WO2018092670A1 - Culture substrate and method for producing culture substrate - Google Patents

Culture substrate and method for producing culture substrate Download PDF

Info

Publication number
WO2018092670A1
WO2018092670A1 PCT/JP2017/040382 JP2017040382W WO2018092670A1 WO 2018092670 A1 WO2018092670 A1 WO 2018092670A1 JP 2017040382 W JP2017040382 W JP 2017040382W WO 2018092670 A1 WO2018092670 A1 WO 2018092670A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
differentiation
culture substrate
stem cells
culture
Prior art date
Application number
PCT/JP2017/040382
Other languages
French (fr)
Japanese (ja)
Inventor
朝生敏裕
笹木隆一郎
塙隆夫
陳鵬
Original Assignee
アイシン精機株式会社
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社, 国立大学法人東京医科歯科大学 filed Critical アイシン精機株式会社
Priority to JP2018551592A priority Critical patent/JPWO2018092670A1/en
Publication of WO2018092670A1 publication Critical patent/WO2018092670A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present application relates to a culture substrate, and more particularly, to a culture substrate having a periodic projection structure of nanometer order on the surface and culturing stem cells on the surface, and a method for producing the culture substrate.
  • This application is based on Japanese Patent Application No. 2016-222732 filed on November 15, 2016, and claims that the entire contents of this application are incorporated by reference.
  • Regenerative medicine is a treatment that regenerates tissues and organs that have been dysfunctional or dysfunctional due to illness or injury and restores their functions.
  • Stem cells play an important role in the realization of regenerative medicine.
  • Stem cells have self-renewal ability and differentiation ability. By utilizing the differentiation ability of stem cells, it becomes possible to artificially create tissues and organs necessary for healing diseases and injuries.
  • Stem cells are also responsible for drug discovery screening such as the use of biological cells that have been induced to differentiate from stem cells for pharmacology and toxicity assessment of drug candidates, and for understanding the mechanisms of development, differentiation and disease, and for biological functions that can be used as protein drugs. It can be used for production technology of useful substances such as proteins. Therefore, stem cell utilization technology is expected to be applied to a wide range of technical fields such as medicine and drug discovery.
  • Patent Document 1 describes that N-cadherin is a differentiation control factor from pluripotent stem cells to nerve cells and plays an important function in the generation of the nervous system. It has been confirmed that selective differentiation of pluripotent stem cells into neurons occurs by immobilizing such N-cadherin or a homologous substance on the surface of a culture substrate.
  • Patent Document 2 discloses that insulin-like growth factor binding protein (hereinafter abbreviated as “IGFBP”) is a differentiation regulator of pluripotent stem cells into cardiomyocytes, and strongly promotes induction into cardiomyocytes. Is described. It has been confirmed that selective differentiation into cardiomyocytes occurs by immobilizing such IGFBP or homologous substance on the surface of the culture substrate.
  • IGFBP insulin-like growth factor binding protein
  • Stem cell culture also has problems associated with feeder cells.
  • co-culture with feeder cells has been common.
  • Feeder cells provide the factors necessary for stem cell survival, proliferation, and maintenance of undifferentiation, as well as provide a scaffold for cell adhesion.
  • the components derived from feeder cells are mixed, so there is a problem in safety when applying to living organisms such as regenerative medicine, and stable supply of high-quality feeder cells. It was not easy.
  • the technique of the said patent document 1 is a culture system of the stem cell which does not use a feeder cell, as above-mentioned, advanced knowledge, technique, and equipment were required.
  • Patent Document 3 describes the possibility that differentiation of pluripotent stem cells is caused by surface microstructure.
  • topographical projections circular, star-shaped, rectangular, crescent-shaped, etc. are provided at lattice points on the culture substrate surface.
  • Patent Document 3 presents 1 to 2 ⁇ m and 1 to 8 ⁇ m, respectively, as the protrusion spacing and the cross-sectional diameter that affect stem cell differentiation.
  • photolithography electron beam lithography, hot embossing, nanoimprint, laser ablation, chemical etching, plasma spray coating, spray grinding, engraving, scratching, and microfabrication are presented as methods for creating this. Yes.
  • it has been difficult to precisely produce the shape presented in Patent Document 3 by laser ablation in which the size of the focused spot is usually several to several tens of ⁇ m.
  • a costly processing means such as photolithography must be selected as a method that is actually sufficient for manufacturing.
  • Patent Document 4 by irradiation with high-intensity femtosecond laser pulses, a micrometer order hemispherical ridge having a groove around it, and a large number of nanometer order on the entire surface of the surrounding groove and hemispherical ridge.
  • Surface-treated titanium having a fine surface structure composed of fine spherical protrusions and fine recesses is described. Titanium has become the mainstream of implant materials such as artificial joints and artificial tooth roots because it rarely causes an immune response even when implanted in a living body, but to the titanium surface that is originally a foreign body for living bodies
  • problems to be solved such as poor cell adhesion and tendency of tissue to be hardly regenerated.
  • Patent Document 4 improves the adhesion of osteoblasts to the titanium surface by microfabrication of the titanium surface, and is an osteoblast system that is a progenitor cell of osteoblasts separated from the bone marrow. It has been reported to promote cell proliferation and induce differentiation into osteoblasts.
  • Patent Document 4 has been confirmed to promote the proliferation of osteoblast cells and differentiation into osteoblasts, but application to undifferentiated stem cells has not been studied. It was. Further, in Patent Document 4, a hemispherical 2-20 ⁇ m bulge surrounded by a groove is formed by irradiation with a femtosecond laser pulse at 800 ⁇ J on the titanium surface, and a fine spherical protrusion of 100-300 nm and a fine fit are formed. It is described that a concave surface structure is formed, and in view of such description, it can be said that the nanometer-order fine structure is formed accompanying the production of a micrometer-order fine structure.
  • Non-patent document 1 and Non-patent document 2 A base material was constructed (Non-patent document 1 and Non-patent document 2).
  • stem cells By culturing stem cells on the surface of such a culture substrate, it was reported that special improvement in biocompatibility and affinity for living cells was observed, and the stem cells were proliferated safely and stably while maintaining their undifferentiation. In addition, stem cells can be efficiently induced to differentiate into specific cell types. In addition, by appropriately controlling the periodic fine structure formed on the surface of the culture substrate, stem cells can be induced to differentiate into different tissues on the same plane.
  • Non-Patent Document 1 and Non-Patent Document 2 are closely related to the periodic fine structure formed on the surface of the culture substrate and the direction in which stem cells can be induced to differentiate, and future generations with a view to tailored medicine This technique is suitable for the preparation of implants.
  • This technique is suitable for the preparation of implants.
  • the overall differentiation induction time is required to be shorter than the acceleration of induction of stem cells in a specific differentiation direction.
  • an object of the present invention is to construct a culture substrate capable of accelerating differentiation induction of stem cells. Another object of the present invention is to construct a culture substrate that can accelerate differentiation induction in all differentiation directions in which stem cells are determined.
  • stem cells can be efficiently induced to differentiate by forming fine periodic protrusion structures of nanometer order on the surface of the culture substrate. It was. Such differentiation-inducing effect was recognized without selecting tissue cells for the differentiation of bone cells, chondrocytes, nerve cells, and adipocytes. Based on these findings, the present invention has been completed.
  • the present application provides the following inventions [1] to [4] in order to achieve the above object.
  • the nanometer-order periodic protrusion structure has a diameter of 0.1 to 1 ⁇ m, a height of 0.01 to 0.5 ⁇ m, and a pitch of 0.1 to 1 ⁇ m.
  • the culture substrate of the present invention can efficiently induce differentiation of stem cells by culturing stem cells on the surface thereof, and can accelerate differentiation induction into more mature cells. Such an effect of accelerating differentiation induction of stem cells is recognized not only in a specific direction but also in all the differentiation directions in which the stem cells are determined.
  • the culture substrate of the present invention having such characteristics is expected as a culture substrate for producing a large amount of differentiated cells, and can be used for searching for generation and differentiation mechanisms using stem cells. As a result, it can contribute to the development of stem cell utilization technologies such as regenerative medicine and drug discovery screening.
  • the culture substrate of the present invention has a nanometer-order periodic protrusion structure of a suitable dimension formed on the surface, and the presence of a minute periodic protrusion structure of a specific dimension can induce differentiation of stem cells more efficiently and become more mature. Can accelerate the differentiation induction into cells. Such an effect of accelerating differentiation induction of stem cells is observed in all the differentiation directions in which the stem cells are determined.
  • the culture substrate of the present invention can be produced by forming a fine periodic projection structure on a titanium material having high biocompatibility and biocell affinity. Affinity is high, and further efficiency in induction of stem cell differentiation can be achieved.
  • the formation of a fine periodic protrusion structure in the nanometer order of the culture substrate of the present invention can be easily formed, for example, by scanning with an ultrashort pulse laser, which has a thermal effect. Since there are few, there exists an advantage that there are few restrictions to manufacture, such as the process in air
  • Example 1 which performed production examination of a culture substrate is shown, and the section SEM image of the produced culture substrate of the present invention is shown.
  • the graph which shows the result of Example 2 which performed differentiation induction analysis (confirmation with a differentiation marker) of MSC on a culture substrate.
  • the culture substrate 1 of the present invention has a periodic projection structure 2 of nanometer order formed on the surface.
  • the nanometer order periodic protrusion structure 2 of the culture substrate 1 of the present invention may be abbreviated as “nano periodic protrusion 2”.
  • the material of the culture substrate 1 of the present invention it is preferable to select a substance that is chemically stable, and has good biocompatibility and cell affinity.
  • chemically stable means having required strength, durability, and wear resistance.
  • Biocompatibility is a property that does not affect the living body and components derived from living bodies such as cells, tissues, organs, blood, etc., and is not affected by these living bodies and components derived from living bodies. It means a property that is difficult to recognize.
  • Biological cell affinity means, in particular, that it does not affect living cells and components derived from living cells, and is not affected by living cells and components derived from living cells.
  • biocompatibility and biological cell affinity are exemplified by having no toxicity, carcinogenicity, and antigenicity, and not causing blood coagulation, hemolysis, or metabolic abnormality.
  • a material having a required level of biocompatibility and biological cell affinity is selected according to the use of the culture substrate 1.
  • metal materials among metal materials, ceramic materials, synthetic polymer materials, etc., known materials can be used as long as they have the above properties.
  • the metal material include titanium, titanium alloy and oxide, stainless steel, niobium, niobium alloy and oxide, tantalum, tantalum alloy and oxide, nickel-chromium alloy, chromium-cobalt alloy and the like.
  • An alloy indicates a metallic property composed of a plurality of metallic elements or metallic elements and nonmetallic elements.
  • the titanium alloy one in which one or more other elements such as nickel, niobium, tantalum, molybdenum, zirconium, and platinum are added to titanium and the composition is adjusted can be used.
  • the ceramic material examples include alumina and its oxide, zirconium and its oxide, and hydroxyapatite. Use ceramic materials that are molded with other additives, those that are coated with a ceramic material that melts the metal material surface, and those that are coated with a metal material such as an alloy. You can also. Examples of the synthetic polymer material include silicone and polyurethane.
  • the shape and size of the culture substrate 1 of the present invention are not particularly limited, and can be appropriately selected depending on the application, such as plate, cube, column, rod, fiber, sphere, granule, and lump.
  • the nano-periodic protrusion 2 may be formed on all surfaces of the culture substrate 1, or may be formed on a part of the surface or a part of the surface.
  • its shape and size can be set as appropriate. For example, when using the culture substrate 1 of the present invention as an implant, the shape and size can be appropriately set according to the implantation site and the tissue desired to be regenerated.
  • the nano-periodic protrusion 2 formed on the surface of the culture substrate 1 of the present invention means a structure provided with fine protrusions regularly in the order of nanometers at regular intervals. That is, the nano-periodic protrusion 2 means a structure in which a plurality of fine protrusions formed with dimensions that are appropriate to display in nm units are periodically arranged.
  • the structure is formed by laser irradiation or the like. It means a fine structure with dimensions that can be understood as a phenomenon. Specifically, it is 10 to 1000 nm.
  • the dimensions of the nano-periodic protrusion 2 for example, the length, height, and pitch of one side in the case of a rectangular protrusion, the diameter, the height, and the pitch in the case of a circular protrusion. , Etc., are formed with dimensions on the order of nanometers.
  • each protrusion of the nano periodic protrusion 2 can be formed as a pyramid such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, a conical shape, a cylindrical shape, a hemispherical shape, a wave shape, a bell shape, or the like, and can also be referred to as a dot. Examples in which a plurality of protrusions are arranged in parallel, concentric, lattice, spiral, random, etc.
  • the area of the cross section orthogonal to the height direction may or may not change from the bottom to the top, and if it changes, even if it has a shape that gradually decreases, Even if it is a shape which increases, the shape which combined increase and decrease may be sufficient.
  • each protrusion of the nano periodic protrusion 2 are preferably set to a diameter of 0.1 to 1 ⁇ m (100 to 1000 nm), a height of 0.01 to 0.5 ⁇ m (10 to 500 nm), and a pitch of 0.1 to 1 ⁇ m (100 to 1000 nm).
  • the projection diameter is set to 0.5 ⁇ m (500 nm)
  • the height is 0.2 ⁇ m (200 nm)
  • the pitch is 0.5 to 0.8 ⁇ m (500 to 800 nm), and particularly preferably 0.7 ⁇ m (700 nm).
  • the density of the nano periodic protrusions 2 can be preferably 10,000 to 30,000 per 1 mm 2 .
  • the diameter means a distance from one end of the protrusion to the other, and is a distance of one side in the case of a rectangular protrusion, and is a distance of a diameter in the case of a circular protrusion. Even when the distance changes in the height direction of the protrusion, the distance on the surface of the culture substrate 1 is meant.
  • the height of the protrusion means the distance from the average height of the bottom surface of the protrusion to the average height of the top surface.
  • the pitch of the protrusions means the distance between the closest protrusions and is a distance corresponding to one cycle of unevenness on the surface of the culture substrate 1.
  • the dimensions such as the diameter, height, and pitch of the protrusions are preferably calculated as an average of measured values of the dimensions of the protrusions existing in a certain region, for example, a region of 1 mm 2 .
  • the nano-periodic protrusions 2 in the culture substrate 1 of the present invention are isotropic, that is, the arrangement of the nano-periodic protrusions 2 is nondirectional regardless of the direction.
  • the nano-periodic protrusion 2 of the culture substrate 1 of the present invention can be formed by a known method.
  • it can be formed by using an ultrashort pulse laser having a pulse width of several femtoseconds to several picoseconds.
  • the ultrashort pulse laser a processing laser device having a near infrared region with a wavelength of 800 nm to 1500 nm, a pulse time width of 10 ps or less, and an output of 1 W or more is preferable, and a femtosecond pulse laser is particularly preferable.
  • FCPA ⁇ Jewel D-1000 manufactured by Imla America, Inc. can be preferably used.
  • a periodic groove structure can be formed in a direction perpendicular to the polarization direction by linearly polarized light of an ultrashort pulse laser, a granular structure can be formed by circularly polarized light, and a cage structure can be formed by elliptically polarized light.
  • the periodic protrusions 2 are preferably formed by circularly polarized light.
  • the wavelength is preferably 800 to 1500 nm
  • the fluence 0.5 to 1.5 J / cm 2
  • the pulse line density 100 to 1000 pulses / mm the number of scans 1 to 10 times.
  • the fluence is 0.8 J / cm 2
  • the pulse linear density is 200 pulses / mm
  • the number of scans is once
  • the polarization is circularly polarized.
  • Laser scanning can be performed using any of raster scanning, vector scanning, spot scanning, and the like, but the raster scanning method is preferable.
  • the culture substrate 1 of the present invention is a substrate for culturing stem cells, and cultures stem cells using the surface on which the nanoperiodic protrusions 2 are formed as the culture surface.
  • stem cells are proliferated in an undifferentiated state (hereinafter sometimes referred to as “undifferentiated proliferation stage”), and then the differentiated stem cells are induced to become target cells. Differentiation (hereinafter sometimes referred to as “differentiation induction stage”).
  • differentiated stem cells hereinafter sometimes referred to as “differentiation induction stage”.
  • stem cells with an extremely large number of cells are required, and it is necessary to efficiently induce differentiation into the intended cells.
  • the proliferation and differentiation of stem cells can be appropriately controlled.
  • Stem cells are undifferentiated cells having differentiation ability and self-replication ability.
  • the differentiation ability means the ability to change into various cells having specific functions constituting tissues and organs. In other words, cells existing in the body have a certain function and shape, but stem cells have the ability to change into a cell having a certain function and shape. From the viewpoint of differentiation potential, a stem cell may have pluripotency capable of changing into all cells present in the body, or can differentiate into only some cells. Also good.
  • undifferentiated means a state that has not differentiated into somatic cells or germ cells having a specific function or shape.
  • Self-replicating ability means the ability of a cell to make the same cell as itself while repeating cell division.
  • Stem cells are cells that have not finally differentiated, and include all cells that have differentiation ability and self-replication ability. Therefore, a cell having differentiation ability that occurs in the process until the stem cell is finally differentiated is also included in the stem cell as long as it has differentiation ability and self-replication ability.
  • Stem cells include artificial pluripotent stem cells (hereinafter abbreviated as “iPS cells”), embryonic stem cells (hereinafter abbreviated as “ES cells”), nuclear transfer embryonic stem cells (hereinafter abbreviated as “ntES cells”). ), Somatic stem cells, umbilical cord blood stem cells, and the like, but are not limited thereto.
  • iPS cells artificial pluripotent stem cells
  • ES cells embryonic stem cells
  • ntES cells nuclear transfer embryonic stem cells
  • Somatic stem cells umbilical cord blood stem cells, and the like, but are not limited thereto.
  • Stem cells are hierarchical, and iPS cells and ES cells at the top have high self-replicating ability and can
  • An iPS cell is a pluripotent stem cell that is artificially induced by introducing a specific gene into a somatic cell that has originally lost differentiation potential.
  • ES cells are pluripotent stem cells obtained by culturing the inner cell mass in embryos at the blastocyst stage of fertilized eggs, and ntES cells make embryos by putting somatic cell nuclei into eggs excluding nuclei. It is a pluripotent stem cell obtained by culturing an inner cell mass in an embryo like ES cells.
  • iPS cells are described in Takahashi K. et al., “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.”, Cell, 126 (4), 663-676.
  • ES cells are described in MJ Evans et al., “Establishment in culture of pluripotential cells from mouse embryos”, Nature, 292, 154-156 (1981), Thomson JA et al., “Embryonic stem cell lines derived from human blastocysts.”, Science , 282 (5391), 1145-1147 (1988), Amit, M., et al., “Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.”, Dev. Biol. 227 (2) , 271-278 (2000), etc. Further, iPS cells and ES cells may be obtained from commercial products or cell banks.
  • IPS cells and ES cells are pluripotent stem cells having the ability to differentiate into ectoderm, mesoderm, endoderm three germ layers, and all types of cells produced by differentiation of the three germ layers.
  • Pluripotent stem cells can differentiate into cells that make up all tissues and organs except placenta and amniotic membrane.
  • the ectoderm differentiates into nerve cells of the nervous system, axons, myelin sheaths, oral epithelium of the digestive system, tongue, tooth enamel, sensory organ skin, cornea, retina, inner ear, outer ear, etc.
  • the germ layers are skeletal systems such as bone and cartilage, heart, vascular endothelial cells, blood cells such as leukocytes, platelets and erythrocytes, circulatory systems such as spleen and bone marrow, nervous system microglia, urinary kidneys, urine It differentiates into ducts, genital ovaries, uterus, testis, connective tissue, etc., and endoderm is digestive esophageal epithelium, stomach epithelium, liver, pancreas, endocrine thyroid, thymus, sensory organ canal Differentiates into the tympanic chamber, respiratory tonsils, pharyngeal epithelium, laryngeal epithelium, tracheal epithelium, lungs, etc.
  • skeletal systems such as bone and cartilage, heart, vascular endothelial cells, blood cells such as leukocytes, platelets and erythrocytes, circulatory systems such as spleen and bone marrow, nervous
  • Somatic stem cells are cells that are not terminally differentiated in the living body, and are mesenchymal stem cells (hereinafter sometimes abbreviated as “MSC”), neural stem cells, hematopoietic stem cells, hepatic stem cells, vascular endothelial stem cells, There are various types of epithelial stem cells. Somatic stem cells can also be generated in the process of terminal differentiation of iPS cells and ES cells. Unlike pluripotent stem cells, somatic stem cells can be differentiated only into cells that constitute a specific tissue or organ.
  • MSC mesenchymal stem cells
  • MSC is a type of somatic stem cell that is mesoderm-derived stromal cell (bone marrow), osteoblast (bone cell), chondroblast (chondrocyte), muscle cell, adipocyte, fibroblast (tendon, Ligament) and the ability to differentiate into vascular endothelial cells.
  • mesoderm-derived stromal cell bone marrow
  • osteoblast bone cell
  • chondroblast chondrocyte
  • muscle cell adipocyte
  • fibroblast tendon, Ligament
  • MSC can be obtained from various tissues such as bone marrow, adipose tissue and muscle, but preferably bone marrow mesenchymal stem cells can be obtained from bone marrow.
  • Bone marrow mesenchymal stem cells are contained in bone marrow stromal cells.
  • bone marrow fluid collected by bone marrow puncture is seeded on a petri dish, and fibroblast-like cells that grow on the bottom of the petri dish are proliferated by subculture.
  • Can be obtained by MSCs can also be induced to differentiate from pluripotent stem cells such as iPS cells and ES cells.
  • MSC Mesp2
  • culturing ES cells in the presence of retinoic acid and selecting SOX1-positive cells and culturing ES cells, stromal cell-like morphology, PDGFR ⁇ -positive and FLK1-negative, expressing Mesp2
  • MSCs can be obtained by sorting cells that do not (see JP 2005-304443, WO 2004/106502). MSCs may be obtained from commercial products or cell banks.
  • the origin of cells cultured on the culture substrate 1 of the present invention is not limited. Therefore, cells derived from mammals such as humans, monkeys, mice, rats, hamsters, rabbits, cows, horses, pigs, dogs, cats, goats, sheep, etc., birds, reptiles, and preferably cells derived from mammals. Can be used for culture.
  • Stem cell culture in the undifferentiated growth stage is performed on the surface of the culture substrate 1 of the present invention on which the nano-periodic protrusions 2 are formed.
