WO2018091995A1 - Hybrid thermal apparatus - Google Patents
Hybrid thermal apparatus Download PDFInfo
- Publication number
- WO2018091995A1 WO2018091995A1 PCT/IB2017/056804 IB2017056804W WO2018091995A1 WO 2018091995 A1 WO2018091995 A1 WO 2018091995A1 IB 2017056804 W IB2017056804 W IB 2017056804W WO 2018091995 A1 WO2018091995 A1 WO 2018091995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- thermal apparatus
- elastocaloric
- cooling agent
- recuperator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B23/00—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/001—Details of machines, plants or systems, using electric or magnetic effects by using electro-caloric effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
Definitions
- the present invention refers to a hybrid thermal apparatus comprising at least one heat exchanger and at least one heat source and/or heat sink.
- Hybrid thermal apparatuses of the aforementioned kind are generally known. Also, thermal apparatuses are known which are based on the vapour-compression technology. Said technology shows a relatively low energy efficiency, wherein more or less environmentally harmful means are exploited in order for said thermal apparatuses to operate. Recently were developed various alternative thermal apparatuses and technologies that are environment- friendly such as thermoelectric, thermoacoustic, sorption, magnetic, electrocaloric, elastocaloric and, respectively, thermoelastic technologies and similar, however, due to low heat capacity and/or efficiency and/or costly production none of said technologies did prove to be serious alternative to the compressor technology.
- a hybrid thermal apparatus being either a cooling and/or heating thermal apparatus, which is formed as a combination of a first thermal apparatus based on a vapour-compression principle, and a second thermal apparatus based on an elastocaloric principle, wherein said thermal apparatuses have at least one deformable heat exchanger made of elastocaloric material in common.
- Said combination enables the increase of the heat capacity of the hybrid thermal apparatus and, as a result, increase of the efficiency.
- the hybrid thermal apparatus according to the invention having the same capacity, operates with less cooling agent as the conventional vapour-compression apparatus does.
- the essence of the present invention lies in exploiting of pressure difference of cooling agent which, with the conventional vapour-compression apparatus, occurs during compression stage and expansion stage of cooling agent, in order to obtain the elastocaloric effect.
- a hybrid thermal apparatus is provided for, according to the present invention, comprising direct and/or indirect transfer of pressure from cooling agent to the elastocaloric material.
- a hybrid thermal apparatus comprising a direct transfer of pressure from cooling agent to the elastocaloric material, wherein a def ormable condenser is provided as an intermediary device.
- Fig. 1 shows a schematic view of a hybrid thermal apparatus according to the invention
- Fig. 2 shows another embodiment of a hybrid thermal apparatus of Fig. 1.
- the present invention is further described on a basis of a hybrid thermal apparatus selected as a cooling apparatus and, respectively, a heat pump.
- a thermal apparatus is formed as a combination of a first thermal apparatus 1 comprising a first medium for heat transfer, particularly cooling agent, and of a second thermal apparatus 2 comprising a second medium for heat transfer, water in the present embodiment, wherein a third thermal apparatus 3 is common to the thermal apparatuses 1, 2, particularly a heat exchanger.
- the first thermal apparatus 1 is based on a vapour-compression principle
- the second thermal apparatus 2 is based on elastocaloric principle
- the third thermal apparatus 3 is formed as a deformable heat exchanger made of elastocaloric material.
- said third thermal apparatus 3 and, respectively, said deformable heat exchanger is selected as an elastocaloric recuperator.
- Said first thermal apparatus 1 comprises a first cold heat exchanger and, respectively, an evaporator 4 to which is connected at the downstream side a compression means 5 and to which is connected at the upstream upstream side an expansion valve 6.
- the compression means 5 is connected via a cooling agent supply line 5' with cooling agent inlet 3' into the recuperator 3, whereas the expansion valve 6 is connected via a discharge line 6' with cooling agent outlet 3" from the recuperator 3.
