WO2018090195A1 - 一种放射治疗计划的生成方法和放射治疗计划系统 - Google Patents

一种放射治疗计划的生成方法和放射治疗计划系统 Download PDF

Info

Publication number
WO2018090195A1
WO2018090195A1 PCT/CN2016/105935 CN2016105935W WO2018090195A1 WO 2018090195 A1 WO2018090195 A1 WO 2018090195A1 CN 2016105935 W CN2016105935 W CN 2016105935W WO 2018090195 A1 WO2018090195 A1 WO 2018090195A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
dose
target area
head
sub
Prior art date
Application number
PCT/CN2016/105935
Other languages
English (en)
French (fr)
Inventor
李金升
Original Assignee
西安大医数码技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医数码技术有限公司 filed Critical 西安大医数码技术有限公司
Priority to CN201680090512.9A priority Critical patent/CN109922863A/zh
Priority to PCT/CN2016/105935 priority patent/WO2018090195A1/zh
Publication of WO2018090195A1 publication Critical patent/WO2018090195A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a method for generating a radiation therapy plan and a radiation therapy planning system.
  • Tumors are a common and frequently-occurring disease, and radiation therapy is a common treatment.
  • radiation therapy there are generally two types of radiotherapy, stereotactic multi-source focused radiotherapy and conformal intensity-modulated radiotherapy.
  • the so-called stereotactic multi-source focusing radiotherapy method is that the radiotherapy apparatus comprises a focusing treatment head, and the focusing treatment head comprises a plurality of radiation beams, and the plurality of radiation beams are focused on one position (generally a target area), so that the target area can be realized. Perform large doses of radiation.
  • This multi-source focused radiotherapy method high-dose irradiation of tumor tissue can be performed, and the surrounding tissue is less damaged by radiation.
  • the multi-source focused radiotherapy method has a good therapeutic effect on intracranial tumors or head and neck tumors, but the above-mentioned multi-source focused radiotherapy method is encountered when a complex or large body tumor is encountered. It has its limitations, and it needs to adopt a conformal intensity-modulated radiotherapy method.
  • the so-called conformal intensity-modulated radiotherapy method refers to a radiotherapy device comprising a conformal treatment head, generally an accelerator, and a multi-leaf collimator is used to form a beam that can be shaped like a tumor to pass through the region, thereby causing the radiation beam to target the tumor.
  • the area or part thereof is irradiated for the purpose of conformal treatment.
  • radiotherapy device that can integrate stereotactic multi-source focusing radiotherapy with modal teletherapy.
  • current radiotherapy equipment can not achieve multi-source focusing precision treatment on one device.
  • Conformal treatment can also be achieved, and for patients, different or the same tumors cannot be selected for different treatments on the same device.
  • the invention provides a method for generating a radiotherapy plan and a radiotherapy planning system for realizing a synergistic treatment plan for different treatment heads on one device for a radiotherapy device having both a conformal treatment head and a focused treatment head. Methods and systems to improve treatment efficiency and therapeutic effects.
  • Embodiments of the present invention disclose a method of generating a radiation therapy plan for use in a radiotherapy apparatus, the radiotherapy apparatus including at least two treatment heads.
  • the method for generating the radiation therapy plan includes: acquiring a body image of the patient, the body image including an image of the tumor; determining a treatment target region according to the acquired body image, the treatment target region including a tumor, and radiation beam for radiation therapy Irradiating region; obtaining a prescribed dose of the therapeutic target region, wherein the prescribed dose comprises: a prescribed dose value, the prescribed dose value being a size of a dose that the tumor should receive in the treatment target region;
  • the target area and the prescribed dose of the therapeutic target area determine a treatment head, a treatment modality, and a treatment driving mode suitable for the target area.
  • the treatment mode includes an irradiation technique, an irradiation time of the treatment head, a shape of the field, and the like;
  • the treatment driving method includes: synchronous driving or asynchronous driving, wherein the synchronous driving synchronously completes treatment for two treatment heads at the same time The radiation beam is simultaneously or cross-exposed to perform radiation therapy; the asynchronous drive completes the treatment step by step for the two treatment heads, and after the treatment head completes the treatment, the treatment process of the other treatment head is started.
  • the embodiment of the invention also discloses a radiation therapy planning system, which is applied to a radiotherapy device.
  • the radiotherapy apparatus includes at least two treatment heads.
  • the radiation therapy planning system includes a processor; the processor is configured to: acquire a body image of the patient, the body image includes an image of the tumor; the processor is further configured to determine a treatment target area according to the acquired body image, The treatment target area includes a tumor, which is an area irradiated by a radiation beam during radiation therapy; the processor 200 is further configured to acquire a prescription dose of the treatment target area, wherein the prescription dose includes: a prescription dose value, The prescription dose value is the size of the dose that the tumor should receive in the treatment target zone; the processor is further configured to determine a treatment head suitable for the target zone based on the therapeutic target zone and the prescribed dose of the therapeutic target zone , treatment methods and treatment driving methods.
  • the treatment mode includes an irradiation technique, an irradiation time of the treatment head, a shape of the field, and the like; and the treatment driving method includes: Synchronous drive or asynchronous drive, wherein the synchronous drive completes the treatment synchronously for the two treatment heads, and simultaneously or cross-fires the radiation beam for radiation treatment at the same time period; the asynchronous drive completes the treatment step by step for the two treatment heads, one After the treatment head completes the treatment, another treatment session of the treatment head is started.
  • the present invention provides a method for generating a radiation therapy plan and a radiation therapy planning system.
  • the method for generating a treatment plan includes: acquiring a body image of the patient; determining a target area and surrounding sensitive tissue according to the acquired body image; and obtaining the treatment The prescription dose and the sensitive tissue dose limit of the target area; determining the treatment head, the treatment mode and the treatment driving mode suitable for the target area according to the prescription target area of the treatment target area and the treatment target area, wherein the treatment method includes the irradiation technique and the treatment head Irradiation time and field shape, etc.; treatment driving methods include: synchronous drive or asynchronous drive.
  • the existing two types of treatment heads can be synergistically treated, so that the treatment plan can be further optimized, and the multiple treatments can be reduced by using the conformal treatment head or the focused treatment head alone.
  • the treatment caused by the error caused by multiple placements improve the accuracy and speed of radiotherapy, thus achieving more efficient and more precise treatment.
  • FIG. 1 is a schematic view of a radiation apparatus provided by the present invention.
