WO2018092554A1 - Method for producing thermally expandable microspheres - Google Patents

Method for producing thermally expandable microspheres Download PDF

Info

Publication number
WO2018092554A1
WO2018092554A1 PCT/JP2017/039030 JP2017039030W WO2018092554A1 WO 2018092554 A1 WO2018092554 A1 WO 2018092554A1 JP 2017039030 W JP2017039030 W JP 2017039030W WO 2018092554 A1 WO2018092554 A1 WO 2018092554A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion medium
aqueous dispersion
weight
aqueous
silica sol
Prior art date
Application number
PCT/JP2017/039030
Other languages
French (fr)
Japanese (ja)
Inventor
梶原 裕一
裕 喜夛
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2018551553A priority Critical patent/JPWO2018092554A1/en
Publication of WO2018092554A1 publication Critical patent/WO2018092554A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a method for producing thermally expandable microspheres. More specifically, a method for producing thermally expandable microspheres using silica sol as a raw material for an aqueous dispersion medium, and capable of reducing the amount of silica sol used compared to conventional methods. Regarding the method.
  • thermoplastic resin used as an outer shell and a foaming agent is enclosed therein
  • a foaming agent used in a wide range of fields, such as weight reduction of resins and paints, and application of wallpaper and ink designs.
  • the polymerizable component of the thermoplastic resin material vinylidene chloride, (meth) acrylonitrile-based monomers, (meth) acrylic acid ester-based monomers and the like are usually used.
  • hydrocarbons, such as isobutane and isopentane, are mainly used as a foaming agent (refer patent document 1).
  • a method for producing thermally expandable microspheres includes a step of preparing an aqueous dispersion medium by mixing water, a dispersion stabilizer, a dispersion stabilization auxiliary agent, and the like, and a polymerizable component, a foaming agent and a polymerization agent in the aqueous dispersion medium. And dispersing an oily mixture containing an initiator to polymerize the polymerizable component.
  • silica sol is used as a dispersion stabilizer, silica particles derived from silica sol are mixed in wastewater in the process of producing thermally expandable microspheres, particularly in the process of solid-liquid separation. Therefore, it is desired to reduce the amount of silica sol used as much as possible. Also, from the viewpoint of manufacturing cost, it is desirable to reduce the amount of silica sol used as much as possible.
  • alkaline silica sols there are two types of aqueous silica sols in which amorphous silica particles are dispersed in an aqueous medium: alkaline silica sols and acidic silica sols.
  • alkaline silica sol is usually used in the method for producing thermally expandable microspheres.
  • thermally expandable microspheres can be produced efficiently.
  • the aqueous dispersion medium is not subjected to suspension polymerization while maintaining an alkaline state.
  • an aqueous dispersion medium prepared by mixing alkaline silica sol with water and other necessary components is usually added with an acid such as sulfuric acid or hydrochloric acid at the final stage of the process, and the pH is changed from the alkaline side to the acidic side ( After being adjusted to about 2-4, it is subjected to suspension polymerization.
  • aqueous silica sol has the property that when the pH of the liquid is greatly changed, the dispersion state is broken and the silica particles are aggregated or settled.
  • the amorphous silica particles stably dispersed in the aqueous medium are used in a state of being destabilized (aggregated state).
  • the produced aggregated silica particles function as a true dispersion stabilizer.
  • Patent Document 2 describes a process for producing thermally expandable microspheres that use silica sol as a dispersion stabilizer and reduce the turbidity of washing wastewater by setting the amount of alkali components contained in the silica sol within a predetermined range. .
  • this production method merely reduces the whitening of the washing waste water by firmly attaching the silica particles to the surface of the thermally expandable microspheres, and discloses a method for reducing the amount of silica sol used. It is not a thing.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing thermally expandable microspheres capable of reducing the amount of silica sol used as compared with the conventional method.
  • the present invention relates to a method for producing thermally expandable microspheres comprising a step of dispersing an oily mixture containing a polymerizable component, a foaming agent and a polymerization initiator in an aqueous dispersion medium and polymerizing the polymerizable component.
  • the aqueous dispersion medium has an aqueous silica sol (a) having a pH of 9 to 11 and an SiO 2 concentration of 15 to 40% by weight, a dispersion stabilizing aid (b), an acid (c), water (d ) And a polymerization aid (e), and in the step of preparing the aqueous dispersion medium, the preparation start time of the aqueous dispersion medium is T0, the preparation end time is T100, and T0 ⁇ T ⁇ T100 is satisfied.
  • the aqueous dispersion medium is preferably prepared by further mixing an inorganic salt (f).
  • the aqueous dispersion medium contains an inorganic salt aqueous solution obtained by dissolving a part or all of the inorganic salt (f) in a part or all of the water (d), and the aqueous silica sol (a). It is preferable to prepare by mixing.
  • the method for producing thermally expandable microspheres according to the present invention reduces the amount of silica sol used compared to the conventional method, and therefore has a small environmental load in the production wastewater treatment.
  • SiO 2 concentration AT increases Is a diagram illustrating an example of a SiO 2 concentration changes in intermediates of the aqueous dispersion medium.
  • SiO 2 concentration AT decreases It is the schematic which shows an example of a thermally expansible microsphere. It is the schematic which shows an example of a hollow particle.
  • thermoly expandable microspheres In the method for producing thermally expandable microspheres of the present invention, an oily mixture containing a polymerizable component, a foaming agent and a polymerization initiator is dispersed in an aqueous dispersion medium, and the polymerizable component is polymerized (hereinafter referred to as “the polymerizable component”). A suspension polymerization step).
  • the present invention will be described in detail.
  • the suspension polymerization step includes a step of preparing an aqueous dispersion medium.
  • the aqueous dispersion medium is a medium for dispersing the oily mixture, and has an aqueous silica sol (a) having a pH of 9 to 11 and an SiO 2 concentration of 15 to 40% by weight, a dispersion stabilizing aid (b), an acid ( It is prepared by mixing c), water (d), and polymerization aid (e).
  • Aqueous silica sol used in the present invention is a colloidal dispersion of silica particles in which amorphous silica particles are dispersed in an aqueous medium, having a pH of 9 to 11, and a SiO 2 concentration. Is 15 to 40% by weight.
  • silica particles derived from an aqueous silica sol stabilize the dispersion state of oil droplets dispersed in an aqueous dispersion medium, and serve as a dispersion stabilizer that keeps the dispersion system stable during polymerization. It is a component that plays a role.
  • the inventors While examining the subject of the present invention to reduce the amount of silica sol used, the inventors have prepared an aqueous dispersion medium using an aqueous silica sol having the specific pH and SiO 2 concentration. It was found that the amount of aqueous silica sol used can be reduced by keeping the pH of the system acidic in the range where the SiO 2 concentration is low.
  • the pH of the aqueous silica sol used in the present invention is preferably 9.0 to 10.5, more preferably 9.5 to 10.5, and the SiO 2 concentration is preferably 18 to 38% by weight, more preferably 20 to 35% by weight.
  • silica particles primary particles having a size of several nanometers to several tens of nanometers initially form aggregated silica particles (secondary particles) of about several hundred nanometers by bonding.
  • these agglomerated silica particles combine to produce agglomerated large particles of about several ⁇ m, and the formation of such agglomerated silica particles is observed in the form of cloudiness of the liquid. Is done.
  • General alkaline silica sol is stable in the alkaline region and can exist stably even in the acidic region (pH 4 or lower), while the alkaline silica sol is unstable in the neutral region, and the aggregation of silica particles (primary particles) It is known to progress.
  • an aqueous dispersion medium is prepared by acidifying an alkaline silica sol through a neutral region that is temporarily unstable, agglomerated silica particles (secondary particles) are easily agglomerated in silica particles (primary particles). ) Is considered to be large.
  • the silica particles when the silica particles are aggregated, they do not pass through an unstable neutral region, so the size of the generated aggregated silica particles is small, and this exhibits an excellent function as a dispersion stabilizer. It is estimated that
  • Examples of the shape of the amorphous silica particles contained in the aqueous silica sol include a spherical shape, a chain shape, a bead shape, and a flat shape. Among these, a spherical shape is preferable.
  • the particle diameter of the amorphous silica particles is not particularly limited, but is preferably 1.0 to 50 nm, more preferably 2.0 to 40 nm, and still more preferably 3.0 to 30 nm. When the particle diameter is outside this range, the suspension system is insufficiently stable, and the dispersion system may be broken during the polymerization.
  • the particle diameter of the amorphous silica particle here means the conversion value from the specific surface area measured value (JIS Z8830) by the BET adsorption method.
  • the specific surface area of the amorphous silica particles is not particularly limited, is preferably 54 ⁇ 2720m 2 / g, more preferably 68 ⁇ 1360m 2 / g, more preferably 91 ⁇ 910m 2 / g.
  • the specific surface area of an amorphous silica particle here means what is measured by the Sears method. As described in Analytical Chemistry, Vol. 28, No. 12 (December 1956), p. 1981, the Sears method determines the specific surface area by quantifying the amount of silanol groups on the surface of silica particles. It is a method of measuring.
  • aqueous silica sol Various grades of aqueous silica sol are commercially available. For example, “Quatron” series manufactured by Fuso Chemical Industry Co., Ltd., “Adelite” series manufactured by ADEKA Co., Ltd., “Silica Doll” series manufactured by Nippon Chemical Industry Co., Ltd. “Snowtex” series manufactured by Nissan Chemical Industries, Ltd., “Ludox” series manufactured by Dupont, and the like.
  • the amount of the aqueous silica sol (a) is preferably 2 to 100 parts by weight, more preferably 2 to 80 parts by weight with respect to 100 parts by weight of water (d).
  • the dispersion stabilizing aid aggregates the aqueous silica sol, and makes the coalesced oil droplets containing a polymerizable monomer coalesced by causing the aggregated silica particles to exist at the water / oil interface. It is a component which suppresses and stabilizes the polymerization process.
  • the dispersion stabilizing aid is not particularly limited, and examples thereof include polymer type dispersion stabilizing aids; interfaces such as cationic surfactants, anionic surfactants, zwitterionic surfactants and nonionic surfactants. Mention may be made of activators. Among these, a polymer type dispersion stabilizing aid is preferable.
  • One dispersion stabilizer may be used alone, or two or more dispersion stabilizers may be used in combination.
  • the polymer type dispersion stabilizing auxiliary agent include condensation products of diethanolamine and aliphatic dicarboxylic acid, condensation products of urea and formaldehyde, polyvinylpyrrolidone, polyethylene oxide, gelatin, methylcellulose, polyvinyl alcohol and the like. .
  • Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • Examples of the anionic surfactant include fatty acid salts such as sodium oleate and castor oil potassium; alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; alkylnaphthalene sulfone.
  • Examples include acid salt; alkane sulfonate; dialkyl sulfosuccinate; alkyl phosphate ester salt; naphthalene sulfonic acid formalin condensate; polyoxyethylene alkyl phenyl ether sulfate ester; polyoxyethylene alkyl sulfate ester salt.
  • Examples of the zwitterionic surfactant include alkyldimethylaminoacetic acid betaine, alkyldihydroxyethylaminoacetic acid betaine, and lauryldimethylamine oxide.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid Examples thereof include esters and polyoxyethylene-polyoxypropylene block polymers.
  • These dispersion stabilizing aids may be diluted with water (d) in advance and used as an active ingredient, for example, in the form of an aqueous solution of about 10 to 50% by weight.
  • the blending amount of the dispersion stabilizing auxiliary (b) is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of water (d).
  • the acid used in the present invention is a component used for the purpose of maintaining the pH of the aqueous dispersion medium acidic, and it is usually sufficient to add a very small amount to the aqueous dispersion medium.
  • the acid is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid, and organic acids such as formic acid, acetic acid, and oxalic acid. In these, an inorganic acid is preferable and a sulfuric acid is especially preferable. These acids may be used individually by 1 type, and may use 2 or more types together.
  • These acids may be diluted with water (d) in advance and used as an active ingredient, for example, in the form of an aqueous solution of about 10 to 50% by weight.
  • the compounding amount of the acid (c) is not particularly limited.
  • the acid (c) may be appropriately adjusted so as to maintain the pH within a desired range.
  • Water Water used in the present invention is a component constituting most of the aqueous dispersion medium.
  • Examples of water include pure water, distilled water, purified water, soft water, ion exchange water, industrial water, well water, tap water, and the like. Among these, soft water and / or ion exchange water are preferable.
  • the polymerization aid used in the present invention is a component that suppresses the generation of an emulsion polymer in an aqueous dispersion medium and also prevents the generation of scale (scum).
  • the scale (scum) means a huge polymer lump that adheres to the inner wall of the reactor, the stirring blade, or the like after the polymerization reaction, or floats in the slurry after polymerization.
  • the polymerization aid is not particularly limited. For example, a polyalkyleneimine having a structure in which an alkyl group substituted with a hydrophilic functional group selected from a carboxylic acid (salt) group and a phosphonic acid (salt) group is bonded to a nitrogen atom.
  • Water-soluble 1,1-substituted compounds having a structure in which a hetero atom and a hydrophilic functional group selected from a hydroxyl group, a carboxylic acid (salt) group and a phosphonic acid (salt) group are bonded to the same carbon atom; Dichromates such as sodium chromate, potassium dichromate and ammonium dichromate; alkali metal nitrites such as sodium nitrite and potassium nitrite; zirconium salts such as zirconium sulfate, zirconium acetate, zirconium chloride and zirconium nitrate; Titanium chloride; metal (III) halide; boric acid; water-soluble ascorbic acids; water-soluble polypheno S; water-soluble vitamin B; water-soluble phosphonic acid (salt) and the like can be mentioned.
  • Dichromates such as sodium chromate, potassium dichromate and ammonium dichromate
  • alkali metal nitrites such
  • water solubility here means the state which melt
  • polymerization aids may be used alone or in combination of two or more.
  • the blending amount of the polymerization aid (e) is preferably 0.0001 to 1 part by weight, more preferably 0.001 to 0.1 part by weight with respect to 100 parts by weight of water (d).
  • the aqueous dispersion medium in the present invention may be prepared by further mixing an inorganic salt or the like.
  • inorganic salts include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, and sodium carbonate. These inorganic salts may be used alone or in combination of two or more.
  • the polymerizable component described later contains a high amount of highly water-soluble monomers, it is preferable to use an inorganic salt in the aqueous dispersion medium in order to suppress elution of these monomers into the aqueous dispersion medium.
  • the compounding amount of the inorganic salt is preferably 0 to 40 parts by weight, more preferably 1 to 32 parts by weight with respect to 100 parts by weight of water (d).
  • the aqueous dispersion medium in the step of preparing the aqueous dispersion medium, the aqueous dispersion medium intermediate produced at any time T satisfying T0 ⁇ T ⁇ T100, where T0 is the preparation start time of the aqueous dispersion medium and T100 is the preparation end time.
  • T0 is the preparation start time of the aqueous dispersion medium
  • T100 is the preparation end time.
  • the SiO 2 concentration a T wt% when the SiO 2 concentration of the aqueous dispersion medium in the T100 was a T100 wt%, 0 ⁇ in the a T satisfying a T ⁇ 15, 0 and the pH of the intermediate
  • AT 100 is set to 0.5 to 8.
  • the preparation start time T0 of the aqueous dispersion medium means a point in time when any two or more of (a) to (f) described above are started to be mixed, and an intermediate of the aqueous dispersion medium (
  • intermediate may be used to mean any mixture produced by mixing any two or more of (a) to (f) described above.
  • the number of intermediates is not necessarily one, and two or more intermediates may be present.
  • the preparation end time T100 of the aqueous dispersion medium means a time point when all components necessary for preparation of the aqueous dispersion medium have been mixed.
  • the above procedure roughly means that when the aqueous silica sol (a) is diluted mainly with water (d), the pH of the intermediate is kept acidic. By doing in this way, the usage-amount of aqueous silica sol (a) can be reduced.
  • the SiO 2 concentration AT of the intermediate can be obtained by calculation from the initial SiO 2 concentration of the aqueous silica sol (a) and the amount of each component (a) to (f) required to produce the intermediate. it can.
  • the SiO 2 concentration AT of the intermediate changes in the following two ways depending on the blending order of the aqueous silica sol. (I) When AT increases When water is prepared in advance and a dispersion stabilizing aid and an aqueous silica sol are mixed here, AT increases as the aqueous silica sol is added. A schematic diagram showing the transition of the SiO 2 concentration AT in this case is shown in FIG. In FIG. 1, AT satisfies 0 ⁇ A T ⁇ 15 in the range of T0 ⁇ T ⁇ T100.
  • the acid (c) described above is used.
  • a small amount of Na 2 O is blended as an alkali component. If the amount of the aqueous silica sol (a) blended in the aqueous dispersion medium is determined, the amount of Na 2 O contained therein is determined.
  • the amount of acid (c) required to maintain the pH of the intermediate in the range of 0.8-7 can be predicted. Further, if necessary, a method such as appropriately adding the acid (c) while confirming the pH of the intermediate with a pH meter as needed may be used.
  • the pH of the intermediate in the range of 0.8 to 7 in AT satisfying 0 ⁇ A T ⁇ 15.
  • the pH of the intermediate may be maintained in the range of 0.8-7, preferably 1-6, more preferably 2-5.
  • AT 100 is usually from 0.5 to 8, preferably from 0.6 to 7, more preferably from 0.7 to 6.5. When AT100 is less than 0.5, the stability of the suspension system is insufficient, and the dispersion system is broken during the polymerization.
  • the pH of the aqueous dispersion medium at T100 is preferably 2 to 6, more preferably 2 to 4. When the pH is outside the range of 2 to 6, the stability of the suspension system is insufficient, and the dispersion system may be broken during the polymerization.
  • Stirring may be performed using a normal stirring device, and the method is not particularly limited.
  • a bar-like, plate-like, propeller-like stirrer is rotated in a constant direction at a constant speed via a rotating shaft.
  • the required power per unit volume required for preparing the aqueous dispersion medium is not particularly limited, but from the viewpoint of making the aqueous dispersion medium uniform, the required power per unit volume of 0.1 to 10 kW / m 3 is required. It is preferable to stir with power.
  • Aspect 1 Water (d) is added to a container for preparing an aqueous dispersion medium (hereinafter simply referred to as a container) equipped with a stirrer, and the stirrer of the container is started. Next, the required amount of acid (c) is added to water (d) in the container. Further, a dispersion stabilizing aid (b) is added thereto. Then, the aqueous silica sol (a) is gradually added while maintaining the pH of the intermediate in the container in the range of 0.8-7.
  • an aqueous dispersion medium is prepared in the same manner as in Embodiment 1 except that the order in which the acid (c) and the dispersion stabilizing auxiliary (b) are added is changed.
  • Aspect 3 Water (d) is added to the container and the container agitator is activated. Next, the required amount of acid (c) is added to water (d) in the container. Then, the aqueous silica sol (a) is gradually added while maintaining the pH of the intermediate in the container in the range of 0.8-7. Thereafter, the dispersion stabilizing aid (b) is added.
  • Aspect 4 Water (d) is added to the container and the container agitator is activated.
  • the dispersion stabilizing aid (b) is added to the water (d) in the container.
  • the aqueous silica sol (a) and the acid (c) are simultaneously added to the intermediate in the container via separate lines. At this time, each feed rate is adjusted so that the pH of the intermediate in the container is maintained in the range of 0.8-7.
  • Aspect 5 Water (d) is added to the container and the container agitator is activated.
  • the aqueous silica sol (a) and the acid (c) are simultaneously added to the water (d) in the container via separate lines. At this time, each feed rate is adjusted so that the pH of the intermediate in the container is maintained in the range of 0.8-7.
  • the dispersion stabilizing aid (b) is added.
  • Aspect 6 Add the dispersion stabilizing aid (b) to the container. Next, the aqueous silica sol (a) is added and the stirring device of the container is started. Further, acid (c) is added to bring the pH of the intermediate in the container to a range of 0.8-7. Thereafter, water (d) is added.
  • Aspect 7 Add the dispersion stabilizing aid (b) to the container. The acid (c) is then added. Furthermore, the aqueous silica sol (a) is added, and the stirring device of the container is started. At this time, the pH of the intermediate in the container is set to a range of 0.8-7. Thereafter, water (d) is added.
  • Aspect 8 The aqueous silica sol (a) is added to the container, and the stirring apparatus of the container is started. Then acid (c) is added to bring the pH to the range of 0.8-7. Further, a dispersion stabilizing aid (b) and water (d) are added. In Embodiments 1 to 8, the polymerization aid (e) may be added at any stage during preparation of the aqueous dispersion medium. In addition, as long as the pH of the intermediate in the container is maintained in the range of 0.8 to 7, there is no limitation on the supply rate of the aqueous silica sol (a) and the acid (c).
  • aspects 1 to 8 are merely examples for explaining the embodiment of the present invention, and various other aspects are possible. Further, when the components (a) to (e) are mixed, the components do not necessarily have to be mixed all at once, and may be mixed in multiple times at different times. That is, as such an embodiment, for example, in the embodiment 1, the step of adding the dispersion stabilizing auxiliary agent (b) is divided into two (referred to as the first addition step and the second addition step, respectively), and the first addition step is the embodiment 1. It can be performed immediately after adding the acid (c) in the same manner as described above, and the second addition step can be performed after adding the aqueous silica sol (a).
  • the aqueous dispersion medium is prepared by further mixing the inorganic salt (f) in addition to (a) to (e) because the effect of the present invention is further improved.
  • the inorganic salt (f) may be added at any stage during preparation of the aqueous dispersion medium, but the aqueous dispersion medium dissolves part or all of the inorganic salt (f) in part or all of the water (d). It is preferable to prepare an inorganic salt aqueous solution obtained by mixing the aqueous silica sol (a).
  • the method of the present invention can be applied regardless of the particle size of the target thermally expandable microsphere, but particularly when producing a thermally expandable microsphere having a small particle size. Remarkably effective.
  • the present invention exhibits its effect by adopting a specific method in the step of preparing the aqueous dispersion medium. Therefore, there is no restriction
  • a typical example of an oily mixture is as follows.
  • the oily mixture contains a polymerizable component, a foaming agent and a polymerization initiator.
  • the polymerizable component is a component that becomes a thermoplastic resin that forms the outer shell of the thermally expandable microsphere by polymerizing in the presence of a polymerization initiator.
  • the polymerizable component is a component which essentially includes a monomer component and may contain a crosslinking agent.
  • the monomer component generally means a component called a radical polymerizable monomer having one polymerizable double bond.
  • the monomer component is not particularly limited.
  • nitrile monomers such as acrylonitrile, methacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, maleic acid, itaconic acid, fumaric acid Carboxyl group-containing monomers such as acid, citraconic acid and chloromaleic acid; vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate Vinyl ester monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate , Phenyl (meth) acrylate, isobornyl (meth) a
  • Acrylamide monomers Maleimide monomers such as N-phenylmaleimide and N-cyclohexylmaleimide; Styrene monomers such as styrene and ⁇ -methylstyrene; Ethylene unsaturated monoolefins such as ethylene, propylene and isobutylene Monomers; vinyl ether monomers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether; vinyl ketone monomers such as vinyl methyl ketone; N-vinyl such as N-vinyl carbazole and N-vinyl pyrrolidone Monomer, vinyl naphthalene salt and the like.
  • a monomer component may be used individually by 1 type among these radically polymerizable monomers, and may use 2 or more types together.
  • (meth) acryl means acryl or methacryl.
  • Polymerizable components include nitrile monomers, carboxyl group-containing monomers, (meth) acrylate monomers, styrene monomers, vinyl ester monomers, acrylamide monomers, and halogenated monomers. It is preferable to contain at least one monomer component selected from vinylidene monomers.
  • the polymerizable component includes a nitrile monomer as a monomer component as an essential component
  • the resulting thermally expandable microspheres are preferable because of excellent solvent resistance.
  • nitrile monomer acrylonitrile, methacrylonitrile and the like are easily available, and are preferable because of high heat resistance and solvent resistance.
  • the weight ratio of the nitrile monomer is not particularly limited, but is preferably 20 to 100% by weight of the monomer component, more preferably 50 to 100% by weight, and particularly preferably 80 to 100% by weight. is there. When the nitrile monomer is less than 20% by weight of the monomer component, the effect of improving the solvent resistance may not be obtained.
  • the polymerizable component contains a carboxyl group-containing monomer as a monomer component as an essential component because the resulting heat-expandable microspheres are excellent in heat resistance.
  • a carboxyl group-containing monomer acrylic acid or methacrylic acid is easy to obtain and is preferable because heat resistance is improved.
  • the weight ratio of the carboxyl group-containing monomer is not particularly limited, but is preferably 10 to 70% by weight, more preferably 25 to 45% by weight, and particularly preferably 30 to 45% by weight with respect to the monomer component. 40% by weight.
  • the carboxyl group-containing monomer is less than 10% by weight, the heat resistance improvement effect may not be obtained.
  • the carboxyl group-containing monomer is more than 70% by weight, the gas barrier property may be lowered.
  • the polymerizable component contains vinylidene chloride
  • gas barrier properties are improved.
  • the polymerizable component contains a (meth) acrylic acid ester monomer and / or a styrene monomer
  • the thermal expansion characteristics can be easily controlled.
  • the polymerizable component contains a (meth) acrylamide monomer
  • the heat resistance is improved.
  • the weight ratio of at least one selected from vinylidene chloride, (meth) acrylic acid ester monomer, styrene monomer, and (meth) acrylamide monomer is preferably relative to the monomer component. It is less than 80% by weight, more preferably less than 30% by weight.
  • the polymerizable component may contain a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds in addition to the monomer component.
  • crosslinking agent polymerizable monomer having two or more polymerizable double bonds in addition to the monomer component.
  • the crosslinking agent is not particularly limited.
  • divinylbenzene, allyl methacrylate, triacryl formal, triallyl isocyanate ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, polypropylene glycol # 400 di (meth) acrylate, polypropylene glycol # 700 di (meth) acrylate Rate, trimethylolpropane trimethacrylate, EO-modified trimethylolpropan
  • crosslinking agents may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the crosslinking agent is not particularly limited and may be omitted. However, in consideration of the retention of the foaming agent during thermal expansion, the extensibility of the outer shell resin, the heat resistance, etc., the amount of the crosslinking agent is a single amount. The amount is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the body component.
  • the blowing agent is not particularly limited as long as it is a substance that is vaporized by heating.
  • propane for example, propane, (iso) butane, (iso) pentane, cyclopentane, (iso) hexane, cyclohexane, methylcyclopentane, (iso ) Heptane, ethylcyclopentane, methylcyclohexane, (iso) octane, ethylcyclohexane, (iso) nonane, (iso) decane, (iso) undecane, (iso) dodecane, (iso) tridecane, (iso) hexadecane, (iso ) Hydrocarbons having 3 to 20 carbon atoms such as eicosane; pseudocumene, petroleum ether, hydrocarbons such as petroleum fractions such as normal paraffin and isoparaffin having an initial boiling point of 150 to 260 ° C
  • the polymerization initiator is not particularly limited.
  • peroxides such as peroxydicarbonate, peroxyester, and diacyl peroxide
  • azo compounds such as azonitrile, azoester, azoamide, azoalkyl, and polymeric azo initiator Can be mentioned.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the polymerization initiator is preferably an oil-soluble polymerization initiator that is soluble in the radical polymerizable monomer.
  • the amount of the polymerization initiator is not particularly limited, but is preferably 0.3 to 8 parts by weight, and more preferably 0.6 to 7 parts by weight with respect to 100 parts by weight of the polymerizable component.
  • the oily mixture may further contain a chain transfer agent, an organic pigment, a thermosetting resin, and the like.
  • the oily mixture is dispersed in an aqueous dispersion medium so that spherical oil droplets having a predetermined particle diameter (usually about 1 to 100 ⁇ m) are prepared.
  • a method for dispersing the oily mixture for example, a method of stirring with a homomixer (for example, manufactured by Primix Co., Ltd.), a homodisper (for example, manufactured by Primix Co., Ltd.) or the like, And the like, a general dispersion method such as a method using a static dispersion apparatus such as a membrane emulsification method, an ultrasonic dispersion method, and a microchannel method.
  • the ratio of the aqueous dispersion medium and the oily mixture is not particularly limited, but it is preferable to use 150 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the oily mixture.
  • the amount of the aqueous dispersion medium is less than 150 parts by weight, the amount of the dispersion medium with respect to the dispersoid is insufficient, so that an O / W emulsion may not be obtained.
  • the amount of the aqueous dispersion medium exceeds 1000 parts by weight, the amount of products obtained at a time is small and the productivity is poor.
  • suspension polymerization is started by heating the dispersion in which the oily mixture is dispersed in the aqueous dispersion medium as spherical oil droplets.
  • the polymerization temperature is freely set depending on the kind of the polymerization initiator, but is preferably controlled in the range of 30 to 100 ° C, more preferably 40 to 90 ° C, and particularly preferably 50 to 85 ° C.
  • the time for maintaining the reaction temperature is preferably about 0.1 to 20 hours.
  • the initial polymerization pressure is not particularly limited, but the gauge pressure is in the range of 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.0 MPa.
  • the slurry after polymerization in addition to the target heat-expandable microspheres, aggregation of the heat-expandable microspheres
  • By-products such as product and polymerization residue may be generated. Since the size of such a by-product is generally larger than the particle size of the thermally expandable microsphere, the by-product does not pass through a certain sieve. Therefore, by evaluating the sieve passage rate of the slurry after polymerization, it can be determined whether or not the thermally expandable microspheres could be stably produced.
  • the sieve passing rate is preferably 80% by weight or more, more preferably 85% by weight or more, and particularly preferably 90% by weight or more. If the sieve passage rate is less than 80% by weight, it cannot be said that thermally expandable microspheres can be produced with good productivity. The definition of the sieve passing rate will be described in the embodiment.
  • Examples of the method for isolating the thermally expandable microspheres from the slurry after polymerization include isolation methods such as suction filtration, pressure filtration, and centrifugal separation. A liquid cake is obtained.
  • the dried thermally expandable microspheres can be obtained by further performing drying operations such as shelf drying, reduced pressure drying and airflow drying on the obtained liquid expandable microsphere-containing cake.
  • the thermally expandable microspheres may be washed with water in order to purify the thermally expandable microspheres.
  • the thermally expandable microsphere obtained by the production method of the present invention will be described.
  • the heat-expandable microsphere has a core-shell composed of an outer shell (shell) 11 made of a thermoplastic resin and a foaming agent (core) 12 encapsulated therein and vaporized by heating. It has a structure, and the thermally expandable microsphere exhibits thermal expandability (property that the entire microsphere expands by heating) as the entire microsphere.
  • the average particle diameter of the heat-expandable microsphere is not particularly limited, but is usually 0.1 to 100 ⁇ m, preferably 0.5 to 80 ⁇ m, more preferably 1 to 70 ⁇ m, and further preferably 2 to 60 ⁇ m. Particularly preferred is 2 to 50 ⁇ m, particularly preferred is 2 to 40 ⁇ m, and most preferred is 2 to 30 ⁇ m.
  • the average particle diameter of the thermally expandable microsphere is less than 0.1 ⁇ m, sufficient expandability may not be obtained. Further, when the average particle diameter of the thermally expandable microspheres is more than 100 ⁇ m, it may be unsuitable for applications requiring surface smoothness.
  • the coefficient of variation CV of the particle size distribution of the heat-expandable microspheres is not particularly limited, but is preferably 35% or less, more preferably 30% or less, and particularly preferably 25% or less.
  • the variation coefficient CV is calculated by the following calculation formulas (1) and (2).
  • the encapsulating rate of the foaming agent is defined as the percentage of the weight of the foaming agent encapsulated in the thermally expandable microspheres relative to the weight of the thermally expandable microspheres.
  • the encapsulating rate of the foaming agent is not particularly limited, and the encapsulating rate is appropriately determined depending on the intended use, but is preferably 1 to 35% by weight, more preferably 2 to 30% by weight, and particularly preferably 3 to 25% by weight. %. If the encapsulation rate is less than 1% by weight, the effect of the foaming agent may not be obtained.
  • the thermally expandable microspheres obtained by the method of the present invention have a small amount of silica adhering to the surface and little aggregation during drying.
  • Hollow particles can be obtained by heating and expanding the thermally expandable microspheres.
  • the hollow particles are lightweight and have excellent material properties when included in a composition or a molded product.
  • Examples of the method for producing the hollow particles include a dry heat expansion method and a wet heat expansion method.
  • the temperature at which the thermally expandable microspheres are heated and expanded is preferably 60 to 350 ° C.
  • the average particle size of the hollow particles is not particularly limited because it can be designed freely according to the application, but is preferably 1 to 1000 ⁇ m, more preferably 2 to 200 ⁇ m.
  • the coefficient of variation CV of the particle size distribution of the hollow particles is not particularly limited, but is preferably 30% or less, and more preferably 25% or less.
  • the true specific gravity of the hollow particles is not particularly limited, but is preferably 0.005 to 0.5, more preferably 0.01 to 0.3, and particularly preferably 0.01 to 0.2.
  • the hollow particles (1) may be composed of fine particles (4 and 5) attached to the outer surface of the outer shell (2). There is.
  • the adhesion mentioned here may be a state (4) in which the fine particles (4 and 5) are simply adsorbed on the outer surface of the outer shell (2), and the fine particles sink into the outer shell melted by heating and are fixed. This means that it may be in the state (5).
  • the particle shape of the fine particles may be indefinite or spherical. In the fine particle-adhered hollow particles, workability (handling) during use is improved.
  • the average particle size of the fine particles is appropriately selected depending on the size of the hollow body used, and is not particularly limited, but is preferably 0.001 to 30 ⁇ m, more preferably 0.005 to 25 ⁇ m, and particularly preferably 0.01 to 20 ⁇ m.
  • the fine particles can be used as the fine particles, and any of inorganic materials and organic materials may be used.
  • the shape of the fine particles include a spherical shape, a needle shape, and a plate shape.
  • the average particle size of the fine particles is preferably 1/10 or less of the average particle size of the hollow body.
  • the average particle diameter of the fine particles means the average particle diameter of the primary particles.
  • the fine particle-adhered hollow particles can be obtained, for example, by heating and expanding fine particle-adhered thermally expandable microspheres.
  • the method for producing the fine particle-attached hollow particles includes a step of mixing thermally expandable microspheres and fine particles (mixing step), and heating the mixture obtained in the mixing step to expand the thermally expandable microspheres.
  • a production method including a step of attaching fine particles to the outer surface of the obtained hollow particles (attachment step) is preferable.
  • the true specific gravity of the fine particle-attached hollow particles is not particularly limited, but is preferably 0.01 to 0.5, more preferably 0.03 to 0.4, and particularly preferably 0.05 to 0.35. Most preferably, it is 0.07 to 0.30. When the true specific gravity of the fine particle-adhered hollow particles is less than 0.01, the durability may be insufficient. On the other hand, when the true specific gravity of the fine particle-attached hollow particles is larger than 0.5, the effect of reducing the specific gravity is reduced. Sometimes.
  • the water content of the hollow particles is not particularly limited, but is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, particularly preferably 0.35% by weight or less, and most preferably 0.3% by weight. It is as follows. The lower limit of the moisture content of the hollow particles is 0% by weight. The moisture of the hollow particles exists like so-called crystal water.
  • composition and molded product A composition can be prepared by mixing the thermally expandable microspheres and / or the hollow particles with a base material component.
  • the base material component is not particularly limited.
  • rubbers thermosetting resins; waxes; thermoplastic resins; thermoplastic elastomers; bioplastics; modified silicones, urethanes, polysulfides, acrylics, polys
  • sealing materials such as isobutylene and butyl rubber
  • inorganic materials such as cement, mortar, and cordierite.
  • the composition includes lightweight fillers such as perlite, fly ash, shirasu balloon, glass balloon, phenol balloon, carbon balloon, alumina bubble, and expanded styrene beads; glass Reinforcing agents such as fibers and aramid fibers; fillers such as silica, talc and calcium carbonate; additives such as pigments such as titanium oxide and magnesium oxide may be further blended. These additives may be used individually by 1 type, and may use 2 or more types together.
  • lightweight fillers such as perlite, fly ash, shirasu balloon, glass balloon, phenol balloon, carbon balloon, alumina bubble, and expanded styrene beads
  • glass Reinforcing agents such as fibers and aramid fibers
  • fillers such as silica, talc and calcium carbonate
  • additives such as pigments such as titanium oxide and magnesium oxide may be further blended. These additives may be used individually by 1 type, and may use 2 or more types together.
  • compositions examples include a molding composition, a coating composition, a clay composition, a fiber composition, an adhesive composition, and a powder composition. More specific uses of the composition include cosmetics, putty, paints, sealants, mortar, paper clay, earthenware, artificial marble, etc. In these uses, thermally expandable microspheres and / or hollow particles Effects such as weight reduction, heat insulation, and shrinkage prevention can be imparted.
  • a molded article can be obtained by molding the composition.
  • a film, a coating film, a molded product, etc. can be mentioned, for example.
  • a molded product containing an inorganic substance as a base component is further fired to obtain a ceramic filter or the like in which closed cells are formed.
  • the pH was measured using a pH meter (product number HM-12P) manufactured by Toa DKK Corporation.
  • the measured heat-expandable microspheres volume mean diameter D 50 value was defined as the average particle size by a wet measuring method.
  • Example 1 600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. Next, 180 g of sodium chloride as an inorganic salt was added and dissolved. To this, 0.30 g of 62% sulfuric acid was added as an acid. The pH of the aqueous dispersion medium intermediate at this stage was 1.0. Next, 2.0 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. The pH of the aqueous dispersion medium intermediate at this stage was 1.0.
  • silica sol A (average particle diameter 10 nm, specific surface area 270 m 2 / g, SiO 2 concentration 20% by weight, pH 10.2) was gradually added as an aqueous silica sol while confirming the pH.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.5.
  • polyethyleneimine substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.0. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.0.
  • monomer components (acrylonitrile 180 g, methacrylonitrile 105 g, methyl methacrylate 15 g), crosslinking agent (trimethylolpropane trimethacrylate 0.80 g), blowing agent (isopentane 50 g), and polymerization initiator A (Lauroyl peroxide 1.5 g) was mixed to prepare an oily mixture.
  • the aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer at 8000 rpm for 2 minutes to prepare a suspension.
  • This suspension was transferred to a pressure reactor having a capacity of 1.5 liters, purged with nitrogen, brought to an initial reaction pressure of 0.2 MPa, and polymerized at a polymerization temperature of 70 ° C. for 15 hours while stirring at 80 rpm.
  • the obtained polymerization product was filtered and dried to obtain thermally expandable microspheres.
  • Example 2 In Example 1, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that the addition order of sulfuric acid and polyvinylpyrrolidone was reversed and the amount of sulfuric acid was changed to 0.24 g.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.0 to 3.8.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 4.0.
  • Example 3 In Example 1, the amount of polyvinyl pyrrolidone (30% by weight aqueous solution) was 4.1 g, and the aqueous dispersion medium and thermal expansibility were the same as in Example 1 except that the order of addition of polyvinyl pyrrolidone and silica sol A was reversed. A microsphere was obtained.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.1 to 2.8.
  • Example 4 In Example 3, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 3 except that the amount of silica sol A added was 60 g and the amount of sulfuric acid was 0.27 g.
  • the pH of the aqueous dispersion medium intermediate when adding the aqueous silica sol was in the range of 1.3 to 2.8.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.4
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.4
  • the pH was 3.0. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared ranged from 1.3 to 3.0.
  • Example 5 600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. Next, 180 g of sodium chloride as an inorganic salt was added and dissolved, and 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. Here, 0.30 g of 62% sulfuric acid was added as an acid at a rate of 0.08 g / min using a metering pump.
  • silica sol A as an aqueous silica sol was started at a rate of 16 g / min using a metering pump.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.0 to 2.7.
  • polyethyleneimine substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.0. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.0-3.0.
  • thermally expandable microspheres were obtained in the same manner as in Example 1 except that the aqueous dispersion medium obtained in this example was used.
  • Example 6 an aqueous dispersion medium and thermally expandable microspheres were prepared in the same manner as in Example 5 except that 4.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) as a dispersion stabilizing aid was mixed after the addition of silica sol A. Obtained.
  • the pH of the aqueous dispersion medium intermediate when adding the aqueous silica sol was in the range of 2.0 to 2.6.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.1. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.0 to version 3.1.
  • Example 7 To a container for preparing an aqueous dispersion medium equipped with a stirrer, 4.2 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. Here, 72 g of silica sol A was gradually added as an aqueous silica sol, and the stirring device of the container was started. Further, 0.30 g of 62% sulfuric acid was added as an acid. At this stage, the SiO 2 concentration in the aqueous dispersion medium intermediate was 18.6% by weight, and the pH was 2.8.
  • aqueous dispersion medium 600 g of ion-exchanged water in which 180 g of sodium chloride was dissolved was added to the above vessel while stirring, and polyethyleneimines (substituted alkyl group: —CH 2 COONa, substitution rate of substituted alkyl group: 80 as a polymerization aid). %, Weight average molecular weight: 50,000) 1.0 g was added to obtain an aqueous dispersion medium. The pH of the aqueous dispersion medium intermediate after the stage where the sodium chloride aqueous solution was added and AT became less than 15 was 2.8. The obtained aqueous dispersion medium had a SiO 2 concentration (A T100 ) of 1.7 and a pH of 3.1.
  • pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.8 to version 3.1.
  • monomer components acrylonitrile 180 g, methacrylonitrile 105 g, methyl methacrylate 15 g
  • crosslinking agent trimethylolpropane trimethacrylate 1.1 g
  • blowing agent isopentane 70 g
  • polymerization initiator A Liauroyl peroxide 1.5 g
  • Example 7 In Example 7, the aqueous dispersion medium and thermal expansion were the same as in Example 7, except that the order of addition of sulfuric acid and silica sol A was reversed and 6.3 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added. Sex microspheres were obtained.
  • Example 9 In Example 8, except that the order of addition of polyvinylpyrrolidone and silica sol A was reversed, 2.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added, and sulfuric acid was 0.42 g.
  • an aqueous dispersion medium and thermally expandable microspheres were obtained.
  • a pH of the aqueous dispersion medium intermediate after the stage in which an aqueous sodium chloride solution was added and AT was less than 15 was 1.9.
  • the obtained aqueous dispersion medium had a SiO 2 concentration (A T100 ) of 1.7 and a pH of 2.1. 0 in ⁇ A T ⁇ satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.9-2.1.
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.3 to 6.1. Further, thermally expandable microspheres were obtained in the same manner as in Example 1 except that the aqueous dispersion medium obtained in this example was used.
  • Example 11 In Example 1, instead of silica sol A, silica sol B (average particle size 6 nm, specific surface area 450 m 2 / g, SiO 2 concentration 20 wt%, pH 9.7) was used in the same manner as in Example 1, An aqueous dispersion medium and thermally expandable microspheres were obtained.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.7.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1.
  • Example 12 In Example 2, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 2 except that 72 g of silica sol B was used instead of silica sol A. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.8.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.2. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.2.
  • Example 13 In Example 1, 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added, and instead of silica sol A, silica sol C (average particle size 10 nm, specific surface area 270 m 2 / g, SiO 2 concentration 30% by weight, pH 10.2). ) An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that 48 g was used. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.7.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.9
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.9
  • the pH was 3.0. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.0.
  • Example 14 In Example 2, 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added, 48 g of silica sol C was used instead of silica sol A, and sulfuric acid was changed to 0.24 g. Medium and thermally expandable microspheres were obtained.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.9.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 4.1. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.2 to 4.1.
  • Example 15 In Example 1, 4.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added, and instead of silica sol A, silica sol D (average particle size 10 nm, specific surface area 270 m 2 / g, SiO 2 concentration 40% by weight, pH 10.0) ) An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that 36 g was used. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.7.
  • Example 16 In Example 2, 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added, 36 g of silica sol D was used instead of silica sol A, and 0.42 g of sulfuric acid was used. Medium and thermally expandable microspheres were obtained.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 0.8 to 1.9.
  • SiO 2 concentration of the obtained aqueous dispersion medium (A T100) is 1.8
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 0.8 to 2.1.
  • the pH of the aqueous dispersion medium intermediate changed from 8.1 to 2.7.
  • 1.0 g of polyethyleneimine substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000 was added as a polymerization aid to prepare an aqueous dispersion medium.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.0.
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 8.1. The following were obtained in the same manner as in Example 1 to obtain thermally expandable microspheres.
  • aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 1 except that 120 g of silica sol A, 5.2 g of polyvinylpyrrolidone (30% by weight aqueous solution), and 0.50 g of sulfuric acid were used.
  • the pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 6.4 to 8.1.
  • SiO 2 concentration of the obtained aqueous dispersion medium (A T100) is 2.6
  • pH was 3.0.
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 8.1.
  • An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 1 except that 135 g of silica sol A, 5.2 g of polyvinylpyrrolidone (30% by weight aqueous solution), and 0.56 g of sulfuric acid were used.
  • the pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 6.4 to 8.1.
  • the pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 5.5 to 7.9.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.0. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 7.9.
  • Comparative Example 5 In Comparative Example 4, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 4 except that the order of addition of polyvinylpyrrolidone and sulfuric acid was reversed.
  • the pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 5.5 to 7.9.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.0.
  • Example 17 An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 2 except that the components shown in Table 4 were changed.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.5 to 3.7.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.0, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.0, and the pH was 4.0.
  • Example 18 An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that the components shown in Table 4 were changed.
  • the pH of the aqueous dispersion medium intermediate when adding the aqueous silica sol was in the range of 1.3 to 3.2.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.0, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.4, and the pH was 3.5.
  • Example 19 600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. To this, 0.37 g of 62% sulfuric acid was added as an acid. At this stage, the pH of the aqueous dispersion medium intermediate was 2.2. Next, 2.4 g of an adipic acid-diethanolamine condensate (effective concentration 50% by weight) was added as a dispersion stabilizing aid. The pH of the aqueous dispersion medium intermediate at this stage was 2.3. Then, while confirming the pH, 56 g of silica sol A was gradually added as an aqueous silica sol.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.3. Furthermore, 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substitution rate of substituted alkyl group: 80%, weight average molecular weight: 50,000) was added as a polymerization aid, and finally 62% sulfuric acid was added. Then, an aqueous dispersion medium was prepared with a pH of 3.1. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7, and the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7.
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.2 to 3.3.
  • monomer components (135 g vinylidene chloride, 135 g acrylonitrile, 30 g methyl methacrylate), a crosslinking agent (trimethylolpropane trimethacrylate 0.70 g), a blowing agent (isobutane 63 g), and a polymerization initiator B
  • An oily mixture was prepared by mixing 1.5 g of diisopropyl peroxydicarbonate (purity 50%).
  • the aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer at 8000 rpm for 2 minutes to prepare a suspension.
  • This suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, and then the initial reaction pressure was set to 0.2 MPa, and polymerization was carried out at a polymerization temperature of 50 ° C. for 15 hours while stirring at 80 rpm.
  • the obtained polymerization product was filtered and dried to obtain thermally expandable microspheres.
  • Example 20 An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 19 except that the addition order of the condensate of sulfuric acid and adipic acid-diethanolamine was reversed.
  • the pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.3.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.1.
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.2 to 3.3.
  • Example 21 An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 19 except that the addition order of the adipic acid-diethanolamine condensate and silica sol A was reversed. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.5.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7
  • the pH was 3.1. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.2 to 3.5.
  • aqueous dispersion medium was prepared.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1.
  • the pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 3.1 to 10.2.
  • the SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 ⁇ A T ⁇ 2.6
  • the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 2.6
  • the pH was 3.1. 0 in ⁇ A T ⁇ satisfy 15 A T
  • pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.1 to 10.2.
  • the blending amounts of various raw materials, the slurry state after polymerization, and the physical properties of the obtained thermally expandable microspheres are shown in Table 1 for Examples 1 to 10, Table 2 for Examples 11 to 16, and Comparative Example 1.
  • Tables 5 to 5 are shown in Table 3, Examples 17 and 18 and Comparative Examples 6 and 7 are shown in Table 4, and Examples 19 to 21 and Comparative Examples 8 and 9 are shown in Table 5.
  • Tables 1 to 5 the abbreviations shown in Table 6 are used.
  • the case where the inorganic salt (f) is previously dissolved in water (d) is included.
  • the aqueous dispersion media in Comparative Examples 1 to 9 were prepared by a conventional preparation method.
  • Example 1 to 6 and Examples 10 to 21 since the aqueous silica sol is added to the intermediate of the aqueous dispersion medium, the transition of the SiO 2 concentration of the aqueous dispersion medium is as shown in FIG. Within this concentration range, the pH of the aqueous dispersion medium intermediate is maintained in the range of 0.8 to 7, so that thermally expandable microspheres having a small particle diameter can be produced with a small amount of aqueous silica sol. It was. The slurry state after polymerization was good. AT 100 was in the range of 0.5-8 .
  • Comparative Examples 1 to 9 which are conventional methods for preparing an aqueous dispersion medium
  • the transition of the SiO 2 concentration of the aqueous dispersion medium is as shown in FIG.
  • the pH of the intermediate of the aqueous dispersion medium deviated from the range of 0.8 to 7. Therefore, in order to produce thermally expandable microspheres having a small particle size, a large amount compared to the examples. It was necessary to use an aqueous silica sol.
  • Comparative Examples 1 to 5, 8 and 9 aggregation in the slurry state after polymerization was remarkable, and sieve passing ability was poor. This suggests that the dispersion stability of the oil droplets is lower in the polymerization stage than in the examples.

