WO2018092253A1 - Stroke position reset processing method - Google Patents

Stroke position reset processing method Download PDF

Info

Publication number
WO2018092253A1
WO2018092253A1 PCT/JP2016/084171 JP2016084171W WO2018092253A1 WO 2018092253 A1 WO2018092253 A1 WO 2018092253A1 JP 2016084171 W JP2016084171 W JP 2016084171W WO 2018092253 A1 WO2018092253 A1 WO 2018092253A1
Authority
WO
WIPO (PCT)
Prior art keywords
reset
stroke
position detection
stroke position
detection sensor
Prior art date
Application number
PCT/JP2016/084171
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 影山
純 名畑
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2016/084171 priority Critical patent/WO2018092253A1/en
Priority to JP2018550950A priority patent/JP6774502B2/en
Publication of WO2018092253A1 publication Critical patent/WO2018092253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to a stroke position reset processing method capable of accurately obtaining a reset position by a reset position detection sensor even if there is a disturbance such as a change in distance between the sensor and the rod due to vibration or electromagnetic noise.
  • This stroke position reset processing method is used, for example, to accurately detect the stroke of the arm cylinder or boom cylinder for a working machine of a hydraulic excavator that is an information construction machine (ICT construction machine).
  • ICT construction machine information construction machine
  • a permanent magnet is provided on a piston that moves linearly with a rod inside a cylinder tube such as a hydraulic cylinder, and a magnetic sensor is provided outside the cylinder tube, and the position of the piston of the cylinder is detected by detecting the magnetic force passing through the magnetic sensor. There is something to measure.
  • a rotary encoder that detects the amount of linear movement of the rod as a rotation amount is provided on the cylinder head, and a reset magnetic sensor is provided on the outer peripheral surface of the tube in the middle of the cylinder tube.
  • a technique that detects a magnetic force generated by a magnet fixed to a linearly moving piston and resets a measurement position obtained from a detection value of a rotary encoder to an origin position when the magnetic force reaches a peak value.
  • the tube of the hydraulic cylinder is made of a magnetic material, there is a certain time delay (transmission delay) until the magnetism generated inside the tube reaches the magnetic sensor outside the tube via the tube.
  • the moving speed of the piston inside the cylinder tube is not constant, and therefore the stroke position obtained by the arithmetic processing when the magnetic force detected by the magnetic sensor (reset sensor) reaches the peak may be true depending on the moving speed of the piston. It is shifted from the stroke position (origin position).
  • Patent Document 1 the correspondence relationship between the passing speed of the piston immediately below the reset sensor and the amount of displacement from the origin position (peak position correction amount) is acquired in advance and stored in a table format. Sometimes the passage speed just below the reset sensor is detected to correct the origin position.
  • Patent Document 2 a plurality of detected recesses are provided at intervals in the circumferential direction on the outer peripheral surface of the cylinder block, and an electromagnetic pickup type rotation sensor detects the detected recess when the cylinder block rotates. What measures the rotation speed of a cylinder block is described.
  • the stroke position detection sensor provided in the cylinder tube measures the stroke position of the piston rod by converting the rotation amount of the rotating roller that is rotated by being pressed by the piston rod into the stroke amount. It is inevitable that slip occurs between the rotating roller and the piston rod, and the slip between the piston rod stroke position obtained from the detection result of the stroke position detection sensor and the actual stroke position of the piston rod is unavoidable. Causes a cumulative error due to slipping. For this reason, in order to reset the stroke position obtained from the detection result of the stroke position detection sensor to the origin position (reference position), the reset is separately detected by detecting the detected portion provided on the piston rod. A position detection sensor is provided.
  • the reset position detection sensor needs to obtain the reset position of the detected part with high accuracy, two position detection sensors are arranged in the sliding direction of the cylinder rod, and the detection result of each position detection sensor is used. Seeking reset position.
  • the detectable signal has to be small.
  • there is a possibility of erroneous detection due to disturbance such as a change in the distance between the sensor and the rod due to vibration or electromagnetic noise.
  • the present invention has been made in view of the above, and even if there is a disturbance such as a change in the distance between the sensor and the rod due to vibration or electromagnetic noise or the like, the reset position by the reset position detection sensor is obtained with high accuracy.
  • An object of the present invention is to provide a stroke position reset processing method that can be used.
  • a stroke position reset processing method for resetting the stroke position using two reset position detection sensors for detecting a detected portion having a width corresponding to a predetermined distance in the linear motion direction, each reset position detection sensor
  • a detection step for detecting the output waveform of the detected signal, a difference calculation step for calculating a difference waveform between the two detected output waveforms, and a stroke position at one end of the detected portion based on the difference waveform and the stroke position.
  • a reset position calculating step for calculating a reset position; and a reset position for resetting the stroke position using the value of the reset position. Characterized by comprising a preparative step.
  • the stroke position detection sensor and each reset position detection sensor perform position detection at a predetermined sampling interval
  • the reset position calculation step includes: A value obtained by subtracting the second measurement value of the difference waveform behind the predetermined distance from the first measurement value of the difference waveform calculated in the difference calculation step is obtained as an evaluation value of the first measurement value, and each stroke position is determined. A value obtained by performing weighted average processing with an evaluation value is calculated as the reset position.
  • the stroke position reset processing method according to the present invention is characterized in that, in the above invention, the weighted average processing is performed when the evaluation value is equal to or greater than a predetermined value.
  • the two reset position detection sensors are magnetic sensors, and the detected portion is a groove provided on a background of the linear motion member. It is the site
  • the two reset position detection sensors are eddy current sensors, and the detected portion is provided on the sliding surface of the linear motion member. It is a metal in the groove formed, and has a resistance value lower than that of the material of the linear motion member.
  • the two reset position detection sensors are optical sensors, and the detected portion is provided on a sliding surface of the linear motion member.
  • the colored portion is different in color from the sliding surface of the linear motion member.
  • the two reset position detection sensors are optical sensors, and the detected portion is provided on a sliding surface of the linear motion member. It is a light reflecting member or a light absorbing member.
  • the reset position by the reset position detection sensor can be obtained with high accuracy even when there is a disturbance such as a change in the distance between the sensor and the rod due to vibration or electromagnetic noise.
  • FIG. 1 is a diagram showing an external configuration of a hydraulic cylinder with a stroke position detection function according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the hydraulic cylinder shown in FIG.
  • FIG. 3 is an enlarged view showing a detailed configuration of the stroke position detection sensor shown in FIG.
  • FIG. 4 is a diagram illustrating a configuration of the reset position detection sensor illustrated in FIG. 3 and a reset position detection process.
  • FIG. 5 is an explanatory diagram for explaining the weighted average process.
  • FIG. 6 is a flowchart illustrating a reset processing procedure performed by the arithmetic processing unit.
  • FIG. 1 is a diagram showing an external configuration of a hydraulic cylinder with a stroke position detection function according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the hydraulic cylinder shown in FIG.
  • FIG. 3 is an enlarged view showing a detailed configuration of the stroke position detection sensor shown in
  • FIG. 7 is a diagram illustrating the relationship between the measurement stroke and the actual stroke of the stroke position detection sensor when the reset position detection sensor is disposed on the roller support portion of the stroke position detection sensor.
  • FIG. 8 is a diagram illustrating the relationship between the measurement stroke and the actual stroke of the stroke position detection sensor in the case of a conventional configuration in which the reset position detection sensor is not disposed on the roller support.
  • FIG. 9 is a diagram showing a configuration and an output waveform of the reset position detection sensor used in the second embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of a reset position detection sensor according to the third embodiment of the present invention.
  • FIG. 11 is a diagram showing an output waveform of the reset position detection sensor shown in FIG. FIG.
  • FIG. 12 is a diagram illustrating a configuration of a reset position detection sensor according to the fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing an output waveform of the reset position detection sensor shown in FIG.
  • FIG. 14 is a diagram showing a configuration of a reset position detection sensor according to the fifth embodiment of the present invention.
  • FIG. 15 is a diagram showing an output waveform of the reset position detection sensor shown in FIG.
  • FIG. 16 is a diagram showing a configuration of a reset position detection sensor according to the sixth embodiment of the present invention.
  • FIG. 17 is a diagram showing an output waveform of the reset position detection sensor shown in FIG.
  • FIG. 1 is a diagram showing an external configuration of a hydraulic cylinder with a stroke position detection function (hereinafter referred to as a hydraulic cylinder) 1 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the hydraulic cylinder 1 shown in FIG. 3 is an enlarged view showing a detailed configuration of the stroke position detection sensor 10 shown in FIG.
  • the piston rod 3 that is a linear motion member is slidably provided on a cylinder tube 2 that is a wall of the hydraulic cylinder 1 via a piston 20.
  • the piston 20 is attached to the vicinity of the cylinder bottom 9 side of the piston rod 3.
  • the piston rod 3 is slidably provided on the cylinder head 8.
  • a chamber defined by the cylinder head 8, the piston 20, the inner wall of the cylinder tube 2 and the piston rod 3 constitutes a cylinder head side oil chamber 13H.
  • the chamber defined by the cylinder bottom 9, the piston 20, the inner wall of the cylinder tube 2 and the piston rod 3 constitutes a cylinder bottom side oil chamber 13B.
  • the cylinder head side oil chamber 13 ⁇ / b> H and the cylinder bottom side oil chamber 13 ⁇ / b> B are in positions facing each other in the cylinder tube 2 through the piston 20.
  • the hydraulic oil LH flows into and out of the cylinder head side oil chamber 13H through the hydraulic port 4 provided in the vicinity of the cylinder head 8.
  • the hydraulic oil LB flows into and out of the cylinder bottom side oil chamber 13B through the hydraulic port 5 provided in the vicinity of the cylinder bottom 9.
  • the hydraulic oil LH and LB are switched in flow rate and direction of hydraulic oil from a hydraulic pump (not shown) by adjusting a flow rate adjustment valve corresponding to an operation amount of an operating lever (not shown).
  • a hydraulic pump not shown
  • the hydraulic oil LH pushes the piston 20 toward the cylinder bottom 9 to move the piston rod 3 toward the cylinder bottom 9.
  • the hydraulic oil LB in the cylinder bottom side oil chamber 13B flows out to a hydraulic oil tank (not shown) via the hydraulic port 5.
  • the hydraulic oil LB pushes the piston 20 toward the cylinder head 8 to move the piston rod 3 toward the cylinder head 8.
  • the cylinder head 8 is provided with a rod seal 30 and a dust seal 32 that seal the gap with the piston rod 3 and prevent contamination such as dust from entering the cylinder head side oil chamber 13H.
  • a stroke position detection sensor 10 is provided outside the cylinder head 8.
  • the stroke position detection sensor 10 is covered with a case 11.
  • the case 11 is fixed to the cylinder head 8 by being fastened to the cylinder head 8 with a bolt or the like. That is, the stroke position detection sensor 10 and the case 11 can be easily attached to and detached from the cylinder tube 2.
  • the surface of the rotary roller 12 constituting the stroke position detection sensor 10 is in contact with the surface of the piston rod 3, is supported by the roller support portion 13, and is rotatably provided according to the reciprocating motion of the piston rod 3. That is, the linear movement amount of the piston rod 3 is converted into the rotation amount by the rotating roller 12.
  • the rotating roller 12 is arranged so that the rotation center shaft 12C is orthogonal to the reciprocating direction of the piston rod 3.
  • the case 11 is provided with a dust seal 31 that seals a gap with the piston rod 3 and prevents contamination such as dust from entering between the rotating roller 12 and the piston rod 3.
  • the stroke position detection sensor 10 is formed with a dustproof structure including a dust seal 31 provided on the case 11 and a dust seal 32 provided on the cylinder head 8.
  • a pressing spring 14 is disposed between the roller support 13 and the case 11.
  • the pressing spring 14 presses the rotating roller 12 toward the piston rod 3 via the roller support portion 13 so that the rotating roller 12 does not slide with respect to the piston rod 3.
  • the stroke position detection sensor 10 has a rotation sensor unit (not shown) that detects the rotation amount of the rotary roller 12. A signal indicating the rotation amount of the rotating roller 12 detected by the rotation sensor unit is sent to the arithmetic processing unit 7 and converted into a stroke position of the piston rod 3. The arithmetic processing unit 7 outputs the calculated stroke position to a controller (not shown). The arithmetic processing unit 7 may be provided in the stroke position detection sensor 10.
  • a reset position detection sensor 15 is provided in the roller support portion 13.
  • the reset position detection sensor 15 is provided below the rotation center shaft 12 ⁇ / b> C of the rotating roller 12 (on the piston rod 3 side). This is because the lower portion of the roller support portion 13 is closer to the piston rod 3 and the detected portion 40 can be detected more accurately.
  • the reset position detection sensor 15 is supported by the roller support portion 13 at the same fulcrum as the rotary roller 12. Further, the reset position detection sensor 15 and the rotating roller 12 are arranged on a straight line parallel to the linear movement direction AR of the piston rod 3.
  • the reset position detection sensor 15 detects the position of one end of the detected portion 40 provided at a predetermined surface position of the piston rod 3.
  • the reset position detection sensor 15 includes magnetic sensors S1 and S2 such as Hall elements arranged in the linear motion direction AR.
  • a magnet 41 is disposed above the reset position detection sensor 15.
  • the piston rod 3 is made of a magnetic material, and a film of a non-magnetic material 43 is formed thereon. Since the thickness of this film may be about 50 ⁇ m, for example, in the portion of the groove 42 having a depth of 50 ⁇ m, it becomes about 100 ⁇ m.
  • the groove 42 is provided in a part of the background (surface) of the piston rod 3.
  • the nonmagnetic material 43 is formed by surface treatment (plating treatment) for the entire ground including the groove 42.
  • FIG.4 (a) when the stroke direction is A1, the to-be-detected part 40 is detected in order of magnetic sensor S1, S2.
  • the magnetic sensors S1 and S2 reach the detected portion 40, the magnetic field decreases due to the decrease in the magnetic material, and the Hall voltage of the Hall element decreases.
  • the magnetic sensors S1 and S2 output the output waveforms LS1 and LS2 shown in FIG. 4B, respectively.
  • the output waveform LS1 is a detection result of the magnetic sensor S1
  • the output waveform LS2 is a detection result of the magnetic sensor S2.
  • the reset position detection sensor 15 outputs a differential waveform L ⁇ V obtained by subtracting the output waveform LS2 from the output waveform LS1 to the arithmetic processing unit 7.
  • the distance between the peaks of the differential waveform L ⁇ V is characterized by being determined by the width W1 of the groove 42 of the detected portion 40.
