WO2018092521A1 - Shift guide structure - Google Patents

Shift guide structure Download PDF

Info

Publication number
WO2018092521A1
WO2018092521A1 PCT/JP2017/038220 JP2017038220W WO2018092521A1 WO 2018092521 A1 WO2018092521 A1 WO 2018092521A1 JP 2017038220 W JP2017038220 W JP 2017038220W WO 2018092521 A1 WO2018092521 A1 WO 2018092521A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
guide pin
guide
select shaft
guide plate
Prior art date
Application number
PCT/JP2017/038220
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 羽原
直紀 佐治
貴広 吉田
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Publication of WO2018092521A1 publication Critical patent/WO2018092521A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/34Generation or transmission of movements for final actuating mechanisms comprising two mechanisms, one for the preselection movement, and one for the shifting movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms

Definitions

  • the present invention relates to a shift guide structure.
  • a guide pin provided on one of the shift and select shaft and the case and a guide pin provided on the other correspond to the gear stage
  • a shift guide structure provided with a guide plate provided with a path for guiding between a plurality of positions Patent Document 1.
  • the movement range of the guide pin is partially limited by the selection mechanism including the inner lever, the interlock, and the shift head.
  • the selection mechanism including the inner lever, the interlock, and the shift head.
  • a guide pin that has moved away from the edge may move along the edge of the path.
  • the guide pin may follow a moving path so as to bend, and the smooth movement of the guide pin and thus the shift lever may be hindered.
  • one of the problems of the present invention is to obtain, for example, a shift guide structure in which the guide pin and hence the shift lever can move more smoothly.
  • the shift guide structure of the present invention includes, for example, a shift and select shaft axially and circumferentially movably supported by the case, a guide pin provided on one of the cases, the shift and select shaft, and the case A guide plate provided on the other side and provided with a path for guiding the guide pin between the plurality of positions corresponding to the gear, and the first direction and the first direction according to the movement of the shift and select shaft
  • An inner lever selectively movable between a second direction different from the direction and a selection mechanism for switching the gear according to the movement of the inner lever, in the path of the guide plate
  • the entire area of the first movement range in which the guide pin can move is determined by the selection mechanism. Configured to be included within a second range of movement possible.
  • the guide pin can move from the second movement range to the first movement range There is no bending of the moving path due to the transition to Therefore, the guide pin and hence the shift lever can be moved more smoothly.
  • the guide plate is provided separately from the base wall provided with the opening forming the path, the mounting wall protruding from the base wall, and the mounting wall, and the base wall is provided from the base wall And a protruding reinforcing wall. According to such a configuration, for example, the rigidity and the strength of the guide plate are enhanced by the reinforcing wall, so that the deformation of the guide plate due to the abutment of the guide pin is suppressed.
  • the reinforcing wall is one of two, and the two reinforcing walls are parallel to each other and have different axial lengths of the shift and select shaft. According to such a configuration, for example, the guide plate can be reinforced more efficiently.
  • the width along the shift direction of the insertion portion of the guide pin in the path is larger than the width along the selection direction of the insertion portion.
  • the guide plate can be configured to be smaller in the select direction, and deformation of the guide pin due to contact with the guide plate in the shift direction can be suppressed.
  • the guide plate includes an opening that constitutes the path, and a surface that faces the opening and that restricts the movement of the inner lever in the first direction by contact with the guide pin. And was provided. According to such a configuration, for example, the movement of the inner lever in the first direction can be restricted by the guide plate and the guide pin. Therefore, according to the shift guide structure, for example, the number of parts can be reduced as compared with the configuration in which the movement of the inner lever in the first direction is restricted by the inner lever, interlock and case, and the guide pin Variations in the movement range of the
  • the mounting wall protrudes from the base wall in a direction away from the shift and select shaft. According to such a configuration, for example, since the guide plate can be brought close to the shift and select shaft, the shift guide structure can be miniaturized.
  • FIG. 1 is an exemplary and schematic perspective view of the shift guide structure of the embodiment.
  • FIG. 2 is an exemplary and schematic front view seen from the axial direction of the shift guide structure of the embodiment.
  • FIG. 3 is an exemplary and schematic front view of an opening as a path provided in the guide plate of the shift guide structure of the embodiment.
  • FIG. 4 is an exemplary and schematic perspective view of a guide pin included in the shift guide structure of the embodiment.
  • FIG. 5 is an exemplary and schematic front view of a guide pin included in the shift guide structure of the embodiment as viewed from the axial direction of the guide pin.
  • FIG. 6 is an exemplary and schematic plan view of the selection mechanism of the embodiment.
  • FIG. 7 is an exemplary and schematic front view of the selection mechanism of the embodiment.
  • FIG. 8 is an exemplary and schematic plan view of the selection mechanism of the embodiment, showing that a fourth gear is selected.
  • FIG. 9 is an exemplary and schematic plan view of the selection mechanism of the embodiment, showing a state in the middle of transition from the fourth speed to the fifth speed.
  • FIG. 10 is an exemplary and schematic plan view of the selection mechanism of the embodiment, showing that the fifth gear is selected.
  • FIG. 11 is an exemplary and schematic view showing a movement locus of the guide pin in the guide plate of the embodiment and a movement locus in a portion provided with the guide plate of the guide pin determined by the selection mechanism.
  • FIG. 1 is a perspective view of a shift guide structure 1 of a stepped transmission
  • FIG. 2 is a front view of the shift guide structure 1 seen from the axial direction.
  • the axial direction of the rotation center Ax of the shift and select shaft 10 is simply referred to as the axial direction
  • the circumferential direction of the rotation center Ax is simply referred to as the circumferential direction
  • the radial direction of the rotation center Ax is simply the diameter It is called a direction.
  • the shift guide structure 1 includes a shift and select shaft 10, a guide pin 20, and a guide plate 30.
  • the shift and select shaft 10 is supported by the case 40 (FIG. 2) so as to be movable in the axial direction (Se direction) and in the circumferential direction (C direction).
  • the shift and select shaft 10 operates in conjunction with the operation of a shift lever (not shown).
  • Various known mechanisms and configurations can be applied as a transmission mechanism that transmits the operation of the shift lever to the shift and select shaft 10 to move the shift and select shaft 10.
  • the guide pin 20 is fixed to the shift and select shaft 10 and the guide plate 30 is fixed to the case 40.
  • the shift guide structure 1 is configured such that the guide pin 20 and the guide plate 30 move relative to each other in accordance with axial and circumferential movement of the shift and select shaft 10. Therefore, although not shown, the shift guide structure may be a structure in which the guide pin 20 is fixed to the case 40 and the guide plate 30 is fixed to the shift and select shaft 10.
  • the guide pins 20 project radially outward from the outer peripheral surface of the shift and select shaft 10.
  • the guide pin 20 is fixed to the shift and select shaft 10. Therefore, the guide pin 20 moves in the axial direction and the circumferential direction in conjunction with the movement of the shift and select shaft 10 in the axial direction and the circumferential direction.
  • the guide plate 30 is fixed to the case 40.
  • the guide plate 30 has a flat base wall 31.
  • the base wall 31 extends along the direction orthogonal to the radial direction and along the axial direction.
  • the base wall 31 has surfaces 31a and 31b.
  • the surface 31 a faces the shift and select shaft 10.
  • the surface 31 b is provided on the opposite side of the surface 31 a.
  • the base wall 31 is provided with an opening 32 that constitutes a path along which the guide pin 20 moves.
  • the opening 32 penetrates the surfaces 31a and 31b.
  • the guide pin 20 is inserted into the opening 32.
  • FIG. 3 is a front view of the opening 32.
  • the opening 32 includes a slit forming the select path 32 a and a slit forming the shift path 32 b.
  • the select path 32a guides the guide pin 20 in the select direction (Se direction).
  • the shift path 32 b guides the guide pin 20 in the shift direction (Sh direction).
  • a plurality of shift paths 32b parallel to and spaced from each other are orthogonal to one select path 32a extending in the select direction.
  • One select path 32a extends so as to be bridged between central portions of the plurality of shift paths 32b.
  • the two end portions of the shift path 32b are gates G1 to G6 and GR of each shift speed.
  • the guide plate 30 has an inner circumferential surface 31 c surrounding the opening 32.
  • the inner circumferential surface 31 c has a plurality of surfaces 31 d to 31 i facing the opening 32.
  • a pair of surfaces 31 d is provided for each shift path 32 b.
  • the pair of surfaces 31 d are provided to be spaced apart from each other in the select direction (Se direction), and extend in the shift direction (Sh direction).
  • Each surface 31 d faces the selection direction (Se direction) as the first direction.
  • the surface 31 d is a plane.
  • a shift path 32b is provided between the pair of surfaces 31d. The ends on the gates G1 to G6 and GR side of the pair of surfaces 31d are connected by a surface 31e.
  • the surface 31e is a curved surface.
  • the surfaces 31 f and 31 g are both end surfaces in the select direction (Se direction) on the inner peripheral surface 31 c.
  • the surface 31f and the surface 31g are spaced apart from each other in the select direction (Se direction) and extend in the shift direction (Sh direction).
  • the surface 31 f and the surface 31 g each include a surface 31 d.
  • the surface 31 f and the surface 31 g face in the select direction (Se direction).
  • a select path 32a is provided between the surface 31f and the surface 31g.
  • the surface 31 h is connected to the end of the surface 31 f opposite to the gate GR, and extends in the select direction (Se direction).
  • the surface 31i is connected to the surface 31d, and is inclined with respect to the selection direction (Se direction) and the shift direction (Sh direction).
  • the surface 31i is also referred to as an oblique portion.
  • the surfaces 31 d, 31 f, 31 g limit the movement of the inner lever 50 (FIG. 6) in the select direction (Se direction) by contact with the guide pin 20.
  • the guide pin 20 moves in the selection direction (Se direction) in conjunction with the axial movement of the shift and select shaft 10. Further, the guide pin 20 moves in the shift direction (Sh direction) in conjunction with the movement of the shift and select shaft 10 in the circumferential direction (C direction).
  • the shift and select shaft 10 and the shift guide structure 1 may be configured such that the axial direction corresponds to the shift direction and the circumferential direction corresponds to the select direction.
  • Selection mechanism 100 selectively moves fork shafts 712, 734, 756 and 7R corresponding to the axial and circumferential positions (posture) of shift and select shaft 10, thereby The transmission gear (gear) is switched.
  • the transmission In the position and posture of the shift and select shaft 10 corresponding to the state where the guide pin 20 is positioned at the gate G1, the transmission is shifted through the first gear (gear set).
  • the transmission has second to sixth speeds corresponding to gates G2 to G6, respectively. It will be in the state which changes gears via a gear stage.
  • the transmission is shifted through the reverse gear.
  • the guide plate 30 has two reinforcing walls 33 and 34 and a mounting wall 35.
  • Reinforcing walls 33 and 34 protrude from the end of base wall 31 in the shift direction (Sh direction) at a substantially constant height in the direction intersecting with base wall 31 and extend along the select direction (Se direction). ing.
  • the two reinforcing walls 33, 34 are parallel to one another.
  • the reinforcing walls 33 and 34 can increase the rigidity of the guide plate 30.
  • the reinforcing walls 33 and 34 are provided separately from the mounting wall 35 for attachment to the case 40.
  • the mounting wall 35 protrudes from the base wall 31 in a direction away from the shift and select shaft 10.
  • the mounting wall 35 projects from the end of the surface 31 b of the base wall 31 in the selection direction (Se direction) in a direction away from the shift and select shaft 10.
  • the mounting wall 35 is provided with an opening 35a through which a fixing tool (not shown) such as a bolt passes.
  • the mounting wall 35 also contributes to the improvement of the rigidity of the guide plate 30.
  • the rigidity of the guide plate 30 can be further improved by the reinforcing walls 33 and 34 and the mounting wall 35.
  • the mounting wall 35 is attached to the shift and select shaft 10.
  • the lengths of the two reinforcing walls 33, 34 are different.
