WO2018090817A1 - 一种基于阻抗谱-光学方法的多传感器无创血糖检测设备 - Google Patents
一种基于阻抗谱-光学方法的多传感器无创血糖检测设备 Download PDFInfo
- Publication number
- WO2018090817A1 WO2018090817A1 PCT/CN2017/108521 CN2017108521W WO2018090817A1 WO 2018090817 A1 WO2018090817 A1 WO 2018090817A1 CN 2017108521 W CN2017108521 W CN 2017108521W WO 2018090817 A1 WO2018090817 A1 WO 2018090817A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- electrode
- frequency
- blood glucose
- impedance spectrum
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1468—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
- A61B5/1477—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means non-invasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/026—Dielectric impedance spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0209—Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0233—Special features of optical sensors or probes classified in A61B5/00
- A61B2562/0238—Optical sensor arrangements for performing transmission measurements on body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0271—Thermal or temperature sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/029—Humidity sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6831—Straps, bands or harnesses
Definitions
- the invention relates to non-invasive blood glucose detection for human body, in particular to a multi-sensor non-invasive blood glucose detecting device combining impedance spectrum-optical method, belonging to the technical field of medical instruments.
- Diabetes is a group of metabolic diseases characterized by hyperglycemia, and there is currently no cure for diabetes.
- the treatment of diabetes is mainly to monitor and control blood sugar levels.
- the traditional method of blood glucose measurement has obvious defects, which brings trauma and pain to the patient during the measurement process, and it is not convenient to achieve continuity detection.
- Non-invasive blood glucose detection technology overcomes the shortcomings of traditional detection methods and can effectively meet the needs of diabetics to monitor blood glucose concentration in real time and frequently. It is the development direction of blood glucose detection technology.
- Non-invasive blood glucose detection methods are mainly concentrated in the field of optical detection. Due to many interference components and large individual differences, most of the detection methods are still in the laboratory research stage.
- impedance spectroscopy (IS) has also made some progress in non-invasive blood glucose research. Most of the impedance spectrum studies are concentrated within 0-50 kHz and 10 MHz.
- American Harry Richardson Elden et al. (WO1999039627A1) used a linear combination of impedance and phase to predict blood stasis by testing the amplitude and phase of human skin impedance at a specific frequency point (20 kHz, 500 kHz); Kiseok Song Group of Korea comprehensive impedance spectroscopy
- Non-invasive blood glucose testing was performed with infrared spectroscopy, and they studied frequencies ranging from 10 kHz to 76 kHz.
- the research in the lower frequency state is relatively easy because there is no RF transmission and high frequency noise interference, electrode polarization and other problems, but the current bypasses the extracellular fluid at low frequency, which affects the monitoring effect of non-invasive blood glucose.
- the Caduff A (US 2013/0211204 A1, US7693561B2) team in Switzerland found that there is a clear relationship between blood glucose concentration and impedance value at higher frequency. They designed an impedance measurement system in the 30-60 MHz range to study the correlation between impedance information and blood glucose.
- the high frequency method requires high stability of tissue characteristics, and it is difficult to obtain satisfactory results by using alone.
- the research team began to use multi-sensor multi-parameter measurement method to improve the measurement accuracy, using the high frequency, intermediate frequency, low frequency three frequency electrodes, and adding temperature, humidity and light sensors for measurement.
- the electrode consists of a straight strip electrode and a ring electrode around the straight strip electrode.
- the distance between the straight strip electrode and the surrounding ring electrode is 0.3mm, 1.5mm and 4mm respectively; the wavelength of the photosensor is 550/660/ 880nm.
- the electrode used in this research group is one end long strip, one end is ring-shaped, the electrodes of different frequencies are close to each other, and are surrounded by the same ground line. Interference; the two electrodes of the same frequency are close to each other, and the penetration depth is shallow; the temperature and humidity sensors directly fit the skin, which is easy to cause saturation of humidity and affect the temperature and humidity test.
- the object of the present invention is to provide a multi-sensor non-invasive blood glucose detecting device based on impedance spectrum-optical method to further improve the measurement accuracy of blood glucose, in view of the deficiencies and shortcomings of the prior art.
- a multi-sensor non-invasive blood glucose detecting device based on impedance spectrum-optical method comprising a detecting probe, a microprocessor, a display unit and a storage unit;
- the detecting probe comprises a high frequency electrode, a low frequency electrode, a temperature and humidity sensor, an LED array, a photoelectric sensor And the contact plate;
- the microprocessor generates the high frequency and low frequency excitation signals by controlling the excitation signal generating circuit, and the feedback signals of the high frequency and low frequency electrodes are input to the microprocessor through the amplitude phase detecting circuit, and the high frequency and low frequency impedance are calculated;
- the temperature signal and the humidity signal of the measured part measured by the temperature and humidity sensor are input to the microprocessor after signal conditioning;
- the LED array is controlled by the transmitter control circuit, and the photoelectric sensor measures The obtained light intensity signal is amplified and filtered and input into the microprocessor to obtain tissue optical characteristics;
- the microprocessor processing result is input to the display system for display, and the storage unit stores
- the shielding electrode is disposed around the high-frequency electrode, and the shielding electrode is connected to the positive electrode or the negative electrode of the high-frequency electrode through the inductor L.
- the high frequency electrode preferably employs a flexible electrode.
- the sealed space formed by the temperature and humidity sensor and the measured portion of the human body is composed of a sensor mounting plate and a bottom plate having a cavity structure, and the bottom plate is installed directly above the contact plate.
