WO2018090716A1 - Ip网络与光传送网络融合的路径确定方法、装置及系统 - Google Patents

Ip网络与光传送网络融合的路径确定方法、装置及系统 Download PDF

Info

Publication number
WO2018090716A1
WO2018090716A1 PCT/CN2017/102794 CN2017102794W WO2018090716A1 WO 2018090716 A1 WO2018090716 A1 WO 2018090716A1 CN 2017102794 W CN2017102794 W CN 2017102794W WO 2018090716 A1 WO2018090716 A1 WO 2018090716A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
service layer
virtual link
controller
network domain
Prior art date
Application number
PCT/CN2017/102794
Other languages
English (en)
French (fr)
Inventor
卢刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018090716A1 publication Critical patent/WO2018090716A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects

Definitions

  • the present application relates to the field of communications, and in particular, to a path determining method, apparatus, and system for merging an IP network with an optical transport network.
  • the carrier's trunk-based bearer network is generally divided into two layers for construction and operation and maintenance.
  • the upper layer is a multi-protocol label switching (IP/MPLS) (Multi-Protocol Label Switching) bearer network
  • the lower layer is composed of DWDM. (Dense Wavelength Division Multiplexing), Optical Transport Network (OTN, Optical Transport Network), etc. (optical layer).
  • IP/MPLS Multi-Protocol Label Switching
  • DWDM Dens Division Multiplexing
  • OTN Optical Transport Network
  • optical layer optical link connection requirements between the nodes to the optical layer.
  • the optical layer is responsible for providing statically configured optical physical links for the IP layer to solve the aggregation scheduling requirements of large-capacity, long-distance transmission and different bandwidth circuits; The physical topology and resource information of the optical layer are not known.
  • the network protection information provided by the optical layer is not known.
  • the routing and traffic optimization can only be performed according to the logical topology of the IP layer.
  • the optimization of routing and traffic is low.
  • the optical network does not understand. IP layer dynamic connection and traffic change requirements, so it can not quickly provide a more economical direct service layer link, to solve this problem, you need to achieve IP and optical joint networking and collaborative control.
  • the embodiment of the present invention provides a path determining method, device, and system for merging an IP network and an optical transport network.
  • a path determining method for merging an IP network with an optical transport network comprising: when receiving a transport service request across an optical network domain, Assigning a virtual link in the IP network domain to meet the service requirement for the transmission service; determining a target service layer path that matches the virtual link in the pre-saved service layer path, where the service layer path is located in the optical network domain; Activate the activation request of the target service layer path to the controller of the optical network domain.
  • determining a target service layer path that matches a virtual link in a pre-saved service layer path may include: acquiring one or more service layer paths allocated in advance for the virtual link; Or the target service layer path matching the virtual link is selected from multiple service layer paths.
  • acquiring one or more service layer paths allocated in advance for the virtual link may include: acquiring a link identifier of the virtual link; acquiring one or more services corresponding to the link identifier in the path index list A layer path, or a path index of one or more service layer paths, or a path index of one or more service layer paths corresponding to the link identifier and one or more service layer paths in the path index list.
  • transmitting activating the request for activating the target service layer path to the optical network domain may include: obtaining a path index of the target service layer path; and transmitting an activation request carrying the path index of the target service layer path Controller to the optical network domain.
  • the method may further include: transmitting a path allocation request to a controller of the optical network domain, wherein the path allocation request is used by Allocating a service layer path for the virtual link; receiving a path index of one or more service layer paths returned by the controller of the optical network domain; storing a path index of one or more service layer paths and a link identifier of the virtual link Correspondence to the path index list.
  • the method may further include: sending the path operation request to the optical network domain
  • the controller receives the result of the operation returned by the controller of the optical network domain and updates the path index list based on the operation result.
  • one or more of the service layer paths may be homogenous and same-path paths.
  • a path determining method for merging an IP network with an optical transport network comprising: receiving a virtual network of a controller of the IP network domain Assigning one or more service layer paths to the virtual link when the path is sent by the path; returning the path index of one or more service layer paths to the controller of the IP network domain; sending the controller of the IP network domain
  • the target service layer path is activated when the request for activation of the target service layer path is activated, wherein the target service layer path is a service layer path allocated by the controller of the IP network domain in the one or more service layer paths for the virtual link.
  • the method may further include: executing the path when receiving the path operation request sent by the controller of the IP network domain for the virtual link
  • the path operation requested by the operation request is returned; the operation result of the path operation is returned to the controller of the optical network domain, wherein the operation result is used to update the path index list of the optical network domain, and the path index list is saved with the virtual link allocated The path index of one or more service layer paths.
  • performing the path operation requested by the path operation request may include: acquiring an operation type of the path operation carried in the path operation request; and performing a path operation corresponding to the operation type.
  • performing a path operation corresponding to the operation type may include: adding a service layer path for the virtual link when the operation type is new; deleting the virtual layer when the operation type is deleted The service layer path of the link allocation; adjust the bandwidth of the service layer path allocated for the virtual link when the operation type is bandwidth adjustment; query the status information and attribute information of the service layer path when the operation type is query ; refresh the service layer path allocated for the virtual link if the operation type is refresh.
  • adding a service layer path for the virtual link may include: allocating a service layer path for the virtual link according to the path start point and the path end point indicated by the path operation request; and saving a path index of the allocated service layer path; Allocate network resources for the assigned service layer path.
  • deleting the service layer path allocated for the virtual link may include: obtaining a path index of the service layer path to be deleted in the path operation request; deleting the service layer path corresponding to the obtained path index and locally The saved path index of the deleted service layer path; releases the network resources allocated for the deleted service layer path.
  • adjusting the bandwidth of the service layer path allocated for the virtual link may include adjusting a current bandwidth of the service layer path to a bandwidth indicated in the path operation request.
  • refreshing the service layer path allocated for the virtual link may include: redetermining a service layer path having the same path start point and path end point as the service layer path allocated for the virtual link; using the redefined service The layer path replaces the service layer path allocated for the virtual link.
  • the method may further include: when there is any service layer path unavailable, obtaining a path start point and a path end point of the service layer path; according to the service layer The path start point and the path end point of the path are reassigned the service layer path; in the case where the operation of reallocating the service layer path is successful, the path index of the service layer path is used as the path index of the reassigned service layer path; the service layer is redistributed If the operation of the path fails, the information that the service layer path is unavailable is reported to the controller of the IP network domain.
  • one or more service layer paths may be homogenous same-homed paths among one or more service layer paths allocated for the virtual link.
  • the protection attribute of the service layer path may be a work type and a protection type
  • the service layer path of the work type may be a service layer currently used.
  • the path, the protection type of the service layer path may be a service layer path that is not currently used, wherein the service layer path of the work type and the service layer path of the protection type may be separated by the SRLG.
  • the service layer path may include at least one of an Ethernet layer path, an optical path data unit ODUk layer path, and an optical layer path.
  • a path determining apparatus for merging an IP network with an optical transport network
  • the apparatus comprising: a first allocating unit configured to receive a transport service request across an optical network domain, Assigning, to the transmission service, a virtual link that meets a service requirement in the IP network domain; the determining unit is configured to determine a target service layer path that matches the virtual link in the pre-saved service layer path, where the service layer path is located in the optical network domain
  • the first sending unit is configured to send a controller for activating an activation request of the target service layer path to the optical network domain.
  • the determining unit may include: a first acquiring module configured to acquire one or more service layer paths allocated in advance for the virtual link; and a selecting module configured to use one or more services by using a preset algorithm The target service layer path matching the virtual link is selected in the layer path.
  • the first obtaining module may include: a first acquiring submodule configured to acquire a link identifier of the virtual link; and a second obtaining submodule configured to obtain a path index list corresponding to the link identifier One or more service layer paths, or a path index of one or more service layer paths, or one or more service layer paths corresponding to link identifiers in the path index list and paths of one or more service layer paths index.
  • the first sending unit may include: a second obtaining module configured to acquire a path index of the target service layer path; and a sending module configured to send an activation request carrying the path index of the target service layer path to the light The controller of the network domain.
  • the apparatus may further include: a second sending unit configured to send a path allocation request to the controller of the optical network domain before allocating the virtual link in the IP network domain that satisfies the service requirement for the transmission service
  • the path allocation request is used to request to allocate a service layer path for the virtual link
  • the first receiving unit is configured to receive a path index of one or more service layer paths returned by the controller of the optical network domain
  • the saving unit is configured to The correspondence between the path index of one or more service layer paths and the link identifier of the virtual link is saved to the path index list.
  • the apparatus may further include: a third sending unit configured to send after the correspondence between the path index of the one or more service layer paths and the link identifier of the virtual link is saved to the path index list
  • the path operation request is to the controller of the optical network domain
  • the second receiving unit is configured to receive the operation result returned by the controller of the optical network domain, and update the path index list based on the operation result.
  • a path determining apparatus for merging an IP network and an optical transport network comprising: a second allocating unit configured to receive a virtual network as a controller of the IP network domain Assigning one or more service layer paths to the virtual link when the path is sent by the path; the first return unit is configured to return a path index of one or more service layer paths to the controller of the IP network domain; And configuring to activate a target service layer path when the request sent by the controller of the IP network domain is activated to activate the target service layer path, where the target service layer path is the control of the IP network domain in one or more service layer paths The service layer path assigned to the virtual link.
  • the apparatus may further include: an execution unit configured to: after the one or more service layer paths are allocated for the virtual link, the controller that receives the IP network domain is virtual When the path operation request sent by the link is performed, the path operation requested by the path operation request is performed; and the second return unit is configured to return the operation result of the path operation to the controller of the optical network domain, wherein the operation result is used to update the optical network A path index list of the domain in which the path index of one or more service layer paths allocated for the virtual link is stored.
  • the execution unit may include: a third acquisition module configured to acquire an operation type of the path operation carried in the path operation request; and a first execution module configured to perform a path operation corresponding to the operation type.
  • the first execution module may include: adding a sub-module, configured to add a service layer path for the virtual link when the operation type is new; deleting the sub-module, configured to be in the operation type In the case of deletion, the service layer path allocated for the virtual link is deleted; the adjustment submodule is configured to adjust the bandwidth of the service layer path allocated for the virtual link when the operation type is bandwidth adjustment; the query submodule, Configuring to query the status information and attribute information of the service layer path when the operation type is a query; the refresh submodule is configured to refresh the service layer path allocated for the virtual link when the operation type is refreshed.
  • a path determining method for merging an IP network with an optical transport network comprising: the first controller of the IP network domain sends a path allocation request to a second controller of the optical network domain The second controller allocates a service layer path located in the optical network domain for the virtual link located in the IP network domain in response to the path allocation request; the first controller receives the path index of one or more service layer paths returned by the second controller And save the correspondence between the path index of one or more service layer paths and the link identifier of the virtual link.
  • the method may further include: after receiving the first controller, When the virtual link sends a path operation request, the second controller performs a path operation requested by the path operation request; the first controller receives the operation result of the path operation, and updates the path index list of the optical network domain according to the operation result, where The path index list holds the path index of one or more service layer paths allocated for the virtual link.
  • the path operation requested by the second controller to perform the path operation request may include: acquiring, by the second controller, an operation type of the path operation carried in the path operation request; and performing, by the second controller, the operation type Path operation.
  • the performing, by the second controller, the path operation corresponding to the operation type may include: when the operation type is new, the second controller adds a service layer path to the virtual link; In the case of deletion, the second controller deletes the service layer path allocated for the virtual link; in the case where the operation type is bandwidth adjustment, the second controller adjusts the bandwidth of the service layer path allocated for the virtual link; In the case of the query, the second controller queries the status information and the attribute information of the service layer path; in the case that the operation type is refresh, the second controller refreshes the service layer path allocated for the virtual link.
  • a path determining system is further provided, where the IP network is integrated with the optical transport network, and the system includes a first controller located in the IP network domain and a second controller located in the optical network domain, where The second controller is configured to allocate a service layer path located in the optical network domain to the virtual link located in the IP network domain in response to the path allocation request sent by the first controller; the first controller is configured to receive a returned by the second controller Or the path index of the multiple service layer paths, and the correspondence between the path index of one or more service layer paths and the link identifier of the virtual link.
  • the second controller may be further configured to perform a path operation requested by the path operation request when receiving the path operation request sent by the first controller for the virtual link; the first controller may further The operation result of receiving the path operation is configured, and the path index list of the optical network domain is updated according to the operation result, wherein the path index list stores the path index of one or more service layer paths allocated for the virtual link.
  • the second controller may include: a fourth acquiring module configured to acquire an operation type of the path operation carried in the path operation request; and a second execution module configured to perform a path operation corresponding to the operation type.
  • the second execution module may be further configured to: add a service layer path for the virtual link when the operation type is new, and delete the virtual link when the operation type is deleted.
  • the allocated service layer path in the case that the operation type is bandwidth adjustment, adjust the bandwidth of the service layer path allocated for the virtual link; in the case where the operation type is the query, query the status information and attribute information of the service layer path;
  • the operation type is refresh, the service layer path allocated for the virtual link is refreshed.
  • a storage medium which may be arranged to store program code for performing the following steps: upon receiving a transmission service spanning an optical network domain, Determining, assigning, to the transmission service, a virtual link that meets a service requirement in the IP network domain; determining a target service layer path that matches the virtual link in the pre-saved service layer path, where the service layer path is located in the optical network domain; A controller that sends an activation request to activate the target service layer path to the optical network domain.
  • the storage medium may be further configured to store program code for performing the following steps: assigning a virtual link when receiving a path assignment request sent by the controller of the IP network domain for the virtual link Or multiple service layer paths; returning the path index of one or more service layer paths to the controller of the IP network domain; and when the request sent by the controller of the IP network domain is activated to activate the activation request of the target service layer path, the target is activated A service layer path, where the target service layer path is a service layer path allocated by the controller of the IP network domain in one or more service layer paths for the virtual link.
  • a virtual link that meets a service requirement in the IP network domain is allocated for the transmission service; and the pre-stored service layer path is matched with the virtual link.
  • Target service layer path the service layer path is located in the optical network domain; the controller for activating the activation request of the target service layer path to the optical network domain is solved by establishing a correspondence between the virtual link and the service layer path.
  • the optical layer provides a low efficiency problem for the IP layer to provide a required service layer path, and achieves a technical effect of improving efficiency.
  • FIG. 1 is a schematic diagram of an example computer terminal in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of determining a path of an optical network according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a path determining method for merging an IP network and an optical transport network according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another path determining method for merging an IP network with an optical transport network according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an exemplary SDN network architecture in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an example in which an IP network and an optical transport network are fused according to an embodiment of the present invention. Flow chart of the method;