  • the two reinforcing walls 33 and 34 and the peripheral parts are compared with the configuration in which the positions and the lengths of the two reinforcing walls 33 and 34 are the same because the position and the length of the two reinforcing walls 33 and 34 are different.
  • the reinforcing wall 33 protrudes from the side adjacent to the four gates G1, G3, G5 and GR, and the reinforcing wall 34 protrudes from the side adjacent to the three gates G2, G4 and G6.
  • the base wall 31 can be reinforced more effectively by making the reinforcing wall 33 facing more gates G1, G3, G5, GR longer.
  • the reinforcing wall 33, the base wall 31 and the reinforcing wall 34 surround the outer periphery of the shift and select shaft 10 in a U-shape.
  • the reinforcing walls 33 and 34 project from the base wall 31 in the direction approaching the shift and select shaft 10.
  • the guide pin 20 moves between the plurality of gates G1 to G6, GR in the opening 32 in accordance with the shift operation by the driver or the actuator.
  • the outer periphery of the guide pin 20 contacts the edge of the base wall 31 facing the opening 32, that is, the inner peripheral surface 31c.
  • the guide pin 20 is deformed by the contact with the inner circumferential surface 31c.
  • the guide pin 20 is made thicker as a countermeasure, there is a possibility that it may contribute to the increase in size of the guide plate 30 and hence the shift guide structure 1.
  • the rapid change in shape abuts against the inner circumferential surface 31c facing the opening 32.
  • the smooth movement of the guide pin 20 between G6 and GR may be hindered.
  • Such inhibition of the smooth movement of the guide pin 20 is particularly effective when the guide pin 20 moves from the gate G4 to the gate G5 as shown in FIG. It is easy to occur when moving.
  • FIG. 4 is a perspective view of the guide pin 20
  • FIG. 5 is a sectional view taken along the line VV of FIG. 4 of the guide pin 20, and more specifically, orthogonal to the longitudinal direction of the insertion portion 22, ie orthogonal to the radial direction. It is sectional drawing along.
  • the cross section of the insertion portion 22 shown in FIG. 5 is constant in a section of a predetermined length along the longitudinal direction of the guide pin 20 (the radial direction of the shift and select shaft 10). That is, the outer peripheral surface of the insertion portion 22 is a ruled surface having generatrix parallel to the longitudinal direction of the guide pin 20.
  • the guide pin 20 has a cylindrical portion 21 and an insertion portion 22.
  • the cylindrical portion 21 includes a joint with the shift and select shaft 10.
  • the insertion portion 22 includes the tip 20 a of the guide pin 20.
  • the tip 20 a of the guide pin 20 is also the tip of the insertion portion 22.
  • the insertion portion 22 is thinner than the cylindrical portion 21 and is inserted into the opening 32.
  • the tip 20 a is accommodated in the opening 32. That is, the tip 20 a does not protrude from the opening 32.
  • the rigidity and strength of the guide pin 20 can be further enhanced as compared with the case where the cylindrical portion 21 is not provided. Furthermore, since the insertion portion 22 is thinner than the cylindrical portion 21, the shift guide structure 1 can be configured more compactly than when the insertion portion 22 has the same thickness as the cylindrical portion 21.
  • the insertion portion 22 is provided at the tip of the guide pin 20, but the insertion portion 22 may be provided at an intermediate position in the longitudinal direction of the guide pin 20.
  • the outer peripheral edge 22a of the cross section of the insertion portion 22 includes two parallel straight portions 22b and two projecting portions 22d connecting the end portions 22c of the two straight portions 22b. Including. As shown in FIG. 5, the distance between the two straight portions 22b, that is, the width Ws in the short direction of the outer peripheral edge 22a is smaller than the width W1 in the longitudinal direction of the outer peripheral edge 22a.
  • the insertion portion 22 is accommodated in the opening 32 in a posture that is long in the shift direction (Sh direction). That is, the width Ws in the short direction along the select direction (Se direction) of the insertion portion 22 is smaller than the width Wl in the longitudinal direction along the shift direction.
  • the center line CL of the cross section of the insertion portion 22 is shown in FIG. The center line CL is parallel to the two straight line portions 22 b and located midway between the two straight line portions 22 b.
  • the gap between the plurality of shift paths 32b can be narrowed in the guide plate 30 by the shape and attitude of the insertion portion 22 as described above, so that the shift guide structure 1 can be made more compact. Can.
  • the insertion portion 22 has a long cross section in the shift direction, when the insertion portion 22 moves to each of the gates G1 to G6, GR and strikes the inner peripheral surface 31c facing the opening 32, The rigidity and strength of the guide pin 20 with respect to the force input from the circumferential surface 31 c to the guide pin 20 in the shift direction can be further increased.
  • the protruding portion 22 d is a semicircle, and the radius R thereof is half the width Ws in the short direction. Accordingly, the outer peripheral edge 22a is generally oval. That is, the outer peripheral edge 22a has a parallel portion (two straight portions 22b) and two semicircles (protruding portions 22d) located at both ends of the parallel portion and having a diameter between the parallel portions. There is.
  • the outer peripheral edge 22a of the cross section of the insertion portion 22 has an oval shape, so that there is an advantage that manufacturing and inspection can be performed more easily or more accurately.
  • the protruding portion 22 d includes one semicircular curved portion.
  • the radius R of the protruding portion 22d that is, the curvature radius of the curved portion, is smaller than the radius of the cylindrical portion 21 (1 ⁇ 2 of the outer diameter D).
  • the radius R of the projecting portion 22 d (the radius of curvature of the curved portion) is smaller than the radius of the cylindrical portion 21, so the radius R of the projecting portion 22 d is the same as the radius of the cylindrical portion 21.
  • the shape change at the end 22c between the straight portion 22b and the protruding portion 22d is more gradual than in the case where Therefore, the outer peripheral edge 22 a is less likely to be caught with the inner peripheral surface 31 c facing the opening 32.
  • the guide pin 20 can move more smoothly in the opening 32.
  • the outer peripheral edge 22a is smooth as a whole. That is, the straight portion 22b and the protruding portion 22d are smoothly continuous, and the protruding portion 22d is smoothly continuous throughout the protruding portion 22d.
  • the outer peripheral edge 22 a is smooth as a whole, so that the outer peripheral edge 22 a is unlikely to be caught with the inner peripheral surface 31 c facing the opening 32.
  • the guide pin 20 can move more smoothly in the opening 32.
  • FIG. 6 is a plan view of the selection mechanism 100
  • FIG. 7 is a front view of the selection mechanism 100.
  • the selection mechanism 100 has an inner lever 50, interlocks 61 and 62, and shift heads 812, 834, 856 and 8R.
  • the selection mechanism 100 selectively operates the fork shafts 712, 734, 756, and 7R according to the operation of the inner lever 50 to switch the gear of the transmission via a shift fork or the like (not shown).
  • the inner lever 50 is shown in FIG. 7 according to the select direction (Se direction) as the first direction and the circumferential movement (rotation) of the shift and select shaft 10 in conjunction with the shift and select shaft 10. It moves in the shift guide direction (Shg direction) as the second direction. As shown in FIG. 7, the inner lever 50 projects, for example, radially outward from the shift and select shaft 10.
  • the interlocks 61 and 62 follow the inner lever 50 and move in the select direction. However, the interlock 61 does not move in the shift direction.
  • the shift heads 812, 834, 856, 8R move in the shift direction together with the corresponding fork shafts 712, 734, 756, 7R in accordance with the movement of the inner lever 50 in the shift guide direction (Shg direction). However, the shift heads 812 834 856 8R do not move in the select direction.
  • each of the shift heads 812, 834, 856, 8R has the arms 8a on both sides in the shift direction, and the inner lever 50 and the interlocks 61, 62 are provided in the recess 8b between the arms 8a. And is accommodated so as to be movable in the select direction.
  • the inner lever 50 moves in the select direction according to the axial movement of the shift and select shaft 10, and between the arms 8a of the shift heads 812, 834, 856, 8R (recessed portion Located at 8b).
  • the inner lever 50 moves in the shift guide direction (Shg direction), thereby being adjacent to the inner lever 50, that is, in the recess 8b.
  • the shift head accommodating the inner lever 50 moves in the shift direction.
  • FIG. 8 to 10 are operation diagrams of the selection mechanism 100 according to the embodiment, in which the gear is switched from the fourth gear to the fifth gear.
  • the shift head 834 is positioned at the position where the fourth gear is operated (the lower position in FIG. 8) by the inner lever 50 positioned at the position Pi4.
  • the interlocks 61 and 62 restrict the movement of the shift heads 834 and 856 in the shift direction. Ru.
  • the shift head 856 is positioned at the position where the fifth gear is operated (upper position in FIG. 10) by the inner lever 50 positioned at the position Pi5.
  • FIG. 11 shows a second movement range Ts in which the guide pin 20 determined by the selection mechanism 100 can move and a first movement range Tg in which the guide pin 20 determined by the shift guide structure 1 can move. It is a schematic diagram shown.
  • the first movement range Tg and the second movement range Ts are, for example, ranges in which the axial center (center) of the guide pin 20 can move in the opening 32 of the guide plate 30. That is, the second movement range Ts is determined based on the gap between each component of the selection mechanism 100, the movement range of each component, the dimensional tolerance of each component, and the like.
  • the first movement range Tg is determined by the guide pin 20 and the opening 32.
  • the second movement range Ts includes the first movement range Tg. That is, in the present embodiment, the movement range of the guide pin 20 is determined by the inner circumferential surface 31 c facing the opening 32. Thus, for example, the guide pin 20 can move along the inner circumferential surface 31c.
  • the guide pin 20 is in the inside in the reverse region. It does not contact the circumferential surface 31c. Therefore, the guide pin 20 moving away from the inner circumferential surface 31c and moving in the reverse rotation area sometimes moves along the inner circumferential surface 31c. In this case, the movement such that the guide pin 20 is bent The path will be followed, and the smooth movement of the guide pin 20 and hence the shift lever may be impeded.
  • the second movement range Ts includes the first movement range Tg, bending of the movement path does not occur as described above. Therefore, the guide pin 20 and thus the shift lever can be moved more smoothly.
  • the reinforcing walls 33 and 34 can suppress the deformation of the guide plate 30 due to the contact with the guide pin 20. Further, according to the present embodiment, the guide plate 30 can be reinforced more efficiently by the two reinforcing walls 33 and 34 having different lengths.
  • the width Wl along the shift direction of the insertion portion 22 of the guide pin 20 is larger than the width Ws along the select direction. Therefore, the guide plate 30 can be configured to be smaller in the select direction, and deformation of the guide pin 20 due to the guide plate 30 in the shift direction can be suppressed.
  • the guide plate 30 faces the opening 32 and is a surface that limits the movement of the inner lever 50 in the selection direction (Se direction, first direction) by contact with the guide pin 20.
  • 31d, 31f, 31g are provided.
  • the movement of the inner lever 50 in the selection direction (Se direction) can be restricted by the guide plate 30 and the guide pin 20. Therefore, according to the present embodiment, for example, the number of parts can be reduced compared to the configuration in which the movement of the inner lever 50 in the selection direction (Se direction) is limited by the inner lever, interlock and case. And the dispersion
  • the mounting wall 35 protrudes from the base wall 31 in a direction away from the shift and select shaft 10. According to the present embodiment, for example, since the guide plate 30 can be brought close to the shift and select shaft 10, the shift guide structure 1 can be miniaturized.
  • the guide pin 20 has the distal end portion 20a included in the insertion portion 22, and the guide plate 30 is provided with the opening 32 in which the distal end portion 20a is accommodated.
  • the axial length of the guide pin 20 is longer than the configuration in which the tip of the guide pin protrudes from the opening Can be shortened. Therefore, since the load input to the guide pin 20 can be reduced, the durability of the guide pin 20 can be improved.
  • the embodiment of the present invention was illustrated, the above-mentioned embodiment is an example, and limiting the scope of the invention is not intended.
  • the embodiment can be implemented in various other forms, and various omissions, substitutions, combinations, and changes can be made without departing from the scope of the invention. Further, specifications (structure, type, direction, shape, size, length, width, height, number, arrangement, position, etc.) of each configuration and shape can be appropriately changed and implemented.
  • the configuration of the selection mechanism is not limited to those disclosed in the above embodiments.
  • SYMBOLS 1 Shift guide structure, 10 ... Shift and selection shaft, 20 ... Guide pin, 22 ... Insertion part, 30 ... Guide plate, 31 ... Base wall, 31d, 31f, 31g ... Surface, 32 ... Opening part (path