Abstract

The purpose of the present invention is to provide a method for producing thermally expandable microspheres, whereby it becomes possible to reduce the use amount of a silica sol compared with those in the conventional methods. A method for producing thermally expandable microspheres, in which an aqueous dispersion medium is prepared by mixing (a) an aqueous silica sol having a pH value of 9 to 11 and an SiO2 concentration of 15 to 40% by weight, (b) a dispersion stabilization aid, (c) an acid, (d) water and (e) a polymerization aid together. In the step of preparing the aqueous dispersion medium, when the time point at which the preparation of the aqueous dispersion medium starts is defined as T0, the time point at which the preparation of the aqueous dispersion medium is completed is defined as T100, the SiO2 concentration in an intermediate of the aqueous dispersion medium which is produced at an arbitrary time point T that satisfies the formula: T0 < T < T100 is defined as AT% by weight, and the SiO2 concentration in the aqueous dispersion medium at T100 is defined as AT100% by weight, the pH value of the intermediate at AT that satisfies the formula: 0 < AT < 15 is kept in a range from 0.8 to 7 and the AT100 value is adjusted to 0.5 to 8.

Description

熱膨張性微小球の製造方法Method for producing thermally expandable microspheres
 本発明は、熱膨張性微小球の製造方法に関する。より詳細には、水性分散媒の原料としてシリカゾルを使用する熱膨張性微小球の製造方法であって、従来法に比べてシリカゾルの使用量を低減させることが可能な熱膨張性微小球の製造方法に関する。 The present invention relates to a method for producing thermally expandable microspheres. More specifically, a method for producing thermally expandable microspheres using silica sol as a raw material for an aqueous dispersion medium, and capable of reducing the amount of silica sol used compared to conventional methods. Regarding the method.
 熱可塑性樹脂を外殻とし、その内部に発泡剤が封入された構造を有する熱膨張性微小球は、樹脂や塗料の軽量化、壁紙やインクの意匠付与等、幅広い分野で使用されている。熱可塑性樹脂原料の重合性成分としては、通常、塩化ビニリデン、(メタ)アクリロニトリル系モノマー、(メタ)アクリル酸エステル系モノマー等が用いられている。また、発泡剤としてはイソブタンやイソペンタン等の炭化水素が主に使用されている(特許文献1参照)。 Thermally expansible microspheres having a structure in which a thermoplastic resin is used as an outer shell and a foaming agent is enclosed therein are used in a wide range of fields, such as weight reduction of resins and paints, and application of wallpaper and ink designs. As the polymerizable component of the thermoplastic resin material, vinylidene chloride, (meth) acrylonitrile-based monomers, (meth) acrylic acid ester-based monomers and the like are usually used. Moreover, hydrocarbons, such as isobutane and isopentane, are mainly used as a foaming agent (refer patent document 1).
 熱膨張性微小球の製造方法は一般に、水、分散安定剤、分散安定補助剤等を混合して水性分散媒を調製する工程と、前記水性分散媒中に、重合性成分、発泡剤及び重合開始剤を含有する油性混合物を分散させて、前記重合性成分を重合させる工程とを含む。シリカゾルを分散安定剤として用いる場合、熱膨張性微小球の製造工程、特に固液分離の工程において、排水中にシリカゾルに由来するシリカ粒子が混入するため、その処理が環境負荷の観点から問題となっており、シリカゾルの使用量を極力低減させることが望まれている。また、製造コストの面からもシリカゾルの使用量を極力低減させることが望ましい。 In general, a method for producing thermally expandable microspheres includes a step of preparing an aqueous dispersion medium by mixing water, a dispersion stabilizer, a dispersion stabilization auxiliary agent, and the like, and a polymerizable component, a foaming agent and a polymerization agent in the aqueous dispersion medium. And dispersing an oily mixture containing an initiator to polymerize the polymerizable component. When silica sol is used as a dispersion stabilizer, silica particles derived from silica sol are mixed in wastewater in the process of producing thermally expandable microspheres, particularly in the process of solid-liquid separation. Therefore, it is desired to reduce the amount of silica sol used as much as possible. Also, from the viewpoint of manufacturing cost, it is desirable to reduce the amount of silica sol used as much as possible.
 ところで、水性媒体に非晶質シリカ粒子が分散してなる水性シリカゾルには、アルカリ性シリカゾルと酸性シリカゾルの二種類が存在する。このうち、熱膨張性微小球の製造方法に使用されるのは、通常、アルカリ性シリカゾルである。アルカリ性シリカゾルを使用することにより、効率良く熱膨張性微小球を製造することができる。
 ただし、アルカリ性シリカゾルを使用する熱膨張性微小球の製造方法において、水性分散媒は、アルカリ性の状態を保ったまま懸濁重合に供される訳ではない。すなわち、アルカリ性シリカゾルと、水その他必要な成分とを混合することにより調製される水性分散媒は、通常、工程の最終段階において硫酸や塩酸等の酸が添加され、pHをアルカリ性側から酸性側(2~4程度)に調整された後に懸濁重合に供される。
By the way, there are two types of aqueous silica sols in which amorphous silica particles are dispersed in an aqueous medium: alkaline silica sols and acidic silica sols. Of these, alkaline silica sol is usually used in the method for producing thermally expandable microspheres. By using alkaline silica sol, thermally expandable microspheres can be produced efficiently.
However, in the method for producing thermally expandable microspheres using alkaline silica sol, the aqueous dispersion medium is not subjected to suspension polymerization while maintaining an alkaline state. That is, an aqueous dispersion medium prepared by mixing alkaline silica sol with water and other necessary components is usually added with an acid such as sulfuric acid or hydrochloric acid at the final stage of the process, and the pH is changed from the alkaline side to the acidic side ( After being adjusted to about 2-4, it is subjected to suspension polymerization.
 一般的に、水性シリカゾルには、液のpHが大きく変化すると、分散状態が壊れてシリカ粒子が凝集又は沈降する性質があることが知られており、この知見を踏まえると、熱膨張性微小球の製造方法においては、水性媒体中に安定に分散していた非晶質シリカ粒子を、わざわざ不安定化させた状態(凝集させた状態)にして用いているといえる。
 このように、アルカリ性シリカゾルを用いた熱膨張性微小球の製造方法においては、生成する凝集シリカ粒子がいわば真の分散安定剤として機能していると考えられる。しかしながら、どのような条件で凝集シリカ粒子を生成させれば、分散安定剤としてより優れた機能を発揮し、結果としてシリカゾルの使用量を低減させることができるかについて、詳細に報告した例はない。特許文献2には分散安定剤としてシリカゾルを用い、シリカゾルに含まれるアルカリ成分量を所定の範囲とすることで、洗浄排水の白濁化を低減する熱膨張性微小球の製造工程が記載されている。しかしながら、この製造方法では単にシリカ粒子を熱膨張性微小球の表面に強固に付着させることにより洗浄排水の白濁化を低減させているのみであり、シリカゾルの使用量を低減させる方法について何ら開示するものではない。
In general, it is known that aqueous silica sol has the property that when the pH of the liquid is greatly changed, the dispersion state is broken and the silica particles are aggregated or settled. In this production method, it can be said that the amorphous silica particles stably dispersed in the aqueous medium are used in a state of being destabilized (aggregated state).
Thus, in the method for producing thermally expandable microspheres using alkaline silica sol, it is considered that the produced aggregated silica particles function as a true dispersion stabilizer. However, there is no example that reports in detail about the conditions under which aggregated silica particles can be produced to exhibit a better function as a dispersion stabilizer and consequently reduce the amount of silica sol used. . Patent Document 2 describes a process for producing thermally expandable microspheres that use silica sol as a dispersion stabilizer and reduce the turbidity of washing wastewater by setting the amount of alkali components contained in the silica sol within a predetermined range. . However, this production method merely reduces the whitening of the washing waste water by firmly attaching the silica particles to the surface of the thermally expandable microspheres, and discloses a method for reducing the amount of silica sol used. It is not a thing.
米国特許第3615972号明細書US Pat. No. 3,615,972 日本国特開2013-212433号公報Japanese Unexamined Patent Publication No. 2013-212433
 本発明は、上記事情に鑑みてなされたものであり、従来法に比べてシリカゾルの使用量を低減させることが可能な熱膨張性微小球の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing thermally expandable microspheres capable of reducing the amount of silica sol used as compared with the conventional method.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の原料を用いたうえで特定の条件を満たすようにして水性分散媒を調製すれば、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、水性分散媒中に、重合性成分、発泡剤及び重合開始剤を含有する油性混合物を分散させて、前記重合性成分を重合させる工程を含む熱膨張性微小球の製造方法であって、前記水性分散媒が、pHが9~11でありSiO濃度が15~40重量%である水性シリカゾル(a)、分散安定補助剤(b)、酸(c)、水(d)、及び重合助剤(e)を混合して調製され、前記水性分散媒を調製する工程において、水性分散媒の調製開始時刻をT0、調製終了時刻をT100とし、T0<T<T100を満たす任意の時刻Tにおいて生成する水性分散媒の中間体のSiO濃度をA重量%、T100における水性分散媒のSiO濃度をAT100重量%としたとき、0<A<15を満たすAにあっては、前記中間体のpHを0.8~7の範囲で維持し、AT100を0.5~8とする、熱膨張性微小球の製造方法である。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved if an aqueous dispersion medium is prepared so as to satisfy specific conditions after using specific raw materials, The present invention has been reached.
That is, the present invention relates to a method for producing thermally expandable microspheres comprising a step of dispersing an oily mixture containing a polymerizable component, a foaming agent and a polymerization initiator in an aqueous dispersion medium and polymerizing the polymerizable component. The aqueous dispersion medium has an aqueous silica sol (a) having a pH of 9 to 11 and an SiO 2 concentration of 15 to 40% by weight, a dispersion stabilizing aid (b), an acid (c), water (d ) And a polymerization aid (e), and in the step of preparing the aqueous dispersion medium, the preparation start time of the aqueous dispersion medium is T0, the preparation end time is T100, and T0 <T <T100 is satisfied. When the SiO 2 concentration of the intermediate of the aqueous dispersion medium produced at an arbitrary time T is AT wt%, and the SiO 2 concentration of the aqueous dispersion medium at T 100 is AT 100 wt%, A satisfying 0 <A T <15 in the T, said in The pH of the body is maintained in the range of 0.8 to 7 and A T100 0.5 to 8, and method for producing heat-expandable microspheres.
 前記水(d)100重量部に対して、前記水性シリカゾル(a)を2~100重量部、前記分散安定補助剤(b)を0.01~5重量部、前記重合助剤(e)を0.0001~0.1重量部用いると好ましい。
 前記油性混合物100重量部に対して、前記水性分散媒を150~1000重量部用いると好ましい。
 前記水性分散媒が、さらに無機塩(f)を混合して調製されると好ましい。この場合、前記水性分散媒が、前記無機塩(f)の一部又は全部を、前記水(d)の一部又は全部に溶解させて得られる無機塩水溶液と、前記水性シリカゾル(a)とを混合して調製されると好ましい。
2 to 100 parts by weight of the aqueous silica sol (a), 0.01 to 5 parts by weight of the dispersion stabilizing aid (b), and the polymerization aid (e) with respect to 100 parts by weight of the water (d). It is preferable to use 0.0001 to 0.1 parts by weight.
It is preferable to use 150 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the oily mixture.
The aqueous dispersion medium is preferably prepared by further mixing an inorganic salt (f). In this case, the aqueous dispersion medium contains an inorganic salt aqueous solution obtained by dissolving a part or all of the inorganic salt (f) in a part or all of the water (d), and the aqueous silica sol (a). It is preferable to prepare by mixing.
 本発明の熱膨張性微小球の製造方法は、従来法に比べてシリカゾルの使用量が低減されるため、製造排水処理における環境負荷が小さい。 The method for producing thermally expandable microspheres according to the present invention reduces the amount of silica sol used compared to the conventional method, and therefore has a small environmental load in the production wastewater treatment.
水性分散媒の中間体におけるSiO濃度の変化の一例を示す図である。     (SiO濃度Aが増加していく場合)Is a diagram illustrating an example of a SiO 2 concentration changes in intermediates of the aqueous dispersion medium. (When the SiO 2 concentration AT increases) 水性分散媒の中間体におけるSiO濃度の変化の一例を示す図である。     (SiO濃度Aが減少していく場合)Is a diagram illustrating an example of a SiO 2 concentration changes in intermediates of the aqueous dispersion medium. (When the SiO 2 concentration AT decreases) 熱膨張性微小球の一例を示す概略図である。It is the schematic which shows an example of a thermally expansible microsphere. 中空粒子の一例を示す概略図である。It is the schematic which shows an example of a hollow particle.
〔熱膨張性微小球の製造方法〕
 本発明の熱膨張性微小球の製造方法は、水性分散媒中に、重合性成分、発泡剤及び重合開始剤を含有する油性混合物を分散させて、前記重合性成分を重合させる工程(以下、懸濁重合工程という)を含むものである。以下、本発明について詳述する。
[Method for producing thermally expandable microspheres]
In the method for producing thermally expandable microspheres of the present invention, an oily mixture containing a polymerizable component, a foaming agent and a polymerization initiator is dispersed in an aqueous dispersion medium, and the polymerizable component is polymerized (hereinafter referred to as “the polymerizable component”). A suspension polymerization step). Hereinafter, the present invention will be described in detail.
 懸濁重合工程は、水性分散媒を調製する工程を含むものである。
 水性分散媒は、油性混合物を分散させるための媒体であり、pHが9~11でありSiO濃度が15~40重量%である水性シリカゾル(a)、分散安定補助剤(b)、酸(c)、水(d)、及び重合助剤(e)を混合して調製される。まず、各成分の詳細について説明する。
The suspension polymerization step includes a step of preparing an aqueous dispersion medium.
The aqueous dispersion medium is a medium for dispersing the oily mixture, and has an aqueous silica sol (a) having a pH of 9 to 11 and an SiO 2 concentration of 15 to 40% by weight, a dispersion stabilizing aid (b), an acid ( It is prepared by mixing c), water (d), and polymerization aid (e). First, details of each component will be described.
(a);水性シリカゾル
 本発明で用いられる水性シリカゾルは、非晶質シリカ粒子が水性媒体中に分散してなるシリカ粒子のコロイド分散液であって、pHが9~11であり、SiO濃度が15~40重量%である。
 熱膨張性微小球の製造方法において、水性シリカゾルに由来するシリカ粒子は、水性分散媒中に分散した油滴の分散状態を安定化させ、重合中の分散系を安定に保つ分散安定剤としての役割を果たす成分である。本発明者らは、シリカゾルの使用量を低減させるという本発明の課題を検討するなかで、前記特定のpH及びSiO濃度を有する水性シリカゾルを用いて水性分散媒を調製する際、系中のSiO濃度が低い範囲にあっては系のpHを酸性に維持することにより、水性シリカゾルの使用量を低減できることを見出した。本発明で用いられる水性シリカゾルのpHは、好ましくは9.0~10.5、さらに好ましくは9.5~10.5であり、SiO濃度は、好ましくは18~38重量%、さらに好ましくは20~35重量%である。
(A): Aqueous silica sol The aqueous silica sol used in the present invention is a colloidal dispersion of silica particles in which amorphous silica particles are dispersed in an aqueous medium, having a pH of 9 to 11, and a SiO 2 concentration. Is 15 to 40% by weight.
In the method for producing thermally expandable microspheres, silica particles derived from an aqueous silica sol stabilize the dispersion state of oil droplets dispersed in an aqueous dispersion medium, and serve as a dispersion stabilizer that keeps the dispersion system stable during polymerization. It is a component that plays a role. While examining the subject of the present invention to reduce the amount of silica sol used, the inventors have prepared an aqueous dispersion medium using an aqueous silica sol having the specific pH and SiO 2 concentration. It was found that the amount of aqueous silica sol used can be reduced by keeping the pH of the system acidic in the range where the SiO 2 concentration is low. The pH of the aqueous silica sol used in the present invention is preferably 9.0 to 10.5, more preferably 9.5 to 10.5, and the SiO 2 concentration is preferably 18 to 38% by weight, more preferably 20 to 35% by weight.
 一般に、水性シリカゾルでは、液のpHが大きく変動したり、液中のイオンの量が非常に多くなったり、希釈倍率が非常に大きくなったりすると、シリカ粒子間に結合が起こって凝集シリカ粒子が生成することが知られている。凝集シリカ粒子が生成する機構としては、当初数nm~数十nmの大きさを有するシリカ粒子(一次粒子)が、結合することにより数百nm程度の凝集シリカ粒子(二次粒子)が生成し、さらにはこの凝集シリカ粒子(二次粒子)同士が結合して数μm程度の凝集大粒子も生成する機構が知られており、このような凝集シリカ粒子の生成は液の白濁という形で観測される。 In general, in an aqueous silica sol, when the pH of the liquid fluctuates greatly, the amount of ions in the liquid becomes very large, or the dilution ratio becomes very large, bonding occurs between the silica particles, and the aggregated silica particles are formed. It is known to generate. As a mechanism of the formation of the agglomerated silica particles, silica particles (primary particles) having a size of several nanometers to several tens of nanometers initially form aggregated silica particles (secondary particles) of about several hundred nanometers by bonding. Furthermore, it is known that these agglomerated silica particles (secondary particles) combine to produce agglomerated large particles of about several μm, and the formation of such agglomerated silica particles is observed in the form of cloudiness of the liquid. Is done.
 一般のアルカリ性シリカゾルはアルカリ性領域で安定であり、さらに酸性領域(pH4以下)でも安定に存在し得ること、一方で中性領域ではアルカリ性シリカゾルは不安定であり、シリカ粒子(一次粒子)の凝集が進行することが知られている。従来は、一時的に不安定である中性領域を経由してアルカリ性シリカゾルを酸性として水性分散媒を調製しているので、シリカ粒子(一次粒子)の凝集が進みやすく凝集シリカ粒子(二次粒子)のサイズが大きいと考えられる。一方、本発明の方法では、シリカ粒子を凝集させる際に、不安定である中性領域を経由しないことから、生成した凝集シリカ粒子のサイズが小さく、これが分散安定剤として優れた機能を発揮しているものと推定される。 General alkaline silica sol is stable in the alkaline region and can exist stably even in the acidic region (pH 4 or lower), while the alkaline silica sol is unstable in the neutral region, and the aggregation of silica particles (primary particles) It is known to progress. Conventionally, since an aqueous dispersion medium is prepared by acidifying an alkaline silica sol through a neutral region that is temporarily unstable, agglomerated silica particles (secondary particles) are easily agglomerated in silica particles (primary particles). ) Is considered to be large. On the other hand, in the method of the present invention, when the silica particles are aggregated, they do not pass through an unstable neutral region, so the size of the generated aggregated silica particles is small, and this exhibits an excellent function as a dispersion stabilizer. It is estimated that
 水性シリカゾルに含まれる非晶質シリカ粒子の形状としては、球状、鎖状、数珠状、偏平形状等が挙げられ、これらの中では球状が好ましい。
 非晶質シリカ粒子の粒子径については、特に限定されないが、好ましくは1.0~50nm、より好ましくは2.0~40nm、さらに好ましくは3.0~30nmである。粒子径がこの範囲外である場合は、懸濁系の安定性が不足し、重合中に分散系が壊れることがある。なお、ここでいう非晶質シリカ粒子の粒子径とは、BET吸着法による比表面積測定値(JIS Z8830)からの換算値を意味する。
Examples of the shape of the amorphous silica particles contained in the aqueous silica sol include a spherical shape, a chain shape, a bead shape, and a flat shape. Among these, a spherical shape is preferable.
The particle diameter of the amorphous silica particles is not particularly limited, but is preferably 1.0 to 50 nm, more preferably 2.0 to 40 nm, and still more preferably 3.0 to 30 nm. When the particle diameter is outside this range, the suspension system is insufficiently stable, and the dispersion system may be broken during the polymerization. In addition, the particle diameter of the amorphous silica particle here means the conversion value from the specific surface area measured value (JIS Z8830) by the BET adsorption method.
 非晶質シリカ粒子の比表面積については、特に限定はないが、好ましくは54~2720m/g、より好ましくは68~1360m/g、さらに好ましくは91~910m/gである。なお、ここでいう非晶質シリカ粒子の比表面積とは、シアーズ法により測定されるものを意味する。シアーズ法は、アナリティカル・ケミストリー(ANALYTICAL CHEMISTRY)第28巻第12号(1956年12月)第1981頁に記載されている様に、シリカ粒子表面のシラノール基量を定量することによって比表面積を測定する方法である。 The specific surface area of the amorphous silica particles is not particularly limited, is preferably 54 ~ 2720m 2 / g, more preferably 68 ~ 1360m 2 / g, more preferably 91 ~ 910m 2 / g. In addition, the specific surface area of an amorphous silica particle here means what is measured by the Sears method. As described in Analytical Chemistry, Vol. 28, No. 12 (December 1956), p. 1981, the Sears method determines the specific surface area by quantifying the amount of silanol groups on the surface of silica particles. It is a method of measuring.
 水性シリカゾルについては、各種グレードのものが広く市販されており、例えば、扶桑化学工業株式会社製「クウォートロン」シリーズ、株式会社ADEKA製「アデライト」シリーズ、日本化学工業株式会社製「シリカドール」シリーズ、日産化学工業株式会社製「スノーテックス」シリーズ、Dupont社製「Ludox」シリーズ等が挙げられる。本発明に用いる水性シリカゾルとしては、これら市販品の中から、上記特定のpH及びSiO濃度を満たすものを適宜選択して使用することができる。
 水性シリカゾル(a)の配合量は、水(d)100重量部に対して、好ましくは2~100重量部、さらに好ましくは2~80重量部である。
Various grades of aqueous silica sol are commercially available. For example, "Quatron" series manufactured by Fuso Chemical Industry Co., Ltd., "Adelite" series manufactured by ADEKA Co., Ltd., "Silica Doll" series manufactured by Nippon Chemical Industry Co., Ltd. “Snowtex” series manufactured by Nissan Chemical Industries, Ltd., “Ludox” series manufactured by Dupont, and the like. As the aqueous silica sol used in the present invention, those satisfying the above specific pH and SiO 2 concentration can be appropriately selected from these commercially available products.
The amount of the aqueous silica sol (a) is preferably 2 to 100 parts by weight, more preferably 2 to 80 parts by weight with respect to 100 parts by weight of water (d).
(b);分散安定補助剤
 分散安定補助剤は、上記水性シリカゾルを凝集させ、且つ凝集したシリカ粒子を水/油界面に存在させることで、重合性単量体を含む油滴どうしの合一を抑制し、重合工程を安定化させる成分である。分散安定補助剤としては、特に限定はないが、例えば、高分子タイプの分散安定補助剤;カチオン性界面活性剤、アニオン性界面活性剤、両性イオン界面活性剤、ノニオン性界面活性剤等の界面活性剤を挙げることができる。これらの中で、高分子タイプの分散安定補助剤が好ましい。分散安定補助剤は、1種を単独で使用してもよく2種以上を併用してもよい。
 高分子タイプの分散安定補助剤としては、例えば、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物、尿素とホルムアルデヒドとの縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、ゼラチン、メチルセルロース、ポリビニルアルコール等が挙げられる。
(B): Dispersion stabilizing aid The dispersion stabilizing aid aggregates the aqueous silica sol, and makes the coalesced oil droplets containing a polymerizable monomer coalesced by causing the aggregated silica particles to exist at the water / oil interface. It is a component which suppresses and stabilizes the polymerization process. The dispersion stabilizing aid is not particularly limited, and examples thereof include polymer type dispersion stabilizing aids; interfaces such as cationic surfactants, anionic surfactants, zwitterionic surfactants and nonionic surfactants. Mention may be made of activators. Among these, a polymer type dispersion stabilizing aid is preferable. One dispersion stabilizer may be used alone, or two or more dispersion stabilizers may be used in combination.
Examples of the polymer type dispersion stabilizing auxiliary agent include condensation products of diethanolamine and aliphatic dicarboxylic acid, condensation products of urea and formaldehyde, polyvinylpyrrolidone, polyethylene oxide, gelatin, methylcellulose, polyvinyl alcohol and the like. .
 カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の四級アンモニウム塩等を挙げることができる。
 アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩;アルカンスルホン酸塩;ジアルキルスルホコハク酸塩;アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。
 両性イオン界面活性剤としては、例えば、アルキルジメチルアミノ酢酸ベタイン、アルキルジヒドロキシエチルアミノ酢酸ベタイン、ラウリルジメチルアミンオキサイド等を挙げることができる。
 ノ二オン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、ポリオキシエチレン-ポリオキシプロピレンブロックポリマ一等を挙げることができる。
 また、これらの分散安定補助剤は、予め水(d)によって希釈され、有効成分として例えば10~50重量%程度の水溶液の形態として用いられてもよい。
 分散安定補助剤(b)の配合量は、水(d)100重量部に対して、好ましく0.01~5重量部、さらに好ましくは0.05~3重量部である。
Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
Examples of the anionic surfactant include fatty acid salts such as sodium oleate and castor oil potassium; alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; alkylnaphthalene sulfone. Examples include acid salt; alkane sulfonate; dialkyl sulfosuccinate; alkyl phosphate ester salt; naphthalene sulfonic acid formalin condensate; polyoxyethylene alkyl phenyl ether sulfate ester; polyoxyethylene alkyl sulfate ester salt.