  • the arithmetic processing unit 7 can set the position where the differential waveform L ⁇ V is maximum as the reset position d.
  • the first measurement value is evaluated by subtracting the second measurement value of the differential waveform behind the predetermined distance (the width W1 of the detected portion 40) from the first measurement value of the differential waveform.
  • a value obtained by weighting and averaging each stroke position with each evaluation value is calculated as a reset position.
  • FIG. 4D is a diagram illustrating a change in the evaluation value with respect to the stroke position. If the change in the evaluation value is weighted and averaged at the stroke position, the reset position d is obtained.
  • the reset position can be obtained without being affected by disturbance.
  • FIG. 5 is an explanatory diagram for explaining the weighted average process.
  • the differential waveform L ⁇ V shown in FIGS. 5A to 5D corresponds to FIG. 4C and has sampling points SP1 to SP7.
  • the evaluation value “0” is obtained by subtracting the second measurement value at the sampling point SP1 from the first measurement value at the sampling point SP4.
  • the evaluation value “3” is obtained by subtracting the second measurement value at the sampling point SP2 from the first measurement value at the sampling point SP5.
  • the evaluation value “3” is obtained by subtracting the second measurement value at the sampling point SP3 from the first measurement value at the sampling point SP6.
  • FIG. 5A the evaluation value “0” is obtained by subtracting the second measurement value at the sampling point SP1 from the first measurement value at the sampling point SP4.
  • the evaluation value “3” is obtained by subtracting the second measurement value at the sampling point SP2 from the first measurement value at the sampling point SP5.
  • the evaluation value “3” is obtained by subtracting the second measurement value at the sampling point SP3 from the
  • the evaluation value “0” is obtained by subtracting the second measurement value at the sampling point SP4 from the first measurement value at the sampling point SP7. That is, the evaluation value shown in FIG. In the subtraction process for obtaining the evaluation value, the distance between the sampling points is set to the width W1, but when there is no sampling point corresponding to the width W1, the sampling point closest to the width W1 is substituted.
  • a weighted average process for obtaining the reset position d that is the end position P1 on the cylinder bottom side of the detected portion 40 is performed.
  • the stroke positions at the sampling points SP4 to SP7 are “1 mm”, “2 mm”, “3 mm”, and “4 mm”, the respective stroke positions are evaluated values “0”, “3”, “3”.
  • “0” is used to calculate the reset position d by performing weighted average processing as in the following equation.
  • the reset processing procedure by the arithmetic processing unit 7 will be described. This process is performed at each sampling interval.
  • the arithmetic processing unit 7 holds the stroke position detected by the stroke position detection sensor 10 and each output waveform (each output) detected by the magnetic sensors S1 and S2 which are two reset position detection sensors (steps). S101).
  • the arithmetic processing unit 7 calculates a differential waveform obtained by taking the difference between the two output waveforms, and holds this differential waveform (step S102).
  • the evaluation value at the current sampling point is calculated (step S103). Further, it is determined whether or not the calculated evaluation value is a predetermined value or more, for example, “2” or more (step S104).
  • step S104 If the evaluation value is greater than or equal to the predetermined value (step S104, Yes), the stroke position of a predetermined number of sampling points before and after the current sampling point (predetermined distance from the current sampling point) is weighted with the evaluation value at each sampling point. The average value is calculated as the reset position d (step S105). Thereafter, the stroke position is reset at the calculated reset position d (step S106), and the process at the current sampling point is terminated. On the other hand, if the evaluation value is not greater than or equal to the predetermined value (No at step S104), the process at the current sampling point is terminated as it is. And the process mentioned above is repeated for every sampling time.
  • the evaluation value need not be calculated every time.
  • the calculation of the evaluation value may be started when one of the two output waveforms decreases as a trigger.
  • the reset position detection sensor 15 is arranged on the roller support portion 13 of the stroke position detection sensor 10. As shown in the schematic diagram of state 1 in FIG. 7, since the roller support portion 13 moves up and down, a gap ⁇ G is provided on the sliding surface between the roller support portion 13 and the case 11. As a result, when the piston rod 3 slides, the rotating roller 12 and the roller support portion 13 may be inclined obliquely with respect to the linear movement direction of the piston rod 3. The inclination of the roller support portion 13 becomes a stroke error.
  • FIG. 7 is a diagram showing the relationship between the measurement stroke and the actual stroke of the stroke position detection sensor 10 when the reset position detection sensor 15 is arranged on the roller support portion 13 of the stroke position detection sensor 10.
  • the roller support 13 is in a neutral state with no inclination (state 1), the state 2 in which the roller support 13 is inclined in the positive direction (the stroke direction with respect to the piston rod 3) from state 1, and the reset position in state 2.
  • state 1 the state 1
  • the state 2 in which the roller support 13 is inclined in the positive direction the stroke direction with respect to the piston rod 3 from state 1
  • the reset position in state 2 the state 2 in which the roller support 13 is inclined in the positive direction (the stroke direction with respect to the piston rod 3) from state 1
  • the reset position in state 2 the state 2 in which the roller support 13 is inclined in the positive direction (the stroke direction with respect to the piston rod 3) from state 1
  • the reset position in state 2 the state 2 in which the roller support 13 is inclined in the positive direction (the stroke direction with respect to the piston rod 3)
  • the straight line L1 shown in the detection characteristics indicates the characteristics of the measurement stroke and the actual stroke in the neutral state.
  • a straight line L2 indicates the characteristics of the measurement stroke and the actual stroke when the inclination of the roller support portion 13 in the positive direction is maximum.
  • a straight line L3 indicates the characteristics of the measurement stroke and the actual stroke when the inclination of the roller support portion 13 in the negative direction is maximum.
  • the piston rod 3 is at the reference position, that is, the detected portion 40 is at the actual stroke 0 position, the roller support portion 13 is not tilted, and the measurement stroke and the actual stroke are “0”.
  • the position detected by the reset position detection sensor 15 is at a distance “B” in the positive direction (stroke direction) with respect to the reference position.
  • the stroke position detection sensor 10 detects a relative stroke as a measurement stroke with the position of the detected portion 40 as a reference position “0”.
  • the roller support portion 13 is inclined in the negative direction (reverse stroke direction) from the state where the roller support portion 13 is inclined in the forward direction, and the rotating roller 12 is indicated by an arrow.
  • the measurement stroke is measured by “ ⁇ A” less than the actual stroke. Therefore, the measurement stroke has an error of “ ⁇ A” with respect to the actual stroke.
  • FIG. 8 is a diagram showing the relationship between the measurement stroke of the stroke position detection sensor and the actual stroke in the case of a conventional configuration in which the reset position detection sensor 115 is not disposed on the roller support portion 113.
  • States 1 to 4 in FIG. 8 are the same as states 1 to 4 in FIG.
  • the rotating roller 112 and the roller support portion 113 correspond to the rotating roller 12 and the roller support portion 13, respectively.
  • the reset position detection sensor 115 corresponds to the reset position detection sensor 15, is disposed in the cylinder tube, and detects the detected portion 141 that is a magnet disposed in the piston 20.
  • the piston rod 3 is at the reference position, that is, the detected portion 141 is at the actual stroke 0 position, the roller support portion 113 is not tilted, and the measurement stroke and actual stroke are “0”.
  • the position detected by the reset position detection sensor 115 is at a distance “B” in the positive direction (stroke direction) with respect to the reference position.
  • the stroke position detection sensor detects a relative stroke as a measurement stroke with the position of the detected portion 141 as a reference position “0”.
  • the stroke position detection sensor causes the rotation roller 112 to rotate extraordinarily clockwise as indicated by the arrow due to the inclination.
  • the measurement stroke increases by “+ A”, and the measurement stroke and the actual stroke change along the straight line L2.
  • the measurement stroke by the stroke position sensor is “B + A”, but the measurement is performed by resetting the reset position detection sensor 115.
  • the stroke is reset as “B”. Therefore, the measurement stroke is “B”, which is the same as the actual stroke.
  • the roller support 113 is inclined in the negative direction (reverse stroke direction) from the state in which the roller support 113 is inclined in the forward direction, and the rotating roller 112 is indicated by an arrow.
  • the measurement stroke is measured by “ ⁇ 2A” less than the reset actual stroke. Therefore, the measurement stroke has an error of “ ⁇ 2A” with respect to the actual stroke.
  • the reset position detection sensor 15 is disposed on the roller support portion 13, so that the measurement stroke is actual.
  • the error ⁇ E is within ⁇ A with respect to the stroke, and highly accurate stroke measurement is possible.
  • FIG. 9 is a diagram showing the configuration and output waveform of the reset position detection sensor 15 used in the second embodiment of the present invention.
  • the reset position detection sensor 15 detects the detected portion 40 with one magnetic sensor S3.
  • the magnetic sensor S3 outputs the output waveform LS3 shown in FIG.
  • the arithmetic processing unit 7 detects the rising position of the output waveform LS3 as the reset position d.
  • the magnetic sensors S1 and S2 are used as the reset position detection sensor 15.
  • eddy current sensors S51 and S52 are used as the reset position detection sensor 15. .
  • the eddy current sensors S51 and S52 are coils, and the detected portion 40a of the piston rod 3 uses a metal having a lower resistance than the material of the piston rod 3, such as copper.
  • the arithmetic processing unit 57 corresponding to the arithmetic processing unit 7 corresponds to the eddy current sensors S51 and S52, and the oscillation circuit 50, the resonance circuits 51a and 51b, the detection circuits 52a and 52b, the amplification circuits 53a and 53b, and the differential amplification circuit. 54.
  • the resonance circuits 51a and 51b are connected to the eddy current sensors S51 and S52, respectively, generate a high frequency resonance frequency corresponding to the oscillation frequency from the oscillation circuit 50, and generate a magnetic field of the resonance frequency from the eddy current sensors S51 and S52, respectively.
  • the detection circuits 52a and 52b detect the resonance waveforms of the resonance circuits 51a and 51b, respectively.
  • the amplifier circuits 53a and 53b amplify the detected waveforms.
  • the differential amplifier circuit 54 outputs a differential waveform obtained by subtracting the amplified waveform output from the amplifier circuit 53b from the amplified waveform output from the amplifier circuit 53a. Then, the arithmetic processing unit 57 detects the reset position based on the difference waveform and resets the stroke position in the same manner as in the first embodiment.
  • the detected part 40a When the eddy current sensors S51 and S52 approach, the detected part 40a generates an eddy current in the detected part 40a and increases its impedance.
  • the impedance of the detected part 40a increases, the resonance frequency of the resonance circuits 51a and 51b changes, and the amplitude of the detection waveform detected by the detection circuits 52a and 52b decreases. Therefore, as shown in FIG. 11A, the voltages of the amplified waveforms L53a and L53b output from the amplifier circuits 53a and 53b are lowered due to the proximity of the detected portion 40a.
  • the differential amplifier circuit 54 generates a differential waveform L53 ⁇ V obtained by subtracting the amplified waveform L53b from the amplified waveform L53a as described above.
  • the width W5 between the peak values of the differential waveform L53 ⁇ V corresponds to the width W5 of the detected portion 40a.
  • This differential waveform L53 ⁇ V corresponds to the differential waveform L ⁇ V shown in FIG.
  • FIG. 12 is a diagram showing a configuration of a reset position detection sensor using the eddy current sensor S52 according to the fourth embodiment of the present invention.
  • the reset position detection sensor shown in FIG. 12 deletes the eddy current sensor S51 shown in FIG. 10, and deletes the resonance circuit 51a, the detection circuit 52a, the amplification circuit 53a, and the differential amplification circuit 54 in the arithmetic processing unit 57. It is a thing. Therefore, as shown in FIG. 13, the arithmetic processing unit 57 ′ corresponding to the arithmetic processing unit 57 detects the rising position of the amplified waveform L53b output from the amplifier circuit 53b as a reset position and resets the stroke position.
  • the magnetic sensors S1 and S2 are used as the reset position detection sensor 15.
  • an optical sensor is used as the reset position detection sensor 15.
  • the optical sensor has a light emitting element S60 and two light receiving elements S61a and S61b. That is, the reset position detection sensor according to the fifth embodiment includes two optical sensors that use the light emitting element S60 and the light receiving element S61a as one optical sensor and use the light emitting element S60 and the light receiving element S61b as one optical sensor.
  • the arithmetic processing unit 67 corresponding to the arithmetic processing unit 7 receives light from the light projecting circuit 60 that emits light from the light emitting element S60, the light receiving circuits 61a and 61b that receive the light receiving signals from the light receiving elements S61a and S61b, and the output waveform of the light receiving circuit 61a. It has a differential amplifier circuit 62 that outputs a differential waveform obtained by subtracting the output waveform of the circuit 61b.
  • the arithmetic processing unit 67 detects the reset position based on the difference waveform and resets the stroke position in the same manner as in the first embodiment.
  • the detected portion 40b is a colored portion, and the color of the colored portion is different from the color of the sliding surface of the piston rod 3. Specifically, it is black and absorbs light.
  • the differential amplifier circuit 62 generates a differential waveform L62 ⁇ V obtained by subtracting the output waveform L61b from the output waveform L61a.
  • the width W6 between the peak values of the differential waveform L62 ⁇ V corresponds to the width W6 of the detected portion 40b.
  • This differential waveform L62 ⁇ V corresponds to the differential waveform L ⁇ V shown in FIG.
  • the detected part 40b may be a reflecting member that reflects light. Moreover, the member colored with the predetermined color may be sufficient. When colored with a predetermined color, it is preferable that the light receiving elements S61a and S61b can receive only the predetermined color.
  • the reset position is set by using one optical sensor including the light emitting element S60 and the light receiving element S61b. Detected.
  • FIG. 16 is a diagram showing a configuration of a reset position detection sensor using one optical sensor according to the sixth embodiment of the present invention.
  • the reset position detection sensor illustrated in FIG. 16 is obtained by deleting the light receiving element S61a illustrated in FIG. 14 and deleting the light receiving circuit 61a and the differential amplifier circuit 62 in the arithmetic processing unit 67. Therefore, as shown in FIG. 17, the arithmetic processing unit 67 ′ corresponding to the arithmetic processing unit 67 detects the rising position of the output waveform L61b output from the light receiving circuit 61b as a reset position and resets the stroke position.
  • the reset processing of the first embodiment shown in FIG. 6 can be applied to the third and fifth embodiments using two reset position detection sensors.
  • the reset position detection sensor is arranged on the roller support portion 13, so that the measurement stroke has an error ⁇ E within ⁇ A with respect to the actual stroke as shown in the first embodiment.
  • highly accurate stroke measurement is possible.
  • the present invention is applied not only to hydraulic excavators but also to construction machines and industrial vehicles having work machines such as bulldozers, loaders, and graders.