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

A shift guide structure that comprises, for example: a guide pin that is provided on a case or on a shift-and-select shaft that is supported by the case so as to be capable of moving in the axial and circumferential directions; and a guide plate that is provided on the other of the case and the shift-and-select shaft and is provided with a pathway that guides the guide pin between a plurality of positions that correspond to gear steps. The shift guide structure is configured such that a first movement range that is the movement range of the guide pin with respect to the pathway of the guide plate is entirely within a second movement range that, as established by a selection mechanism that includes an inner lever, an interlock, and a shift head, is the movement range of the guide pin with respect to the location in which the guide plate has been provided.

Description

シフトガイド構造Shift guide structure
 本発明は、シフトガイド構造に関する。 The present invention relates to a shift guide structure.
 従来、MT(manual transmission)やAMT(automated manual transmission)等の有段変速機において、シフトアンドセレクトシャフトおよびケースのうち一方に設けられたガイドピンと、他方に設けられガイドピンをギヤ段に対応した複数の位置の間で案内する経路が設けられたガイドプレートと、を備えたシフトガイド構造が知られている(特許文献1)。 Conventionally, in a stepped transmission such as manual transmission (MT) or automated manual transmission (AMT), a guide pin provided on one of the shift and select shaft and the case and a guide pin provided on the other correspond to the gear stage There is known a shift guide structure provided with a guide plate provided with a path for guiding between a plurality of positions (Patent Document 1).
特許第4587066号公報Patent No. 4587066
 上記従来の構成では、ガイドピンの移動範囲が、部分的に、インナーレバー、インターロック、およびシフトヘッドを含む選択機構によって制限されていた。その一例として、選択機構によって定まるガイドピンの移動範囲が、ガイドプレートの経路によって定まるガイドピンの移動範囲よりも部分的に狭いような構成にあっては、シフトチェンジの際、ガイドプレートの経路のエッジから離れて移動していたガイドピンが、経路のエッジに沿って移動する場合がある。その場合には、ガイドピンが折れ曲がるような移動経路を辿り、ガイドピンひいてはシフトレバーの円滑な移動が妨げられる虞があった。 In the above-described conventional configuration, the movement range of the guide pin is partially limited by the selection mechanism including the inner lever, the interlock, and the shift head. As an example, in a configuration in which the movement range of the guide pin determined by the selection mechanism is partially narrower than the movement range of the guide pin determined by the path of the guide plate, A guide pin that has moved away from the edge may move along the edge of the path. In such a case, there is a possibility that the guide pin may follow a moving path so as to bend, and the smooth movement of the guide pin and thus the shift lever may be hindered.
 そこで、本発明の課題の一つは、例えば、ガイドピンひいてはシフトレバーがより円滑に移動することが可能なシフトガイド構造を得ることである。 Therefore, one of the problems of the present invention is to obtain, for example, a shift guide structure in which the guide pin and hence the shift lever can move more smoothly.
 本発明のシフトガイド構造は、例えば、ケースに軸方向および周方向に移動可能に支持されたシフトアンドセレクトシャフトおよび上記ケースのうち一方に設けられたガイドピンと、上記シフトアンドセレクトシャフトおよび上記ケースのうち他方に設けられ、上記ガイドピンをギヤ段に対応した複数の位置の間で案内する経路が設けられたガイドプレートと、上記シフトアンドセレクトシャフトの移動に応じて、第一方向と上記第一方向とは異なる第二方向との間を選択的に移動可能なインナーレバーと、上記インナーレバーの移動に応じて上記ギヤ段の切り替えを行う選択機構と、を備え、上記ガイドプレートの上記経路における上記ガイドピンが移動可能な第一の移動範囲の全域が、上記選択機構によって定まる上記ガイドピンが移動可能な第二の移動範囲内に包含されるよう構成される。 The shift guide structure of the present invention includes, for example, a shift and select shaft axially and circumferentially movably supported by the case, a guide pin provided on one of the cases, the shift and select shaft, and the case A guide plate provided on the other side and provided with a path for guiding the guide pin between the plurality of positions corresponding to the gear, and the first direction and the first direction according to the movement of the shift and select shaft An inner lever selectively movable between a second direction different from the direction and a selection mechanism for switching the gear according to the movement of the inner lever, in the path of the guide plate The entire area of the first movement range in which the guide pin can move is determined by the selection mechanism. Configured to be included within a second range of movement possible.
 本発明によれば、例えば、選択機構による第二の移動範囲が、シフトガイド構造による第一の移動範囲の全域を包含しているため、ガイドピンが第二の移動範囲から第一の移動範囲に移行することによる移動経路の折れ曲がりが生じない。よって、ガイドピンひいてはシフトレバーは、より円滑に移動しやすくなる。 According to the present invention, for example, since the second movement range by the selection mechanism covers the entire area of the first movement range by the shift guide structure, the guide pin can move from the second movement range to the first movement range There is no bending of the moving path due to the transition to Therefore, the guide pin and hence the shift lever can be moved more smoothly.
 また、上記シフトガイド構造では、上記ガイドプレートは、上記経路を構成する開口部が設けられたベース壁と、上記ベース壁から突出した取付壁と、上記取付壁とは別に設けられ上記ベース壁から突出した補強壁と、を有した。このような構成によれば、例えば、補強壁によりガイドプレートの剛性および強度が高まるため、ガイドピンが突き当たることによりガイドプレートが変形するのが抑制される。 Further, in the shift guide structure, the guide plate is provided separately from the base wall provided with the opening forming the path, the mounting wall protruding from the base wall, and the mounting wall, and the base wall is provided from the base wall And a protruding reinforcing wall. According to such a configuration, for example, the rigidity and the strength of the guide plate are enhanced by the reinforcing wall, so that the deformation of the guide plate due to the abutment of the guide pin is suppressed.
 また、上記シフトガイド構造では、上記補強壁は二つのうちの一つであり、二つの上記補強壁は、互いに平行で且つ上記シフトアンドセレクトシャフトの軸方向の長さが異なる。このような構成によれば、例えば、ガイドプレートをより効率良く補強できる。 In the shift guide structure, the reinforcing wall is one of two, and the two reinforcing walls are parallel to each other and have different axial lengths of the shift and select shaft. According to such a configuration, for example, the guide plate can be reinforced more efficiently.
 また、上記シフトガイド構造では、上記ガイドピンの上記経路への挿入部分のシフト方向に沿った幅は、上記挿入部分のセレクト方向に沿った幅よりも大きい。このような構成によれば、例えば、ガイドプレートをセレクト方向により小さく構成できるとともに、ガイドピンがガイドプレートとシフト方向に当たることにより変形するのを、抑制できる。 Further, in the shift guide structure, the width along the shift direction of the insertion portion of the guide pin in the path is larger than the width along the selection direction of the insertion portion. According to such a configuration, for example, the guide plate can be configured to be smaller in the select direction, and deformation of the guide pin due to contact with the guide plate in the shift direction can be suppressed.
 また、上記シフトガイド構造では、上記ガイドプレートには、上記経路を構成する開口部と、上記開口部に面し上記ガイドピンとの接触により上記インナーレバーの上記第一方向への移動を制限する面と、が設けられた。このような構成によれば、例えば、インナーレバーの第一方向への移動の制限をガイドプレートおよびガイドピンによって行なうことができる。よって、上記シフトガイド構造によれば、例えば、インナーレバーの第一方向への移動の制限を、インナーレバー、インターロックおよびケースによって行なう構成に比べて、部品点数を減らすことができ、かつガイドピンの移動範囲のばらつきを減らすことができる。 Further, in the shift guide structure, the guide plate includes an opening that constitutes the path, and a surface that faces the opening and that restricts the movement of the inner lever in the first direction by contact with the guide pin. And was provided. According to such a configuration, for example, the movement of the inner lever in the first direction can be restricted by the guide plate and the guide pin. Therefore, according to the shift guide structure, for example, the number of parts can be reduced as compared with the configuration in which the movement of the inner lever in the first direction is restricted by the inner lever, interlock and case, and the guide pin Variations in the movement range of the
 また、上記シフトガイド構造では、上記取付壁は、上記シフトアンドセレクトシャフトから離れる方向へ上記ベース壁から突出した。このような構成によれば、例えば、ガイドプレートをシフトアンドセレクトシャフトに接近させることができるので、シフトガイド構造を小型化できる。 Further, in the shift guide structure, the mounting wall protrudes from the base wall in a direction away from the shift and select shaft. According to such a configuration, for example, since the guide plate can be brought close to the shift and select shaft, the shift guide structure can be miniaturized.
図1は、実施形態のシフトガイド構造の例示的かつ模式的な斜視図である。FIG. 1 is an exemplary and schematic perspective view of the shift guide structure of the embodiment. 図2は、実施形態のシフトガイド構造の軸方向から見た例示的かつ模式的な正面図である。FIG. 2 is an exemplary and schematic front view seen from the axial direction of the shift guide structure of the embodiment. 図3は、実施形態のシフトガイド構造のガイドプレートに設けられる経路としての開口部の例示的かつ模式的な正面図である。FIG. 3 is an exemplary and schematic front view of an opening as a path provided in the guide plate of the shift guide structure of the embodiment. 図4は、実施形態のシフトガイド構造に含まれるガイドピンの例示的かつ模式的な斜視図である。FIG. 4 is an exemplary and schematic perspective view of a guide pin included in the shift guide structure of the embodiment. 図5は、実施形態のシフトガイド構造に含まれるガイドピンの、当該ガイドピンの軸方向から見た例示的かつ模式的な正面図である。FIG. 5 is an exemplary and schematic front view of a guide pin included in the shift guide structure of the embodiment as viewed from the axial direction of the guide pin. 図6は、実施形態の選択機構の例示的かつ模式的な平面図である。FIG. 6 is an exemplary and schematic plan view of the selection mechanism of the embodiment. 図7は、実施形態の選択機構の例示的かつ模式的な正面図である。FIG. 7 is an exemplary and schematic front view of the selection mechanism of the embodiment. 図8は、実施形態の選択機構の例示的かつ模式的な平面図であって、第4速のギヤ段が選択されている状態を示す図である。FIG. 8 is an exemplary and schematic plan view of the selection mechanism of the embodiment, showing that a fourth gear is selected. 図9は、実施形態の選択機構の例示的かつ模式的な平面図であって、第4速から第5速へ移行する途中の状態を示す図である。FIG. 9 is an exemplary and schematic plan view of the selection mechanism of the embodiment, showing a state in the middle of transition from the fourth speed to the fifth speed. 図10は、実施形態の選択機構の例示的かつ模式的な平面図であって、第5速のギヤ段が選択されている状態を示す図である。FIG. 10 is an exemplary and schematic plan view of the selection mechanism of the embodiment, showing that the fifth gear is selected. 図11は、実施形態のガイドプレートにおけるガイドピンの移動軌跡と、選択機構によって定まるガイドピンのガイドプレートが設けられた部分における移動軌跡とを示す例示的かつ模式図である。FIG. 11 is an exemplary and schematic view showing a movement locus of the guide pin in the guide plate of the embodiment and a movement locus in a portion provided with the guide plate of the guide pin determined by the selection mechanism.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用、結果、および効果は一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果や派生的な効果のうち少なくとも一つを得ることが可能である。 In the following, exemplary embodiments of the present invention are disclosed. The configurations of the embodiments shown below, and the operations, results, and effects provided by the configurations are examples. The present invention can also be realized with configurations other than the configurations disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects and derivative effects obtained by the configuration.
(実施形態)
 図1は、有段変速機のシフトガイド構造1の斜視図であり、図2は、シフトガイド構造1の軸方向から見た正面図である。なお、以下では、シフトアンドセレクトシャフト10の回転中心Axの軸方向は単に軸方向と称され、当該回転中心Axの周方向は単に周方向と称され、当該回転中心Axの径方向は単に径方向と称される。
(Embodiment)
FIG. 1 is a perspective view of a shift guide structure 1 of a stepped transmission, and FIG. 2 is a front view of the shift guide structure 1 seen from the axial direction. In the following, the axial direction of the rotation center Ax of the shift and select shaft 10 is simply referred to as the axial direction, the circumferential direction of the rotation center Ax is simply referred to as the circumferential direction, and the radial direction of the rotation center Ax is simply the diameter It is called a direction.
 図1に示されるように、シフトガイド構造1は、シフトアンドセレクトシャフト10、ガイドピン20、およびガイドプレート30を備えている。 As shown in FIG. 1, the shift guide structure 1 includes a shift and select shaft 10, a guide pin 20, and a guide plate 30.