Examples of the zwitterionic surfactant include alkyldimethylaminoacetic acid betaine, alkyldihydroxyethylaminoacetic acid betaine, and lauryldimethylamine oxide.
Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid Examples thereof include esters and polyoxyethylene-polyoxypropylene block polymers.
These dispersion stabilizing aids may be diluted with water (d) in advance and used as an active ingredient, for example, in the form of an aqueous solution of about 10 to 50% by weight.
The blending amount of the dispersion stabilizing auxiliary (b) is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of water (d).
(c);酸
 本発明で用いられる酸は、水性分散媒のpHを酸性に維持する目的で使用される成分であり、通常は、水性分散媒に対してごく少量配合すれば十分である。
 酸としては、特に限定されず、例えば、塩酸、硫酸、リン酸、硝酸等の無機酸や、蟻酸、酢酸、シュウ酸等の有機酸が挙げられる。これらの中では無機酸が好ましく、硫酸が特に好ましい。これらの酸は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、これらの酸は、予め水(d)によって希釈され、有効成分として例えば10~50重量%程度の水溶液の形態として用いられてもよい。
 酸(c)の配合量は、特に限定はなく、本発明においては後述するように水性分散媒を調製する工程において、pHを所望の範囲に維持するように適宜調整して加えればよい。
(C); Acid The acid used in the present invention is a component used for the purpose of maintaining the pH of the aqueous dispersion medium acidic, and it is usually sufficient to add a very small amount to the aqueous dispersion medium.
The acid is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid, and organic acids such as formic acid, acetic acid, and oxalic acid. In these, an inorganic acid is preferable and a sulfuric acid is especially preferable. These acids may be used individually by 1 type, and may use 2 or more types together.
These acids may be diluted with water (d) in advance and used as an active ingredient, for example, in the form of an aqueous solution of about 10 to 50% by weight.
The compounding amount of the acid (c) is not particularly limited. In the present invention, as described later, in the step of preparing the aqueous dispersion medium, the acid (c) may be appropriately adjusted so as to maintain the pH within a desired range.
(d);水
 本発明で用いられる水は、水性分散媒の大半を構成する成分である。水としては、純水、蒸留水、精製水、軟水、イオン交換水、工業用水、井戸水、水道水等が挙げられ、これらの中では軟水及び/又はイオン交換水が好ましい。
(D); Water Water used in the present invention is a component constituting most of the aqueous dispersion medium. Examples of water include pure water, distilled water, purified water, soft water, ion exchange water, industrial water, well water, tap water, and the like. Among these, soft water and / or ion exchange water are preferable.
(e);重合助剤
 本発明で用いられる重合助剤は、水性分散媒中での乳化重合物の発生を抑制し、またスケール(スカム)発生を防止する役割を果たす成分である。スケール(スカム)とは、重合反応終了後に、反応器内壁や攪拌羽根等に付着している、或いは重合後のスラリー中に漂っている巨大な重合物の塊を意味する。
 重合助剤としては、特に限定されないが、例えば、カルボン酸(塩)基及びホスホン酸(塩)基から選ばれる親水性官能基が置換したアルキル基が窒素原子と結合した構造を有するポリアルキレンイミン類;水酸基、カルボン酸(塩)基およびホスホン酸(塩)基から選ばれる親水性官能基とヘテロ原子とが同一の炭素原子に結合した構造を有する水溶性1,1-置換化合物類;重クロム酸ナトリウム、重クロム酸カリウム、重クロム酸アンモニウム等の重クロム酸塩類;亜硝酸ナトリウム、亜硝酸カリウム等の亜硝酸アルカリ金属塩類;硫酸ジルコニウム、酢酸ジルコニウム、塩化ジルコニウム、硝酸ジルコニウム等のジルコニウム塩類;塩化チタン;金属(III)ハロゲン化物;ホウ酸;水溶性アスコルビン酸類;水溶性ポリフェノール類;水溶性ビタミンB類;水溶性ホスホン酸(塩)類等が挙げられる。なお、ここでいう水溶性とは、水100gあたり1g以上溶解する状態であることを意味する。これらの重合助剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 重合助剤(e)の配合量は、水(d)100重量部に対して、好ましく0.0001~1重量部、さらに好ましくは0.001~0.1重量部である。
(E): Polymerization aid The polymerization aid used in the present invention is a component that suppresses the generation of an emulsion polymer in an aqueous dispersion medium and also prevents the generation of scale (scum). The scale (scum) means a huge polymer lump that adheres to the inner wall of the reactor, the stirring blade, or the like after the polymerization reaction, or floats in the slurry after polymerization.
The polymerization aid is not particularly limited. For example, a polyalkyleneimine having a structure in which an alkyl group substituted with a hydrophilic functional group selected from a carboxylic acid (salt) group and a phosphonic acid (salt) group is bonded to a nitrogen atom. Water-soluble 1,1-substituted compounds having a structure in which a hetero atom and a hydrophilic functional group selected from a hydroxyl group, a carboxylic acid (salt) group and a phosphonic acid (salt) group are bonded to the same carbon atom; Dichromates such as sodium chromate, potassium dichromate and ammonium dichromate; alkali metal nitrites such as sodium nitrite and potassium nitrite; zirconium salts such as zirconium sulfate, zirconium acetate, zirconium chloride and zirconium nitrate; Titanium chloride; metal (III) halide; boric acid; water-soluble ascorbic acids; water-soluble polypheno S; water-soluble vitamin B; water-soluble phosphonic acid (salt) and the like can be mentioned. In addition, water solubility here means the state which melt | dissolves 1g or more per 100g of water. These polymerization aids may be used alone or in combination of two or more.
The blending amount of the polymerization aid (e) is preferably 0.0001 to 1 part by weight, more preferably 0.001 to 0.1 part by weight with respect to 100 parts by weight of water (d).
(f);無機塩
 本発明における水性分散媒は、さらに無機塩等を混合して調製されるものであってもよい。
 無機塩としては、例えば、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、炭酸ナトリウム等を挙げることができる。これらの無機塩は、1種を単独で使用してもよく2種以上を併用してもよい。後述する重合性成分が、水溶性の高い単量体を高含有する場合、これらの単量体の水性分散媒中への溶出を抑制するために、水性分散媒に無機塩を用いることが好ましい。
 無機塩が使用される場合、無機塩の配合量は、水(d)100重量部に対して、好ましくは0~40重量部、より好ましくは1~32重量部である。
(F): Inorganic salt The aqueous dispersion medium in the present invention may be prepared by further mixing an inorganic salt or the like.
Examples of inorganic salts include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, and sodium carbonate. These inorganic salts may be used alone or in combination of two or more. When the polymerizable component described later contains a high amount of highly water-soluble monomers, it is preferable to use an inorganic salt in the aqueous dispersion medium in order to suppress elution of these monomers into the aqueous dispersion medium. .
When an inorganic salt is used, the compounding amount of the inorganic salt is preferably 0 to 40 parts by weight, more preferably 1 to 32 parts by weight with respect to 100 parts by weight of water (d).
 次に、水性分散媒を調製する工程について説明する。
 本発明では、水性分散媒を調製する工程において、水性分散媒の調製開始時刻をT0、調製終了時刻をT100とし、T0<T<T100を満たす任意の時刻Tにおいて生成する水性分散媒の中間体のSiO濃度をA重量%、T100における水性分散媒のSiO濃度をAT100重量%としたとき、0<A<15を満たすAにあっては、前記中間体のpHを0.8~7の範囲で維持し、AT100を0.5~8とする。
 ここで、水性分散媒の調製開始時刻T0とは、上記で説明した(a)~(f)のうち、いずれか2つ以上を混合し始めた時点を意味し、水性分散媒の中間体(以下、単に「中間体」ということがある)とは、上記で説明した(a)~(f)のうち、いずれか2つ以上を混合することにより生成する任意の混合物を意味する。水性分散媒を調製する工程において、中間体は必ずしも1つである必要はなく、2つ以上存在してもよい。また、水性分散媒の調製終了時刻T100とは、水性分散媒の調製に必要な全ての成分を混合し終えた時点を意味する。
Next, the process for preparing the aqueous dispersion medium will be described.
In the present invention, in the step of preparing the aqueous dispersion medium, the aqueous dispersion medium intermediate produced at any time T satisfying T0 <T <T100, where T0 is the preparation start time of the aqueous dispersion medium and T100 is the preparation end time. the SiO 2 concentration a T wt%, when the SiO 2 concentration of the aqueous dispersion medium in the T100 was a T100 wt%, 0 <in the a T satisfying a T <15, 0 and the pH of the intermediate The range of 8 to 7 is maintained, and AT 100 is set to 0.5 to 8.
Here, the preparation start time T0 of the aqueous dispersion medium means a point in time when any two or more of (a) to (f) described above are started to be mixed, and an intermediate of the aqueous dispersion medium ( Hereinafter, the term “intermediate” may be used to mean any mixture produced by mixing any two or more of (a) to (f) described above. In the step of preparing the aqueous dispersion medium, the number of intermediates is not necessarily one, and two or more intermediates may be present. Further, the preparation end time T100 of the aqueous dispersion medium means a time point when all components necessary for preparation of the aqueous dispersion medium have been mixed.
 上記手順がおおまかに意味するところは、水性シリカゾル(a)を、主に水(d)によって希釈する際に、中間体のpHが酸性となるように維持するということである。このようにすることで、水性シリカゾル(a)の使用量を低減させることができる。 The above procedure roughly means that when the aqueous silica sol (a) is diluted mainly with water (d), the pH of the intermediate is kept acidic. By doing in this way, the usage-amount of aqueous silica sol (a) can be reduced.
 中間体のSiO濃度Aは、水性シリカゾル(a)の初期SiO濃度及び当該中間体を生成させるために要した(a)~(f)の各成分の量から、計算により求めることができる。
 中間体のSiO濃度Aは、水性シリカゾルの配合の順序により、以下の2通りで推移する。
 (イ)Aが増加する場合
 先に水を準備しておき、ここに分散安定補助剤及び水性シリカゾルを混合する場合、水性シリカゾルを投入するにつれAが増加する。この場合におけるSiO濃度Aの推移を示す概略図を図1に示す。図1において、AはT0<T<T100の範囲において、0<A<15を満たし、この範囲においてpHを0.8~7の範囲で維持すると、本願の効果が発揮される。また、水性分散媒の調製終了時刻T100におけるSiO濃度AT100は0.5~8となるように調製する。
 (ロ)Aが減少する場合
 先に水性シリカゾルを準備しておき、その後で水及び分散安定補助剤を混合する場合、水等を投入するにつれAが減少する。この場合におけるSiO濃度Aの推移を示す概略図を図2に示す。図2において、SiO濃度Aが15重量%となる時刻をTxとすると、0<A<15を満たす時刻はTx<T<T100の範囲となり、この範囲においてpHを0.8~7の範囲で維持すると、本願の効果が発揮される。また、この場合においても水性分散媒の調製終了時刻T100におけるSiO濃度AT100は0.5~8となるように調製する。
The SiO 2 concentration AT of the intermediate can be obtained by calculation from the initial SiO 2 concentration of the aqueous silica sol (a) and the amount of each component (a) to (f) required to produce the intermediate. it can.
The SiO 2 concentration AT of the intermediate changes in the following two ways depending on the blending order of the aqueous silica sol.
(I) When AT increases When water is prepared in advance and a dispersion stabilizing aid and an aqueous silica sol are mixed here, AT increases as the aqueous silica sol is added. A schematic diagram showing the transition of the SiO 2 concentration AT in this case is shown in FIG. In FIG. 1, AT satisfies 0 <A T <15 in the range of T0 <T <T100. If the pH is maintained in the range of 0.8 to 7 in this range, the effect of the present application is exhibited. Further, SiO 2 concentration A T100 in the preparation end time T100 of the aqueous dispersion medium is prepared as a 0.5-8.
(B) When AT decreases When an aqueous silica sol is prepared first and then water and a dispersion stabilizing aid are mixed, AT decreases as water or the like is added. A schematic diagram showing the transition of the SiO 2 concentration AT in this case is shown in FIG. In FIG. 2, when the time when the SiO 2 concentration AT is 15 wt% is Tx, the time satisfying 0 <A T <15 is in the range of Tx <T <T100, and in this range the pH is 0.8 to 7 If maintained in the range, the effect of the present application is exhibited. Further, SiO 2 concentration A T100 in the preparation end time T100 the aqueous dispersing medium in this case is prepared so as to 0.5-8.
 中間体のpHを0.8~7の範囲で維持するには、上記で説明した酸(c)を使用する。通常、水性シリカゾル(a)には、アルカリ成分として少量のNaOが配合されており、水性分散媒に配合する水性シリカゾル(a)の量が決まればそれに含まれるNaOの量から、中間体のpHを0.8~7の範囲で維持するのに必要な酸(c)の量を予測できる。また、必要であれば、中間体のpHを随時pHメーターで確認しながら酸(c)を適宜添加する、等の方法を用いても良い。 In order to maintain the pH of the intermediate in the range of 0.8 to 7, the acid (c) described above is used. Usually, in the aqueous silica sol (a), a small amount of Na 2 O is blended as an alkali component. If the amount of the aqueous silica sol (a) blended in the aqueous dispersion medium is determined, the amount of Na 2 O contained therein is determined. The amount of acid (c) required to maintain the pH of the intermediate in the range of 0.8-7 can be predicted. Further, if necessary, a method such as appropriately adding the acid (c) while confirming the pH of the intermediate with a pH meter as needed may be used.
 このように、本発明においては、0<A<15を満たすAにあっては、常に中間体のpHを0.8~7の範囲で維持することが当然望ましいのであるが、発明の性質上、例えば、中間体のpHが7を超える時が一瞬あったからといって直ちに発明の効果が失われるというものでもない。
 中間体のpHは、0.8~7の範囲で維持されていればよく、好ましくは1~6、より好ましくは2~5の範囲で維持されるとよい。
 AT100は、通常0.5~8であり、好ましくは0.6~7、より好ましくは0.7~6.5である。AT100が0.5未満であると、懸濁系の安定性が不足し、重合中に分散系が壊れる。AT100が8よりも大きい場合、使用する水性シリカゾル(a)の量が多くなり、本発明の効果が発揮されなくなる。
 T100における水性分散媒のpHは、好ましくは2~6、より好ましくは2~4である。pHが2~6の範囲外であると、懸濁系の安定性が不足し、重合中に分散系が壊れることがある。
Thus, in the present invention, it is naturally desirable to always maintain the pH of the intermediate in the range of 0.8 to 7 in AT satisfying 0 <A T <15. In nature, for example, just because there was a moment when the pH of the intermediate exceeded 7 does not mean that the effect of the invention is immediately lost.
The pH of the intermediate may be maintained in the range of 0.8-7, preferably 1-6, more preferably 2-5.
AT 100 is usually from 0.5 to 8, preferably from 0.6 to 7, more preferably from 0.7 to 6.5. When AT100 is less than 0.5, the stability of the suspension system is insufficient, and the dispersion system is broken during the polymerization. When AT100 is larger than 8, the amount of the aqueous silica sol (a) to be used increases and the effect of the present invention is not exhibited.
The pH of the aqueous dispersion medium at T100 is preferably 2 to 6, more preferably 2 to 4. When the pH is outside the range of 2 to 6, the stability of the suspension system is insufficient, and the dispersion system may be broken during the polymerization.
 水性分散媒を調製する工程中は、中間体を攪拌し続けるのが好ましい。攪拌については、通常の攪拌装置を用いて行えばよく、その方法も特に制限されないが、例えば、棒状、板状、プロペラ状等の攪拌子を、回転軸を介して一定速度で一定方向に回転させる等の方法が挙げられる。
 水性分散媒を調製する際に必要な単位体積あたりの所要動力については、特に制限はないが、水性分散媒を均一にさせる観点からは、0.1~10kW/mの単位体積あたりの所要動力で攪拌することが好ましい。
During the step of preparing the aqueous dispersion medium, it is preferable to keep stirring the intermediate. Stirring may be performed using a normal stirring device, and the method is not particularly limited. For example, a bar-like, plate-like, propeller-like stirrer is rotated in a constant direction at a constant speed via a rotating shaft. And the like.
The required power per unit volume required for preparing the aqueous dispersion medium is not particularly limited, but from the viewpoint of making the aqueous dispersion medium uniform, the required power per unit volume of 0.1 to 10 kW / m 3 is required. It is preferable to stir with power.
 水性分散媒を調製する工程は、上記で説明した条件を満たすものであれば特に制限されないが、具体的には、以下のような態様が挙げられる。
態様1:
 攪拌装置を備えた水性分散媒調製用の容器(以下、単に容器という)に、水(d)を添加し、容器の攪拌装置を起動させる。次いで、容器内の水(d)に必要量の酸(c)を添加する。さらに、これに分散安定補助剤(b)を添加する。そして、容器内の中間体のpHを0.8~7の範囲で維持しつつ、徐々に水性シリカゾル(a)を添加する。
Although the process of preparing an aqueous dispersion medium will not be restrict | limited especially if the conditions demonstrated above are satisfy | filled, the following aspects are mentioned specifically.
Aspect 1:
Water (d) is added to a container for preparing an aqueous dispersion medium (hereinafter simply referred to as a container) equipped with a stirrer, and the stirrer of the container is started. Next, the required amount of acid (c) is added to water (d) in the container. Further, a dispersion stabilizing aid (b) is added thereto. Then, the aqueous silica sol (a) is gradually added while maintaining the pH of the intermediate in the container in the range of 0.8-7.
態様2:
 態様1において、酸(c)と分散安定補助剤(b)の添加する順序を入れ替える以外は、態様1と同様にして水性分散媒を調製する。
態様3:
 容器に水(d)を添加し、容器の攪拌装置を起動させる。次いで、容器内の水(d)に必要量の酸(c)を添加する。そして、容器内の中間体のpHを0.8~7の範囲で維持しつつ、徐々に水性シリカゾル(a)を添加する。その後、分散安定補助剤(b)を添加する。
態様4:
 容器に水(d)を添加し、容器の攪拌装置を起動させる。次いで、容器内の水(d)に分散安定補助剤(b)を添加する。そして、この容器内の中間体に対して、水性シリカゾル(a)及び酸(c)を別々のラインを介して同時に添加する。この時、容器内の中間体のpHが0.8~7の範囲で維持されるように各々の供給速度を調節する。
態様5:
 容器に水(d)を添加し、容器の攪拌装置を起動させる。次いで、容器内の水(d)に、水性シリカゾル(a)及び酸(c)を別々のラインを介して同時に添加する。この時、容器内の中間体のpHが0.8~7の範囲で維持されるよう各々の供給速度を調節する。その後、分散安定補助剤(b)を添加する。
Aspect 2:
In Embodiment 1, an aqueous dispersion medium is prepared in the same manner as in Embodiment 1 except that the order in which the acid (c) and the dispersion stabilizing auxiliary (b) are added is changed.
Aspect 3:
Water (d) is added to the container and the container agitator is activated. Next, the required amount of acid (c) is added to water (d) in the container. Then, the aqueous silica sol (a) is gradually added while maintaining the pH of the intermediate in the container in the range of 0.8-7. Thereafter, the dispersion stabilizing aid (b) is added.
Aspect 4:
Water (d) is added to the container and the container agitator is activated. Next, the dispersion stabilizing aid (b) is added to the water (d) in the container. Then, the aqueous silica sol (a) and the acid (c) are simultaneously added to the intermediate in the container via separate lines. At this time, each feed rate is adjusted so that the pH of the intermediate in the container is maintained in the range of 0.8-7.
Aspect 5:
Water (d) is added to the container and the container agitator is activated. Next, the aqueous silica sol (a) and the acid (c) are simultaneously added to the water (d) in the container via separate lines. At this time, each feed rate is adjusted so that the pH of the intermediate in the container is maintained in the range of 0.8-7. Thereafter, the dispersion stabilizing aid (b) is added.
態様6:
 容器に分散安定補助剤(b)を添加する。次いで、水性シリカゾル(a)を添加し、容器の攪拌装置を起動させる。さらに、酸(c)を添加して、容器内の中間体のpHを0.8~7の範囲とする。その後、水(d)を添加する。
態様7:
 容器に分散安定補助剤(b)を添加する。次いで、酸(c)を添加する。さらに、水性シリカゾル(a)を添加し、容器の攪拌装置を起動させる。この時、容器内の中間体のpHを0.8~7の範囲とする。その後、水(d)を添加する。
態様8:
 容器に水性シリカゾル(a)を添加し、容器の攪拌装置を起動させる。次いで、酸(c)を添加して、pHを0.8~7の範囲とする。さらに、分散安定補助剤(b)、及び水(d)を添加する。
 なお、態様1~8において、重合助剤(e)は水性分散媒調製時のどの段階で添加してもよい。また、容器内の中間体のpHが0.8~7の範囲で維持されるようにすれば、水性シリカゾル(a)及び酸(c)の供給速度については何ら制限は無い。
Aspect 6:
Add the dispersion stabilizing aid (b) to the container. Next, the aqueous silica sol (a) is added and the stirring device of the container is started. Further, acid (c) is added to bring the pH of the intermediate in the container to a range of 0.8-7. Thereafter, water (d) is added.
Aspect 7:
Add the dispersion stabilizing aid (b) to the container. The acid (c) is then added. Furthermore, the aqueous silica sol (a) is added, and the stirring device of the container is started. At this time, the pH of the intermediate in the container is set to a range of 0.8-7. Thereafter, water (d) is added.
Aspect 8:
The aqueous silica sol (a) is added to the container, and the stirring apparatus of the container is started. Then acid (c) is added to bring the pH to the range of 0.8-7. Further, a dispersion stabilizing aid (b) and water (d) are added.
In Embodiments 1 to 8, the polymerization aid (e) may be added at any stage during preparation of the aqueous dispersion medium. In addition, as long as the pH of the intermediate in the container is maintained in the range of 0.8 to 7, there is no limitation on the supply rate of the aqueous silica sol (a) and the acid (c).
 態様1~8は、あくまで本発明の実施形態を説明する一例に過ぎず、その他にも様々な態様が可能である。
 また、(a)~(e)の各成分を混合する際、各成分は必ずしも一度に全量が混合される必要はなく、異なる時期に複数回に分けて混合されてもよい。すなわち、そのような態様として例えば、態様1において、分散安定補助剤(b)を添加する工程を二回に分け(それぞれ第一添加工程、第二添加工程という)、第一添加工程は態様1と同様に酸(c)を添加した直後に行い、第二添加工程は水性シリカゾル(a)を添加した後に行う、等を例示することができる。
Aspects 1 to 8 are merely examples for explaining the embodiment of the present invention, and various other aspects are possible.
Further, when the components (a) to (e) are mixed, the components do not necessarily have to be mixed all at once, and may be mixed in multiple times at different times. That is, as such an embodiment, for example, in the embodiment 1, the step of adding the dispersion stabilizing auxiliary agent (b) is divided into two (referred to as the first addition step and the second addition step, respectively), and the first addition step is the embodiment 1. It can be performed immediately after adding the acid (c) in the same manner as described above, and the second addition step can be performed after adding the aqueous silica sol (a).
 水性分散媒が、(a)~(e)に加えて、さらに無機塩(f)を混合して調製されると、本発明の効果が一層優れるため好ましい。無機塩(f)は水性分散媒調製時のどの段階で添加してもよいが、水性分散媒が、無機塩(f)の一部又は全部を、水(d)の一部又は全部に溶解させて得られる無機塩水溶液と、水性シリカゾル(a)とを混合して調製されると好ましい。 It is preferable that the aqueous dispersion medium is prepared by further mixing the inorganic salt (f) in addition to (a) to (e) because the effect of the present invention is further improved. The inorganic salt (f) may be added at any stage during preparation of the aqueous dispersion medium, but the aqueous dispersion medium dissolves part or all of the inorganic salt (f) in part or all of the water (d). It is preferable to prepare an inorganic salt aqueous solution obtained by mixing the aqueous silica sol (a).
 また、本発明の技術分野において、分散安定剤として用いるシリカ粒子の量と、得られる熱膨張性微小球の粒子径との間には関係があることが一般に知られている。すなわち、粒子径の大きい熱膨張性微小球を得るためには、用いるシリカ粒子の量を少なくすることが有効であり、逆に、粒子径の小さい熱膨張性微小球を得るためには、用いるシリカ粒子の量を多くすることが有効である。こうした背景から、本発明の方法は、目的とする熱膨張性微小球の粒子径の大小にかかわらず適用することが可能であるが、特に粒子径の小さい熱膨張性微小球を製造する場合に顕著に効果を奏する。 In the technical field of the present invention, it is generally known that there is a relationship between the amount of silica particles used as a dispersion stabilizer and the particle diameter of the resulting thermally expandable microspheres. That is, to obtain thermally expandable microspheres having a large particle size, it is effective to reduce the amount of silica particles to be used, and conversely, to obtain thermally expandable microspheres having a small particle size. It is effective to increase the amount of silica particles. From such a background, the method of the present invention can be applied regardless of the particle size of the target thermally expandable microsphere, but particularly when producing a thermally expandable microsphere having a small particle size. Remarkably effective.
 本発明は、上述のとおり、水性分散媒を調製する工程において特定の方法を採用したことにより、効果が発揮されるものである。したがって、本発明に用いられる油性混合物には特に制限はなく、熱膨張性微小球の製造方法として公知の、あらゆる類の油性混合物を使用することが可能である。油性混合物の代表的な例は、以下のようなものである。 As described above, the present invention exhibits its effect by adopting a specific method in the step of preparing the aqueous dispersion medium. Therefore, there is no restriction | limiting in particular in the oily mixture used for this invention, It is possible to use all sorts of oily mixtures well-known as a manufacturing method of a thermally expansible microsphere. A typical example of an oily mixture is as follows.
 油性混合物は、重合性成分、発泡剤及び重合開始剤を含有する。
 重合性成分は、重合開始剤の存在下で重合することによって、熱膨張性微小球の外殻を形成する熱可塑性樹脂となる成分である。重合性成分は、単量体成分を必須とし架橋剤を含むことがある成分である。
 ここで、単量体成分とは、一般に、重合性二重結合を1個有するラジカル重合性単量体と呼ばれている成分を意味するものとする。