  • the undifferentiated growth stage in which differentiation induction is not performed by culturing using the culture substrate 1 of the present invention, the appearance of differentiated cells due to spontaneous differentiation or the like is suppressed, and the stem cells remain undifferentiated. Can proliferate. That is, on the culture substrate 1 of the present invention, the stem cells do not differentiate into any cell unless induced to differentiate, and are not accompanied by karyotypic abnormalities. On the other hand, stem cells can sufficiently exhibit self-replicating ability to replicate cells having the same properties as self.
  • the culture of stem cells in the undifferentiated growth stage is not particularly limited as long as the stem cells can be maintained. Therefore, it can be performed based on a method known in the art, and cells can be seeded in a liquid medium for primary culture and cultured under appropriate conditions. The exchange and passage of the liquid medium can be performed in the same manner as a known method.
  • the culture medium and culture culture conditions are not particularly limited as long as iPS cells and ES cells can be maintained, and can be performed based on known culture media and culture conditions.
  • a known medium used for culturing normal iPS cells and ES cells can be used.
  • a medium in which a cell growth factor such as basic fibroblast growth factor (bFGF) is added to a serum-free medium can be used, and can be appropriately selected according to the cells to be cultured.
  • commercially available culture media for iPS cells and ES cells can be used.
  • StemPro registered trademark
  • hESC Life Technologies
  • ReproFF2 Reprocell
  • the culture medium and culture culture conditions are not particularly limited as long as MSC can be maintained, and can be performed based on known culture media and culture conditions.
  • a medium usually used for MSC culture can be used. Examples include MEM medium, DMEM medium, and the like, which can be appropriately selected according to the cells to be cultured.
  • MSCGM TM BulletKit TM (Lonza, catalog number PT-3001) can be used.
  • the culture conditions can also be appropriately selected according to the cells to be cultured.
  • the initial seed density is 5000 to 6000 cells / cm 2 and the cells can be cultured in an incubator set at 37 ° C. and 5% CO 2 .
  • Confirmation of whether or not stem cells maintain differentiation potential can be performed by observation of cell morphology, confirmation of differentiation ability, confirmation of undifferentiated markers, and the like.
  • An undifferentiated marker is a molecule that is specifically expressed in undifferentiated stem cells and plays a very important role in the expression of differentiation ability.
  • the expression or expression level of such a molecule is detected by a known method. be able to.
  • Real time RT-PCR can be used to detect marker gene expression, and protein marker expression can be detected by immunostaining or enzyme staining using marker-specific polyclonal or monoclonal antibodies.
  • An activity measurement method or the like can be used.
  • an immunostaining method using an antibody an antibody fluorescence staining method can be preferably used.
  • the antibody fluorescence staining method is a method in which an antibody labeled with a fluorescent dye is incorporated into a sample by using an antigen-antibody reaction and stained, and has high specificity for an antigen substance (undifferentiation marker). Dyeing can be performed.
  • MSC pluripotent stem cells
  • SRY ex determining region Y
  • SSEA-1 SSEA-3
  • SSEA-4 TRA-1-60
  • TRA-1-81 OCT3 / 4
  • MSC MSC
  • Negative markers can also be used, and examples of MSC negative markers include CD11b, CD14, CD19, CD31, CD18, CD34, CD45, CD56, CD79 ⁇ , HLA-DR, and the like.
  • the differentiation induction of stem cells in the differentiation induction stage is performed on the surface of the culture substrate 1 of the present invention on which the nano-periodic protrusions 2 are formed.
  • differentiation is induced using the culture substrate 1 of the present invention, so that on the culture substrate 1 of the present invention, the stem cells are efficiently generated while suppressing the generation of stem cells that maintain undifferentiation.
  • the culture substrate 1 of the present invention has high differentiation induction efficiency and can reduce the time required for differentiation induction. Such high differentiation induction efficiency is not for differentiation in a certain direction but high differentiation in all directions. Shows induction efficiency. Therefore, a large amount of differentiated cells can be obtained from the stem cells.
  • any method known in the art can be used as long as a stem cell can be differentiated into a target cell.
  • it can be performed by culturing cells on the culture substrate 1 of the present invention using a differentiation-inducing medium containing a differentiation-inducing factor, and after the above-described undifferentiated growth stage on the culture substrate 1 of the present invention.
  • the desired differentiated cells can be obtained by switching the medium to a differentiation-inducing medium.
  • only one of the undifferentiated growth stage and the differentiation induction stage can be performed using the culture substrate 1 of the present invention.
  • the differentiation-inducing factor can be appropriately selected according to the type of cells desired to be differentiated, the differentiation hierarchy of stem cells to be differentiated, and the like.
  • the induction conditions such as the contact time with the differentiation-inducing factor are not limited as long as differentiation induction into the target cell occurs.
  • Commercially available differentiation induction reagents and kits can also be used.
  • differentiation differentiation factors are differentiated into cells of a specific lineage via the germ layers by contacting differentiation inducers at a specific time, order and concentration. Can do.
  • bFGF basic fibroblast growth factor
  • BMP bone morphogenetic protein
  • Insulin dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), indomethacin, 3,3,5-triiodothyronine (T3), etc. can be used for induction of differentiation from MSC to adipocytes.
  • dexamethasone L-glutamine, ascorbic acid, ⁇ -glucerophosphate, and the like can be used.
  • dexamethasone, ascorbic acid, ITS insulin, transferrin, selenium
  • ⁇ -mercaptoethanol dimethyl sulfoxide (DMSO), forskolin and bFGF
  • DMSO dimethyl sulfoxide
  • bFGF bFGF
  • 5-azacytidine and the like can be used.
  • ITS dexamethasone, hepatocyte growth factor (HGF), oncostatin and the like
  • HGF hepatocyte growth factor
  • cardiomyocytes Dickkoph-1 (Dkk1), insulin-like growth factor binding protein 4 (IGFBP-4), or the like can be used.
  • Dkk1 Dickkoph-1
  • IGFBP-4 insulin-like growth factor binding protein 4
  • differentiation induction can be started when MSC is preferably 80 to 90% confluent.
  • adipocyte differentiation induction medium hMSC-BulletKit TM -for adipocyte differentiation (Lonza, catalog number PT-3004) can be used to induce differentiation into adipocytes according to the manufacturer's instructions.
  • This kit consists of basal medium, L-glutamine, Mesenchymal cell growth supplement (MCGS), dexamethasone, indomethacin, 3-isobutyl-1-methyl-xanthine (IBMX), GA- Containing 1000 (gentamicin, amphotericin B).
  • the initial cell seed density is preferably 2.1 ⁇ 10 4 cells / cm 2 .
  • differentiation induction can be started when MSC is preferably 100% confluent.
  • chondrocyte differentiation induction medium hMSC-BulletKit TM -for cartilage differentiation (Lonza, catalog number PT-3003) can be used to induce differentiation into chondrocytes according to the manufacturer's instructions.
  • This kit comprises basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement, sodium pyruvate, proline, GA-1000 (gentamicin, amphotericin B).
  • the initial cell seed density is preferably 5 ⁇ 10 5 cells / cm 2 .
  • differentiation induction can be started when MSC is preferably 100% confluent.
  • hMSC-BulletKit TM -for osteoblast differentiation (Lonza, catalog number PT-3002) can be used to induce differentiation into bone cells according to the manufacturer's instructions.
  • This kit consists of basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement, sodium pyruvate, proline, mesenchymal cell growth supplement (MCGS), ⁇ -glycerophosphate, penicillin / streptomycin .
  • the initial cell seed density is preferably 3.1 ⁇ 10 5 cells / cm 2 .
  • differentiation induction can be started when MSC is preferably 80-90% confluent.
  • the neural cell differentiation induction medium can be induced to differentiate into neural cells using Mesenchymal Stem Cell Neurogenic Differentiation Medium (PromoCell, Catalog No. C-28015) according to the manufacturer's instructions. it can.
  • This kit comprises a basic medium, Supplement Mix (PromoCell, catalog number C-39815).
  • the initial cell seed density is preferably 5000 cells / cm 2 .
  • Whether a stem cell has differentiated into a target cell can be determined by observing the morphology of the cell and confirming the expression of a differentiation marker for confirmation of differentiation unique to the target differentiated cell.
  • a method known in the art can be used for confirming the expression of the differentiation marker.
  • Real time RT-PCR can be used to detect marker gene expression, and protein marker expression can be detected by immunostaining or enzyme staining using marker-specific polyclonal or monoclonal antibodies.
  • An activity measurement method or the like can be used.
  • an immunostaining method using an antibody an antibody fluorescence staining method can be preferably used.
  • the antibody fluorescence staining method is a method in which an antibody labeled with a fluorescent dye is incorporated into a sample and stained using an antigen-antibody reaction, and has high specificity for an antigen substance (differentiation marker). Dyeing can be performed.
  • adipocytes differentiation into adipocytes is confirmed by peroxisome proliferator-activated receptor ⁇ (PPAR ⁇ , (also referred to as NR1C3, PPARG)), CCAAT / enhancer binding protein ⁇ (C / EBP ⁇ ), fatty acid binding protein (FABP (Also referred to as aP2)), lipoprotein lipase (LPL) and the like can be used.
  • PPAR ⁇ peroxisome proliferator-activated receptor ⁇
  • C / EBP ⁇ C / EBP ⁇
  • FBP fatty acid binding protein
  • LPL lipoprotein lipase
  • Sex determining region Y-type high mobility group box protein 9 (SOX9), aggrecan, etc. can be used.
  • SPP1 secreted phosphate protein 1
  • BSP bone sialoprotein
  • OCN osteocalcin
  • ALP alkaline phosphatase
  • MAP2 microtubule-associated protein 2
  • MAP2 can be used nestin, class III beta-tubulin ( ⁇ III -tubulin) or the like.
  • PPAR ⁇ is a protein belonging to the nuclear receptor superfamily, functions also as a transcription factor, is mainly distributed in adipose tissue, and is involved in induction of adipocyte differentiation from preadipocytes.
  • SOX9 plays an essential role in the aggregation of undifferentiated mesenchymal cells and the subsequent differentiation process of chondrocytes.
  • SOX5 and SOX6 are induced by SOX9, and the three cooperate to induce the transcription of cartilage-specific genes such as type II collagen and determine differentiation into chondrocytes.
  • SPP1 is involved in the adhesion of osteoclasts to calcified bone matrix, and its expression level is increased before and during osteoblast differentiation.
  • MAP2 is a microtubule-associated protein that is abundant in vertebrate neurons. MAP2 begins to express when differentiated from neural progenitor cells, and in mature neurons it is almost absent from axons and is almost specifically localized to dendrites and cell bodies.
  • the culture substrate 1 of the present invention is a culture substrate 1 for culturing stem cells on which nano-periodic protrusions 2 are formed, can efficiently induce differentiation of stem cells, and can accelerate differentiation induction into more mature cells. .
  • Such an effect of accelerating differentiation induction of stem cells is observed in all the differentiation directions in which the stem cells are determined. Therefore, it does not selectively induce differentiation into a specific cell type.
  • the culture substrate 1 of the present invention having such properties is expected as a culture substrate 1 for producing a large amount of differentiated cells, rather than making a tissue from stem cells.
  • Formation of the nano-periodic protrusions 2 of the culture substrate 1 of the present invention can be easily formed, for example, by scanning with an ultrashort pulse laser, and since it is less affected by heat, it can be processed in the atmosphere. There is an advantage that there are few restrictions to manufacture. Thereby, the culture base material 1 of this invention can be produced simply and at low cost.
  • the culture substrate 1 of the present invention can be produced by forming the nano-periodic protrusion 2 on a titanium material having high biocompatibility and biocell affinity, coupled with the effect of improving biocompatibility and biocell affinity, Further acceleration of differentiation induction can be achieved.
  • the culture substrate 1 of the present invention having such characteristics can be suitably used in the technical field using stem cells.
  • stem cells can be used to search for development and differentiation mechanisms.
  • it can be suitably used for elucidating the developmental pathways of tissues and organs, cell-cell interactions in the process of organ formation, differentiation induction pathways, and the molecular mechanisms that control differentiation induction ability and differentiation direction. It can contribute to the establishment of basic technology for practical application including clinical application.
  • stem cells by culturing stem cells on the culture substrate 1 of the present invention, the created cells, tissues, and organs can be used for pharmacological tests and drug discovery such as drug efficacy evaluation, pharmacokinetic evaluation, safety evaluation, etc.
  • regenerative medicine that restores damaged organs and organ functions, and cell therapy.
  • differentiation into bone cells can be used for implants such as refractory fractures, artificial joints, and artificial tooth roots, and so on, which can contribute to the development of tailor-made medicine.
  • the culture substrate 1 having a substantially circular protrusion formed as the nano-periodic protrusion 2 is prepared, and differentiation induction into bone cells, chondrocytes, nerve cells, and adipocytes is induced using mesenchymal stem cells.
  • mesenchymal stem cells An example of what was done is disclosed.
  • the present invention is not limited to this.
  • Example 1 Preparation of culture substrate 1 Outline
  • the production of the culture substrate 1 having nano-periodic protrusions 2 formed on the surface thereof was examined.
  • Substrate As a substrate for preparing the culture substrate 1, a mirror-polished medical titanium plate ( ⁇ 14 mm ⁇ 1 mm single-side polished product) was used. Titanium material was purchased from T.D.C. Co., Ltd. (24-15, Iimai, Chofu-cho, Miyagi-gun, Miyagi-ken) from a grade 2 pure titanium round bar with a mirror surface.
  • Titanium is widely used as an implant material for artificial joints and artificial tooth roots because it rarely causes an immune reaction when implanted in a living body.
  • the compatibility of titanium materials with soft tissues is an area that has not yet been studied, and it has been reported that implants are extracted due to incompatibility. Therefore, in this example, the production of the culture substrate 1 having the periodic fine structure formed on the surface by laser processing was examined in order to investigate the possibility of improving the biocompatibility by forming the periodic fine structure.
  • a micrometer-order periodic groove (hereinafter sometimes referred to as a “microperiodic groove”) in which a plurality of micrometer-order grooves are arranged in parallel on the surface of the substrate, and femtosecond laser light is applied to the surface of the medical titanium plate. It was formed by scanning while irradiating (fluence: 0.7 J / cm 2 , scanning speed: 300 mm / second, scanning frequency: 14 times, polarized light: circularly polarized light or linearly polarized light). As a result, periodic grooves having a width of 6 ⁇ m, a depth of 0.6 ⁇ m, and a pitch of 12 ⁇ m were formed ((1)).
  • the width of the groove means a distance from the end of the groove to the end, and is a distance in a direction perpendicular to the longitudinal direction of the groove. Even when the distance changes in the height direction of the groove, it means the distance on the surface of the culture substrate.
  • the height of the groove means the distance from the average height of the bottom surface of the groove to the average height of the top surface.
  • the pitch of the grooves means the distance between the closest grooves, and is the distance between the closest grooves in the direction perpendicular to the longitudinal direction of the grooves, and is a distance corresponding to one cycle of the unevenness in the direction perpendicular to the longitudinal direction of the grooves. .
  • a culture substrate with periodic grooves of nanometer order formed on the substrate surface (comparative example)
  • a nanometer ordano periodic groove (hereinafter sometimes referred to as “nanoperiodic groove”) in which a plurality of nanometer-order grooves are arranged in parallel on the surface of the substrate, and femtosecond laser light is applied to the surface of the medical titanium plate. by scanning while irradiating the, was formed (fluence: 0.8 J / cm 2, scanning speed: 500 mm / sec, the number of scans: 1 times, polarization: linear polarization). As a result, a periodic groove having a depth of 0.2 ⁇ m and a pitch of 0.7 ⁇ m was formed ((2)).
  • the culture substrate is a culture substrate in which a hybrid periodic groove formed by the inventors described in the section of the prior art is arranged on the substrate surface in parallel with the micro periodic grooves and the nano periodic grooves arranged in parallel with each other ( Non-Patent Documents 1 and 2). It was formed by scanning while irradiating the surface of the titanium plate for medical use with femtosecond laser light. The above 2-2-1 except that the number of scans is 20 times. After the micro periodic groove is formed by the procedure described in the above item 2-2-2. The nanoperiod groove was overwritten by the procedure described in. In the nano periodic groove, the polarization direction was orthogonal to the scanning direction.
  • a culture substrate having a micro periodic groove having a groove width of 6 ⁇ m, a depth of 0.6 ⁇ m, and a pitch of 12 ⁇ m and a hybrid periodic groove in which a nano periodic groove having a depth of 0.2 ⁇ m and a pitch of 0.7 ⁇ m was formed ( (3)).
  • FIG. 1 shows a scanning electron microscope (SEM) image of the processed surface of the culture substrate 1 in which the produced nanoperiodic protrusions 2 are formed on the substrate surface.
  • Example 2 Analysis of differentiation induction of MSC on culture substrate 1 (confirmation with differentiation marker) 1.
  • Outline differentiation induction of MSC on the culture substrate 1 on which the nanoperiodic protrusions 2 produced in Example 1 were formed was examined.
  • differentiation induction of MSC into bone cells, chondrocytes, nerve cells, and adipocytes was examined, and the differentiation induction state was confirmed using a differentiation marker.
  • the initial seed density of the cells was 5000 / cm 2 .
  • MSCGM TM BulletKit TM Longza, catalog number PT-3001
  • the MSCs cultured on each of the above-mentioned culture substrates were treated for 72 hours (the desired confluence described above (100% confluent in the case of differentiation into bone cells and chondrocytes, 80 in the case of differentiation into nerve cells and adipocytes). Cultivated in growth medium until ⁇ 90% confluent). Thereafter, differentiation was induced by culturing in a differentiation induction medium for 72 hours.
  • the culture medium of Example 3 was used as the growth medium, and MSC at the 4th passage was induced to differentiate.
  • the details of the differentiation induction method are as follows.
  • hMSC-BulletKit TM -for osteoblast differentiation (Lonza, catalog number PT-3002) can be used to induce differentiation into bone cells according to the manufacturer's instructions.
  • This kit includes basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement (included in hMSC-BulletKit TM -cartilage differentiation (Lonza, Cat. No.
  • the initial cell seed density is preferably 3.1 ⁇ 10 5 cells / cm 2 .
  • chondrocyte differentiation induction medium hMSC-BulletKit TM -for cartilage differentiation (Lonza, catalog number PT-3003) can be used to induce differentiation into chondrocytes according to the manufacturer's instructions.
  • This kit comprises basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement, sodium pyruvate, proline, GA-1000 (gentamicin, amphotericin B).
  • the initial cell seed density is preferably 5 ⁇ 10 5 cells / cm 2 .
  • differentiation induction can be started when MSCs are preferably 80-90% confluent.
  • the neural cell differentiation induction medium can be induced to differentiate into neural cells using Mesenchymal Stem Cell Neurogenic Differentiation Medium (PromoCell, Catalog No. C-28015) according to the manufacturer's instructions. it can.
  • This kit comprises a basic medium, Supplement Mix (PromoCell, catalog number C-39815).
  • the initial cell seed density is preferably 5000 cells / cm 2 .
  • differentiation induction can be started when MSC is preferably 80-90% confluent.
  • adipocyte differentiation induction medium hMSC-BulletKit TM -for adipocyte differentiation (Lonza, catalog number PT-3004) can be used to induce differentiation into adipocytes according to the manufacturer's instructions.
  • This kit consists of basal medium, L-glutamine, Mesenchymal cell growth supplement (MCGS), dexamethasone, indomethacin, 3-isobutyl-1-methyl-xanthine (IBMX), GA- Containing 1000 (gentamicin, amphotericin B).
  • the initial cell seed density is preferably 2.1 ⁇ 10 4 cells / cm 2 .
  • differentiation induction was confirmed by analyzing differentiation markers that are not expressed in MSC but expressed specifically in bone cells, chondrocytes, nerve cells, and adipocytes.
  • differentiation markers SPP1 was used to confirm differentiation into bone cells, SOX9 was used to confirm differentiation into chondrocytes, MAP2 was used to confirm differentiation into nerve cells, and PPARG was used to confirm differentiation into adipocytes. .
  • the expression analysis of the cell differentiation marker was performed by Real-time RT-PCR gene analysis. Specifically, total RNA was extracted from the cells after differentiation induction, and cDNA was synthesized from the RNA by reverse transcription reaction. Subsequently, PCR was performed using the synthesized cDNA as a template. Similarly, the expression level of GAPDH was measured, and the relative expression level with respect to GAPDH was calculated. In addition, for tissue culture polystyrene (TCPS), differentiation induction into each cell was confirmed in the same manner.
  • TCPS tissue culture polystyrene
  • gene-specific primers were designed using the Primer Bank (http://pga.mgh.harvard.edu/primerbank/) of Harvard Medical School, USA.
  • the designed primer was commissioned to Greiner bio-one.
  • Table 2 summarizes the sequence information of the gene specific primers used in this example.
  • Results are shown in the graph of FIG.
  • (1) is a culture substrate in which the micro periodic grooves of the comparative example are formed on the substrate surface
  • (2) is a culture substrate in which the nano periodic grooves of the comparative example are formed on the substrate surface
  • (3) is a hybrid of the comparative example.
  • (4) is the culture base material 1 in which the nano-periodic protrusions 2 of the example are formed on the substrate surface
  • (5) is a control.
  • the culture substrate 1 in which the nano-periodic protrusions 2 are formed on the substrate surface shows a high acceleration effect for induction of differentiation into any of the examined bone cells, chondrocytes, nerve cells, and adipocytes. ((4)). This effect was particularly remarkable in bone cells.
  • the hybrid periodic grooves constructed previously by the present inventors were formed on the substrate surface, a significant acceleration effect was observed for induction of differentiation into bone and chondrocytes ((3)).
  • micro periodic grooves and nano periodic grooves are independently formed on the substrate surface, and in the control, the degree of differentiation is not significantly different from that in the case of culturing in an environment without a substrate, and it can be said that there is an effect of accelerating differentiation induction. ((1), (2), (5)).
  • the previously constructed hybrid periodic groove can exert a differentiation induction accelerating effect on differentiation in a specific direction of differentiation induction into bone and chondrocytes.
  • the culture substrate 1 on which the nanoperiodic protrusions 2 of the present invention are formed has a high differentiation induction acceleration effect in any direction of the differentiation induction direction in which the stem cells are destined. It can be understood that it is possible.
  • the present invention relates to a culture substrate and can be used particularly in all fields where stem cell culture is required, in particular, in industrial fields such as drug discovery, life science, and medicine. For example, it can be suitably used for elucidation of development, differentiation and disease mechanism, and can contribute to the establishment of basic technology for practical application including clinical application of stem cell utilization technology.
  • the culture substrate of the present invention has a remarkable acceleration effect on the induction of differentiation into bone cells, a specific application is a future generation implant having a bone forming function on the surface. It is done.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention addresses the problem of constructing a culture substrate capable of accelerating differentiation induction of stem cells. The present invention also addresses the problem of constructing a culture substrate capable of accelerating differentiation induction in all of the differentiation directions in which stem cells have been determined. The present invention pertains to: a culture substrate which has a nanometer-order periodic protrusion structure on the surface thereof and which cultures stem cells on said surface; and a method for producing the culture substrate.