Abstract

In order to provide a stroke position reset processing method which, even in the presence of outside perturbation such as electromagnetic noise or changes in the distance between a sensor and rod due to vibration, makes it possible to calculate, with high accuracy, the reset position with a reset position detection sensor, this method involves a detection step (S101) for detecting the output waveform of each reset position detection sensor, a difference detection step (S102) for calculating a differential waveform between two detected output waveforms, a reset position calculation step (S103-S105) for calculating the reset position, which is the stroke position of one end of a detected part, on the basis of the aforementioned differential waveform and the aforementioned stroke position, and a reset step (S106) for resetting the stroke position using the value of the reset position.

Description

ストローク位置のリセット処理方法Stroke position reset processing method
 本発明は、振動等によるセンサとロッドとの間の距離変化や電磁ノイズ等の外乱があっても、リセット用位置検出センサによるリセット位置を精度高く求めることができるストローク位置のリセット処理方法に関する。このストローク位置のリセット処理方法は、例えば、情報化建機(ICT建機)である油圧ショベルの作業機用アームシリンダやブームシリンダのストロークを正確に検出するために用いられる。 The present invention relates to a stroke position reset processing method capable of accurately obtaining a reset position by a reset position detection sensor even if there is a disturbance such as a change in distance between the sensor and the rod due to vibration or electromagnetic noise. This stroke position reset processing method is used, for example, to accurately detect the stroke of the arm cylinder or boom cylinder for a working machine of a hydraulic excavator that is an information construction machine (ICT construction machine).
 油圧シリンダ等のシリンダチューブの内部をロッドとともに直動するピストンに永久磁石を設けるとともに、シリンダチューブの外部に磁力センサを設け、磁力センサを通過する磁力を検出することによって、シリンダのピストンの位置を計測するものがある。 A permanent magnet is provided on a piston that moves linearly with a rod inside a cylinder tube such as a hydraulic cylinder, and a magnetic sensor is provided outside the cylinder tube, and the position of the piston of the cylinder is detected by detecting the magnetic force passing through the magnetic sensor. There is something to measure.
 例えば、シリンダヘッドに、ロッドの直動量を回転量として検出するロータリエンコーダを設けるとともに、シリンダチューブの途中にあってチューブ外周面にリセット用磁力センサを設け、このリセット用磁力センサで、チューブ内部を直動するピストンに固定された磁石で発生した磁力を検出して、その磁力がピーク値に達したときに、ロータリエンコーダの検出値から得られる計測位置を原点位置にリセットするものがある。 For example, a rotary encoder that detects the amount of linear movement of the rod as a rotation amount is provided on the cylinder head, and a reset magnetic sensor is provided on the outer peripheral surface of the tube in the middle of the cylinder tube. There is a technique that detects a magnetic force generated by a magnet fixed to a linearly moving piston and resets a measurement position obtained from a detection value of a rotary encoder to an origin position when the magnetic force reaches a peak value.
 ここで、油圧シリンダのチューブは磁性材料で構成されているため、チューブ内部で発生した磁気がチューブを介してチューブ外部の磁力センサに到達するまでに一定の時間遅れ(伝達遅れ)がある。一方、シリンダチューブ内部のピストンが移動する速度は一定ではなく、このため磁力センサ(リセットセンサ)で検出される磁力がピークに達した時に演算処理によって得られるストローク位置は、ピストン移動速度によっては真のストローク位置(原点位置)からずれたものとなる。 Here, since the tube of the hydraulic cylinder is made of a magnetic material, there is a certain time delay (transmission delay) until the magnetism generated inside the tube reaches the magnetic sensor outside the tube via the tube. On the other hand, the moving speed of the piston inside the cylinder tube is not constant, and therefore the stroke position obtained by the arithmetic processing when the magnetic force detected by the magnetic sensor (reset sensor) reaches the peak may be true depending on the moving speed of the piston. It is shifted from the stroke position (origin position).
 このため、特許文献1では、ピストンのリセットセンサ直下の通過速度と原点位置からの位置ずれ量(ピーク位置補正量)との対応関係を事前に取得してテーブル形式で記憶しておき、各ストローク時にリセットセンサ直下の通過速度を検出し原点位置を補正するようにしている。 For this reason, in Patent Document 1, the correspondence relationship between the passing speed of the piston immediately below the reset sensor and the amount of displacement from the origin position (peak position correction amount) is acquired in advance and stored in a table format. Sometimes the passage speed just below the reset sensor is detected to correct the origin position.
 なお、特許文献2には、シリンダブロックの外周面に、周方向に間隔をもって複数の被検出凹部を設け、シリンダブロックが回転するときに電磁ピックアップ式の回転センサが被検出凹部を検出することによってシリンダブロックの回転数を計測するものが記載されている。 In Patent Document 2, a plurality of detected recesses are provided at intervals in the circumferential direction on the outer peripheral surface of the cylinder block, and an electromagnetic pickup type rotation sensor detects the detected recess when the cylinder block rotates. What measures the rotation speed of a cylinder block is described.
特開2006-226909号公報JP 2006-226909 A 特開2002-310062号公報JP 2002-310062 A
 ところで、シリンダチューブに設けられるストローク位置検出センサはピストンロッドに押圧されて回転する回転ローラの回転量をストローク量に変換してピストンロッドのストローク位置を計測する。回転ローラとピストンロッドとの間では、滑りが発生することは避けられず、この滑りによってストローク位置検出センサの検出結果から得られるピストンロッドのストローク位置と、ピストンロッドの実ストローク位置との間には、滑りによる累積誤差が生じる。このため、ストローク位置検出センサの検出結果から得られるストローク位置を、原点位置(基準位置)にリセットするために、別途、ピストンロッドに設けられた被検出部を検出してストローク位置をリセットするリセット用位置検出センサが設けられる。 By the way, the stroke position detection sensor provided in the cylinder tube measures the stroke position of the piston rod by converting the rotation amount of the rotating roller that is rotated by being pressed by the piston rod into the stroke amount. It is inevitable that slip occurs between the rotating roller and the piston rod, and the slip between the piston rod stroke position obtained from the detection result of the stroke position detection sensor and the actual stroke position of the piston rod is unavoidable. Causes a cumulative error due to slipping. For this reason, in order to reset the stroke position obtained from the detection result of the stroke position detection sensor to the origin position (reference position), the reset is separately detected by detecting the detected portion provided on the piston rod. A position detection sensor is provided.
 リセット用位置検出センサは、被検出部のリセット位置を精度良く求める必要があるため、シリンダロッドの摺動方向に対して2つの位置検出センサを配置し、各位置検出センサの検出結果を用いてリセット位置を求めている。 Since the reset position detection sensor needs to obtain the reset position of the detected part with high accuracy, two position detection sensors are arranged in the sliding direction of the cylinder rod, and the detection result of each position detection sensor is used. Seeking reset position.
 しかし、ピストンロッドに設ける被検出部は、大きくするとコスト増加やロッド強度の低下を招くため、できるだけ小さくする必要がある。そのため、検出可能な信号は小さくならざるを得ない。この結果、振動等によるセンサとロッドとの間の距離変化や電磁ノイズ等の外乱による誤検出が起こる可能性がある。 However, it is necessary to make the detected portion provided on the piston rod as small as possible because it increases costs and decreases rod strength. Therefore, the detectable signal has to be small. As a result, there is a possibility of erroneous detection due to disturbance such as a change in the distance between the sensor and the rod due to vibration or electromagnetic noise.
 本発明は、上記に鑑みてなされたものであって、振動等によるセンサとロッドとの間の距離変化や電磁ノイズ等の外乱があっても、リセット用位置検出センサによるリセット位置を精度高く求めることができるストローク位置のリセット処理方法を提供することを目的とする。 The present invention has been made in view of the above, and even if there is a disturbance such as a change in the distance between the sensor and the rod due to vibration or electromagnetic noise or the like, the reset position by the reset position detection sensor is obtained with high accuracy. An object of the present invention is to provide a stroke position reset processing method that can be used.
 上述した課題を解決し、目的を達成するために、本発明にかかるストローク位置のリセット処理方法は、直動部材のストローク位置を検出するストローク位置検出センサと、前記直動部材上に設けられ、直動方向に所定距離分の幅をもつ被検出部を検出する2つのリセット用位置検出センサとを用いて前記ストローク位置をリセットするストローク位置のリセット処理方法であって、各リセット用位置検出センサの出力波形を検出する検出ステップと、検出した2つの出力波形の差分波形を算出する差分算出ステップと、前記差分波形と前記ストローク位置とをもとに前記被検出部の一端のストローク位置であるリセット位置を算出するリセット位置算出ステップと、前記リセット位置の値を用いて前記ストローク位置をリセットするリセットステップと、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, a stroke position reset processing method according to the present invention is provided on a stroke position detection sensor for detecting a stroke position of a linear motion member, and the linear motion member. A stroke position reset processing method for resetting the stroke position using two reset position detection sensors for detecting a detected portion having a width corresponding to a predetermined distance in the linear motion direction, each reset position detection sensor A detection step for detecting the output waveform of the detected signal, a difference calculation step for calculating a difference waveform between the two detected output waveforms, and a stroke position at one end of the detected portion based on the difference waveform and the stroke position. A reset position calculating step for calculating a reset position; and a reset position for resetting the stroke position using the value of the reset position. Characterized by comprising a preparative step.
 また、本発明にかかるストローク位置のリセット処理方法は、上記の発明において、前記ストローク位置検出センサと各リセット用位置検出センサとは所定サンプリング間隔で位置検出を行い、 前記リセット位置算出ステップは、前記差分算出ステップで算出した差分波形の第1計測値から前記所定距離分、後方にある差分波形の第2計測値を減算した値を前記第1計測値の評価値として求め、各ストローク位置を各評価値で重み付け平均処理した値を前記リセット位置として算出することを特徴とする。 In the stroke position reset processing method according to the present invention, in the above invention, the stroke position detection sensor and each reset position detection sensor perform position detection at a predetermined sampling interval, and the reset position calculation step includes: A value obtained by subtracting the second measurement value of the difference waveform behind the predetermined distance from the first measurement value of the difference waveform calculated in the difference calculation step is obtained as an evaluation value of the first measurement value, and each stroke position is determined. A value obtained by performing weighted average processing with an evaluation value is calculated as the reset position.
 また、本発明にかかるストローク位置のリセット処理方法は、上記の発明において、前記評価値が所定値以上の場合に前記重み付け平均処理を行うことを特徴とする。 The stroke position reset processing method according to the present invention is characterized in that, in the above invention, the weighted average processing is performed when the evaluation value is equal to or greater than a predetermined value.
 また、本発明にかかるストローク位置のリセット処理方法は、上記の発明において、前記2つのリセット用位置検出センサは磁気センサであり、前記被検出部は、前記直動部材の地肌に設けられた溝内の非磁性体による表面処理を行った部位であることを特徴とする。 Further, in the stroke position reset processing method according to the present invention, in the above invention, the two reset position detection sensors are magnetic sensors, and the detected portion is a groove provided on a background of the linear motion member. It is the site | part which performed the surface treatment by the nonmagnetic substance of the inside.
 また、本発明にかかるストローク位置のリセット処理方法は、上記の発明において、前記2つのリセット用位置検出センサは渦電流センサであり、前記被検出部は、前記直動部材の摺動表面に設けられた溝内の金属であり、前記直動部材の材質よりも抵抗値が低いことを特徴とする。 In the stroke position reset processing method according to the present invention, in the above invention, the two reset position detection sensors are eddy current sensors, and the detected portion is provided on the sliding surface of the linear motion member. It is a metal in the groove formed, and has a resistance value lower than that of the material of the linear motion member.
 また、本発明にかかるストローク位置のリセット処理方法は、上記の発明において、前記2つのリセット用位置検出センサは光センサであり、前記被検出部は、前記直動部材の摺動表面に設けられた着色部であり、前記着色部の色は前記直動部材の摺動表面の色と異なることを特徴とする。 In the stroke position reset processing method according to the present invention, in the above invention, the two reset position detection sensors are optical sensors, and the detected portion is provided on a sliding surface of the linear motion member. The colored portion is different in color from the sliding surface of the linear motion member.
 また、本発明にかかるストローク位置のリセット処理方法は、上記の発明において、前記2つのリセット用位置検出センサは光センサであり、前記被検出部は、前記直動部材の摺動表面に設けられた光反射部材あるいは光吸収部材であることを特徴とする。 In the stroke position reset processing method according to the present invention, in the above invention, the two reset position detection sensors are optical sensors, and the detected portion is provided on a sliding surface of the linear motion member. It is a light reflecting member or a light absorbing member.
 本発明によれば、振動等によるセンサとロッドとの間の距離変化や電磁ノイズ等の外乱があっても、リセット用位置検出センサによるリセット位置を精度高く求めることができる。 According to the present invention, the reset position by the reset position detection sensor can be obtained with high accuracy even when there is a disturbance such as a change in the distance between the sensor and the rod due to vibration or electromagnetic noise.
図1は、本発明の実施の形態1であるストローク位置検出機能付き油圧シリンダの外観構成を示す図である。FIG. 1 is a diagram showing an external configuration of a hydraulic cylinder with a stroke position detection function according to the first embodiment of the present invention. 図2は、図1に示した油圧シリンダの詳細構成を示す断面図である。FIG. 2 is a cross-sectional view showing a detailed configuration of the hydraulic cylinder shown in FIG. 図3は、図2に示したストローク位置検出センサの詳細構成を示す拡大図である。FIG. 3 is an enlarged view showing a detailed configuration of the stroke position detection sensor shown in FIG. 図4は、図3に示したリセット用位置検出センサの構成及びリセット位置の検出過程を示す図である。FIG. 4 is a diagram illustrating a configuration of the reset position detection sensor illustrated in FIG. 3 and a reset position detection process. 図5は、重み付け平均処理を説明する説明図である。FIG. 5 is an explanatory diagram for explaining the weighted average process. 図6は、演算処理部によるリセット処理手順を示すフローチャートである。FIG. 6 is a flowchart illustrating a reset processing procedure performed by the arithmetic processing unit. 図7は、リセット用位置検出センサをストローク位置検出センサのローラ支持部に配置した場合におけるストローク位置検出センサの計測ストロークと実ストロークとの関係を示す図である。FIG. 7 is a diagram illustrating the relationship between the measurement stroke and the actual stroke of the stroke position detection sensor when the reset position detection sensor is disposed on the roller support portion of the stroke position detection sensor. 図8は、リセット用位置検出センサがローラ支持部に配置されない従来の構成の場合におけるストローク位置検出センサの計測ストロークと実ストロークとの関係を示す図である。FIG. 8 is a diagram illustrating the relationship between the measurement stroke and the actual stroke of the stroke position detection sensor in the case of a conventional configuration in which the reset position detection sensor is not disposed on the roller support. 図9は、本発明の実施の形態2で用いられるリセット用位置検出センサの構成と出力波形を示す図である。FIG. 9 is a diagram showing a configuration and an output waveform of the reset position detection sensor used in the second embodiment of the present invention. 図10は、本発明の実施の形態3であるリセット用位置検出センサの構成を示す図である。FIG. 10 is a diagram showing a configuration of a reset position detection sensor according to the third embodiment of the present invention. 図11は、図10に示したリセット用位置検出センサの出力波形を示す図である。FIG. 11 is a diagram showing an output waveform of the reset position detection sensor shown in FIG. 図12は、本発明の実施の形態4であるリセット用位置検出センサの構成を示す図である。FIG. 12 is a diagram illustrating a configuration of a reset position detection sensor according to the fourth embodiment of the present invention. 図13は、図12に示したリセット用位置検出センサの出力波形を示す図である。FIG. 13 is a diagram showing an output waveform of the reset position detection sensor shown in FIG. 図14は、本発明の実施の形態5であるリセット用位置検出センサの構成を示す図である。FIG. 14 is a diagram showing a configuration of a reset position detection sensor according to the fifth embodiment of the present invention. 図15は、図14に示したリセット用位置検出センサの出力波形を示す図である。FIG. 15 is a diagram showing an output waveform of the reset position detection sensor shown in FIG. 図16は、本発明の実施の形態6であるリセット用位置検出センサの構成を示す図である。FIG. 16 is a diagram showing a configuration of a reset position detection sensor according to the sixth embodiment of the present invention. 図17は、図16に示したリセット用位置検出センサの出力波形を示す図である。FIG. 17 is a diagram showing an output waveform of the reset position detection sensor shown in FIG.