The oily mixture contains a polymerizable component, a foaming agent and a polymerization initiator.
The polymerizable component is a component that becomes a thermoplastic resin that forms the outer shell of the thermally expandable microsphere by polymerizing in the presence of a polymerization initiator. The polymerizable component is a component which essentially includes a monomer component and may contain a crosslinking agent.
Here, the monomer component generally means a component called a radical polymerizable monomer having one polymerizable double bond.
 単量体成分としては、特に限定はないが、例えば、アクリロニトリル、メタクリロニトリル、フマロニトリル等のニトリル系単量体;アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等のカルボキシル基含有単量体;塩化ビニル等のハロゲン化ビニル系単量体;塩化ビニリデン等のハロゲン化ビニリデン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル系単量体;アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等の(メタ)アクリルアミド系単量体;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体;スチレン、α-メチルスチレン等のスチレン系単量体;エチレン、プロピレン、イソブチレン等のエチレン不飽和モノオレフィン系単量体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系単量体;ビニルメチルケトン等のビニルケトン系単量体;N-ビニルカルバゾール、N-ビニルピロリドン等のN-ビニル系単量体;ビニルナフタリン塩等を挙げることができる。単量体成分は、これらのラジカル重合性単量体のうち、1種を単独で使用してもよく2種以上を併用してもよい。なお、(メタ)アクリルは、アクリルまたはメタクリルを意味する。 The monomer component is not particularly limited. For example, nitrile monomers such as acrylonitrile, methacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, maleic acid, itaconic acid, fumaric acid Carboxyl group-containing monomers such as acid, citraconic acid and chloromaleic acid; vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate Vinyl ester monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate , Phenyl (meth) acrylate, isobornyl (meth) a (Meth) acrylic acid ester monomers such as relate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate; methacrylic, substituted acrylamide, methacrylamide, substituted methacrylamide, etc. ) Acrylamide monomers; Maleimide monomers such as N-phenylmaleimide and N-cyclohexylmaleimide; Styrene monomers such as styrene and α-methylstyrene; Ethylene unsaturated monoolefins such as ethylene, propylene and isobutylene Monomers; vinyl ether monomers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether; vinyl ketone monomers such as vinyl methyl ketone; N-vinyl such as N-vinyl carbazole and N-vinyl pyrrolidone Monomer, vinyl naphthalene salt and the like. A monomer component may be used individually by 1 type among these radically polymerizable monomers, and may use 2 or more types together. In addition, (meth) acryl means acryl or methacryl.
 重合性成分は、ニトリル系単量体、カルボキシル基含有単量体、(メタ)アクリル酸エステル系単量体、スチレン系単量体、ビニルエステル系単量体、アクリルアミド系単量体およびハロゲン化ビニリデン系単量体から選ばれる少なくとも1種の単量体成分を含むと好ましい。 Polymerizable components include nitrile monomers, carboxyl group-containing monomers, (meth) acrylate monomers, styrene monomers, vinyl ester monomers, acrylamide monomers, and halogenated monomers. It is preferable to contain at least one monomer component selected from vinylidene monomers.
 重合性成分が、単量体成分としてのニトリル系単量体を必須成分として含むと、得られる熱膨張性微小球が耐溶剤性に優れるために好ましい。ニトリル系単量体としては、アクリロニトリルや、メタクリロニトリル等が入手し易く、耐熱性および耐溶剤性が高いために好ましい。
 ニトリル系単量体の重量割合については、特に限定はないが、好ましくは単量体成分の20~100重量%、さらに好ましくは50~100重量%であり、特に好ましくは80~100重量%である。ニトリル系単量体が単量体成分の20重量%未満の場合は、耐溶剤性向上効果が得られないことがある。
When the polymerizable component includes a nitrile monomer as a monomer component as an essential component, the resulting thermally expandable microspheres are preferable because of excellent solvent resistance. As the nitrile monomer, acrylonitrile, methacrylonitrile and the like are easily available, and are preferable because of high heat resistance and solvent resistance.
The weight ratio of the nitrile monomer is not particularly limited, but is preferably 20 to 100% by weight of the monomer component, more preferably 50 to 100% by weight, and particularly preferably 80 to 100% by weight. is there. When the nitrile monomer is less than 20% by weight of the monomer component, the effect of improving the solvent resistance may not be obtained.
 重合性成分が、単量体成分としてのカルボキシル基含有単量体を必須成分として含むと、得られる熱膨張性微小球が耐熱性に優れるために好ましい。カルボキシル基含有単量体としては、アクリル酸や、メタクリル酸が入手し易く、耐熱性が向上するために好ましい。 It is preferable that the polymerizable component contains a carboxyl group-containing monomer as a monomer component as an essential component because the resulting heat-expandable microspheres are excellent in heat resistance. As the carboxyl group-containing monomer, acrylic acid or methacrylic acid is easy to obtain and is preferable because heat resistance is improved.
 カルボキシル基含有単量体の重量割合については、特に限定はないが、単量体成分に対して、好ましくは10~70重量%、さらに好ましくは25~45重量%であり、特に好ましくは30~40重量%である。カルボキシル基含有単量体が10重量%未満の場合は、耐熱性向上効果が得られないことがある。一方、カルボキシル基含有単量体が70重量%超の場合は、ガスバリア性が低下することがある。 The weight ratio of the carboxyl group-containing monomer is not particularly limited, but is preferably 10 to 70% by weight, more preferably 25 to 45% by weight, and particularly preferably 30 to 45% by weight with respect to the monomer component. 40% by weight. When the carboxyl group-containing monomer is less than 10% by weight, the heat resistance improvement effect may not be obtained. On the other hand, when the carboxyl group-containing monomer is more than 70% by weight, the gas barrier property may be lowered.
 重合性成分が、塩化ビニリデンを含むとガスバリア性が向上する。また、重合性成分が(メタ)アクリル酸エステル系単量体および/またはスチレン系単量体を含むと熱膨張特性をコントロールし易くなる。重合性成分が(メタ)アクリルアミド系単量体を含むと耐熱性が向上する。
 塩化ビニリデン、(メタ)アクリル酸エステル系単量体、スチレン系単量体、および(メタ)アクリルアミド系単量体から選ばれる少なくとも1種の重量割合は、単量体成分に対して、好ましくは80重量%未満、さらに好ましくは30重量%未満である。
When the polymerizable component contains vinylidene chloride, gas barrier properties are improved. Further, when the polymerizable component contains a (meth) acrylic acid ester monomer and / or a styrene monomer, the thermal expansion characteristics can be easily controlled. When the polymerizable component contains a (meth) acrylamide monomer, the heat resistance is improved.
The weight ratio of at least one selected from vinylidene chloride, (meth) acrylic acid ester monomer, styrene monomer, and (meth) acrylamide monomer is preferably relative to the monomer component. It is less than 80% by weight, more preferably less than 30% by weight.
 重合性成分は、上記単量体成分以外に、重合性二重結合を2個以上有する重合性単量体(架橋剤)を含んでいてもよい。架橋剤を用いて重合させることにより、熱膨張時の発泡剤の保持性が向上し、効果的に熱膨張させることができる。 The polymerizable component may contain a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds in addition to the monomer component. By polymerizing using a crosslinking agent, the retention of the foaming agent at the time of thermal expansion is improved, and thermal expansion can be effectively performed.
 架橋剤としては、特に限定はないが、例えば、ジビニルベンゼン、メタクリル酸アリル、トリアクリルホルマール、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、ポリプロピレングリコール#400ジ(メタ)アクリレート、ポリプロピレングリコール#700ジ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、EO変性トリメチロールプロパントリメタクリレート、グリセリンジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、トリアリルイソシアヌレート、トリアリルシアヌレート、トリグリシジルイソシアヌレート、ポリテトラメチレングリコールジメタクリレート、EO変性ビスフェノールAジメタクリレート、ネオペンチルグリコールジメタクリレート、ノナンジオールジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、3-メチル-1,5ペンタンジオールジアクリレート等を挙げることができる。これらの架橋剤は、1種を単独で使用してもよく2種以上を併用してもよい。
 架橋剤の量については、特に限定はなく、無くてもよいが、熱膨張時の発泡剤の保持性、外殻樹脂の伸長性、耐熱性等を考慮すると、架橋剤の量は、単量体成分100重量部に対して、好ましくは0.01~5重量部、さらに好ましくは0.1~1重量部である。
The crosslinking agent is not particularly limited. For example, divinylbenzene, allyl methacrylate, triacryl formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, polypropylene glycol # 400 di (meth) acrylate, polypropylene glycol # 700 di (meth) acrylate Rate, trimethylolpropane trimethacrylate, EO-modified trimethylolpropane trimethacrylate, glycerin dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, 2-butyl -2-Ethyl-1,3-propanediol diacrylate, tris (2-acryloyloxyethyl) isocyanurate, triallyl isocyanurate, triallyl cyanurate, triglycidyl isocyanurate, polytetramethylene glycol dimethacrylate, EO-modified bisphenol A dimethacrylate, neopentyl glycol dimethacrylate, nonanediol diacrylate, It can be mentioned trimethylolpropane tri (meth) acrylate, 3-methyl-1,5-pentanediol diacrylate. These crosslinking agents may be used individually by 1 type, and may use 2 or more types together.
The amount of the crosslinking agent is not particularly limited and may be omitted. However, in consideration of the retention of the foaming agent during thermal expansion, the extensibility of the outer shell resin, the heat resistance, etc., the amount of the crosslinking agent is a single amount. The amount is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the body component.
 発泡剤は、加熱することによって気化する物質であれば特に限定はないが、例えば、プロパン、(イソ)ブタン、(イソ)ペンタン、シクロペンタン、(イソ)ヘキサン、シクロヘキサン、メチルシクロペンタン、(イソ)ヘプタン、エチルシクロペンタン、メチルシクロヘキサン、(イソ)オクタン、エチルシクロヘキサン、(イソ)ノナン、(イソ)デカン、(イソ)ウンデカン、(イソ)ドデカン、(イソ)トリデカン、(イソ)ヘキサデカン、(イソ)エイコサン等の炭素数3~20の炭化水素;プソイドクメン、石油エーテル、初留点150~260℃および/または蒸留範囲70~360℃であるノルマルパラフィンやイソパラフィン等の石油分留物等の炭化水素;塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等の炭素数1~12の炭化水素のハロゲン化物;ハイドロフルオロエーテル等の含弗素化合物;テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル-n-プロピルシラン等の炭素数1~5のアルキル基を有するシラン類;アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)等の加熱により熱分解してガスを生成する化合物等が挙げられる。これらの発泡剤は、1種を単独で使用してもよく2種以上を併用してもよい。発泡剤は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。 The blowing agent is not particularly limited as long as it is a substance that is vaporized by heating. For example, propane, (iso) butane, (iso) pentane, cyclopentane, (iso) hexane, cyclohexane, methylcyclopentane, (iso ) Heptane, ethylcyclopentane, methylcyclohexane, (iso) octane, ethylcyclohexane, (iso) nonane, (iso) decane, (iso) undecane, (iso) dodecane, (iso) tridecane, (iso) hexadecane, (iso ) Hydrocarbons having 3 to 20 carbon atoms such as eicosane; pseudocumene, petroleum ether, hydrocarbons such as petroleum fractions such as normal paraffin and isoparaffin having an initial boiling point of 150 to 260 ° C. and / or a distillation range of 70 to 360 ° C. ; Methyl chloride, methylene chloride, chloroform, carbon tetrachloride, etc. Hydrocarbon halides having 1 to 12 primes; Fluorine-containing compounds such as hydrofluoroethers; having alkyl groups having 1 to 5 carbon atoms such as tetramethylsilane, trimethylethylsilane, trimethylisopropylsilane, trimethyl-n-propylsilane Silanes; azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), and the like are compounds that generate a gas upon thermal decomposition by heating. These foaming agents may be used individually by 1 type, and may use 2 or more types together. The blowing agent may be linear, branched or alicyclic, and is preferably aliphatic.
 重合開始剤としては、特に限定はないが、例えば、パーオキシジカーボネート、パーオキシエステル、ジアシルパーオキサイド等の過酸化物;アゾニトリル、アゾエステル、アゾアミド、アゾアルキル、高分子アゾ開始剤等のアゾ化合物等を挙げることができる。これらの重合開始剤は、1種を単独で使用してもよく2種以上を併用してもよい。なお、重合開始剤としては、ラジカル重合性単量体に対して可溶な油溶性の重合開始剤が好ましい。 The polymerization initiator is not particularly limited. For example, peroxides such as peroxydicarbonate, peroxyester, and diacyl peroxide; azo compounds such as azonitrile, azoester, azoamide, azoalkyl, and polymeric azo initiator Can be mentioned. These polymerization initiators may be used alone or in combination of two or more. The polymerization initiator is preferably an oil-soluble polymerization initiator that is soluble in the radical polymerizable monomer.
 重合開始剤の量については、特に限定はないが、重合性成分100重量部に対して0.3~8重量部であると好ましく、より好ましくは0.6~7重量部である。
 油性混合物は、連鎖移動剤、有機顔料、熱硬化性樹脂等をさらに含有していてもよい。
The amount of the polymerization initiator is not particularly limited, but is preferably 0.3 to 8 parts by weight, and more preferably 0.6 to 7 parts by weight with respect to 100 parts by weight of the polymerizable component.
The oily mixture may further contain a chain transfer agent, an organic pigment, a thermosetting resin, and the like.
 懸濁重合工程では、所定粒子径の球状油滴(通常、1~100μm程度)が調製されるように、油性混合物を水性分散媒中に分散させる。
 油性混合物を分散させる方法としては、たとえば、ホモミキサー(たとえば、プライミクス株式会社製)、ホモディスパー(たとえば、プライミクス株式会社製)等により攪拌する方法や、スタティックミキサー(たとえば、株式会社ノリタケエンジニアリング社製)等の静止型分散装置を用いる方法、膜乳化法、超音波分散法、マイクロチャネル法等の一般的な分散方法を挙げることができる。
 また、水性分散媒及び油性混合物の比率としては、特に限定されないが、油性混合物100重量部に対して、水性分散媒を150~1000重量部用いることが好ましい。水性分散媒の量が150重量部未満であると、分散質に対する分散媒の量が不足するため、O/Wエマルションとならない場合がある。一方、水性分散媒の量が1000重量部を超えると、一度に得られる製品の量が少なく、生産性が悪い。
In the suspension polymerization step, the oily mixture is dispersed in an aqueous dispersion medium so that spherical oil droplets having a predetermined particle diameter (usually about 1 to 100 μm) are prepared.
As a method for dispersing the oily mixture, for example, a method of stirring with a homomixer (for example, manufactured by Primix Co., Ltd.), a homodisper (for example, manufactured by Primix Co., Ltd.) or the like, And the like, a general dispersion method such as a method using a static dispersion apparatus such as a membrane emulsification method, an ultrasonic dispersion method, and a microchannel method.
Further, the ratio of the aqueous dispersion medium and the oily mixture is not particularly limited, but it is preferable to use 150 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the oily mixture. When the amount of the aqueous dispersion medium is less than 150 parts by weight, the amount of the dispersion medium with respect to the dispersoid is insufficient, so that an O / W emulsion may not be obtained. On the other hand, when the amount of the aqueous dispersion medium exceeds 1000 parts by weight, the amount of products obtained at a time is small and the productivity is poor.
 次いで、油性混合物が球状の油滴として水性分散媒に分散された分散液を加熱することにより、懸濁重合を開始する。重合反応中は、分散液を攪拌するのが好ましく、その攪拌は、例えば、単量体の浮上や重合後の熱膨張性微小球の浮上または沈降を防止できる程度に緩く行えばよい。
 重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは30~100℃、さらに好ましくは40~90℃、特に好ましくは50~85℃の範囲で制御される。反応温度を保持する時間は、0.1~20時間程度が好ましい。重合初期圧力については特に限定はないが、ゲージ圧で0~5.0MPa、さらに好ましくは0.1~3.0MPa、特に好ましくは0.2~2.0MPaの範囲である。
Next, suspension polymerization is started by heating the dispersion in which the oily mixture is dispersed in the aqueous dispersion medium as spherical oil droplets. During the polymerization reaction, it is preferable to stir the dispersion, and the stirring may be performed so gently as to prevent, for example, floating of the monomer and floating or sedimentation of the thermally expandable microspheres after polymerization.
The polymerization temperature is freely set depending on the kind of the polymerization initiator, but is preferably controlled in the range of 30 to 100 ° C, more preferably 40 to 90 ° C, and particularly preferably 50 to 85 ° C. The time for maintaining the reaction temperature is preferably about 0.1 to 20 hours. The initial polymerization pressure is not particularly limited, but the gauge pressure is in the range of 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.0 MPa.
 懸濁重合工程後に得られる熱膨張性微小球を含むスラリー(以下では、重合後のスラリーということもある)中には、目的とする熱膨張性微小球以外に、熱膨張性微小球の凝集物や重合カス等の副生成物が生成することがある。このような副生成物の大きさは熱膨張性微小球の粒子径よりも一般に大きいので、副生成物が一定のふるいを通過しなくなる。したがって、重合後のスラリーのふるい通過率を評価することにより、安定に熱膨張性微小球を製造できたか否かを判断することができる。ふるい通過率は、好ましくは80重量%以上、さらに好ましくは85重量%以上、特に好ましくは90重量%以上である。ふるい通過率が80重量%未満であると、生産性よく熱膨張性微小球を製造できているとはいえない。ふるい通過率の定義は実施例で説明する。 In the slurry containing the heat-expandable microspheres obtained after the suspension polymerization step (hereinafter sometimes referred to as the slurry after polymerization), in addition to the target heat-expandable microspheres, aggregation of the heat-expandable microspheres By-products such as product and polymerization residue may be generated. Since the size of such a by-product is generally larger than the particle size of the thermally expandable microsphere, the by-product does not pass through a certain sieve. Therefore, by evaluating the sieve passage rate of the slurry after polymerization, it can be determined whether or not the thermally expandable microspheres could be stably produced. The sieve passing rate is preferably 80% by weight or more, more preferably 85% by weight or more, and particularly preferably 90% by weight or more. If the sieve passage rate is less than 80% by weight, it cannot be said that thermally expandable microspheres can be produced with good productivity. The definition of the sieve passing rate will be described in the embodiment.
 重合後のスラリーから熱膨張性微小球を単離する方法としては、例えば、吸引濾過、加圧濾過、遠心分離等の単離方法を挙げることができ、その結果、熱膨張性微小球の含液ケーキが得られる。
 得られた熱膨張性微小球の含液ケーキに対して、棚乾燥、減圧乾燥、気流乾燥等の乾燥操作をさらに行うことで、乾燥した熱膨張性微小球を得ることができる。
 また、重合後のスラリーから乾燥した熱膨張性微小球を得る過程で、熱膨張性微小球を精製するために、熱膨張性微小球を水洗してもよい。
Examples of the method for isolating the thermally expandable microspheres from the slurry after polymerization include isolation methods such as suction filtration, pressure filtration, and centrifugal separation. A liquid cake is obtained.
The dried thermally expandable microspheres can be obtained by further performing drying operations such as shelf drying, reduced pressure drying and airflow drying on the obtained liquid expandable microsphere-containing cake.
In addition, in the process of obtaining dried thermally expandable microspheres from the slurry after polymerization, the thermally expandable microspheres may be washed with water in order to purify the thermally expandable microspheres.
〔熱膨張性微小球〕
 次に、本発明の製造方法で得られる熱膨張性微小球について説明する。
 熱膨張性微小球は、図3に示すように、熱可塑性樹脂からなる外殻(シェル)11とそれに内包され且つ加熱することによって気化する発泡剤(コア)12とから構成されたコア-シェル構造をとっており、熱膨張性微小球は微小球全体として熱膨張性(微小球全体が加熱により膨らむ性質)を示す。
[Thermal expandable microspheres]
Next, the thermally expandable microsphere obtained by the production method of the present invention will be described.
As shown in FIG. 3, the heat-expandable microsphere has a core-shell composed of an outer shell (shell) 11 made of a thermoplastic resin and a foaming agent (core) 12 encapsulated therein and vaporized by heating. It has a structure, and the thermally expandable microsphere exhibits thermal expandability (property that the entire microsphere expands by heating) as the entire microsphere.
 熱膨張性微小球の平均粒子径については、特に限定されないが、通常は0.1~100μmであり、好ましくは0.5~80μm、より好ましくは1~70μm、さらに好ましくは2~60μmであり、特に好ましくは2~50μmであり、特にさらに好ましくは2~40μm、最も好ましくは2~30μmである。熱膨張性微小球の平均粒子径が0.1μm未満の場合は、十分な膨張性が得られないことがある。また、熱膨張性微小球の平均粒子径が100μm超の場合は、表面平滑性が必要な用途には不適になる場合がある。
 熱膨張性微小球の粒度分布の変動係数CVは、特に限定されないが、好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。変動係数CVは、以下に示す計算式(1)および(2)で算出される。
The average particle diameter of the heat-expandable microsphere is not particularly limited, but is usually 0.1 to 100 μm, preferably 0.5 to 80 μm, more preferably 1 to 70 μm, and further preferably 2 to 60 μm. Particularly preferred is 2 to 50 μm, particularly preferred is 2 to 40 μm, and most preferred is 2 to 30 μm. When the average particle diameter of the thermally expandable microsphere is less than 0.1 μm, sufficient expandability may not be obtained. Further, when the average particle diameter of the thermally expandable microspheres is more than 100 μm, it may be unsuitable for applications requiring surface smoothness.
The coefficient of variation CV of the particle size distribution of the heat-expandable microspheres is not particularly limited, but is preferably 35% or less, more preferably 30% or less, and particularly preferably 25% or less. The variation coefficient CV is calculated by the following calculation formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(式中、sは粒子径の標準偏差、<x>は平均粒子径、xはi番目の粒子径、nは粒子の数である。)
 発泡剤の内包率は、熱膨張性微小球の重量に対する熱膨張性微小球に内包された発泡剤の重量の百分率で定義される。発泡剤の内包率については、特に限定はなく、使用される用途により内包率は適宜決められるが、好ましくは1~35重量%、さらに好ましくは2~30重量%、特に好ましくは3~25重量%である。内包率が1重量%未満であると、発泡剤の効果が得られないことがある。一方、内包率が35重量%を超えると熱膨張性微小球の外殻の厚みが薄くなることで、ガス抜けの原因となり、耐熱性の低下や高い膨張性能が得られないことがある。
 本発明の方法で得られる熱膨張性微小球は、表面に付着するシリカの量が少なく、乾燥時の凝集が少ない。
(Wherein, s is the standard deviation of the particle size, <x> is an average particle size, x i is the i-th particle diameter, n is the number of particles.)
The encapsulating rate of the foaming agent is defined as the percentage of the weight of the foaming agent encapsulated in the thermally expandable microspheres relative to the weight of the thermally expandable microspheres. The encapsulating rate of the foaming agent is not particularly limited, and the encapsulating rate is appropriately determined depending on the intended use, but is preferably 1 to 35% by weight, more preferably 2 to 30% by weight, and particularly preferably 3 to 25% by weight. %. If the encapsulation rate is less than 1% by weight, the effect of the foaming agent may not be obtained. On the other hand, when the encapsulation rate exceeds 35% by weight, the thickness of the outer shell of the thermally expandable microspheres becomes thin, which may cause outgassing, resulting in poor heat resistance and high expansion performance.
The thermally expandable microspheres obtained by the method of the present invention have a small amount of silica adhering to the surface and little aggregation during drying.
〔中空粒子〕
 上記熱膨張性微小球を加熱膨張させることにより、中空粒子を得ることができる。中空粒子は、軽量であり、組成物や成形物に含ませると材料物性に優れる。
 中空粒子を製造する方法としては、乾式加熱膨張法、湿式加熱膨張法等が挙げられる。熱膨張性微小球を加熱膨張させる温度は、好ましくは60~350℃である。
 中空粒子の平均粒子径については、用途に応じて自由に設計することができるために特に限定されないが、好ましくは1~1000μm、より好ましくは2~200μmである。また、中空粒子の粒度分布の変動係数CVについても、特に限定はないが、30%以下が好ましく、さらに好ましくは25%以下である。
[Hollow particles]
Hollow particles can be obtained by heating and expanding the thermally expandable microspheres. The hollow particles are lightweight and have excellent material properties when included in a composition or a molded product.
Examples of the method for producing the hollow particles include a dry heat expansion method and a wet heat expansion method. The temperature at which the thermally expandable microspheres are heated and expanded is preferably 60 to 350 ° C.
The average particle size of the hollow particles is not particularly limited because it can be designed freely according to the application, but is preferably 1 to 1000 μm, more preferably 2 to 200 μm. Further, the coefficient of variation CV of the particle size distribution of the hollow particles is not particularly limited, but is preferably 30% or less, and more preferably 25% or less.