Description

培養基材、及び培養基材の作製方法Culture substrate and method for producing culture substrate
 本出願は、培養基材に関し、特には、ナノメートルオーダーの周期突起構造を表面に有し、幹細胞を前記表面にて培養する培養基材、及び培養基材の作製方法に関する。本出願は、2016年11月15日に出願された日本特許出願番号2016-222732号に基づいており、この出願の全体の内容が参照文献として組み込まれていることを主張する。 The present application relates to a culture substrate, and more particularly, to a culture substrate having a periodic projection structure of nanometer order on the surface and culturing stem cells on the surface, and a method for producing the culture substrate. This application is based on Japanese Patent Application No. 2016-222732 filed on November 15, 2016, and claims that the entire contents of this application are incorporated by reference.
 近年、再生医療の研究が盛んに行われ、従来医療の一翼を担うことが期待されている。再生医療とは、病気や怪我により機能障害や機能不全に陥った組織や臓器を再生し、その機能を回復させる治療法である。再生医療の実現において重要な役割を果たすのが幹細胞である。幹細胞は自己複製能と分化能とを有し、この幹細胞の分化能を利用することにより、病気や怪我の治癒に必要な組織や臓器を人工的に作り出することが可能となる。幹細胞はまた、幹細胞から分化誘導を行った生体細胞を、開発候補薬の薬理や毒性評価に用いる等の創薬スクリーニングや、発生、分化や疾患メカニズムの解明、タンパク質医薬となり得る生体機能を担っているタンパク質等の有用物質の生産技術等に利用することができる。そのため、幹細胞利用技術は、医療や創薬等の広範な技術分野への応用が期待されている。 In recent years, research on regenerative medicine has been actively conducted and is expected to play a part in conventional medicine. Regenerative medicine is a treatment that regenerates tissues and organs that have been dysfunctional or dysfunctional due to illness or injury and restores their functions. Stem cells play an important role in the realization of regenerative medicine. Stem cells have self-renewal ability and differentiation ability. By utilizing the differentiation ability of stem cells, it becomes possible to artificially create tissues and organs necessary for healing diseases and injuries. Stem cells are also responsible for drug discovery screening such as the use of biological cells that have been induced to differentiate from stem cells for pharmacology and toxicity assessment of drug candidates, and for understanding the mechanisms of development, differentiation and disease, and for biological functions that can be used as protein drugs. It can be used for production technology of useful substances such as proteins. Therefore, stem cell utilization technology is expected to be applied to a wide range of technical fields such as medicine and drug discovery.
 しかしながら、移植治療や創薬スクリーニング等に利用可能なほどの組織や臓器を再生するためには、適切に幹細胞の増殖と分化を制御することが必要となる。つまり、幹細胞を再生医療に応用するためには、未分化性を維持しつつ安全かつ安定に幹細胞を培養及び増殖させ、所望の細胞に効率的に分化誘導できる培養技術の確立等、解決の必要な課題がある。 However, in order to regenerate enough tissues and organs that can be used for transplantation therapy and drug discovery screening, it is necessary to appropriately control the proliferation and differentiation of stem cells. In other words, in order to apply stem cells to regenerative medicine, there is a need for solutions such as the establishment of a culture technique that can safely and stably cultivate and proliferate stem cells while maintaining undifferentiation and efficiently induce differentiation into desired cells. There is a big problem.
 例えば、特許文献1には、N-カドヘリンが多能性幹細胞から神経細胞への分化制御因子であり、神経システム発生の重要な機能を果たしていることが記載されている。かかるN-カドヘリン又は相同性物質を培養基材表面上に固定することで、多能性幹細胞の神経細胞への選択的分化が起きることが確認されている。また、特許文献2には、インシュリン様成長因子結合タンパク質(以下、「IGFBP」と略する)が多能性幹細胞の心筋細胞への分化制御因子であり、心筋細胞への誘導を強く促進することが記載されている。かかるIGFBP又は相同性物質を培養基材表面上に固定することで心筋細胞への選択的分化が起きることが確認されている。 For example, Patent Document 1 describes that N-cadherin is a differentiation control factor from pluripotent stem cells to nerve cells and plays an important function in the generation of the nervous system. It has been confirmed that selective differentiation of pluripotent stem cells into neurons occurs by immobilizing such N-cadherin or a homologous substance on the surface of a culture substrate. Patent Document 2 discloses that insulin-like growth factor binding protein (hereinafter abbreviated as “IGFBP”) is a differentiation regulator of pluripotent stem cells into cardiomyocytes, and strongly promotes induction into cardiomyocytes. Is described. It has been confirmed that selective differentiation into cardiomyocytes occurs by immobilizing such IGFBP or homologous substance on the surface of the culture substrate.
 しかしながら、特許文献1及び特許文献2に記載の分化制御因子は、何れも生化学活性の高い有機物である。そのため、培養基材上に固定化した後、培養を行うまでの間は滅菌環境下で保管する必要がある等、高度の知識や技術、設備を必要とする。 However, the differentiation control factors described in Patent Document 1 and Patent Document 2 are both organic substances having high biochemical activity. Therefore, advanced knowledge, technology, and equipment are required, such as the need to store in a sterilized environment until the culture is performed after immobilization on the culture substrate.
 幹細胞の培養には、フィーダー細胞に付随する問題もある。幹細胞を培養する際には、フィーダー細胞との共培養が一般的であった。フィーダー細胞は、幹細胞の生存、増殖、及び未分化性維持のために必要な因子を提供すると共に、細胞接着のための足場を提供する。しかしながら、フィーダー細胞との共培養では、フィーダー細胞由来の成分が混入するため再生医療等の生体適用をする際には安全性に問題があり、また高品質のフィーダー細胞を安定的に供給することも容易ではなかった。上記特許文献1の技術は、フィーダー細胞を用いない幹細胞の培養系ではあるが、上記の通り、高度の知識や技術、設備を必要とするものであった。 Stem cell culture also has problems associated with feeder cells. When culturing stem cells, co-culture with feeder cells has been common. Feeder cells provide the factors necessary for stem cell survival, proliferation, and maintenance of undifferentiation, as well as provide a scaffold for cell adhesion. However, in co-culture with feeder cells, the components derived from feeder cells are mixed, so there is a problem in safety when applying to living organisms such as regenerative medicine, and stable supply of high-quality feeder cells. It was not easy. Although the technique of the said patent document 1 is a culture system of the stem cell which does not use a feeder cell, as above-mentioned, advanced knowledge, technique, and equipment were required.
 幹細胞を培養する際に、培養基材表面の微細構造が幹細胞の生存、増殖、分裂過程、未分化性保持、及び細胞接着に及ぼす影響の検討が行われている。特許文献3には、多能性幹細胞の分化が表面微細構造によって生じる可能性が記載されている。特許文献3に記載の技術は、培養基材表面上の格子点にトポグラフィー的(円形、星形、長方形、三日月型等)な突起を設けている。 When culturing stem cells, the influence of the fine structure on the surface of the culture substrate on the survival, proliferation, division process, undifferentiated retention, and cell adhesion of stem cells has been studied. Patent Document 3 describes the possibility that differentiation of pluripotent stem cells is caused by surface microstructure. In the technique described in Patent Document 3, topographical projections (circular, star-shaped, rectangular, crescent-shaped, etc.) are provided at lattice points on the culture substrate surface.
 特許文献3には、幹細胞の分化に影響を与える突起の間隔及び断面直径としてそれぞれ1~2μm及び1~8μmを提示している。これを作成するための手法として、フォトリソグラフィー、電子ビームリソグラフィー、ホットエンボシングの他、ナノインプリント、レーザーアブレーション、化学エッチング、プラズマスプレーコーティング、吹き付け研削、エングレービング、スクラッチング、微細加工が提示されている。しかしながら、通常は集光スポットの大きさが数~数十μmになるレーザーアブレーションにより、特許文献3に提示の形状を精密に作製するのは困難であった。してみると、実際に作製に足る手法としては、フォトリソグラフィー等の高コストな加工手段を選択せざるを得ないと考えられる。 Patent Document 3 presents 1 to 2 μm and 1 to 8 μm, respectively, as the protrusion spacing and the cross-sectional diameter that affect stem cell differentiation. In addition to photolithography, electron beam lithography, hot embossing, nanoimprint, laser ablation, chemical etching, plasma spray coating, spray grinding, engraving, scratching, and microfabrication are presented as methods for creating this. Yes. However, it has been difficult to precisely produce the shape presented in Patent Document 3 by laser ablation, in which the size of the focused spot is usually several to several tens of μm. As a result, it is considered that a costly processing means such as photolithography must be selected as a method that is actually sufficient for manufacturing.
 また、特許文献4には、高強度フェムト秒レーザーパルス照射により、周囲に溝を有するマイクロメートルオーダーの半球状隆起と、該周囲の溝及び半球状隆起の表面全体に、ナノメートルオーダーの多数の微細球状突起と微細嵌凹からなる微細な表面構造を有する表面加工チタンが記載されている。チタンは、生体に埋入した際にも、免疫反応を起こすことが少ないことから人工関節や人工歯根をはじめとするインプラント材の主流となっているが、本来は生体にとって異物であるチタン表面への細胞の接着性が悪く、組織が再生され難い傾向がある等の改善すべき課題が残っていた。これに対して、特許文献4は、チタン表面の微細加工により、骨芽細胞のチタン表面への接着性を向上させるものであり、骨髄から分離した骨芽細胞の前駆細胞である骨芽細胞系細胞の増殖を促進し、骨芽細胞への分化誘導を引き起こすことが報告された。 Further, in Patent Document 4, by irradiation with high-intensity femtosecond laser pulses, a micrometer order hemispherical ridge having a groove around it, and a large number of nanometer order on the entire surface of the surrounding groove and hemispherical ridge. Surface-treated titanium having a fine surface structure composed of fine spherical protrusions and fine recesses is described. Titanium has become the mainstream of implant materials such as artificial joints and artificial tooth roots because it rarely causes an immune response even when implanted in a living body, but to the titanium surface that is originally a foreign body for living bodies However, there are still problems to be solved such as poor cell adhesion and tendency of tissue to be hardly regenerated. In contrast, Patent Document 4 improves the adhesion of osteoblasts to the titanium surface by microfabrication of the titanium surface, and is an osteoblast system that is a progenitor cell of osteoblasts separated from the bone marrow. It has been reported to promote cell proliferation and induce differentiation into osteoblasts.
 しかしながら、特許文献4の技術は、骨芽細胞系細胞の増殖と骨芽細胞への分化を促進することが確認されているが、未分化性の高い幹細胞への適用については検討がなされていなかった。また、特許文献4には、チタン表面への800μJでフェムト秒レーザーパルス照射により、溝に囲まれた半球状の2~20μmの隆起が形成される共に、100~300nmの微細球状突起と微細嵌凹からなる表面構造が形成されることが記載されており、かかる記載を鑑みるとナノメートルオーダーの微細構造はマイクロメートルオーダーの微細構造作製に付随して形成されたものであるといえる。 However, the technique of Patent Document 4 has been confirmed to promote the proliferation of osteoblast cells and differentiation into osteoblasts, but application to undifferentiated stem cells has not been studied. It was. Further, in Patent Document 4, a hemispherical 2-20 μm bulge surrounded by a groove is formed by irradiation with a femtosecond laser pulse at 800 μJ on the titanium surface, and a fine spherical protrusion of 100-300 nm and a fine fit are formed. It is described that a concave surface structure is formed, and in view of such description, it can be said that the nanometer-order fine structure is formed accompanying the production of a micrometer-order fine structure.
 培養基材として、簡便かつ低コストなものであって、生体適合性及び生体細胞親和性が高いものであって、幹細胞を、未分化性を維持しつつ安全かつ安定に培養及び増殖でき、かつ幹細胞を効率的に分化誘導できるものが求められている。そこで、本発明者らは、マイクロメートルオーダーの周期溝構造にナノメートルオーダーの周期溝構造を上書きして互いに平行に配列するように同一平面上に形成したハイブリッド周期溝構造をその表面に有する培養基材を構築した(非特許文献1及び非特許文献2)。かかる培養基材の表面で幹細胞を培養することにより、特段の生体適合性及び生体細胞親和性の向上が認められたことが報告され、幹細胞をその未分化性を維持しつつ安全かつ安定に増殖できるものであり、さらに、幹細胞を特定の細胞種に効率的に分化誘導できるものである。また、培養基材の表面に形成される周期微細構造を適切に制御することにより、幹細胞を、同一平面上で異なる組織に分化誘導できるものである。 As a culture substrate, it is simple and low-cost, has high biocompatibility and biological cell affinity, and can safely and stably cultivate and proliferate stem cells while maintaining undifferentiation, and There is a demand for those capable of efficiently inducing differentiation of stem cells. Therefore, the present inventors have a culture having on its surface a hybrid periodic groove structure formed on the same plane so that the periodic groove structure of the micrometer order is overwritten with the periodic groove structure of the nanometer order and arranged in parallel to each other. A base material was constructed (Non-patent document 1 and Non-patent document 2). By culturing stem cells on the surface of such a culture substrate, it was reported that special improvement in biocompatibility and affinity for living cells was observed, and the stem cells were proliferated safely and stably while maintaining their undifferentiation. In addition, stem cells can be efficiently induced to differentiate into specific cell types. In addition, by appropriately controlling the periodic fine structure formed on the surface of the culture substrate, stem cells can be induced to differentiate into different tissues on the same plane.
 非特許文献1及び非特許文献2の技術は、培養基材の表面に形成される周期微細構造と幹細胞を分化誘導できる方向が密接に関連しており、オーダーメイド医療を視野に入れた将来世代のインプラント作製等に好適な技術である。しかしながら、現状の発生及び分化のメカニズムを探索することが主要な課題である研究段階では、幹細胞の特定の分化方向への誘導加速よりも全般的な分化誘導時間の短縮が求められている。 The technologies of Non-Patent Document 1 and Non-Patent Document 2 are closely related to the periodic fine structure formed on the surface of the culture substrate and the direction in which stem cells can be induced to differentiate, and future generations with a view to tailored medicine This technique is suitable for the preparation of implants. However, in the research stage where searching for the present generation and differentiation mechanisms is a major issue, the overall differentiation induction time is required to be shorter than the acceleration of induction of stem cells in a specific differentiation direction.
特開2014-82956号公報JP 2014-82956 特開2013-223446号公報JP 2013-223446 A 特開2014-138605号公報Japanese Patent Laid-Open No. 2014-138605 特開2010-227551号公報JP 2010-227551 A
 そこで、本発明は、幹細胞の分化誘導を加速できる培養基材を構築することを課題とする。また、幹細胞が決定づけられたあらゆる分化方向への分化誘導を加速できる培養基材を構築することを課題とする。 Therefore, an object of the present invention is to construct a culture substrate capable of accelerating differentiation induction of stem cells. Another object of the present invention is to construct a culture substrate that can accelerate differentiation induction in all differentiation directions in which stem cells are determined.
 本発明者らは、上記課題を解決すべく研究を重ねた結果、培養基材において、ナノメートルオーダーの微細な周期突起構造を表面に形成することにより、効率的に幹細胞を分化誘導できることを見出した。かかる分化誘導効果は、骨細胞、軟骨細胞、神経細胞、及び、脂肪細胞の分化に対して、組織細胞を選択することなく認められた。これらの知見に基づいて、本発明を完成するに至った。 As a result of repeated studies to solve the above-mentioned problems, the present inventors have found that stem cells can be efficiently induced to differentiate by forming fine periodic protrusion structures of nanometer order on the surface of the culture substrate. It was. Such differentiation-inducing effect was recognized without selecting tissue cells for the differentiation of bone cells, chondrocytes, nerve cells, and adipocytes. Based on these findings, the present invention has been completed.
 即ち、本願は、上記目的を達成するため、以下の[1]~[4]に示す発明を提供する。
[1]ナノメートルオーダーの周期突起構造を表面に有し、幹細胞を前記表面にて培養する培養基材。
[2]前記ナノメートルオーダーの周期突起構造は、径0.1~1 μm、高さ0.01~0.5 μm、ピッチ0.1~1 μmである上記[1]の培養基材。
[3]材質が、チタンである上記[1]又は[2]の培養基材。
[4]超短パルスレーザーの円偏光によるナノ周期構造形成により基板表面に前記ナノメートルオーダーの周期突起構造を形成する工程を有する、上記[1]~[3]の何れかの培養基材の作製方法。
That is, the present application provides the following inventions [1] to [4] in order to achieve the above object.
[1] A culture substrate having a periodic protrusion structure of nanometer order on the surface and culturing stem cells on the surface.
[2] The culture substrate according to [1], wherein the nanometer-order periodic protrusion structure has a diameter of 0.1 to 1 μm, a height of 0.01 to 0.5 μm, and a pitch of 0.1 to 1 μm.
[3] The culture substrate according to the above [1] or [2], wherein the material is titanium.
[4] The culture substrate according to any one of the above [1] to [3], which has a step of forming the periodic protrusion structure of the nanometer order on the substrate surface by forming a nano periodic structure by circular polarization of an ultrashort pulse laser. Manufacturing method.
 上記[1]の構成によれば、ナノメートルオーダーの微細な周期突起構造を表面に有する幹細胞培養用の培養基材を提供できる。本発明の培養基材は、その表面で幹細胞を培養することにより効率的に幹細胞を分化誘導でき、より成熟した細胞への分化誘導を加速できる。かかる幹細胞の分化誘導加速効果は、特定の方向へのみでなく、幹細胞が決定付けられたあらゆる分化方向に認められる。このような特性を有する本発明の培養基材は、大量の分化細胞を生産する際の培養基材として期待され、幹細胞を利用した発生及び分化メカニズムの探索に利用できる。ひいては、再生医療や創薬スクリーニング等の幹細胞利用技術の発展に寄与することができる。 According to the configuration of [1] above, it is possible to provide a culture substrate for stem cell culture having a fine periodic protrusion structure on the order of nanometers on the surface. The culture substrate of the present invention can efficiently induce differentiation of stem cells by culturing stem cells on the surface thereof, and can accelerate differentiation induction into more mature cells. Such an effect of accelerating differentiation induction of stem cells is recognized not only in a specific direction but also in all the differentiation directions in which the stem cells are determined. The culture substrate of the present invention having such characteristics is expected as a culture substrate for producing a large amount of differentiated cells, and can be used for searching for generation and differentiation mechanisms using stem cells. As a result, it can contribute to the development of stem cell utilization technologies such as regenerative medicine and drug discovery screening.
 上記[2]の構成によれば、ナノメートルオーダーの周期突起構造の寸法の好適化を図った幹細胞培養用の培養基材を提供できる。本発明の培養基材は、好適寸法のナノメートルオーダーの周期突起構造が表面に形成されており、特定寸法の微細な周期突起構造の存在により、さらに効率的に幹細胞を分化誘導でき、より成熟した細胞への分化誘導を加速できる。かかる幹細胞の分化誘導加速効果は、幹細胞が決定付けられたあらゆる分化方向に認められる。 According to the configuration of [2] above, it is possible to provide a culture substrate for stem cell culture in which the dimensions of the periodic protrusion structure on the nanometer order are optimized. The culture substrate of the present invention has a nanometer-order periodic protrusion structure of a suitable dimension formed on the surface, and the presence of a minute periodic protrusion structure of a specific dimension can induce differentiation of stem cells more efficiently and become more mature. Can accelerate the differentiation induction into cells. Such an effect of accelerating differentiation induction of stem cells is observed in all the differentiation directions in which the stem cells are determined.