- Said second thermal apparatus 2 comprises a hot heat exchanger 7 and a second cold heat exchanger 8.
- the hot heat exchanger 7 is connected at the downstream side with a pumping means 9 which is further connected via a supply line 9' with hot water inlet 10 on the recuperator 3.
- the hot heat exchanger 7 is connected at the upstream side via a line 7' to hot water outlet 11 on the recuperator 3.
- Said cold heat exchanger 8 is connected downstream with a pumping means 12 which, in turn, is connected via a supply line 12' with cold water inlet 13 on the recuperator 3.
- the cold heat exchanger 8 is connected at the upstream side via a line 8' with cold water outlet 14 on the recuperator 3.
- connections 10, 11; 13, 14 on the recuperator 3 for hot water and, respectively, for cold water are arranged in a crosswise manner, which means that the hot water inlet 10 and the cold water outlet 14 are located at the first end of the recuperator 3, whereas the hot water outlet 11 and the cold water inlet 13 are located at the opposite end of the recuperator 3.
- blocking means such as valves, for example, are provided at the respective places, the form and the location of said blocking means being known per se and not shown in detail.
- a cyclic process of cooling/heating of the present embodiment of the hybrid thermal apparatus comprises four stages as follows.
- the first stage comprises pressing the cooling agent into the elastocaloric recuperator 3.
- Said expansion valve 6 is closed and the compression means 5 forces cooling agent into the recuperator 3.
- Circulating of water via the hot heat exchanger 7 and the cold heat exchanger 8 is prevented during the entire first stage of the process, or at least during a part of the first stage of the process.
- the cooling agent pressure increases during pressing of the cooling agent into the recuperator 3 causing the cooling agent to warm up.
- Said pressure increase of the cooling agent represents a load which is directly or indirectly transferred to the recuperator 3, whereby the latter is loaded and, respectively, deformed.
- Deformation of the recuperator 3 causes warming up of the elastocaloric material which constitutes the recuperator 3.
- the final outcome of the first stage is deformed elastocaloric material of the recuperator 3 and compressed cooling agent, while both being in hot state.
- the second stage of said cyclic process of the hybrid thermal apparatus comprises heat removal from the recuperator 3.
- Supply of the compressed cooling agent is prevented during the entire second stage of the process, or at least during a part of the second stage of the process.
- Said pumping means 9 forces water with a first temperature Ti from the hot heat exchanger 7 through the hot water inlet 10 and via the recuperator 3, wherein water with a second temperature T2 is returning through the hot water outlet 11 into the hot heat exchanger 7.
- the flow through the cold heat exchanger 8 is prevented.
- the heat passes from the recuperator 3 to said water, which results in cooling of the recuperator 3.
- the heat is removed from the elastocaloric material of the recuperator 3 and from the compressed cooling agent which, in turn, condensates and releases the heat.
- the water with a second temperature T2 flows via the outlet 11 from the recuperator 3 to the hot heat exchanger 7 where heat is transferred either to the surrounding or, optionally, to another medium for heat transfer. Therefore, a first i.e. hot product is obtained in the hot heat exchanger 7.
- the final outcome of the second stage is deformed elastocaloric material of the recuperator 3 and compressed cooling agent.
- the third stage of said cyclic process of the hybrid thermal apparatus comprises expansion of the cooling agent from the recuperator 3 to the evaporator 4.
- the inflow of the compressed cooling agent into the recuperator 3 is prevented, whereas the expansion valve 6 is open, wherein the flow of the water is prevented during the entire third stage of the process or at least during a part of the third stage of the process.
- the cooling agent expands through the expansion valve 6 from the recuperator 3 into the evaporator 4 resulting in the cooling agent to cool down during the expansion.
- the result of said expansion is a first cold product in the evaporator 4.
- the result of the expansion is also emptying the recuperator 3 and deformation deceasing of elastocaloric material of the recuperator 3, which in turn cools down.