 中空粒子の真比重については特に限定はないが、好ましくは0.005~0.5、さらに好ましくは0.01~0.3、特に好ましくは0.01~0.2である。
 中空粒子(1)は、図4に示すように、その外殻(2)の外表面に付着した微粒子(4や5)から構成されていてもよく、以下では、微粒子付着中空粒子(1)ということがある。
The true specific gravity of the hollow particles is not particularly limited, but is preferably 0.005 to 0.5, more preferably 0.01 to 0.3, and particularly preferably 0.01 to 0.2.
As shown in FIG. 4, the hollow particles (1) may be composed of fine particles (4 and 5) attached to the outer surface of the outer shell (2). There is.
 ここでいう付着とは、単に外殻(2)の外表面に微粒子(4および5)が吸着された状態(4)であってもよく、加熱によって融解した外殻に微粒子がめり込み、固定された状態(5)であってもよいという意味である。微粒子の粒子形状は不定形であっても球状であってもよい。微粒子付着中空粒子では、使用時の作業性(ハンドリング)が向上する。
 微粒子の平均粒子径については、用いる中空体本体の大きさによって適宜選択され、特に限定はないが、好ましくは0.001~30μm、さらに好ましくは0.005~25μm、特に好ましくは0.01~20μmである。
The adhesion mentioned here may be a state (4) in which the fine particles (4 and 5) are simply adsorbed on the outer surface of the outer shell (2), and the fine particles sink into the outer shell melted by heating and are fixed. This means that it may be in the state (5). The particle shape of the fine particles may be indefinite or spherical. In the fine particle-adhered hollow particles, workability (handling) during use is improved.
The average particle size of the fine particles is appropriately selected depending on the size of the hollow body used, and is not particularly limited, but is preferably 0.001 to 30 μm, more preferably 0.005 to 25 μm, and particularly preferably 0.01 to 20 μm.
 微粒子としては、種々のものを使用することができ、無機物、有機物のいずれの素材であってもよい。微粒子の形状としては、球状、針状や板状等が挙げられる。
 微粒子の平均粒子径は、中空体本体の平均粒子径の1/10以下であることが好ましい。ここで、微粒子の平均粒子径とは、一次粒子における平均粒子径を意味する。
Various particles can be used as the fine particles, and any of inorganic materials and organic materials may be used. Examples of the shape of the fine particles include a spherical shape, a needle shape, and a plate shape.
The average particle size of the fine particles is preferably 1/10 or less of the average particle size of the hollow body. Here, the average particle diameter of the fine particles means the average particle diameter of the primary particles.
 微粒子付着中空粒子は、例えば、微粒子付着熱膨張性微小球を加熱膨張させることによって得ることができる。微粒子付着中空粒子の製造方法としては、熱膨張性微小球と微粒子とを混合する工程(混合工程)と、前記混合工程で得られた混合物を加熱して前記熱膨張性微小球を膨張させるとともに、得られる中空粒子の外表面に微粒子を付着させる工程(付着工程)を含む製造方法が好ましい。 The fine particle-adhered hollow particles can be obtained, for example, by heating and expanding fine particle-adhered thermally expandable microspheres. The method for producing the fine particle-attached hollow particles includes a step of mixing thermally expandable microspheres and fine particles (mixing step), and heating the mixture obtained in the mixing step to expand the thermally expandable microspheres. A production method including a step of attaching fine particles to the outer surface of the obtained hollow particles (attachment step) is preferable.
 微粒子付着中空粒子の真比重については、特に限定はないが、好ましくは0.01~0.5であり、さらに好ましくは0.03~0.4、特に好ましくは0.05~0.35、最も好ましくは0.07~0.30である。微粒子付着中空粒子の真比重が0.01より小さい場合は、耐久性が不足することがある。一方、微粒子付着中空粒子の真比重が0.5より大きい場合は、低比重化効果が小さくなるため、微粒子付着中空粒子を用いて組成物を調製する際、その添加量が大きくなり、非経済的であることがある。
 中空粒子の水分については、特に限定はないが、好ましくは0.5重量%以下、さらに好ましくは0.4重量%以下、特に好ましくは0.35重量%以下、最も好ましくは0.3重量%以下である。中空粒子の水分の下限値は0重量%である。中空粒子の水分はいわゆる結晶水のように存在している。
The true specific gravity of the fine particle-attached hollow particles is not particularly limited, but is preferably 0.01 to 0.5, more preferably 0.03 to 0.4, and particularly preferably 0.05 to 0.35. Most preferably, it is 0.07 to 0.30. When the true specific gravity of the fine particle-adhered hollow particles is less than 0.01, the durability may be insufficient. On the other hand, when the true specific gravity of the fine particle-attached hollow particles is larger than 0.5, the effect of reducing the specific gravity is reduced. Sometimes.
The water content of the hollow particles is not particularly limited, but is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, particularly preferably 0.35% by weight or less, and most preferably 0.3% by weight. It is as follows. The lower limit of the moisture content of the hollow particles is 0% by weight. The moisture of the hollow particles exists like so-called crystal water.
〔組成物および成形物〕
 上記熱膨張性微小球および/または上記中空粒子と、基材成分とを混合することにより組成物を調製することができる。
 基材成分としては、特に限定はないが、例えば、ゴム類;熱硬化性樹脂;ワックス類;熱可塑性樹脂;熱可塑性エラストマー;バイオプラスチック;変性シリコーン系、ウレタン系、ポリサルファイド系、アクリル系、ポリイソブチレン系、ブチルゴム系等のシーリング材料;セメント、モルタル、コージエライト等の無機物等が挙げられる。
[Composition and molded product]
A composition can be prepared by mixing the thermally expandable microspheres and / or the hollow particles with a base material component.
The base material component is not particularly limited. For example, rubbers; thermosetting resins; waxes; thermoplastic resins; thermoplastic elastomers; bioplastics; modified silicones, urethanes, polysulfides, acrylics, polys Examples include sealing materials such as isobutylene and butyl rubber; and inorganic materials such as cement, mortar, and cordierite.
 組成物としては、熱膨張性微小球、中空粒子及び基材成分以外に、パーライト、フライアッシュ、シラスバルーン、ガラスバルーン、フェノールバルーン、カーボンバルーン、アルミナバブル、発泡スチレンビーズ等の軽量充填剤;ガラス繊維やアラミド繊維等の補強剤;シリカ、タルク、炭酸カルシウム等の充填剤;酸化チタン、酸化マグネシウム等の顔料等の添加剤をさらに配合してもよい。これらの添加剤は、1種を単独で使用してもよく2種以上を併用してもよい。 In addition to thermally expandable microspheres, hollow particles and base material components, the composition includes lightweight fillers such as perlite, fly ash, shirasu balloon, glass balloon, phenol balloon, carbon balloon, alumina bubble, and expanded styrene beads; glass Reinforcing agents such as fibers and aramid fibers; fillers such as silica, talc and calcium carbonate; additives such as pigments such as titanium oxide and magnesium oxide may be further blended. These additives may be used individually by 1 type, and may use 2 or more types together.
 組成物の用途としては、例えば、成形用組成物、塗料組成物、粘土組成物、繊維組成物、接着剤組成物、粉体組成物等を挙げることができる。より具体的な組成物の用途としては、化粧品、パテ、塗料、シーリング材、モルタル、紙粘土、陶器、人工大理石等が挙げられ、これらの用途において、熱膨張性微小球および/または中空粒子は軽量化、断熱性、収縮防止等の効果を付与することができる。 Examples of the use of the composition include a molding composition, a coating composition, a clay composition, a fiber composition, an adhesive composition, and a powder composition. More specific uses of the composition include cosmetics, putty, paints, sealants, mortar, paper clay, earthenware, artificial marble, etc. In these uses, thermally expandable microspheres and / or hollow particles Effects such as weight reduction, heat insulation, and shrinkage prevention can be imparted.
 また、上記組成物を成形することにより、成形物を得ることができる。
 成形物としては、例えば、フィルムや塗膜、成形品等を挙げることができる。基材成分として無機物を含む成形物は、さらに焼成することによって、独立気泡が形成されたセラミックフィルタ等が得られる。
Moreover, a molded article can be obtained by molding the composition.
As a molded product, a film, a coating film, a molded product, etc. can be mentioned, for example. A molded product containing an inorganic substance as a base component is further fired to obtain a ceramic filter or the like in which closed cells are formed.
 以下の実施例および比較例で本発明を詳細に説明するが、本発明はこれに限定されるものではない。特に断りのない限り、「部」は「重量部」を意味する。
 以下の実施例および比較例では、次に示す要領で物性を測定した。
The present invention is described in detail in the following examples and comparative examples, but the present invention is not limited thereto. Unless otherwise specified, “parts” means “parts by weight”.
In the following examples and comparative examples, physical properties were measured in the following manner.
〔シリカゾル中のSiO濃度の測定〕
 シリカゾル10gをるつぼに測り取り、130℃で乾燥後、800℃で加熱し、得られる残分の重量割合からシリカゾル中のSiO濃度を算出した。
[Measurement of SiO 2 concentration in silica sol]
10 g of silica sol was measured in a crucible, dried at 130 ° C., heated at 800 ° C., and the SiO 2 concentration in the silica sol was calculated from the weight ratio of the resulting residue.
〔pH〕
 東亜ディーケーケー(株)社製のpHメーター(品番HM-12P)を使用して、pHを測定した。
[PH]
The pH was measured using a pH meter (product number HM-12P) manufactured by Toa DKK Corporation.
〔熱膨張性微小球の平均粒子径〕
 測定装置として、レーザー回折式粒度分布測定装置(SYMPATEC社製のHEROS&RODOS)を使用し、湿式測定法により熱膨張性微小球を測定し体積平均径D50値を平均粒子径とした。
[Average particle diameter of thermally expandable microspheres]
As the measuring apparatus, using a laser diffraction type particle size distribution measuring apparatus (SYMPATEC Co. HEROS & RODOS), the measured heat-expandable microspheres volume mean diameter D 50 value was defined as the average particle size by a wet measuring method.
〔重合後のスラリー状態〕
1)ふるい通過率
 重合後のスラリーW(g)を用意し、このスラリーを関西金網製ふるい分け金網(目開き200μm)に通過させ、ふるいを通過したスラリーW(g)を測定した。W(g)およびW(g)から、重合後のスラリーのふるい通過率Y(重量%)を、下記の計算式(D)により算出した。
  Y(重量%)=(W/W)×100  (D)
 ふるい通過率Y(重量%)から、以下の評価基準でふるい通過性を評価した。
 ○:Y≧90重量%
 △:80重量%≦Y<90重量%
 ×:Y<80重量%
[Slurry state after polymerization]
1) Screening rate Slurry W 2 (g) after polymerization was prepared, and this slurry was passed through a screening wire mesh (mesh opening 200 μm) made by Kansai Wire Mesh, and the slurry W 1 (g) that passed through the screen was measured. From W 1 (g) and W 2 (g), the sieve passing rate Y (% by weight) of the slurry after polymerization was calculated by the following calculation formula (D).
Y (% by weight) = (W 1 / W 2 ) × 100 (D)
From the sieve passing rate Y (% by weight), the sieve passing ability was evaluated according to the following evaluation criteria.
○: Y ≧ 90% by weight
Δ: 80% by weight ≦ Y <90% by weight
X: Y <80% by weight
2)スラリー粘度
 重合後のスラリーの粘度を以下の評価基準で評価した。
 ○:流動性が高く、ふるい操作が容易であった。
 ×:流動性が低く、ふるい操作が困難であった。
2) Slurry viscosity The viscosity of the slurry after polymerization was evaluated according to the following evaluation criteria.
○: High fluidity and easy sieving operation.
X: The fluidity was low and the sieving operation was difficult.
〔実施例1〕
 攪拌装置を備えた水性分散媒調製用の容器に、イオン交換水600gを添加し、容器の攪拌装置を起動させた。次に無機塩として塩化ナトリウム180gを加えて溶解させた。ここに酸として62%硫酸0.30gを添加した。この段階での水性分散媒中間体のpHは1.0であった。次に分散安定補助剤としてポリビニルピロリドン(30重量%水溶液)2.0gを添加した。この段階での水性分散媒中間体のpHは1.0であった。そして、pHを確認しながら、水性シリカゾルとしてシリカゾルA(平均粒子径10nm、比表面積270m/g、SiO濃度20重量%、pH10.2)72gを徐々に添加した。水性シリカゾル添加時の水性分散媒中間体のpHは1.0~2.5の範囲であった。最後に重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加して水性分散媒を調製した。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.0~3.0の範囲であった。
 これとは別に、単量体成分(アクリロニトリル180g、メタクリロニトリル105g、メタクリル酸メチル15g)、架橋剤(トリメチロールプロパントリメタクリレート0.80g)、発泡剤(イソペンタン50g)、および、重合開始剤A(ラウロイルペルオキシド1.5g)を混合して油性混合物を調製した。
 上記水性分散媒および油性混合物を混合し、得られた混合液をホモミキサーにより8000rpmで2分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.2MPaにし、80rpmで攪拌しつつ重合温度70℃で15時間重合した。得られた重合生成物を濾過、乾燥して、熱膨張性微小球を得た。
[Example 1]
600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. Next, 180 g of sodium chloride as an inorganic salt was added and dissolved. To this, 0.30 g of 62% sulfuric acid was added as an acid. The pH of the aqueous dispersion medium intermediate at this stage was 1.0. Next, 2.0 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. The pH of the aqueous dispersion medium intermediate at this stage was 1.0. Then, 72 g of silica sol A (average particle diameter 10 nm, specific surface area 270 m 2 / g, SiO 2 concentration 20% by weight, pH 10.2) was gradually added as an aqueous silica sol while confirming the pH. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.5. Finally, 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000) was added as a polymerization aid to prepare an aqueous dispersion medium. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.0.
Apart from this, monomer components (acrylonitrile 180 g, methacrylonitrile 105 g, methyl methacrylate 15 g), crosslinking agent (trimethylolpropane trimethacrylate 0.80 g), blowing agent (isopentane 50 g), and polymerization initiator A (Lauroyl peroxide 1.5 g) was mixed to prepare an oily mixture.
The aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer at 8000 rpm for 2 minutes to prepare a suspension. This suspension was transferred to a pressure reactor having a capacity of 1.5 liters, purged with nitrogen, brought to an initial reaction pressure of 0.2 MPa, and polymerized at a polymerization temperature of 70 ° C. for 15 hours while stirring at 80 rpm. The obtained polymerization product was filtered and dried to obtain thermally expandable microspheres.
〔実施例2〕
 実施例1において、硫酸とポリビニルピロリドンの添加順を逆にし、硫酸の量を0.24gとした以外は、実施例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは2.0~3.8の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは4.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.0~4.0の範囲であった。
〔実施例3〕
 実施例1において、ポリビニルピロリドン(30重量%水溶液)の量を4.1gとし、ポリビニルピロリドンとシリカゾルAの添加順を逆にした以外は、実施例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.1~2.8の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.1~3.0の範囲であった。
〔実施例4〕
 実施例3において、シリカゾルAの添加量を60g、硫酸の量を0.27gとした以外は、実施例3と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.3~2.8の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.4、得られた水性分散媒のSiO濃度(AT100)は1.4、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.3~3.0の範囲であった。
[Example 2]
In Example 1, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that the addition order of sulfuric acid and polyvinylpyrrolidone was reversed and the amount of sulfuric acid was changed to 0.24 g. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.0 to 3.8. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 4.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.0-4.0.
Example 3
In Example 1, the amount of polyvinyl pyrrolidone (30% by weight aqueous solution) was 4.1 g, and the aqueous dispersion medium and thermal expansibility were the same as in Example 1 except that the order of addition of polyvinyl pyrrolidone and silica sol A was reversed. A microsphere was obtained. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.1 to 2.8. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.1-3.0.
Example 4
In Example 3, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 3 except that the amount of silica sol A added was 60 g and the amount of sulfuric acid was 0.27 g. The pH of the aqueous dispersion medium intermediate when adding the aqueous silica sol was in the range of 1.3 to 2.8. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.4, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.4, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 1.3 to 3.0.
〔実施例5〕
 攪拌装置を備えた水性分散媒調製用の容器に、イオン交換水600gを添加し、容器の攪拌装置を起動させた。次に無機塩として塩化ナトリウム180gを加えて溶解させ、分散安定補助剤としてポリビニルピロリドン(30重量%水溶液)4.1gを添加した。ここに酸として62%硫酸0.30gを定量ポンプを用いて0.08g/分の速度で投入を開始した。pHが2.0になった時点で、水性シリカゾルとしてシリカゾルA72gを定量ポンプを用いて16g/分の速度で投入を開始した。水性シリカゾル添加時の水性分散媒中間体のpHは2.0~2.7の範囲であった。最後に重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加して水性分散媒を調製した。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.0~3.0の範囲であった。また、本実施例で得られた水性分散媒を用いた以外は実施例1と同様にして熱膨張性微小球を得た。
〔実施例6〕
 実施例5において、分散安定補助剤としてのポリビニルピロリドン(30重量%水溶液)4.1gをシリカゾルAの添加後に混合した以外は、実施例5と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは2.0~2.6の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.0~3.1の範囲であった。
Example 5
600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. Next, 180 g of sodium chloride as an inorganic salt was added and dissolved, and 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. Here, 0.30 g of 62% sulfuric acid was added as an acid at a rate of 0.08 g / min using a metering pump. When the pH reached 2.0, 72 g of silica sol A as an aqueous silica sol was started at a rate of 16 g / min using a metering pump. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.0 to 2.7. Finally, 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000) was added as a polymerization aid to prepare an aqueous dispersion medium. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.0-3.0. Further, thermally expandable microspheres were obtained in the same manner as in Example 1 except that the aqueous dispersion medium obtained in this example was used.
Example 6
In Example 5, an aqueous dispersion medium and thermally expandable microspheres were prepared in the same manner as in Example 5 except that 4.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) as a dispersion stabilizing aid was mixed after the addition of silica sol A. Obtained. The pH of the aqueous dispersion medium intermediate when adding the aqueous silica sol was in the range of 2.0 to 2.6. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.0 to version 3.1.
〔実施例7〕
 攪拌装置を備えた水性分散媒調製用の容器に、分散安定補助剤としてポリビニルピロリドン(30重量%水溶液)4.2gを添加した。ここに水性シリカゾルとしてシリカゾルA72gを徐々に添加し、容器の攪拌装置を起動した。さらに酸として62%硫酸0.30gを添加した。この段階での水性分散媒中間体におけるSiO濃度は18.6重量%、pHは2.8であった。別途、塩化ナトリウム180gを溶解させたイオン交換水600gを上記の容器に攪拌しながら投入し、さらに重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加して水性分散媒を得た。塩化ナトリウム水溶液を投入し、Aが15未満となった段階以降での水性分散媒中間体のpHは2.8であった。得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.8~3.1の範囲であった。
 これとは別に、単量体成分(アクリロニトリル180g、メタクリロニトリル105g、メタクリル酸メチル15g)、架橋剤(トリメチロールプロパントリメタクリレート1.1g)、発泡剤(イソペンタン70g)、および、重合開始剤A(ラウロイルペルオキシド1.5g)を混合して油性混合物を調製した。
 上記水性分散媒および油性混合物を混合し、得られた混合液をホモミキサーにより8000rpmで2分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.2MPaにし、80rpmで攪拌しつつ重合温度70℃で15時間重合した。得られた重合生成物を濾過、乾燥して、熱膨張性微小球を得た。
〔実施例8〕
 実施例7において、硫酸とシリカゾルAの投入順を逆にしたこと、及びポリビニルピロリドン(30重量%水溶液)を6.3g添加したこと以外は、実施例7と同様にして水性分散媒及び熱膨張性微小球を得た。塩化ナトリウム水溶液を投入し、Aが15未満となった段階以降での水性分散媒中間体のpHは2.8であった。得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.8~3.1の範囲であった。
〔実施例9〕
 実施例8において、ポリビニルピロリドンとシリカゾルAの投入順を逆にしたこと、ポリビニルピロリドン(30重量%水溶液)を2.1g添加したこと、及び硫酸を0.42gとしたこと以外は、実施例8と同様にして水性分散媒及び熱膨張性微小球を得た。塩化ナトリウム水溶液を投入し、Aが15未満となった段階以降での水性分散媒中間体のpHは1.9であった。得られた水性分散媒のSiO濃度(AT100)は1.7、pHは2.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.9~2.1の範囲であった。
〔実施例10〕
 攪拌装置を備えた水性分散媒調製用の容器に、イオン交換水600gを添加し、容器の攪拌装置を起動させた。次に無機塩として塩化ナトリウム180gを加えて溶解させ、分散安定補助剤としてポリビニルピロリドン(30重量%水溶液)2.0gを添加した。ここに酸として62%硫酸0.20gを添加した。この段階での水性分散媒中間体のpHは2.3であった。そして、pHを確認しながら、水性シリカゾルとしてシリカゾルA72gを徐々に添加した。水性シリカゾル添加時の水性分散媒中間体のpHは2.3~6.1の範囲であった。さらに重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加し、最終的にpHを3.0に調整するために62%硫酸0.10gを添加して水性分散媒を調製した。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.3~6.1の範囲であった。また、本実施例で得られた水性分散媒を用いた以外は実施例1と同様にして熱膨張性微小球を得た。
Example 7
To a container for preparing an aqueous dispersion medium equipped with a stirrer, 4.2 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. Here, 72 g of silica sol A was gradually added as an aqueous silica sol, and the stirring device of the container was started. Further, 0.30 g of 62% sulfuric acid was added as an acid. At this stage, the SiO 2 concentration in the aqueous dispersion medium intermediate was 18.6% by weight, and the pH was 2.8. Separately, 600 g of ion-exchanged water in which 180 g of sodium chloride was dissolved was added to the above vessel while stirring, and polyethyleneimines (substituted alkyl group: —CH 2 COONa, substitution rate of substituted alkyl group: 80 as a polymerization aid). %, Weight average molecular weight: 50,000) 1.0 g was added to obtain an aqueous dispersion medium. The pH of the aqueous dispersion medium intermediate after the stage where the sodium chloride aqueous solution was added and AT became less than 15 was 2.8. The obtained aqueous dispersion medium had a SiO 2 concentration (A T100 ) of 1.7 and a pH of 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.8 to version 3.1.
Apart from this, monomer components (acrylonitrile 180 g, methacrylonitrile 105 g, methyl methacrylate 15 g), crosslinking agent (trimethylolpropane trimethacrylate 1.1 g), blowing agent (isopentane 70 g), and polymerization initiator A (Lauroyl peroxide 1.5 g) was mixed to prepare an oily mixture.
The aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer at 8000 rpm for 2 minutes to prepare a suspension. This suspension was transferred to a pressure reactor having a capacity of 1.5 liters, purged with nitrogen, brought to an initial reaction pressure of 0.2 MPa, and polymerized at a polymerization temperature of 70 ° C. for 15 hours while stirring at 80 rpm. The obtained polymerization product was filtered and dried to obtain thermally expandable microspheres.
Example 8
In Example 7, the aqueous dispersion medium and thermal expansion were the same as in Example 7, except that the order of addition of sulfuric acid and silica sol A was reversed and 6.3 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added. Sex microspheres were obtained. The pH of the aqueous dispersion medium intermediate after the stage where the sodium chloride aqueous solution was added and AT became less than 15 was 2.8. The obtained aqueous dispersion medium had a SiO 2 concentration (A T100 ) of 1.7 and a pH of 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.8 to version 3.1.
Example 9
In Example 8, except that the order of addition of polyvinylpyrrolidone and silica sol A was reversed, 2.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added, and sulfuric acid was 0.42 g. In the same manner, an aqueous dispersion medium and thermally expandable microspheres were obtained. A pH of the aqueous dispersion medium intermediate after the stage in which an aqueous sodium chloride solution was added and AT was less than 15 was 1.9. The obtained aqueous dispersion medium had a SiO 2 concentration (A T100 ) of 1.7 and a pH of 2.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.9-2.1.
Example 10
600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. Next, 180 g of sodium chloride as an inorganic salt was added and dissolved, and 2.0 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. To this, 0.20 g of 62% sulfuric acid was added as an acid. The pH of the aqueous dispersion medium intermediate at this stage was 2.3. And 72 g of silica sol A was gradually added as aqueous silica sol, confirming pH. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.3 to 6.1. Further, 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substitution rate of substituted alkyl group: 80%, weight average molecular weight: 50,000) was added as a polymerization aid, and finally the pH was adjusted to 3.0. In order to adjust to 62%, 0.10 g of 62% sulfuric acid was added to prepare an aqueous dispersion medium. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, and the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.3 to 6.1. Further, thermally expandable microspheres were obtained in the same manner as in Example 1 except that the aqueous dispersion medium obtained in this example was used.