 上記[3]の構成によれば、本発明の培養基材は、生体適合性及び生体細胞親和性が高いチタン材に微細な周期突起構造を形成して作製できることから、生体適合性及び生体細胞親和性が高く、さらなる幹細胞の分化誘導の効率化を図ることができる。 According to the configuration of [3] above, the culture substrate of the present invention can be produced by forming a fine periodic projection structure on a titanium material having high biocompatibility and biocell affinity. Affinity is high, and further efficiency in induction of stem cell differentiation can be achieved.
 上記[4]の構成によれば、本発明の培養基材のナノメートルオーダーの微細な周期突起構造の形成は、例えば、超短パルスレーザーの走査により簡便に形成することができ、熱影響が少ないことから、大気中での加工が可能である等、作製への制約が少ないという利点がある。これにより、本発明の培養基材を簡便かつ低コストに作製することができる。 According to the configuration of [4] above, the formation of a fine periodic protrusion structure in the nanometer order of the culture substrate of the present invention can be easily formed, for example, by scanning with an ultrashort pulse laser, which has a thermal effect. Since there are few, there exists an advantage that there are few restrictions to manufacture, such as the process in air | atmosphere being possible. Thereby, the culture substrate of the present invention can be produced easily and at low cost.
培養基材の作製検討を行った実施例1の結果を示し、作製した本発明の培養基材の断面SEM像を示す。The result of Example 1 which performed production examination of a culture substrate is shown, and the section SEM image of the produced culture substrate of the present invention is shown. 培養基材上でのMSCの分化誘導解析(分化マーカーでの確認)を行った実施例2の結果を示すグラフ。The graph which shows the result of Example 2 which performed differentiation induction analysis (confirmation with a differentiation marker) of MSC on a culture substrate.
 以下、本願発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
〔培養基材1〕
 本発明の培養基材1は、ナノメートルオーダーの周期突起構造2が表面に形成されている。以下、本願発明の培養基材1が有するナノメートルオーダーの周期突起構造2を「ナノ周期突起2」と略する場合がある。
[Culture substrate 1]
The culture substrate 1 of the present invention has a periodic projection structure 2 of nanometer order formed on the surface. Hereinafter, the nanometer order periodic protrusion structure 2 of the culture substrate 1 of the present invention may be abbreviated as “nano periodic protrusion 2”.
 本発明の培養基材1の材質としては、化学的に安定で、生体適合性及び生体細胞親和性が良い物質を選択することが好ましい。ここで、化学的に安定とは、所要の強度や、耐久性、耐摩耗性を有することを意味する。例えば、培養基材1をインプラント材として使用する場合には、埋植される箇所に応じた力学的適合性を有することが必要となる。生体適合性とは、生体、及び細胞や組織、臓器、血液等の生体由来の成分に影響を与えず、これら生体及び生体由来の成分からも影響を受けない性質であり、生体内で異物として認識され難い性質を意味する。生体細胞親和性とは、特に、生体細胞及び生体細胞由来の成分に影響を与えず、生体細胞及び生体細胞由来の成分からも影響を受けないことを意味し、生体細胞の生存や増殖等を阻害し難い性質を意味する。具体的には、生体適合性及び生体細胞親和性とは、毒性や発がん性、抗原性を有しないこと、血液凝固や溶血、代謝異常を惹起しないこと等が例示される。好ましくは、培養基材1の用途に応じて、必要とされるレベルの生体適合性及び生体細胞親和性を有する材質を選択する。 As the material of the culture substrate 1 of the present invention, it is preferable to select a substance that is chemically stable, and has good biocompatibility and cell affinity. Here, chemically stable means having required strength, durability, and wear resistance. For example, when the culture substrate 1 is used as an implant material, it is necessary to have mechanical compatibility according to the place to be implanted. Biocompatibility is a property that does not affect the living body and components derived from living bodies such as cells, tissues, organs, blood, etc., and is not affected by these living bodies and components derived from living bodies. It means a property that is difficult to recognize. Biological cell affinity means, in particular, that it does not affect living cells and components derived from living cells, and is not affected by living cells and components derived from living cells. It means a property that is difficult to inhibit. Specifically, biocompatibility and biological cell affinity are exemplified by having no toxicity, carcinogenicity, and antigenicity, and not causing blood coagulation, hemolysis, or metabolic abnormality. Preferably, a material having a required level of biocompatibility and biological cell affinity is selected according to the use of the culture substrate 1.
 具体的には、金属材料、セラミックス材料、合成高分子材料等のうち、上記性質を有する限り公知の物質を利用することができる。金属材料としては、チタン、及びチタン合金及び酸化物、ステンレス、ニオブ、ニオブ合金及び酸化物、タンタル、タンタル合金及び酸化物、ニッケル-クロム合金、クロム-コバルト合金等を例示することができる。合金とは、複数の金属元素あるいは金属元素と非金属元素から構成される金属的性質を示すものである。例えば、チタン合金としては、チタンに、ニッケル、ニオブ、タンタル、モリブデン、ジルコニウムや白金等の1以上の他の元素を添加し組成を調節したものを利用することができる。セラミックス材料としては、アルミナ及びその酸化物、ジルコニウム及びその酸化物、ハイドロキシアパタイト等を例示できる。セラミックス材料に他の添加物を含ませて成形したものや、上記の金属材料表面を溶融させたセラミックス材料をコーティングしたもの、逆にセラミックス材料を合金等の金属材料でコーティングしたものを利用することもできる。合成高分子材料としては、シリコーンやポリウレタン等を例示することができる。 Specifically, among metal materials, ceramic materials, synthetic polymer materials, etc., known materials can be used as long as they have the above properties. Examples of the metal material include titanium, titanium alloy and oxide, stainless steel, niobium, niobium alloy and oxide, tantalum, tantalum alloy and oxide, nickel-chromium alloy, chromium-cobalt alloy and the like. An alloy indicates a metallic property composed of a plurality of metallic elements or metallic elements and nonmetallic elements. For example, as the titanium alloy, one in which one or more other elements such as nickel, niobium, tantalum, molybdenum, zirconium, and platinum are added to titanium and the composition is adjusted can be used. Examples of the ceramic material include alumina and its oxide, zirconium and its oxide, and hydroxyapatite. Use ceramic materials that are molded with other additives, those that are coated with a ceramic material that melts the metal material surface, and those that are coated with a metal material such as an alloy. You can also. Examples of the synthetic polymer material include silicone and polyurethane.
 本発明の培養基材1の形状や大きさには特に制限はなく、板状、立方体状、柱状、棒状、繊維状、球状、粒状、塊状等、用途に応じて適宜選択することができる。ナノ周期突起2は、培養基材1の全ての面に形成されていてもよいし、一部の面や、面の一部分に形成されていてもよい。本発明の培養基材1の使用目的に応じて、適宜、その形状や大きさを設定することができる。例えば、本発明の培養基材1をインプラントとして使用する場合には、埋植個所や再生を所望する組織に応じて、適宜、その形状や大きさを設定することができる。 The shape and size of the culture substrate 1 of the present invention are not particularly limited, and can be appropriately selected depending on the application, such as plate, cube, column, rod, fiber, sphere, granule, and lump. The nano-periodic protrusion 2 may be formed on all surfaces of the culture substrate 1, or may be formed on a part of the surface or a part of the surface. Depending on the intended use of the culture substrate 1 of the present invention, its shape and size can be set as appropriate. For example, when using the culture substrate 1 of the present invention as an implant, the shape and size can be appropriately set according to the implantation site and the tissue desired to be regenerated.
 本発明の培養基材1の表面に形成されるナノ周期突起2とは、一定間隔で規則的にナノメートルオーダーの微細な突起を設けた構造を意味する。つまり、ナノ周期突起2とは、nm単位で表示することが妥当な程度の寸法で形成された微細な複数の突起が周期的に配置された構造を意味し、例えばレーザー照射等により構造形成が現象としてとらえることができる程度の寸法の微細な構造を意味する。具体的には10~1000nmである。ここでは、ナノ周期突起2の寸法、例えば、矩形の突起の場合には、その1辺の長さ、高さ、及びピッチ等、円形の突起の場合には、その直径、高さ、及びピッチ等、がナノメートルオーダーの寸法で形成されていることを意味する。 The nano-periodic protrusion 2 formed on the surface of the culture substrate 1 of the present invention means a structure provided with fine protrusions regularly in the order of nanometers at regular intervals. That is, the nano-periodic protrusion 2 means a structure in which a plurality of fine protrusions formed with dimensions that are appropriate to display in nm units are periodically arranged. For example, the structure is formed by laser irradiation or the like. It means a fine structure with dimensions that can be understood as a phenomenon. Specifically, it is 10 to 1000 nm. Here, the dimensions of the nano-periodic protrusion 2, for example, the length, height, and pitch of one side in the case of a rectangular protrusion, the diameter, the height, and the pitch in the case of a circular protrusion. , Etc., are formed with dimensions on the order of nanometers.
 ナノ周期突起2の各突起の形状は、三角錐、四角錐、六角錐等の角錐状、円錐状、円柱状、半球状、波形状、釣鐘状等として形成でき、ドットとも称することができる。複数の突起が平行状、同心円状、格子状、螺旋状、ランダム状等に配列したものが例示される。突起は、高さ方向に直交する断面の面積は、底部から頂部に向かって変化していても変化していなくてもよく、変化する場合には、次第に減少するような形状であっても、増加するような形状であっても、増減を組み合わせた形状であってもよい。 The shape of each protrusion of the nano periodic protrusion 2 can be formed as a pyramid such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, a conical shape, a cylindrical shape, a hemispherical shape, a wave shape, a bell shape, or the like, and can also be referred to as a dot. Examples in which a plurality of protrusions are arranged in parallel, concentric, lattice, spiral, random, etc. As for the protrusion, the area of the cross section orthogonal to the height direction may or may not change from the bottom to the top, and if it changes, even if it has a shape that gradually decreases, Even if it is a shape which increases, the shape which combined increase and decrease may be sufficient.
 ナノ周期突起2の各突起の寸法は、好ましくは、径0.1~1μm(100~1000nm)、高さ0.01~0.5μm(10~500 nm)、ピッチ0.1~1μm(100~1000nm)に設定する。特に、好ましくは、突起の径0.5μm(500nm)、高さ0.2μm(200nm)、ピッチ0.5~0.8μm(500~800nm)、特に好ましくは0.7μm(700nm)に設定する。ナノ周期突起2の密度は、好ましくは、1mm2当たり1万~3万個とすることができる。 The dimensions of each protrusion of the nano periodic protrusion 2 are preferably set to a diameter of 0.1 to 1 μm (100 to 1000 nm), a height of 0.01 to 0.5 μm (10 to 500 nm), and a pitch of 0.1 to 1 μm (100 to 1000 nm). In particular, the projection diameter is set to 0.5 μm (500 nm), the height is 0.2 μm (200 nm), the pitch is 0.5 to 0.8 μm (500 to 800 nm), and particularly preferably 0.7 μm (700 nm). The density of the nano periodic protrusions 2 can be preferably 10,000 to 30,000 per 1 mm 2 .
 ここで、径とは、突起の端から端までの距離を意味し、矩形の突起の場合その1辺の距離であり、円形の突起の場合には直径の距離である。当該距離が突起の高さ方向に向かって変化する場合においても、培養基材1表面上の距離を意味する。突起の高さとは、突起の最底面の平均高から最上面の平均高までの距離を意味する。突起のピッチとは、最近接する突起との間隔を意味し、培養基材1表面上の凹凸の一周期分の距離となる。突起の径、高さ、ピッチ等の寸法は、一定領域内、例えば1 mm2の領域に存在する突起の寸法の測定値の平均として算出することが好ましい。 Here, the diameter means a distance from one end of the protrusion to the other, and is a distance of one side in the case of a rectangular protrusion, and is a distance of a diameter in the case of a circular protrusion. Even when the distance changes in the height direction of the protrusion, the distance on the surface of the culture substrate 1 is meant. The height of the protrusion means the distance from the average height of the bottom surface of the protrusion to the average height of the top surface. The pitch of the protrusions means the distance between the closest protrusions and is a distance corresponding to one cycle of unevenness on the surface of the culture substrate 1. The dimensions such as the diameter, height, and pitch of the protrusions are preferably calculated as an average of measured values of the dimensions of the protrusions existing in a certain region, for example, a region of 1 mm 2 .
 本発明の培養基材1におけるナノ周期突起2は等方性であり、つまり、ナノ周期突起2の配列が方向に依存しない無方向性である。 The nano-periodic protrusions 2 in the culture substrate 1 of the present invention are isotropic, that is, the arrangement of the nano-periodic protrusions 2 is nondirectional regardless of the direction.
 本発明の培養基材1のナノ周期突起2は、公知の方法によって形成することができる。例えば、数フェムト秒~数ピコ秒のパルス幅をもつ超短パルスレーザーを利用することにより形成することができる。超短パルスレーザーとしては、波長800nm~1500nmの近赤外線領域、パルス時間幅10ps以下、出力1W以上の加工用レーザー装置が好適で、特にフェムト秒パルスレーザーが好ましい。フェムト秒パルスレーザーとしては、イムラアメリカ社製のFCPA μJewel D-1000を好ましく利用することができる。 The nano-periodic protrusion 2 of the culture substrate 1 of the present invention can be formed by a known method. For example, it can be formed by using an ultrashort pulse laser having a pulse width of several femtoseconds to several picoseconds. As the ultrashort pulse laser, a processing laser device having a near infrared region with a wavelength of 800 nm to 1500 nm, a pulse time width of 10 ps or less, and an output of 1 W or more is preferable, and a femtosecond pulse laser is particularly preferable. As the femtosecond pulse laser, FCPA μJewel D-1000 manufactured by Imla America, Inc. can be preferably used.
 例えば、超短パルスレーザーの直線偏光により偏光方向と垂直な方向に周期的な溝構造を形成することができ、円偏光により粒状構造、楕円偏光により畝状構造を形成することができることから、ナノ周期突起2を円偏光により形成することが好ましい。チタン材にナノ周期突起2を形成する場合には、好ましくは、波長800~1500nm、フルエンス 0.5~1.5J/cm2、パルス線密度100~1000パルス/mm、走査回数1~10回とする。特に好ましくは、フルエンス0.8J/cm2、パルス線密度200パルス/mm、走査回数1回、偏光を円偏光とする。 For example, a periodic groove structure can be formed in a direction perpendicular to the polarization direction by linearly polarized light of an ultrashort pulse laser, a granular structure can be formed by circularly polarized light, and a cage structure can be formed by elliptically polarized light. The periodic protrusions 2 are preferably formed by circularly polarized light. When the nano periodic protrusion 2 is formed on the titanium material, the wavelength is preferably 800 to 1500 nm, the fluence 0.5 to 1.5 J / cm 2 , the pulse line density 100 to 1000 pulses / mm, and the number of scans 1 to 10 times. Particularly preferably, the fluence is 0.8 J / cm 2 , the pulse linear density is 200 pulses / mm, the number of scans is once, and the polarization is circularly polarized.
 レーザー光が基板表面で所望の形状を描画するように、レーザー光を照射することにより形成される。レーザー光の走査は、ラスタースキャン、ベクタースキャン、スポットスキャン等の方式の何れも利用することができるが、ラスタースキャン方式が好ましい。 It is formed by irradiating a laser beam so that the laser beam draws a desired shape on the substrate surface. Laser scanning can be performed using any of raster scanning, vector scanning, spot scanning, and the like, but the raster scanning method is preferable.
〔本発明の培養基材1を用いた細胞の培養〕
 本発明の培養基材1は、幹細胞の培養のための基材であり、ナノ周期突起2が形成された面を培養面として幹細胞を培養する。再生医療の実現において、幹細胞は未分化性を維持した状態で増殖され(以下、「未分化増殖段階」と称する場合がある)、続いて、増殖された幹細胞を分化誘導して目的の細胞に分化させる(以下、「分化誘導段階」と称する場合がある)。移植治療が可能なほどの組織や臓器を再生するためには、非常に膨大な細胞数の幹細胞が必要であり、これを目的とする細胞に効率的に分化誘導することが必要となるが、本発明の培養基材1によれば、幹細胞の増殖と分化を適切に制御することが可能となる。
[Cell culture using culture substrate 1 of the present invention]
The culture substrate 1 of the present invention is a substrate for culturing stem cells, and cultures stem cells using the surface on which the nanoperiodic protrusions 2 are formed as the culture surface. In the realization of regenerative medicine, stem cells are proliferated in an undifferentiated state (hereinafter sometimes referred to as “undifferentiated proliferation stage”), and then the differentiated stem cells are induced to become target cells. Differentiation (hereinafter sometimes referred to as “differentiation induction stage”). In order to regenerate tissues and organs that can be transplanted, stem cells with an extremely large number of cells are required, and it is necessary to efficiently induce differentiation into the intended cells. According to the culture substrate 1 of the present invention, the proliferation and differentiation of stem cells can be appropriately controlled.
 幹細胞は、分化能と自己複製能を有する未分化な細胞である。ここで、分化能とは、組織や臓器を構成する特定の機能を持ったさまざまな細胞に変化する能力を意味する。つまり、体内に存在する細胞は一定の機能や形を有するが、幹細胞がある一定の機能や形を有する細胞に変化する能力を意味する。分化能の観点から幹細胞は、体内に存在する全ての細胞に変化することができる多分化能を有するものであってもよいし、一部の細胞にのみに分化することができるものであってもよい。ここで、未分化とは、特定の機能や形を有する体細胞や生殖細胞に分化していない状態を意味する。自己複製能とは、細胞が細胞分裂を繰り返しながら自分と同じ細胞を作る能力を意味する。 Stem cells are undifferentiated cells having differentiation ability and self-replication ability. Here, the differentiation ability means the ability to change into various cells having specific functions constituting tissues and organs. In other words, cells existing in the body have a certain function and shape, but stem cells have the ability to change into a cell having a certain function and shape. From the viewpoint of differentiation potential, a stem cell may have pluripotency capable of changing into all cells present in the body, or can differentiate into only some cells. Also good. Here, undifferentiated means a state that has not differentiated into somatic cells or germ cells having a specific function or shape. Self-replicating ability means the ability of a cell to make the same cell as itself while repeating cell division.
 幹細胞は、最終的に分化していない細胞であり、分化能と自己複製能を有する全ての細胞が含まれる。従って、幹細胞が最終分化するまでの過程で発生する分化能を有する細胞も、分化能と自己複製能を有する限り幹細胞に含むものとする。幹細胞としては、人工多能性幹細胞(以下、「iPS細胞」と略する)、胚性幹細胞(以下、「ES細胞」と略する)、核移植胚性幹細胞(以下、「ntES細胞」と略する)、体性幹細胞、臍帯血幹細胞等が例示されるが、これらに限定するものではない。幹細胞には階層性があり、上位にあるiPS細胞やES細胞は自己複製能が高く様々な細胞系列に分化することができるが、体性幹細胞等のように下位になるに従い自己複製性は失われていき、特定の細胞系列にしか分化できないようになる。 Stem cells are cells that have not finally differentiated, and include all cells that have differentiation ability and self-replication ability. Therefore, a cell having differentiation ability that occurs in the process until the stem cell is finally differentiated is also included in the stem cell as long as it has differentiation ability and self-replication ability. Stem cells include artificial pluripotent stem cells (hereinafter abbreviated as “iPS cells”), embryonic stem cells (hereinafter abbreviated as “ES cells”), nuclear transfer embryonic stem cells (hereinafter abbreviated as “ntES cells”). ), Somatic stem cells, umbilical cord blood stem cells, and the like, but are not limited thereto. Stem cells are hierarchical, and iPS cells and ES cells at the top have high self-replicating ability and can differentiate into various cell lineages. As it turns out, it can only differentiate into specific cell lineages.