  • Figure 2 is a side elevational view of the radiology apparatus of Figure 1;
  • FIG. 3 is a schematic diagram of a method for generating a radiation therapy plan provided by the present invention.
  • FIG. 4 is a schematic diagram of a method for generating another radiation therapy plan provided by the present invention.
  • Figure 5 is a schematic view of a therapeutic target area provided by the present invention.
  • Figure 6 is a schematic view of another therapeutic target area provided by the present invention.
  • Figure 7 is a schematic view of another therapeutic target area provided by the present invention.
  • FIG. 8 is a schematic diagram of a method for generating another radiation therapy plan provided by the present invention.
  • FIG. 9 is a schematic diagram of a method for generating another radiation therapy plan provided by the present invention.
  • FIG. 10 is a schematic diagram of a method for generating another radiation therapy plan provided by the present invention.
  • FIG. 11 is a schematic diagram of a method for dose verification provided by the present invention.
  • FIG. 12 is a schematic diagram of a specific implementation manner of a method for generating a radiation therapy plan provided by the present invention.
  • FIG. 13 is a schematic diagram of a processor provided by the present invention.
  • FIG. 14 is a schematic diagram of another processor provided by the present invention.
  • 15 is a schematic diagram of another processor provided by the present invention.
  • 16 is a schematic diagram of another processor provided by the present invention.
  • Embodiments of the present invention provide a method for generating a radiation therapy plan, which is applied to a radiotherapy device, and the radiotherapy device includes at least two treatment heads.
  • the radiotherapy apparatus includes at least two types of treatment heads, a focus treatment head and a conformal treatment head, wherein each type of treatment head includes at least one.
  • the radiotherapy apparatus can include a focused treatment head and a conformal treatment head, or the radiotherapy apparatus can include two focused treatment heads and a conformal treatment head, or alternatively, the radiotherapy apparatus can include two focused treatment heads. And two conformal treatment heads.
  • the present application exemplifies a radiotherapy apparatus 100 including a focusing treatment head 10 and a conformal treatment head 20, and FIG. 1 and FIG. 2 focus on the treatment head 10 and the conformal treatment head 20.
  • the relative setting is an example.
  • the focusing treatment head generally means that the treatment head comprises a plurality of radiation sources, and the plurality of radiation sources respectively emit radiation beams, the plurality of radiation beams are focused on a focusing point corresponding to different regions of the tumor, thereby realizing different regions of the tumor.
  • the focus point generally corresponds to the target area, so that large dose irradiation of the target area can be achieved.
  • a conformal treatment head generally refers to a treatment head including a source of radiation that emits a scattered cone beam, the collimator or multi-leaf collimator forms a beam traversable region that is similar in shape to the tumor through which the cone beam can pass through the region On the tumor, thereby achieving radiation therapy of the tumor.
  • the focusing treatment head 10 includes a plurality of first radiation sources 11 , the first radiation source 11 emits a first radiation beam 13 , and the first radiation beam 13 passes through the collimator 12 .
  • the field diameter of the first radiation beam 13 is adjusted, and the plurality of first radiation beams 13 are focused on a focus point that illuminates a partial region of the tumor 31 of the human body 30.
  • the conformal treatment head 20 includes a second source 21 that emits a scattered cone beam 23 that forms a beam traversable region similar in shape to the tumor 31, the cone beam 23 Radiation therapy of the tumor 31 can be achieved by illuminating the tumor 31 through the region through the beam.
  • the present application provides a method for generating a radiation therapy plan, as shown in FIG. 3, including:
  • Step S101 Acquire a body image of the patient.
  • the body image includes an image of the tumor, typically a body image that includes the tumor area.
  • the body image is an image of any part of the patient's body or the whole body.
  • the body image includes a patient's head image and/or a patient's body image.
  • Body images are typically three-dimensional images, including CT, MR, or PET, that direct the image of the body into the treatment planning system of the treatment device.
  • CT image is density-converted according to the material density calibration curve of the CT device. Fusion and registration of other images with the main images used for planning (such as CT images) to ensure that images of the same patient can be accurately registered and overlapped, especially in the region of interest (tumor treatment area and important sensitive organs) Or organization) to ensure that the patient's location in the region of interest is unified on all images.
  • the fusion and registration of different images in order to accurately locate the patient's planing structure, determine the tumor boundary, tumor morphology, distribution characteristics and the position and shape of healthy tissue by means of the characteristics of different image forms, in order to accurately determine the treatment
  • determine the tumor boundary, tumor morphology, distribution characteristics and the position and shape of healthy tissue in order to accurately determine the treatment
  • Step S102 Determine a treatment target area according to the acquired body image.
  • the treatment target area includes the tumor, which is the area irradiated by the radiation beam during radiation therapy.
  • the oncologist using radiotherapy equipment according to the swelling
  • the complexity of the tumor and its surrounding tissues, the tumor and surrounding tissues are divided, and the therapeutic target area is delineated, and the system can directly obtain the therapeutic target area.
  • it can also be an algorithm that is stored by a computer by the color of the tumor and the surrounding tissue, and automatically delineates the tumor target area according to a system algorithm, for example, according to color.
  • determining a therapeutic target area includes determining the complexity of the tumor and surrounding tissue, dividing the tumor and surrounding tissue, or determining characteristic regions within the tumor based on functional images and other diagnostic information, including hypoxic regions, tumor cell intensive Areas, etc., in order to implement targeted treatments such as increasing doses, changing grades, etc.
  • targeted treatments such as increasing doses, changing grades, etc.
  • different treatment methods and fractional therapeutic doses, etc. may also be employed depending on the characteristics of each target zone.
  • Step S103 Obtain a prescription dose of the treatment target area.
  • the prescription dose includes: a prescription dose value, and the prescription dose value is a size of a dose that the tumor should receive in the therapeutic target area to achieve the therapeutic effect.
  • the dosage of the prescription is different, and the size of the corresponding dose is generally determined according to the specific characteristics of the tumor.
  • the size of the prescription dose can be input by the attending physician.
  • the prescription dose size of the treatment target area can be selected according to the parameters of the tumor according to a pre-stored template.
  • Step S104 Determine a treatment head, a treatment mode, and a treatment driving mode suitable for the target area according to the prescription target area of the treatment target area and the treatment target area.
  • the treatment methods include the irradiation technique, the irradiation time of the treatment head, and the shape of the field.
  • the treatment driving method includes: synchronous driving or asynchronous driving, wherein the synchronous driving completes the treatment synchronously for the two treatment heads, and simultaneously or cross-fires the radiation beam for radiation treatment at the same time period.