- the final outcome of said third stage is expanded cooling agent and the first cold product, and non-deformed and cold recuperator 3.
- the fourth stage of said cyclic process of the hybrid thermal apparatus comprises cooling of water in the cooled recuperator 3.
- the flow through the compression means 5 is prevented during the entire fourth stage of the process or at least during a part of the fourth stage of the process.
- Said pumping means 12 transports water with a third temperature T3 from the cold heat exchanger 8 through the cold water inlet 13 via recuperator 3, whereby the water with a fourth temperature T4 returns through the cold water outlet 14 to the cold heat exchanger 8.
- the water having the third temperature T3 flows from the cold heat exchanger 8 through the inlet 13 into the recuperator 3 where the water is cooled by said recuperator.
- the water is cooled by the unloaded elastocaloric material of the recuperator 3 and by expanded cooling agent which in turn evaporates and receives heat of the inflowing water.
- the recuperator 3 gets slightly warm.
- cooled water with a temperature T 4 flows through the outlet 14 into the cold heat exchanger 8, whereby the result of the fourth stage is a second cold product in the cold exchanger 8.
- the final outcome of said foruth stage is cold water in the cold heat exchanger 8, that is the second cold product and the non-deformed recuperator 3.
- said second temperature T2 of the water is higher than said first temperature Ti of the water (T2 > Ti), and said third temperature T3 of the water is higher than said fourth temperature T4 of the water (T3 > T4).
- the first and the second temperature Ti, T2 are substantially higher that the third and the fourth temperature T3, T4 (T 2> Ti » T3 > T4).
- Fig. 2 shows additional embodiment of the hybrid thermal apparatus according to the invention formed as a combination of a first thermal apparatus 15 based on the vapour- compression principle and comprising a first heat transfer medium, in particular a cooling agent, and a second thermal apparatus 16 based on the elastocaloric principle and comprising a second heat transfer medium that is water in the present embodiment.
- the third thermal apparatus 3 in particular a deformable heat exchanger, is common to said thermal apparatuses 15, 16, which in the present embodiment comprises an elastocaloric regenerator 21 associated by means of a deformation and, respectively, a load transmitter 17 with an intermediary device 21' in order to transfer pressure form the cooling agent to the elastocaloric material.
- Said first thermal apparatus 15 comprises a cold heat exchanger and, respectively, an evaporator 18 to which is connected at the downstream side a compression means 19 and to which is connected at the upstream side an expansion valve 20.
- the compression means 19 is connected via a cooling agent supply line 19' with an inlet of the cooling agent into said intermediary device 21' for transfer pressure of the cooling agent, which operates for example as a deformable condenser and, respectively, a hot heat exchanger, whereas the expansion valve 20 is connected via a discharge line 20' with an outlet of the cooling agent from said intermediary device 21'.
- Said second thermal apparatus 16 comprises a hot heat exchanger 22 and a second cold heat exchanger 23.
- the hot heat exchanger 22 is connected at the upstream side via a discharge line 24' with hot water outlet 25 on the elastocaloric regenerator 3. Further, the hot heat exchanger 22 is connected at the downstream side via a line 22' to hot water inlet 26 on the regenerator 21.
- Said cold heat exchanger 23 is connected at the upstream side via a discharge line 27' with cold water outlet 28 on the regenerator 3. Still further, the cold heat exchanger 23 is connected at the downstream side via a supply line 23' to cold water inlet 29 on the regenerator 21.
- Said line 22' and said line 23' are interconnected with a line 27 in which is located a pumping means 24.
- the latter is selected as a piston pump.
- the arrangement of said connections 25, 26; 28, 29 of hot water and, respectively, of cold water on the elastocaloric regenerator 21 is formed in a direct manner, which means that the hot water outlet 25 and the hot water inlet 26 are located at the first end of the regenerator 21, whereas the cold water outlet 28 and the cold water inlet 29 are located at the opposite eend of the regenerator 21.