- the multi-sensor non-invasive blood glucose detecting device based on the impedance spectrum-optical method according to claim 1, wherein the light-emitting diode array (4) and the photoelectric sensor (5) are arranged along the blood flow direction of the human body.
- the center distance between the two is between 1mm and 200mm.
- the light emitting diode array (4) of the present invention comprises four light emitting diodes having wavelengths of 660 nm, 760 nm, 850 nm and 940 nm, respectively.
- the detection probe of the present invention is fixed to the body to be tested by a wrist strap.
- the contact plate is made of a rubber plate.
- the invention optimizes the distance of the impedance spectrum high-frequency electrode, and directly solders the matching inductor to the high-frequency electrode, and has a conductive rectangular frame around the electrode. Connected to one of the electrodes, the flexible electrode is used to make the electrode and the skin closely fit, reducing noise interference; 2 the distance between the low-frequency electrodes of the impedance spectrum of the invention is large, the measured signal is more stable, and the extracted characteristic parameters are related to blood glucose. Higher in nature; 3 The invention uses a temperature and humidity sensor to measure the temperature and humidity of the skin surface, and corrects the impedance spectrum and the photoelectric channel.
- the temperature and humidity sensor keeps a certain distance from the human skin, and forms a non-closed space through the slit or the small hole to form a structure of balanced heat storage and storage, so as to eliminate the influence of body temperature change and sweating on the measurement, so that the temperature and humidity The test is more accurate.
- FIG. 1 is a top plan view showing the large probe in the direction of the bottom plate in the present invention.
- Fig. 2 is a cross-sectional view taken along line B-B of Fig. 1;
- Fig. 3 is a cross-sectional view taken along line C-C of Fig. 1;
- Figure 4 is a block diagram of the circuit of the non-invasive blood glucose detecting device.
- the detecting probe includes a temperature and humidity sensor 2, an LED array 4, a photosensor 5, a low frequency electrode 1, a high frequency electrode 3, and a contact plate 6.
- the detecting probe of the present invention may further comprise a housing comprising a bottom plate 7 and a top cover 8; the structure on the top cover 8 is used for fixing the housing with a wrist strap
- the wristband material can be made of elastic material, and the wristband can have a Velcro; in order to improve the comfort of the instrument, the contact plate 6 is made of rubber.
- the high-frequency electrode 3 of the present invention adopts a parallel electrode, and the matched inductor L is directly soldered on the positive electrode or the negative electrode of the electrode, and a shield electrode 10 is disposed around the shield electrode and the positive electrode or the negative electrode of the high-frequency electrode is connected through the inductor L.
- the high frequency electrode may be a flexible electrode.
- the spatial position between the two poles of the low frequency electrode 1 is required to have a certain distance (1 cm to 2 m).
- the low-frequency electrode can be designed in a split type, with one pole of the low-frequency electrode being separately arranged and the other pole being arranged with the remaining sensors, as shown in Fig. 1.
- the low frequency electrode 1, the temperature and humidity sensor 2, the light emitting diode array 4, the photosensor 5, and the high frequency electrode 3 of the present invention are disposed on the bottom plate 7 and arranged along the direction of the body to be tested.
- the bottom plate 7 and the top cover 8 of the present invention may be made of an insulating material such as a PVC material.
- the high-frequency excitation electric signal ranges from 1 MHz to 100 MHz
- the low-frequency electrode is made of stainless steel or other metal electrodes, such as CuCrZr, BeCu, CuAl2O3, Ag/AgCl, and the excitation electric signal frequency is 1 kHz to 1 MHz.
- the vertical distance between the bottom of the temperature and humidity sensor 2 and the bottom of the contact plate 6 is 0.1-20 mm; the temperature and humidity sensor 2 forms a closed space with the measured part of the human body, and a slit or a small hole is formed in the wall of the sealed space to form a balanced heat storage.
- the sealed space formed by the temperature and humidity sensor 2 and the measured portion of the human body is formed by the sensor mounting plate 9 and the bottom plate 7 having a cavity structure, and the bottom plate 7 is mounted directly above the contact plate 6. Slits or small holes in the wall of the confined space can be opened at temperature and humidity
- the small hole on the sensor mounting plate is shown as 11 in Figure 2.
- the LED array 4 of the present invention comprises four wavelengths of light emitting diodes having wavelengths of 660 nm, 760 nm, 850 nm and 940 nm, respectively.
- the LED array 4 and the photosensor 5 are arranged along the blood flow direction of the human body, and the center distance between them is between 1 mm and 200 mm.
- the data processing and display system comprises a microprocessor and a display unit and a storage unit respectively connected to the microprocessor; the high-frequency electrode 3 is in contact with the measured part (such as a wrist, a boom, etc.), and the high-frequency excitation signal generating circuit is The generated high-frequency excitation sweep signal is introduced into the human body, and the high-frequency amplitude phase detection circuit receives the high-frequency excitation signal and the feedback signal after passing through the measured body part, and performs processing to transmit the amplitude ratio and phase difference of the two signals.
- the high-frequency impedance spectrum Z H is finally obtained; the low-frequency electrode 1 is in contact with the measured part (such as the wrist, the arm, etc.), and the low-frequency excitation sweep signal generated by the low-frequency excitation signal generating circuit is introduced into the human body, and the low frequency is introduced.