 以下、添付図面を参照してこの発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
[実施の形態1]
(シリンダの構造)
 図1は、本発明の実施の形態1であるストローク位置検出機能付き油圧シリンダ(以下、油圧シリンダという)1の外観構成を示す図である。また、図2は、図1に示した油圧シリンダ1の詳細構成を示す断面図である。さらに、図3は、図2に示したストローク位置検出センサ10の詳細構成を示す拡大図である。
[Embodiment 1]
(Cylinder structure)
FIG. 1 is a diagram showing an external configuration of a hydraulic cylinder with a stroke position detection function (hereinafter referred to as a hydraulic cylinder) 1 according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a detailed configuration of the hydraulic cylinder 1 shown in FIG. 3 is an enlarged view showing a detailed configuration of the stroke position detection sensor 10 shown in FIG.
 図1及び図2に示すように、直動部材であるピストンロッド3は、油圧シリンダ1の壁であるシリンダチューブ2に、ピストン20を介して摺動自在に設けられている。ピストン20は、ピストンロッド3のシリンダボトム9側近傍に取り付けられている。また、ピストンロッド3は、シリンダヘッド8に摺動自在に設けられている。シリンダヘッド8とピストン20とシリンダチューブ2の内壁とピストンロッド3とによって画成された室は、シリンダヘッド側油室13Hを構成する。また、シリンダボトム9とピストン20とシリンダチューブ2の内壁とピストンロッド3とによって画成された室は、シリンダボトム側油室13Bを構成する。シリンダヘッド側油室13Hとシリンダボトム側油室13Bとは、ピストン20を介して、シリンダチューブ2内でそれぞれが対向した位置となる。シリンダヘッド側油室13Hには、シリンダヘッド8の近傍に設けられた油圧ポート4を介して作動油LHが流出入する。また、シリンダボトム側油室13Bには、シリンダボトム9の近傍に設けられた油圧ポート5を介して作動油LBが流出入する。 As shown in FIGS. 1 and 2, the piston rod 3 that is a linear motion member is slidably provided on a cylinder tube 2 that is a wall of the hydraulic cylinder 1 via a piston 20. The piston 20 is attached to the vicinity of the cylinder bottom 9 side of the piston rod 3. The piston rod 3 is slidably provided on the cylinder head 8. A chamber defined by the cylinder head 8, the piston 20, the inner wall of the cylinder tube 2 and the piston rod 3 constitutes a cylinder head side oil chamber 13H. Further, the chamber defined by the cylinder bottom 9, the piston 20, the inner wall of the cylinder tube 2 and the piston rod 3 constitutes a cylinder bottom side oil chamber 13B. The cylinder head side oil chamber 13 </ b> H and the cylinder bottom side oil chamber 13 </ b> B are in positions facing each other in the cylinder tube 2 through the piston 20. The hydraulic oil LH flows into and out of the cylinder head side oil chamber 13H through the hydraulic port 4 provided in the vicinity of the cylinder head 8. Further, the hydraulic oil LB flows into and out of the cylinder bottom side oil chamber 13B through the hydraulic port 5 provided in the vicinity of the cylinder bottom 9.
 作動油LH,LBは、図示しない操作レバーの操作量に対応した流量調整弁の調整によって図示しない油圧ポンプからの作動油の流量及び方向が切り替えられる。作動油LHが油圧ポート4を介してシリンダヘッド側油室13Hに流入すると、作動油LHがピストン20をシリンダボトム9側に押すことによってピストンロッド3がシリンダボトム9側に移動する。そして、シリンダボトム側油室13B内の作動油LBは、油圧ポート5を介して図示しない作動油タンクに流出する。一方、作動油LBが油圧ポート5を介してシリンダボトム側油室13Bに流入すると、作動油LBがピストン20をシリンダヘッド8側に押すことによってピストンロッド3がシリンダヘッド8側に移動する。そして、シリンダヘッド側油室13H内の作動油LHは、油圧ポート4を介して図示しない作動油タンクに流出する。この結果、ピストンロッド3は、作動油LH,LBの流入によってシリンダチューブ2内を直動方向ARに往復動することになる。 The hydraulic oil LH and LB are switched in flow rate and direction of hydraulic oil from a hydraulic pump (not shown) by adjusting a flow rate adjustment valve corresponding to an operation amount of an operating lever (not shown). When the hydraulic oil LH flows into the cylinder head side oil chamber 13H via the hydraulic port 4, the hydraulic oil LH pushes the piston 20 toward the cylinder bottom 9 to move the piston rod 3 toward the cylinder bottom 9. The hydraulic oil LB in the cylinder bottom side oil chamber 13B flows out to a hydraulic oil tank (not shown) via the hydraulic port 5. On the other hand, when the hydraulic oil LB flows into the cylinder bottom side oil chamber 13B via the hydraulic port 5, the hydraulic oil LB pushes the piston 20 toward the cylinder head 8 to move the piston rod 3 toward the cylinder head 8. Then, the hydraulic oil LH in the cylinder head side oil chamber 13H flows out to a hydraulic oil tank (not shown) via the hydraulic port 4. As a result, the piston rod 3 reciprocates in the linear movement direction AR in the cylinder tube 2 by the inflow of the hydraulic oils LH and LB.
 シリンダヘッド8には、ピストンロッド3との間隙を密封し、塵埃等のコンタミがシリンダヘッド側油室13Hに入り込まないようにするロッドシール30及びダストシール32が設けられている。 The cylinder head 8 is provided with a rod seal 30 and a dust seal 32 that seal the gap with the piston rod 3 and prevent contamination such as dust from entering the cylinder head side oil chamber 13H.
(ストローク位置検出機構)
 シリンダヘッド8の外部には、ストローク位置検出センサ10が設けられる。ストローク位置検出センサ10は、ケース11に覆われる。ケース11は、シリンダヘッド8にボルト等によって締結等されて、シリンダヘッド8に固定される。すなわち、ストローク位置検出センサ10及びケース11は、シリンダチューブ2に簡易に取り付け、取り外しを行うことができる。
(Stroke position detection mechanism)
A stroke position detection sensor 10 is provided outside the cylinder head 8. The stroke position detection sensor 10 is covered with a case 11. The case 11 is fixed to the cylinder head 8 by being fastened to the cylinder head 8 with a bolt or the like. That is, the stroke position detection sensor 10 and the case 11 can be easily attached to and detached from the cylinder tube 2.
 ストローク位置検出センサ10を構成する回転ローラ12は、その表面がピストンロッド3の表面に接触し、ローラ支持部13に支持されてピストンロッド3の往復動に応じて回転自在に設けられる。すなわち、ピストンロッド3の直線移動量は、回転ローラ12によって回転量に変換される。 The surface of the rotary roller 12 constituting the stroke position detection sensor 10 is in contact with the surface of the piston rod 3, is supported by the roller support portion 13, and is rotatably provided according to the reciprocating motion of the piston rod 3. That is, the linear movement amount of the piston rod 3 is converted into the rotation amount by the rotating roller 12.
 回転ローラ12は、その回転中心軸12Cが、ピストンロッド3の往復動方向に対して、直交するように配置される。ケース11には、ピストンロッド3との間隙を密封し、塵埃等のコンタミが回転ローラ12とピストンロッド3との間に入り込まないようにするダストシール31が設けられている。これにより、回転ローラ12とピストンロッド3との間に塵埃等が入り込んで、回転ローラ12が動作不良となるような事態を回避することができる。すなわち、ストローク位置検出センサ10は、ケース11に設けられたダストシール31と、シリンダヘッド8に設けられたダストシール32とによる防塵構造が形成されている。 The rotating roller 12 is arranged so that the rotation center shaft 12C is orthogonal to the reciprocating direction of the piston rod 3. The case 11 is provided with a dust seal 31 that seals a gap with the piston rod 3 and prevents contamination such as dust from entering between the rotating roller 12 and the piston rod 3. As a result, it is possible to avoid a situation in which dust or the like enters between the rotating roller 12 and the piston rod 3 and the rotating roller 12 malfunctions. That is, the stroke position detection sensor 10 is formed with a dustproof structure including a dust seal 31 provided on the case 11 and a dust seal 32 provided on the cylinder head 8.
 ローラ支持部13とケース11との間には押圧バネ14が配置される。押圧バネ14は、ローラ支持部13を介して回転ローラ12をピストンロッド3側に押圧し、回転ローラ12がピストンロッド3に対して滑りがないようにしている。 A pressing spring 14 is disposed between the roller support 13 and the case 11. The pressing spring 14 presses the rotating roller 12 toward the piston rod 3 via the roller support portion 13 so that the rotating roller 12 does not slide with respect to the piston rod 3.
 ストローク位置検出センサ10は、回転ローラ12の回転量を検出する図示しない回転センサ部を有する。この回転センサ部で検出された回転ローラ12の回転量を示す信号は、演算処理部7に送られ、ピストンロッド3のストローク位置に変換される。演算処理部7は、演算したストローク位置を図示しないコントローラに出力する。なお、演算処理部7は、ストローク位置検出センサ10内に設けてもよい。 The stroke position detection sensor 10 has a rotation sensor unit (not shown) that detects the rotation amount of the rotary roller 12. A signal indicating the rotation amount of the rotating roller 12 detected by the rotation sensor unit is sent to the arithmetic processing unit 7 and converted into a stroke position of the piston rod 3. The arithmetic processing unit 7 outputs the calculated stroke position to a controller (not shown). The arithmetic processing unit 7 may be provided in the stroke position detection sensor 10.
 ストローク位置検出センサ10の回転ローラ12とピストンロッド3との間では、滑り(スリップ)が発生することは避けられず、この滑りによってストローク位置検出センサ10の検出結果から得られるピストンロッド3のストローク位置と、ピストンロッド3の実ストローク位置との間には、誤差(滑りによる累積誤差)が生じる。そこで、このストローク位置検出センサ10の検出結果から得られるストローク位置を、原点位置(基準位置)にリセットするために、ローラ支持部13にリセット用位置検出センサ15が設けられる。リセット用位置検出センサ15は、回転ローラ12の回転中心軸12Cより下方(ピストンロッド3側)に設けられている。これは、ローラ支持部13の下方の方がピストンロッド3に近く、より正確に被検出部40を検出できるからである。また、リセット用位置検出センサ15は、ローラ支持部13によって、回転ローラ12と同一の支点で支えられている。さらに、リセット用位置検出センサ15と回転ローラ12とは、ピストンロッド3の直動方向ARに対して平行な直線上に配置される。 Slip (slip) is inevitably generated between the rotating roller 12 of the stroke position detection sensor 10 and the piston rod 3, and the stroke of the piston rod 3 obtained from the detection result of the stroke position detection sensor 10 by this slip. There is an error (cumulative error due to slip) between the position and the actual stroke position of the piston rod 3. Therefore, in order to reset the stroke position obtained from the detection result of the stroke position detection sensor 10 to the origin position (reference position), a reset position detection sensor 15 is provided in the roller support portion 13. The reset position detection sensor 15 is provided below the rotation center shaft 12 </ b> C of the rotating roller 12 (on the piston rod 3 side). This is because the lower portion of the roller support portion 13 is closer to the piston rod 3 and the detected portion 40 can be detected more accurately. The reset position detection sensor 15 is supported by the roller support portion 13 at the same fulcrum as the rotary roller 12. Further, the reset position detection sensor 15 and the rotating roller 12 are arranged on a straight line parallel to the linear movement direction AR of the piston rod 3.
 このリセット用位置検出センサ15は、ピストンロッド3の所定表面位置に設けられた被検出部40の一端位置を検出する。図4(a)に示すように、本実施の形態1のリセット用位置検出センサ15は、直動方向ARに配置されたホール素子などの磁気センサS1,S2を有する。リセット用位置検出センサ15の上部には磁石41が配置される。また、ピストンロッド3は磁性体で形成され、その上に非磁性体43の膜が形成される。この膜の厚さは50μm程度でよいため、例えば深さ50μmの溝42の部分では100μm程度になる。溝42は、ピストンロッド3の地肌(表面)の一部に設けられる。非磁性体43は、この溝42を含めた地肌全体に対する表面処理(メッキ処理)によって形成される。 The reset position detection sensor 15 detects the position of one end of the detected portion 40 provided at a predetermined surface position of the piston rod 3. As shown in FIG. 4A, the reset position detection sensor 15 according to the first embodiment includes magnetic sensors S1 and S2 such as Hall elements arranged in the linear motion direction AR. A magnet 41 is disposed above the reset position detection sensor 15. The piston rod 3 is made of a magnetic material, and a film of a non-magnetic material 43 is formed thereon. Since the thickness of this film may be about 50 μm, for example, in the portion of the groove 42 having a depth of 50 μm, it becomes about 100 μm. The groove 42 is provided in a part of the background (surface) of the piston rod 3. The nonmagnetic material 43 is formed by surface treatment (plating treatment) for the entire ground including the groove 42.
(リセット処理)
 図4(a)に示すように、ストローク方向がA1である場合、磁気センサS1,S2の順で被検出部40を検出する。磁気センサS1,S2は、被検出部40に差し掛かると磁性体の減少によって磁界が減少し、ホール素子のホール電圧が小さくなる。この結果、磁気センサS1,S2は、図4(b)に示す出力波形LS1,LS2をそれぞれ出力する。出力波形LS1は、磁気センサS1の検出結果であり、出力波形LS2は、磁気センサS2の検出結果である。図4(c)に示すように、リセット用位置検出センサ15は、出力波形LS1から出力波形LS2を減算した差分波形LΔVを演算処理部7に出力する。差分波形LΔVのピーク間の距離は、被検出部40の溝42の幅W1によって決まるという特徴がある。
(Reset processing)
As shown to Fig.4 (a), when the stroke direction is A1, the to-be-detected part 40 is detected in order of magnetic sensor S1, S2. When the magnetic sensors S1 and S2 reach the detected portion 40, the magnetic field decreases due to the decrease in the magnetic material, and the Hall voltage of the Hall element decreases. As a result, the magnetic sensors S1 and S2 output the output waveforms LS1 and LS2 shown in FIG. 4B, respectively. The output waveform LS1 is a detection result of the magnetic sensor S1, and the output waveform LS2 is a detection result of the magnetic sensor S2. As shown in FIG. 4C, the reset position detection sensor 15 outputs a differential waveform LΔV obtained by subtracting the output waveform LS2 from the output waveform LS1 to the arithmetic processing unit 7. The distance between the peaks of the differential waveform LΔV is characterized by being determined by the width W1 of the groove 42 of the detected portion 40.
 ここで、演算処理部7は、差分波形LΔVが最大となる位置をリセット位置dとすることができる。本実施の形態1では、差分波形の第1計測値から前記所定距離(被検出部40の幅W1)分、後方にある差分波形の第2計測値を減算した値を第1計測値の評価値として求め、各ストローク位置を各評価値で重み付け平均処理した値をリセット位置として算出する。図4(d)は、ストローク位置に対する評価値の変化を示す図である。この評価値の変化をストローク位置で重み付け平均処理を行うとリセット位置dが求まる。このように、差分波形LΔVのピーク間距離が被検出部40の溝42の幅W1であるという特徴を利用することにより、外乱に影響を受けずにリセット位置を求めることができる。 Here, the arithmetic processing unit 7 can set the position where the differential waveform LΔV is maximum as the reset position d. In the first embodiment, the first measurement value is evaluated by subtracting the second measurement value of the differential waveform behind the predetermined distance (the width W1 of the detected portion 40) from the first measurement value of the differential waveform. A value obtained by weighting and averaging each stroke position with each evaluation value is calculated as a reset position. FIG. 4D is a diagram illustrating a change in the evaluation value with respect to the stroke position. If the change in the evaluation value is weighted and averaged at the stroke position, the reset position d is obtained. Thus, by using the feature that the distance between the peaks of the differential waveform LΔV is the width W1 of the groove 42 of the detected portion 40, the reset position can be obtained without being affected by disturbance.
