 1 to 5 is mixed with at least one of an elastomer different from component (2) of the masterbatch composition or a polypropylene resin different from the masterbatch composition. A polypropylene resin composition.
  7.  請求項6に記載の組成物中に5重量%を超え40重量%以下の充填剤を含む、ポリプロピレン樹脂組成物。 A polypropylene resin composition comprising a filler of more than 5% by weight and 40% by weight or less in the composition according to claim 6.
  8.  請求項6または7に記載のポリプロピレン樹脂組成物を射出成形してなる射出成形品。 An injection-molded product obtained by injection-molding the polypropylene resin composition according to claim 6 or 7.
PCT/JP2017/041091 2016-11-15 2017-11-15 Master batch composition and polypropylene resin composition containing same WO2018092805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780069625.5A CN109923170B (en) 2016-11-15 2017-11-15 Master batch composition and polypropylene resin composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222226A JP6831218B2 (en) 2016-11-15 2016-11-15 Masterbatch composition and polypropylene resin composition containing it
JP2016-222226 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092805A1 true WO2018092805A1 (en) 2018-05-24

Family

ID=62146431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041091 WO2018092805A1 (en) 2016-11-15 2017-11-15 Master batch composition and polypropylene resin composition containing same

Country Status (3)

Country Link
JP (1) JP6831218B2 (en)
CN (1) CN109923170B (en)
WO (1) WO2018092805A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114361B2 (en) * 2018-06-19 2022-08-08 サンアロマー株式会社 Polypropylene composition and molded article
JP7249126B2 (en) * 2018-10-18 2023-03-30 サンアロマー株式会社 Polypropylene composition and molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528621A (en) * 1998-11-03 2002-09-03 モンテック ユーエスエー インコーポレーテッド Polyolefin composition that balances rigidity and impact strength
JP2006199738A (en) * 2005-01-18 2006-08-03 Toho Catalyst Co Ltd Solid catalyst component and catalyst for polymerizing olefins
JP2006522186A (en) * 2003-04-03 2006-09-28 バセル ポリオレフィン イタリア エス.アール.エル. Impact resistant polyolefin composition
JP2008516025A (en) * 2004-10-04 2008-05-15 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Elastomer polyolefin composition
JP2011500907A (en) * 2007-10-15 2011-01-06 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Method for producing high flow propylene polymer
JP2014091781A (en) * 2012-11-02 2014-05-19 Sunallomer Ltd Polypropylene-based resin composition for compression molding and molded product
JP2016089012A (en) * 2014-11-04 2016-05-23 サンアロマー株式会社 Method of producing film or sheet containing polypropylene composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049204A1 (en) * 2010-10-14 2012-04-19 Basell Poliolefine Italia S.R.L. Automotive interior element
JP6144044B2 (en) * 2011-12-28 2017-06-07 サンアロマー株式会社 Polymer composition for battery case
JP6301839B2 (en) * 2012-10-03 2018-03-28 サンアロマー株式会社 Propylene resin composition for retort film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528621A (en) * 1998-11-03 2002-09-03 モンテック ユーエスエー インコーポレーテッド Polyolefin composition that balances rigidity and impact strength
JP2006522186A (en) * 2003-04-03 2006-09-28 バセル ポリオレフィン イタリア エス.アール.エル. Impact resistant polyolefin composition
JP2008516025A (en) * 2004-10-04 2008-05-15 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Elastomer polyolefin composition
JP2006199738A (en) * 2005-01-18 2006-08-03 Toho Catalyst Co Ltd Solid catalyst component and catalyst for polymerizing olefins
JP2011500907A (en) * 2007-10-15 2011-01-06 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Method for producing high flow propylene polymer
JP2014091781A (en) * 2012-11-02 2014-05-19 Sunallomer Ltd Polypropylene-based resin composition for compression molding and molded product
JP2016089012A (en) * 2014-11-04 2016-05-23 サンアロマー株式会社 Method of producing film or sheet containing polypropylene composition

Also Published As

Publication number Publication date
JP6831218B2 (en) 2021-02-17
JP2018080231A (en) 2018-05-24
CN109923170A (en) 2019-06-21
CN109923170B (en) 2021-10-26

Similar Documents

Publication Publication Date Title
KR102231819B1 (en) Master batch composition
EP3784734B1 (en) Polypropylene composition and molded article
JP6998175B2 (en) Polypropylene resin composition and injection compression molded product
JP6884061B2 (en) Polypropylene resin composition and injection compression molded product
JP6916713B2 (en) Polypropylene resin composition and molded product
CN109923170B (en) Master batch composition and polypropylene resin composition containing the same
WO2022270630A1 (en) Polypropylene resin composition, method for producing same, sheet molded body and container
EP3810661B1 (en) Polypropylene composition and molded article
JP7096682B2 (en) Polypropylene compositions and moldings
US20220372198A1 (en) Polypropylene Composition And Molded Article
JP2022102090A (en) Polypropylene-based resin composition for car interior component, its manufacturing method and compact for car interior
JP6588286B2 (en) Polypropylene resin composition for inflation film
JP2021172729A (en) Polypropylene-based resin composition for automobile interior part, method for producing the same, and molding for automobile interior part
JP6860326B2 (en) Polypropylene composition and matte film formed by molding the polypropylene composition
EP3559113B1 (en) Masterbatch composition
EP3867285B1 (en) Polypropylene composition and molded article
WO2022270629A1 (en) Polypropylene resin composition, sheet molded body, and container
JP2022095294A (en) Polypropylene-based resin composition for injection molding and injection-molded body
JP2022095293A (en) Polypropylene-based resin composition for injection molding and injection-molded body
JP2020183457A (en) Polypropylene-based resin composition for automobile interior part, method for manufacturing the same, and molding for automobile interior part
JP2021176923A (en) Polypropylene-based resin composition for automobile interior part, method for producing the same and molding for automobile interior part
JP2019157083A (en) Polypropylene composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872498

Country of ref document: EP

Kind code of ref document: A1