 シフトアンドセレクトシャフト10は、軸方向(Se方向)かつ周方向(C方向)に移動可能に、ケース40(図2)に支持されている。シフトアンドセレクトシャフト10は、シフトレバー(不図示)の操作に連動して動作する。シフトレバーの動作をシフトアンドセレクトシャフト10に伝達して当該シフトアンドセレクトシャフト10を動かす伝達機構としては、公知の種々の機構や構成が適用されうる。 The shift and select shaft 10 is supported by the case 40 (FIG. 2) so as to be movable in the axial direction (Se direction) and in the circumferential direction (C direction). The shift and select shaft 10 operates in conjunction with the operation of a shift lever (not shown). Various known mechanisms and configurations can be applied as a transmission mechanism that transmits the operation of the shift lever to the shift and select shaft 10 to move the shift and select shaft 10.
 図1,2に示されるように、本実施形態では、ガイドピン20がシフトアンドセレクトシャフト10に固定され、ガイドプレート30がケース40に固定されている。シフトガイド構造1は、シフトアンドセレクトシャフト10の軸方向および周方向の移動に伴って、ガイドピン20とガイドプレート30とが相対的に動くよう、構成される。したがって、シフトガイド構造は、図示されないが、ガイドピン20がケース40に固定され、ガイドプレート30がシフトアンドセレクトシャフト10に固定される構造であってもよい。 As shown in FIGS. 1 and 2, in the present embodiment, the guide pin 20 is fixed to the shift and select shaft 10 and the guide plate 30 is fixed to the case 40. The shift guide structure 1 is configured such that the guide pin 20 and the guide plate 30 move relative to each other in accordance with axial and circumferential movement of the shift and select shaft 10. Therefore, although not shown, the shift guide structure may be a structure in which the guide pin 20 is fixed to the case 40 and the guide plate 30 is fixed to the shift and select shaft 10.
 ガイドピン20は、シフトアンドセレクトシャフト10の外周面から径方向外方に突出している。ガイドピン20は、シフトアンドセレクトシャフト10に固定されている。よって、ガイドピン20は、シフトアンドセレクトシャフト10の軸方向および周方向の移動に連動して、軸方向および周方向に移動する。 The guide pins 20 project radially outward from the outer peripheral surface of the shift and select shaft 10. The guide pin 20 is fixed to the shift and select shaft 10. Therefore, the guide pin 20 moves in the axial direction and the circumferential direction in conjunction with the movement of the shift and select shaft 10 in the axial direction and the circumferential direction.
 図2に示されるように、ガイドプレート30は、ケース40に固定されている。ガイドプレート30は、平板状のベース壁31を有している。ベース壁31は、径方向と直交する方向に沿うとともに、軸方向にも沿って広がっている。ベース壁31は、面31a,31bを有している。面31aは、シフトアンドセレクトシャフト10と対向している。面31bは、面31aの反対側に設けられている。 As shown in FIG. 2, the guide plate 30 is fixed to the case 40. The guide plate 30 has a flat base wall 31. The base wall 31 extends along the direction orthogonal to the radial direction and along the axial direction. The base wall 31 has surfaces 31a and 31b. The surface 31 a faces the shift and select shaft 10. The surface 31 b is provided on the opposite side of the surface 31 a.
 図1に示されるように、ベース壁31には、ガイドピン20が移動する経路を構成する開口部32が設けられている。開口部32は、面31a,31bを貫通している。ガイドピン20は、開口部32に挿入されている。 As shown in FIG. 1, the base wall 31 is provided with an opening 32 that constitutes a path along which the guide pin 20 moves. The opening 32 penetrates the surfaces 31a and 31b. The guide pin 20 is inserted into the opening 32.
 図3は、開口部32の正面図である。開口部32は、セレクト経路32aを構成するスリットと、シフト経路32bを構成するスリットを含む。セレクト経路32aは、ガイドピン20をセレクト方向(Se方向)に案内する。シフト経路32bは、ガイドピン20をシフト方向(Sh方向)に案内する。セレクト方向に延びる一つのセレクト経路32aには、互いに間隔をあけて平行な複数のシフト経路32bが、直交している。一つのセレクト経路32aは、複数のシフト経路32bの中央部間で架け渡されるように延びている。シフト経路32bの両端部は、各変速段のゲートG1~G6,GRである。 FIG. 3 is a front view of the opening 32. FIG. The opening 32 includes a slit forming the select path 32 a and a slit forming the shift path 32 b. The select path 32a guides the guide pin 20 in the select direction (Se direction). The shift path 32 b guides the guide pin 20 in the shift direction (Sh direction). A plurality of shift paths 32b parallel to and spaced from each other are orthogonal to one select path 32a extending in the select direction. One select path 32a extends so as to be bridged between central portions of the plurality of shift paths 32b. The two end portions of the shift path 32b are gates G1 to G6 and GR of each shift speed.
 また、図3に示されるように、ガイドプレート30は、開口部32を囲んだ内周面31cを有している。内周面31cは、開口部32に面した複数の面31d~31iを有している。シフト経路32bごとに、一対の面31dが設けられている。一対の面31dは、セレクト方向(Se方向)に互いに間隔を空けて設けられるとともに、シフト方向(Sh方向)に延びている。各面31dは、第一方向としてのセレクト方向(Se方向)を向いている。面31dは、平面である。一対の面31dの間にシフト経路32bが設けられている。一対の面31dのゲートG1~G6,GR側の端部同士は、面31eによって接続されている。面31eは、曲面である。面31fおよび面31gは、内周面31cにおけるセレクト方向(Se方向)の両端面である。面31fおよび面31gは、セレクト方向(Se方向)に互いに間隔を空けて設けられるとともに、シフト方向(Sh方向)に延びている。また、面31fおよび面31gは、それぞれ、面31dを含む。面31fおよび面31gは、セレクト方向(Se方向)を向いている。面31fおよび面31gの間にセレクト経路32aが設けられている。面31hは、面31fのゲートGRとは反対側の端部と接続され、セレクト方向(Se方向)に延びている。また、面31iは、面31dに接続され、セレクト方向(Se方向)およびシフト方向(Sh方向)に対して傾斜している。面31iは、斜行部分とも称される。 Further, as shown in FIG. 3, the guide plate 30 has an inner circumferential surface 31 c surrounding the opening 32. The inner circumferential surface 31 c has a plurality of surfaces 31 d to 31 i facing the opening 32. A pair of surfaces 31 d is provided for each shift path 32 b. The pair of surfaces 31 d are provided to be spaced apart from each other in the select direction (Se direction), and extend in the shift direction (Sh direction). Each surface 31 d faces the selection direction (Se direction) as the first direction. The surface 31 d is a plane. A shift path 32b is provided between the pair of surfaces 31d. The ends on the gates G1 to G6 and GR side of the pair of surfaces 31d are connected by a surface 31e. The surface 31e is a curved surface. The surfaces 31 f and 31 g are both end surfaces in the select direction (Se direction) on the inner peripheral surface 31 c. The surface 31f and the surface 31g are spaced apart from each other in the select direction (Se direction) and extend in the shift direction (Sh direction). The surface 31 f and the surface 31 g each include a surface 31 d. The surface 31 f and the surface 31 g face in the select direction (Se direction). A select path 32a is provided between the surface 31f and the surface 31g. The surface 31 h is connected to the end of the surface 31 f opposite to the gate GR, and extends in the select direction (Se direction). The surface 31i is connected to the surface 31d, and is inclined with respect to the selection direction (Se direction) and the shift direction (Sh direction). The surface 31i is also referred to as an oblique portion.
 面31d,31f,31gは、ガイドピン20との接触によりインナーレバー50(図6)のセレクト方向(Se方向)への移動を制限する。 The surfaces 31 d, 31 f, 31 g limit the movement of the inner lever 50 (FIG. 6) in the select direction (Se direction) by contact with the guide pin 20.
 本実施形態では、ガイドピン20は、シフトアンドセレクトシャフト10の軸方向の動きに連動してセレクト方向(Se方向)に動く。また、ガイドピン20は、シフトアンドセレクトシャフト10の周方向(C方向)の動きに連動してシフト方向(Sh方向)に動く。ただし、シフトアンドセレクトシャフト10およびシフトガイド構造1は、軸方向がシフト方向に対応し、周方向がセレクト方向に対応する構成であってもよい。 In the present embodiment, the guide pin 20 moves in the selection direction (Se direction) in conjunction with the axial movement of the shift and select shaft 10. Further, the guide pin 20 moves in the shift direction (Sh direction) in conjunction with the movement of the shift and select shaft 10 in the circumferential direction (C direction). However, the shift and select shaft 10 and the shift guide structure 1 may be configured such that the axial direction corresponds to the shift direction and the circumferential direction corresponds to the select direction.
 選択機構100(図6,7参照)が、シフトアンドセレクトシャフト10の軸方向および周方向の位置(姿勢)に対応して、フォークシャフト712,734,756,7Rを選択的に動かすことにより、変速機の変速段(ギヤ段)が切り替わる。ガイドピン20がゲートG1に位置された状態に対応したシフトアンドセレクトシャフト10の位置および姿勢では、変速機は、第1速のギヤ段(ギヤセット)を介して変速する状態となる。同様に、ガイドピン20がゲートG2~G6に位置された状態に対応したシフトアンドセレクトシャフト10の位置および姿勢では、変速機はゲートG2~G6のそれぞれに対応した第2速~第6速のギヤ段を介して変速する状態となる。また、ガイドピン20がゲートGRに位置された状態に対応したシフトアンドセレクトシャフト10の位置および姿勢では、変速機は後進段のギヤ段を介して変速する状態となる。 Selection mechanism 100 (see FIGS. 6 and 7) selectively moves fork shafts 712, 734, 756 and 7R corresponding to the axial and circumferential positions (posture) of shift and select shaft 10, thereby The transmission gear (gear) is switched. In the position and posture of the shift and select shaft 10 corresponding to the state where the guide pin 20 is positioned at the gate G1, the transmission is shifted through the first gear (gear set). Similarly, in the position and posture of shift and select shaft 10 corresponding to the state where guide pin 20 is positioned at gates G2 to G6, the transmission has second to sixth speeds corresponding to gates G2 to G6, respectively. It will be in the state which changes gears via a gear stage. Further, in the position and posture of the shift and select shaft 10 corresponding to the state where the guide pin 20 is positioned at the gate GR, the transmission is shifted through the reverse gear.
 図1,2に示されるように、ガイドプレート30は、ベース壁31の他に、二つの補強壁33,34と、取付壁35と、を有している。補強壁33,34は、ベース壁31のシフト方向(Sh方向)の端部から、それぞれ、ベース壁31と交差する方向に略一定の高さで突出し、セレクト方向(Se方向)に沿って延びている。二つの補強壁33,34は、互いに平行である。補強壁33,34により、ガイドプレート30の剛性を高めることができる。なお、補強壁33,34は、ケース40への取り付けのための取付壁35とは別に設けられている。取付壁35は、シフトアンドセレクトシャフト10から離れる方向へベース壁31から突出している。詳細には、取付壁35は、シフトアンドセレクトシャフト10から離れる方向へ、ベース壁31の面31bのセレクト方向(Se方向)の端部から突出している。取付壁35には、ボルト等の不図示の固定具が貫通する開口部35aが設けられている。取付壁35もガイドプレート30の剛性向上に寄与する。よって、このような構成により、補強壁33,34および取付壁35によって、ガイドプレート30の剛性がより一層向上されうる。なお、ガイドプレート30がシフトアンドセレクトシャフト10に固定される実施形態では、取付壁35は、シフトアンドセレクトシャフト10に取り付けられる。 As shown in FIGS. 1 and 2, in addition to the base wall 31, the guide plate 30 has two reinforcing walls 33 and 34 and a mounting wall 35. Reinforcing walls 33 and 34 protrude from the end of base wall 31 in the shift direction (Sh direction) at a substantially constant height in the direction intersecting with base wall 31 and extend along the select direction (Se direction). ing. The two reinforcing walls 33, 34 are parallel to one another. The reinforcing walls 33 and 34 can increase the rigidity of the guide plate 30. The reinforcing walls 33 and 34 are provided separately from the mounting wall 35 for attachment to the case 40. The mounting wall 35 protrudes from the base wall 31 in a direction away from the shift and select shaft 10. Specifically, the mounting wall 35 projects from the end of the surface 31 b of the base wall 31 in the selection direction (Se direction) in a direction away from the shift and select shaft 10. The mounting wall 35 is provided with an opening 35a through which a fixing tool (not shown) such as a bolt passes. The mounting wall 35 also contributes to the improvement of the rigidity of the guide plate 30. Thus, with such a configuration, the rigidity of the guide plate 30 can be further improved by the reinforcing walls 33 and 34 and the mounting wall 35. In the embodiment in which the guide plate 30 is fixed to the shift and select shaft 10, the mounting wall 35 is attached to the shift and select shaft 10.
 また、図1に示されるように、二つの補強壁33,34の長さは相違している。二つの補強壁33,34の位置や長さが相違している分、二つの補強壁33,34の位置や長さが同じである構成に比べて、二つの補強壁33,34と周辺部品との干渉を避けやすいという利点がある。すなわち、このような構成によれば、周辺部品や、ガイドプレート30のレイアウトの自由度が高まるという利点がある。すなわち、このような二つの補強壁33,34により、ガイドプレート30をより効率良く補強できる。また、補強壁33は、四つのゲートG1,G3,G5,GRと隣接した辺から突出し、補強壁34は三つのゲートG2,G4,G6と隣接した辺から突出している。このように、より多くのゲートG1,G3,G5,GRと面した補強壁33をより長くすることにより、ベース壁31をより効果的に補強することができる。 Also, as shown in FIG. 1, the lengths of the two reinforcing walls 33, 34 are different. The two reinforcing walls 33 and 34 and the peripheral parts are compared with the configuration in which the positions and the lengths of the two reinforcing walls 33 and 34 are the same because the position and the length of the two reinforcing walls 33 and 34 are different. Has the advantage of being easy to avoid interference with That is, according to such a configuration, there is an advantage that the degree of freedom of the layout of the peripheral parts and the guide plate 30 is increased. That is, the guide plate 30 can be reinforced more efficiently by such two reinforcing walls 33 and 34. The reinforcing wall 33 protrudes from the side adjacent to the four gates G1, G3, G5 and GR, and the reinforcing wall 34 protrudes from the side adjacent to the three gates G2, G4 and G6. Thus, the base wall 31 can be reinforced more effectively by making the reinforcing wall 33 facing more gates G1, G3, G5, GR longer.