  • FIG. 7 is a schematic diagram of establishing a mapping between a service layer path and a virtual link according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of deleting a service layer path according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of performing bandwidth expansion or volume reduction according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of performing path repair according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a path determining apparatus for merging an IP network and an optical transport network according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of another path determining apparatus for merging an IP network with an optical transport network according to an embodiment of the present invention.
  • the computer terminal may include one or more (only one shown) processor 101 (the processor 101 may include, but is not limited to, a microprocessor MCU or programmable A processing device such as a logic device FPGA, a memory 103 for storing data, and a transmission device 105 for communication functions.
  • processor 101 may include, but is not limited to, a microprocessor MCU or programmable A processing device such as a logic device FPGA, a memory 103 for storing data, and a transmission device 105 for communication functions.
  • FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the memory 103 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the control method of the device in the embodiment of the present invention, and the processor 101 executes by executing a software program and a module stored in the memory 103.
  • application software such as program instructions/modules corresponding to the control method of the device in the embodiment of the present invention
  • the processor 101 executes by executing a software program and a module stored in the memory 103.
  • the memory can include high speed random access memory and can also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the memory can further include a memory remotely located relative to the processor, the remotes
  • the memory can be connected to the computer terminal through a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device is configured to receive or transmit data via a network.
  • the network examples described above may include a wireless network provided by a communication provider of the computer terminal.
  • the transmission device includes a Network Interface Controller (NIC) that can be connected to other network devices through the base station to communicate with the Internet.
  • the transmission device can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • a joint network of IP and optical networks can implement unified route planning and traffic coordination.
  • the routing planning of the IP network needs to be scientifically designed in combination with the physical topology of the optical network.
  • the optical network needs to complete the service layer path connection according to the logical connection requirements of the IP layer. How to dynamically calculate optical layer routing for the IP layer is particularly important.
  • the IP and optical two-layer coordinated path calculation method may be based on the GMPLS-UNI (Multi-Co-Protocol Protocol-User Network Interface) protocol, and the IP network device sends a request for establishing a user network interface to the optical network device, requesting to calculate a path of the optical network. as shown in picture 2:
  • Step S201 the first routing device sends a request message to the first optical device.
  • Step S202 creating a bidirectional optical channel between the first optical device and the second optical device
  • Step S203 the first optical device sends a routing message to the second optical device.
  • Step S204 the second optical device sends a routing message to the second routing device.
  • Step S205 the second routing device sends the first determining message to the second optical device.
  • Step S206 the second optical device sends the first determining message to the first optical device
  • Step S207 The first optical device sends a second determining message to the first routing device to complete calculation of the optical network path.
  • the above method can be used for communication commands and routing, but the following problems also exist: 1) Since the interface adopts the GMPLS-UNI protocol, there are multiple ways to implement the interface, such as manual setting, RSVP PATH signaling, etc., which are difficult to expand. It is unable to cope with the flexible service layer path calculation strategy and service requirements; 2) the path calculation efficiency of this method is low, it is necessary to first open the source node to the near-end IP layer device route, then establish the service layer path, and then forward the signaling. Go to the remote IP layer device, and then continue to calculate the route from the remote IP layer device to the sink node; 3) For some new services, such as bandwidth adjustment support It will be harder to achieve.
  • a path determining method for merging an IP network with an optical transport network the steps illustrated in the flowchart of the accompanying drawings being executable in a computer system such as a set of computer executable instructions
  • the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 3 is a flowchart of a path determining method for merging an IP network and an optical transport network according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step S301 When receiving a transmission service request across the optical network domain, allocate a virtual link that meets the service requirement in the IP network domain for the transmission service.
  • Step S302 determining a target service layer path that matches the virtual link in the pre-saved service layer path, where the service layer path is located in the optical network domain.
  • Step S303 sending activating the request for activating the target service layer path to the controller of the optical network domain.
  • a virtual link that meets a service requirement in the IP network domain is allocated for the transmission service; and a target that matches the virtual link in the pre-saved service layer path is determined.
  • the service layer path, the service layer path is located in the optical network domain; the controller that activates the activation request of the target service layer path to the optical network domain, and solves the current light by establishing a correspondence between the virtual link and the service layer path.
  • the execution body of the above steps may be a controller of an IP network domain, etc., but is not limited thereto.
  • the global mapping relationship of the optical two-layer path may be established by sending a path allocation request to the controller of the optical network domain, where the path allocation request Used to request a service layer path for a virtual link; a path index of one or more service layer paths returned by a controller that receives the optical network domain; a path index that stores one or more service layer paths and a link of the virtual link The correspondence of the identifiers to the path index list.
  • One or more of the above service layer paths are homologous and same-sink paths; one or more services are saved After the path index of the layer path and the link identifier of the virtual link are related to the path index list, operations such as updating and deleting the already assigned service layer path may be performed: sending a path operation request to the controller of the optical network domain The path operation request is for requesting operation on the service layer path; receiving an operation result returned by the controller of the optical network domain, and updating the path index list based on the operation result.
  • determining a target service layer path that matches the virtual link in the pre-saved service layer path includes: acquiring one or more service layer paths allocated in advance for the virtual link; and one or more by using a preset algorithm The target service layer path matching the virtual link is selected in the service layer path.
  • obtaining one or more service layer paths allocated for the virtual link in advance includes: obtaining a link identifier of the virtual link; acquiring one or more service layer paths corresponding to the link identifier in the path index list, or acquiring one Or a path index of multiple service layer paths, or obtain one or more service layer paths corresponding to the link identifier in the path index list and path indexes of one or more service layer paths.
  • the sending the activation request to activate the target service layer path to the optical network domain may include: obtaining a path index of the target service layer path; and sending an activation request carrying the path index of the target service layer path to Controller for the optical network domain.
  • FIG. 4 is a path determining method for merging an IP network and an optical transport network according to an embodiment of the present invention.
  • the flow chart is shown in Figure 4. The method includes the following steps:
  • Step S401 when receiving a path allocation request sent by the controller of the IP network domain for the virtual link, assign one or more service layer paths to the virtual link;
  • Step S402 returning a path index of one or more service layer paths to a controller of the IP network domain
  • Step S403 when the request for activation of the target service layer path is activated by the controller of the IP network domain, the target service layer path is activated, where the target service layer path is an IP network domain of one or more service layer paths.
  • the service layer path that the controller allocates for the virtual link is an IP network domain of one or more service layer paths.
  • the controller of the IP network domain for the virtual link when receiving the path allocation request sent by the controller of the IP network domain for the virtual link, assign one or more service layer paths to the virtual link; return the path index of one or more service layer paths to a controller of the IP network domain; when the request sent by the controller of the IP network domain is requested to activate the activation request of the target service layer path, the target service layer path is activated, wherein the target service layer path is one or more service layer paths
  • the service layer path allocated by the controller of the IP network domain for the virtual link is used to establish the corresponding relationship between the virtual link and the service layer path, thereby solving the current inefficiency of the optical layer providing the required service layer path for the IP layer.
  • the problem is to achieve the technical effect of improving efficiency.
  • the execution body of the above steps may be a controller of the optical network domain, etc., but is not limited thereto.
  • one or more service layer paths are homogenous and same-path paths; the protection attributes of the service layer path are the work type and the protection type, and the service layer path of the work type is the current The service layer path used, the service type path of the protection type is a service layer path that is not currently used, where the service layer path of the work type is separated from the service layer path of the protection type by the SRLG; the service layer path includes the Ethernet layer path At least one of an ODUk layer path and an optical layer path.
  • SRLG is a shared risk link group, and each service layer link is set in which SRLG group (a sequence of SRLG ID numbers).
  • SRLG group a sequence of SRLG ID numbers.
  • the SRLG sequence of the link will contain the same SRLG ID, that is, there is an intersection.
  • the SRLG separation is that there is no intersection between the SRLGs in the SRLG group of all links on the established path (refer to the path between the paths). Therefore, one of the two paths fails and does not affect the other path.
  • the operation result is to the controller of the optical network domain, wherein the operation result is used to update the path index list of the optical network domain, and the path index list stores the path index of one or more service layer paths allocated for the virtual link.
  • the path operation requested to be performed by the execution path operation request includes: acquiring an operation type of the path operation carried in the path operation request; and performing a path operation corresponding to the operation type.
  • performing a path operation corresponding to the operation type includes: adding a service layer path for the virtual link when the operation type is new; and deleting the service layer allocated for the virtual link when the operation type is deleted. Path; adjust the bandwidth of the service layer path allocated for the virtual link when the operation type is bandwidth adjustment; query the status information and attribute information of the service layer path when the operation type is query; the operation type is refresh In the case of the service layer path allocated for the virtual link.
  • adding a service layer path for the virtual link may include: allocating a service layer path for the virtual link according to the path start point and the path end point indicated by the path operation request; and saving the path index of the allocated service layer path; The assigned service layer path allocates network resources.
  • deleting the service layer path allocated for the virtual link may include: obtaining a path index of the service layer path to be deleted in the path operation request; deleting the service layer path corresponding to the obtained path index and saving locally The path index of the deleted service layer path; release the network resources allocated for the deleted service layer path.
  • adjusting the bandwidth of the service layer path allocated for the virtual link may include adjusting the current bandwidth of the service layer path to the bandwidth indicated in the path operation request.
  • refreshing the service layer path allocated for the virtual link may include: redetermining a service layer path having the same path start point and path end point as the service layer path allocated for the virtual link; using the redefined service layer The path replaces the service layer path assigned to the virtual link.
  • the service layer path is optimized to recalculate a path according to the current network congestion, avoiding the congestion link, and optimizing the original service layer path (the optimized path replaces the original service layer path).
  • the assigned service layer path may be changed or the like: when any service layer path is unavailable, the path start point and the path end point of the service layer path are acquired; according to the service layer The path start point and the path end point of the path are reassigned the service layer path; in the case where the operation of reallocating the service layer path is successful, the path index of the service layer path is used as the path index of the reassigned service layer path; the service layer is redistributed If the operation of the path fails, the information that the service layer path is unavailable is reported to the controller of the IP network domain.
  • a path for merging an IP network and an optical transport network is also provided.
  • a method embodiment of a method includes the following steps:
  • Step S11 the first controller of the IP network domain sends a path allocation request to the second controller of the optical network domain;
  • Step S12 The second controller allocates a service layer path located in the optical network domain for the virtual link located in the IP network domain in response to the path allocation request.
  • Step S13 The first controller receives a path index of one or more service layer paths returned by the second controller, and saves a correspondence between a path index of one or more service layer paths and a link identifier of the virtual link.
  • the path operation that the first controller sends for the virtual link is received.
  • the second controller may perform a path operation requested by the path operation request; the first controller may receive the operation result of the path operation, and update the path index list of the optical network domain according to the operation result, where the path index list is A path index that holds one or more service layer paths assigned to the virtual link.
  • the path operation performed by the second controller to perform the path operation request may include: the second controller acquires an operation type of the path operation carried in the path operation request; and the second controller performs the operation type corresponding to the operation type. Path operation.
  • the performing, by the second controller, the path operation corresponding to the operation type may include: adding, when the operation type is new, the second controller adds a service layer path for the virtual link; In the case that the second controller deletes the service layer path allocated for the virtual link; in the case that the operation type is bandwidth adjustment, the second controller adjusts the bandwidth of the service layer path allocated for the virtual link; In the case of the query, the second controller queries the status information and the attribute information of the service layer path; in the case that the operation type is refresh, the second controller refreshes the service layer path allocated for the virtual link.
  • the above method of the present application is based on an SDN architecture.
  • the basic structure of the SDN architecture is shown in FIG. 5, which mainly includes an application layer, a control layer, and an infrastructure layer.
  • the application layer and the control layer are connected through a northbound interface (REST API), a control layer, and a foundation.
  • the facility layer is connected through the southbound interface (openflow).
  • the application layer is mainly composed of service applications.
  • the control layer is mainly composed of SDN control software, and the SDN control software is used. Network services are provided, and the infrastructure layer is mainly composed of network devices.
  • the virtual link is established between the IP network devices that span the optical network through the SDN controller of the IP network domain, and the plurality of candidate optical network domain service layer paths and the virtual link association are generated by the optical network domain SDN controller.
  • Step S601 (including step S601_1 and step S601_2), the IP network domain SDN controller (ie, the IP SDN controller) manually configures the virtual link (or automatically configures the virtual link) between the IP network devices that span the optical network, and
  • the optical network domain SDN controller ie, the OTN SDN controller
  • the type of path requested to be calculated is work or protection, and the type of request calculation is new, delete, bandwidth adjustment, query or refresh.
  • the foregoing path calculation request may be sent by using various protocols such as Netconf, Restful API, and Openflow.
  • the specific selection of the protocol is not limited in this application.
  • Step S602 after receiving the request, the optical network domain SDN controller processes the following:
  • Mode 1 if the calculation type is new, one or more candidate service layer paths are calculated, and all the working paths and the protection paths are separated by SRLG (collectively referred to as Shared Risk Link Groups). And each path needs to allocate and occupy resources. Each path adopts the pathkey identifier (that is, it is identified by the path index), and forwards the identifier list of the service layer path to the IP network domain SDN controller.
  • SRLG Shared Risk Link Groups
  • the multiple service layer paths are the same-same and the same-sense paths, and the protection attributes of the multiple paths can be working or protected.
  • the shared risk link group (SRLG) can be separated between the working path and the protection path.
  • the SRLG separation may not be performed between the working paths or between the protection paths.
  • the above calculation methods include, but are not limited to, Dijkstra and KSP algorithms, and the separation path calculation algorithm employed includes, but is not limited to, the Suurballe algorithm.
  • the path calculation fails, and the other successfully calculated paths are marked as successful calculation and are forwarded to the IP together.
  • Network domain SDN controller if the path becomes unavailable after being forwarded to the IP network domain SDN controller, the optical network domain SDN controller listens to the fault, and the path index remains unchanged. In this case, the recalculation of the path is initiated. If the calculation is successful, it is not reported to the IP network domain SDN controller. If the calculation fails, the report is reported to the IP network domain SDN controller, and the path corresponding to the path index is unavailable.
  • the service layer path corresponding to the path index is deleted in the optical network domain SDN controller, and the occupied path resource and the path index are released.
  • the SDN controller of the optical network domain queries the service layer path according to the path index, and adjusts the original occupied bandwidth on each link on the path based on the current required new bandwidth. Big or small. If the adjustment fails due to insufficient bandwidth, the path calculation of the newly added path is performed in the manner of mode 1, but the path index follows the path index. If the calculation still fails, the bandwidth adjustment failure information is returned.
  • Mode 4 If the calculation type is a query, the SDN controller of the optical network domain queries the path according to the path index, and feeds back the status and attribute information of the path, where the status information refers to whether the path is currently available or not.
  • the attributes include the path details of the service layer path corresponding to pathkey (such as port, link, node, and label wavelength, etc.).
  • Mode 5 If the calculation type is refresh, the optical network domain SDN controller queries the path according to the path index, and optimizes the original path according to the situation.
  • Step S603 the IP network domain SDN controller associates the path index list of the set of paths calculated by the SDN controller of the OTN network domain with the link ID of the IP layer virtual link, and saves the association relationship in the IP network domain. In the SDN controller.