- the amplitude and phase detection circuit receives the low frequency excitation signal and the feedback signal after passing through the measured body part, and after processing, transmits the amplitude ratio and the phase difference of the two signals to the microprocessor, and finally obtains the low frequency impedance spectrum Z L ;
- the reflected light intensity signal A measured by the photoelectric sensor 5 is sequentially input to the first-order amplification filter circuit, the integration circuit, the second-order amplification filter, and the analog acquisition method.
- the LED array 4 is controlled by a transmitter control circuit, the microprocessor is connected to the transmitter control circuit through a control line; the microprocessor passes the control line and the potentiometer switch The circuit is connected to the first-order amplification filter circuit and connected to the second-order amplification filter circuit through the control line.
- the measurement principle of the multi-sensor non-invasive blood glucose detecting device based on the impedance spectrum-optical method is as follows: the present invention adopts the principle of high-frequency impedance spectrum, low-frequency impedance spectrum and optical-based principle for blood glucose measurement, and then comprehensively considers three principles.
- the measured blood glucose value results in the best blood glucose fusion result.
- the equilibrium of electrolysis between tissue fluid and cells is broken during the process of glucose metabolism, so that the electrolyte concentration inside and outside the cell changes, and the permeability of the cell membrane changes, which is manifested by the change of dielectric constant. It is reflected in the change of impedance information.
- the current cannot pass through the cell membrane under the lower frequency excitation state (less than 100 kHz), and the main information is the tissue fluid information. At the same time, there is no radio frequency transmission, high frequency noise interference, electrode polarization, etc.
- the low-frequency impedance measurement in the present invention is based on this measurement.
- the obtained blood glucose fluctuation information is characterized by extracting the feature values from the low-frequency impedance spectrum Z L and processing them with a certain algorithm. At higher frequency excitation (greater than 10MHz), current penetrates the cell membrane, which can obtain the overall information of tissue fluid and cell fluid, which can more sensitively and quickly characterize changes in blood glucose concentration, but high frequency information is susceptible to skin thickness and tissue differences.
- the effect is also affected by other fluctuation factors in the tissue fluid, and the anti-interference ability is poor, and it is difficult to separately characterize the blood sugar level.
- the feature values are extracted from the high-frequency impedance spectrum Z H and characterized by a certain algorithm.
- the present invention also combines the information of the low frequency impedance spectrum and the high frequency impedance spectrum to achieve a fusion process to obtain a result higher than the separate measurement effects of the two.
- a part of the energy of a specific wavelength of light transmitted through human tissue is absorbed by human tissue.
- the difference in absorption characteristics reflects the concentration of blood sugar in the human body.
- the blood glucose value can be measured correspondingly.
- the light intensity is measured by the photosensor 5.
- the multi-sensor non-invasive blood glucose detecting device based on the impedance spectrum-optical method works as follows:
- the detecting probe of the present invention is fixed to the tested part of the human body (such as a wrist, a boom, etc.) by using a wristband, the multi-channel cyclic operation, the temperature and humidity sensor 2, the high-frequency electrode 3, the low-frequency electrode 1, and the photoelectric sensor 5 respectively
- the data for the corresponding channel is divided into four channels for transmission to the data processing and display system.
- the temperature and humidity sensor measures the temperature signal T of the measured part of the human body and the ambient humidity signal H, and then enters the microprocessor through the signal conditioning circuit through the transmission line.
- the high-frequency electrode 3 is in contact with the measured part (such as a wrist, a boom, etc.), and the high-frequency excitation sweep signal generated by the high-frequency excitation signal generating circuit is introduced into the human body, and the high-frequency amplitude phase detecting circuit receives the high-frequency excitation signal and After the feedback signal from the measured body part, and processing, the amplitude ratio and phase difference of the two signals are transmitted to the microprocessor, and finally the high-frequency impedance spectrum Z K is obtained .
- the measured part such as a wrist, a boom, etc.
- the low frequency electrode 1 is in contact with the measured part (such as the wrist, the big arm, etc.), and the low frequency excitation sweep signal generated by the low frequency excitation signal generating circuit is introduced into the human body, and the low frequency amplitude phase detecting circuit receives the low frequency excitation signal and passes through the measured human body part. After the feedback signal, and processing, the amplitude ratio and phase difference of the two signals are transmitted to the microprocessor, and finally the low-frequency impedance spectrum Z L is obtained .
- the measured part such as the wrist, the big arm, etc.
- the light wave emitted by the LED array 4 passes through the measured portion (such as a finger, an ear, etc.) to generate a reflected spectrum signal A 1 -A 4 , which is received by the photoelectric sensor 5, and sequentially passes through a first-order amplification filter circuit, an integration circuit, and a second-order amplification filter.
- the circuit enters the microprocessor.
- the operation of the LED array 4 is controlled by a transmitter control circuit that is connected to the microprocessor through a control line; the first-order amplification filter circuit is controlled by a potentiometer switching circuit that passes the control line Connected to the microprocessor; the second-order amplification filter circuit is directly connected to the microprocessor through the control line.
- the transmitter control circuit, the first-order amplification filter circuit, and the second-order amplification filter circuit are all controlled by the microprocessor.
- the microprocessor Under the participation and control of the microprocessor, all signals are transmitted to the microprocessor, and the signals are processed in accordance with the non-invasive blood glucose detection principle of the present invention to obtain the blood glucose level measured by the instrument.
- the blood glucose level and key intermediate data are respectively input to the display unit and the storage unit through the transmission line, thereby realizing the display and storage functions of the data.