 iPS細胞は、本来、分化能を喪失している体細胞に特定の遺伝子を導入することによって人為的に誘導される多能性幹細胞である。ES細胞は、受精卵の胚盤胞の段階の胚の中の内部細胞塊を培養した多能性幹細胞であり、ntES細胞は、核を除いた卵子に体細胞の核を入れて胚を作り、ES細胞と同様に胚の中の内部細胞塊を培養した多能性幹細胞である。iPS細胞は、Takahashi K.他著,”Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.”, Cell, 126(4),663-676 
(2006)、Takahashi K.他著、Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861-872 (2007)、Yu J.他著、” Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells”、Science, 318(5858), 1917-1920 (2007)、“Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts”、Nakagawa M.他著、Nat Biotechnol., 26(1), 101-106, (2008)等に記載の方法に基づいて取得することができる。ES細胞は、M. J. Evans他著、”Establishment in culture of pluripotential cells from mouse embryos”, Nature, 292, 154-156 (1981)、Thomson JA他著,”Embryonic stem cell lines derived from human blastocysts.”, Science, 282(5391), 1145-1147 (1988) , Amit, M., 他著、”Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.”,  Dev. Biol. 227(2), 271-278 (2000)等の記載に基づき取得することができる。また、iPS細胞及びES細胞は、市販品や細胞バンクから得たものであってもよい。 
An iPS cell is a pluripotent stem cell that is artificially induced by introducing a specific gene into a somatic cell that has originally lost differentiation potential. ES cells are pluripotent stem cells obtained by culturing the inner cell mass in embryos at the blastocyst stage of fertilized eggs, and ntES cells make embryos by putting somatic cell nuclei into eggs excluding nuclei. It is a pluripotent stem cell obtained by culturing an inner cell mass in an embryo like ES cells. iPS cells are described in Takahashi K. et al., “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.”, Cell, 126 (4), 663-676.
(2006), Takahashi K. et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131 (5), 861-872 (2007), Yu J. et al., “Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells ”, Science, 318 (5858), 1917-1920 (2007),“ Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts ”, Nakagawa M. et al., Nat Biotechnol., 26 (1) , 101-106, (2008), and the like. ES cells are described in MJ Evans et al., “Establishment in culture of pluripotential cells from mouse embryos”, Nature, 292, 154-156 (1981), Thomson JA et al., “Embryonic stem cell lines derived from human blastocysts.”, Science , 282 (5391), 1145-1147 (1988), Amit, M., et al., “Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.”, Dev. Biol. 227 (2) , 271-278 (2000), etc. Further, iPS cells and ES cells may be obtained from commercial products or cell banks.
 iPS細胞及びES細胞は、外胚葉、中胚葉、内胚葉の三胚葉、そして、三胚葉が分化して生み出される全ての種類の細胞に分化する能力を有する多能性幹細胞である。多能性幹細胞は胎盤と羊膜を除く全ての組織や臓器を構成する細胞に分化することができる。例えば、外胚葉は、神経系の神経細胞、軸索、髄鞘、消化器系の口腔上皮、舌、歯エナメル質、感覚器系の皮膚、角膜、網膜、内耳、外耳等に分化し、中胚葉は、骨、軟骨等の骨格系、心臓、血管内皮細胞、白血球、血小板、赤血球等の血液細胞、脾臓、骨髄等の循環器系、神経系の神経小膠細胞、泌尿器系の腎臓、尿管、生殖器系の卵巣、子宮、精巣、結合組織等に分化し、内胚葉は、消化器系の食道上皮、胃上皮、肝臓、膵臓、内分泌系の甲状腺、胸腺、感覚器系の耳管、鼓室、呼吸器系の扁桃、咽頭上皮、喉頭上皮、気管上皮、肺等に分化する。 IPS cells and ES cells are pluripotent stem cells having the ability to differentiate into ectoderm, mesoderm, endoderm three germ layers, and all types of cells produced by differentiation of the three germ layers. Pluripotent stem cells can differentiate into cells that make up all tissues and organs except placenta and amniotic membrane. For example, the ectoderm differentiates into nerve cells of the nervous system, axons, myelin sheaths, oral epithelium of the digestive system, tongue, tooth enamel, sensory organ skin, cornea, retina, inner ear, outer ear, etc. The germ layers are skeletal systems such as bone and cartilage, heart, vascular endothelial cells, blood cells such as leukocytes, platelets and erythrocytes, circulatory systems such as spleen and bone marrow, nervous system microglia, urinary kidneys, urine It differentiates into ducts, genital ovaries, uterus, testis, connective tissue, etc., and endoderm is digestive esophageal epithelium, stomach epithelium, liver, pancreas, endocrine thyroid, thymus, sensory organ canal Differentiates into the tympanic chamber, respiratory tonsils, pharyngeal epithelium, laryngeal epithelium, tracheal epithelium, lungs, etc.
 体性幹細胞は、生体内に存在する最終分化していない細胞であり、間葉系幹細胞(以下、「MSC」と略する場合がある)、神経幹細胞、造血幹細胞、肝幹細胞、血管内皮幹細胞、上皮幹細胞等のいろいろな種類がある。また、体性幹細胞は、iPS細胞やES細胞が最終分化する過程で生み出すこともできる。体性幹細胞は、多能性幹細胞とは異なり、特定の組織、臓器を構成する細胞にのみに分化することができる。 Somatic stem cells are cells that are not terminally differentiated in the living body, and are mesenchymal stem cells (hereinafter sometimes abbreviated as “MSC”), neural stem cells, hematopoietic stem cells, hepatic stem cells, vascular endothelial stem cells, There are various types of epithelial stem cells. Somatic stem cells can also be generated in the process of terminal differentiation of iPS cells and ES cells. Unlike pluripotent stem cells, somatic stem cells can be differentiated only into cells that constitute a specific tissue or organ.
 MSCは、体性幹細胞の一種であり、中胚葉由来の間質細胞(骨髄)、骨芽細胞(骨細胞)、軟骨芽細胞(軟骨細胞)、筋細胞、脂肪細胞、繊維芽細胞(腱、靭帯)、血管内皮細胞等に分化する能力を有する。また、胚葉の差をこえて、外胚葉系細胞の神経細胞、内胚葉系細胞の肝細胞、膵臓細胞に分化する能力を有することも報告されている。 MSC is a type of somatic stem cell that is mesoderm-derived stromal cell (bone marrow), osteoblast (bone cell), chondroblast (chondrocyte), muscle cell, adipocyte, fibroblast (tendon, Ligament) and the ability to differentiate into vascular endothelial cells. In addition, it has been reported that it has the ability to differentiate into ectoderm cells, endoderm cells, and pancreatic cells across germ layers.
 MSCは、骨髄、脂肪組織や筋肉等の種々の組織から得ることができるが、好ましくは骨髄から骨髄間葉系幹細胞を得ることができる。骨髄間葉系幹細胞は骨髄間質細胞の中に含まれ、例えば、骨髄穿刺により採取した骨髄液をシャーレ上に播種し、シャーレ底面に沈降して増殖する線維芽様細胞を継代培養によって増殖させることによって取得することができる。また、MSCは、iPS細胞及びES細胞等の多能性幹細胞から分化誘導することもできる。例えばES細胞をレチノイン酸存在下で培養しSOX1陽性の細胞を選別することによりMSCを取得できること、及び、ES細胞を培養し、ストロマ細胞様形態であり、PDGFRα陽性かつFLK1陰性あり、Mesp2を発現しない細胞を選別することによりMSCを取得できることが報告されている(特開2005-304443号公報、国際公開2004/106502号公報を参照のこと)。MSCは、市販品や細胞バンクから得たものであってもよい。 MSC can be obtained from various tissues such as bone marrow, adipose tissue and muscle, but preferably bone marrow mesenchymal stem cells can be obtained from bone marrow. Bone marrow mesenchymal stem cells are contained in bone marrow stromal cells. For example, bone marrow fluid collected by bone marrow puncture is seeded on a petri dish, and fibroblast-like cells that grow on the bottom of the petri dish are proliferated by subculture. Can be obtained by MSCs can also be induced to differentiate from pluripotent stem cells such as iPS cells and ES cells. For example, it is possible to obtain MSC by culturing ES cells in the presence of retinoic acid and selecting SOX1-positive cells, and culturing ES cells, stromal cell-like morphology, PDGFRα-positive and FLK1-negative, expressing Mesp2 It has been reported that MSCs can be obtained by sorting cells that do not (see JP 2005-304443, WO 2004/106502). MSCs may be obtained from commercial products or cell banks.
 本発明の培養基材1で培養される細胞の由来は問わない。従って、ヒト、サル、マウス、ラット、ハムスター、ウサギ、ウシ、ウマ、ブタ、イヌ、ネコ、ヤギ、ヒツジ等の哺乳類、鳥類、爬虫類由来の細胞であってもよく、好ましくは哺乳類由来の細胞の培養に使用することができる。 The origin of cells cultured on the culture substrate 1 of the present invention is not limited. Therefore, cells derived from mammals such as humans, monkeys, mice, rats, hamsters, rabbits, cows, horses, pigs, dogs, cats, goats, sheep, etc., birds, reptiles, and preferably cells derived from mammals. Can be used for culture.
 未分化増殖段階における幹細胞の培養は、本発明の培養基材1のナノ周期突起2が形成された面上で行う。分化誘導を行わない未分化増殖段階では、本発明の培養基材1を用いて培養することで、自発的な分化等による分化細胞の出現を抑制し、幹細胞は未分化性を維持したままで増殖することができる。つまり、本発明の培養基材1上では、幹細胞は分化誘導しない限り何れの細胞への分化を行わず、核型異常も伴わない。一方で、幹細胞は、自己と同じ性質を持つ細胞を複製する自己複製能を十分に発揮することができる。これにより、幹細胞を、未分化性を維持した状態で効率よく増殖することができ、良質な幹細胞集団を安定して提供することが可能となる。これにより、再生医療や創薬スクリーニング等に利用可能な十分な量の分化細胞を提供することが可能な量の幹細胞を提供することが可能となる。 Stem cell culture in the undifferentiated growth stage is performed on the surface of the culture substrate 1 of the present invention on which the nano-periodic protrusions 2 are formed. In the undifferentiated growth stage in which differentiation induction is not performed, by culturing using the culture substrate 1 of the present invention, the appearance of differentiated cells due to spontaneous differentiation or the like is suppressed, and the stem cells remain undifferentiated. Can proliferate. That is, on the culture substrate 1 of the present invention, the stem cells do not differentiate into any cell unless induced to differentiate, and are not accompanied by karyotypic abnormalities. On the other hand, stem cells can sufficiently exhibit self-replicating ability to replicate cells having the same properties as self. Thereby, it is possible to efficiently proliferate stem cells while maintaining undifferentiation, and it is possible to stably provide a high-quality stem cell population. This makes it possible to provide an amount of stem cells that can provide a sufficient amount of differentiated cells that can be used for regenerative medicine, drug discovery screening, and the like.
 未分化増殖段階における幹細胞の培養は、幹細胞が維持できる限り特に限定されない。従って、当該分野で公知の方法に基づいて行うことができ、初代培養用の液体培地に細胞を播種し、適当な条件下で培養することができる。液体培地の交換や継代も、公知の方法と同様に行なうことができる。 The culture of stem cells in the undifferentiated growth stage is not particularly limited as long as the stem cells can be maintained. Therefore, it can be performed based on a method known in the art, and cells can be seeded in a liquid medium for primary culture and cultured under appropriate conditions. The exchange and passage of the liquid medium can be performed in the same manner as a known method.
 具体的には、iPS細胞及びES細胞の培養において、培地及び培養養条件等は、iPS細胞及びES細胞が維持できる限り特に限定されず、公知の培地及び培養条件に基づいて行うことができる。培地は、通常のiPS細胞及びES細胞の培養に用いる公知の培地を使用できる。例えば、無血清培地に、塩基性線維芽細胞増殖因子(bFGF)等の細胞増殖因子を添加した培地等を用いることができ、培養する細胞に合せて適宜選択することができる。また、市販のiPS細胞及びES細胞培養用の培地を使用することができ、例えば、StemPro(登録商標)hESC(Life technologies)、ReproFF2(Reprocell)等を利用することができる。 Specifically, in the culture of iPS cells and ES cells, the culture medium and culture culture conditions are not particularly limited as long as iPS cells and ES cells can be maintained, and can be performed based on known culture media and culture conditions. As the medium, a known medium used for culturing normal iPS cells and ES cells can be used. For example, a medium in which a cell growth factor such as basic fibroblast growth factor (bFGF) is added to a serum-free medium can be used, and can be appropriately selected according to the cells to be cultured. Moreover, commercially available culture media for iPS cells and ES cells can be used. For example, StemPro (registered trademark) hESC (Life Technologies), ReproFF2 (Reprocell) and the like can be used.
 MSCの培養において、培地及び培養養条件等は、MSCが維持できる限り特に限定されず、公知の培地及び培養条件に基づいて行うことができる。培地としては、通常MSCの培養に用いる培地を用いることができる。MEM培地、DMEM培地等が例示されるが、培養する細胞に合せて適宜選択することができる。また、市販のMSC増殖培地やキットを使用することができ、例えば、MSCGMTM BulletKitTM(Lonza、カタログ番号PT-3001)を使用することができる。 In the culture of MSC, the culture medium and culture culture conditions are not particularly limited as long as MSC can be maintained, and can be performed based on known culture media and culture conditions. As the medium, a medium usually used for MSC culture can be used. Examples include MEM medium, DMEM medium, and the like, which can be appropriately selected according to the cells to be cultured. Commercially available MSC growth media and kits can be used, and for example, MSCGM BulletKit (Lonza, catalog number PT-3001) can be used.
 培養条件についても培養する細胞に合せて適宜選択することができる。例えば、初期蒔種密度は、5000~6000細胞/cm2とし、37℃、5% CO2に設定したインキュベーター内にて培養することができる。 The culture conditions can also be appropriately selected according to the cells to be cultured. For example, the initial seed density is 5000 to 6000 cells / cm 2 and the cells can be cultured in an incubator set at 37 ° C. and 5% CO 2 .
 幹細胞が分化能を維持しているか否かの確認は、細胞形態の観察、分化能の確認、及び未分化性マーカーの確認等により行うことができる。未分化性マーカーとしては、未分化の幹細胞に特異的に発現し、分化能の発現に非常に重要な働きをする分子であり、かかる分子の発現、若しくは発現レベルは、公知の方法によって検出することができる。例えば、マーカー遺伝子の発現の検出には、Real time RT-PCR等を利用することができ、タンパク質マーカーの発現の検出には、マーカー特異的なポリクローナル抗体又はモノクローナル抗体を利用した免疫染色法や酵素活性測定法等を利用することができる。抗体を利用した免疫染色法としては、抗体蛍光染色法を好ましく利用することができる。ここで、抗体蛍光染色法は、抗原抗体反応を利用し、蛍光色素で標識した抗体を試料に取り込ませて染色を行う方法であり、抗原となる物質(未分化マーカー)に対して高い特異性で染色を行うことができる。 Confirmation of whether or not stem cells maintain differentiation potential can be performed by observation of cell morphology, confirmation of differentiation ability, confirmation of undifferentiated markers, and the like. An undifferentiated marker is a molecule that is specifically expressed in undifferentiated stem cells and plays a very important role in the expression of differentiation ability. The expression or expression level of such a molecule is detected by a known method. be able to. For example, Real time RT-PCR can be used to detect marker gene expression, and protein marker expression can be detected by immunostaining or enzyme staining using marker-specific polyclonal or monoclonal antibodies. An activity measurement method or the like can be used. As an immunostaining method using an antibody, an antibody fluorescence staining method can be preferably used. Here, the antibody fluorescence staining method is a method in which an antibody labeled with a fluorescent dye is incorporated into a sample by using an antigen-antibody reaction and stained, and has high specificity for an antigen substance (undifferentiation marker). Dyeing can be performed.
 未分化性マーカーとしては、iPS細胞及びES細胞等の多能性幹細胞の場合には、Nanog、SRY (sex determining region Y)-box 2(SOX2)、SSEA-1、SSEA-3、SSEA-4、TRA-1-60、TRA-1-81、OCT3/4等が例示される。MSCの場合には、CD29、CD44、CD71、CD73 (SH3/4)、CD90 (Thy-1)、CD105 (SH2)、CD106,CD166、Stro-1等が例示される。陰性マーカーも利用でき、MSCの陰性マーカーとして、CD11b、CD14、CD19、CD31、CD18、CD34、CD45、CD56、CD79α、HLA-DR等が例示される。 As an undifferentiated marker, in the case of pluripotent stem cells such as iPS cells and ES cells, Nanog, SRY (sex determining region Y) -box 2 (SOX2), SSEA-1, SSEA-3, SSEA-4 , TRA-1-60, TRA-1-81, OCT3 / 4, etc. In the case of MSC, CD29, CD44, CD71, CD73 (SH3 / 4), CD90 (Thy-1), CD105 (SH2), CD106, CD166, Stro-1, etc. are exemplified. Negative markers can also be used, and examples of MSC negative markers include CD11b, CD14, CD19, CD31, CD18, CD34, CD45, CD56, CD79α, HLA-DR, and the like.
 分化誘導段階における幹細胞の分化誘導は、本発明の培養基材1のナノ周期突起2が形成された面上で行う。分化誘導段階では、本発明の培養基材1を用いて分化誘導することで、本発明の培養基材1上で、幹細胞は未分化性を維持する幹細胞の発生を抑制しつつ、効率的により成熟した細胞に分化させることがきる。本発明の培養基材1は、分化誘導効率が高く、分化誘導に要する時間を短縮することができ、かかる高い分化誘導効率は、一定方向の分化に対するものではなく、あらゆる方向に対して高い分化誘導効率を示す。従って、幹細胞から大量の分化細胞を取得することが可能となる。 The differentiation induction of stem cells in the differentiation induction stage is performed on the surface of the culture substrate 1 of the present invention on which the nano-periodic protrusions 2 are formed. In the differentiation induction stage, differentiation is induced using the culture substrate 1 of the present invention, so that on the culture substrate 1 of the present invention, the stem cells are efficiently generated while suppressing the generation of stem cells that maintain undifferentiation. Differentiate into mature cells. The culture substrate 1 of the present invention has high differentiation induction efficiency and can reduce the time required for differentiation induction. Such high differentiation induction efficiency is not for differentiation in a certain direction but high differentiation in all directions. Shows induction efficiency. Therefore, a large amount of differentiated cells can be obtained from the stem cells.
 分化誘導のための方法は、幹細胞を目的の細胞へ分化させることができる限り、当該分野で公知の方法の何れをも用いることができる。例えば、分化誘導因子を含む分化誘導培地を用いて本発明の培養基材1上で細胞を培養することによって行うことができ、上記した本発明の培養基材1での未分化増殖段階の後、培地を分化誘導培地に切り替えることで目的とする分化細胞を得ることができる。また、未分化増殖段階又は分化誘導段階の一方のみを、本発明の培養基材1を利用して行うこともできる。 As a method for inducing differentiation, any method known in the art can be used as long as a stem cell can be differentiated into a target cell. For example, it can be performed by culturing cells on the culture substrate 1 of the present invention using a differentiation-inducing medium containing a differentiation-inducing factor, and after the above-described undifferentiated growth stage on the culture substrate 1 of the present invention. The desired differentiated cells can be obtained by switching the medium to a differentiation-inducing medium. In addition, only one of the undifferentiated growth stage and the differentiation induction stage can be performed using the culture substrate 1 of the present invention.
 分化誘導因子は、分化を所望する細胞の種類や、分化させる幹細胞の分化階層等に応じて適宜選択することができる。分化誘導因子との接触時間等の誘導条件についても、目的細胞への分化誘導が起きる限りにおいて、限定されない。また、市販の分化誘導用試薬やキットを利用することができる。 The differentiation-inducing factor can be appropriately selected according to the type of cells desired to be differentiated, the differentiation hierarchy of stem cells to be differentiated, and the like. The induction conditions such as the contact time with the differentiation-inducing factor are not limited as long as differentiation induction into the target cell occurs. Commercially available differentiation induction reagents and kits can also be used.
 例えば、iPS細胞及びES細胞等の多能性幹細胞の場合には、分化誘導因子を特定の時期、順序及び濃度で接触させることにより、胚葉を経由して特定系統の細胞に分化させていくことができる。例えば、多能性幹細胞に、アクチビン及び塩基性線維芽細胞増殖因子(bFGF)を添加することにより 中内胚葉、内胚葉を、骨形成タンパク質(BMP)を添加することにより中胚葉を分化できる。 For example, in the case of pluripotent stem cells such as iPS cells and ES cells, differentiation differentiation factors are differentiated into cells of a specific lineage via the germ layers by contacting differentiation inducers at a specific time, order and concentration. Can do. For example, by adding activin and basic fibroblast growth factor (bFGF) to pluripotent stem cells, it is possible to differentiate the mesoderm and endoderm, and the mesoderm by adding bone morphogenetic protein (BMP).