  • Step S604 (including steps S604_1 and S604_2), the application APP delivers a service establishment request to the SDN controller of the IP network domain, and the IP network domain determines the virtual link of the IP layer path based on the topology calculation, and performs IP layer link resource allocation. For the virtual link included in the calculated path, find a path index list of all candidate service layer paths corresponding to the virtual network domain controller according to the virtual link ID, select one of the path indexes, and select the path index to the optical network. The domain SDN controller requests to activate the service layer candidate path corresponding to the path index.
  • the above selection methods may be randomly selected or selected based on other strategies, such as The SRLG value is not specifically limited in this application.
  • the optical network domain SDN controller uses the SDN southbound interface to cross-configure the optical network devices on the service layer path.
  • the southbound interface protocol may be Openflow or Netconf, which is not limited in this application.
  • Step S605 The optical network domain SDN controller finds the stored corresponding service layer path by using the path index, and sets a cross connection to one or more optical layer devices on the path, thereby completing path activation.
  • the IP network domain can be based on the IP domain and the optical domain.
  • the entire network view topology is used to perform global route calculation.
  • the boundary device can calculate the optical layer path through the GMPLS UNI interface, and the success rate and path rationality of the route are improved.
  • the candidate path resource is available at any time, which can greatly reduce the time of IP and optical two-layer path establishment; the IP and optical two-layer path interaction is based on SDN controller, interface standardization and Ease of use makes it possible to flexibly implement various policy extensions based on this method. Compared with the previous GMPLS UNI interface, the efficiency of interworking can be greatly improved, and the difficulty of interworking is reduced.
  • IP network domains and optical network domains can be interconnected based on overlapping models.
  • the GMPLS UNI Universal Multi-Protocol Label Switching User-Network Interface
  • the GMPLS UNI Universal Multi-Protocol Label Switching User-Network Interface
  • the IP network domain requests the optical network domain to create a new service layer path and map to the IP layer virtual link.
  • the FD Forwarding Domain
  • FD(P)-1 and FD(P)-2 are two device nodes in the IP network domain and virtual links in the IP layer. That is, Virtual Link is not interoperable at the IP layer and needs to communicate through the optical network layer.
  • FD-1 and FD-2 are Ethernet layer nodes of the optical network domain (the service layer is ODUk).
  • LTP Logical Terminal Point, Logical termination point
  • LTP-1-1 and LTP-2-1 are the source and sink ports of the service layer path (including source port and sink port), LTP-4-1, LTP-4-2, LTP.
  • the IP SDN Controller is an SDN controller of the IP network domain
  • the OTN SDN Controller is an SDN controller of the OTN network domain.
  • step S701 the IP SDN Controller establishes a virtual link Vital Link between FD(P)-1 and FD(P)-2.
  • Step S702 the IP SDN Controller initiates a routing request to the OTN SDN Controller, and the request is sent according to the Netconf protocol, and the computing request includes a service type (such as an EVPL, that is, an Ethernet virtual private line service), and a set of PATH calculation path requests,
  • a service type such as an EVPL, that is, an Ethernet virtual private line service
  • PATH calculation path requests Each PATH calculation request includes the following information: operation type (increase), path type (work or protection).
  • Step S703 the OTN SDN Controller processes the calculation request, and calculates multiple paths from LTP-1-1 to LTP-2-1.
  • the operation attributes of the PATH (service layer path) attribute are both To increase, first find all the work type paths, and then do not consider the SRLG separation calculation. After the calculation is completed, when calculating the path of all protection types, you can consider separating from the SRLG of all the previous work paths. Finally, the protection path is calculated and the resource is occupied for the successfully calculated PATH.
  • step S704 the OTN SDN Controller uses the pathkey number of all the calculated PATHs, and the pathkey is a 16-bit integer number.
  • the pathkey and the PATH correspondence, as well as the PATH hop-by-hop path information are saved in the controller.
  • the two black thick lines are the service layer paths Path1 and Path2, Path1 is identified by pathkey1, and Path2 is identified by pathkey2.
  • Step S705 The OTN SDN Controller returns pathkey1 and pathkey2 of all PATHs that are successfully calculated to the IP SDN Controller.
  • step S706 (including S706_1, S706_2, and S706_3), the APP is sent to the IP SDN Controller to establish a service.
  • the IP SDN Controller completes the IP layer route calculation, and when the virtual link is in the path, requests the activation service from the OTN SDN Controller.
  • Layer path the OTN SDN Controller finds the previously calculated PATH path according to pathkey (pathkey1 or pathkey2), and sets the service layer through the southbound interface (using the Netconf protocol). Prepare the crossover settings to open the transmission path and activate the service layer path.
  • the IP network domain requests the optical network domain to delete the service layer path.
  • the FD Forwarding Domain
  • FD(P)-1 and FD(P)-2 are two device nodes in the IP network domain and virtual links in the IP layer. That is, Virtual Link is not interoperable at the IP layer and needs to communicate through the optical network layer.
  • FD-1 and FD-2 are Ethernet layer nodes of the optical network domain (the service layer is ODUk).
  • LTP Logical Terminal Point
  • LTP-1-1 and LTP-2-1 are the source and sink ports of the service layer path.
  • LTP-4-1, LTP-4-2, LTP-6 -1, LTP-6-2 is the NNI port of the Ethernet layer to generate an Ethernet link
  • ETH FD is the Ethernet domain
  • etherlink1 and etherlink2 are Ethernet links.
  • the IP SDN Controller is an SDN controller of the IP network domain
  • the OTN SDN Controller is an SDN controller of the OTN network domain.
  • step S801 the IP SDN Controller initiates a delete path request (the deleted object is pathkey2) to the OTN SDN Controller, and the request is sent according to the Netconf protocol, and carries the operation type (delete) and path type (work or protection) of each PATH.
  • the deleted object is pathkey2
  • the request is sent according to the Netconf protocol, and carries the operation type (delete) and path type (work or protection) of each PATH.
  • Step S802 (including S802_1 and S802_2), the OTN SDN Controller searches for the route corresponding to pathkey2, deletes the path, and releases the resource and pathkey2.
  • Step S803 the OTN SDN Controller returns a response indicating that the deletion is successful to the IP SDN Controller.
  • the IP network domain requests the optical network domain to perform bandwidth expansion and contraction on the service layer path corresponding to the IP layer virtual link.
  • step S901 the IP SDN Controller initiates a bandwidth expansion request to the OTN SDN Controller, and the request is sent according to the Netconf protocol.
  • Business type (including ratio)
  • EVPL that is, Ethernet virtual private line service
  • PATH requests that need to adjust the bandwidth.
  • operation type bandwidth adjustment
  • path type work or protection
  • Step S902 (including S902_1 and S902_2), the OTN SDN Controller processes the bandwidth expansion request, finds the saved path Path1 according to the pathkey1 of the path, and starts to adjust the path bandwidth from LTP-1-1 to LTP-2-1. deal with.
  • step S903 after the adjustment is successful, the OTN SDN Controller returns the adjustment success response to the IP SDN Controller.
  • Path2 is the faulty service layer path
  • Path2' is a recalculated service layer path, as follows:
  • Step S1001 (including S1001_1 and S1001_2), the OTN network domain has generated two service layer paths for the virtual link of the IP network domain, namely Path1 (pathkey1) and Path2 (pathkey2).
  • step S1002 a certain optical layer link on the route of the path in the service layer path Path2 (pathkey2) in the OTN network domain is faulty, so that the entire Path2 path becomes unavailable.
  • Step S1003 If the OTN network domain SDN Controller detects the fault, the path is automatically recalculated, and the path Path2 (LTP-1-1, LTP-4-2, LTP-6-2, LTP-2-1) path is automatically performed. If the fault occurs, recalculate a Path2' (LTP-1-1, LTP-4-3, LTP-6-3, LTP-2-1) whose pathkey is unchanged and still be pathkey2. This ensures that the IP network domain does not need to be aware of the fluctuations of the path caused by the failure in the general service layer network.
  • step S1004 if the recalculation path is successful, it is not reported to the IP network domain SDN controller; if the recalculation path fails, the service layer path corresponding to the pathkey2 is reported to be unavailable to the IP network domain SDN controller.
  • a path determining apparatus for merging an IP network and an optical transport network is further provided.
  • the device is used to implement the above embodiments and examples, and the description has been omitted.
  • the term "module” may implement software, hardware, or a combination of software and hardware for a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus may include: a first allocating unit 111, a determining unit 112, and a first transmitting unit 113.
  • the first allocating unit 111 is configured to allocate, according to the transmission service request across the optical network domain, a virtual link that meets the service requirement in the IP network domain for the transmission service.
  • the determining unit 112 is configured to determine a target service layer path that matches the virtual link in the pre-saved service layer path, where the service layer path is located in the optical network domain.
  • the first sending unit 113 is configured to send a controller for activating an activation request of the target service layer path to the optical network domain.
  • the first allocating unit allocates a virtual link in the IP network domain that satisfies the service requirement for the transmission service when receiving the transmission service request across the optical network domain; the determining unit determines the pre-saved service layer path and a target link layer path of the virtual link matching, wherein the service layer path is located in the optical network domain; the first sending unit sends activating the request for activating the target service layer path to the controller of the optical network domain, by establishing a virtual link and
  • the corresponding relationship of the service layer paths solves the problem that the current optical layer provides the required service layer path for the IP layer with low efficiency, and achieves the technical effect of improving efficiency.
  • the determining unit includes: a first acquiring module configured to acquire one or more service layer paths allocated in advance for the virtual link; and a selecting module configured to use one or more service layer paths by using a preset algorithm The target service layer path matching the virtual link is selected.
  • the first obtaining module may include: a first acquiring sub-module configured to obtain a link identifier of the virtual link; and a second acquiring sub-module configured to obtain a link corresponding to the link identifier in the path index list Or multiple service layer paths, or obtain path indexes of one or more service layer paths, or obtain one or more service layer paths corresponding to link identifiers in the path index list and path indexes of one or more service layer paths .
  • the first sending unit may include: a second acquiring module configured to acquire a path index of the target service layer path; and a sending module configured to send an activation request carrying the path index of the target service layer path to the optical network The controller of the domain.
  • the apparatus of the present application may further include: a second sending unit configured to send the path allocation request to the optical network domain before allocating the virtual link in the IP network domain that satisfies the service requirement for the transport service a controller, wherein the path allocation request is used to request a service layer path for the virtual link; the first receiving unit is configured to receive a path index of one or more service layer paths returned by the controller of the optical network domain; The mapping between the path index of the one or more service layer paths and the link identifier of the virtual link is configured to the path index list.
  • the apparatus of the present application may further include: a third sending unit configured to save the correspondence between the path index of the one or more service layer paths and the link identifier of the virtual link to the path index list, Sending a path operation request to the controller of the optical network domain; the second receiving unit is configured to receive an operation result returned by the controller of the optical network domain, and update the path index list based on the operation result.
  • FIG. 12 is a schematic diagram of another path determining apparatus for merging an IP network with an optical transport network according to an embodiment of the present invention.
  • the apparatus may include a second distribution unit 121, a first return unit 122, and an activation unit 123.
  • the second allocating unit 121 is configured to send a virtual link to the controller that receives the IP network domain. When a path assignment request is sent, one or more service layer paths are allocated for the virtual link.
  • the first returning unit 122 is configured to return a path index of one or more service layer paths to a controller of the IP network domain.
  • the activation unit 123 is configured to activate a target service layer path when receiving an activation request sent by a controller of the IP network domain to activate the target service layer path, where the target service layer path is an IP in one or more service layer paths The service layer path assigned by the controller of the network domain to the virtual link.
  • the second allocating unit allocates one or more service layer paths for the virtual link when receiving the path allocation request sent by the controller of the IP network domain for the virtual link;
  • the first return unit returns one or more The path of the service layer path is indexed to the controller of the IP network domain;
  • the activation unit activates the target service layer path when receiving the activation request sent by the controller of the IP network domain to activate the target service layer path, wherein the target service layer
  • the path is a service layer path allocated by the controller of the IP network domain in the one or more service layer paths to the virtual link, and the current optical layer is provided for the IP layer by establishing a correspondence between the virtual link and the service layer path.
  • the foregoing apparatus may further include: an executing unit, configured to: after the one or more service layer paths are allocated for the virtual link, the path operation request sent by the controller of the IP network domain to the virtual link And executing, by the path operation request, the path operation requested by the path operation; the second returning unit is configured to return the operation result of the path operation to the controller of the optical network domain, wherein the operation result is used to update the path index list of the optical network domain, the path A path index of one or more service layer paths allocated for the virtual link is stored in the index list.
  • an executing unit configured to: after the one or more service layer paths are allocated for the virtual link, the path operation request sent by the controller of the IP network domain to the virtual link And executing, by the path operation request, the path operation requested by the path operation; the second returning unit is configured to return the operation result of the path operation to the controller of the optical network domain, wherein the operation result is used to update the path index list of the optical network domain, the path A path index of one or more service layer paths allocated for the virtual
  • the execution unit includes: a third acquisition module configured to acquire an operation type of the path operation carried in the path operation request; and a first execution module configured to perform a path operation corresponding to the operation type.
  • the first execution module includes: a new sub-module configured to add a service layer path for the virtual link when the operation type is new, and delete the sub-module, where the operation type is deleted. Delete the service layer path allocated for the virtual link; adjust the submodule to adjust the bandwidth of the service layer path allocated for the virtual link when the operation type is bandwidth adjustment; query the submodule, configured to be in the operation type In the case of a query, query the status information of the service layer path and Attribute information; a refresh submodule configured to refresh the service layer path allocated for the virtual link if the operation type is refresh.
  • the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the above modules are all located in the same processor; or, the above modules are respectively located in different combinations. In the processor.
  • a path determining system in which an IP network and an optical transport network are fused is further provided.
  • the system is used to implement the above embodiments and examples, and the description has been omitted.
  • the system includes a first controller located in the IP network domain and a second controller located in the optical network domain, wherein the second controller is configured to respond to the path allocation request sent by the first controller as a virtual chain located in the IP network domain
  • the path is allocated to the service layer path of the optical network domain; the first controller is configured to receive the path index of the one or more service layer paths returned by the second controller, and save the path index and the virtual chain of the one or more service layer paths Correspondence of the link identifier of the road.
  • the second controller may be further configured to: when receiving the path operation request sent by the first controller for the virtual link, perform a path operation requested by the path operation request; the first controller is further configured to Receiving the operation result of the path operation, and updating the path index list of the optical network domain according to the operation result, wherein the path index list stores the path index of one or more service layer paths allocated for the virtual link.
  • the second controller may include: a fourth acquiring module configured to acquire an operation type of the path operation carried in the path operation request; and a second execution module configured to perform a path operation corresponding to the operation type.
  • the second execution module may be configured to: add a service layer path for the virtual link when the operation type is new; and delete the virtual link assignment when the operation type is deleted.
  • Service layer path ; adjust the bandwidth of the service layer path allocated for the virtual link when the operation type is bandwidth adjustment; query the status information and attribute information of the service layer path when the operation type is query; When the type is refresh, the service layer path allocated for the virtual link is refreshed.
  • the embodiment of the invention further provides a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the storage medium may also be arranged to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor may perform, according to the stored program code in the storage medium, when the transmission service request across the optical network domain is received, allocate a virtual link that meets the service requirement in the IP network domain for the transmission service; Determining a target service layer path in the pre-saved service layer path that matches the virtual link, wherein the service layer path is located in the optical network domain; and sending a activation request to activate the target service layer path to the controller of the optical network domain.
  • the processor may perform, according to the stored program code in the storage medium, assign one or more services to the virtual link when receiving the path allocation request sent by the controller of the IP network domain for the virtual link.
  • a layer path a controller that returns a path index of one or more service layer paths to an IP network domain; and activates a target service layer path when a request sent by a controller of the IP network domain is activated to activate an activation request of the target service layer path, Where the target service layer path is one or The service layer path allocated by the controller of the IP network domain in the multiple service layer paths for the virtual link.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • a virtual link that meets a service requirement in the IP network domain is allocated for the transmission service; and the pre-saved service is determined.
  • a target service layer path matching the virtual link in the layer path the service layer path is located in the optical network domain; sending an activation request for activating the target service layer path to the controller of the optical network domain, by establishing a virtual link and a service layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