  • a conformal treatment head is used to perform large-area conformal treatment of the tumor, and a focused treatment head is used to dose-enhance the local part of the tumor to increase the local receiving dose of the tumor.
  • local dose enhancement can be performed on hypoxic regions, tumor cell dense regions, and the like.
  • the asynchronous drive completes the treatment step by step for the two treatment heads, and after one treatment head completes the treatment, the treatment process of the other treatment head is started.
  • the large-area conformal treatment of the tumor is first performed using the conformal treatment head. If the dose distribution is uneven during the irradiation, some tumor regions receive less dose, or need to be anoxic region. , tumor cell dense areas, etc. If the dose is increased, the focused treatment head can be used for local dose-enhancing irradiation treatment after the conformal treatment is completed.
  • Irradiation technology refers to different irradiation methods, including focused treatment of full-arc irradiation, local arc irradiation and directional irradiation, as well as three-dimensional conformal treatment of conformal treatment head, directional intensity treatment and pull-arc Treatment methods, etc.
  • the shape of the field is generally circular, several optional sizes; for the conformal treatment head, the shape of the field is generally any shape formed by the multi-leaf collimator, as shown in Figure 5, generally
  • the therapeutic target area 310 that is irradiated to the human body after conformation is larger than the tumor 31.
  • step S104 may be a treatment head, a treatment mode, and a treatment driving method determined by the attending physician inputting various parameters. It is also possible to determine the treatment head, treatment mode and treatment-driven treatment plan through automated processing, according to the prescription dose of the tumor target area, through automatic optimization and iterative reverse planning process.
  • the radiotherapy apparatus of the present application includes a focusing treatment head and a conformal treatment head
  • the focusing treatment head has a more precise advantage for treating small tumors
  • the conformal treatment head can better conform to the tumor for treating large tumors. Therefore, in the present application, in the process of treating the tumor, the focus treatment head, the conformal treatment head or the combination method can be used according to the specific tumor image, thereby reducing the error caused by multiple placements and improving the precision of the radiotherapy. Degree and speed for more efficient and precise treatment.
  • the present application provides a method of generating a radiation therapy plan for use in a radiotherapy apparatus comprising two treatment heads.
  • the two treatment heads are a focus treatment head and a conformal treatment head, respectively.
  • the method for generating a radiation treatment plan includes: obtaining a body image of the patient; determining a treatment target area according to the acquired body image; obtaining a prescription dose of the treatment target area; and determining a suitable target area according to the treatment target area and the prescription dose of the treatment target area.
  • the treatment head, the treatment method and the treatment driving method wherein the treatment method includes an irradiation technique, an irradiation time of the treatment head, and a shape of the field; the treatment driving method includes: synchronous driving or asynchronous driving.
  • the focus treatment head, the conformal treatment head or the combination method can be adopted according to the specific tumor image, thereby reducing the error caused by multiple placements and improving the precision of the radiotherapy. Degree and speed for more efficient and precise treatment.
  • the dose or dose distribution of the treatment plan is calculated under defined treatment heads, treatment modalities, and treatment-driven modes to determine whether the dose or dose distribution within the treatment target area meets the prescription dosage requirements. Where the dose or dose distribution within the therapeutic target region does not meet the prescribed dosage, the treatment head, treatment modality, and therapeutic drive mode are adjusted such that the dose or dose distribution within the therapeutic target region meets the prescription dosage requirements.
  • the dose distribution will be described in detail later.
  • the method for generating a treatment plan provided by the present application as shown in FIG. 4, after step S102, before step S104, the method for generating a treatment plan further includes:
  • Step S105 performing regional subdivision on the treatment target area to determine at least one sub-area.
  • the prescription dose further includes: a prescription dose distribution, that is, a dose that should be accepted in different sub-regions of the therapeutic target area to achieve the therapeutic effect.
  • a prescription dose distribution that is, a dose that should be accepted in different sub-regions of the therapeutic target area to achieve the therapeutic effect.
  • the above step S104 may specifically be a conformal treatment of the treatment target area by using a conformal treatment head, and a local dose-enhancement treatment of the sub-area in the treatment target area by using the focused treatment head.
  • step S105 in step S105 before step S104, step S105 may be performed before step S103, or may be after step S103, or may be performed simultaneously with step S103.
  • step S105 may be performed before step S103, or may be after step S103, or may be performed simultaneously with step S103.
  • the embodiments of the present invention are not specifically limited by the drawings, and only the drawings are taken as an example for detailed description.
  • the treatment target area 310 is subdivided, for example, the sub-area 311 is an anoxic area and other areas than the sub-area 311, in order to achieve the effect of treating the tumor, the sub-area 311
  • the local dose is greater than the dose in other areas.
  • the tumor may be conformally treated by using the conformal treatment head, and the sub-area is locally dose-increased by the focused treatment head.
  • the multi-leaf collimator conforms to form a beam traversable region similar to the tumor 31, and the radiation source of the conformal treatment head emits a radiation beam through which the beam can be irradiated onto the human body through the region to form
  • the target region 310 is treated as shown in FIG. 5, thereby performing conformal radiation therapy on the therapeutic target region 310.
  • the focused treatment head is then utilized such that the focus of the focused treatment head is aligned with the sub-region, thereby effecting localized dose enhancement of the sub-region.
  • the method for generating a treatment plan provided by the present application can be performed by sub-regions of the treatment target area Domain segmentation, and the use of a conformal treatment head to achieve a conformal treatment of the treatment target area, the use of a focused treatment head to achieve local dose-enhanced treatment of the neutron region of the treatment target area, thereby achieving the best tumor in a treatment process Synergistic treatment. Avoid multiple treatments and placements to give patients the treatment position error, improve treatment accuracy and efficiency.
  • one sub-area 311 may be determined, or may be determined as shown in FIG. Two sub-areas, sub-area 311 and sub-area 312, are shown. Of course, depending on the specific structure of the tumor, it is also possible to determine a plurality of sub-regions. The following description will be made by taking the treatment target area including two sub-areas as an example.
  • a method for generating a treatment plan provided by the present application in the case where the treatment target region 310 includes at least two sub-regions 311, 312; using a focused treatment head to locally dose the sub-region within the treatment target region Enhanced treatment specifically includes: local dose-enhancing treatment for more than two sub-regions; treatment of the focused treatment head also includes movement of focus in different sub-regions.
  • the conformal treatment head can be used to conform to the treatment target area, and in the conformal irradiation process.
  • the focused treatment head can be moved between the sub-region 311 and the sub-region 312 such that both the sub-region 311 and the sub-region 312 are locally dose-enhanced.