- said arrangement of the hot water and, respectively, of cold water connections 25, 26; 28, 29 on the regenerator 21 can be formed also in the crosswise manner.
- Said deformable condenser and, respectively, the hot heat exchanger 21' operates in a manner of a piston, a bellow or similar, and due to its deformation by means of said exchanger 17 enables deformation of the elastocaloric material of the regenerator 21.
- Physical background and individual operational stages are same as with the above described first embodiment. Loading of such regenerator 21 is carried out by means of a vapour-compression cooler.
- said regenerator 21 comprises a porous structure of elastocaloric material through which medium flows in a counterflow manner during respective stages of the operation. If appropriate operational conditions are met, then during cyclic operation, a temperature profile is established between the hot heat exchanger 22 and the cold heat exchanger 23 along the regenerator 21, that is in the direction of medium flow.
- a cyclic process of cooling/heating of the present second embodiment of the hybrid thermal apparatus comprises four stages as follows.
- the first stage comprises pressing by means of the compressing means 19 the cooling agent into the hot heat exchanger 21'.
- the expansion valve 20 is closed, and water circulating through the heat exchangers 22, 23 is prevented during the entire first stage of the process or at least during a part of the first stage of the process.
- the compression means 19 presses cooling agent into the heat exchanger 21' which is consequently deformed. Said deformation of the hot heat exchanger 21' is transferred by means of said load transmitter 17 to the regenerator 21.
- Increasing the pressure of the cooling agent in the heat exchanger 21' reflects in increasing the deformation of the regenerator 21 which consequently warms up.
- the final outcome of the first stage reflects in deformed regenerator 21 and compresses cooling agent in the hot heat exchanger 21', wherein both the heat exchanger 21' and the regenerator 21 are now in the warmed-up state.
- the second phase of the cyclic cooling/heating process of the present second embodiment of the hybrid thermal apparatus comprises heat removal from the hot heat exchanger 21' and regenerator 21.
- the flow of the compressed cooling agent into the vapour- compression apparatus 15 is prevented during the entire second stage of the process or at least during a part of the second stage of the process, wherein the heat exchanger 21' dissipates heat to the surrounding or to any other media for heat transfer.
- the pumping means 24 presses water having a third temperature T3 through the regenerator 21, and through the hot water outlet 25 from the regenerator 21 having a first temperature Ti.
- the heat is transferred from the hot regenerator 21 to the cold water, which consequently warms up, and hot water with the first temperature Ti continues its way through the hot water outlet 25.
- the pumping means 24 presses hot water with the first temperature Ti through the hot heat exchanger 22 where the water is cooled down, wherein the hot heat exchanger 22 dissipates the heat either to the surrounding or to any other media for heat transfer.
- the final outcome of the second stage is represented by a deformed regenerator 21 and by compressed cooling agent in the heat exchanger 21'. Hot water is placed at the disposal in the hot heat exchanger 22, where it is cooling down, wherein a first hot product is obtained. Said cooling down of the heat exchanger 21' results in a second hot product.
- the third stage of the cyclic cooling/heating process of the present second embodiment of the hybrid thermal apparatus comprises expansion of the cooling agent from the hot heat exchanger 21' into the cold heat exchanger 18. Inflow of the compressed cooling agent into the heat exchanger 21' is prevented, wherein the water flow through the regenerator 21 is prevented during the entire third stage of the process or at least during a part of the third stage of the process.
- the cooling agent expands via the expansion valve from the heat exchanger 21', therefore, the cooling agent cools down resulting in a first cold product in the cold heat exchanger 18. Due to said expansion the heat exchanger 21' is getting empty, resulting in decreasing of deformation of the regenerator 21, which consequently cools down.
- the final outcome of the third stage represents expanded cooling agent, heat exchanger 18 being cooled down, and non-deformed and cold regenerator 21.