提供了一种IP网络与光传送网络融合的路径确定方法、装置及系统。其中,该方法包括:在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器。

Description

IP网络与光传送网络融合的路径确定方法、装置及系统 技术领域
本申请涉及通信领域,尤其涉及一种IP网络与光传送网络融合的路径确定方法、装置及系统。
背景技术
目前,运营商的干线基础承载网络一般分为两层来分别进行建设和运维,上层是由路由器组成的IP/MPLS(Multi-Protocol Label Switching,多协议标签交换)承载网,下层先后由DWDM(Dense Wavelength Division Multiplexing,密集型光波复用)、光传送网(OTN,Optical Transport Network)等组成的光传送网络(简称光层)。IP层向光层提出各节点间的光链路连接需求,光层负责为IP层提供静态配置的光物理链路,解决大容量、长距离传输和不同带宽电路的汇聚调度需求;IP层不感知光层的物理拓扑和资源信息,也不知道光层所提供的网络保护信息,只能根据IP层面自身逻辑拓扑进行路由和流量优化,对路由和流量的优化效率较低;光网络不了解IP层动态连接和流量变化等需求,因此不能快速为其提供更经济的直达服务层链路,要解决这个问题,就需要实现IP和光的联合组网及协同控制。
发明内容
针对光层为IP层提供所需的服务层路径的效率较低的问题,目前尚未提出有效的解决方案。
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对光层为IP层提供所需的服务层路径的效率较低的问题,本发明实施例提供了一种IP网络与光传送网络融合的路径确定方法、装置及系统。
根据本发明实施例的一个方面,提供了一种IP网络与光传送网络融合的路径确定方法,该方法包括:在接收到跨越光网络域的传输业务请求时, 为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器。
在示例性实施方式中,确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径可以包括:获取预先为虚拟链路分配的一条或多条服务层路径;通过预设算法从一条或多条服务层路径中选取出与虚拟链路匹配的目标服务层路径。
在示例性实施方式中,获取预先为虚拟链路分配的一条或多条服务层路径可以包括:获取虚拟链路的链路标识;获取路径索引列表中与链路标识对应的一条或多条服务层路径,或获取一条或多条服务层路径的路径索引,或获取路径索引列表中与链路标识对应的一条或多条服务层路径以及一条或多条服务层路径的路径索引。
在示例性实施方式中,发送用于激活目标服务层路径的激活请求至光网络域的控制器可以包括:获取目标服务层路径的路径索引;发送携带有目标服务层路径的路径索引的激活请求至光网络域的控制器。
在示例性实施方式中,在为传输业务分配位于IP网络域中满足业务需求的虚拟链路之前,该方法还可以包括:发送路径分配请求至光网络域的控制器,其中,路径分配请求用于请求为虚拟链路分配服务层路径;接收光网络域的控制器返回的一条或多条服务层路径的路径索引;保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表。
在示例性实施方式中,在保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表之后,该方法还可以包括:发送路径操作请求至光网络域的控制器;接收光网络域的控制器返回的操作结果,并基于操作结果更新路径索引列表。
在示例性实施方式中,一条或多条服务层路径可以为同源同宿路径。
根据本发明实施例的另一个方面,还提供了一种IP网络与光传送网络融合的路径确定方法,该方法包括:在接收到IP网络域的控制器为虚拟链 路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;返回一条或多条服务层路径的路径索引至IP网络域的控制器;在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
在示例性实施方式中,在为虚拟链路分配一条或多条服务层路径之后,该方法还可以包括:在接收到IP网络域的控制器为虚拟链路发送的路径操作请求时,执行路径操作请求所请求执行的路径操作;返回路径操作的操作结果至光网络域的控制器,其中,操作结果用于更新光网络域的路径索引列表,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
在示例性实施方式中,执行路径操作请求所请求执行的路径操作可以包括:获取路径操作请求中携带的路径操作的操作类型;执行与操作类型对应的路径操作。
在示例性实施方式中,执行与操作类型对应的路径操作可以包括:在操作类型为新增的情况下,为虚拟链路新增服务层路径;在操作类型为删除的情况下,删除为虚拟链路分配的服务层路径;在操作类型为带宽调整的情况下,调整为虚拟链路分配的服务层路径的带宽;在操作类型为查询的情况下,查询服务层路径的状态信息和属性信息;在操作类型为刷新的情况下,刷新为虚拟链路分配的服务层路径。
在示例性实施方式中,为虚拟链路新增服务层路径可以包括:根据路径操作请求指示的路径起点和路径终点,为虚拟链路分配服务层路径;保存分配的服务层路径的路径索引;为分配的服务层路径分配网络资源。
在示例性实施方式中,删除为虚拟链路分配的服务层路径可以包括:获取路径操作请求中待删除的服务层路径的路径索引;删除与获取到的路径索引对应的服务层路径和在本地保存的被删除服务层路径的路径索引;释放为被删除服务层路径分配的网络资源。
在示例性实施方式中,调整为虚拟链路分配的服务层路径的带宽可以包括:将服务层路径的当前带宽调整至路径操作请求中所指示的带宽。
在示例性实施方式中,刷新为虚拟链路分配的服务层路径可以包括:重新确定一条与为虚拟链路分配的服务层路径具有相同路径起点和路径终点的服务层路径;使用重新确定的服务层路径替代为虚拟链路分配的服务层路径。
在示例性实施方式中,在执行与操作类型对应的路径操作之后,该方法还可以包括:当有任一服务层路径不可用时,获取该服务层路径的路径起点和路径终点;按照该服务层路径的路径起点和路径终点重新分配服务层路径;在重新分配服务层路径的操作成功的情况下,将该服务层路径的路径索引作为重新分配的服务层路径的路径索引;在重新分配服务层路径的操作失败的情况下,将该服务层路径不可用的信息上报至IP网络域的控制器。
在示例性实施方式中,在为虚拟链路分配的一条或多条服务层路径中,一条或多条服务层路径可以为同源同宿路径。
在示例性实施方式中,在为虚拟链路分配的一条或多条服务层路径中,服务层路径的保护属性可以为工作类型和保护类型,工作类型的服务层路径可以为当前使用的服务层路径,保护类型的服务层路径可以为当前未使用的服务层路径,其中,工作类型的服务层路径与保护类型的服务层路径之间可以通过SRLG进行分离。
在示例性实施方式中,在为虚拟链路分配的一条或多条服务层路径中,服务层路径可以包括以太层路径、光通路数据单元ODUk层路径以及光层路径中的至少之一。
根据本发明实施例的另一个方面,提供了一种IP网络与光传送网络融合的路径确定装置,该装置包括:第一分配单元,配置为在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定单元,配置为确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;第一发送单元,配置为发送用于激活目标服务层路径的激活请求至光网络域的控制器。
在示例性实施方式中,确定单元可以包括:第一获取模块,配置为获取预先为虚拟链路分配的一条或多条服务层路径;选取模块,配置为通过预设算法从一条或多条服务层路径中选取出与虚拟链路匹配的目标服务层路径。
在示例性实施方式中,第一获取模块可以包括:第一获取子模块,配置为获取虚拟链路的链路标识;第二获取子模块,配置为获取路径索引列表中与链路标识对应的一条或多条服务层路径,或获取一条或多条服务层路径的路径索引,或获取路径索引列表中与链路标识对应的一条或多条服务层路径以及一条或多条服务层路径的路径索引。
在示例性实施方式中,第一发送单元可以包括:第二获取模块,配置为获取目标服务层路径的路径索引;发送模块,配置为发送携带有目标服务层路径的路径索引的激活请求至光网络域的控制器。
在示例性实施方式中,该装置还可以包括:第二发送单元,配置为在为传输业务分配位于IP网络域中满足业务需求的虚拟链路之前,发送路径分配请求至光网络域的控制器,其中,路径分配请求用于请求为虚拟链路分配服务层路径;第一接收单元,配置为接收光网络域的控制器返回的一条或多条服务层路径的路径索引;保存单元,配置为保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表。
在示例性实施方式中,该装置还可以包括:第三发送单元,配置为在保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表之后,发送路径操作请求至光网络域的控制器;第二接收单元,配置为接收光网络域的控制器返回的操作结果,并基于操作结果更新路径索引列表。
根据本发明实施例的另一个方面,还提供了一种IP网络与光传送网络融合的路径确定装置,该装置包括:第二分配单元,配置为在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;第一返回单元,配置为返回一条或多条服务层路径的路径索引至IP网络域的控制器;激活单元,配置为在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
在示例性实施方式中,该装置还可以包括:执行单元,配置为在为虚拟链路分配一条或多条服务层路径之后,在接收到IP网络域的控制器为虚拟 链路发送的路径操作请求时,执行路径操作请求所请求执行的路径操作;第二返回单元,配置为返回路径操作的操作结果至光网络域的控制器,其中,操作结果用于更新光网络域的路径索引列表,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
在示例性实施方式中,执行单元可以包括:第三获取模块,配置为获取路径操作请求中携带的路径操作的操作类型;第一执行模块,配置为执行与操作类型对应的路径操作。
在示例性实施方式中,第一执行模块可以包括:新增子模块,配置为在操作类型为新增的情况下,为虚拟链路新增服务层路径;删除子模块,配置为在操作类型为删除的情况下,删除为虚拟链路分配的服务层路径;调整子模块,配置为在操作类型为带宽调整的情况下,调整为虚拟链路分配的服务层路径的带宽;查询子模块,配置为在操作类型为查询的情况下,查询服务层路径的状态信息和属性信息;刷新子模块,配置为在操作类型为刷新的情况下,刷新为虚拟链路分配的服务层路径。
根据本发明另一个实施例,还提供了一种IP网络与光传送网络融合的路径确定方法,该方法包括:IP网络域的第一控制器发送路径分配请求至光网络域的第二控制器;第二控制器响应路径分配请求,为位于IP网络域的虚拟链路分配位于光网络域的服务层路径;第一控制器接收第二控制器返回的一条或多条服务层路径的路径索引,并保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系。
在示例性实施方式中,在第一控制器保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系之后,该方法还可以包括:在接收到第一控制器为虚拟链路发送的路径操作请求时,第二控制器执行路径操作请求所请求执行的路径操作;第一控制器接收路径操作的操作结果,并按照操作结果更新光网络域的路径索引列表,其中,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
在示例性实施方式中,第二控制器执行路径操作请求所请求执行的路径操作可以包括:第二控制器获取路径操作请求中携带的路径操作的操作类型;第二控制器执行与操作类型对应的路径操作。
在示例性实施方式中,第二控制器执行与操作类型对应的路径操作可以包括:在操作类型为新增的情况下,第二控制器为虚拟链路新增服务层路径;在操作类型为删除的情况下,第二控制器删除为虚拟链路分配的服务层路径;在操作类型为带宽调整的情况下,第二控制器调整为虚拟链路分配的服务层路径的带宽;在操作类型为查询的情况下,第二控制器查询服务层路径的状态信息和属性信息;在操作类型为刷新的情况下,第二控制器刷新为虚拟链路分配的服务层路径。
根据本发明另一个实施例,还提供了一种IP网络与光传送网络融合的路径确定系统,该系统包括位于IP网络域的第一控制器和位于光网络域的第二控制器,其中,第二控制器配置为响应第一控制器发送的路径分配请求,为位于IP网络域的虚拟链路分配位于光网络域的服务层路径;第一控制器配置为接收第二控制器返回的一条或多条服务层路径的路径索引,并保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系。
在示例性实施方式中,第二控制器还可以配置为在接收到第一控制器为虚拟链路发送的路径操作请求时,执行路径操作请求所请求执行的路径操作;第一控制器还可以配置为接收路径操作的操作结果,并按照操作结果更新光网络域的路径索引列表,其中,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
在示例性实施方式中,第二控制器可以包括:第四获取模块,配置为获取路径操作请求中携带的路径操作的操作类型;第二执行模块,配置为执行与操作类型对应的路径操作。
在示例性实施方式中,第二执行模块还可以配置为:在操作类型为新增的情况下,为虚拟链路新增服务层路径;在操作类型为删除的情况下,删除为虚拟链路分配的服务层路径;在操作类型为带宽调整的情况下,调整为虚拟链路分配的服务层路径的带宽;在操作类型为查询的情况下,查询服务层路径的状态信息和属性信息;在操作类型为刷新的情况下,刷新为虚拟链路分配的服务层路径。
根据本发明另一个实施例,提供了一种存储介质,存储介质可以被设置为存储用于执行以下步骤的程序代码:在接收到跨越光网络域的传输业务请 求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器。
在示例性实施方式中,存储介质还可以被设置为存储用于执行以下步骤的程序代码:在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;返回一条或多条服务层路径的路径索引至IP网络域的控制器;在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
在本发明实施例中,在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器,通过建立虚拟链路和服务层路径的对应关系,从而解决了目前光层为IP层提供所需的服务层路径的效率较低的问题,实现了提高效率的技术效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是根据本发明实施例的示例的计算机终端的示意图;
图2是根据本发明实施例的确定光网络的路径的流程图;
图3是根据本发明实施例的一种IP网络与光传送网络融合的路径确定方法的流程图;
图4是根据本发明实施例的另一种IP网络与光传送网络融合的路径确定方法的流程图;
图5是根据本发明实施例的示例的SDN网络架构的示意图;
图6是根据本发明实施例的示例的IP网络与光传送网络融合的路径确 定方法的流程图;
图7是根据本发明实施例的建立服务层路径与虚拟链路间映射的示意图;
图8是根据本发明实施例的删除服务层路径的示意图;
图9是根据本发明实施例的进行带宽扩容或缩容的示意图;
图10是根据本发明实施例的进行路径修复的示意图;
图11是根据本发明实施例的一种IP网络与光传送网络融合的路径确定装置的示意图;
图12是根据本发明实施例的另一种IP网络与光传送网络融合的路径确定装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在计算机终端上为例,如图1所示,计算机终端可以包括一个或多个(图中仅示出一个)处理器101(处理器101可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器103、以及用于通信功能的传输装置105。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。