  • the treatment device comprises a focus treatment head and a conformal treatment head, wherein the focus treatment head and/or the treatment head may also comprise at least two.
  • the treatment target zone 310 includes at least two sub-regions 311, 312; it is also possible to adopt one of the conformal treatment heads for conformal treatment of the treatment target zone and adopt another conformal treatment head.
  • Local dose augmentation treatment is applied to sub-regions within the therapeutic target area.
  • the tumor is easily transferred, thereby forming a plurality of unconnected target regions, which may be two unconnected sub-target regions, or may be multiple unconnected sub-target regions.
  • the target region 310 includes two unconnected sub-target regions 313 and sub-target regions 314 as an example.
  • the method for generating a treatment plan provided by the present application in the case that the target region includes a plurality of unconnected sub-target regions, determining the treatment head suitable for the target region specifically includes: different sub-target regions adopt different treatment heads.
  • the sub-target region 313 may be performed by using a conformal treatment head.
  • a conformal treatment head focused radiation therapy is performed on the sub-target zone 314 using a focused treatment head.
  • the treatment is performed using a conformal treatment head; and in the case where the maximum diameter of the target region is less than 5 cm, the treatment is performed using a focused treatment head.
  • the treatment device includes two conformal treatment heads.
  • the sub-target zone 313 may be conformally treated using one of the conformal treatment heads, and the sub-target zone 314 may be conformally treated using another conformal treatment head.
  • focused radiation therapy may be performed on the sub-target region 313 using one of the focused treatment heads, and focused radiation therapy on the sub-target region 314 using another focused treatment head.
  • a method for generating a treatment plan provided by the present application, as shown in FIG. 8, further includes:
  • Step S106 Calculate the predicted dose of the treatment target area under the determined treatment head, treatment mode and treatment driving mode, and determine whether the predicted dose in the treatment target area satisfies the requirement of the prescription dose.
  • At least one of the treatment head, the treatment modality, and the treatment modality is adjusted such that the dose or dose distribution within the treatment target meets the prescription dosage requirements if the predicted dose does not meet the prescribed dosage requirements.
  • the predicted dose is generally based on the dose of the beam emitted by the source and the dose after the beam passes through the human body, and the dose received by the human tumor is predicted to determine whether the dose satisfies the prescription dose requirement.
  • the predicted dose corresponds to the prescribed dose, and if the prescribed dose includes the prescribed dose value and the prescribed dose distribution, the predicted dose includes the predicted dose value and the predicted dose distribution.
  • the dose calculation method is used to predict the dose distribution in the patient after treatment, and whether the prescription dose requirement is met is determined to determine whether the patient's treatment can achieve the desired therapeutic effect.
  • a method for generating a treatment plan provided by the present application, as shown in FIG. 9, further includes:
  • Step S107 Determine an important organ around the treatment target area according to the acquired patient image.
  • Step S108 Obtain a dose limit of an important organ.
  • the dose limit for vital organs is to protect the vital organs from serious damage to important organs caused by radiation.
  • Step S109 Calculate the predicted dose value of the important organ under the determined treatment head, the treatment mode, and the treatment driving mode, and determine whether the predicted dose value of the vital organ exceeds the dose limit of the important organ.
  • At least one of the treatment head, the treatment mode, and the treatment driving mode is adjusted such that the dose or dose distribution of the important organ does not exceed the dose limit to avoid importance Excessive damage to organs, imaging treatment effects.
  • the order of the other steps is not fixed, and only the example shown in FIG. 9 is taken as an example.
  • the sequence of steps S103 and S107 may be performed simultaneously, or step S107 may be performed first, and then step S103 may be performed.
  • a method for generating a treatment plan provided by the present application, as shown in FIG. 10, further includes:
  • Step S201 performing dose verification on the treatment plan.
  • the dose verification of the treatment plan is generally to verify the prescription dose, mainly to verify the size of the dose and the distribution of the dose, to confirm that the radiotherapy equipment is matched with the treatment plan to determine the accuracy of the treatment plan.
  • dose verification can also confirm the accuracy of the dose distribution predicted by the treatment planning system, the correctness of delivery of treatment parameters between different systems, and the correctness of the device's performance of the treatment plan. If the results of the dose verification are not satisfactory, each step can be tested and confirmed.
  • the method for generating the treatment plan provided by the present application is to perform dose verification on the treatment plan, so as to adjust the treatment plan according to the condition of the device to meet the treatment requirement.
  • the dose verification of the treatment plan specifically includes:
  • the treatment process is simulated using a radiotherapy device, a detector, and a measurement phantom.
  • the detector receives the radiation beam from the treatment head and determines the actual dose of the radiation beam.
  • the actual dose of the radiation therapy device comprises a dose size and/or a dose distribution.
  • Dosing the treatment plan for dose verification may also be by receiving a radiation beam from the treatment head using a radiotherapy device and determining the actual dose of the radiation beam.
  • the phantom can also simulate human body irradiation, exercise the real treatment process, and the verification result is closer to the actual result.
  • the detector may be a movable detector that is fixedly mounted on the radiotherapy device or may be temporarily used only when the radiotherapy device is verified.
  • take a conformal treatment head as an example.
  • a radiotherapy apparatus includes a conformal treatment head and a detector positioned opposite the conformal treatment head such that a beam of conformally treated hair passes through the measurement phantom and is received by the detector, the detector determining the actual dose based on the received beam, Includes dose size and dose distribution.
  • step S2012 the actual dose and the prescription dose are compared and verified.
  • At least one of the treatment head, the treatment mode, and the treatment driving mode is adjusted if the verification result does not satisfy the prescription dosage requirement.
  • a comparative analysis is performed with the prescribed dose in the treatment plan to determine whether the actual dose meets the prescription dosage requirement. If the actual dose does not meet the prescription dose requirements, then the adjustment treatment plan can be optimized.
  • the dose verification can also be accomplished in other ways, for example, by directly treating the hair beam and receiving the radiation beam for dose verification, thereby performing dose verification by a pre-stored algorithm or the like. This application is described by way of example above.
  • the treatment target area is shown in FIG. 6, and the treatment target area 310 includes at least two sub-areas 311, 312, such as As shown in Figure 12, the method includes:
  • Step S301 Acquire a body image of the patient. For details, refer to step S101 above.
  • Step S302 Determine a treatment target area according to the acquired body image. For details, refer to step S102 above.
  • Step S303 performing regional subdivision on the treatment target area to determine at least one sub-area. For details, refer to the above step S105.