 図5は、重み付け平均処理を説明する説明図である。図5(a)~(d)に示した差分波形LΔVは、図4(c)に対応するものであり、サンプリング点SP1~SP7を有する。図5(a)では、サンプリング点SP4の第1計測値からサンプリング点SP1の第2計測値を減算すると評価値「0」が得られる。図5(b)では、サンプリング点SP5の第1計測値からサンプリング点SP2の第2計測値を減算すると評価値「3」が得られる。図5(c)では、サンプリング点SP6の第1計測値からサンプリング点SP3の第2計測値を減算すると評価値「3」が得られる。図5(d)では、サンプリング点SP7の第1計測値からサンプリング点SP4の第2計測値を減算すると評価値「0」が得られる。すなわち、図5(e)に示した評価値が得られる。なお、評価値を求めるための減算処理の際、サンプリング点間の距離は幅W1としているが、幅W1に相当するサンプリング点が存在しない場合は、幅W1に最も近いサンプリング点で代用する。 FIG. 5 is an explanatory diagram for explaining the weighted average process. The differential waveform LΔV shown in FIGS. 5A to 5D corresponds to FIG. 4C and has sampling points SP1 to SP7. In FIG. 5A, the evaluation value “0” is obtained by subtracting the second measurement value at the sampling point SP1 from the first measurement value at the sampling point SP4. In FIG. 5B, the evaluation value “3” is obtained by subtracting the second measurement value at the sampling point SP2 from the first measurement value at the sampling point SP5. In FIG. 5C, the evaluation value “3” is obtained by subtracting the second measurement value at the sampling point SP3 from the first measurement value at the sampling point SP6. In FIG. 5D, the evaluation value “0” is obtained by subtracting the second measurement value at the sampling point SP4 from the first measurement value at the sampling point SP7. That is, the evaluation value shown in FIG. In the subtraction process for obtaining the evaluation value, the distance between the sampling points is set to the width W1, but when there is no sampling point corresponding to the width W1, the sampling point closest to the width W1 is substituted.
 ここで、評価値が所定値、例えば「2」を超えた場合に、被検出部40のシリンダボトム側の端部位置P1であるリセット位置dを求める重み付け平均処理を行う。サンプリング点SP4~SP7の各サンプリング時点のストローク位置が「1mm」、「2mm」、「3mm」、「4mm」である場合、各ストローク位置を各評価値「0」、「3」、「3」、「0」で次式のように重み付平均処理を行ってリセット位置dを推定によって求める。
 d=(1mm×0+2mm×3+3mm×3+4mm×0)/(0+3+3+0)=2.5mm
Here, when the evaluation value exceeds a predetermined value, for example, “2”, a weighted average process for obtaining the reset position d that is the end position P1 on the cylinder bottom side of the detected portion 40 is performed. When the stroke positions at the sampling points SP4 to SP7 are “1 mm”, “2 mm”, “3 mm”, and “4 mm”, the respective stroke positions are evaluated values “0”, “3”, “3”. , “0” is used to calculate the reset position d by performing weighted average processing as in the following equation.
d = (1 mm × 0 + 2 mm × 3 + 3 mm × 3 + 4 mm × 0) / (0 + 3 + 3 + 0) = 2.5 mm
 そして、演算処理部7は、求めたリセット位置dでストローク位置をリセットする。具体的には、リセット位置dが原点(ストローク位置=0mm)である場合、現ストローク位置からリセット位置d(=2.5mm)を減算した値を真のストローク位置(原点)として補正する。 Then, the arithmetic processing unit 7 resets the stroke position at the obtained reset position d. Specifically, when the reset position d is the origin (stroke position = 0 mm), a value obtained by subtracting the reset position d (= 2.5 mm) from the current stroke position is corrected as the true stroke position (origin).
 ここで、図6に示したフローチャートを参照して、演算処理部7によるリセット処理手順について説明する。なお、この処理は、各サンプリング間隔ごとに行う。まず、演算処理部7は、ストローク位置検出センサ10が検出したストローク位置と、2つのリセット用位置検出センサである磁気センサS1,S2が検出した各出力波形(各出力)とを保持する(ステップS101)。その後、演算処理部7は、2つの出力波形の差分をとった差分波形を算出し、この差分波形を保持する(ステップS102)。 Here, with reference to the flowchart shown in FIG. 6, the reset processing procedure by the arithmetic processing unit 7 will be described. This process is performed at each sampling interval. First, the arithmetic processing unit 7 holds the stroke position detected by the stroke position detection sensor 10 and each output waveform (each output) detected by the magnetic sensors S1 and S2 which are two reset position detection sensors (steps). S101). Thereafter, the arithmetic processing unit 7 calculates a differential waveform obtained by taking the difference between the two output waveforms, and holds this differential waveform (step S102).
 その後、上述した図5(a)~(d)に示したように、現在のサンプリング点における評価値を算出する(ステップS103)。さらに、算出した評価値は所定値以上、例えば「2」以上であるか否かを判断する(ステップS104)。 Thereafter, as shown in FIGS. 5A to 5D, the evaluation value at the current sampling point is calculated (step S103). Further, it is determined whether or not the calculated evaluation value is a predetermined value or more, for example, “2” or more (step S104).
 評価値が所定値以上である場合(ステップS104,Yes)には、現サンプリング点から前後所定数のサンプリング点(現サンプリング点から前後所定距離)のストローク位置を、各サンプリング点の評価値を重み付け平均した値をリセット位置dとして算出する(ステップS105)。その後、算出したリセット位置dでストローク位置をリセットし(ステップS106)、現サンプリング点における処理を終了する。一方、評価値が所定値以上でない場合(ステップS104,No)には、そのまま現サンプリング点における処理を終了する。そして、各サンプリング時点毎に上述した処理を繰り返す。 If the evaluation value is greater than or equal to the predetermined value (step S104, Yes), the stroke position of a predetermined number of sampling points before and after the current sampling point (predetermined distance from the current sampling point) is weighted with the evaluation value at each sampling point. The average value is calculated as the reset position d (step S105). Thereafter, the stroke position is reset at the calculated reset position d (step S106), and the process at the current sampling point is terminated. On the other hand, if the evaluation value is not greater than or equal to the predetermined value (No at step S104), the process at the current sampling point is terminated as it is. And the process mentioned above is repeated for every sampling time.
 なお、評価値の算出は、毎回行わなくてもよい。例えば、2つの出力波形のいずれかが低下したことをトリガにして評価値の算出を開始するようにしてもよい。 Note that the evaluation value need not be calculated every time. For example, the calculation of the evaluation value may be started when one of the two output waveforms decreases as a trigger.
(リセット用位置検出センサの配置)
 本実施の形態1では、上述したようにリセット用位置検出センサ15をストローク位置検出センサ10のローラ支持部13に配置している。これは、図7の状態1の模式図に示すように、ローラ支持部13が上下動するため、ローラ支持部13とケース11との摺動面に隙間ΔGを設けている。この結果、ピストンロッド3の摺動時に回転ローラ12及びローラ支持部13はピストンロッド3の直動方向に対して斜めに傾いてしまう場合がある。このローラ支持部13の傾きはストロークの誤差となる。
(Location of reset position detection sensor)
In the first embodiment, as described above, the reset position detection sensor 15 is arranged on the roller support portion 13 of the stroke position detection sensor 10. As shown in the schematic diagram of state 1 in FIG. 7, since the roller support portion 13 moves up and down, a gap ΔG is provided on the sliding surface between the roller support portion 13 and the case 11. As a result, when the piston rod 3 slides, the rotating roller 12 and the roller support portion 13 may be inclined obliquely with respect to the linear movement direction of the piston rod 3. The inclination of the roller support portion 13 becomes a stroke error.
 図7は、リセット用位置検出センサ15をストローク位置検出センサ10のローラ支持部13に配置した場合におけるストローク位置検出センサ10の計測ストロークと実ストロークとの関係を示す図である。図7では、ローラ支持部13の傾きがない中立の状態(状態1)、状態1からローラ支持部13が正方向(ピストンロッド3に対するストローク方向)に傾いた状態2、状態2でリセット用位置検出センサ15がリセット位置を検出した状態3、状態3後の状態2からローラ支持部13が負方向(ピストンロッド3に対するストローク方向とは逆方向)に傾いた状態4となった場合の模式図及び計測ストロークと実ストロークとの検出特性を示している。なお、検出特性に示した直線L1は中立の状態のときの計測ストロークと実ストロークとの特性を示している。直線L2は、ローラ支持部13の正方向への傾きが最大の場合のときの計測ストロークと実ストロークとの特性を示している。直線L3は、ローラ支持部13の負方向への傾きが最大の場合のときの計測ストロークと実ストロークとの特性を示している。 FIG. 7 is a diagram showing the relationship between the measurement stroke and the actual stroke of the stroke position detection sensor 10 when the reset position detection sensor 15 is arranged on the roller support portion 13 of the stroke position detection sensor 10. In FIG. 7, the roller support 13 is in a neutral state with no inclination (state 1), the state 2 in which the roller support 13 is inclined in the positive direction (the stroke direction with respect to the piston rod 3) from state 1, and the reset position in state 2. Schematic diagram in the case where the detection sensor 15 detects the reset position, and the state 4 after the state 3 becomes the state 4 in which the roller support 13 is inclined in the negative direction (the direction opposite to the stroke direction with respect to the piston rod 3). In addition, detection characteristics of the measurement stroke and the actual stroke are shown. The straight line L1 shown in the detection characteristics indicates the characteristics of the measurement stroke and the actual stroke in the neutral state. A straight line L2 indicates the characteristics of the measurement stroke and the actual stroke when the inclination of the roller support portion 13 in the positive direction is maximum. A straight line L3 indicates the characteristics of the measurement stroke and the actual stroke when the inclination of the roller support portion 13 in the negative direction is maximum.
 まず、状態1ではピストンロッド3が基準位置、すなわち被検出部40が実ストローク0の位置にあり、ローラ支持部13も傾いておらず、計測ストローク及び実ストロークは「0」である。このとき、リセット用位置検出センサ15が検出する位置は基準位置に対して正方向(ストローク方向)の距離「B」にある。ストローク位置検出センサ10は、被検出部40の位置を基準位置「0」として相対的なストロークを計測ストロークとして検出する。 First, in the state 1, the piston rod 3 is at the reference position, that is, the detected portion 40 is at the actual stroke 0 position, the roller support portion 13 is not tilted, and the measurement stroke and the actual stroke are “0”. At this time, the position detected by the reset position detection sensor 15 is at a distance “B” in the positive direction (stroke direction) with respect to the reference position. The stroke position detection sensor 10 detects a relative stroke as a measurement stroke with the position of the detected portion 40 as a reference position “0”.
 その後、ピストンロッド3が正方向に伸長すると直線L1に沿って計測ストローク及び実ストロークが変化する。ここで、ローラ支持部13が正方向に傾斜した状態2になると、ストローク位置検出センサ10は傾斜によって回転ローラ12が矢印で示すように図上、時計回りに余分に回転し、この回転した分の距離「A」を余分に計測するため、計測ストロークは「+A」増加し、計測ストロークと実ストロークとは直線L2に沿って変化する。 Thereafter, when the piston rod 3 extends in the positive direction, the measurement stroke and the actual stroke change along the straight line L1. Here, when the roller support portion 13 is in a state 2 inclined in the forward direction, the stroke position detection sensor 10 causes the rotation roller 12 to rotate extraordinarily clockwise as indicated by the arrow due to the inclination. Therefore, the measurement stroke increases by “+ A”, and the measurement stroke and the actual stroke change along the straight line L2.
 この状態2でリセット用位置検出センサ15がリセット位置である被検出部40を検出する状態3では、実ストロークは「B-A」であるが、計測ストロークは「B」としてリセットされる。したがって、計測ストロークは、実ストロークに対して「+A」の誤差がある。 In this state 2, in the state 3 in which the reset position detection sensor 15 detects the detected portion 40 which is the reset position, the actual stroke is “BA”, but the measurement stroke is reset as “B”. Therefore, the measurement stroke has an error of “+ A” with respect to the actual stroke.
 さらに、この状態3から状態4に移行すると、ローラ支持部13が正方向に傾斜した状態から、ローラ支持部13が負方向(逆ストローク方向)に傾斜し、回転ローラ12が矢印で示すように図上、反時計回りに余分に回転し、この回転した分の距離「-2A」を余分に計測する。このため、計測ストロークは実ストロークに対して「-A」分、少なく計測される。したがって、計測ストロークは、実ストロークに対して「-A」の誤差となる。 Further, when the state 3 is shifted to the state 4, the roller support portion 13 is inclined in the negative direction (reverse stroke direction) from the state where the roller support portion 13 is inclined in the forward direction, and the rotating roller 12 is indicated by an arrow. In the figure, an extra counterclockwise rotation is performed, and the distance “−2A” for the amount of rotation is extra measured. For this reason, the measurement stroke is measured by “−A” less than the actual stroke. Therefore, the measurement stroke has an error of “−A” with respect to the actual stroke.
 これに対し、図8に示すように、リセット用位置検出センサ115がローラ支持部113に配置されない場合、計測ストロークは実ストロークに対して誤差ΔEが±A外となり、ストローク計測の精度が低くなる。 On the other hand, as shown in FIG. 8, when the reset position detection sensor 115 is not disposed on the roller support 113, the measurement stroke has an error ΔE outside ± A with respect to the actual stroke, and the accuracy of the stroke measurement is lowered. .
 図8は、リセット用位置検出センサ115がローラ支持部113に配置されない従来の構成の場合におけるストローク位置検出センサの計測ストロークと実ストロークとの関係を示す図である。図8における状態1~4は、図7における状態1~4と同じである。なお、回転ローラ112、ローラ支持部113は、回転ローラ12、ローラ支持部13にそれぞれ対応する。リセット用位置検出センサ115は、リセット用位置検出センサ15に対応し、シリンダチューブに配置されて、ピストン20に配置された磁石である被検出部141を検出する。 FIG. 8 is a diagram showing the relationship between the measurement stroke of the stroke position detection sensor and the actual stroke in the case of a conventional configuration in which the reset position detection sensor 115 is not disposed on the roller support portion 113. States 1 to 4 in FIG. 8 are the same as states 1 to 4 in FIG. The rotating roller 112 and the roller support portion 113 correspond to the rotating roller 12 and the roller support portion 13, respectively. The reset position detection sensor 115 corresponds to the reset position detection sensor 15, is disposed in the cylinder tube, and detects the detected portion 141 that is a magnet disposed in the piston 20.
 まず、図8の状態1ではピストンロッド3が基準位置、すなわち被検出部141が実ストローク0の位置にあり、ローラ支持部113も傾いておらず、計測ストローク及び実ストロークは「0」である。このとき、リセット用位置検出センサ115が検出する位置は基準位置に対して正方向(ストローク方向)の距離「B」にある。ストローク位置検出センサは、被検出部141の位置を基準位置「0」として相対的なストロークを計測ストロークとして検出する。 First, in the state 1 of FIG. 8, the piston rod 3 is at the reference position, that is, the detected portion 141 is at the actual stroke 0 position, the roller support portion 113 is not tilted, and the measurement stroke and actual stroke are “0”. . At this time, the position detected by the reset position detection sensor 115 is at a distance “B” in the positive direction (stroke direction) with respect to the reference position. The stroke position detection sensor detects a relative stroke as a measurement stroke with the position of the detected portion 141 as a reference position “0”.
 その後、ピストンロッド3が正方向に伸長すると直線L1に沿って計測ストローク及び実ストロークが変化する。ここで、ローラ支持部113が正方向に傾斜した状態2になると、ストローク位置検出センサは傾斜によって回転ローラ112が矢印で示すように図上、時計回りに余分に回転し、この回転した分の距離「A」を余分に計測するため、計測ストロークは「+A」増加し、計測ストロークと実ストロークとは直線L2に沿って変化する。 Thereafter, when the piston rod 3 extends in the positive direction, the measurement stroke and the actual stroke change along the straight line L1. Here, when the roller support portion 113 is in the state 2 inclined in the forward direction, the stroke position detection sensor causes the rotation roller 112 to rotate extraordinarily clockwise as indicated by the arrow due to the inclination. In order to measure the distance “A” excessively, the measurement stroke increases by “+ A”, and the measurement stroke and the actual stroke change along the straight line L2.
 この状態2でリセット用位置検出センサ115がリセット位置である被検出部141を検出する状態3では、ストローク位置センサによる計測ストロークは「B+A」であるが、リセット用位置検出センサ115のリセットによって計測ストロークは「B」としてリセットされる。したがって、計測ストロークは、実ストロークと同じ「B」となる。 In this state 2, in the state 3 in which the reset position detection sensor 115 detects the detected portion 141 that is the reset position, the measurement stroke by the stroke position sensor is “B + A”, but the measurement is performed by resetting the reset position detection sensor 115. The stroke is reset as “B”. Therefore, the measurement stroke is “B”, which is the same as the actual stroke.
 さらに、この状態3から状態4に移行すると、ローラ支持部113が正方向に傾斜した状態から、ローラ支持部113が負方向(逆ストローク方向)に傾斜し、回転ローラ112が矢印で示すように図上、反時計回りに余分に回転し、この回転した分の距離「-2A」を余分に計測する。このため、計測ストロークは、リセットされた実ストロークに対して「-2A」分、少なく計測される。したがって、計測ストロークは、実ストロークに対して「-2A」の誤差となる。 Further, when the state 3 is shifted to the state 4, the roller support 113 is inclined in the negative direction (reverse stroke direction) from the state in which the roller support 113 is inclined in the forward direction, and the rotating roller 112 is indicated by an arrow. In the figure, an extra counterclockwise rotation is performed, and the distance “−2A” for the amount of rotation is extra measured. Therefore, the measurement stroke is measured by “−2A” less than the reset actual stroke. Therefore, the measurement stroke has an error of “−2A” with respect to the actual stroke.