存储器103可配置为存储应用软件的软件程序以及模块,如本发明实施例中的设备的控制方法对应的程序指令/模块,处理器101通过运行存储在存储器103内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可还包括相对于处理器远程设置的存储器,这些远程 存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置配置为经由一个网络接收或者发送数据。上述的网络实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置可以为射频(Radio Frequency,RF)模块,其配置为通过无线方式与互联网进行通讯。
IP和光网络联合组网,可进行统一路由规划和流量协同。IP网络的路由规划需结合光网络的物理拓扑进行科学设计,光网络需根据IP层的逻辑连接需求完善服务层路径连接。如何动态的为IP层计算光层路由则显得尤为重要。IP和光两层协调的路径计算方法,可基于GMPLS-UNI(多协标签协议-用户网络接口)协议,由IP网络设备向光网络设备发送建立用户网络接口的请求,请求计算光网络的路径。如图2所示:
步骤S201,第一路由设备发送请求消息至第一光设备;
步骤S202,第一光设备与第二光设备之间创建双向光通道;
步骤S203,第一光设备发送路由消息至第二光设备;
步骤S204,第二光设备发送路由消息至第二路由设备;
步骤S205,第二路由设备发送第一确定消息至第二光设备;
步骤S206,第二光设备发送第一确定消息至第一光设备;
步骤S207,第一光设备发送第二确定消息至第一路由设备,以完成光网络路径的计算。
上述方式能打通信令和路由,但也存在着以下的问题:1)由于接口采用GMPLS-UNI协议,该接口实现存在多种方式,有手动设置,有采用RSVP PATH信令等,均不易扩展,无法应对灵活多变的服务层路径计算策略和业务要求;2)该方式的路径计算的效率低下,需要先打通源节点到近端IP层设备路由,再建立服务层路径,然后转发信令到远端IP层设备,然后再继续计算远端IP层设备到宿节点的路由;3)对于目前新的一些业务,比如带宽调整支持 会较难实现。
根据本发明实施例,提供了一种IP网络与光传送网络融合的路径确定方法的方法实施例,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图3是根据本发明实施例的一种IP网络与光传送网络融合的路径确定方法的流程图,如图3所示,该方法包括如下步骤:
步骤S301,在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路。
步骤S302,确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中。
步骤S303,发送用于激活目标服务层路径的激活请求至光网络域的控制器。
通过上述实施例,在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器,通过建立虚拟链路和服务层路径的对应关系,从而解决了目前光层为IP层提供所需的服务层路径的效率较低的问题,实现了提高效率的技术效果。
在上述实施例中,上述步骤的执行主体可以为IP网络域的控制器等,但不限于此。
在为传输业务分配位于IP网络域中满足业务需求的虚拟链路之前,可通过如下方式建立光电两层路径的全局映射关系,发送路径分配请求至光网络域的控制器,其中,路径分配请求用于请求为虚拟链路分配服务层路径;接收光网络域的控制器返回的一条或多条服务层路径的路径索引;保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表。
上述的一条或多条服务层路径为同源同宿路径;在保存一条或多条服务 层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表之后,可通以对已经分配的服务层路径进行更新、删除等操作:发送路径操作请求至光网络域的控制器,其中,路径操作请求用于请求对服务层路径进行操作;接收光网络域的控制器返回的操作结果,并基于操作结果更新路径索引列表。
在上述实施例中,确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径包括:获取预先为虚拟链路分配的一条或多条服务层路径;通过预设算法从一条或多条服务层路径中选取出与虚拟链路匹配的目标服务层路径。
例如,获取预先为虚拟链路分配的一条或多条服务层路径包括:获取虚拟链路的链路标识;获取路径索引列表中与链路标识对应的一条或多条服务层路径,或获取一条或多条服务层路径的路径索引,或获取路径索引列表中与链路标识对应的一条或多条服务层路径以及一条或多条服务层路径的路径索引。
在上述实施例中,发送用于激活目标服务层路径的激活请求至光网络域的控制器可以包括:获取目标服务层路径的路径索引;发送携带有目标服务层路径的路径索引的激活请求至光网络域的控制器。
根据本发明实施例,还提供了一种IP网络与光传送网络融合的路径确定方法的方法实施例,图4是根据本发明实施例的另一种IP网络与光传送网络融合的路径确定方法的流程图,如图4所示,该方法包括如下步骤:
步骤S401,在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;
步骤S402,返回一条或多条服务层路径的路径索引至IP网络域的控制器;
步骤S403,在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
通过上述实施例,在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;返回一条或多条服务层路径的路径索引至IP网络域的控制器;在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径,通过建立虚拟链路和服务层路径的对应关系,从而解决了目前光层为IP层提供所需的服务层路径的效率较低的问题,实现了提高效率的技术效果。
在上述实施例中,上述步骤的执行主体可以为光网络域的控制器等,但不限于此。
在为虚拟链路分配的一条或多条服务层路径中,一条或多条服务层路径为同源同宿路径;服务层路径的保护属性为工作类型和保护类型,工作类型的服务层路径为当前使用的服务层路径,保护类型的服务层路径为当前未使用的服务层路径,其中,工作类型的服务层路径与保护类型的服务层路径之间通过SRLG进行分离;服务层路径包括以太层路径、ODUk层路径以及光层路径中的至少之一。
SRLG即共享风险链路组,每条服务层链路都会设置其处于哪些SRLG组中(一组SRLG ID号的序列)。当处于同一风险的链路(比如处于同一根物理光钎内),其链路的SRLG序列中就会包含相同的一个SRLG ID,即存在交集。SRLG分离就是建立的路径上所有链路的SRLG组中的SRLG都没有交集(指的是路径之间),因此,两条路径中,一条路径故障,不会波及另一个路径。
在为虚拟链路分配一条或多条服务层路径之后,在接收到IP网络域的控制器为虚拟链路发送的路径操作请求时,执行路径操作请求所请求执行的路径操作;返回路径操作的操作结果至光网络域的控制器,其中,操作结果用于更新光网络域的路径索引列表,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
上述的执行路径操作请求所请求执行的路径操作包括:获取路径操作请求中携带的路径操作的操作类型;执行与操作类型对应的路径操作。
例如,执行与操作类型对应的路径操作包括:在操作类型为新增的情况下,为虚拟链路新增服务层路径;在操作类型为删除的情况下,删除为虚拟链路分配的服务层路径;在操作类型为带宽调整的情况下,调整为虚拟链路分配的服务层路径的带宽;在操作类型为查询的情况下,查询服务层路径的状态信息和属性信息;在操作类型为刷新的情况下,刷新为虚拟链路分配的服务层路径。
在上述实施例中,为虚拟链路新增服务层路径可以包括:根据路径操作请求指示的路径起点和路径终点,为虚拟链路分配服务层路径;保存分配的服务层路径的路径索引;为分配的服务层路径分配网络资源。
在上述实施例中,删除为虚拟链路分配的服务层路径可以包括:获取路径操作请求中待删除的服务层路径的路径索引;删除与获取到的路径索引对应的服务层路径和在本地保存的被删除服务层路径的路径索引;释放为被删除服务层路径分配的网络资源。
在上述实施例中,调整为虚拟链路分配的服务层路径的带宽可以包括:将服务层路径的当前带宽调整至路径操作请求中所指示的带宽。
在上述实施例中,刷新为虚拟链路分配的服务层路径可以包括:重新确定一条与为虚拟链路分配的服务层路径具有相同路径起点和路径终点的服务层路径;使用重新确定的服务层路径替代为虚拟链路分配的服务层路径。服务层路径的优化,可根据当前网络拥塞情况,选择重算一条路径,避开拥塞链路,从而优化原服务层路径(此时优化后的路径取代了原服务层路径)。
在执行与操作类型对应的路径操作之后,可以对已分配的服务层路径进行变更等操作:当有任一服务层路径不可用时,获取该服务层路径的路径起点和路径终点;按照该服务层路径的路径起点和路径终点重新分配服务层路径;在重新分配服务层路径的操作成功的情况下,将该服务层路径的路径索引作为重新分配的服务层路径的路径索引;在重新分配服务层路径的操作失败的情况下,将该服务层路径不可用的信息上报至IP网络域的控制器。
根据本发明实施例,还提供了一种IP网络与光传送网络融合的路径确 定方法的方法实施例,包括以下步骤:
步骤S11,IP网络域的第一控制器发送路径分配请求至光网络域的第二控制器;
步骤S12,第二控制器响应路径分配请求,为位于IP网络域的虚拟链路分配位于光网络域的服务层路径;
步骤S13,第一控制器接收第二控制器返回的一条或多条服务层路径的路径索引,并保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系。
在本实施例中,在第一控制器保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系之后,在接收到第一控制器为虚拟链路发送的路径操作请求时,第二控制器可以执行路径操作请求所请求执行的路径操作;第一控制器可以接收路径操作的操作结果,并按照操作结果更新光网络域的路径索引列表,其中,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
在本实施例中,第二控制器执行路径操作请求所请求执行的路径操作可以包括:第二控制器获取路径操作请求中携带的路径操作的操作类型;第二控制器执行与操作类型对应的路径操作。
在本实施例中,第二控制器执行与操作类型对应的路径操作可以包括:在操作类型为新增的情况下,第二控制器为虚拟链路新增服务层路径;在操作类型为删除的情况下,第二控制器删除为虚拟链路分配的服务层路径;在操作类型为带宽调整的情况下,第二控制器调整为虚拟链路分配的服务层路径的带宽;在操作类型为查询的情况下,第二控制器查询服务层路径的状态信息和属性信息;在操作类型为刷新的情况下,第二控制器刷新为虚拟链路分配的服务层路径。
本申请的上述方法基于SDN架构,SDN架构的基本形态如图5所示,主要包括应用层、控制层以及基础设施层,应用层和控制层通过北向接口(REST API)连接,控制层和基础设施层通过南向接口(openflow)连接,应用层主要由业务应用组成,控制层主要由SDN控制软件组成,SDN控制软件用于 提供网络服务,基础设施层主要由网络设备组成。
通过IP网络域的SDN控制器为跨越光网络的IP网络设备间建立虚拟链路,并由光网络域SDN控制器生成多条候选的光网络域服务层路径和该虚拟链路关联。采用该方法,可以大大提高IP网络与光传送网络融合的路径计算效率,并且由于支持SDN控制方式,则可以很好的支持各种灵活的策略,包括路径带宽扩缩容,路由策略设定等需求。
具体过程如图6所示:
步骤S601(包括步骤S601_1和步骤S601_2),IP网络域SDN控制器(即IP SDN控制器)为跨越光网络的IP网络设备间通过手动配置虚拟链路(或者自动配置虚拟链路),并向光网络域SDN控制器(即OTN SDN控制器)发出光层的路径计算请求,计算一条或多条候选的光网络域服务层路径。请求计算的路径的类型为工作或保护,请求计算的类型为新增、删除、带宽调整、查询或刷新。
上述的路径计算请求可采用Netconf、Restful API、Openflow等多种协议来发送,具体选择何种协议,本申请不作限定。
步骤S602,光网络域SDN控制器收到请求后,处理方式如下:
方式1,如果计算类型为新增,则计算出一条或多条候选的服务层路径,所有的工作路径和保护路径之间进行SRLG(全称为Shared Risk Link Groups,共享风险链路组)分离,并且每条路径都需进行资源分配和占用。每条路径采用pathkey标识(即通过路径索引进行标识),并将服务层路径的标识列表转发给IP网络域SDN控制器。
多条服务层路径为同源同宿路径,且多条路径的保护属性可以为工作或保护,工作路径和保护路径之间可以进行SRLG(Shared Risk Link Group,共享链路风险组)分离,而多个工作路径之间或保护路径之间则可以不进行SRLG分离。上述的计算方法包含但不限于Dijkstra和KSP算法,采用的分离路径计算算法包含但不限于Suurballe算法。
对于每条路径,如果存在一组路径中有路径计算失败的情况,则标记该路径计算失败,而其他计算成功的路径,标记为计算成功,一起转发给IP 网络域SDN控制器;如果在转发给IP网络域SDN控制器后,因为光层链路故障导致其中路径变为不可用,则由光网络域SDN控制器监听该故障,在路径索引保持不变的情况下,发起该路径的重新计算,如果计算成功则无需上报给IP网路域SDN控制器,如果计算失败,则上报给IP网络域SDN控制器,该路径索引对应的路径为不可用。
方式2,如果计算类型为删除,则在光网络域SDN控制器中删除该路径索引对应的服务层路径,释放占用的路径资源,以及该路径索引。
方式3,如果计算类型为带宽调整,则由光网络域的SDN控制器根据路径索引查询到该服务层路径,并基于当前要求的新带宽,对路径上各链路上的原占用带宽进行调大或调小。如果因为带宽不够造成调整失败,则按照方式1中的方式进行新增路径的路径计算,但路径索引沿用该路径索引,如果仍然计算失败,则返回带宽调整失败的信息。
方式4,如果计算类型为查询,则由光网络域的SDN控制器根据路径索引查询到该路径,并反馈路径的状态和属性信息,状态信息是指路径当前是可用还是不可用。属性包括pathkey所对应的服务层路径的路径详细信息(如端口、链路、节点及标签波长等)。
方式5,如果计算类型为刷新,则由光网络域SDN控制器根据路径索引查询到该路径,并根据情况对原路径进行优化。
步骤S603,IP网络域SDN控制器将OTN网络域的SDN控制器计算出的该组路径的路径索引列表和该IP层虚拟链路的链路ID进行关联,并保存该关联关系在IP网络域的SDN控制器中。
步骤S604(包括步骤S604_1和S604_2),应用APP下发业务建立请求给IP网络域的SDN控制器,IP网络域基于拓扑计算确定IP层路径的虚拟链路,并进行IP层链路资源分配,对于计算出的路径中包含的虚拟链路,则根据该虚拟链路ID从IP网络域控制器中查找到对应的所有候选服务层路径的路径索引列表,选择其中一个路径索引,并向光网络域SDN控制器请求激活该路径索引对应的服务层候选路径。
上述的选择方式可以采用随机选择,也可以基于其他策略来选择,比如 SRLG值,本申请不做具体限定。上述的光网络域SDN控制器采用SDN南向接口来对服务层路径上的光网络设备进行交叉设置,南向接口协议可以为Openflow或Netconf,本申请并不做限定。
步骤S605,光网络域SDN控制器通过路径索引找到存储的对应的服务层路径,并对路径上的一个或多个光层设备,分别设置交叉连接,从而完成路径激活。
通过采用上述方法,相对于传统的IP和光协调路径计算方法,由于IP网络域中在跨域光网路域的设备间配置了虚拟链路,则IP网络域可以基于IP域和光域两个域的全网视图拓扑来进行全局路由计算,相较以前只能先计算IP域路由,再由边界设备通过GMPLS UNI接口请求计算光层路径来说,计算路由的成功率和路径合理性得以提高;通过预先为IP层虚拟链路计算候选的服务层路径,该候选路径资源随时可用,可大大减少IP和光两层路径建立的时间;IP和光两层的路径交互基于SDN控制器,接口的标准化和易用性使得可以灵活基于本方法做各种策略扩展,相比较之前的GMPLS UNI接口,可以大大提高互通的效率,降低互通的难度。
IP网路域和光网络域可以基于重叠模型进行组网互通。标准中定义了采用GMPLS UNI(通用多协议标签交换的用户-网络接口)协议来支持IP网络域和光网络域互通。
传统方式依赖传统的GMPLS协议。而SDN网络架构后,这些协议都被SDN南向接口协议取代,故而利用本申请的方法可以更好的适应用户需求。
为了更加形象的描述本申请方法中涉及的几个主要的处理过程,下面通过具体示例来进行说明:
示例1
IP网路域请求光网络域新建服务层路径并映射至IP层虚拟链路。