  • Step S304 Obtain a prescription dose of the treatment target area.
  • the prescription dose includes: a prescription dose value and a prescription dose distribution, wherein the prescription dose value is a size of a dose that the tumor should receive in the therapeutic target area to achieve the therapeutic effect.
  • the prescribed dose profile is the dose that should be accepted to achieve a therapeutic effect in different sub-regions of the therapeutic target area.
  • the treatment target zone 310 includes at least two sub-regions 311, 312, the sub-region 311 is an anoxic region, and the sub-region 312 is a tumor cell-dense region.
  • the dose of the prescribed dose is distributed in the corresponding sub-regions 311, 312 by a dose greater than that of the other regions.
  • Step S305 Determine an important organ around the treatment target area according to the acquired patient image. For details, refer to the above step S107.
  • Step S306 Obtain a dose limit of an important organ. For details, refer to the above step S108.
  • Step S307 Determine a treatment head, a treatment mode, and a treatment driving mode suitable for the target area according to the prescription dose of the treatment target area and the treatment target area.
  • the treatment head can select the focus treatment head and the conformal treatment head to cooperate with the treatment head, and the treatment target is performed by the conformal treatment head.
  • the focused treatment head performs partial dose augmentation treatment on the sub-regions 311, 312.
  • the driving method may be synchronous driving, that is, simultaneously driving the focusing treatment head and the conformal treatment head, and during the treatment, the focus point of the focusing treatment head also needs to move between the sub-areas 311 and 312.
  • Step S308 calculating the predicted dose of the treatment target area and the predicted dose value of the important organ under the determined treatment head, the treatment mode and the treatment driving mode, and determining whether the predicted dose in the treatment target area satisfies the requirement of the prescription dose, and determining the vital organ. Whether the predicted dose value exceeds the dose limit of the vital organ.
  • At least one of the treatment head, the treatment modality, and the treatment modality is adjusted such that the dose or dose distribution within the treatment target meets the prescription dosage requirements if the predicted dose does not meet the prescribed dosage requirements.
  • At least one of the treatment head, the treatment mode, and the treatment driving mode is adjusted such that the dose or dose distribution of the important organ does not exceed the dose limit to avoid importance Excessive damage to organs, imaging treatment effects.
  • the treatment plan must be implemented only if both the prescription dose requirement and the restriction requirements for vital organs are met. If one of them is not met, the treatment plan needs to be adjusted.
  • Step S309 simulating a treatment plan by using a radiotherapy device, a detector, and a measurement phantom.
  • the detector receives the radiation beam from the treatment head and determines the actual dose of the radiation beam.
  • the actual dose of the radiation therapy device comprises a dose size and/or a dose distribution. For details, refer to step S2011 above.
  • Step S310 comparing and verifying the actual dose and the prescribed dose. For details, refer to step S2012 above.
  • the prescription dose in the treatment plan is compared and analyzed to determine whether the actual dose meets the prescription dose requirement. If the actual dose does not meet the prescription dose requirements, then the adjustment treatment plan can be optimized.
  • a treatment plan corresponding to the treatment target area shown in Fig. 6 is generated and controlled by the treatment planning system to treat the patient.
  • the present application provides a treatment planning system corresponding to the above-described treatment plan generation method. It should be noted that each functional unit included in the following treatment planning system can perform the corresponding steps in the above methods, so in the following embodiments The various functional units of the device are not described in detail.
  • the present application provides a radiation therapy planning system for use in a radiation therapy device that includes at least two treatment heads.
  • the two treatment heads are a focus treatment head and a conformal treatment head, respectively, wherein each type of treatment head comprises at least one;
  • the radiation treatment planning system comprises a processor 200; for example, as shown in FIG.
  • the processor 200 includes:
  • the first obtaining module 201 is configured to acquire a body image of the patient, and the body image includes an image of the tumor.
  • the body image is generally a three-dimensional image, including CT, MR, PET, etc., and the image of the body is introduced into the treatment planning system of the treatment device, and the CT image is density-converted according to the material density calibration curve of the CT device. Fusion and registration of other images with the main images used for planning (such as CT images) to ensure that images of the same patient can be accurately registered and overlapped, especially in the region of interest (tumor treatment area and important sensitive organs) Or organization) to ensure that the patient's location in the region of interest is unified on all images.
  • the first determining module 202 is configured to determine a treatment target area according to the acquired body image, where the treatment target area includes a tumor, and is an area irradiated by the radiation beam during radiation therapy.
  • the oncologist uses radiotherapy equipment to divide the tumor and surrounding tissues according to the complexity of the tumor and surrounding tissues, and delineate the therapeutic target area.
  • the oncologist can also be distinguished by the color of the tumor and the surrounding tissue, and the system automatically maps the target area according to the color.
  • the second obtaining module 203 is configured to obtain a prescription dose of the treatment target area, wherein the prescription dose comprises: a prescription dose value, and the prescription dose value is a size of the dose received by the tumor to achieve the therapeutic effect.
  • the dosage of the prescription is different, and the size of the corresponding dose is generally determined according to the specific characteristics of the tumor.
  • the size of the prescription dose can be input by the attending physician.
  • the prescription dose size of the treatment target area can be selected according to the parameters of the tumor according to a pre-stored template.
  • the second determining module 204 is configured to determine a treatment head, a treatment mode, and a treatment driving mode suitable for the target area according to the prescription target area of the treatment target area and the treatment target area, wherein the treatment method includes an irradiation technique, an irradiation time of the treatment head, and a shot Wild shape and the like; the treatment driving method includes: synchronous driving or asynchronous driving, wherein the synchronous driving completes the treatment for the two treatment heads simultaneously, and simultaneously emits radiation beams at the same time period for radiation treatment; the asynchronous driving is the two treatment heads. After the treatment is completed, the treatment process of another treatment head is started after one treatment head completes the treatment.
  • the treatment methods include the irradiation technique, the irradiation time of the treatment head, and the shape of the field.
  • the treatment driving method includes: synchronous driving or asynchronous driving, wherein the synchronous driving completes the treatment synchronously for the two treatment heads, and simultaneously emits radiation beams at the same time period for radiation treatment.
  • a conformal treatment head is used to perform large-area conformal treatment of the tumor
  • a focused treatment head is used to dose-enhance the local part of the tumor to increase the local receiving dose of the tumor.
  • local dose enhancement can be performed on hypoxic regions, tumor cell dense regions, and the like.