 すなわち、図8の状態3に示すように、ローラ支持部113が正方向に傾いた状態でリセット用位置検出センサ115がリセット位置を検出すると、計測ストローク「B」は実ストローク「B」にリセットされるが、ローラ支持部113が傾いた状態でのリセットとなる。そして、状態4になると、ローラ支持部113の傾きが正方向から負方向に変わるので計測ストロークは、直線L1から「2A」分、減少(「-2A」)し、誤差ΔEの範囲外に、はみ出してしまう。 That is, as shown in state 3 in FIG. 8, when the reset position detection sensor 115 detects the reset position while the roller support 113 is tilted in the forward direction, the measurement stroke “B” is reset to the actual stroke “B”. However, the reset is performed when the roller support 113 is tilted. In state 4, since the inclination of the roller support portion 113 changes from the positive direction to the negative direction, the measurement stroke decreases by “2A” from the straight line L1 (“−2A”), and is outside the range of the error ΔE. It will stick out.
 本実施の形態1では、ローラ支持部13が正方向あるいは負方向にそれぞれ最大傾斜の状態になっても、リセット用位置検出センサ15がローラ支持部13に配置されているため、計測ストロークは実ストロークに対して誤差ΔEが±A内となり、精度の高いストローク計測が可能となる。 In the first embodiment, even when the roller support portion 13 is in the maximum inclination state in the positive direction or the negative direction, the reset position detection sensor 15 is disposed on the roller support portion 13, so that the measurement stroke is actual. The error ΔE is within ± A with respect to the stroke, and highly accurate stroke measurement is possible.
[実施の形態2]
 上述した実施の形態1では、2つの磁気センサS1,S2を用いていたが、本実施の形態2では、1つの磁気センサS3を用いてリセット位置dを検出している。
[Embodiment 2]
In the first embodiment described above, the two magnetic sensors S1 and S2 are used. However, in the second embodiment, the reset position d is detected using one magnetic sensor S3.
 図9は、本発明の実施の形態2で用いられるリセット用位置検出センサ15の構成と出力波形を示す図である。図9に示すように、リセット用位置検出センサ15は、1つの磁気センサS3で被検出部40を検出している。磁気センサS3は、図9(b)に示した出力波形LS3を出力する。演算処理部7は、出力波形LS3の立上がり位置をリセット位置dとして検出する。 FIG. 9 is a diagram showing the configuration and output waveform of the reset position detection sensor 15 used in the second embodiment of the present invention. As shown in FIG. 9, the reset position detection sensor 15 detects the detected portion 40 with one magnetic sensor S3. The magnetic sensor S3 outputs the output waveform LS3 shown in FIG. The arithmetic processing unit 7 detects the rising position of the output waveform LS3 as the reset position d.
[実施の形態3]
 上述した実施の形態1では、リセット用位置検出センサ15として磁気センサS1,S2を用いていたが、本実施の形態3では、リセット用位置検出センサ15として渦電流センサS51,S52を用いている。
[Embodiment 3]
In the first embodiment described above, the magnetic sensors S1 and S2 are used as the reset position detection sensor 15. However, in the third embodiment, eddy current sensors S51 and S52 are used as the reset position detection sensor 15. .
 図10に示すように、渦電流センサS51,S52は、コイルであり、ピストンロッド3の被検出部40aは、ピストンロッド3の材質よりも抵抗値が低い金属、例えば銅を用いている。 As shown in FIG. 10, the eddy current sensors S51 and S52 are coils, and the detected portion 40a of the piston rod 3 uses a metal having a lower resistance than the material of the piston rod 3, such as copper.
 演算処理部7に対応する演算処理部57は、渦電流センサS51,S52に対応して、発振回路50、共振回路51a,51b、検波回路52a,52b、増幅回路53a,53b、差動増幅回路54を有する。共振回路51a,51bはそれぞれ渦電流センサS51,S52に接続され、発振回路50からの発振周波数に対応した高周波の共振周波数を生成し、渦電流センサS51,S52からそれぞれ共振周波数の磁界を生成している。検波回路52a,52bはそれぞれ共振回路51a,51bの共振波形を検波する。増幅回路53a,53bは検波波形をそれぞれ増幅する。差動増幅回路54は、増幅回路53aが出力した増幅波形から増幅回路53bが出力した増幅波形を減算した差分波形を出力する。そして、演算処理部57は、この差分波形をもとに実施の形態1と同様にしてリセット位置を検出してストローク位置をリセットする。 The arithmetic processing unit 57 corresponding to the arithmetic processing unit 7 corresponds to the eddy current sensors S51 and S52, and the oscillation circuit 50, the resonance circuits 51a and 51b, the detection circuits 52a and 52b, the amplification circuits 53a and 53b, and the differential amplification circuit. 54. The resonance circuits 51a and 51b are connected to the eddy current sensors S51 and S52, respectively, generate a high frequency resonance frequency corresponding to the oscillation frequency from the oscillation circuit 50, and generate a magnetic field of the resonance frequency from the eddy current sensors S51 and S52, respectively. ing. The detection circuits 52a and 52b detect the resonance waveforms of the resonance circuits 51a and 51b, respectively. The amplifier circuits 53a and 53b amplify the detected waveforms. The differential amplifier circuit 54 outputs a differential waveform obtained by subtracting the amplified waveform output from the amplifier circuit 53b from the amplified waveform output from the amplifier circuit 53a. Then, the arithmetic processing unit 57 detects the reset position based on the difference waveform and resets the stroke position in the same manner as in the first embodiment.
 被検出部40aは、渦電流センサS51,S52が近づくと、被検出部40a内に渦電流を生成してインピーダンスが増大する。被検出部40aのインピーダンスが増大すると、共振回路51a,51bの共振周波数が変化するため、検波回路52a,52bが検出する検波波形の振幅は小さくなる。このため、図11(a)に示すように、増幅回路53a,53bが出力する増幅波形L53a,L53bは被検出部40aの近接によって電圧が低下する。 When the eddy current sensors S51 and S52 approach, the detected part 40a generates an eddy current in the detected part 40a and increases its impedance. When the impedance of the detected part 40a increases, the resonance frequency of the resonance circuits 51a and 51b changes, and the amplitude of the detection waveform detected by the detection circuits 52a and 52b decreases. Therefore, as shown in FIG. 11A, the voltages of the amplified waveforms L53a and L53b output from the amplifier circuits 53a and 53b are lowered due to the proximity of the detected portion 40a.
 差動増幅回路54は、上述したように増幅波形L53aから増幅波形L53bを減算した差分波形L53ΔVを生成する。差分波形L53ΔVのピーク値間の幅W5は被検出部40aの幅W5に相当する。この差分波形L53ΔVは、図4(c)に示した差分波形LΔVに相当するものである。 The differential amplifier circuit 54 generates a differential waveform L53ΔV obtained by subtracting the amplified waveform L53b from the amplified waveform L53a as described above. The width W5 between the peak values of the differential waveform L53ΔV corresponds to the width W5 of the detected portion 40a. This differential waveform L53ΔV corresponds to the differential waveform LΔV shown in FIG.
[実施の形態4]
 上述した実施の形態3では、2つの渦電流センサS51,S52を用いていたが、本実施の形態4では、1つの渦電流センサS52を用いてリセット位置dを検出している。
[Embodiment 4]
In the third embodiment described above, the two eddy current sensors S51 and S52 are used. However, in the fourth embodiment, the reset position d is detected using one eddy current sensor S52.
 図12は、本発明の実施の形態4である渦電流センサS52を用いたリセット用位置検出センサの構成を示す図である。図12に示したリセット用位置検出センサは、図10に示した渦電流センサS51を削除し、演算処理部57内の共振回路51a、検波回路52a、増幅回路53a、差動増幅回路54を削除したものである。したがって、演算処理部57に対応する演算処理部57´は、図13に示すように、増幅回路53bが出力する増幅波形L53bの立上がり位置をリセット位置として検出してストローク位置をリセットする。 FIG. 12 is a diagram showing a configuration of a reset position detection sensor using the eddy current sensor S52 according to the fourth embodiment of the present invention. The reset position detection sensor shown in FIG. 12 deletes the eddy current sensor S51 shown in FIG. 10, and deletes the resonance circuit 51a, the detection circuit 52a, the amplification circuit 53a, and the differential amplification circuit 54 in the arithmetic processing unit 57. It is a thing. Therefore, as shown in FIG. 13, the arithmetic processing unit 57 ′ corresponding to the arithmetic processing unit 57 detects the rising position of the amplified waveform L53b output from the amplifier circuit 53b as a reset position and resets the stroke position.
[実施の形態5]
 上述した実施の形態1では、リセット用位置検出センサ15として磁気センサS1,S2を用いていたが、本実施の形態5では、リセット用位置検出センサ15として光センサを用いている。光センサは、図14に示すように、発光素子S60、2つの受光素子S61a,S61bを有する。すなわち、本実施の形態5のリセット用位置検出センサは、発光素子S60及び受光素子S61aを1つの光センサとし、発光素子S60及び受光素子S61bを1つの光センサとする2つの光センサを有する。
[Embodiment 5]
In the first embodiment described above, the magnetic sensors S1 and S2 are used as the reset position detection sensor 15. However, in the fifth embodiment, an optical sensor is used as the reset position detection sensor 15. As shown in FIG. 14, the optical sensor has a light emitting element S60 and two light receiving elements S61a and S61b. That is, the reset position detection sensor according to the fifth embodiment includes two optical sensors that use the light emitting element S60 and the light receiving element S61a as one optical sensor and use the light emitting element S60 and the light receiving element S61b as one optical sensor.
 演算処理部7に対応する演算処理部67は、発光素子S60を発光させる投光回路60、受光素子S61a,S61bからの受光信号を受光する受光回路61a,61b、受光回路61aの出力波形から受光回路61bの出力波形を減算した差分波形を出力する差動増幅回路62を有する。演算処理部67は、この差分波形をもとに実施の形態1と同様にしてリセット位置を検出してストローク位置をリセットする。 The arithmetic processing unit 67 corresponding to the arithmetic processing unit 7 receives light from the light projecting circuit 60 that emits light from the light emitting element S60, the light receiving circuits 61a and 61b that receive the light receiving signals from the light receiving elements S61a and S61b, and the output waveform of the light receiving circuit 61a. It has a differential amplifier circuit 62 that outputs a differential waveform obtained by subtracting the output waveform of the circuit 61b. The arithmetic processing unit 67 detects the reset position based on the difference waveform and resets the stroke position in the same manner as in the first embodiment.
 被検出部40bは、着色部であり、着色部の色はピストンロッド3の摺動表面の色と異なる。具体的には黒色であり、光を吸収するようにしている。被検出部40bが光の反射位置に近づくと、受光回路61a,61bの反射量が減少し、図15(a)に示すように、出力波形L61a,L61bの電圧は小さくなる。図15(b)に示すように、差動増幅回路62は、出力波形L61aから出力波形L61bを減算した差分波形L62ΔVを生成する。差分波形L62ΔVのピーク値間の幅W6は被検出部40bの幅W6に相当する。この差分波形L62ΔVは、図4(c)に示した差分波形LΔVに相当するものである。 The detected portion 40b is a colored portion, and the color of the colored portion is different from the color of the sliding surface of the piston rod 3. Specifically, it is black and absorbs light. As the detected part 40b approaches the light reflection position, the reflection amounts of the light receiving circuits 61a and 61b decrease, and the voltages of the output waveforms L61a and L61b become smaller as shown in FIG. As shown in FIG. 15B, the differential amplifier circuit 62 generates a differential waveform L62ΔV obtained by subtracting the output waveform L61b from the output waveform L61a. The width W6 between the peak values of the differential waveform L62ΔV corresponds to the width W6 of the detected portion 40b. This differential waveform L62ΔV corresponds to the differential waveform LΔV shown in FIG.
 なお、被検出部40bは、光を反射する反射部材であってもよい。また、所定の色で着色された部材であってもよい。所定の色で着色された場合、受光素子S61a,S61bは、所定の色のみを受光できることが好ましい。 The detected part 40b may be a reflecting member that reflects light. Moreover, the member colored with the predetermined color may be sufficient. When colored with a predetermined color, it is preferable that the light receiving elements S61a and S61b can receive only the predetermined color.
[実施の形態6]
 上述した実施の形態5では、2つの光センサを用いていたが、本実施の形態6では、図16に示すように発光素子S60及び受光素子S61bからなる1つの光センサを用いてリセット位置を検出している。
[Embodiment 6]
In the fifth embodiment described above, two optical sensors are used. In the sixth embodiment, as shown in FIG. 16, the reset position is set by using one optical sensor including the light emitting element S60 and the light receiving element S61b. Detected.
 図16は、本発明の実施の形態6である1つの光センサを用いたリセット用位置検出センサの構成を示す図である。図16に示したリセット用位置検出センサは、図14に示した受光素子S61aを削除し、演算処理部67内の受光回路61a及び差動増幅回路62を削除したものである。したがって、演算処理部67に対応する演算処理部67´は、図17に示すように、受光回路61bが出力する出力波形L61bの立上がり位置をリセット位置として検出してストローク位置をリセットする。 FIG. 16 is a diagram showing a configuration of a reset position detection sensor using one optical sensor according to the sixth embodiment of the present invention. The reset position detection sensor illustrated in FIG. 16 is obtained by deleting the light receiving element S61a illustrated in FIG. 14 and deleting the light receiving circuit 61a and the differential amplifier circuit 62 in the arithmetic processing unit 67. Therefore, as shown in FIG. 17, the arithmetic processing unit 67 ′ corresponding to the arithmetic processing unit 67 detects the rising position of the output waveform L61b output from the light receiving circuit 61b as a reset position and resets the stroke position.
 なお、2つのリセット用位置検出センサを用いた実施の形態3,5は、図6に示した実施の形態1のリセット処理を適用することができる。また、実施の形態2~6は、リセット用位置検出センサをローラ支持部13に配置することによって、実施の形態1に示したように、計測ストロークは実ストロークに対して誤差ΔEが±A内となり、精度の高いストローク計測が可能となる。なお、本発明は、油圧ショベルだけでなく、ブルドーザ、ローダ、グレーダ等の作業機を有する建設機械、産業車両に適用されることは言うまでもない。 Note that the reset processing of the first embodiment shown in FIG. 6 can be applied to the third and fifth embodiments using two reset position detection sensors. In the second to sixth embodiments, the reset position detection sensor is arranged on the roller support portion 13, so that the measurement stroke has an error ΔE within ± A with respect to the actual stroke as shown in the first embodiment. Thus, highly accurate stroke measurement is possible. Needless to say, the present invention is applied not only to hydraulic excavators but also to construction machines and industrial vehicles having work machines such as bulldozers, loaders, and graders.
1 油圧シリンダ、2 シリンダチューブ、3 ピストンロッド、4,5 油圧ポート、7,57,57´,67,67´ 演算処理部、8 シリンダヘッド、9 シリンダボトム、10 ストローク位置検出センサ、11 ケース、12,112 回転ローラ、12C 回転中心軸、13H シリンダヘッド側油室、13B シリンダボトム側油室、13 ローラ支持部、14 押圧バネ、15,115 リセット用位置検出センサ、20 ピストン、30 ロッドシール、31,32 ダストシール、40,40a,40b 被検出部、41 磁石、42 溝、43 非磁性体、50 発振回路、51a,51b 共振回路、52a,52b 検波回路、53a,53b 増幅回路、54,62 差動増幅回路、60 投光回路、61a,61b 受光回路、141 被検出部、AR 直動方向、d リセット位置、L1~L3 直線、L53a,L53b 増幅波形、L53ΔV,L62ΔV,LΔV 差分波形、L61a,L61b, LS1,LS2,LS3 出力波形、LH,LB 作動油、P1 端部位置、S1,S2,S3 磁気センサ、S51,S52 渦電流センサ、S60 発光素子、S61a,S61b 受光素子、SP1~SP7 サンプリング点、W1,W5,W6 幅、ΔE 誤差、ΔG 隙間。 1 Hydraulic cylinder, 2 cylinder tube, 3 piston rod, 4, 5 hydraulic port, 7, 57, 57 ', 67, 67' arithmetic processing unit, 8 cylinder head, 9 cylinder bottom, 10 stroke position detection sensor, 11 case, 12, 112 Rotating roller, 12C Rotating center axis, 13H Cylinder head side oil chamber, 13B Cylinder bottom side oil chamber, 13 Roller support part, 14 Pressing spring, 15, 115 Reset position detection sensor, 20 Piston, 30 Rod seal, 31, 32 dust seal, 40, 40a, 40b detected part, 41 magnet, 42 groove, 43 non-magnetic material, 50 oscillation circuit, 51a, 51b resonance circuit, 52a, 52b detection circuit, 53a, 53b amplification circuit, 54, 62 Differential amplifier circuit, 60 floodlight circuit, 61a, 61b light receiving circuit, 141 detected part, AR linear motion direction, d reset position, L1-L3 straight line, L53a, L53b amplified waveform, L53ΔV, L62ΔV, LΔV differential waveform, L61a, L61b, LS1, LS2, LS3 output waveform, LH , LB hydraulic oil, P1 end position, S1, S2, S3 magnetic sensor, S51, S52 eddy current sensor, S60 light emitting element, S61a, S61b light receiving element, SP1 to SP7 sampling point, W1, W5, W6 width, ΔE error , ΔG gap.