- the microprocessor has the following three functions: one is to collect all data and perform arithmetic processing; the other is to generate control signals for the transmitter control circuit, the second-order amplification filter circuit and the potentiometer switch circuit. Control; the third is to transfer the data to the display unit and the storage unit to complete the display and storage.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Psychiatry (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,属于人体血糖测量装置。血糖检测设备包括检测探头、微处理器、显示单元和存储单元。检测探头包括温湿度传感器(2)、发光二极管阵列(4)、光电传感器(5)、低频电极(1)和高频电极(3)。高频电极(3)采用平行电极,电极的正极或负极上直接焊接匹配的电感L,并设有屏蔽电极(10)。低频电极(1)的距离在1cm—2m,能稳定测试组织低频阻抗。温湿度传感器(2)与人体被测部位形成密闭空间,在密闭空间壁上开狭缝或小孔(11)形成平衡储热储湿结构。无创血糖检测设备采用阻抗谱法与光学方法相结合的原理,通过改进传感器的设计,得到的血糖值准确度更高。
Description
本发明涉及对人体进行无创血糖检测,具体为一种阻抗谱-光学方法相结合的多传感器无创血糖检测设备,属于医疗器械技术领域。
糖尿病是一组以高血糖为特征的代谢性疾病,目前还没有根治糖尿病的方法。糖尿病的治疗以频繁地监测、控制血糖水平为主。传统的有创取血测量血糖的方法存在明显缺陷,在测量过程中给患者带来创伤和痛觉,不便于实现连续性的检测。无创血糖检测技术克服了传统检测方法的缺点,能有效地满足糖尿病人实时、频繁监测血糖浓度的需求,是血糖检测技术发展的方向。无创血糖检测方法主要集中在光学检测领域,由于干扰成分多、个体差异大,大部分检测方法仍然处在实验室研究阶段。
自1985年Lukaski提出用生物电阻抗(bioelectrical impedance analysis,BIA)测定人体的体成分以来,国内外学者基于脂肪和非脂肪物质对于电流的传导性能不同导致组织器官具有不同的阻抗特性的原理,用生物电阻抗的方法区分脂肪、肌肉、矿物质、含水物质等人体组成成分。韩国上市公司研制的Inbody系列人体成分分析仪采用各节段多频率生物电阻抗法测量人体各成分的均衡情况具有高的精密度。
以生物阻抗技术为基础,阻抗谱法(impedance spectroscopy,IS)无创血糖的研究也取得了一定进展。阻抗谱研究大部分都集中在0-50kHz、10MHz以内。美国Harry Richardson Elden等人(WO1999039627A1)通过测试特定频率点(20kHz,500kHz)的人体皮肤阻抗幅值和相位,利用阻抗和相位的线性组合来预测血唐;韩国的Kiseok Song研究组综合阻抗谱法与红外光谱法进行无创血糖测试,他们研究的频率范围在10kHz-76kHz。较低频状态下的研究因没有射频传输和高频噪声干扰、电极极化等问题的影响而相对较为容易,但低频下电流绕过细胞流经细胞外液,影响了无创血糖的监测效果。
瑞士的Caduff A(US2013/0211204 A1,US7693561B2)研究组发现在较高频率段,血糖浓度与阻抗值之间存在较为明显的关系。他们设计了30-60MHz范围的阻抗测量系统,研究得到的阻抗信息与血糖之间的相关性。但是由于不同个体间的皮肤厚度和组织差异太大,高频方法对组织特性稳定性要求很高,单独使用很难取得令人满意的结果。该研究组在之后的研究里开始采用多传感器多参数测量的方法提高测量准确度,使用高频、中频、低频三个频段的电极,并加入温度、湿度和光传感器进行测量。其电极由一个直条状的电极和直条状电极四周的环形电极组成,直条状电极与周围环形电极的间距分别为0.3mm、1.5mm和4mm;其光传感器所用波长为550/660/880nm。该研究组使用的电极为一端长条,一端环形,不同频率的电极距离较近,且被同样的地线包围,相互之间会有
干扰;同一频率的两个电极距离较近,穿透组织深度较浅;温度和湿度传感器直接贴合皮肤,容易造成湿度的饱和,影响温湿度的测试。
发明内容
本发明的目的是针对现有技术存在的不足和缺陷,提供一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,以进一步提高血糖的测量准确度。
本发明的技术方案如下:
一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,包括检测探头、微处理器、显示单元和存储单元;检测探头包括高频电极、低频电极、温湿度传感器、发光二极管阵列、光电传感器和接触板;微处理器通过控制激励信号发生电路产生高频和低频激励信号,高频和低频电极的反馈信号经幅相检测电路后输入到微处理器,计算得到高频和低频阻抗;所述的温湿度传感器所测得的被测部位温度信号和湿度信号,经过信号调理后输入到微处理器中;所述的发光二极管阵列由发射器控制电路进行控制,所述的光电传感器所测得的光强信号经过放大滤波后输入到微处理器中得到组织光学特性;微处理器处理结果输入到显示系统进行显示,同时存储单元保存测试数据;其特征在于:所述高频电极采用平行电极,电极正极或负极上直接焊接匹配的电感L;低频电极正极与负极之间的距离在1cm~2m之间;温湿度传感器底部距离接触板底部的垂直距离为0.1~20mm;温湿度传感器与人体被测部位形成密闭空间,在该密闭空间壁上开狭缝或小孔形成平衡储热储湿结构。
上述技术方案中,其特征还在于:所述高频电极周围设有一屏蔽电极,该屏蔽电极与高频电极的正极或负极通过电感L相连。所述高频电极优选采用柔性电极。
本发明的另一技术特征是:温湿度传感器与人体被测部位形成的密闭空间是由传感器安装板和带有空腔结构的底板构成,底板安装在接触板的正上方。
5.按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述的发光二极管阵列(4)和光电传感器(5)沿人体血流方向布置,两者之间的中心距在1mm至200mm之间。
本发明所述的发光二极管阵列(4)包含4个发光二极管,波长分别为660nm、760nm、850nm和940nm。
本发明所述的检测探头通过腕带固定在人体被测部位。所述的接触板采用橡胶板。