- the fourth stage of the cyclic cooling/heating process of the present second embodiment of the hybrid thermal apparatus comprises cooling down the water in the cooled elastocaloric material of the regenerator 21, wherein the first thermal apparatus 15 is idle during the entire fourth stage of the process or at least during a part of the fourth stage of the process.
- Water having a second temperature T2 flows from the hot heat exchanger 22 through the inlet 26 into the regenerator 21, and through the outlet 28 into the cold heat exchanger 23.
- said water gets slightly cooled down to the temperature T 4
- the regenerator 21 gets slightly warmed up.
- the water, cooled down in said manner, having the temperature T4 flows into a cold heat exchange 23, wherein a second cold product is obtained.
- the final outcome of the fourth stage is repsented by cold water in the cold heat exchanger 23 and non-deformed regenerator 21.
- said second temperature T 2 of the water is higher than said first temperature Ti of the water (T2 > Ti), and said fourth temperature T4 of the water is higher than said third temperature T3 of the water (T3 ⁇ T4).
- the first and the second temperature Ti, T2 are substantially higher that the third and the fourth temperature T3, T4 (T ⁇ T2 « T3 ⁇ T4).
- FIG. 1 Various arrangements of individual elements of the hybrid thermal apparatus according to the invention, such as a cooling apparatus or a heat pump for instance, render possible different embodiments by means of which is enabled continuous operation of the thermal apparatus, and increasing of power and efficiency thereof.
- An embodiment is possible, for example, comprising a parallel piping of at least two deformable heat exchangers 3 made of elastocaloric material, enabling, by means of a reciprocal operation of individual stages, a continuous operation of the compresion means 5 and the pumping means 9; 12.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Other Air-Conditioning Systems (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019526005A JP2019535993A (ja) | 2016-11-16 | 2017-11-02 | ハイブリッドサーマル装置 |
| ES17821725T ES2844937T3 (es) | 2016-11-16 | 2017-11-02 | Aparato térmico híbrido |
| CN201780068553.2A CN110023697B (zh) | 2016-11-16 | 2017-11-02 | 混合热设备 |
| US16/346,235 US10948222B2 (en) | 2016-11-16 | 2017-11-02 | Hybrid thermal apparatus |
| EP17821725.3A EP3542108B1 (en) | 2016-11-16 | 2017-11-02 | Hybrid thermal apparatus |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SIP-201600283 | 2016-11-16 | ||
| SI201600283A SI25312A (sl) | 2016-11-16 | 2016-11-16 | Hibridna toplotna naprava |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018091995A1 true WO2018091995A1 (en) | 2018-05-24 |
Family
ID=60812104
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2017/056804 Ceased WO2018091995A1 (en) | 2016-11-16 | 2017-11-02 | Hybrid thermal apparatus |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US10948222B2 (enExample) |
| EP (1) | EP3542108B1 (enExample) |
| JP (1) | JP2019535993A (enExample) |
| CN (1) | CN110023697B (enExample) |
| ES (1) | ES2844937T3 (enExample) |
| SI (1) | SI25312A (enExample) |