如图7所示,FD(Forwarding Domain,转发域)标识一个设备节点,FD(P)-1、FD(P)-2分别为IP网络域的两个设备节点,IP层的虚拟链路(即Virtual Link)在IP层不可互通,需通过光网络层互通。FD-1、FD-2为光网络域的以太网层节点(其服务层为ODUk)。LTP(Logical Terminal Point, 逻辑终端点)用来标识端口,LTP-1-1和LTP-2-1为服务层路径的源宿端口(包括源端口和宿端口),LTP-4-1、LTP-4-2、LTP-6-1、LTP-6-2为以太网层的NNI口端口,用以生成以太网链路,ETH FD表示以太网层,etherlink1、etherlink2为以太网链路。IP SDN Controller为IP网络域的SDN控制器,OTN SDN Controller为OTN网络域的SDN控制器。具体处理过程如下:
步骤S701(包括S701_1和S701_2),IP SDN Controller建立FD(P)-1到FD(P)-2之间的虚拟链路Vitual Link。
步骤S702,IP SDN Controller发起算路请求给OTN SDN Controller,该请求基于Netconf协议发送,算路请求中包括业务类型(比如EVPL,即以太网虚拟专线业务),以及一组PATH算路请求,对于每条PATH算路请求,包括如下信息:操作类型(增加),路径类型(工作或保护)。
步骤S703(包括S703_1和S703_2),OTN SDN Controller处理算路请求,计算从LTP-1-1到LTP-2-1的多条路径,此时,PATH(即服务层路径)属性的操作属性均为增加,首先找到所有的工作类型路径,然后,不考虑SRLG分离性进行计算,计算完成后,在计算所有的保护类型的路径时,可以考虑和之前所有的工作路径的SRLG分离。最终计算出保护路径,并对于计算成功的PATH进行资源占用。
步骤S704,OTN SDN Controller将计算出的所有PATH采用pathkey(路径索引)编号,pathkey为一个16bit的整形数。并将pathkey和各PATH的对应关系,以及PATH逐跳路径信息均保存在控制器中。如图7中所示,两条黑色粗线为服务层路径Path1和Path2,Path1采用pathkey1标识,Path2采用pathkey2标识。
步骤S705,OTN SDN Controller将计算成功的所有PATH的pathkey1和pathkey2返回给IP SDN Controller。
步骤S706(包括S706_1、S706_2和S706_3),APP下发给IP SDN Controller,建立业务,此时IP SDN Controller完成IP层路由计算,当virtual Link处在路径中时,则向OTN SDN Controller请求激活服务层路径,OTN SDN Controller根据pathkey(pathkey1或pathkey2),找到之前计算出的PATH路径,通过南向接口(采用Netconf协议),对服务层设 备下交叉设定,从而打通传送路径,实现服务层路径的激活。
示例2
IP网路域请求光网络域删除服务层路径。
如图8所示,FD(Forwarding Domain,转发域)标识一个设备节点,FD(P)-1、FD(P)-2分别为IP网络域的两个设备节点,IP层的虚拟链路(即Virtual Link)在IP层不可互通,需通过光网络层互通。FD-1、FD-2为光网络域的以太网层节点(其服务层为ODUk)。LTP(Logical Terminal Point,逻辑终端点)用来标识端口,LTP-1-1和LTP-2-1为服务层路径的源宿端口,LTP-4-1、LTP-4-2、LTP-6-1、LTP-6-2为以太网层的NNI口端口,用以生成以太网链路,ETH FD表示以太网域,etherlink1、etherlink2为以太网链路。IP SDN Controller为IP网络域的SDN控制器,OTN SDN Controller为OTN网络域的SDN控制器。具体处理过程如下:
步骤S801,IP SDN Controller发起删除路径请求(删除对象为pathkey2)给OTN SDN Controller,该请求基于Netconf协议发送,携带有每条PATH的操作类型(删除),路径类型(工作或保护)。
步骤S802(包括S802_1和S802_2),OTN SDN Controller查找pathkey2对应的路由,并删除该路径,释放资源及pathkey2。
步骤S803,OTN SDN Controller向IP SDN Controller返回删除成功的响应。
示例3
IP网路域请求光网络域对IP层虚拟链路对应的服务层路径进行带宽扩缩容。
如图9所示,图9中的标识的含义与图7和图8类似,在此不再赘述。具体处理过程如下:
步骤S901,IP SDN Controller发起带宽扩缩容请求给OTN SDN Controller,该请求基于Netconf协议发送。算路请求中包括业务类型(比 如EVPL,即以太网虚拟专线业务)。以及一组需调整带宽的PATH请求,对于每条PATH,包括如下信息:操作类型(带宽调整),路径类型(工作或保护)。
步骤S902(包括S902_1和S902_2),OTN SDN Controller处理带宽扩缩容请求,根据该路径的pathkey1查找到保存的该路径Path1,并且从LTP-1-1到LTP-2-1,开始调整路径带宽处理。
步骤S903,调整成功后,OTN SDN Controller将调整成功响应返回给IP SDN Controller。
示例4
服务层路径故障时对路径的修复。
如图10所示,图10中的标识的含义与图7和图8类似,在此不再赘述。Path2为发生故障的服务层路径,Path2’为重新计算的一条服务层路径,具体如下:
步骤S1001(包括S1001_1和S1001_2),OTN网络域已为IP网络域的virtual link生成了两条服务层路径,分别为Path1(pathkey1)和Path2(pathkey2)。
步骤S1002,OTN网络域中的服务层路径Path2(pathkey2)中由于路径的路由上的某条光层链路发生故障,从而造成Path2整个路径变成不可用。
步骤S1003,OTN网络域SDN Controller监控到该故障,则自动进行路径的重算,当路径Path2(LTP-1-1、LTP-4-2、LTP-6-2、LTP-2-1)路径故障,则重算计算一条Path2’(LTP-1-1、LTP-4-3、LTP-6-3、LTP-2-1),其pathkey不变,仍然为pathkey2。这样可以保证IP网络域不需感知一般的服务层网络中故障造成的路径的波动。
步骤S1004,如果重新计算路径成功,则不用上报给IP网路域SDN控制器;如果重新计算路径失败,则上报给IP网络域SDN控制器该pathkey2对应的服务层路径已经不可用。
通过以上的示例的描述,本领域的技术人员可以清楚地了解到根据上述 实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的方案本质上或者说对本领域已知技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明实施例中还提供了一种IP网络与光传送网络融合的路径确定装置。该装置用于实现上述实施例及示例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件、硬件、或软件和硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本发明实施例的一种IP网络与光传送网络融合的路径确定装置的示意图。如图11所示,该装置可以包括:第一分配单元111、确定单元112以及第一发送单元113。
第一分配单元111,配置为在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路。
确定单元112,配置为确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中。
第一发送单元113,配置为发送用于激活目标服务层路径的激活请求至光网络域的控制器。
通过上述实施例,第一分配单元在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定单元确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;第一发送单元发送用于激活目标服务层路径的激活请求至光网络域的控制器,通过建立虚拟链路和服务层路径的对应关系,从而解决了目前光层为IP层提供所需的服务层路径的效率较低的问题,实现了提高效率的技术效果。
在上述实施例中,确定单元包括:第一获取模块,配置为获取预先为虚拟链路分配的一条或多条服务层路径;选取模块,配置为通过预设算法从一条或多条服务层路径中选取出与虚拟链路匹配的目标服务层路径。
在上述实施例中,第一获取模块可以包括:第一获取子模块,配置为获取虚拟链路的链路标识;第二获取子模块,配置为获取路径索引列表中与链路标识对应的一条或多条服务层路径,或获取一条或多条服务层路径的路径索引,或获取路径索引列表中与链路标识对应的一条或多条服务层路径以及一条或多条服务层路径的路径索引。
在一个实施例中,第一发送单元可以包括:第二获取模块,配置为获取目标服务层路径的路径索引;发送模块,配置为发送携带有目标服务层路径的路径索引的激活请求至光网络域的控制器。
在另一个实施例中,本申请的装置还可包括:第二发送单元,配置为在为传输业务分配位于IP网络域中满足业务需求的虚拟链路之前,发送路径分配请求至光网络域的控制器,其中,路径分配请求用于请求为虚拟链路分配服务层路径;第一接收单元,配置为接收光网络域的控制器返回的一条或多条服务层路径的路径索引;保存单元,配置为保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表。
在一个实施例中,本申请的装置还可包括:第三发送单元,配置为在保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系至路径索引列表之后,发送路径操作请求至光网络域的控制器;第二接收单元,配置为接收光网络域的控制器返回的操作结果,并基于操作结果更新路径索引列表。
本发明实施例中还提供了一种IP网络与光传送网络融合的路径确定装置。图12是根据本发明实施例的另一种IP网络与光传送网络融合的路径确定装置的示意图。如图12所示,该装置可以包括:第二分配单元121、第一返回单元122以及激活单元123。
第二分配单元121,配置为在接收到IP网络域的控制器为虚拟链路发 送的路径分配请求时,为虚拟链路分配一条或多条服务层路径。
第一返回单元122,配置为返回一条或多条服务层路径的路径索引至IP网络域的控制器。
激活单元123,配置为在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
通过上述实施例,第二分配单元在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;第一返回单元返回一条或多条服务层路径的路径索引至IP网络域的控制器;激活单元在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径,通过建立虚拟链路和服务层路径的对应关系,从而解决了目前光层为IP层提供所需的服务层路径的效率较低的问题,实现了提高效率的技术效果。
在上述实施例中,上述装置还可以包括:执行单元,配置为在为虚拟链路分配一条或多条服务层路径之后,在接收到IP网络域的控制器为虚拟链路发送的路径操作请求时,执行路径操作请求所请求执行的路径操作;第二返回单元,配置为返回路径操作的操作结果至光网络域的控制器,其中,操作结果用于更新光网络域的路径索引列表,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
上述的执行单元包括:第三获取模块,配置为获取路径操作请求中携带的路径操作的操作类型;第一执行模块,配置为执行与操作类型对应的路径操作。
例如,第一执行模块包括:新增子模块,配置为在操作类型为新增的情况下,为虚拟链路新增服务层路径;删除子模块,配置为在操作类型为删除的情况下,删除为虚拟链路分配的服务层路径;调整子模块,配置为在操作类型为带宽调整的情况下,调整为虚拟链路分配的服务层路径的带宽;查询子模块,配置为在操作类型为查询的情况下,查询服务层路径的状态信息和 属性信息;刷新子模块,配置为在操作类型为刷新的情况下,刷新为虚拟链路分配的服务层路径。
上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明实施例中还提供了一种IP网络与光传送网络融合的路径确定系统。该系统用于实现上述实施例及示例,已经进行过说明的不再赘述。该系统包括位于IP网络域的第一控制器和位于光网络域的第二控制器,其中,第二控制器配置为响应第一控制器发送的路径分配请求,为位于IP网络域的虚拟链路分配位于光网络域的服务层路径;第一控制器配置为接收第二控制器返回的一条或多条服务层路径的路径索引,并保存一条或多条服务层路径的路径索引与虚拟链路的链路标识的对应关系。
在本实施例中,第二控制器还可以配置为在接收到第一控制器为虚拟链路发送的路径操作请求时,执行路径操作请求所请求执行的路径操作;第一控制器还配置为接收路径操作的操作结果,并按照操作结果更新光网络域的路径索引列表,其中,路径索引列表中保存有为虚拟链路分配的一条或多条服务层路径的路径索引。
在本实施例中,第二控制器可以包括:第四获取模块,配置为获取路径操作请求中携带的路径操作的操作类型;第二执行模块,配置为执行与操作类型对应的路径操作。
在本实施例中,第二执行模块还可以配置为:在操作类型为新增的情况下,为虚拟链路新增服务层路径;在操作类型为删除的情况下,删除为虚拟链路分配的服务层路径;在操作类型为带宽调整的情况下,调整为虚拟链路分配的服务层路径的带宽;在操作类型为查询的情况下,查询服务层路径的状态信息和属性信息;在操作类型为刷新的情况下,刷新为虚拟链路分配的服务层路径。
本发明实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S21,在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;
S22,确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;
S23,发送用于激活目标服务层路径的激活请求至光网络域的控制器。
在本实施例中,存储介质还可以被设置为存储用于执行以下步骤的程序代码:
S31,在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;
S32,返回一条或多条服务层路径的路径索引至IP网络域的控制器;
S33,在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器可以根据存储介质中已存储的程序代码执行:在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务层路径中与虚拟链路匹配的目标服务层路径,其中,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器。
在本实施例中,处理器可以根据存储介质中已存储的程序代码执行:在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为虚拟链路分配一条或多条服务层路径;返回一条或多条服务层路径的路径索引至IP网络域的控制器;在接收到IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活目标服务层路径,其中,目标服务层路径为一条或 多条服务层路径中IP网络域的控制器为虚拟链路分配的服务层路径。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述仅为本申请的示例性实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
在本发明实施例中,在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;确定预先保存的服务 层路径中与虚拟链路匹配的目标服务层路径,服务层路径位于光网络域中;发送用于激活目标服务层路径的激活请求至光网络域的控制器,通过建立虚拟链路和服务层路径的对应关系,从而解决了目前光层为IP层提供所需的服务层路径的效率较低的问题,实现了提高效率的技术效果。因此本发明具有工业实用性。