Claims (7)

  1.  直動部材のストローク位置を検出するストローク位置検出センサと、前記直動部材上に設けられ、直動方向に所定距離分の幅をもつ被検出部を検出する2つのリセット用位置検出センサとを用いて前記ストローク位置をリセットするストローク位置のリセット処理方法であって、
     各リセット用位置検出センサの出力波形を検出する検出ステップと、
     検出した2つの出力波形の差分波形を算出する差分算出ステップと、
     前記差分波形と前記ストローク位置とをもとに前記被検出部の一端のストローク位置であるリセット位置を算出するリセット位置算出ステップと、
     前記リセット位置の値を用いて前記ストローク位置をリセットするリセットステップと、
     を含むことを特徴とするストローク位置のリセット処理方法。
    A stroke position detection sensor for detecting a stroke position of the linear motion member, and two reset position detection sensors for detecting a detected portion having a width corresponding to a predetermined distance in the linear motion direction. A stroke position reset processing method for resetting the stroke position using:
    A detection step of detecting an output waveform of each reset position detection sensor;
    A difference calculating step for calculating a difference waveform between the detected two output waveforms;
    A reset position calculating step of calculating a reset position which is a stroke position of one end of the detected portion based on the differential waveform and the stroke position;
    A reset step of resetting the stroke position using a value of the reset position;
    A stroke position reset processing method characterized by comprising:
  2.  前記ストローク位置検出センサと各リセット用位置検出センサとは所定サンプリング間隔で位置検出を行い、
     前記リセット位置算出ステップは、前記差分算出ステップで算出した差分波形の第1計測値から前記所定距離分、後方にある差分波形の第2計測値を減算した値を前記第1計測値の評価値として求め、各ストローク位置を各評価値で重み付け平均処理した値を前記リセット位置として算出することを特徴とする請求項1に記載のストローク位置のリセット処理方法。
    The stroke position detection sensor and each reset position detection sensor perform position detection at a predetermined sampling interval,
    In the reset position calculating step, a value obtained by subtracting a second measured value of the differential waveform behind the predetermined distance from the first measured value of the differential waveform calculated in the difference calculating step is an evaluation value of the first measured value. 2. The stroke position reset processing method according to claim 1, wherein a value obtained by performing weighted average processing on each stroke position with each evaluation value is calculated as the reset position.
  3.  前記評価値が所定値以上の場合に前記重み付け平均処理を行うことを特徴とする請求項2に記載のストローク位置のリセット処理方法。 3. The stroke position reset processing method according to claim 2, wherein the weighted average processing is performed when the evaluation value is equal to or greater than a predetermined value.
  4.  前記2つのリセット用位置検出センサは磁気センサであり、
     前記被検出部は、前記直動部材の地肌に設けられた溝内の非磁性体による表面処理を行った部位であることを特徴とする請求項1~3のいずれか一つに記載のストローク位置のリセット処理方法。
    The two reset position detection sensors are magnetic sensors,
    The stroke according to any one of claims 1 to 3, wherein the detected part is a part subjected to a surface treatment with a nonmagnetic material in a groove provided in a ground of the linear motion member. Position reset processing method.
  5.  前記2つのリセット用位置検出センサは渦電流センサであり、
     前記被検出部は、前記直動部材の摺動表面に設けられた溝内の金属であり、前記直動部材の材質よりも抵抗値が低いことを特徴とする請求項1~3のいずれか一つに記載のストローク位置のリセット処理方法。
    The two reset position detection sensors are eddy current sensors,
    4. The detected portion is a metal in a groove provided on a sliding surface of the linear motion member, and has a resistance value lower than that of the material of the linear motion member. The stroke position reset processing method as described in one.
  6.  前記2つのリセット用位置検出センサは光センサであり、
     前記被検出部は、前記直動部材の摺動表面に設けられた着色部であり、前記着色部の色は前記直動部材の摺動表面の色と異なることを特徴とする請求項1~3のいずれか一つに記載のストローク位置のリセット処理方法。
    The two reset position detection sensors are optical sensors,
    The detected portion is a colored portion provided on the sliding surface of the linear motion member, and the color of the colored portion is different from the color of the sliding surface of the linear motion member. 4. The stroke position reset processing method according to any one of 3 above.
  7.  前記2つのリセット用位置検出センサは光センサであり、
     前記被検出部は、前記直動部材の摺動表面に設けられた光反射部材あるいは光吸収部材であることを特徴とする請求項1~3のいずれか一つに記載のストローク位置のリセット処理方法。
    The two reset position detection sensors are optical sensors,
    The stroke position reset processing according to any one of claims 1 to 3, wherein the detected portion is a light reflecting member or a light absorbing member provided on a sliding surface of the linear motion member. Method.
PCT/JP2016/084171 2016-11-17 2016-11-17 Stroke position reset processing method WO2018092253A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/084171 WO2018092253A1 (en) 2016-11-17 2016-11-17 Stroke position reset processing method
JP2018550950A JP6774502B2 (en) 2016-11-17 2016-11-17 Stroke position reset processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084171 WO2018092253A1 (en) 2016-11-17 2016-11-17 Stroke position reset processing method