 また、図2に示されるように、補強壁33、ベース壁31、および補強壁34は、シフトアンドセレクトシャフト10の外周をU字状に囲っている。換言すれば、補強壁33,34は、ベース壁31から、シフトアンドセレクトシャフト10に近付く方向に突出している。このような構成により、シフトアンドセレクトシャフト10とシフトガイド構造1とを含む構成が、径方向に大型化するのが抑制されている。 Further, as shown in FIG. 2, the reinforcing wall 33, the base wall 31 and the reinforcing wall 34 surround the outer periphery of the shift and select shaft 10 in a U-shape. In other words, the reinforcing walls 33 and 34 project from the base wall 31 in the direction approaching the shift and select shaft 10. With such a configuration, the configuration including the shift and select shaft 10 and the shift guide structure 1 is prevented from being enlarged in the radial direction.
 上述したような構成において、ガイドピン20は、ドライバやアクチュエータによるシフト操作に応じて、開口部32内において、複数のゲートG1~G6,GR間を移動する。ガイドピン20が開口部32内(経路)を移動する際、ガイドピン20の外周は、ベース壁31における開口部32に面したエッジ、すなわち内周面31cと接触する。 In the configuration as described above, the guide pin 20 moves between the plurality of gates G1 to G6, GR in the opening 32 in accordance with the shift operation by the driver or the actuator. When the guide pin 20 moves in the opening 32 (path), the outer periphery of the guide pin 20 contacts the edge of the base wall 31 facing the opening 32, that is, the inner peripheral surface 31c.
 この場合に、内周面31cとの接触によってガイドピン20が変形するのは好ましくない。しかしながら、その対策としてガイドピン20を太くすると、ガイドプレート30、ひいてはシフトガイド構造1の大型化の一因となる虞がある。 In this case, it is not preferable that the guide pin 20 is deformed by the contact with the inner circumferential surface 31c. However, if the guide pin 20 is made thicker as a countermeasure, there is a possibility that it may contribute to the increase in size of the guide plate 30 and hence the shift guide structure 1.
 また、ガイドピン20の外周に、例えば突起や角部等の形状急変部が存在すると、当該形状急変部が開口部32に面した内周面31cと当たることにより、例えば、複数のゲートG1~G6,GR間におけるガイドピン20の円滑な移動が阻害される虞がある。このようなガイドピン20の円滑な移動の阻害は、特に、図3に示されるように、ガイドピン20が、ゲートG4からゲートG5に移動する場合のように、複数のシフト経路32bを跨いで移動する際に、生じやすい。 Also, if there is a sudden change in shape, such as a protrusion or a corner, on the outer periphery of the guide pin 20, for example, the rapid change in shape abuts against the inner circumferential surface 31c facing the opening 32. The smooth movement of the guide pin 20 between G6 and GR may be hindered. Such inhibition of the smooth movement of the guide pin 20 is particularly effective when the guide pin 20 moves from the gate G4 to the gate G5 as shown in FIG. It is easy to occur when moving.
 そこで、ガイドピン20は、上述したような不都合が生じ難いよう構成されている。図4は、ガイドピン20の斜視図、図5は、ガイドピン20の図4のV-V断面図、より詳しくは、挿入部分22の長手方向との直交方向、すなわち径方向との直交方向に沿った断面図である。 Therefore, the guide pin 20 is configured to be unlikely to cause the above-described inconvenience. 4 is a perspective view of the guide pin 20, FIG. 5 is a sectional view taken along the line VV of FIG. 4 of the guide pin 20, and more specifically, orthogonal to the longitudinal direction of the insertion portion 22, ie orthogonal to the radial direction. It is sectional drawing along.
 図4から明らかとなるように、挿入部分22の図5に示される断面は、ガイドピン20の長手方向(シフトアンドセレクトシャフト10の径方向)に沿った所定長さの区間において一定である。すなわち、挿入部分22の外周面は、ガイドピン20の長手方向と平行な母線を有した線織面である。 As apparent from FIG. 4, the cross section of the insertion portion 22 shown in FIG. 5 is constant in a section of a predetermined length along the longitudinal direction of the guide pin 20 (the radial direction of the shift and select shaft 10). That is, the outer peripheral surface of the insertion portion 22 is a ruled surface having generatrix parallel to the longitudinal direction of the guide pin 20.
 図4,5に示されるように、ガイドピン20は、円柱部分21と、挿入部分22と、を有している。円柱部分21は、シフトアンドセレクトシャフト10との結合部を含む。挿入部分22は、ガイドピン20の先端部20aを含む。ガイドピン20の先端部20aは、挿入部分22の先端部でもある。挿入部分22は、円柱部分21よりも細く、開口部32内に挿入されている。先端部20aは、開口部32内に収容されている。すなわち、先端部20aは、開口部32から突出していない。 As shown in FIGS. 4 and 5, the guide pin 20 has a cylindrical portion 21 and an insertion portion 22. The cylindrical portion 21 includes a joint with the shift and select shaft 10. The insertion portion 22 includes the tip 20 a of the guide pin 20. The tip 20 a of the guide pin 20 is also the tip of the insertion portion 22. The insertion portion 22 is thinner than the cylindrical portion 21 and is inserted into the opening 32. The tip 20 a is accommodated in the opening 32. That is, the tip 20 a does not protrude from the opening 32.
 このように、本実施形態によれば、挿入部分22よりも円柱部分21が太いことにより、当該円柱部分21が無い場合に比べて、ガイドピン20の剛性および強度をより高めることができる。さらに、挿入部分22が円柱部分21よりも細いことにより、当該挿入部分22が円柱部分21と同じ太さである場合に比べて、シフトガイド構造1をよりコンパクトに構成することができる。なお、本実施形態では、挿入部分22は、ガイドピン20の先端部に設けられているが、挿入部分22は、ガイドピン20の長手方向の中間位置に設けられてもよい。 Thus, according to the present embodiment, by making the cylindrical portion 21 thicker than the insertion portion 22, the rigidity and strength of the guide pin 20 can be further enhanced as compared with the case where the cylindrical portion 21 is not provided. Furthermore, since the insertion portion 22 is thinner than the cylindrical portion 21, the shift guide structure 1 can be configured more compactly than when the insertion portion 22 has the same thickness as the cylindrical portion 21. In the present embodiment, the insertion portion 22 is provided at the tip of the guide pin 20, but the insertion portion 22 may be provided at an intermediate position in the longitudinal direction of the guide pin 20.
 また、図5に示されるように、挿入部分22の断面の外周縁22aは、二つの平行な直線部分22bと、二つの直線部分22bの端部22c同士を繋ぐ二つの突出部分22dと、を含む。図5に示されるように、二つの直線部分22bの間隔、すなわち、外周縁22aの短手方向の幅Wsは、外周縁22aの長手方向の幅Wlよりも小さい。ここで、図1,3から明らかとなるように、挿入部分22は、シフト方向(Sh方向)に長い姿勢で、開口部32内に収容されている。すなわち、挿入部分22のセレクト方向(Se方向)に沿った短手方向の幅Wsは、シフト方向に沿った長手方向の幅Wlよりも小さい。なお、図5には、挿入部分22の断面の中心線CLが示されている。中心線CLは、二つの直線部分22bと平行であり、かつ二つの直線部分22bの中間に位置されている。 Further, as shown in FIG. 5, the outer peripheral edge 22a of the cross section of the insertion portion 22 includes two parallel straight portions 22b and two projecting portions 22d connecting the end portions 22c of the two straight portions 22b. Including. As shown in FIG. 5, the distance between the two straight portions 22b, that is, the width Ws in the short direction of the outer peripheral edge 22a is smaller than the width W1 in the longitudinal direction of the outer peripheral edge 22a. Here, as is apparent from FIGS. 1 and 3, the insertion portion 22 is accommodated in the opening 32 in a posture that is long in the shift direction (Sh direction). That is, the width Ws in the short direction along the select direction (Se direction) of the insertion portion 22 is smaller than the width Wl in the longitudinal direction along the shift direction. The center line CL of the cross section of the insertion portion 22 is shown in FIG. The center line CL is parallel to the two straight line portions 22 b and located midway between the two straight line portions 22 b.
 本実施形態によれば、このような挿入部分22の形状および姿勢により、ガイドプレート30において、複数のシフト経路32bの間隔をより狭めることができるため、シフトガイド構造1をよりコンパクトに構成することができる。また、挿入部分22が、シフト方向に長い断面を有しているため、挿入部分22が各ゲートG1~G6,GRに移動して開口部32に面した内周面31cに突き当たる際に、内周面31cからガイドピン20にシフト方向に入力される力に対するガイドピン20の剛性や強度を、より高くすることができる。 According to the present embodiment, the gap between the plurality of shift paths 32b can be narrowed in the guide plate 30 by the shape and attitude of the insertion portion 22 as described above, so that the shift guide structure 1 can be made more compact. Can. In addition, since the insertion portion 22 has a long cross section in the shift direction, when the insertion portion 22 moves to each of the gates G1 to G6, GR and strikes the inner peripheral surface 31c facing the opening 32, The rigidity and strength of the guide pin 20 with respect to the force input from the circumferential surface 31 c to the guide pin 20 in the shift direction can be further increased.
 また、図5に示されるように、本実施形態では、突出部分22dは、半円であり、その半径Rは、短手方向の幅Wsの1/2である。したがって、外周縁22aは、全体として、長円状である。すなわち、外周縁22aは、平行部分(二つの直線部分22b)と、当該平行部分の両端に位置され当該平行部分の間隔を直径とする二つの半円(突出部分22d)と、を有している。 Further, as shown in FIG. 5, in the present embodiment, the protruding portion 22 d is a semicircle, and the radius R thereof is half the width Ws in the short direction. Accordingly, the outer peripheral edge 22a is generally oval. That is, the outer peripheral edge 22a has a parallel portion (two straight portions 22b) and two semicircles (protruding portions 22d) located at both ends of the parallel portion and having a diameter between the parallel portions. There is.
 このように、本実施形態によれば、挿入部分22の断面の外周縁22aが長円状であることにより、製造や検査がより容易にあるいはより精度良く行われうるという利点がある。 As described above, according to the present embodiment, the outer peripheral edge 22a of the cross section of the insertion portion 22 has an oval shape, so that there is an advantage that manufacturing and inspection can be performed more easily or more accurately.
 また、図5に示されるように、本実施形態では、突出部分22dには、半円状の一つの湾曲部分が含まれていると言うことができる。また、図5から明らかとなるように、突出部分22dの半径R、すなわち湾曲部分の曲率半径は、円柱部分21の半径(外径Dの1/2)よりも小さい。 In addition, as shown in FIG. 5, in the present embodiment, it can be said that the protruding portion 22 d includes one semicircular curved portion. Further, as is apparent from FIG. 5, the radius R of the protruding portion 22d, that is, the curvature radius of the curved portion, is smaller than the radius of the cylindrical portion 21 (1⁄2 of the outer diameter D).
 このように、本実施形態によれば、突出部分22dの半径R(湾曲部分の曲率半径)が、円柱部分21の半径よりも小さいため、突出部分22dの半径Rが円柱部分21の半径と同じである場合に比べて、直線部分22bと突出部分22dとの間(端部22c)における形状変化がより緩やかになる。よって、外周縁22aが開口部32に面した内周面31cと引っ掛かりにくくなる。よって、ガイドピン20は、開口部32内で、より円滑に移動しやすい。 Thus, according to the present embodiment, the radius R of the projecting portion 22 d (the radius of curvature of the curved portion) is smaller than the radius of the cylindrical portion 21, so the radius R of the projecting portion 22 d is the same as the radius of the cylindrical portion 21. In this case, the shape change at the end 22c between the straight portion 22b and the protruding portion 22d is more gradual than in the case where Therefore, the outer peripheral edge 22 a is less likely to be caught with the inner peripheral surface 31 c facing the opening 32. Thus, the guide pin 20 can move more smoothly in the opening 32.
 また、図5に示されるように、外周縁22aは、全体として滑らかである。すなわち、直線部分22bと突出部分22dとは滑らかに連続しており、かつ、突出部分22dは、当該突出部分22dの全域で滑らかに連続している。ここで、滑らかに連続しているとは、例えば、外周縁22aを、Sh方向の変数xおよびSe方向の変数yの関数y=f(x)によって表した場合に、各点xにおいて、関数y=f(x)が連続であるとともに関数y=f(x)がxにより微分可能であること、を示す。 Also, as shown in FIG. 5, the outer peripheral edge 22a is smooth as a whole. That is, the straight portion 22b and the protruding portion 22d are smoothly continuous, and the protruding portion 22d is smoothly continuous throughout the protruding portion 22d. Here, “smoothly continuous” means, for example, a function at each point x when the outer peripheral edge 22a is represented by a function y = f (x) of a variable x in the Sh direction and a variable y in the Se direction. We show that y = f (x) is continuous and the function y = f (x) is differentiable by x.
 このように、本実施形態によれば、外周縁22aが全体として滑らかであることにより、外周縁22aが開口部32に面した内周面31cと引っ掛かりにくくなる。よって、ガイドピン20は、開口部32内で、より円滑に移動しやすい。 As described above, according to the present embodiment, the outer peripheral edge 22 a is smooth as a whole, so that the outer peripheral edge 22 a is unlikely to be caught with the inner peripheral surface 31 c facing the opening 32. Thus, the guide pin 20 can move more smoothly in the opening 32.
 図6は、選択機構100の平面図、図7は、選択機構100の正面図である。図6,7に示されるように、選択機構100は、インナーレバー50、インターロック61,62、およびシフトヘッド812,834,856,8Rを有する。選択機構100は、インナーレバー50の動作に応じてフォークシャフト712,734,756,7Rを選択的に動作させることにより、不図示のシフトフォーク等を介して変速機のギヤ段を切り替える。 6 is a plan view of the selection mechanism 100, and FIG. 7 is a front view of the selection mechanism 100. As shown in FIG. As shown in FIGS. 6 and 7, the selection mechanism 100 has an inner lever 50, interlocks 61 and 62, and shift heads 812, 834, 856 and 8R. The selection mechanism 100 selectively operates the fork shafts 712, 734, 756, and 7R according to the operation of the inner lever 50 to switch the gear of the transmission via a shift fork or the like (not shown).