Claims (37)

  1. 一种IP网络与光传送网络融合的路径确定方法,包括:
    在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路(S301);
    确定预先保存的服务层路径中与所述虚拟链路匹配的目标服务层路径(S302),其中,所述服务层路径位于光网络域中;
    发送用于激活所述目标服务层路径的激活请求至所述光网络域的控制器(S303)。
  2. 根据权利要求1所述的方法,其中,确定预先保存的服务层路径中与所述虚拟链路匹配的目标服务层路径(S302)包括:
    获取预先为所述虚拟链路分配的一条或多条服务层路径;
    通过预设算法从所述一条或多条服务层路径中选取出与所述虚拟链路匹配的所述目标服务层路径。
  3. 根据权利要求2所述的方法,其中,获取预先为所述虚拟链路分配的一条或多条服务层路径包括:
    获取所述虚拟链路的链路标识;
    获取路径索引列表中与所述链路标识对应的所述一条或多条服务层路径,或获取所述一条或多条服务层路径的路径索引,或获取路径索引列表中与所述链路标识对应的所述一条或多条服务层路径以及所述一条或多条服务层路径的路径索引。
  4. 根据权利要求2或3所述的方法,其中,发送用于激活所述目标服务层路径的激活请求至所述光网络域的控制器(S303)包括:
    获取所述目标服务层路径的路径索引;
    发送携带有所述目标服务层路径的路径索引的所述激活请求至光网络域的控制器。
  5. 根据权利要求2所述的方法,其中,在为传输业务分配位于IP网络域中满足业务需求的虚拟链路(S301)之前,所述方法还包括:
    发送路径分配请求至所述光网络域的控制器,其中,所述路径分配请求用于请求为所述虚拟链路分配服务层路径;
    接收所述光网络域的控制器返回的所述一条或多条服务层路径的路径索引;
    保存所述一条或多条服务层路径的路径索引与所述虚拟链路的链路标识的对应关系至路径索引列表。
  6. 根据权利要求5所述的方法,其中,在保存所述一条或多条服务层路径的路径索引与所述虚拟链路的链路标识的对应关系至路径索引列表之后,所述方法还包括:
    发送路径操作请求至所述光网络域的控制器,其中,所述路径操作请求用于请求对服务层路径进行操作;
    接收所述光网络域的控制器返回的操作结果,并基于所述操作结果更新所述路径索引列表。
  7. 根据权利要求5所述的方法,其中,所述一条或多条服务层路径为同源同宿路径。
  8. 一种IP网络与光传送网络融合的路径确定方法,包括:
    在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为所述虚拟链路分配一条或多条服务层路径(S401);
    返回所述一条或多条服务层路径的路径索引至所述IP网络域的控制器(S402);
    在接收到所述IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活所述目标服务层路径(S403),其中,所述目标服务层路径为所述一条或多条服务层路径中所述IP网络域的控制器为所述虚拟链路分配的服务层路径。
  9. 根据权利要求8所述的方法,其中,在为所述虚拟链路分配一条或多条服务层路径(S401)之后,所述方法还包括:
    在接收到所述IP网络域的控制器为所述虚拟链路发送的路径操作请求时,执行所述路径操作请求所请求执行的路径操作;
    返回所述路径操作的操作结果至光网络域的控制器,其中,所述操作结果用于更新所述光网络域的路径索引列表,所述路径索引列表中保存有为所述虚拟链路分配的一条或多条服务层路径的路径索引。
  10. 根据权利要求9所述的方法,其中,执行所述路径操作请求所请求执行的路径操作包括:
    获取所述路径操作请求中携带的路径操作的操作类型;
    执行与所述操作类型对应的路径操作。
  11. 根据权利要求10所述的方法,其中,执行与所述操作类型对应的路径操作包括:
    在所述操作类型为新增的情况下,为所述虚拟链路新增服务层路径;
    在所述操作类型为删除的情况下,删除为所述虚拟链路分配的服务层路径;
    在所述操作类型为带宽调整的情况下,调整为所述虚拟链路分配的服务层路径的带宽;
    在所述操作类型为查询的情况下,查询所述服务层路径的状态信息和属性信息;
    在所述操作类型为刷新的情况下,刷新为所述虚拟链路分配的服务层路径。
  12. 根据权利要求11所述的方法,其中,为所述虚拟链路新增服务层路径包括:
    根据所述路径操作请求指示的路径起点和路径终点,为所述虚拟链路分配服务层路径;
    保存分配的服务层路径的路径索引;
    为分配的服务层路径分配网络资源。
  13. 根据权利要求11所述的方法,其中,删除为所述虚拟链路分配的服务层路径包括:
    获取所述路径操作请求中待删除的服务层路径的路径索引;
    删除与获取到的路径索引对应的服务层路径和在本地保存的被删除服务层路径的路径索引;
    释放为被删除服务层路径分配的网络资源。
  14. 根据权利要求11所述的方法,其中,调整为所述虚拟链路分配的服务层路径的带宽包括:
    将所述服务层路径的当前带宽调整至所述路径操作请求中所指示的带宽。
  15. 根据权利要求11所述的方法,其中,刷新为所述虚拟链路分配的服务层路径包括:
    重新确定一条与为所述虚拟链路分配的服务层路径具有相同路径起点和路径终点的服务层路径;
    使用重新确定的服务层路径替代为所述虚拟链路分配的服务层路径。
  16. 根据权利要求11所述的方法,其中,在执行与所述操作类型对应的路径操作之后,所述方法还包括:
    当有任一服务层路径不可用时,获取该服务层路径的路径起点和路径终点;
    按照该服务层路径的路径起点和路径终点重新分配服务层路径;
    在重新分配服务层路径的操作成功的情况下,将该服务层路径的路径索引作为重新分配的服务层路径的路径索引;
    在重新分配服务层路径的操作失败的情况下,将该服务层路径不可用的信息上报至所述IP网络域的控制器。
  17. 根据权利要求8所述的方法,其中,在为所述虚拟链路分配的所述一条或多条服务层路径中,所述一条或多条服务层路径为同源同宿路径。
  18. 根据权利要求8所述的方法,其中,在为所述虚拟链路分配的所述一条或多条服务层路径中,所述服务层路径的保护属性为工作类型和保护类型,工作类型的服务层路径为当前使用的服务层路径,保护类型的服务层路径为当前未使用的服务层路径,其中,工作类型的服务层路径与保护类型的 服务层路径之间通过共享风险链路组SRLG进行分离。
  19. 根据权利要求8所述的方法,其中,在为所述虚拟链路分配的所述一条或多条服务层路径中,所述服务层路径包括以太层路径、光通路数据单元ODUk层路径以及光层路径中的至少之一。
  20. 一种IP网络与光传送网络融合的路径确定装置,包括:
    第一分配单元(111),配置为在接收到跨越光网络域的传输业务请求时,为传输业务分配位于IP网络域中满足业务需求的虚拟链路;
    确定单元(112),配置为确定预先保存的服务层路径中与所述虚拟链路匹配的目标服务层路径,其中,所述服务层路径位于光网络域中;
    第一发送单元(113),配置为发送用于激活所述目标服务层路径的激活请求至所述光网络域的控制器。
  21. 根据权利要求20所述的装置,其中,所述确定单元(112)包括:
    第一获取模块,配置为获取预先为所述虚拟链路分配的一条或多条服务层路径;
    选取模块,配置为通过预设算法从所述一条或多条服务层路径中选取出与所述虚拟链路匹配的所述目标服务层路径。
  22. 根据权利要求21所述的装置,其中,所述第一获取模块包括:
    第一获取子模块,配置为获取所述虚拟链路的链路标识;
    第二获取子模块,配置为获取路径索引列表中与所述链路标识对应的所述一条或多条服务层路径,或获取所述一条或多条服务层路径的路径索引,或获取路径索引列表中与所述链路标识对应的所述一条或多条服务层路径以及所述一条或多条服务层路径的路径索引。
  23. 根据权利要求21或22所述的装置,其中,所述第一发送单元(113)包括:
    第二获取模块,配置为获取所述目标服务层路径的路径索引;
    发送模块,配置为发送携带有所述目标服务层路径的路径索引的所述激活请求至光网络域的控制器。
  24. 根据权利要求21所述的装置,其中,所述装置还包括:
    第二发送单元,配置为在为传输业务分配位于IP网络域中满足业务需求的虚拟链路之前,发送路径分配请求至所述光网络域的控制器,其中,所述路径分配请求用于请求为所述虚拟链路分配服务层路径;
    第一接收单元,配置为接收所述光网络域的控制器返回的所述一条或多条服务层路径的路径索引;
    保存单元,配置为保存所述一条或多条服务层路径的路径索引与所述虚拟链路的链路标识的对应关系至路径索引列表。
  25. 根据权利要求24所述的装置,其中,所述装置还包括:
    第三发送单元,配置为在保存所述一条或多条服务层路径的路径索引与所述虚拟链路的链路标识的对应关系至路径索引列表之后,发送路径操作请求至所述光网络域的控制器,其中,所述路径操作请求用于请求对服务层路径进行操作;
    第二接收单元,配置为接收所述光网络域的控制器返回的操作结果,并基于所述操作结果更新所述路径索引列表。
  26. 一种IP网络与光传送网络融合的路径确定装置,包括:
    第二分配单元(121),配置为在接收到IP网络域的控制器为虚拟链路发送的路径分配请求时,为所述虚拟链路分配一条或多条服务层路径;
    第一返回单元(122),配置为返回所述一条或多条服务层路径的路径索引至所述IP网络域的控制器;
    激活单元(123),配置为在接收到所述IP网络域的控制器发送的请求激活目标服务层路径的激活请求时,激活所述目标服务层路径,其中,所述目标服务层路径为所述一条或多条服务层路径中所述IP网络域的控制器为所述虚拟链路分配的服务层路径。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    执行单元,配置为在为所述虚拟链路分配一条或多条服务层路径之后,在接收到所述IP网络域的控制器为所述虚拟链路发送的路径操作请求时,执行所述路径操作请求所请求执行的路径操作;
    第二返回单元,配置为返回所述路径操作的操作结果至光网络域的控制器,其中,所述操作结果用于更新所述光网络域的路径索引列表,所述路径索引列表中保存有为所述虚拟链路分配的一条或多条服务层路径的路径索引。
  28. 根据权利要求27所述的装置,其中,所述执行单元包括:
    第三获取模块,配置为获取所述路径操作请求中携带的路径操作的操作类型;
    第一执行模块,配置为执行与所述操作类型对应的路径操作。
  29. 根据权利要求28所述的装置,其中,所述第一执行模块包括:
    新增子模块,配置为在所述操作类型为新增的情况下,为所述虚拟链路新增服务层路径;
    删除子模块,配置为在所述操作类型为删除的情况下,删除为所述虚拟链路分配的服务层路径;
    调整子模块,配置为在所述操作类型为带宽调整的情况下,调整为所述虚拟链路分配的服务层路径的带宽;
    查询子模块,配置为在所述操作类型为查询的情况下,查询所述服务层路径的状态信息和属性信息;
    刷新子模块,配置为在所述操作类型为刷新的情况下,刷新为所述虚拟链路分配的服务层路径。
  30. 一种IP网络与光传送网络融合的路径确定方法,包括:
    IP网络域的第一控制器发送路径分配请求至光网络域的第二控制器;
    所述第二控制器响应所述路径分配请求,为位于所述IP网络域的虚拟链路分配位于所述光网络域的服务层路径;
    所述第一控制器接收所述第二控制器返回的一条或多条所述服务层路径的路径索引,并保存一条或多条所述服务层路径的路径索引与所述虚拟链路的链路标识的对应关系。
  31. 根据权利要求30所述的方法,其中,在所述第一控制器保存一条或 多条所述服务层路径的路径索引与所述虚拟链路的链路标识的对应关系之后,所述方法还包括:
    在接收到所述第一控制器为所述虚拟链路发送的路径操作请求时,所述第二控制器执行所述路径操作请求所请求执行的路径操作;
    所述第一控制器接收所述路径操作的操作结果,并按照所述操作结果更新所述光网络域的路径索引列表,其中,所述路径索引列表中保存有为所述虚拟链路分配的一条或多条所述服务层路径的路径索引。
  32. 根据权利要求31所述的方法,其中,所述第二控制器执行所述路径操作请求所请求执行的路径操作包括:
    所述第二控制器获取所述路径操作请求中携带的路径操作的操作类型;
    所述第二控制器执行与所述操作类型对应的路径操作。
  33. 根据权利要求32所述的方法,其中,所述第二控制器执行与所述操作类型对应的路径操作包括:
    在所述操作类型为新增的情况下,所述第二控制器为所述虚拟链路新增服务层路径;
    在所述操作类型为删除的情况下,所述第二控制器删除为所述虚拟链路分配的服务层路径;
    在所述操作类型为带宽调整的情况下,所述第二控制器调整为所述虚拟链路分配的服务层路径的带宽;
    在所述操作类型为查询的情况下,所述第二控制器查询所述服务层路径的状态信息和属性信息;
    在所述操作类型为刷新的情况下,所述第二控制器刷新为所述虚拟链路分配的服务层路径。
  34. 一种IP网络与光传送网络融合的路径确定系统,包括位于IP网络域的第一控制器和位于光网络域的第二控制器,其中,
    所述第二控制器配置为响应所述第一控制器发送的路径分配请求,为位于所述IP网络域的虚拟链路分配位于所述光网络域的服务层路径;
    所述第一控制器配置为接收所述第二控制器返回的一条或多条所述服务层路径的路径索引,并保存一条或多条所述服务层路径的路径索引与所述虚拟链路的链路标识的对应关系。
  35. 根据权利要求34所述的系统,其中,
    所述第二控制器还配置为在接收到所述第一控制器为所述虚拟链路发送的路径操作请求时,执行所述路径操作请求所请求执行的路径操作;
    所述第一控制器还配置为接收所述路径操作的操作结果,并按照所述操作结果更新所述光网络域的路径索引列表,其中,所述路径索引列表中保存有为所述虚拟链路分配的一条或多条服务层路径的路径索引。
  36. 根据权利要求35所述的系统,其中,所述第二控制器包括:
    第四获取模块,配置为获取所述路径操作请求中携带的路径操作的操作类型;
    第二执行模块,配置为执行与所述操作类型对应的路径操作。
  37. 根据权利要求36所述的系统,其中,所述第二执行模块还配置为:
    在所述操作类型为新增的情况下,为所述虚拟链路新增服务层路径;
    在所述操作类型为删除的情况下,删除为所述虚拟链路分配的服务层路径;
    在所述操作类型为带宽调整的情况下,调整为所述虚拟链路分配的服务层路径的带宽;
    在所述操作类型为查询的情况下,查询所述服务层路径的状态信息和属性信息;
    在所述操作类型为刷新的情况下,刷新为所述虚拟链路分配的服务层路径。
PCT/CN2017/102794 2016-11-21 2017-09-21 Ip网络与光传送网络融合的路径确定方法、装置及系统 WO2018090716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611043100.8A CN108092733B (zh) 2016-11-21 2016-11-21 Ip网络与光传送网络融合的路径确定方法、装置及系统
CN201611043100.8 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018090716A1 true WO2018090716A1 (zh) 2018-05-24