  • the asynchronous drive completes the treatment step by step for the two treatment heads, and after one treatment head completes the treatment, the treatment process of the other treatment head is started.
  • the large-area conformal treatment of the tumor is first performed using the conformal treatment head. If the dose distribution is uneven during the irradiation, some tumor regions receive less dose, or need to be anoxic region. In the case of dose-enhanced tumor cell dense areas, after the conformal treatment is completed, the focused treatment head can be used for local dose-enhanced irradiation treatment.
  • Irradiation technology refers to different irradiation methods, including focused treatment of full-arc irradiation, local arc irradiation and directional irradiation, as well as three-dimensional conformal treatment of conformal treatment head, directional intensity treatment and pull-arc Treatment methods, etc.
  • the processor 200 further includes:
  • the third determining module 205 is configured to perform regional subdivision on the treatment target area to determine at least one sub-area.
  • the treatment target area 310 is subdivided, for example, the sub-area 311 is an anoxic area, and the treatment target area 310 is in addition to the sub-area 311, in order to achieve the effect of treating the tumor.
  • the partial dose of the sub-region 311 is larger than the dose of the other regions.
  • the processor 200 of the radiotherapy planning system of the present application may be a conformal treatment of the tumor with a conformal treatment head while a local dose increase is applied to each sub-region using a focused treatment head.
  • the multi-leaf collimator conforms to form a beam traversable region similar to the tumor 31, and the radiation source of the conformal treatment head emits a radiation beam through which the beam can be irradiated onto the human body through the region to form
  • the target region 310 is treated as shown in FIG. 5, thereby performing conformal radiation therapy on the therapeutic target region 310.
  • the focused treatment head is then utilized such that the focus of the focused treatment head is aligned with the sub-region, thereby effecting localized dose enhancement of the sub-region.
  • the second determining module 204 specifically uses the conformal treatment head to perform conformal treatment on the treatment target area, and uses the focused treatment head to perform local dose augmentation treatment on the sub-areas in the treatment target area.
  • the prescribed dose also includes a prescribed dose distribution that is a dose that should be accepted in different sub-regions of the therapeutic target area to achieve a therapeutic effect.
  • the second determination module 204 is further configured to perform local dose augmentation therapy on both of the sub-regions; the treatment of the focused therapy head further includes movement of the focus in different sub-regions.
  • the conformal treatment head can be used to conform to the treatment target area, and in the conformal irradiation process.
  • the focused treatment head can be moved between the sub-region 311 and the sub-region 312 such that both the sub-region 311 and the sub-region 312 are locally dose-enhanced.
  • the second determining module 204 is further configured to perform different radiation treatments on different sub-target zones using different treatment heads.
  • the sub-target region 313 is subjected to conformal treatment using a conformal treatment head, and the sub-target region 314 is subjected to focused radiotherapy using a focused treatment head.
  • the treatment is performed using a conformal treatment head; In the case where the maximum diameter of the region is less than 5 cm, the focus treatment head is used for treatment.
  • processor 200 includes a first calculation module 206 for calculating a predicted dose of a therapeutic target area and determining whether the predicted dose within the therapeutic target region meets the requirements for a prescribed dose value. At least one of the treatment head, the treatment mode, and the treatment driving mode is adjusted if the predicted dose does not satisfy the prescribed dosage requirement.
  • the predicted dose is generally based on the dose of the beam emitted by the source and the dose after the beam passes through the human body, and the dose received by the human tumor is predicted to determine whether the dose satisfies the prescription dose requirement.
  • the predicted dose corresponds to the prescribed dose, and if the prescribed dose includes the prescribed dose value and the prescribed dose distribution, the predicted dose includes the predicted dose value and the predicted dose distribution.
  • the dose calculation method is used to predict the dose distribution in the patient after treatment, and whether the prescription dose requirement is met is determined to determine whether the patient's treatment can achieve the desired therapeutic effect.
  • the processor 200 further includes:
  • the fourth determining module 207 is configured to determine an important organ around the treatment target area according to the acquired patient image.
  • a third obtaining module 208 configured to acquire a dose limit of an important organ
  • the second calculating module 209 is configured to calculate a predicted dose value of the vital organ under the determined treatment head, the treatment mode and the treatment driving mode, and determine whether the predicted dose value of the vital organ exceeds the dose limit of the vital organ. At least one of the treatment head, the treatment modality, and the treatment drive mode is adjusted in the case where the predicted dose value exceeds the dose limit of the vital organ.
  • the radiotherapy apparatus includes two conformal treatment heads; the third determination module 205 is further configured to subdivide the treatment target area to divide at least one sub-area; the second determination module 204 is further configured to adopt one of the conformal treatment head pairs
  • the treatment target area is subjected to conformal treatment, and another conformal treatment head is used to perform local dose-enhancing treatment on the sub-areas in the treatment target area.
  • the processor 200 also receives the actual dose of the radiation beam in the dose verification, and compares the actual dose of the radiation beam with the prescription dose. At least one of the treatment head, the treatment mode, and the treatment driving mode is adjusted if the verification result does not satisfy the prescription dosage requirement.
  • the actual dose of the radiation beam may be transmitted by the detector to the processor 200, and the processor 200 may verify the actual dose of the radiation beam and the prescription dose, Determine whether the actual dose meets the requirements for the prescribed dose. If the actual dose does not meet the requirements for the prescribed dose, the treatment plan can be optimally adjusted by the processor 200 or the attending physician.
  • the steps of the method or algorithm described in the present disclosure may be implemented in a hardware manner, or may be implemented by the processor 200 executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to processor 200 to enable processor 200 to read information from, and to write information to, the storage medium.
  • the storage medium can also be an integral part of the processor 200.
  • the processor 200 and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor 200 and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the present application provides a non-transitory computer readable storage medium, when the instructions in the storage medium are executed by the processor 200 of the treatment planning system, so that the treatment planning system A method of generating a radiation therapy plan can be performed, the method comprising:
  • Step S101 Acquire a body image of the patient.
  • the body image includes an image of a tumor;
  • Step S102 Determine a treatment target area according to the acquired body image.
  • the therapeutic target area includes a tumor, which is an area irradiated by a radiation beam during radiation therapy;
  • Step S103 Obtain a prescription dose of the therapeutic target area.
  • the prescription dose comprises: a prescription dose value, the prescription dose value being a size of a dose that the tumor should receive in the therapeutic target area to achieve a therapeutic effect;
  • Step S104 Determine a treatment head, a treatment mode, and a treatment driving mode suitable for the target area according to the therapeutic target area and the prescription dose of the therapeutic target area.