本发明与现有技术相比,具有以下优点及突出性效果:①本发明对阻抗谱高频电极的距离进行优化,并直接将匹配电感焊接在高频电极上,在电极周围有一导电矩形框与其中一个电极相连,采用柔性电极,使电极和皮肤贴合紧密,减少噪声干扰;②本发明阻抗谱低频电极之间的距离较大,测得的信号更稳定,提取的特征参数与血糖相关性更高;③本发明利用温湿度传感器测量皮肤表面的温度和湿度,修正阻抗谱和光电通道的
测量结果,温湿度传感器与人体皮肤保持一定距离,并通过狭缝或者小孔形成非密闭空间,形成一个平衡储热储湿的结构,尽量消除体温变化及出汗对测量的影响,使得温湿度的测试更加准确。
图1是本发明中大探头从底板方向的俯视图示意图。
图2是图1的B-B方向剖视图。
图3是图1的C-C方向剖视图。
图4是无创血糖检测设备电路原理框图。
图中:1-低频电极;2-温湿度传感器;3-高频电极;4-光电二极管阵列;5-光电传感器;6-接触板;7-底板;8-顶盖;9-温湿度传感器安装板;10-屏蔽电极;11-温湿度传感器安装板上开的小孔;L为高频电极的匹配电感。
下面结合附图对该种基于阻抗谱-光学方法的多传感器无创血糖检测设备具体结构、工作原理和工作过程做进一步的说明。
图1、图2和图3是该种基于阻抗谱-光学方法的多传感器无创血糖检测设备的检测探头结构示意图。检测探头包括温湿度传感器2、发光二极管阵列4、光电传感器5、低频电极1、高频电极3和接触板6。为方便仪器的使用,使结构更加紧凑,本发明所述的检测探头还可以包括壳体,该壳体包括底板7和顶盖8;顶盖8上的结构用于使用腕带将壳体固定在人体被测部位(如手腕、大臂等),腕带材质可以使用弹性材料,腕带上可以有魔术贴;为了提高仪器使用的舒适度,接触板6采用橡胶材质。
根据测量需要,本发明所述高频电极3采用平行电极,电极正极或负极上直接焊接匹配的电感L,周围设有一屏蔽电极10,该屏蔽电极与高频电极的正极或负极通过电感L相连。为了提高高频电极和人体皮肤的接触质量,高频电极可以采用柔性电极。所述低频电极1的两极之间的空间位置要求有一定距离(1cm~2m)。低频电极可以采用分体式设计,低频电极的一极单独布置,另一极和其余传感器布置在一起,如图1。本发明所述低频电极1、温湿度传感器2、发光二极管阵列4、光电传感器5、高频电极3设置于底板7上,并沿着人体待测部位方向排布。本发明所述的底板7和顶盖8可采用绝缘材料(如PVC材料)。
高频激励电信号范围是1MHz~100MHz,所述低频电极采用不锈钢材质,也可以是其他金属电极,如CuCrZr、BeCu、CuAl2O3、Ag/AgCl,激励电信号频率是1KHz~1MHz。
所述温湿度传感器2底部距离接触板6底部的垂直距离为0.1~20mm;温湿度传感器2与人体被测部位形成密闭空间,在该密闭空间壁上开狭缝或小孔形成平衡储热储湿结构。温湿度传感器2与人体被测部位形成的密闭空间是由传感器安装板9和带有空腔结构的底板7形成,底板7安装在接触板6的正上方。密闭空间壁上的狭缝或小孔可以为开在温湿度
传感器安装板上的小孔,如图2中的11所示。
本发明所述的发光二极管阵列4包含4个波长的发光二极管,波长分别为660nm、760nm、850nm和940nm。发光二极管阵列4和光电传感器5沿人体血流方向布置,两者中心距在1mm至200mm之间。
图4是本发明所述的数据处理及显示系统的电路原理框图。该数据处理及显示系统包括微处理器以及分别与微处理器相连的显示单元和存储单元;高频电极3与被测部位(如手腕、大臂等)相接触,将高频激励信号发生电路所产生的高频激励扫频信号导入人体,高频幅相检测电路接收高频激励信号和经过被测人体部位后的反馈信号,并进行处理后将两路信号的幅值比和相位差传输到微处理器,最终得到高频阻抗谱ZH;低频电极1与被测部位(如手腕、大臂等)相接触,将低频激励信号发生电路所产生的低频激励扫频信号导入人体,低频幅相检测电路接收低频激励信号和经过被测人体部位后的反馈信号,并进行处理后将两路信号的的幅值比和相位差传输到微处理器,最终得到低频阻抗谱ZL;所述的光电传感器5所测得的反射光强信号A依次经过一阶放大滤波电路、积分电路、二阶放大滤波后通过模拟采集的方式输入到微处理器中;所述的发光二极管阵列4由发射器控制电路进行控制,所述的微处理器通过控制线路与发射器控制电路相连接;所述的微处理器通过控制线路和电位器开关电路与一阶放大滤波电路相连接,并通过控制线路与二阶放大滤波电路相连接。
该种基于阻抗谱-光学方法的多传感器无创血糖检测设备的测量原理如下:本发明分别采用基于高频阻抗谱、低频阻抗谱的原理和基于光学的原理进行血糖测量,然后综合考虑三种原理测得的血糖值得到最佳的血糖值融合结果。
其中,基于阻抗谱的测量原理认为糖代谢过程中,组织液与细胞间的电解平衡被打破,从而细胞内外的电解质浓度发生改变,细胞膜的渗透特性也发生变化,表现为介电常数的改变,宏观上体现为阻抗信息的变化。基于人体阻抗模型,较低频的激励状态(小于100kHz)下,电流无法穿过细胞膜,所得到得主要是组织液信息,同时此时因没有射频传输和高频噪声干扰、电极极化等问题的影响而相对较为容易获得较大范围内组织液的成分信息,能够宏观地表征代谢过程中组织液中血糖浓度的大幅波动,本发明中的低频阻抗测量正是基于此测量。所得的血糖波动信息是从低频阻抗谱ZL中提取特征值并以一定算法处理来表征的。在较高频的激励下(大于10MHz),电流穿透细胞膜,能够得到组织液和细胞液的整体信息,能够更灵敏且迅速地表征血糖浓度变化,但是高频信息容易受到皮肤厚度和组织差异的影响,也会受组织液中其他波动因素的影响,抗干扰能力差,很难单独表征血糖值。本发明中采用从高频阻抗谱ZH中提取特征值并以一定算法处理表征。本发明还将低频阻抗谱和高频阻抗谱的信息结合起来,实现融合处理,以获得高于两者单独测量效果的结果。
基于光学的测量原理认为,特定波长的光波透过人体组织时一部分能量会被人体组织吸收,吸收特性的不同反应了人体血糖浓度的大小,通过测量反射光强可以对应测得血糖值,该透射光强由光电传感器5测量得到。
该种基于阻抗谱-光学方法的多传感器无创血糖检测设备工作过程如下:
将本发明所述的检测探头使用腕带固定于人体被测部位(如手腕、大臂等)时,多通道循环工作,温湿度传感器2、高频电极3、低频电极1、光电传感器5分别采集对应通道的数据分成四路传输到数据处理与显示系统。
温湿度传感器测量的是人体被测部位温度信号T和周围湿度信号H,通过传输线依次经过信号调理电路进入微处理器。
高频电极3与被测部位(如手腕、大臂等)相接触,将高频激励信号发生电路所产生的高频激励扫频信号导入人体,高频幅相检测电路接收高频激励信号和经过被测人体部位后的反馈信号,并进行处理后将两路信号的幅值比和相位差传输到微处理器,最终得到高频阻抗谱ZK。
低频电极1与被测部位(如手腕、大臂等)相接触,将低频激励信号发生电路所产生的低频激励扫频信号导入人体,低频幅相检测电路接收低频激励信号和经过被测人体部位后的反馈信号,并进行处理后将两路信号的的幅值比和相位差传输到微处理器,最终得到低频阻抗谱ZL。