〔実施例11〕
 実施例1において、シリカゾルAの代わりにシリカゾルB(平均粒子径6nm、比表面積450m/g、SiO濃度20重量%、pH9.7)72gを使用した以外は、実施例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.0~2.7の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.0~3.1の範囲であった。
〔実施例12〕
 実施例2において、シリカゾルAの代わりにシリカゾルB72gを使用した以外は、実施例2と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.0~2.8の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.2であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.0~3.2の範囲であった。
Example 11
In Example 1, instead of silica sol A, silica sol B (average particle size 6 nm, specific surface area 450 m 2 / g, SiO 2 concentration 20 wt%, pH 9.7) was used in the same manner as in Example 1, An aqueous dispersion medium and thermally expandable microspheres were obtained. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.7. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 1.0 to version 3.1.
Example 12
In Example 2, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 2 except that 72 g of silica sol B was used instead of silica sol A. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.8. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.2. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.2.
〔実施例13〕
 実施例1において、ポリビニルピロリドン(30重量%水溶液)を4.1g添加し、シリカゾルAの代わりにシリカゾルC(平均粒子径10nm、比表面積270m/g、SiO濃度30重量%、pH10.2)48gを使用した以外は、実施例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.0~2.7の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.9、得られた水性分散媒のSiO濃度(AT100)は1.9、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.0~3.0の範囲であった。
〔実施例14〕
 実施例2において、ポリビニルピロリドン(30重量%水溶液)を4.1g添加し、シリカゾルAの代わりにシリカゾルC48gを使用し、硫酸を0.24gとした以外は、実施例2と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは2.2~3.9の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは4.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.2~4.1の範囲であった。
Example 13
In Example 1, 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added, and instead of silica sol A, silica sol C (average particle size 10 nm, specific surface area 270 m 2 / g, SiO 2 concentration 30% by weight, pH 10.2). ) An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that 48 g was used. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.7. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.9, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.9, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.0.
Example 14
In Example 2, 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added, 48 g of silica sol C was used instead of silica sol A, and sulfuric acid was changed to 0.24 g. Medium and thermally expandable microspheres were obtained. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.9. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 4.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.2 to 4.1.
〔実施例15〕
 実施例1において、ポリビニルピロリドン(30重量%水溶液)を4.1g添加し、シリカゾルAの代わりにシリカゾルD(平均粒子径10nm、比表面積270m/g、SiO濃度40重量%、pH10.0)36gを使用した以外は、実施例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.0~2.7の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.8、得られた水性分散媒のSiO濃度(AT100)は1.8、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.0~3.0の範囲であった。
〔実施例16〕
 実施例2において、ポリビニルピロリドン(30重量%水溶液)を4.1g添加し、シリカゾルAの代わりにシリカゾルD36gを使用し、硫酸を0.42g使用した以外は、実施例2と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは0.8~1.9の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.8、得られた水性分散媒のSiO濃度(AT100)は1.8、pHは2.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは0.8~2.1の範囲であった。
Example 15
In Example 1, 4.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added, and instead of silica sol A, silica sol D (average particle size 10 nm, specific surface area 270 m 2 / g, SiO 2 concentration 40% by weight, pH 10.0) ) An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that 36 g was used. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.0 to 2.7. SiO 2 concentration of the intermediate in aqueous dispersion medium 0 <A T ≦ 1.8, SiO 2 concentration of the obtained aqueous dispersion medium (A T100) is 1.8, pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.0-3.0.
Example 16
In Example 2, 4.1 g of polyvinyl pyrrolidone (30% by weight aqueous solution) was added, 36 g of silica sol D was used instead of silica sol A, and 0.42 g of sulfuric acid was used. Medium and thermally expandable microspheres were obtained. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 0.8 to 1.9. SiO 2 concentration of the intermediate in aqueous dispersion medium 0 <A T ≦ 1.8, SiO 2 concentration of the obtained aqueous dispersion medium (A T100) is 1.8, pH was 2.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 0.8 to 2.1.
〔比較例1〕
 攪拌装置を備えた水性分散媒調製用の容器に、イオン交換水600gを添加し、容器の攪拌装置を起動させた。次に無機塩として塩化ナトリウム180gを加えて溶解させた。次に分散安定補助剤としてポリビニルピロリドン(30重量%水溶液)4.1gを添加した。その後pHを確認しながら、水性シリカゾルとしてシリカゾルA72gを徐々に添加した。この段階での水性分散媒中間体のpHは6.4~8.1であった。ここに酸として62%硫酸0.30gを添加した。この段階で水性分散媒中間体のpHは8.1から2.7に変化した。最後に重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加して水性分散媒を調製した。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.0~8.1の範囲であった。
 以下は、実施例1と同様にして熱膨張性微小球を得た。
[Comparative Example 1]
600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. Next, 180 g of sodium chloride as an inorganic salt was added and dissolved. Next, 4.1 g of polyvinylpyrrolidone (30% by weight aqueous solution) was added as a dispersion stabilizing aid. Thereafter, 72 g of silica sol A was gradually added as an aqueous silica sol while confirming the pH. The pH of the aqueous dispersion medium intermediate at this stage was 6.4 to 8.1. To this, 0.30 g of 62% sulfuric acid was added as an acid. At this stage, the pH of the aqueous dispersion medium intermediate changed from 8.1 to 2.7. Finally, 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000) was added as a polymerization aid to prepare an aqueous dispersion medium. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 8.1.
The following were obtained in the same manner as in Example 1 to obtain thermally expandable microspheres.
〔比較例2〕
 シリカゾルAを120g、ポリビニルピロリドン(30重量%水溶液)を5.2g、硫酸を0.50gとした以外は、比較例1と同様にして水性分散媒及び熱膨張性微小球を得た。シリカゾルAを投入した段階での水性分散媒中間体のpHは6.4~8.1であった。水性分散媒の中間体のSiO濃度は0<A≦2.6、得られた水性分散媒のSiO濃度(AT100)は2.6、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.0~8.1の範囲であった。
〔比較例3〕
 シリカゾルAを135g、ポリビニルピロリドン(30重量%水溶液)を5.2g、硫酸を0.56gとした以外は、比較例1と同様にして水性分散媒及び熱膨張性微小球を得た。シリカゾルAを投入した段階での水性分散媒中間体のpHは6.4~8.1であった。水性分散媒の中間体のSiO濃度は0<A≦2.9、得られた水性分散媒のSiO濃度(AT100)は2.9、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.0~8.1の範囲であった。
〔比較例4〕
 比較例1において、ポリビニルピロリドンとシリカゾルAの投入順を逆にしたこと以外は、比較例1と同様にして水性分散媒及び熱膨張性微小球を得た。シリカゾルAを投入した段階での水性分散媒中間体のpHは5.5~7.9であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.0~7.9の範囲であった。
〔比較例5〕
 比較例4において、ポリビニルピロリドンと硫酸の投入順を逆にしたこと以外は、比較例4と同様にして水性分散媒及び熱膨張性微小球を得た。シリカゾルAを投入した段階での水性分散媒中間体のpHは5.5~7.9であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.0~7.9の範囲であった。
〔実施例17〕
 表4に示す各成分に変更した以外は、実施例2と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.5~3.7の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.0、得られた水性分散媒のSiO濃度(AT100)は1.0、pHは4.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.5~4.0の範囲であった。
〔比較例6〕
 表4に示す各成分に変更した以外は、比較例2と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは5.2~8.3の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.0、得られた水性分散媒のSiO濃度(AT100)は1.9、pHは4.0であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは4.0~8.3の範囲であった。
〔実施例18〕
 表4に示す各成分に変更した以外は、実施例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは1.3~3.2の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.0、得られた水性分散媒のSiO濃度(AT100)は1.4、pHは3.5であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは1.3~3.5の範囲であった。
〔比較例7〕
 表4に示す各成分に変更した以外は、比較例1と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは5.5~7.9の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.0、得られた水性分散媒のSiO濃度(AT100)は1.0、pHは3.5であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.5~7.9の範囲であった。
[Comparative Example 2]
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 1 except that 120 g of silica sol A, 5.2 g of polyvinylpyrrolidone (30% by weight aqueous solution), and 0.50 g of sulfuric acid were used. The pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 6.4 to 8.1. SiO 2 concentration of the intermediate in aqueous dispersion medium 0 <A T ≦ 2.6, SiO 2 concentration of the obtained aqueous dispersion medium (A T100) is 2.6, pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 8.1.
[Comparative Example 3]
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 1 except that 135 g of silica sol A, 5.2 g of polyvinylpyrrolidone (30% by weight aqueous solution), and 0.56 g of sulfuric acid were used. The pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 6.4 to 8.1. SiO 2 concentration of the intermediate in aqueous dispersion medium 0 <A T ≦ 2.9, SiO 2 concentration of the obtained aqueous dispersion medium (A T100) is 2.9, pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 8.1.
[Comparative Example 4]
In Comparative Example 1, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 1, except that the order of addition of polyvinylpyrrolidone and silica sol A was reversed. The pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 5.5 to 7.9. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 7.9.
[Comparative Example 5]
In Comparative Example 4, an aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 4 except that the order of addition of polyvinylpyrrolidone and sulfuric acid was reversed. The pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 5.5 to 7.9. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.0 to 7.9.
Example 17
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 2 except that the components shown in Table 4 were changed. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 1.5 to 3.7. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.0, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.0, and the pH was 4.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 1.5-4.0.
[Comparative Example 6]
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 2, except that the components shown in Table 4 were changed. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 5.2 to 8.3. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.0, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.9, and the pH was 4.0. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 4.0 to 8.3.
Example 18
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 1 except that the components shown in Table 4 were changed. The pH of the aqueous dispersion medium intermediate when adding the aqueous silica sol was in the range of 1.3 to 3.2. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.0, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.4, and the pH was 3.5. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 1.3 to 3.5.
[Comparative Example 7]
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Comparative Example 1, except that the components shown in Table 4 were changed. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 5.5 to 7.9. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.0, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.0, and the pH was 3.5. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.5 to 7.9.
〔実施例19〕
 攪拌装置を備えた水性分散媒調製用の容器に、イオン交換水600gを添加し、容器の攪拌装置を起動させた。ここに酸として62%硫酸0.37gを添加した。この段階での水性分散媒中間体のpHは2.2であった。次に分散安定補助剤としてアジピン酸-ジエタノールアミンの縮合物(有効濃度50重量%)2.4gを添加した。この段階での水性分散媒中間体のpHは2.3であった。そして、pHを確認しながら、水性シリカゾルとしてシリカゾルA56gを徐々に添加した。水性シリカゾル添加時の水性分散媒中間体のpHは2.2~3.3の範囲であった。さらに重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加し、最後に62%硫酸を添加してpHを3.1として水性分散媒を調製した。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.2~3.3の範囲であった。
 これとは別に、単量体成分(塩化ビニリデン135g、アクリロニトリル135g、メタクリル酸メチル30g)、架橋剤(トリメチロールプロパントリメタクリレート0.70g)、発泡剤(イソブタン63g)、および、重合開始剤B(ジイソプロピルペルオキシジカーボネート(純度50%))1.5gを混合して油性混合物を調製した。
 上記水性分散媒および油性混合物を混合し、得られた混合液をホモミキサーにより8000rpmで2分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.2MPaにし、80rpmで攪拌しつつ重合温度50℃で15時間重合した。得られた重合生成物を濾過、乾燥して、熱膨張性微小球を得た。
Example 19
600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. To this, 0.37 g of 62% sulfuric acid was added as an acid. At this stage, the pH of the aqueous dispersion medium intermediate was 2.2. Next, 2.4 g of an adipic acid-diethanolamine condensate (effective concentration 50% by weight) was added as a dispersion stabilizing aid. The pH of the aqueous dispersion medium intermediate at this stage was 2.3. Then, while confirming the pH, 56 g of silica sol A was gradually added as an aqueous silica sol. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.3. Furthermore, 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substitution rate of substituted alkyl group: 80%, weight average molecular weight: 50,000) was added as a polymerization aid, and finally 62% sulfuric acid was added. Then, an aqueous dispersion medium was prepared with a pH of 3.1. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, and the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.2 to 3.3.
Apart from this, monomer components (135 g vinylidene chloride, 135 g acrylonitrile, 30 g methyl methacrylate), a crosslinking agent (trimethylolpropane trimethacrylate 0.70 g), a blowing agent (isobutane 63 g), and a polymerization initiator B ( An oily mixture was prepared by mixing 1.5 g of diisopropyl peroxydicarbonate (purity 50%).
The aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer at 8000 rpm for 2 minutes to prepare a suspension. This suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen, and then the initial reaction pressure was set to 0.2 MPa, and polymerization was carried out at a polymerization temperature of 50 ° C. for 15 hours while stirring at 80 rpm. The obtained polymerization product was filtered and dried to obtain thermally expandable microspheres.
〔実施例20〕
 実施例19において、硫酸とアジピン酸-ジエタノールアミンの縮合物の添加順を逆にした以外は、実施例19と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは2.2~3.3の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.2~3.3の範囲であった。
〔実施例21〕
 実施例19において、アジピン酸-ジエタノールアミンの縮合物とシリカゾルAの添加順を逆にした以外は、実施例19と同様にして水性分散媒及び熱膨張性微小球を得た。水性シリカゾル添加時の水性分散媒中間体のpHは2.2~3.5の範囲であった。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは2.2~3.5の範囲であった。
Example 20
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 19 except that the addition order of the condensate of sulfuric acid and adipic acid-diethanolamine was reversed. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.3. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 2.2 to 3.3.
Example 21
An aqueous dispersion medium and thermally expandable microspheres were obtained in the same manner as in Example 19 except that the addition order of the adipic acid-diethanolamine condensate and silica sol A was reversed. The pH of the aqueous dispersion medium intermediate when the aqueous silica sol was added was in the range of 2.2 to 3.5. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared ranged from 2.2 to 3.5.
〔比較例8〕
 攪拌装置を備えた水性分散媒調製用の容器に、イオン交換水600gを添加し、容器の攪拌装置を起動させた。ここに水性シリカゾルとしてシリカゾルA56gを徐々に添加した。この段階での水性分散媒中間体のpHは7.0~10.2であった。次に分散安定補助剤としてアジピン酸-ジエタノールアミンの縮合物(有効濃度50重量%)2.4gを添加した。この段階で水性分散媒中間体のpHは10.2から7.2に変化した。さらに酸として62%硫酸0.37g、重合助剤としてポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)1.0gを添加して水性分散媒を調製した。水性分散媒の中間体のSiO濃度は0<A≦1.7、得られた水性分散媒のSiO濃度(AT100)は1.7、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.1~10.2の範囲であった。
 以下は、実施例19と同様にして熱膨張性微小球を得た。
〔比較例9〕
 比較例8において、シリカゾルAを90g、アジピン酸-ジエタノールアミンの縮合物(有効濃度50重量%)を4.5g、硫酸を0.59gとした以外は、比較例8と同様にして水性分散媒及び熱膨張性微小球を得た。シリカゾルAを投入した段階での水性分散媒中間体のpHは3.1~10.2であった。水性分散媒の中間体のSiO濃度は0<A≦2.6、得られた水性分散媒のSiO濃度(AT100)は2.6、pHは3.1であった。0<A<15を満たすAにおける、水性分散媒調製時の中間体のpHは3.1~10.2の範囲であった。
 各種原料の配合量、重合後のスラリー状態、及び得られた熱膨張性微小球の物性について、実施例1~10については表1に、実施例11~16については表2に、比較例1~5については表3に、実施例17、18及び比較例6、7については表4に、実施例19~21及び比較例8、9については表5に示す。
 表1~5においては、表6に示す略号が使用されている。
 なお、水(d)に予め無機塩(f)を溶解させてある場合を含む。
 比較例1~9での水性分散媒は従来の調製方法にて調製されたものである。
[Comparative Example 8]
600 g of ion-exchanged water was added to a container for preparing an aqueous dispersion medium equipped with a stirrer, and the stirrer of the container was started. To this, 56 g of silica sol A was gradually added as an aqueous silica sol. The pH of the aqueous dispersion medium intermediate at this stage was 7.0 to 10.2. Next, 2.4 g of an adipic acid-diethanolamine condensate (effective concentration 50% by weight) was added as a dispersion stabilizing aid. At this stage, the pH of the aqueous dispersion medium intermediate changed from 10.2 to 7.2. Further, 0.37 g of 62% sulfuric acid was added as the acid, and 1.0 g of polyethyleneimine (substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000) was added as the polymerization aid. An aqueous dispersion medium was prepared. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 1.7, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 1.7, and the pH was 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.1 to 10.2.
In the same manner as in Example 19, thermally expandable microspheres were obtained.
[Comparative Example 9]
In Comparative Example 8, an aqueous dispersion medium and an aqueous dispersion medium were prepared in the same manner as in Comparative Example 8, except that 90 g of silica sol A, 4.5 g of adipic acid-diethanolamine condensate (effective concentration 50% by weight) and 0.59 g of sulfuric acid were used. Thermally expandable microspheres were obtained. The pH of the aqueous dispersion medium intermediate at the stage when the silica sol A was added was 3.1 to 10.2. The SiO 2 concentration of the intermediate of the aqueous dispersion medium was 0 <A T ≦ 2.6, the SiO 2 concentration (A T100 ) of the obtained aqueous dispersion medium was 2.6, and the pH was 3.1. 0 in <A T <satisfy 15 A T, pH of the intermediate during the aqueous dispersion medium prepared was in the range of 3.1 to 10.2.
The blending amounts of various raw materials, the slurry state after polymerization, and the physical properties of the obtained thermally expandable microspheres are shown in Table 1 for Examples 1 to 10, Table 2 for Examples 11 to 16, and Comparative Example 1. Tables 5 to 5 are shown in Table 3, Examples 17 and 18 and Comparative Examples 6 and 7 are shown in Table 4, and Examples 19 to 21 and Comparative Examples 8 and 9 are shown in Table 5.
In Tables 1 to 5, the abbreviations shown in Table 6 are used.
In addition, the case where the inorganic salt (f) is previously dissolved in water (d) is included.
The aqueous dispersion media in Comparative Examples 1 to 9 were prepared by a conventional preparation method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~6及び実施例10~21では、水性分散媒の中間体に水性シリカゾルを添加するので、水性分散媒のSiO濃度の推移は図1のようになる。この濃度の範囲内において、水性分散媒の中間体のpHが0.8~7の範囲で維持されているため、少量の水性シリカゾルで粒子径の小さい熱膨張性微小球を作製することができた。また重合後のスラリー状態は良好であった。AT100は0.5~8の範囲であった。
 実施例7~9では、水性シリカゾルのSiO濃度が高い状態から徐々に希釈されるので、水性分散媒のSiO濃度の推移は図2のようになる。この濃度の範囲内において、水性分散媒の中間体のpHが0.8~7の範囲で維持されているため、少量の水性シリカゾルで粒子径の小さい熱膨張性微小球を作製することができた。また重合後のスラリー状態は良好であった。AT100は0.5~8の範囲であった。
 一方、従来の水性分散媒の調製法である比較例1~9では、水性分散媒の中間体に水性シリカゾルを添加するので、水性分散媒のSiO濃度の推移は図1のようになる。この濃度の範囲内において、水性分散媒の中間体のpHが0.8~7の範囲から逸脱したため、粒子径の小さい熱膨張性微小球を作製するためには、実施例に比較して多量の水性シリカゾルを使用する必要があった。また比較例1~5及び8、9は重合後のスラリー状態は凝集が顕著であり、ふるい通過性が不良であった。このことは重合の段階において実施例と比較して油滴の分散安定性が低いことを示唆するものである。
In Examples 1 to 6 and Examples 10 to 21, since the aqueous silica sol is added to the intermediate of the aqueous dispersion medium, the transition of the SiO 2 concentration of the aqueous dispersion medium is as shown in FIG. Within this concentration range, the pH of the aqueous dispersion medium intermediate is maintained in the range of 0.8 to 7, so that thermally expandable microspheres having a small particle diameter can be produced with a small amount of aqueous silica sol. It was. The slurry state after polymerization was good. AT 100 was in the range of 0.5-8 .
In Examples 7 to 9, since the SiO 2 concentration of the aqueous silica sol is gradually diluted from a high state, the transition of the SiO 2 concentration of the aqueous dispersion medium is as shown in FIG. Within this concentration range, the pH of the aqueous dispersion medium intermediate is maintained in the range of 0.8 to 7, so that thermally expandable microspheres having a small particle diameter can be produced with a small amount of aqueous silica sol. It was. The slurry state after polymerization was good. AT 100 was in the range of 0.5-8 .
On the other hand, in Comparative Examples 1 to 9, which are conventional methods for preparing an aqueous dispersion medium, since the aqueous silica sol is added to the intermediate of the aqueous dispersion medium, the transition of the SiO 2 concentration of the aqueous dispersion medium is as shown in FIG. Within this range of concentration, the pH of the intermediate of the aqueous dispersion medium deviated from the range of 0.8 to 7. Therefore, in order to produce thermally expandable microspheres having a small particle size, a large amount compared to the examples. It was necessary to use an aqueous silica sol. In Comparative Examples 1 to 5, 8 and 9, aggregation in the slurry state after polymerization was remarkable, and sieve passing ability was poor. This suggests that the dispersion stability of the oil droplets is lower in the polymerization stage than in the examples.
 11 熱可塑性樹脂からなる外殻
 12 発泡剤
  1 中空粒子(微粒子付着中空粒子)
  2 外殻
  3 中空部
  4 微粒子(吸着された状態)
  5 微粒子(めり込み、固定化された状態)
11 Outer shell made of thermoplastic resin 12 Foaming agent 1 Hollow particle (fine particle-attached hollow particle)
2 Outer shell 3 Hollow part 4 Fine particles (adsorbed state)
5 Fine particles (indented, fixed state)