  • the treatment mode includes an irradiation technique, an irradiation time of the treatment head, and a shape of the field;
  • the treatment driving method includes: synchronous driving or asynchronous driving, wherein the synchronous driving is to complete the treatment simultaneously for the two treatment heads, The radiation beam is simultaneously or cross-exposed at the same time period for radiation therapy; the asynchronous drive completes the treatment step by step for the two treatment heads, and after the treatment head completes the treatment, the treatment process of the other treatment head is started.
  • the non-transitory computer readable storage medium when the instructions in the storage medium are executed by the processor 200 of the treatment planning system, enables the treatment planning system to perform a method of generating a radiation therapy plan, the method further It may be any of the methods of FIGS. 4, 8, 9, 10, 11, and 12.
  • the specific structure of the radiotherapy apparatus to which the treatment plan generating method and the treatment planning system of the present application are applied will be exemplified.
  • the specific structure of the radiotherapy apparatus is not limited thereto, for example, the focusing treatment head and the conformal treatment head may be Set at an angle of 90 degrees.
  • embodiments of the present invention may be used in a radiotherapy apparatus as shown in FIGS. 1 and 2, the radiotherapy apparatus 100 including a base 50, a roller 40, a focus treatment head 10, a conformal treatment head 20, and a treatment couch 60.
  • the base 50 is the basis of the entire radiotherapy apparatus 100, and functions to carry the entire radiotherapy apparatus 100 and to fix it.
  • a treatment bed 60 is disposed on the base 50, and the treatment bed 60 is coupled to the base 50 by screws and pins.
  • the treatment bed 60 is used to carry and fix the patient, and the patient's condition can be accurately delivered to the designated location of the radiotherapy device.
  • the base 50 is further provided with a drum 40 which is connected to the base 50 by a rolling support, and the drum 40 is rotated about the axis by gear transmission.
  • the focusing treatment head 10 and the conformal treatment head 20 are distributed on both sides of the axial center of the drum 40, the focusing treatment head 10 is driven by the rotation of the drum 40 about the axis (swing center).
  • the conformal treatment head 20 is subjected to 360 degree continuous or reciprocal rotation treatment about the axis of the drum 40 (swing center).
  • the two treatment heads are connected to the drum 40 through the circular arc guide 70 in the axial direction of the drum 40, so that the treatment heads 10 and 20 can be wound around the drum 40.
  • the axial direction is continuously oscillated around the focus, and the swing angle can be in the range of 0 to ⁇ 47.5 degrees, thereby achieving focusing or conformal treatment of non-coplanar and different incident angles, thereby enabling more flexible and effective tumor treatment.
  • the two treatment heads are continuously adjustable from 30 degrees to 180 degrees from each other in the layout position, and the examples are at an angle of 90 degrees from each other to the axis. Since the treatment head can achieve a continuous maximum ⁇ 47.5 degree angle of incidence change and a 360 degree orbital rotation, the therapeutic angle of incidence of the system can exceed 2 ⁇ .
  • the focused treatment head 10 also includes a plurality of radiation sources, a moving collimator, and a pre-collimator.
  • the radiation source is made of cobalt-60
  • the gamma radiation generated by the cobalt-60 is focused to a point by the pre-collimator and the moving collimator to form a focused field, that is, a high dose for treatment.
  • Area The moving collimator is provided with different apertures, and by moving the collimator, the aperture can be switched to change the size and shape of the focusing field. Accurate treatment of small field size and high dose can be achieved by the focused treatment head 10.
  • the conformal intensity-modulating treatment head 20 includes a radiation source, a pre-collimator, and a multi-leaf collimator.
  • the source of radiation may be a single cobalt source or greater than a 4 MV-X ray generator.
  • the radiation source realizes different shape of the field in the treatment plane by the multi-leaf collimator, thereby realizing three-dimensional conformal intensity-modulated illumination.
  • the multi-leaf collimator is a prior art and will not be described again in the embodiment of the present invention.
  • the focused treatment head can be performed with SRS (Stereotaxic Radiosurgery) or IGRT (Imaging Guide Radiation Therapy).
  • the conformal intensity-modulating treatment head can perform 3D-CRT (three-dimensional conformal radiation therapy), or IMRT (Intensity Modulated Radiation Therapy), or SBRT (Stereotactic Body Radiation Therapy stereotactic body radiation therapy) Or IGRT (Imaging Guide Radiation Therapy).
  • the radiotherapy apparatus apparatus of the present invention further includes a motion image guidance system IGS on which a set of stereoscopic image devices (i.e., an X-ray generator and an image detection acquisition system) of a set or fixed angle are mounted through a focus. That is, one or two sets of X-ray imaging devices are installed on the drum to perform real-time detection of the patient's position and the spatial position of the lesion, and the detection result is used to compensate the space position of the treatment bed and the treatment head, thereby ensuring high treatment. Accurate positioning for precise radiotherapy. When two sets of X-ray imaging devices are used, the angle range of the two imaging devices Between 20 degrees and 160 degrees.