 インナーレバー50は、シフトアンドセレクトシャフト10と連動して、第一方向としてのセレクト方向(Se方向)と、シフトアンドセレクトシャフト10の周方向の動き(回動)に応じて、図7に示す第二方向としてのシフトガイド方向(Shg方向)と、に動く。図7に示されるように、インナーレバー50は、例えばシフトアンドセレクトシャフト10から径方向外方に向けて突出している。 The inner lever 50 is shown in FIG. 7 according to the select direction (Se direction) as the first direction and the circumferential movement (rotation) of the shift and select shaft 10 in conjunction with the shift and select shaft 10. It moves in the shift guide direction (Shg direction) as the second direction. As shown in FIG. 7, the inner lever 50 projects, for example, radially outward from the shift and select shaft 10.
 インターロック61,62は、インナーレバー50に追従して、セレクト方向には動く。しかしながら、インターロック61は、シフト方向には動かない。 The interlocks 61 and 62 follow the inner lever 50 and move in the select direction. However, the interlock 61 does not move in the shift direction.
 シフトヘッド812,834,856,8Rは、インナーレバー50のシフトガイド方向(Shg方向)への移動に追従して、対応するフォークシャフト712,734,756,7Rとともに、シフト方向には動く。しかしながら、シフトヘッド812,834,856,8Rは、セレクト方向には動かない。 The shift heads 812, 834, 856, 8R move in the shift direction together with the corresponding fork shafts 712, 734, 756, 7R in accordance with the movement of the inner lever 50 in the shift guide direction (Shg direction). However, the shift heads 812 834 856 8R do not move in the select direction.
 本実施形態では、一例として、シフトヘッド812,834,856,8Rは、それぞれ、シフト方向の両側のアーム8aを有し、アーム8a間の凹部8bに、インナーレバー50およびインターロック61,62が、セレクト方向に移動可能に収容されている。 In this embodiment, as an example, each of the shift heads 812, 834, 856, 8R has the arms 8a on both sides in the shift direction, and the inner lever 50 and the interlocks 61, 62 are provided in the recess 8b between the arms 8a. And is accommodated so as to be movable in the select direction.
 このような構成において、シフトアンドセレクトシャフト10の軸方向の動きに応じて、インナーレバー50がセレクト方向に移動し、シフトヘッド812,834,856,8Rのうちいずれか一つのアーム8a間(凹部8b)に位置する。 In such a configuration, the inner lever 50 moves in the select direction according to the axial movement of the shift and select shaft 10, and between the arms 8a of the shift heads 812, 834, 856, 8R (recessed portion Located at 8b).
 また、シフトアンドセレクトシャフト10の周方向の動き(回動)に応じて、インナーレバー50は、シフトガイド方向(Shg方向)に移動し、これにより、インナーレバー50と隣接した、すなわち凹部8b内にインナーレバー50を収容したシフトヘッドが、シフト方向に移動する。 Further, in response to the circumferential movement (rotation) of the shift and select shaft 10, the inner lever 50 moves in the shift guide direction (Shg direction), thereby being adjacent to the inner lever 50, that is, in the recess 8b. The shift head accommodating the inner lever 50 moves in the shift direction.
 図8~図10は、実施形態の選択機構100の動作図であって、ギヤ段が第4速の変速段から第5速の変速段に切り替わる場合の動作図である。図8では、位置Pi4に位置されたインナーレバー50により、シフトヘッド834が、第4速のギヤ段が動作する位置(図8の下方の位置)に位置されている。図9のように、インナーレバー50が、二つのシフトヘッド834,856の間の位置Piiに位置された状態では、インターロック61,62によってシフトヘッド834,856のシフト方向への動きが制限される。また、図10では、位置Pi5に位置されたインナーレバー50により、シフトヘッド856が、第5速のギヤ段が動作する位置(図10の上方の位置)に位置されている。 8 to 10 are operation diagrams of the selection mechanism 100 according to the embodiment, in which the gear is switched from the fourth gear to the fifth gear. In FIG. 8, the shift head 834 is positioned at the position where the fourth gear is operated (the lower position in FIG. 8) by the inner lever 50 positioned at the position Pi4. As shown in FIG. 9, when the inner lever 50 is positioned at the position Pii between the two shift heads 834 and 856, the interlocks 61 and 62 restrict the movement of the shift heads 834 and 856 in the shift direction. Ru. Further, in FIG. 10, the shift head 856 is positioned at the position where the fifth gear is operated (upper position in FIG. 10) by the inner lever 50 positioned at the position Pi5.
 図11は、選択機構100によって定められたガイドピン20が移動可能な第二の移動範囲Tsと、シフトガイド構造1によって定められたガイドピン20が移動可能な第一の移動範囲Tgと、が示された模式図である。第一の移動範囲Tgおよび第二の移動範囲Tsは、例えば、ガイドプレート30の開口部32内をガイドピン20の軸心(中心)が移動可能な範囲である。すなわち、第二の移動範囲Tsは、選択機構100の各部品間の隙間や、当該各部品の移動範囲、当該各部品の寸法公差等に基づいて定まる。また、第一の移動範囲Tgは、ガイドピン20と開口部32とによって定まる。 FIG. 11 shows a second movement range Ts in which the guide pin 20 determined by the selection mechanism 100 can move and a first movement range Tg in which the guide pin 20 determined by the shift guide structure 1 can move. It is a schematic diagram shown. The first movement range Tg and the second movement range Ts are, for example, ranges in which the axial center (center) of the guide pin 20 can move in the opening 32 of the guide plate 30. That is, the second movement range Ts is determined based on the gap between each component of the selection mechanism 100, the movement range of each component, the dimensional tolerance of each component, and the like. The first movement range Tg is determined by the guide pin 20 and the opening 32.
 図11から明らかとなるように、本実施形態では、第二の移動範囲Tsは、第一の移動範囲Tgを包含している。すなわち、本実施形態では、ガイドピン20の移動範囲は、開口部32に面した内周面31cにより定められている。よって、例えば、ガイドピン20が、内周面31cに沿うように移動することが可能である。 As apparent from FIG. 11, in the present embodiment, the second movement range Ts includes the first movement range Tg. That is, in the present embodiment, the movement range of the guide pin 20 is determined by the inner circumferential surface 31 c facing the opening 32. Thus, for example, the guide pin 20 can move along the inner circumferential surface 31c.
 ここで、仮に、第二の移動範囲Tsが第一の移動範囲Tgよりも内側に位置された領域(以下、逆転領域と称する)が存在したとすると、当該逆転領域では、ガイドピン20は内周面31cには接触しない。よって、内周面31cから離間して逆転領域内を移動していたガイドピン20が、内周面31cに沿って移動するような場合が生じ、この場合に、ガイドピン20が折れ曲がるような移動経路を辿ることになり、ガイドピン20ひいてはシフトレバーの円滑な移動が妨げられる虞がある。 Here, assuming that there is a region where the second movement range Ts is positioned inside the first movement range Tg (hereinafter referred to as a reverse region), the guide pin 20 is in the inside in the reverse region. It does not contact the circumferential surface 31c. Therefore, the guide pin 20 moving away from the inner circumferential surface 31c and moving in the reverse rotation area sometimes moves along the inner circumferential surface 31c. In this case, the movement such that the guide pin 20 is bent The path will be followed, and the smooth movement of the guide pin 20 and hence the shift lever may be impeded.
 この点、本実施形態によれば、第二の移動範囲Tsが第一の移動範囲Tgを包含しているため、上述したような、移動経路の折れ曲がりが生じない。よって、ガイドピン20ひいてはシフトレバーは、より円滑に移動しやすくなる。 In this respect, according to the present embodiment, since the second movement range Ts includes the first movement range Tg, bending of the movement path does not occur as described above. Therefore, the guide pin 20 and thus the shift lever can be moved more smoothly.
 また、上述したように、本実施形態によれば、補強壁33,34により、ガイドピン20との当接によるガイドプレート30の変形を抑制できる。また、本実施形態によれば、長さが異なる二つの補強壁33,34により、ガイドプレート30をより効率良く補強できる。 Further, as described above, according to the present embodiment, the reinforcing walls 33 and 34 can suppress the deformation of the guide plate 30 due to the contact with the guide pin 20. Further, according to the present embodiment, the guide plate 30 can be reinforced more efficiently by the two reinforcing walls 33 and 34 having different lengths.
 また、上述したように、本実施形態によれば、ガイドピン20の挿入部分22のシフト方向に沿った幅Wlは、セレクト方向に沿った幅Wsよりも大きい。よって、ガイドプレート30をセレクト方向により小さく構成できるとともに、ガイドピン20がガイドプレート30とシフト方向に当たることにより変形するのを、抑制できる。 Also, as described above, according to the present embodiment, the width Wl along the shift direction of the insertion portion 22 of the guide pin 20 is larger than the width Ws along the select direction. Therefore, the guide plate 30 can be configured to be smaller in the select direction, and deformation of the guide pin 20 due to the guide plate 30 in the shift direction can be suppressed.
 以上のように、本実施形態では、ガイドプレート30には、開口部32に面しガイドピン20との接触によりインナーレバー50のセレクト方向(Se方向、第一方向)への移動を制限する面31d,31f,31gが設けられている。このような構成によれば、例えば、インナーレバー50のセレクト方向(Se方向)への移動の制限をガイドプレート30およびガイドピン20によって行なうことができる。よって、本実施形態によれば、例えば、インナーレバー50のセレクト方向(Se方向)への移動の制限を、インナーレバー、インターロックおよびケースによって行なう構成に比べて、部品点数を減らすことができ、かつガイドピン20の移動範囲のばらつきを減らすことができる。 As described above, in the present embodiment, the guide plate 30 faces the opening 32 and is a surface that limits the movement of the inner lever 50 in the selection direction (Se direction, first direction) by contact with the guide pin 20. 31d, 31f, 31g are provided. According to such a configuration, for example, the movement of the inner lever 50 in the selection direction (Se direction) can be restricted by the guide plate 30 and the guide pin 20. Therefore, according to the present embodiment, for example, the number of parts can be reduced compared to the configuration in which the movement of the inner lever 50 in the selection direction (Se direction) is limited by the inner lever, interlock and case. And the dispersion | variation in the movement range of the guide pin 20 can be reduced.
 また、本実施形態では、取付壁35は、シフトアンドセレクトシャフト10から離れる方向へベース壁31から突出している。本実施形態によれば、例えば、ガイドプレート30をシフトアンドセレクトシャフト10に接近させることができるので、シフトガイド構造1を小型化できる。 Further, in the present embodiment, the mounting wall 35 protrudes from the base wall 31 in a direction away from the shift and select shaft 10. According to the present embodiment, for example, since the guide plate 30 can be brought close to the shift and select shaft 10, the shift guide structure 1 can be miniaturized.
 また、本実施形態では、ガイドピン20は、挿入部分22に含まれた先端部20aを有し、ガイドプレート30には、先端部20aを収容した開口部32が設けられた。このような構成によれば、例えば、ガイドピン20の先端部20aが開口部32から突出しないため、ガイドピンの先端部が開口部から突出した構成に比べて、ガイドピン20の軸方向の長さを短くすることができる。よって、ガイドピン20に入力される荷重を小さくすることができるので、ガイドピン20の耐久性を向上させることができる。 Further, in the present embodiment, the guide pin 20 has the distal end portion 20a included in the insertion portion 22, and the guide plate 30 is provided with the opening 32 in which the distal end portion 20a is accommodated. According to such a configuration, for example, since the tip 20a of the guide pin 20 does not protrude from the opening 32, the axial length of the guide pin 20 is longer than the configuration in which the tip of the guide pin protrudes from the opening Can be shortened. Therefore, since the load input to the guide pin 20 can be reduced, the durability of the guide pin 20 can be improved.
 以上、本発明の実施形態を例示したが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や形状等のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、高さ、数、配置、位置等)は、適宜に変更して実施することができる。例えば、選択機構の構成は、上記実施形態に開示されたものには限定されない。 As mentioned above, although the embodiment of the present invention was illustrated, the above-mentioned embodiment is an example, and limiting the scope of the invention is not intended. The embodiment can be implemented in various other forms, and various omissions, substitutions, combinations, and changes can be made without departing from the scope of the invention. Further, specifications (structure, type, direction, shape, size, length, width, height, number, arrangement, position, etc.) of each configuration and shape can be appropriately changed and implemented. For example, the configuration of the selection mechanism is not limited to those disclosed in the above embodiments.
 1…シフトガイド構造、10…シフトアンドセレクトシャフト、20…ガイドピン、22…挿入部分、30…ガイドプレート、31…ベース壁、31d,31f,31g…面、32…開口部(経路)、35…取付壁、40…ケース、50…インナーレバー、61,62…インターロック、100…選択機構、812,834,856,8R…シフトヘッド、Tg…第一の移動範囲、Ts…第二の移動範囲。 DESCRIPTION OF SYMBOLS 1 ... Shift guide structure, 10 ... Shift and selection shaft, 20 ... Guide pin, 22 ... Insertion part, 30 ... Guide plate, 31 ... Base wall, 31d, 31f, 31g ... Surface, 32 ... Opening part (path | route), 35 ... mounting wall, 40 ... case, 50 ... inner lever, 61, 62 ... interlock, 100 ... selection mechanism, 812, 834, 856, 8 R ... shift head, Tg ... first movement range, Ts ... second movement range.