Claims (5)

  1.  水性分散媒中に、重合性成分、発泡剤及び重合開始剤を含有する油性混合物を分散させて、前記重合性成分を重合させる工程を含む熱膨張性微小球の製造方法であって、
     前記水性分散媒が、pHが9~11でありSiO濃度が15~40重量%である水性シリカゾル(a)、分散安定補助剤(b)、酸(c)、水(d)、及び重合助剤(e)を混合して調製され、
     前記水性分散媒を調製する工程において、水性分散媒の調製開始時刻をT0、調製終了時刻をT100とし、T0<T<T100を満たす任意の時刻Tにおいて生成する水性分散媒の中間体のSiO濃度をA重量%、T100における水性分散媒のSiO濃度をAT100重量%としたとき、
     0<A<15を満たすAにあっては、前記中間体のpHを0.8~7の範囲で維持し、AT100を0.5~8とする、
     熱膨張性微小球の製造方法。
    A method for producing thermally expandable microspheres comprising a step of dispersing an oily mixture containing a polymerizable component, a foaming agent and a polymerization initiator in an aqueous dispersion medium and polymerizing the polymerizable component,
    The aqueous dispersion medium has an aqueous silica sol (a) having a pH of 9 to 11 and an SiO 2 concentration of 15 to 40% by weight, a dispersion stabilizing aid (b), an acid (c), water (d), and a polymerization Prepared by mixing auxiliary (e),
    In the step of preparing the aqueous dispersion medium, the preparation start time of the aqueous dispersion medium is T0, the preparation end time is T100, and the intermediate SiO 2 of the aqueous dispersion medium produced at any time T satisfying T0 <T <T100. When the concentration is AT weight% and the SiO 2 concentration of the aqueous dispersion medium at T100 is AT 100 weight%,
    In AT satisfying 0 <A T <15, the pH of the intermediate is maintained in the range of 0.8 to 7, and AT 100 is set to 0.5 to 8.
    A method for producing thermally expandable microspheres.
  2.  前記水(d)100重量部に対して、前記水性シリカゾル(a)を2~100重量部、前記分散安定補助剤(b)を0.01~5重量部、前記重合助剤(e)を0.0001~0.1重量部用いる、請求項1に記載の熱膨張性微小球の製造方法。 2 to 100 parts by weight of the aqueous silica sol (a), 0.01 to 5 parts by weight of the dispersion stabilizing aid (b), and the polymerization aid (e) with respect to 100 parts by weight of the water (d). The method for producing thermally expandable microspheres according to claim 1, wherein 0.0001 to 0.1 parts by weight are used.
  3.  前記油性混合物100重量部に対して、前記水性分散媒を150~1000重量部用いる、請求項1又は2に記載の熱膨張性微小球の製造方法。 The method for producing thermally expandable microspheres according to claim 1 or 2, wherein 150 to 1000 parts by weight of the aqueous dispersion medium is used with respect to 100 parts by weight of the oily mixture.
  4.  前記水性分散媒が、さらに無機塩(f)を混合して調製される、請求項1~3のいずれかに記載の熱膨張性微小球の製造方法。 The method for producing thermally expandable microspheres according to any one of claims 1 to 3, wherein the aqueous dispersion medium is prepared by further mixing an inorganic salt (f).
  5.  前記水性分散媒が、前記無機塩(f)の一部又は全部を、前記水(d)の一部又は全部に溶解させて得られる無機塩水溶液と、前記水性シリカゾル(a)とを混合して調製される、請求項4に記載の熱膨張性微小球の製造方法。 The aqueous dispersion medium is a mixture of an inorganic salt aqueous solution obtained by dissolving a part or all of the inorganic salt (f) in a part or all of the water (d) and the aqueous silica sol (a). The method for producing thermally expandable microspheres according to claim 4, which is prepared by:
PCT/JP2017/039030 2016-11-18 2017-10-30 Method for producing thermally expandable microspheres WO2018092554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551553A JPWO2018092554A1 (en) 2016-11-18 2017-10-30 Method for producing thermally expandable microspheres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016224620 2016-11-18
JP2016-224620 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018092554A1 true WO2018092554A1 (en) 2018-05-24