Publications (1)

Publication Number Publication Date
WO2018092253A1 true WO2018092253A1 (en) 2018-05-24

Family

ID=62145100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084171 WO2018092253A1 (en) 2016-11-17 2016-11-17 Stroke position reset processing method

Country Status (2)

Country Link
JP (1) JP6774502B2 (en)
WO (1) WO2018092253A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277704A (en) * 1988-04-30 1989-11-08 Toshiba Corp Apparatus for detecting displacement of rotary shaft
JPH03170803A (en) * 1989-11-30 1991-07-24 Mitsubishi Heavy Ind Ltd Stroke detection of working apparatus
JP2002350711A (en) * 2001-05-29 2002-12-04 Ricoh Co Ltd Method and device for adjusting positioning shift
JP2006226909A (en) * 2005-02-18 2006-08-31 Komatsu Ltd Position measurement apparatus for cylinder
JP2007065251A (en) * 2005-08-31 2007-03-15 Sony Corp Imaging apparatus and control method for the same
US20140114605A1 (en) * 2012-10-18 2014-04-24 Cnh Canada, Ltd. Method And Apparatus For Sensing Position
JP2015016631A (en) * 2013-07-11 2015-01-29 セイコーエプソン株式会社 Printer and detection method of medium
JP2016099329A (en) * 2014-11-26 2016-05-30 キヤノン株式会社 Measurement instrument and method of manufacturing article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277704A (en) * 1988-04-30 1989-11-08 Toshiba Corp Apparatus for detecting displacement of rotary shaft
JPH03170803A (en) * 1989-11-30 1991-07-24 Mitsubishi Heavy Ind Ltd Stroke detection of working apparatus
JP2002350711A (en) * 2001-05-29 2002-12-04 Ricoh Co Ltd Method and device for adjusting positioning shift
JP2006226909A (en) * 2005-02-18 2006-08-31 Komatsu Ltd Position measurement apparatus for cylinder
JP2007065251A (en) * 2005-08-31 2007-03-15 Sony Corp Imaging apparatus and control method for the same
US20140114605A1 (en) * 2012-10-18 2014-04-24 Cnh Canada, Ltd. Method And Apparatus For Sensing Position
JP2015016631A (en) * 2013-07-11 2015-01-29 セイコーエプソン株式会社 Printer and detection method of medium
JP2016099329A (en) * 2014-11-26 2016-05-30 キヤノン株式会社 Measurement instrument and method of manufacturing article

Also Published As

Publication number Publication date
JP6774502B2 (en) 2020-10-28
JPWO2018092253A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5479612B1 (en) Cylinder position measuring device and cylinder position measuring method
JP4288373B2 (en) Device having a magnetic position encoder
JP6113197B2 (en) Method for non-contact measurement of relative position by a three-dimensional Hall sensor having a measurement signal storage unit
JP5613839B2 (en) Method and apparatus for absolute positioning of a moving object
US9115483B2 (en) Hydraulic excavator and method for measuring stroke of hydraulic cylinder of hydraulic excavator
JP6066033B2 (en) Sensor device for detecting the axial position and rotational position of a shaft that is movable in the longitudinal direction and is rotatable
JP5812093B2 (en) Linear position sensor system
US8482607B2 (en) Position sensing of a piston in a hydraulic cylinder using a photo image sensor
JP6875405B2 (en) Swash plate angle sensor
JP2011514498A (en) Cylinder
JP4628815B2 (en) Cylinder position measuring device
JP4386841B2 (en) Probe head for coordinate measuring machine
US10444034B2 (en) Linear actuator with position indicator
CN105683762B (en) Sensor system for rotational speed measurement with a pole rotor having a linearized magnetic field
WO2018092253A1 (en) Stroke position reset processing method
WO2018092252A1 (en) Hydraulic cylinder with stroke position detection function
JP5711858B1 (en) Cylinder with shock absorbing function
JP6465809B2 (en) Rotating swash plate position sensor mechanism
CN110678716B (en) Method and apparatus for correcting the position of a magnet relative to a GMR sensor
WO2021058086A1 (en) Displacement measuring arrangement with a hall sensor and a magnet
JP2016109539A (en) Stroke sensor
JP2017219320A (en) Position detector and actuator
JP2014074663A (en) Cylinder position measurement device, and cylinder position measurement method
JP6546881B2 (en) Position detection device and actuator
JP2020506408A (en) Sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921677

Country of ref document: EP

Kind code of ref document: A1