Claims (6)

  1.  ケースに軸方向および周方向に移動可能に支持されたシフトアンドセレクトシャフトおよび前記ケースのうち一方に設けられたガイドピンと、
     前記シフトアンドセレクトシャフトおよび前記ケースのうち他方に設けられ、前記ガイドピンをギヤ段に対応した複数の位置の間で案内する経路が設けられたガイドプレートと、
     前記シフトアンドセレクトシャフトの移動に応じて、第一方向と前記第一方向とは異なる第二方向との間を選択的に移動可能なインナーレバーと、
     前記インナーレバーの移動に応じて前記ギヤ段の切り替えを行う選択機構と、
     を備え、
     前記ガイドプレートの前記経路における前記ガイドピンが移動可能な第一の移動範囲の全域が、前記選択機構によって定まる前記ガイドピンが移動可能な第二の移動範囲内に包含されるよう構成された、変速機のシフトガイド構造。
    A shift and select shaft axially and circumferentially movably supported by the case, and a guide pin provided to one of the cases;
    A guide plate provided on the other of the shift and select shaft and the case and provided with a path for guiding the guide pin between a plurality of positions corresponding to gear stages;
    An inner lever selectively movable between a first direction and a second direction different from the first direction according to the movement of the shift and select shaft;
    A selection mechanism that switches the gear in accordance with the movement of the inner lever;
    Equipped with
    The entire range of the first movement range in which the guide pin can move in the path of the guide plate is configured to be included in the second movement range in which the guide pin can move according to the selection mechanism. Transmission shift guide structure.
  2.  前記ガイドプレートは、
     前記経路を構成する開口部が設けられたベース壁と、
     前記ベース壁から突出した取付壁と、
     前記取付壁とは別に設けられ前記ベース壁から突出した補強壁と、
     を有した、請求項1に記載のシフトガイド構造。
    The guide plate is
    A base wall provided with an opening that constitutes the path;
    A mounting wall projecting from the base wall;
    A reinforcing wall provided separately from the mounting wall and protruding from the base wall;
    The shift guide structure according to claim 1, comprising:
  3.  前記補強壁は二つのうちの一つであり、
     二つの前記補強壁は、互いに平行で且つ前記シフトアンドセレクトシャフトの軸方向の長さが異なる、請求項2に記載のシフトガイド構造。
    The reinforcing wall is one of two,
    3. The shift guide structure according to claim 2, wherein the two reinforcing walls are parallel to each other and have different axial lengths of the shift and select shaft.
  4.  前記ガイドピンの前記経路への挿入部分のシフト方向に沿った幅は、前記挿入部分のセレクト方向に沿った幅よりも大きい、請求項2または3に記載のシフトガイド構造。 The shift guide structure according to claim 2 or 3, wherein the width along the shift direction of the insertion portion of the guide pin in the path is larger than the width along the select direction of the insertion portion.
  5.  前記ガイドプレートには、前記経路を構成する開口部と、前記開口部に面し前記ガイドピンとの接触により前記インナーレバーの前記第一方向への移動を制限する面と、が設けられた、請求項1~4のうちいずれか一つに記載のシフトガイド構造。 The guide plate is provided with an opening that constitutes the path, and a surface that faces the opening and that restricts the movement of the inner lever in the first direction by contact with the guide pin. The shift guide structure according to any one of Items 1 to 4.
  6.  前記取付壁は、前記シフトアンドセレクトシャフトから離れる方向へ前記ベース壁から突出した、請求項2に記載のシフトガイド構造。 The shift guide structure according to claim 2, wherein the mounting wall protrudes from the base wall in a direction away from the shift and select shaft.
PCT/JP2017/038220 2016-11-17 2017-10-23 Shift guide structure WO2018092521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016224553 2016-11-17
JP2016-224553 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018092521A1 true WO2018092521A1 (en) 2018-05-24