发光二极管阵列4发射的光波通过被测部位(如手指、耳朵等)后产生反射光谱信号A1~A4,由光电传感器5接收,依次经过一阶放大滤波电路、积分电路以及二阶放大滤波电路进入微处理器。发光二极管阵列4的工作由发射器控制电路来控制,该发射器控制电路通过控制线路与微处理器相连接;一阶放大滤波电路由电位器开关电路来控制,该电位器开关电路通过控制线路与微处理器相连接;二阶放大滤波电路则直接通过控制线路与微处理器相连接。这样,发射器控制电路、一阶放大滤波电路以及二阶放大滤波电路都受到微处理器的控制。
在微处理器的参与和控制之下,所有信号都传输到微处理器中,这些信号按照本发明的无创血糖检测原理进行数据处理,从而得到仪器所测量的血糖值大小。血糖值以及关键的中间数据通过传输线路分别输入到显示单元和存储单元,实现数据的显示和存储功能。微处理器作为数据处理的核心单元,有如下三个作用:一是采集所有数据,并进行运算处理;二是产生控制信号,对发射器控制电路、二阶放大滤波电路和电位器开关电路进行控制;三是将数据输送到显示单元和存储单元,分别完成显示和存储。
Claims (9)
- 一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,包括检测探头、微处理器、显示单元和存储单元;检测探头包括高频电极(3)、低频电极(1)、温湿度传感器(2)、发光二极管阵列(4)、光电传感器(5)和接触板(6);微处理器通过控制激励信号发生电路产生高频和低频激励信号,高频和低频电极的反馈信号经幅相检测电路后输入到微处理器,计算得到高频和低频阻抗;所述的温湿度传感器所测得的被测部位温度信号和湿度信号,经过信号调理后输入到微处理器中;所述的发光二极管阵列由发射器控制电路进行控制,所述的光电传感器所测得的光强信号经过放大滤波后输入到微处理器中得到组织光学特性;微处理器处理结果输入到显示单元进行显示,同时存储单元保存测试数据;其特征在于:所述高频电极(3)采用一对平行电极,电极上直接焊接匹配的电感L;低频电极正极与负极之间的距离在1cm~2m之间;温湿度传感器(2)底部距离接触板(6)底部的垂直距离为0.1~20mm;温湿度传感器(2)与人体被测部位形成密闭空间,在该密闭空间壁上开狭缝或小孔形成平衡储热储湿结构。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述高频电极(3)周围设有一屏蔽电极(10),该屏蔽电极与高频电极的正极或负极通过电感L相连。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:低频电极采用分体式设计。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述高频电极(3)采用柔性电极。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:温湿度传感器(2)与人体被测部位形成的密闭空间是由传感器安装板(9)和带有空腔结构的底板(7)构成,底板(7)安装在接触板(6)的正上方。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述的发光二极管阵列(4)和光电传感器(5)沿人体血流方向布置,两者之间的中心距在1mm至200mm之间。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述的发光二极管阵列(4)包含4个发光二极管,波长分别为660nm、760nm、850nm和940nm。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述的检测探头通过腕带固定在人体被测部位。
- 按照权利要求1所述的一种基于阻抗谱-光学方法的多传感器无创血糖检测设备,其特征在于:所述的接触板(6)采用橡胶板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/744,469 US10765352B2 (en) | 2016-11-21 | 2017-10-31 | Multi-sensor non-invasive blood glucose monitoring instrument based on impedance spectroscopy-optical method |
EP17829115.9A EP3556286B1 (en) | 2016-11-21 | 2017-10-31 | Impedance spectroscopy and optical technique-based multi-sensor noninvasive blood sugar detection apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611048179.3A CN106691449A (zh) | 2016-11-21 | 2016-11-21 | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 |
CN201611048179.3 | 2016-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090817A1 true WO2018090817A1 (zh) | 2018-05-24 |
Family
ID=58934898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/108521 WO2018090817A1 (zh) | 2016-11-21 | 2017-10-31 | 一种基于阻抗谱-光学方法的多传感器无创血糖检测设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10765352B2 (zh) |
EP (1) | EP3556286B1 (zh) |
CN (1) | CN106691449A (zh) |
WO (1) | WO2018090817A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106691449A (zh) | 2016-11-21 | 2017-05-24 | 清华大学 | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 |
TWI694811B (zh) * | 2017-06-02 | 2020-06-01 | 昇陽國際半導體股份有限公司 | 血糖量測裝置 |
CN108169285B (zh) * | 2017-12-26 | 2020-02-04 | 河北农业大学 | 电阻抗阻抗损耗系数δ值法测定灰楸可溶性糖含量的方法 |