| WO (1) | WO2018091995A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018207577A1 (de) * | 2018-05-16 | 2019-11-21 | Robert Bosch Gmbh | Vorrichtung zum Wärmetausch |
| DE102018208076A1 (de) * | 2018-05-23 | 2019-11-28 | Robert Bosch Gmbh | Vorrichtung zum Wärmetransport mittels eines kalorischen Elements |
| JP2024099532A (ja) * | 2019-04-12 | 2024-07-25 | エクサジン リミテッド | 動力発生サイクルまたはヒートポンプサイクルのための流体環境における束状sma/nteの気体分離によるサイクル動作 |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102019113696A1 (de) * | 2019-05-22 | 2020-11-26 | Universität des Saarlandes | Festkörperbasierter Energiewandler, Heiz/Kühlvorrichtung mit einem solchen Energiewandler sowie Verfahren zum Betreiben einer Heiz/Kühlvorrichtung |
| EP3862658B1 (de) * | 2020-02-06 | 2025-07-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur stabilisierung und/oder steuerung und/oder regelung der arbeitstemperatur, wärmeübertragereinheit, vorrichtung zum transport von energie, kältemaschine sowie wärmepumpe |
| EP3896282A1 (en) | 2020-04-16 | 2021-10-20 | Carrier Corporation | Thermally driven elastocaloric system |
| DE102022203994A1 (de) * | 2022-04-25 | 2023-10-26 | Volkswagen Aktiengesellschaft | Elastokalorische Wärmepumpe und Kraftfahrzeug mit einer elastokalorischen Wärmepumpe |
| DE102023125825A1 (de) * | 2023-09-22 | 2025-03-27 | Envola GmbH | Verfahren zur Übertragung thermischer Energie und Vorrichtung zur Durchführung des Verfahrens |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120273158A1 (en) * | 2011-04-11 | 2012-11-01 | The University Of Maryland | Thermoelastic cooling |
| US20150369524A1 (en) * | 2013-02-06 | 2015-12-24 | Daikin Industries, Ltd. | Cooling/heating module and air conditioning device |
| US20160084544A1 (en) * | 2012-03-27 | 2016-03-24 | University Of Maryland, College Park | Solid-state heating or cooling systems, devices, and methods |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5339653A (en) * | 1992-10-29 | 1994-08-23 | Degregoria Anthony J | Elastomer bed |
| US6332323B1 (en) * | 2000-02-25 | 2001-12-25 | 586925 B.C. Inc. | Heat transfer apparatus and method employing active regenerative cycle |
| US6367281B1 (en) * | 2000-05-25 | 2002-04-09 | Jason James Hugenroth | Solid phase change refrigeration |
| JP4042481B2 (ja) | 2002-06-26 | 2008-02-06 | 株式会社デンソー | 空調装置 |
| JP2005172258A (ja) | 2003-12-08 | 2005-06-30 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置の配管振動低減装置 |
| JP4660412B2 (ja) * | 2006-03-30 | 2011-03-30 | 株式会社東芝 | 冷凍機 |
| CN101982502B (zh) | 2010-10-22 | 2012-05-09 | 北京化工大学 | 一种弹性体热界面材料及其制备方法 |
| US9121647B2 (en) * | 2011-03-30 | 2015-09-01 | Battelle Memorial Institute | System and process for storing cold energy |
| FR2983572B1 (fr) | 2011-12-02 | 2014-01-24 | Commissariat Energie Atomique | Dispositif de generation d'une seconde variation de temperature a partir d'une premiere variation de temperature |
| JP5510568B2 (ja) * | 2012-02-06 | 2014-06-04 | ダイキン工業株式会社 | 調湿ユニット及び調湿装置 |
| US9797630B2 (en) * | 2014-06-17 | 2017-10-24 | Haier Us Appliance Solutions, Inc. | Heat pump with restorative operation for magneto caloric material |
| CN105823255B (zh) | 2016-05-06 | 2018-01-02 | 中国科学院理化技术研究所 | 一种脉管制冷机 |
| US10823464B2 (en) * | 2017-12-12 | 2020-11-03 | Haier Us Appliance Solutions, Inc. | Elasto-caloric heat pump system |