Family

ID=62145459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038220 WO2018092521A1 (en) 2016-11-17 2017-10-23 Shift guide structure

Country Status (1)

Country Link
WO (1) WO2018092521A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264424A (en) * 1996-03-27 1997-10-07 Mazda Motor Corp Supporting structure for shift fork
JP2006138344A (en) * 2004-11-10 2006-06-01 Mazda Motor Corp Transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264424A (en) * 1996-03-27 1997-10-07 Mazda Motor Corp Supporting structure for shift fork
JP2006138344A (en) * 2004-11-10 2006-06-01 Mazda Motor Corp Transmission

Similar Documents

Publication Publication Date Title
US20180106369A1 (en) Transmission
JP5376239B2 (en) Sliding tripod type constant velocity joint
US20070144303A1 (en) Operating lever system
WO2018092521A1 (en) Shift guide structure
JP6590083B2 (en) Shift guide structure
JP6228163B2 (en) Manual transmission for vehicle
JP2012007672A (en) Shift-and-select shaft assembly of transmission
JP5517861B2 (en) Transmission shift and select shaft assembly
CN109690151B (en) Manual transmission
JP6217509B2 (en) Manual transmission
JP6987037B2 (en) Connection structure
JP2018017373A (en) Shaft Assembly
JP7351087B2 (en) shift device
JP2008296746A (en) Operation lever device
JP6227423B2 (en) Ball screw and power steering device
JP2016187992A (en) Shifter
JP7120611B2 (en) linear sensor
JP5543816B2 (en) Transmission shift and select shaft assembly
JP2011202679A (en) Shift and select shaft assembly of transmission
JP2018054055A (en) Shift operation device
JP2019044825A (en) Shaft assembly
JP6546847B2 (en) Lever switch device
KR101592818B1 (en) Shifting gear device for vehicle
JP2006258232A (en) Motor drive type shift switching device
JP2011163408A (en) Shift and select shaft assembly for transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2019)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17870903

Country of ref document: EP

Kind code of ref document: A1