US12082910B2 (en) * | 2019-02-12 | 2024-09-10 | Medtronic Minimed, Inc. | Miniaturized noninvasive glucose sensor and continuous glucose monitoring system |
CN111317473A (zh) * | 2020-03-12 | 2020-06-23 | 桂林电子科技大学 | 基于混合测量技术的血糖检测方法 |
CN113495087B (zh) * | 2020-04-03 | 2023-04-07 | 深圳市帝迈生物技术有限公司 | Poct血细胞分析仪及其检测方法 |
CN111632228B (zh) * | 2020-05-19 | 2021-05-25 | 中国科学院深圳先进技术研究院 | 一种基于可穿戴监测方法的闭环人工胰腺系统 |
WO2024020900A1 (zh) * | 2022-07-27 | 2024-02-01 | 深圳市怡康安家保健科技有限公司 | 一种便携翻盖式的无创血糖仪 |
CN115969366A (zh) * | 2023-03-05 | 2023-04-18 | 北京大学第三医院(北京大学第三临床医学院) | 基于近红外吸收光谱-阻抗谱分析联用的血糖测量方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999039627A1 (en) | 1998-02-04 | 1999-08-12 | Dermal Therapy (Barbados) Inc. | Method and apparatus for non-invasive determination of glucose in body fluids |
CN1596826A (zh) * | 2004-07-27 | 2005-03-23 | 天津大学 | 脉搏阻抗谱血糖或其他血液成分的无创检测装置及其检测方法 |
CN101390751A (zh) * | 2008-11-07 | 2009-03-25 | 中南大学 | 无创血糖检测传感器集成器 |
US20100076330A1 (en) * | 2007-01-23 | 2010-03-25 | Tohoku Techno Arch Co., Ltd. | Fetus electrocardiogram signal measuring method and its device |
US7693561B2 (en) | 2001-03-06 | 2010-04-06 | Solianis Holding Ag | Method and device for determining the concentration of a substance in body liquid |
US20100179403A1 (en) * | 2007-07-02 | 2010-07-15 | Biogauge - Nordic Bioimpedance Research As | Method and kit for sweat activity measurement |
CN102293654A (zh) * | 2011-06-17 | 2011-12-28 | 清华大学 | 基于代谢热-光学方法的无创血糖检测仪 |
US20130211204A1 (en) | 2010-02-05 | 2013-08-15 | Andreas Caduff | Wearable sensor device |
CN103815916A (zh) * | 2014-03-23 | 2014-05-28 | 王素常 | 内置生物电阻法快速血糖检测系统 |
CN106691449A (zh) * | 2016-11-21 | 2017-05-24 | 清华大学 | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 |
CN206491802U (zh) * | 2016-11-21 | 2017-09-15 | 清华大学 | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2555807A1 (en) * | 2004-02-12 | 2005-08-25 | Biopeak Corporation | Non-invasive method and apparatus for determining a physiological parameter |
EP1954175B1 (en) * | 2005-11-10 | 2016-07-13 | Biovotion AG | Device for determining the glucose level in body tissue |
US8235897B2 (en) * | 2010-04-27 | 2012-08-07 | A.D. Integrity Applications Ltd. | Device for non-invasively measuring glucose |
CN105559794B (zh) * | 2016-02-23 | 2018-03-23 | 杨立峰 | 一种基于光声谱特征的可佩带式无创伤动态血糖监测仪 |
CN105852879A (zh) * | 2016-03-30 | 2016-08-17 | 王卫东 | 血液成分无创检测装置 |
CN105816186A (zh) * | 2016-05-22 | 2016-08-03 | 张侃 | 一种无创式自动化手持血液分析仪 |
-
2016
- 2016-11-21 CN CN201611048179.3A patent/CN106691449A/zh active Pending
-
2017
- 2017-10-31 US US15/744,469 patent/US10765352B2/en active Active
- 2017-10-31 WO PCT/CN2017/108521 patent/WO2018090817A1/zh unknown
- 2017-10-31 EP EP17829115.9A patent/EP3556286B1/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999039627A1 (en) | 1998-02-04 | 1999-08-12 | Dermal Therapy (Barbados) Inc. | Method and apparatus for non-invasive determination of glucose in body fluids |