 MSCから脂肪細胞への分化誘導には、インシュリン、デキサメタゾン、3-イソブチル-1-メチルキサンチン(IBMX)、インドメタシン、3,3,5-トリヨードサイロニン(T3)等を用いることができる。骨細胞への分化には、デキサメタゾン、L-グルタミン、アスコルビン酸、β-グルセロリン酸等を用いることができる。軟骨細胞への分化には、デキサメタゾン、アスコルビン酸、ITS(インシュリン、トランスフェリン、セレニウム)等を用いることができる。神経細胞への分化には、β-メルカプトエタノール及びジメチルスルホキシド(DMSO)、フォルスコリンとbFGF等を用いることができる。骨格筋細胞への分化には、5-アザシチジン等を用いることができる。肝細胞への分化には、ITS、デキサメタゾン、肝細胞増殖因子(HGF)、オンコスタチン等を用いることができる。心筋細胞への分化には、Dickkoph-1(Dkk1)、インシュリン様増殖因子結合タンパク質4(IGFBP-4)等を用いることができる。 Insulin, dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), indomethacin, 3,3,5-triiodothyronine (T3), etc. can be used for induction of differentiation from MSC to adipocytes. For differentiation into bone cells, dexamethasone, L-glutamine, ascorbic acid, β-glucerophosphate, and the like can be used. For differentiation into chondrocytes, dexamethasone, ascorbic acid, ITS (insulin, transferrin, selenium) and the like can be used. For differentiation into nerve cells, β-mercaptoethanol, dimethyl sulfoxide (DMSO), forskolin and bFGF can be used. For the differentiation into skeletal muscle cells, 5-azacytidine and the like can be used. For differentiation into hepatocytes, ITS, dexamethasone, hepatocyte growth factor (HGF), oncostatin and the like can be used. For differentiation into cardiomyocytes, Dickkoph-1 (Dkk1), insulin-like growth factor binding protein 4 (IGFBP-4), or the like can be used.
 具体的には、MSCから脂肪細胞への分化誘導を行う場合には、MSCが好ましくは80~90%コンフルエントとなった時点で分化誘導を開始することができる。脂肪細胞分化誘導培地は、hMSC-BulletKitTM-脂肪細胞分化用  (Lonza、カタログ番号PT-3004)を使用し、製造業者の指示に従って脂肪細胞への分化誘導を行うことができる。このキットは、基本培地(Basal medium)、L-グルタミン、間葉系細胞増殖サプリメント(Mesenchymal cell growth supplement (MCGS))、デキサメタゾン、インドメタシン、3-イソブチル-1-メチル-キサンチン(IBMX )、GA-1000(ゲンタマイシン、アンホテリシンB)を含んで構成される。初期細胞蒔種密度は2.1×10細胞/cm2であることが好ましい。 Specifically, when differentiation induction from MSC to adipocytes is performed, differentiation induction can be started when MSC is preferably 80 to 90% confluent. As the adipocyte differentiation induction medium, hMSC-BulletKit -for adipocyte differentiation (Lonza, catalog number PT-3004) can be used to induce differentiation into adipocytes according to the manufacturer's instructions. This kit consists of basal medium, L-glutamine, Mesenchymal cell growth supplement (MCGS), dexamethasone, indomethacin, 3-isobutyl-1-methyl-xanthine (IBMX), GA- Containing 1000 (gentamicin, amphotericin B). The initial cell seed density is preferably 2.1 × 10 4 cells / cm 2 .
 MSCから軟骨細胞への分化を行う場合には、MSCが好ましくは100%コンフルエントとなった時点で分化誘導を開始することができる。軟骨細胞分化誘導培地は、hMSC-BulletKitTM-軟骨分化用  (Lonza、カタログ番号PT-3003)を使用し、製造業者の指示に従って軟骨細胞への分化誘導を行うことができる。このキットは、基本培地、L-グルタミン、デキサメタゾン、アスコルビン酸、ITS + supplement、ピルビン酸ナトリウム、プロリン、GA-1000(ゲンタマイシン、アンホテリシンB)を含んで構成される。初期細胞蒔種密度は5×105細胞/cm2であることが好ましい。 When differentiation from MSC to chondrocytes is performed, differentiation induction can be started when MSC is preferably 100% confluent. As the chondrocyte differentiation induction medium, hMSC-BulletKit -for cartilage differentiation (Lonza, catalog number PT-3003) can be used to induce differentiation into chondrocytes according to the manufacturer's instructions. This kit comprises basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement, sodium pyruvate, proline, GA-1000 (gentamicin, amphotericin B). The initial cell seed density is preferably 5 × 10 5 cells / cm 2 .
 MSCから骨細胞への分化を行う場合には、MSCが好ましくは100%コンフルエントとなった時点で分化誘導を開始することができる。骨細胞分化誘導培地は、hMSC-BulletKitTM-骨芽分化用  (Lonza、カタログ番号PT-3002)を使用し、製造業者の指示に従って骨細胞への分化誘導を行うことができる。このキットは、基本培地、L-グルタミン、デキサメタゾン、アスコルビン酸、ITS + supplement、ピルビン酸ナトリウム、プロリン、間葉系細胞増殖サプリメント(MCGS)、β-グリセロホスフェート、ペニシリン/ストレプトマイシンを含んで構成される。初期細胞蒔種密度は3.1×105細胞/cm2であることが好ましい。 When differentiation from MSC to bone cells is performed, differentiation induction can be started when MSC is preferably 100% confluent. As an osteoblast differentiation medium, hMSC-BulletKit -for osteoblast differentiation (Lonza, catalog number PT-3002) can be used to induce differentiation into bone cells according to the manufacturer's instructions. This kit consists of basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement, sodium pyruvate, proline, mesenchymal cell growth supplement (MCGS), β-glycerophosphate, penicillin / streptomycin . The initial cell seed density is preferably 3.1 × 10 5 cells / cm 2 .
 MSCから神経細胞への分化を行う場合には、MSCが好ましくは80~90%コンフルエントとなった時点で分化誘導を開始することができる。神経細胞分化誘導培地は、間葉系幹細胞神経細胞分化培地(Mesenchymal Stem Cell Neurogenic Differentiation Medium、PromoCell、カタログ番号C-28015)を使用し、製造業者の指示に従って神経細胞への分化誘導を行うことができる。このキットは、基本培地、Supplement Mix(PromoCell、カタログ番号C-39815)を含んで構成される。初期細胞蒔種密度は5000細胞/cm2であることが好ましい。 When differentiation from MSC to nerve cells is performed, differentiation induction can be started when MSC is preferably 80-90% confluent. The neural cell differentiation induction medium can be induced to differentiate into neural cells using Mesenchymal Stem Cell Neurogenic Differentiation Medium (PromoCell, Catalog No. C-28015) according to the manufacturer's instructions. it can. This kit comprises a basic medium, Supplement Mix (PromoCell, catalog number C-39815). The initial cell seed density is preferably 5000 cells / cm 2 .
 幹細胞の目的とする細胞に分化したか否かは、細胞の形態の観察や、目的とする分化細胞に特有な分化確認用の分化マーカーの発現を確認することにより行うことができる。分化マーカーの発現確認は、当該技術分野で公知の方法を利用することができる。例えば、マーカー遺伝子の発現の検出には、Real time RT-PCR等を利用することができ、タンパク質マーカーの発現の検出には、マーカー特異的なポリクローナル抗体又はモノクローナル抗体を利用した免疫染色法や酵素活性測定法等を利用することができる。抗体を利用した免疫染色法としては、抗体蛍光染色法を好ましく利用することができる。ここで、抗体蛍光染色法は、抗原抗体反応を利用し、蛍光色素で標識した抗体を試料に取り込ませて染色を行う方法であり、抗原となる物質(分化マーカー)に対して高い特異性で染色を行うことができる。 Whether a stem cell has differentiated into a target cell can be determined by observing the morphology of the cell and confirming the expression of a differentiation marker for confirmation of differentiation unique to the target differentiated cell. A method known in the art can be used for confirming the expression of the differentiation marker. For example, Real time RT-PCR can be used to detect marker gene expression, and protein marker expression can be detected by immunostaining or enzyme staining using marker-specific polyclonal or monoclonal antibodies. An activity measurement method or the like can be used. As an immunostaining method using an antibody, an antibody fluorescence staining method can be preferably used. Here, the antibody fluorescence staining method is a method in which an antibody labeled with a fluorescent dye is incorporated into a sample and stained using an antigen-antibody reaction, and has high specificity for an antigen substance (differentiation marker). Dyeing can be performed.
 具体的には、脂肪細胞への分化の確認はペルオキシソーム増殖剤活性化受容体γ(PPARγ、(NR1C3、PPARGとも称する))、CCAAT/エンハンサー結合タンパク質β (C/EBPβ)、脂肪酸結合タンパク質(FABP(aP2とも称する))、リポタンパクリパーゼ(LPL)等を利用することができる。軟骨細胞への分化の確認はSex determining region Y-type high mobility group box protein 9(SOX9)、アグリカン(Aggrecan)等を利用することができる。骨細胞への分化の確認は分泌性リン酸タンパク質1(SPP1、(オステオポンチン
:OPNとも称する))、骨シアロタンパク質(BSP)、オステオカルシン(OCN)、アルカリフォスファターゼ(ALP)及び石灰能等を利用することができる。神経細胞への分化の確認は微小管関連タンパク質2(MAP2)、ネスチン、クラスIII βチューブリン(βIII-tubulin)等を利用することができる。
Specifically, differentiation into adipocytes is confirmed by peroxisome proliferator-activated receptor γ (PPARγ, (also referred to as NR1C3, PPARG)), CCAAT / enhancer binding protein β (C / EBPβ), fatty acid binding protein (FABP (Also referred to as aP2)), lipoprotein lipase (LPL) and the like can be used. For confirmation of differentiation into chondrocytes, Sex determining region Y-type high mobility group box protein 9 (SOX9), aggrecan, etc. can be used. Confirmation of differentiation into bone cells uses secreted phosphate protein 1 (SPP1, (also known as osteopontin: OPN)), bone sialoprotein (BSP), osteocalcin (OCN), alkaline phosphatase (ALP), and calcification ability. be able to. Confirmation of differentiation to nerve cells microtubule-associated protein 2 (MAP2), can be used nestin, class III beta-tubulin (β III -tubulin) or the like.
 ここで、PPARγは、核内受容体スーパーファミリーに属するタンパク質であり、転写因子としても機能し、主に脂肪組織に分布して、前駆脂肪細胞からの脂肪細胞分化誘導に関与する。SOX9 は、未分化の間葉系細胞の凝集及びその後の軟骨細胞の分化過程において必須的な役割を果たしている。一方、SOX5及びSOX6は、SOX9により誘導され、三者は協調してII型コラーゲン等の軟骨特異的遺伝子の転写を誘導し、軟骨細胞への分化を決定づける。SPP1は、石灰化した骨マトリックスへの破骨細胞の付着に関与しており、骨芽細胞分化の前、中期に発現量が増加する。MAP2は、脊椎動物のニューロンに豊富に存在する微小管結合タンパク質である。MAP2は神経前駆細胞から分化すると発現し始め、成熟したニューロンでは軸索には殆ど存在せず樹状突起と細胞体にほぼ特異的に局在する。 Here, PPARγ is a protein belonging to the nuclear receptor superfamily, functions also as a transcription factor, is mainly distributed in adipose tissue, and is involved in induction of adipocyte differentiation from preadipocytes. SOX9 plays an essential role in the aggregation of undifferentiated mesenchymal cells and the subsequent differentiation process of chondrocytes. On the other hand, SOX5 and SOX6 are induced by SOX9, and the three cooperate to induce the transcription of cartilage-specific genes such as type II collagen and determine differentiation into chondrocytes. SPP1 is involved in the adhesion of osteoclasts to calcified bone matrix, and its expression level is increased before and during osteoblast differentiation. MAP2 is a microtubule-associated protein that is abundant in vertebrate neurons. MAP2 begins to express when differentiated from neural progenitor cells, and in mature neurons it is almost absent from axons and is almost specifically localized to dendrites and cell bodies.
 本発明の培養基材1は、ナノ周期突起2が表面に形成された幹細胞培養用の培養基材1であり、効率的に幹細胞を分化誘導でき、より成熟した細胞への分化誘導を加速できる。かかる幹細胞の分化誘導加速効果は、幹細胞が決定付けられたあらゆる分化方向に認められる。従って、特定の細胞種への分化のみを選択的に誘導するものではない。このような特性を有する本発明の培養基材1は、幹細胞からの組織の作り分けよりもむしろ、大量の分化細胞を生産する際の培養基材1として期待される。 The culture substrate 1 of the present invention is a culture substrate 1 for culturing stem cells on which nano-periodic protrusions 2 are formed, can efficiently induce differentiation of stem cells, and can accelerate differentiation induction into more mature cells. . Such an effect of accelerating differentiation induction of stem cells is observed in all the differentiation directions in which the stem cells are determined. Therefore, it does not selectively induce differentiation into a specific cell type. The culture substrate 1 of the present invention having such properties is expected as a culture substrate 1 for producing a large amount of differentiated cells, rather than making a tissue from stem cells.
 本発明の培養基材1のナノ周期突起2の形成は、例えば、超短パルスレーザーの走査により簡便に形成することができ、熱影響が少ないことから、大気中での加工が可能である等、作製への制約が少ないとの利点がある。これにより、本発明の培養基材1を簡便かつ低コストに作製することができる。また、本発明の培養基材1は、生体適合性及び生体細胞親和性が高いチタン材にナノ周期突起2を形成して作製できることから、生体適合性及び生体細胞親和性の向上効果と相まって、さらなる分化誘導の加速化を図ることができる。 Formation of the nano-periodic protrusions 2 of the culture substrate 1 of the present invention can be easily formed, for example, by scanning with an ultrashort pulse laser, and since it is less affected by heat, it can be processed in the atmosphere. There is an advantage that there are few restrictions to manufacture. Thereby, the culture base material 1 of this invention can be produced simply and at low cost. In addition, since the culture substrate 1 of the present invention can be produced by forming the nano-periodic protrusion 2 on a titanium material having high biocompatibility and biocell affinity, coupled with the effect of improving biocompatibility and biocell affinity, Further acceleration of differentiation induction can be achieved.
 このような特性を有する本発明の培養基材1は、幹細胞を利用する技術分野に好適に利用することができる。特に、発生及び分化メカニズムの探索に利用できる。例えば、組織や器官の発生経路、器官形成過程における細胞間相互作用、分化誘導経路、及び分化誘導能や分化方向を制御する分子機構の解明等に好適に利用することができ、幹細胞利用技術の臨床応用をはじめとする実用化のための基盤技術の確立に寄与し得る。さらに、本発明の培養基材1上で幹細胞を培養することにより、作り出された細胞、組織、器官を、開発候補薬の薬効評価や、薬物動態評価、安全性評価等の薬理試験や創薬スクリーニング、損なわれた臓器や器官の機能を回復させる再生医療や細胞治療に応用する等、創薬、生命科学や医療への貢献が期待される。再生医療分野においては、例えば、骨細胞への分化は難治性骨折、人工関節、人工歯根等のインプラント等に利用することができる等、オーダーメイド医療の発展に貢献することができる。 The culture substrate 1 of the present invention having such characteristics can be suitably used in the technical field using stem cells. In particular, it can be used to search for development and differentiation mechanisms. For example, it can be suitably used for elucidating the developmental pathways of tissues and organs, cell-cell interactions in the process of organ formation, differentiation induction pathways, and the molecular mechanisms that control differentiation induction ability and differentiation direction. It can contribute to the establishment of basic technology for practical application including clinical application. Furthermore, by culturing stem cells on the culture substrate 1 of the present invention, the created cells, tissues, and organs can be used for pharmacological tests and drug discovery such as drug efficacy evaluation, pharmacokinetic evaluation, safety evaluation, etc. It is expected to contribute to drug discovery, life sciences, and medical care, such as screening, regenerative medicine that restores damaged organs and organ functions, and cell therapy. In the field of regenerative medicine, for example, differentiation into bone cells can be used for implants such as refractory fractures, artificial joints, and artificial tooth roots, and so on, which can contribute to the development of tailor-made medicine.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例では、ナノ周期突起2として略円形の突起を形成した培養基材1を作製し、間葉系幹細胞を用いて骨細胞、軟骨細胞、神経細胞、及び脂肪細胞への分化誘導を行った例を開示する。しかしながら、本発明は、これに限定するものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In the examples, the culture substrate 1 having a substantially circular protrusion formed as the nano-periodic protrusion 2 is prepared, and differentiation induction into bone cells, chondrocytes, nerve cells, and adipocytes is induced using mesenchymal stem cells. An example of what was done is disclosed. However, the present invention is not limited to this.
〔実施例1〕培養基材1の作製検討
1.概要
 本実施例では、MSCの分化誘導加速効果を示す培養基材1を構築するため、ナノ周期突起2をその表面に形成した培養基材1の作製について検討した。
[Example 1] Preparation of culture substrate 1 Outline In this example, in order to construct the culture substrate 1 showing the MSC differentiation induction acceleration effect, the production of the culture substrate 1 having nano-periodic protrusions 2 formed on the surface thereof was examined.
2.材料及び方法
2-1.レーザー
 基板表面にナノ周期突起2を形成するためのレーザーとして、フェムト秒レーザーを使用した。フェムト秒レーザーとして、イムラアメリカ社製のFCPA μJewel D-1000、(以下、「D-1000」と称する)を用いた。レーザーの詳細を下記表1に要約する。
2. 2. Materials and methods 2-1. Laser A femtosecond laser was used as a laser for forming the nano periodic protrusions 2 on the substrate surface. As a femtosecond laser, FCPA μJewel D-1000 (hereinafter referred to as “D-1000”) manufactured by Imra America Co., Ltd. was used. The details of the laser are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2-2.基板
 培養基材1作製のための基板として、鏡面研磨した医療用チタン板(φ14mm×1mmの片面研磨品)を用いた。チタン素材は株式会社ティ・ディ・シー(宮城県宮城郡利府町飯土井長者前24-15)からグレード2の純チタン丸棒より切り出し鏡面としたものを購入した。
2-2. Substrate As a substrate for preparing the culture substrate 1, a mirror-polished medical titanium plate (φ14 mm × 1 mm single-side polished product) was used. Titanium material was purchased from T.D.C. Co., Ltd. (24-15, Iimai, Chofu-cho, Miyagi-gun, Miyagi-ken) from a grade 2 pure titanium round bar with a mirror surface.
 チタンは、生体に埋入した際にも、免疫反応を起こすことが少ないことから人工関節や人工歯根をはじめとするインプラント材として汎用されている。しかしながら、チタン材料の軟組織への適合性は未だに検討が進んでいない分野であり、不適合によるインプラントの摘出等が生じること等が報告されている。そこで、本実施例では、周期微細構造形成による生体適合性向上の可能性を探るべく、レーザー加工により周期微細構造を表面に形成した培養基材1の作製について検討した。 Titanium is widely used as an implant material for artificial joints and artificial tooth roots because it rarely causes an immune reaction when implanted in a living body. However, the compatibility of titanium materials with soft tissues is an area that has not yet been studied, and it has been reported that implants are extracted due to incompatibility. Therefore, in this example, the production of the culture substrate 1 having the periodic fine structure formed on the surface by laser processing was examined in order to investigate the possibility of improving the biocompatibility by forming the periodic fine structure.
2-2-1.マイクロメートルオーダーの周期溝を基板表面に形成した培養基材(比較例)
 基板の表面に複数のマイクロメートルオーダーの溝が平行に配置されたマイクロメートルオーダーの周期溝(以下、「マイクロ周期溝」と称する場合がある)を、フェムト秒レーザー光を上記医療用チタン板表面に照射しつつ走査することで、形成した(フルエンス:0.7 J/cm2、走査速度:300 mm/秒、走査回数:14回、偏光:円偏光又は直線偏光)。この結果、幅6 μm、深さ0.6 μm、ピッチ12 μmの周期溝を形成した((1))。
2-2-1. Culture substrate (comparative example) with micrometer-order periodic grooves formed on the substrate surface
A micrometer-order periodic groove (hereinafter sometimes referred to as a “microperiodic groove”) in which a plurality of micrometer-order grooves are arranged in parallel on the surface of the substrate, and femtosecond laser light is applied to the surface of the medical titanium plate. It was formed by scanning while irradiating (fluence: 0.7 J / cm 2 , scanning speed: 300 mm / second, scanning frequency: 14 times, polarized light: circularly polarized light or linearly polarized light). As a result, periodic grooves having a width of 6 μm, a depth of 0.6 μm, and a pitch of 12 μm were formed ((1)).