Family

ID=62145285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039030 WO2018092554A1 (en) 2016-11-18 2017-10-30 Method for producing thermally expandable microspheres

Country Status (2)

Country Link
JP (1) JPWO2018092554A1 (en)
WO (1) WO2018092554A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043758A1 (en) * 1998-02-24 1999-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microcapsules, process for producing the same, and method of utilizing the same
WO2011118437A1 (en) * 2010-03-26 2011-09-29 積水化学工業株式会社 Thermally expandable microcapsule
JP2013234255A (en) * 2012-05-08 2013-11-21 Sekisui Chem Co Ltd Coated heat-expandable microcapsule
WO2015046094A1 (en) * 2013-09-26 2015-04-02 積水化学工業株式会社 Thermally expanding microcapsules
JP2015217377A (en) * 2014-05-21 2015-12-07 株式会社クレハ Production method of thermally expandable microsphere, thermally expandable microsphere produced by the production method and discrimination method of colloidal silica for use in the production method
JP2016049532A (en) * 2014-08-29 2016-04-11 積水化学工業株式会社 Heat-expandable microcapsule
JP2016097391A (en) * 2014-11-26 2016-05-30 積水化学工業株式会社 Heat expandable microcapsule and stampable sheet molded article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943555B2 (en) * 2010-05-27 2016-07-05 松本油脂製薬株式会社 Thermally expandable microspheres and their applications
US10130928B2 (en) * 2013-12-26 2018-11-20 Matsumoto Yushi-Seiyaku Co., Ltd. Process for producing heat-expandable microspheres and application thereof
JP6704732B2 (en) * 2015-01-09 2020-06-03 松本油脂製薬株式会社 Porous material for ceramic composition and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043758A1 (en) * 1998-02-24 1999-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microcapsules, process for producing the same, and method of utilizing the same
WO2011118437A1 (en) * 2010-03-26 2011-09-29 積水化学工業株式会社 Thermally expandable microcapsule
JP2013234255A (en) * 2012-05-08 2013-11-21 Sekisui Chem Co Ltd Coated heat-expandable microcapsule
WO2015046094A1 (en) * 2013-09-26 2015-04-02 積水化学工業株式会社 Thermally expanding microcapsules
JP2015217377A (en) * 2014-05-21 2015-12-07 株式会社クレハ Production method of thermally expandable microsphere, thermally expandable microsphere produced by the production method and discrimination method of colloidal silica for use in the production method
JP2016049532A (en) * 2014-08-29 2016-04-11 積水化学工業株式会社 Heat-expandable microcapsule
JP2016097391A (en) * 2014-11-26 2016-05-30 積水化学工業株式会社 Heat expandable microcapsule and stampable sheet molded article

Also Published As

Publication number Publication date
JPWO2018092554A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6034992B2 (en) Thermally expandable microspheres and their uses
JP5438246B2 (en) Thermally expansible microspheres, production method and use thereof
JP6152237B2 (en) Method for producing thermally expandable microsphere and use thereof
KR101406022B1 (en) Process for production of thermally expandable beads and application thereof
JP4320356B2 (en) Thermally expansible microspheres, production method and use thereof
JP5759194B2 (en) Thermally expandable microspheres, hollow microparticles, production method and use thereof
WO1999037706A1 (en) Expandable microspheres and process for producing the same
WO2020017361A1 (en) Heat-expandable microsphere and use thereof
JPWO2017141653A1 (en) Thermally expandable microspheres and their applications
JP5943555B2 (en) Thermally expandable microspheres and their applications
JP6534834B2 (en) Thermally expandable microspheres, method for producing the same and use thereof
JP6227190B2 (en) Thermally expandable microspheres and their uses
JP6151983B2 (en) Thermally expansible microspheres, production method and use thereof
WO2016190178A1 (en) Thermally expandable microspheres and use thereof
WO2018092554A1 (en) Method for producing thermally expandable microspheres
JP5016955B2 (en) Single-hole hollow particles and method for producing the same
JP6944619B1 (en) Thermally expandable microspheres, their manufacturing methods and applications
JP6276423B2 (en) Thermally foamable microspheres and compositions and molded bodies containing the same
WO2023007853A1 (en) Thermally expandable microspheres, composition, and shaped body
JP7369329B1 (en) Thermally expandable microspheres and their uses
JP6026072B1 (en) Thermally expandable microspheres and their uses
WO2023281867A1 (en) Hollow particles and use thereof
JP2014091073A (en) Manufacturing method of silane coupling agent-containing microcapsule, silane coupling agent-containing microcapsule, and resin film for bonding glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870923

Country of ref document: EP

Kind code of ref document: A1