US7693561B2 (en) | 2001-03-06 | 2010-04-06 | Solianis Holding Ag | Method and device for determining the concentration of a substance in body liquid |
CN1596826A (zh) * | 2004-07-27 | 2005-03-23 | 天津大学 | 脉搏阻抗谱血糖或其他血液成分的无创检测装置及其检测方法 |
US20100076330A1 (en) * | 2007-01-23 | 2010-03-25 | Tohoku Techno Arch Co., Ltd. | Fetus electrocardiogram signal measuring method and its device |
US20100179403A1 (en) * | 2007-07-02 | 2010-07-15 | Biogauge - Nordic Bioimpedance Research As | Method and kit for sweat activity measurement |
CN101390751A (zh) * | 2008-11-07 | 2009-03-25 | 中南大学 | 无创血糖检测传感器集成器 |
US20130211204A1 (en) | 2010-02-05 | 2013-08-15 | Andreas Caduff | Wearable sensor device |
CN102293654A (zh) * | 2011-06-17 | 2011-12-28 | 清华大学 | 基于代谢热-光学方法的无创血糖检测仪 |
CN103815916A (zh) * | 2014-03-23 | 2014-05-28 | 王素常 | 内置生物电阻法快速血糖检测系统 |
CN106691449A (zh) * | 2016-11-21 | 2017-05-24 | 清华大学 | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 |
CN206491802U (zh) * | 2016-11-21 | 2017-09-15 | 清华大学 | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3556286A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3556286A4 (en) | 2020-09-30 |
EP3556286A1 (en) | 2019-10-23 |
EP3556286B1 (en) | 2021-11-24 |
US20190261900A1 (en) | 2019-08-29 |
CN106691449A (zh) | 2017-05-24 |
US10765352B2 (en) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018090817A1 (zh) | 一种基于阻抗谱-光学方法的多传感器无创血糖检测设备 | |
CN105307568B (zh) | 非侵入式血液分析 | |
AU659111B2 (en) | A device for measurement of electrical impedance of organic and biological materials | |
EA034599B1 (ru) | Устройство для неинвазивного измерения уровня сахара в крови и способ измерения уровня сахара в крови с использованием этого устройства | |
CN109381180B (zh) | 可检测生物阻抗和心电的可穿戴设备、测量系统及方法 | |
CN110338813A (zh) | 一种基于频谱分析的无创血糖检测方法 | |
GB2604346A (en) | Dual-mode biosensor | |
CN205107648U (zh) | 全身功能状态检查电图仪探测手环 | |
CN109330592A (zh) | 基于超宽带微波s11参数的血糖浓度检测方法 | |
CN112220472B (zh) | 基于交叉四电极法的胸腔电阻抗无创检测方法 | |
US20230337929A1 (en) | Systems and methods for calibrating dry electrode bioelectrical impedance sensing | |
CN103340626B (zh) | 一种基于生物阻抗评估人体四肢水肿的装置及其使用方法 | |
CN102727215A (zh) | 免采血式电子血糖测量仪及测试方法 | |
CN202305465U (zh) | 一种唾糖浓度获取装置 | |
CN209770372U (zh) | 一种细胞外液电阻抗和总体水分电阻抗的测量装置 | |
CN206491802U (zh) | 一种基于阻抗谱‑光学方法的多传感器无创血糖检测设备 | |
CN105816186A (zh) | 一种无创式自动化手持血液分析仪 | |
CN202604835U (zh) | 免采血式电子血糖测量仪 | |
CN115135241A (zh) | 非侵入式血糖检测仪 | |
CN102384931B (zh) | 唾糖浓度获取装置 | |
EP3790466A1 (en) | System and method for rapid blood gas monitoring | |
Gelao et al. | Architecture and front-end for in-vivo blood glucose sensor based on impedance spectroscopy | |
CN105232043A (zh) | 一种人体体表电特性检测装置及系统 | |
Persad et al. | Skin variations impact on non-invasive measurement of blood glucose with interdigital electrodes | |
CN104983428B (zh) | 无创式的血糖测试仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17829115 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017829115 Country of ref document: EP Effective date: 20180524 |