 ここで、溝の幅とは、溝の端から端までの距離を意味し、溝の長手方向に直交する方向における距離である。当該距離が溝の高さ方向に向かって変化する場合においても、培養基材表面上の距離を意味する。溝の高さとは、溝の最底面の平均高から最上面の平均高までの距離を意味する。溝のピッチとは、最近接する溝の間隔を意味し、溝の長手方向に直交する方向における最近接する溝の間隔であり、溝の長手方向に直交する方向における凹凸の一周期分の距離とする。 Here, the width of the groove means a distance from the end of the groove to the end, and is a distance in a direction perpendicular to the longitudinal direction of the groove. Even when the distance changes in the height direction of the groove, it means the distance on the surface of the culture substrate. The height of the groove means the distance from the average height of the bottom surface of the groove to the average height of the top surface. The pitch of the grooves means the distance between the closest grooves, and is the distance between the closest grooves in the direction perpendicular to the longitudinal direction of the grooves, and is a distance corresponding to one cycle of the unevenness in the direction perpendicular to the longitudinal direction of the grooves. .
2-2-2.ナノメートルオーダーの周期溝を基板表面に形成した培養基材(比較例)
 基板の表面に複数のナノメートルオーダーの溝が平行に配置されたナノメートルオーダノ周期溝(以下、「ナノ周期溝」と称する場合がある)を、フェムト秒レーザー光を上記医療用チタン板表面に照射しつつ走査することで、形成した(フルエンス:0.8J/cm2、走査速度:500mm/秒、走査回数:1回、偏光:直線偏光)。この結果、深さ0.2μm、ピッチ0.7μmの周期溝を形成した((2))。
2-2-2. A culture substrate with periodic grooves of nanometer order formed on the substrate surface (comparative example)
A nanometer ordano periodic groove (hereinafter sometimes referred to as “nanoperiodic groove”) in which a plurality of nanometer-order grooves are arranged in parallel on the surface of the substrate, and femtosecond laser light is applied to the surface of the medical titanium plate. by scanning while irradiating the, was formed (fluence: 0.8 J / cm 2, scanning speed: 500 mm / sec, the number of scans: 1 times, polarization: linear polarization). As a result, a periodic groove having a depth of 0.2 μm and a pitch of 0.7 μm was formed ((2)).
2-2-3.ハイブリッド周期溝を基板表面に形成した培養基材(比較例)
 当該培養基材は、従来技術の項に記載の本発明者らが開発したマイクロ周期溝とナノ周期溝とを互いに平行に配置し共存させたハイブリッド周期溝を基板表面に形成した培養基材(非特許文献1及び2を参照)である。フェムト秒レーザー光を上記医療用チタン板表面に照射しつつ走査することで、形成した。走査回数を20回にする以外は上記2-2-1.に記載の手順でマイクロ周期溝を形成した後に、上記2-2-2.に記載の手順でナノ周期溝を上書きした。ナノ周期溝は、偏光方向を走査方向に直交させた。この結果、溝の幅6μm、深さ0.6μm、ピッチ12μmのマイクロ周期溝と、深さ0.2μm、ピッチ0.7μmのナノ周期溝が形成されたハイブリッド周期溝を有する培養基材が作製された((3))。
2-2-3. Culture substrate with hybrid periodic grooves formed on the substrate surface (comparative example)
The culture substrate is a culture substrate in which a hybrid periodic groove formed by the inventors described in the section of the prior art is arranged on the substrate surface in parallel with the micro periodic grooves and the nano periodic grooves arranged in parallel with each other ( Non-Patent Documents 1 and 2). It was formed by scanning while irradiating the surface of the titanium plate for medical use with femtosecond laser light. The above 2-2-1 except that the number of scans is 20 times. After the micro periodic groove is formed by the procedure described in the above item 2-2-2. The nanoperiod groove was overwritten by the procedure described in. In the nano periodic groove, the polarization direction was orthogonal to the scanning direction. As a result, a culture substrate having a micro periodic groove having a groove width of 6 μm, a depth of 0.6 μm, and a pitch of 12 μm and a hybrid periodic groove in which a nano periodic groove having a depth of 0.2 μm and a pitch of 0.7 μm was formed ( (3)).
2-2-4.ナノ周期突起2を基板表面に形成した培養基材1(実施例)
 ナノ周期突起2は、フルエンス0.8J/cm2、走査速度:500mm/秒、走査回数:1回、偏光:円偏光にて行った。この結果、径0.5μm、高さ0.2μm、ピッチ0.7μmのナノ周期突起2が表面に形成された培養基材1が作製された((4))。作製されたナノ周期突起2を基板表面に形成した培養基材1の加工表面の走査型電子顕微鏡(SEM)像を図1に示す。
2-2-4. Culture substrate 1 having nano-periodic protrusions 2 formed on the substrate surface (Example)
The nano periodic protrusion 2 was performed with a fluence of 0.8 J / cm 2 , a scanning speed of 500 mm / second, a scanning frequency of once, and a polarization of circularly polarized light. As a result, a culture substrate 1 having nano-periodic protrusions 2 having a diameter of 0.5 μm, a height of 0.2 μm, and a pitch of 0.7 μm formed on the surface was produced ((4)). FIG. 1 shows a scanning electron microscope (SEM) image of the processed surface of the culture substrate 1 in which the produced nanoperiodic protrusions 2 are formed on the substrate surface.
〔実施例2〕培養基材1上でのMSCの分化誘導解析(分化マーカーでの確認)
1.概要
 本実施例では、上記実施例1にて作製したナノ周期突起2を表面に形成した培養基材1上でのMSCの分化誘導について検討した。本実施例では、MSCの骨細胞、軟骨細胞、神経細胞、及び脂肪細胞への分化誘導について検討し、分化マーカーをもって分化誘導状態を確認した。
[Example 2] Analysis of differentiation induction of MSC on culture substrate 1 (confirmation with differentiation marker)
1. Outline In this example, differentiation induction of MSC on the culture substrate 1 on which the nanoperiodic protrusions 2 produced in Example 1 were formed was examined. In this example, differentiation induction of MSC into bone cells, chondrocytes, nerve cells, and adipocytes was examined, and the differentiation induction state was confirmed using a differentiation marker.
2.材料及び試験方法
2-1.培養基材
 上記実施例1の2-2-1.~2-2-4.で作製した比較例及び実施例の培養基材を使用した。鏡面研磨した医療用チタン板にレーザー加工を施さずにそのまま使用したものをコントロールとした((5))。
2. 2. Material and test method 2-1. Culture substrate 2-2-1 of Example 1 above. 2-2-4. The culture substrates of Comparative Examples and Examples prepared in the above were used. A mirror-polished medical titanium plate that was used as it was without laser processing was used as a control ((5)).
2-2.細胞
 ヒトMSC(hMSC 間葉系幹細胞、Lonza、カタログ番号PT-2501)を用いた。
2-2. Cells Human MSCs (hMSC mesenchymal stem cells, Lonza, catalog number PT-2501) were used.
2-3.分化誘導
 上記各培養基材を70%エタノール中に20分間浸漬し滅菌した後、蒸留水にて3回洗浄を行った。洗浄後、培養基材を12ウェル細胞培養プレートのウェル底面に静置し、培地を添加し培養基材を培地中に浸漬した。培地中に浸漬した各培養基材に、MSCを播種し6時間培養した。
2-3. Differentiation induction Each of the above culture substrates was immersed in 70% ethanol for 20 minutes for sterilization, and then washed three times with distilled water. After washing, the culture substrate was allowed to stand on the bottom of the well of a 12-well cell culture plate, a medium was added, and the culture substrate was immersed in the medium. Each culture substrate immersed in the medium was seeded with MSC and cultured for 6 hours.
 このとき、細胞の初期蒔種密度は、5000/cm2であった。培地は、使用調製済みのMSCGMTM BulletKitTM(Lonza、カタログ番号PT-3001)を使用した。 At this time, the initial seed density of the cells was 5000 / cm 2 . As the culture medium, MSCGM BulletKit (Lonza, catalog number PT-3001) that had been prepared for use was used.
 上記各培養基材上で培養したMSCを、72時間(上記した所望のコンフルエント(骨細胞、軟骨細胞への分化の場合には100%コンフルエント、神経細胞、脂肪細胞への分化の場合には80~90%コンフルエント)となるまで)増殖培地で培養した。その後、72時間分化誘導培地で培養することにより分化誘導をした。ここで、増殖培地としては実施例3の培地を使用し、4継代目のMSCを分化誘導した。分化誘導方法の詳細は以下の通りである。 The MSCs cultured on each of the above-mentioned culture substrates were treated for 72 hours (the desired confluence described above (100% confluent in the case of differentiation into bone cells and chondrocytes, 80 in the case of differentiation into nerve cells and adipocytes). Cultivated in growth medium until ˜90% confluent). Thereafter, differentiation was induced by culturing in a differentiation induction medium for 72 hours. Here, the culture medium of Example 3 was used as the growth medium, and MSC at the 4th passage was induced to differentiate. The details of the differentiation induction method are as follows.
2-1-1.骨細胞への分化誘導
 骨細胞への分化を行う場合には、MSCが好ましくは100%コンフルエントとなった時点で分化誘導を開始する。骨細胞分化誘導培地は、hMSC-BulletKitTM-骨芽分化用  (Lonza、カタログ番号PT-3002)を使用し、製造業者の指示に従って骨細胞への分化誘導を行うことができる。このキットは、基本培地、L-グルタミン、デキサメタゾン、アスコルビン酸、ITS + supplement(hMSC-BulletKitTM-軟骨分化用  (Lonza、カタログ番号PT-3003)に含まれる)、ピルビン酸ナトリウム、プロリン、間葉系細胞増殖サプリメント(MCGS)、β-グリセロホスフェート、ペニシリン/ストレプトマイシンを含んで構成される。初期細胞蒔種密度は3.1×105細胞/cm2であることが好ましい。
2-1-1. Induction of differentiation into bone cells When differentiation into bone cells is performed, differentiation induction is started when MSC is preferably 100% confluent. As an osteoblast differentiation medium, hMSC-BulletKit -for osteoblast differentiation (Lonza, catalog number PT-3002) can be used to induce differentiation into bone cells according to the manufacturer's instructions. This kit includes basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement (included in hMSC-BulletKit TM -cartilage differentiation (Lonza, Cat. No. PT-3003), sodium pyruvate, proline, mesenchyme Lineage cell growth supplement (MCGS), β-glycerophosphate, penicillin / streptomycin. The initial cell seed density is preferably 3.1 × 10 5 cells / cm 2 .
2-1-2.軟骨細胞への分化誘導
 軟骨細胞への分化を行う場合には、MSCが好ましくは100%コンフルエントとなった時点で分化誘導を開始する。軟骨細胞分化誘導培地は、hMSC-BulletKitTM-軟骨分化用  (Lonza、カタログ番号PT-3003)を使用し、製造業者の指示に従って軟骨細胞への分化誘導を行うことができる。このキットは、基本培地、L-グルタミン、デキサメタゾン、アスコルビン酸、ITS + supplement、ピルビン酸ナトリウム、プロリン、GA-1000(ゲンタマイシン、アンホテリシンB)を含んで構成される。初期細胞蒔種密度は5×105細胞/cm2であることが好ましい。
2-1-2. Induction of differentiation into chondrocytes When differentiation into chondrocytes is performed, differentiation induction is started when MSC is preferably 100% confluent. As the chondrocyte differentiation induction medium, hMSC-BulletKit -for cartilage differentiation (Lonza, catalog number PT-3003) can be used to induce differentiation into chondrocytes according to the manufacturer's instructions. This kit comprises basal medium, L-glutamine, dexamethasone, ascorbic acid, ITS + supplement, sodium pyruvate, proline, GA-1000 (gentamicin, amphotericin B). The initial cell seed density is preferably 5 × 10 5 cells / cm 2 .
2-1-3.神経細胞への分化
 神経細胞への分化を行う場合には、MSCが好ましくは80~90%コンフルエントとなった時点で分化誘導を開始することができる。神経細胞分化誘導培地は、間葉系幹細胞神経細胞分化培地(Mesenchymal Stem Cell Neurogenic Differentiation Medium、PromoCell、カタログ番号C-28015)を使用し、製造業者の指示に従って神経細胞への分化誘導を行うことができる。このキットは、基本培地、Supplement Mix(PromoCell、カタログ番号C-39815)を含んで構成される。初期細胞蒔種密度は5000細胞/cm2であることが好ましい。
2-1-3. Differentiation into nerve cells When differentiation into nerve cells is performed, differentiation induction can be started when MSCs are preferably 80-90% confluent. The neural cell differentiation induction medium can be induced to differentiate into neural cells using Mesenchymal Stem Cell Neurogenic Differentiation Medium (PromoCell, Catalog No. C-28015) according to the manufacturer's instructions. it can. This kit comprises a basic medium, Supplement Mix (PromoCell, catalog number C-39815). The initial cell seed density is preferably 5000 cells / cm 2 .
2-1-4.脂肪細胞への分化
 脂肪細胞への分化誘導を行う場合には、MSCが好ましくは80~90%コンフルエントとなった時点で分化誘導を開始することができる。脂肪細胞分化誘導培地は、hMSC-BulletKitTM-脂肪細胞分化用  (Lonza、カタログ番号PT-3004)を使用し、製造業者の指示に従って脂肪細胞への分化誘導を行うことができる。このキットは、基本培地(Basal medium)、L-グルタミン、間葉系細胞増殖サプリメント(Mesenchymal cell growth supplement (MCGS))、デキサメタゾン、インドメタシン、3-イソブチル-1-メチル-キサンチン(IBMX )、GA-1000(ゲンタマイシン、アンホテリシンB)を含んで構成される。初期細胞蒔種密度は2.1×10細胞/cm2であることが好ましい。
2-1-4. Differentiation into adipocytes When differentiation into adipocytes is induced, differentiation induction can be started when MSC is preferably 80-90% confluent. As the adipocyte differentiation induction medium, hMSC-BulletKit -for adipocyte differentiation (Lonza, catalog number PT-3004) can be used to induce differentiation into adipocytes according to the manufacturer's instructions. This kit consists of basal medium, L-glutamine, Mesenchymal cell growth supplement (MCGS), dexamethasone, indomethacin, 3-isobutyl-1-methyl-xanthine (IBMX), GA- Containing 1000 (gentamicin, amphotericin B). The initial cell seed density is preferably 2.1 × 10 4 cells / cm 2 .
2-2.分化誘導の確認
 培養後、MSCでは発現せず、骨細胞、軟骨細胞、神経細胞、脂肪細胞特異的に発現する分化マーカーを解析することにより、分化誘導を確認した。分化マーカーとしては、骨細胞への分化の確認はSPP1を、軟骨細胞への分化の確認はSOX9を、神経細胞への分化の確認はMAP2を、脂肪細胞への分化の確認はPPARGを用いた。実験はN=3で行った。
2-2. Confirmation of differentiation induction After culture, differentiation induction was confirmed by analyzing differentiation markers that are not expressed in MSC but expressed specifically in bone cells, chondrocytes, nerve cells, and adipocytes. As differentiation markers, SPP1 was used to confirm differentiation into bone cells, SOX9 was used to confirm differentiation into chondrocytes, MAP2 was used to confirm differentiation into nerve cells, and PPARG was used to confirm differentiation into adipocytes. . The experiment was performed at N = 3.
 細胞の分化マーカーの発現解析は、Real time RT-PCR遺伝子解析法で行った。具体的には、分化誘導後の細胞からtotal RNAを抽出し、逆転写反応によりRNAからcDNAを合成した。続いて、合成したcDNAを鋳型としてPCRを行った。同様にしてGAPDHの発現量を測定し、GAPDHに対する相対発現量を算出した。また、組織培養用ポリスチレン(TCPS)についても同様にして各細胞への分化誘導の確認を行った。 The expression analysis of the cell differentiation marker was performed by Real-time RT-PCR gene analysis. Specifically, total RNA was extracted from the cells after differentiation induction, and cDNA was synthesized from the RNA by reverse transcription reaction. Subsequently, PCR was performed using the synthesized cDNA as a template. Similarly, the expression level of GAPDH was measured, and the relative expression level with respect to GAPDH was calculated. In addition, for tissue culture polystyrene (TCPS), differentiation induction into each cell was confirmed in the same manner.
 ここでは、遺伝子特異的プライマーを、アメリカハーバード大学メディカルスクールのプライマーバンク(http://pga.mgh.harvard.edu/primerbank/)を利用し、デザインした。デザインしたプライマーをグライナー社bio-oneに依頼し作成した。表2に、本実施例で使用した遺伝子特異的プライマーの配列情報を要約する。また、コントロールとして、GAPDHの発現量を測定した。 Here, gene-specific primers were designed using the Primer Bank (http://pga.mgh.harvard.edu/primerbank/) of Harvard Medical School, USA. The designed primer was commissioned to Greiner bio-one. Table 2 summarizes the sequence information of the gene specific primers used in this example. As a control, the expression level of GAPDH was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.結果
 結果を図2のグラフに示す。図中(1)は比較例のマイクロ周期溝を基板表面に形成した培養基材、(2)は比較例のナノ周期溝を基板表面に形成した培養基材、(3)は比較例のハイブリッド周期溝を基板表面に形成した培養基材、(4)は実施例のナノ周期突起2を基板表面に形成した培養基材1、(5)はコントロールである。
3. Results The results are shown in the graph of FIG. In the figure, (1) is a culture substrate in which the micro periodic grooves of the comparative example are formed on the substrate surface, (2) is a culture substrate in which the nano periodic grooves of the comparative example are formed on the substrate surface, and (3) is a hybrid of the comparative example. The culture base material in which the periodic grooves are formed on the substrate surface, (4) is the culture base material 1 in which the nano-periodic protrusions 2 of the example are formed on the substrate surface, and (5) is a control.
 ナノ周期突起2を基板表面に形成した培養基材1では、検討を行った骨細胞、軟骨細胞、神経細胞及び脂肪細胞の何れの細胞種への分化誘導に対しても、高い加速効果を示した((4))。この効果は、特に、骨細胞において顕著であった。一方、本発明者らが以前に構築したハイブリッド周期溝を基板表面に形成した場合には、骨及び軟骨細胞への分化誘導に対して有意な加速効果が認められた((3))。マイクロ周期溝及びナノ周期溝を単独で基板表面に形成した場合、及びコントロールでは、分化の度合いは基板のない環境で培養した場合と有意差が認められず、分化誘導加速効果があるとはいえなかった((1)、(2)、(5))。 The culture substrate 1 in which the nano-periodic protrusions 2 are formed on the substrate surface shows a high acceleration effect for induction of differentiation into any of the examined bone cells, chondrocytes, nerve cells, and adipocytes. ((4)). This effect was particularly remarkable in bone cells. On the other hand, when the hybrid periodic grooves constructed previously by the present inventors were formed on the substrate surface, a significant acceleration effect was observed for induction of differentiation into bone and chondrocytes ((3)). When micro periodic grooves and nano periodic grooves are independently formed on the substrate surface, and in the control, the degree of differentiation is not significantly different from that in the case of culturing in an environment without a substrate, and it can be said that there is an effect of accelerating differentiation induction. ((1), (2), (5)).
 この結果から、以前構築したハイブリッド周期溝は、骨及び軟骨細胞への分化誘導という特定方向への分化に対して、分化誘導加速効果を奏することができるものである。これに対して、本発明のナノ周期突起2を表面に形成した培養基材1は、幹細胞が運命づけられている分化誘導方向の何れの方向に対しても高い分化誘導加速効果を奏することができるものであることが理解できる。 From this result, the previously constructed hybrid periodic groove can exert a differentiation induction accelerating effect on differentiation in a specific direction of differentiation induction into bone and chondrocytes. In contrast, the culture substrate 1 on which the nanoperiodic protrusions 2 of the present invention are formed has a high differentiation induction acceleration effect in any direction of the differentiation induction direction in which the stem cells are destined. It can be understood that it is possible.
 本発明は、培養基材に関し、特に幹細胞の培養が要求されるあらゆる分野、特に、創薬、生命科学、及び医療等の産業分野において利用可能である。例えば、発生や分化や疾患メカニズムの解明等に好適に利用でき、幹細胞利用技術の臨床応用をはじめとする実用化のための基盤技術の確立に寄与し得る。また、本発明の培養基材は、骨細胞への分化誘導に対して顕著な加速効果が認められたことから、具体的な用途として、表面に骨形成機能を備える将来世代のインプラント等が挙げられる。 The present invention relates to a culture substrate and can be used particularly in all fields where stem cell culture is required, in particular, in industrial fields such as drug discovery, life science, and medicine. For example, it can be suitably used for elucidation of development, differentiation and disease mechanism, and can contribute to the establishment of basic technology for practical application including clinical application of stem cell utilization technology. In addition, since the culture substrate of the present invention has a remarkable acceleration effect on the induction of differentiation into bone cells, a specific application is a future generation implant having a bone forming function on the surface. It is done.
 1  培養基材
 2  ナノメートルオーダーの周期突起構造(ナノ周期突起)
1 culture substrate 2 nanometer order periodic protrusion structure (nanoperiodic protrusion)