| WO2019173134A1 (en) * | 2018-03-03 | 2019-09-12 | Glacigen Materials, Inc. | Freeze tape casting systems and methods |
-
2016
- 2016-11-16 SI SI201600283A patent/SI25312A/sl active IP Right Grant
-
2017
- 2017-11-02 EP EP17821725.3A patent/EP3542108B1/en active Active
- 2017-11-02 WO PCT/IB2017/056804 patent/WO2018091995A1/en not_active Ceased
- 2017-11-02 US US16/346,235 patent/US10948222B2/en active Active
- 2017-11-02 ES ES17821725T patent/ES2844937T3/es active Active
- 2017-11-02 JP JP2019526005A patent/JP2019535993A/ja active Pending
- 2017-11-02 CN CN201780068553.2A patent/CN110023697B/zh active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120273158A1 (en) * | 2011-04-11 | 2012-11-01 | The University Of Maryland | Thermoelastic cooling |
| US20160084544A1 (en) * | 2012-03-27 | 2016-03-24 | University Of Maryland, College Park | Solid-state heating or cooling systems, devices, and methods |
| US20150369524A1 (en) * | 2013-02-06 | 2015-12-24 | Daikin Industries, Ltd. | Cooling/heating module and air conditioning device |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018207577A1 (de) * | 2018-05-16 | 2019-11-21 | Robert Bosch Gmbh | Vorrichtung zum Wärmetausch |
| DE102018208076A1 (de) * | 2018-05-23 | 2019-11-28 | Robert Bosch Gmbh | Vorrichtung zum Wärmetransport mittels eines kalorischen Elements |
| JP2024099532A (ja) * | 2019-04-12 | 2024-07-25 | エクサジン リミテッド | 動力発生サイクルまたはヒートポンプサイクルのための流体環境における束状sma/nteの気体分離によるサイクル動作 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190264958A1 (en) | 2019-08-29 |
| ES2844937T3 (es) | 2021-07-23 |
| EP3542108B1 (en) | 2020-11-04 |
| CN110023697A (zh) | 2019-07-16 |
| JP2019535993A (ja) | 2019-12-12 |
| CN110023697B (zh) | 2021-06-15 |
| EP3542108A1 (en) | 2019-09-25 |
| SI25312A (sl) | 2018-05-31 |
| US10948222B2 (en) | 2021-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3542108B1 (en) | Hybrid thermal apparatus | |
| CN103250012B (zh) | 二元制冷循环装置 | |
| KR102471584B1 (ko) | 증기압축냉동 시스템의 리버스-사이클 해동을 위한 상변환 물질 기반의 증진법 | |
| JP5632973B2 (ja) | 複合二元冷凍サイクル装置 | |
| CN103210264A (zh) | 热泵式制热装置 | |
| CN103868265B (zh) | 一种具有蓄冷/蓄热功能的温控装置 | |
| JP2019535993A5 (enExample) | ||
| CA2791438A1 (en) | Heating device with irreversible thermodynamic cycle for heating installations having high delivery temperature | |
| JP4043074B2 (ja) | 冷凍装置 | |
| JP2011058663A (ja) | 冷凍空調装置 | |
| KR101972638B1 (ko) | 열교환기 교번타입 히트펌프시스템 | |
| CN108700349A (zh) | 包括多个储存室的制冷装置 | |
| JP2008531974A (ja) | 水抜きを備えた遷臨界ヒートポンプ式温水器 | |
| KR101914163B1 (ko) | 다중열원 융합형 히트펌프시스템 | |
| CN223435301U (zh) | 油路系统、复叠机组、节能设备及制冷设备 | |
| CN109813003A (zh) | 冷却系统 | |
| CN211233470U (zh) | 压力缓冲组件及热泵系统 | |
| CN113874668A (zh) | 热式热泵液压系统 | |
| KR101753086B1 (ko) | 하이브리드타입 공기조화 및 히트펌프시스템 | |
| JP5800842B2 (ja) | 冷凍装置 | |
| CN103322662A (zh) | 采用热风扩展工作温度并具有独立双换热回路的制冷系统 | |
| WO2024045122A1 (zh) | 热管理系统及储能设备 | |
| JP4767207B2 (ja) | 給湯装置 | |
| US20240210084A1 (en) | Refrigeration system | |
| CN119321632A (zh) | 油路系统、复叠机组、节能设备、制冷设备及控制方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17821725 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019526005 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2017821725 Country of ref document: EP Effective date: 20190617 |