Family

ID=62146092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102794 WO2018090716A1 (zh) 2016-11-21 2017-09-21 Ip网络与光传送网络融合的路径确定方法、装置及系统

Country Status (2)

Country Link
CN (1) CN108092733B (zh)
WO (1) WO2018090716A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827781A (zh) * 2022-04-14 2022-07-29 中国联合网络通信集团有限公司 网络协同方法、装置、设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108965013B (zh) * 2018-07-25 2022-02-11 北京智芯微电子科技有限公司 Ip和光网络业务快速开通系统及方法
CN109286560B (zh) * 2018-11-19 2021-03-19 北京达佳互联信息技术有限公司 一种获取即时通讯消息的方法及装置
CN109743211B (zh) * 2019-01-31 2021-07-30 中通服咨询设计研究院有限公司 基于sdn的ip网络与光网络协同路径开通系统与方法
CN111988682B (zh) * 2019-05-22 2022-11-04 华为技术有限公司 网络控制方法、装置和系统
CN112398530B (zh) * 2020-11-02 2022-02-15 中国联合网络通信集团有限公司 一种断纤位置的确定方法和装置
CN112689208B (zh) * 2020-12-17 2022-01-04 北京邮电大学 一种虚拟光网络重配置方法及系统
CN113747277B (zh) * 2021-08-31 2023-05-12 中国联合网络通信集团有限公司 路径确定方法及装置
CN116668254B (zh) * 2023-07-26 2023-10-31 中国电信股份有限公司 网络协同方法、路由设备、光传送设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823172A (zh) * 2010-03-26 2012-12-12 思科技术公司 使多副载波信道中副载波不活动而改进光网络中的范围
CN103155458A (zh) * 2009-12-11 2013-06-12 思科技术公司 对wdm网络中的经预先验证的路径的使用
CN103414633A (zh) * 2013-08-08 2013-11-27 北京华为数字技术有限公司 一种网络中路径建立的方法及装置
US20140207967A1 (en) * 2013-01-23 2014-07-24 Adva Optical Networking Se Method and Apparatus for Provisioning a Transport Service in a Multi-Domain Multi-Layer Network
CN104092609A (zh) * 2014-07-24 2014-10-08 苏州大学 一种IP over WDM网络构建方法及装置
CN104521188A (zh) * 2013-06-28 2015-04-15 华为技术有限公司 一种建立光旁路的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860769B (zh) * 2009-04-07 2015-03-25 华为技术有限公司 一种ip与光融合的方法、装置和系统
US9258238B2 (en) * 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers
CN105530199B (zh) * 2015-12-04 2019-05-24 国网冀北电力有限公司信息通信分公司 基于sdn多域光网络虚拟化技术的资源映射方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155458A (zh) * 2009-12-11 2013-06-12 思科技术公司 对wdm网络中的经预先验证的路径的使用
CN102823172A (zh) * 2010-03-26 2012-12-12 思科技术公司 使多副载波信道中副载波不活动而改进光网络中的范围
US20140207967A1 (en) * 2013-01-23 2014-07-24 Adva Optical Networking Se Method and Apparatus for Provisioning a Transport Service in a Multi-Domain Multi-Layer Network
CN104521188A (zh) * 2013-06-28 2015-04-15 华为技术有限公司 一种建立光旁路的方法、装置和系统
CN103414633A (zh) * 2013-08-08 2013-11-27 北京华为数字技术有限公司 一种网络中路径建立的方法及装置
CN104092609A (zh) * 2014-07-24 2014-10-08 苏州大学 一种IP over WDM网络构建方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827781A (zh) * 2022-04-14 2022-07-29 中国联合网络通信集团有限公司 网络协同方法、装置、设备及存储介质
CN114827781B (zh) * 2022-04-14 2024-04-09 中国联合网络通信集团有限公司 网络协同方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108092733A (zh) 2018-05-29
CN108092733B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2018090716A1 (zh) Ip网络与光传送网络融合的路径确定方法、装置及系统
CN110535772B (zh) 分段路由流量工程策略的发送及接收方法、装置和网元
CN111492627B (zh) 为不同应用建立不同隧道的基于控制器的服务策略映射
US10404571B2 (en) Communication among network controllers
EP2843888B1 (en) Dynamic end-to-end network path setup across multiple network layers
US8942226B2 (en) Software defined networking systems and methods via a path computation and control element
US9491086B2 (en) Distributed network planning systems and methods
CN103477612A (zh) 经扩展以连接网络层级的云服务控制和管理架构
CN102281193B (zh) 一种在光纤通道网络中实现报文转发的方法和fc设备
US7881299B2 (en) Method and apparatus for managing and transmitting fine granularity services
US20210409332A1 (en) Framework for Temporal Label Switched Path Tunnel Services
WO2016165139A1 (zh) 一种虚拟网络的故障恢复方法和装置
CN101986622A (zh) 一种pce状态属性的自动识别方法及系统
EP2750337B1 (en) Service cross-layer separated path calculation method, device and communication system
CN114286205B (zh) 一种数据帧的发送方法和网络设备
US9419893B2 (en) Traffic engineering resource collection and coordination
CN106330701B (zh) 环形组网的快速重路由方法及装置
CN106936706B (zh) 路由建立方法和系统及子域控制器、主控制器
WO2018086552A1 (zh) 一种进行计划带宽调整的方法及装置
CN104539623A (zh) 混合组网中igp协议多进程cspf的实现系统及方法
US10992573B2 (en) Multi-layer LSP control method and apparatus
US8780924B2 (en) GMPLS non-enabled network gateway and operating method for routing between GMPLS enabled network and GMPLS non-enabled network
EP3163812A1 (en) Method and apparatus for cross-layer path establishment
KR102015110B1 (ko) 다계층 또는 다중 도메인에서 효율적 자원 활용을 위한 보호절체 관리 장치 및 방법
CN113179174A (zh) 出口流量改变的安全工程设计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872617

Country of ref document: EP

Kind code of ref document: A1