Claims (4)

  1.  ナノメートルオーダーの周期突起構造を表面に有し、幹細胞を前記表面にて培養する培養基材。 A culture substrate having a periodic projection structure on the order of nanometers on which the stem cells are cultured on the surface.
  2.  前記ナノメートルオーダーの周期突起構造は、径0.1~1μm、高さ0.01~0.5μm、ピッチ0.1~1μmである請求項1に記載の培養基材。 The culture substrate according to claim 1, wherein the nanometer-order periodic protrusion structure has a diameter of 0.1 to 1 µm, a height of 0.01 to 0.5 µm, and a pitch of 0.1 to 1 µm.
  3.  材質が、チタンである請求項1又は2に記載の培養基材。 The culture substrate according to claim 1 or 2, wherein the material is titanium.
  4.  超短パルスレーザーの円偏光によるナノ周期構造形成により基板表面に前記ナノメートルオーダーの周期突起構造を形成する工程を有する、請求項1~3の何れか一項に記載の培養基材の作製方法。
     
     
     
    The method for producing a culture substrate according to any one of claims 1 to 3, further comprising a step of forming the nanometer-order periodic protrusion structure on the substrate surface by forming a nano-periodic structure by circular polarization of an ultrashort pulse laser. .


PCT/JP2017/040382 2016-11-15 2017-11-09 Culture substrate and method for producing culture substrate WO2018092670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551592A JPWO2018092670A1 (en) 2016-11-15 2017-11-09 Culture substrate and method for producing culture substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-222732 2016-11-15
JP2016222732 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092670A1 true WO2018092670A1 (en) 2018-05-24

Family

ID=62146185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040382 WO2018092670A1 (en) 2016-11-15 2017-11-09 Culture substrate and method for producing culture substrate

Country Status (2)

Country Link
JP (1) JPWO2018092670A1 (en)
WO (1) WO2018092670A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227551A (en) * 2009-03-03 2010-10-14 Puente:Kk Medical surface-nanoscale processed titanium promoting proliferation and differentiation of osteoblastic cell and production method thereof
JP2014138605A (en) * 2014-03-05 2014-07-31 Aarhus Universitet Biocompatible material for mammalian stem cell growth and differentiation
JP2015164406A (en) * 2014-03-03 2015-09-17 大日本印刷株式会社 Life science container
JP2016034250A (en) * 2014-08-04 2016-03-17 大日本印刷株式会社 Cell support substrate, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227551A (en) * 2009-03-03 2010-10-14 Puente:Kk Medical surface-nanoscale processed titanium promoting proliferation and differentiation of osteoblastic cell and production method thereof
JP2015164406A (en) * 2014-03-03 2015-09-17 大日本印刷株式会社 Life science container
JP2014138605A (en) * 2014-03-05 2014-07-31 Aarhus Universitet Biocompatible material for mammalian stem cell growth and differentiation
JP2016034250A (en) * 2014-08-04 2016-03-17 大日本印刷株式会社 Cell support substrate, and production method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, P . ET AL.: "Role of topography of titanium surface on mesenchymal stem cells behaviors", T HE 37TH ANNUAL MEETING OF THE JAPANESE SOCIETY FOR BIOMATERIALS, 9 November 2015 (2015-11-09), pages 125 *
CHEN, P. ET AL.: "Role of hierarchical topography of titanium surface on mesenchymal stem cells adhesion and differentiation behaviours in vitro, frontiers", MATERIALS AND METHODS, 30 March 2016 (2016-03-30), Retrieved from the Internet <URL:https://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.02024/event-abstract> [retrieved on 20170125] *
CHEN, P. ET AL.: "Role of topography of titanium surface on multiple differentiations of mesenchymal stem ^", COLLECTED ABSTRACTS OF MEETING OF THE JAPAN INSTITUTE OF METALS, 9 March 2016 (2016-03-09), pages 301 *
SJOSTROM, T. ET AL.: "Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells", ACTA BIOMATERIALIA, vol. 5, no. 5, 5 June 2009 (2009-06-05), pages 1433 - 1441, XP026090206 *

Also Published As

Publication number Publication date
JPWO2018092670A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
Ilie et al. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface
Vats et al. Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment
Zhou et al. Screening platform for cell contact guidance based on inorganic biomaterial micro/nanotopographical gradients
Zhang et al. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation
Polak et al. Stem cells and tissue engineering: past, present, and future
JP5013584B2 (en) Chondrocyte culture method and chondrocyte
Kingham et al. Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine
Ardeshirylajimi et al. Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage
Franck et al. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells
Maldonado et al. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells
Wang et al. Cell-sheet-derived ECM coatings and their effects on BMSCs responses
Liu et al. Light-induced cell alignment and harvest for anisotropic cell sheet technology
CN107075476B (en) Method for inducing three-dimensional osteogenic differentiation of stem cells using hydrogel
JP2017055761A (en) Culture substrate
JP2011527888A (en) Materials and methods for cell proliferation
CN101668848A (en) Pluripotent autologous stem cells from oral mucosa and methods of use
CA2937882A1 (en) Method for generating cell condensate for self-organization
Soleimani et al. Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold
Dzhoyashvili et al. Natural and Synthetic Materials for Self‐Renewal, Long‐Term Maintenance, and Differentiation of Induced Pluripotent Stem Cells
Hang et al. Blastocyst-inspired hydrogels to maintain undifferentiation of mouse embryonic stem cells
JP4936937B2 (en) Undifferentiated cell culture carrier for mouse ES cell culture
JP2011155945A (en) Incubator for tissue culture, and method for manufacturing three-dimensional tissue culture
WO2018092670A1 (en) Culture substrate and method for producing culture substrate
JP2021171035A (en) Foothold for stem cell culture, stem cell culture method and production method of fnw substrate
US20200332252A1 (en) Hollow microcarrier for shear-free culture of adherent cells in bioreactors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870933

Country of ref document: EP

Kind code of ref document: A1