  • the radiotherapy device can realize the two combined radiation treatments by using one-position positioning, the physio-sensitive treatment head and the multi-source focusing treatment head simultaneously or separately, thereby reducing the error caused by multiple placements and improving the radiotherapy. Accuracy and speed for improved quality and efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种医疗器械技术领域的放射治疗计划的生成方法和放射治疗计划系统,该放射治疗计划针对同时具备适形治疗头(20)和聚焦治疗头(10)的放疗设备(100),在一台设备上实现应用不同治疗头(10,20)协同,提高治疗效率和治疗效果。该放射治疗计划的生成方法,应用于放疗设备(100),放疗设备(100)包括至少两个治疗头(10,20);该放射治疗计划的生成方法包括:获取患者的身体图像(S101);根据获取的身体图像,确定治疗靶区(S102);获取治疗靶区的处方剂量(S103);根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗头(10,20)、治疗方式及治疗驱动方式(S104)。

Description

一种放射治疗计划的生成方法和放射治疗计划系统 技术领域
本发明涉及医疗器械技术领域,尤其涉及一种放射治疗计划的生成方法和放射治疗计划系统。
背景技术
肿瘤是一种常见的多发病,而放射治疗是一种常见的治疗手段。在放射治疗过程中,一般有两种放疗方式,立体定向多源聚焦放疗方式以及适形调强放疗方式。
所谓立体定向多源聚焦放疗方式,是放疗设备包括一个聚焦治疗头,聚焦治疗头包括多个放射束,将多个放射束聚焦于一个位置(一般为靶区),从而可以实现对该靶区进行大剂量照射。采用该种多源聚焦放疗方式,可以对肿瘤组织进行高剂量照射,而周边组织受到的辐射损伤较小。该种多源聚焦放疗方式,其精准的治疗特性对于颅内肿瘤或者头颈部肿瘤具有很好的治疗效果,但当遇到形状复杂或较大的体部肿瘤时,上述多源聚焦放疗方式就有其局限性,而需要采用适形调强放疗方式。
所谓适形调强放疗方式,是指放疗设备包括一个适形治疗头,一般为加速器,并采用多叶准直器形成与肿瘤形状相近的射束可穿过区域,从而使放射束对肿瘤靶区或其局部进行照射,达到适形治疗的目的。
目前,尚没有一种放疗设备能将立体定向多源聚焦放疗方式与适形调强放疗方式集成为一体,换句话说,目前的放疗设备无法在一台设备上既可以实现多源聚焦精确治疗又可以实现适形治疗,对于病患来说,也无法实现不同或相同肿瘤在同一台设备上选择不同的治疗方式。
发明内容
本发明提供一种放射治疗计划的生成方法和放射治疗计划系统,该放射治疗计划针对同时具备适形治疗头和聚焦治疗头的放疗设备,在一台设备上实现不同治疗头的协同治疗计划生成方法和系统,提高治疗效率和治疗效果。
为解决上述技术问题,本发明采用如下技术方案:
本发明实施例公开了一种放射治疗计划的生成方法,应用于放疗设备,所述放疗设备包括至少两个治疗头。所述放射治疗计划的生成方法包括:获取患者的身体图像,所述身体图像包括肿瘤的图像;根据获取的身体图像,确定治疗靶区,所述治疗靶区包括肿瘤,为放射治疗时放射束照射的区域;获取所述治疗靶区的处方剂量,其中,所述处方剂量包括:处方剂量值,所述处方剂量值为治疗靶区中所述肿瘤应该接收的剂量的大小;根据所述治疗靶区以及所述治疗靶区的处方剂量,确定适合所述靶区的治疗头、治疗方式及治疗驱动方式。所述治疗方式包括照射技术、治疗头的照射时间和射野形状等;所述治疗驱动方式包括:同步驱动或异步驱动,其中,所述同步驱动为两个治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗;所述异步驱动为两个治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。
本发明实施例还公开了一种放射治疗计划系统,应用于放疗设备。所述放疗设备包括至少两个治疗头。所述放射治疗计划系统包括处理器;所述处理器可用于:获取患者的身体图像,所述身体图像包括肿瘤的图像;所述处理器还用于根据获取的身体图像,确定治疗靶区,所述治疗靶区包括肿瘤,为放射治疗时放射束照射的区域;所述处理器200还用于获取所述治疗靶区的处方剂量,其中,所述处方剂量包括:处方剂量值,所述处方剂量值为治疗靶区中所述肿瘤应该接收的剂量的大小;所述处理器还用于根据所述治疗靶区以及所述治疗靶区的处方剂量,确定适合所述靶区的治疗头、治疗方式及治疗驱动方式。所述治疗方式包括照射技术、治疗头的照射时间和射野形状等;所述治疗驱动方式包括: 同步驱动或异步驱动,其中,所述同步驱动为两个治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗;所述异步驱动为两个治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。
本发明提供了一种放射治疗计划的生成方法和放射治疗计划系统,所示治疗计划的生成方法包括:获取患者的身体图像;根据获取的身体图像,确定治疗靶区和周围敏感组织;获取治疗靶区的处方剂量及敏感组织剂量限值;根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗头、治疗方式及治疗驱动方式,其中,治疗方式包括照射技术、治疗头的照射时间和射野形状等;治疗驱动方式包括:同步驱动或异步驱动。通过本申请提供的治疗计划生成方法,可以对现有的两种类型的治疗头进行协同式治疗,从而可以进一步优化治疗方案,可以减少单独采用适形治疗头或聚焦治疗头进行多次分次治疗而由多次摆位造成的误差,提高放疗精准度和速度,从而实现更高效、更精准的治疗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种放射设备示意图;
图2是图1所示放射设备的侧面示意图;
图3是本发明提供的一种放射治疗计划的生成方法示意图;
图4是本发明提供的另一种放射治疗计划的生成方法示意图;
图5是本发明提供的一种治疗靶区示意图;
图6是本发明提供的另一种治疗靶区示意图;
图7是本发明提供的另一种治疗靶区示意图;
图8是本发明提供的另一种放射治疗计划的生成方法示意图;
图9是本发明提供的另一种放射治疗计划的生成方法示意图;
图10是本发明提供的另一种放射治疗计划的生成方法示意图;
图11是本发明提供的一种剂量验证的方法示意图;
图12是本发明提供的一种放射治疗计划的生成方法的具体实施方式示意图;
图13是本发明提供的一种处理器示意图;
图14是本发明提供的另一种处理器示意图;
图15是本发明提供的另一种处理器示意图;
图16是本发明提供的另一种处理器示意图。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步更详细的描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明实施例提供了一种放射治疗计划的生成方法,应用于放疗设备,放疗设备包括至少两个治疗头。
本实施例中,所述放疗设备包括至少两种类型的治疗头,分别为聚焦治疗头和适形治疗头,其中每种类型的治疗头包括至少一个。例如,放疗设备可以是包括一个聚焦治疗头和一个适形治疗头,或者,放疗设备可以是包括两个聚焦治疗头和一个适形治疗头,再或者,放疗设备可以是包括两个聚焦治疗头和两个适形治疗头。如图1、图2所示,本申请以放疗设备100包括一个聚焦治疗头10和一个适形治疗头20为例进行示例说明,图1、图2以聚焦治疗头10和适形治疗头20相对设置为例。
聚焦治疗头一般是指治疗头包括多个放射源,多个放射源分别发出放射束,该多个放射束聚焦于一个聚焦点,该聚焦点对应肿瘤的不同区域,从而实现对肿瘤不同区域的放射治疗,一般聚焦点与靶区对应,从而可以实现对该靶区进行大剂量照射。适形治疗头一般是指治疗头包括 一个放射源,该放射源发出散射的锥形束,准直器或多叶准直器形成与肿瘤形状相似的射束可穿过区域,锥形束穿过该射束可穿过区域照射在肿瘤上,从而实现肿瘤的放射治疗。
示例的,如图1、图2所示,该聚焦治疗头10包括:多个第一放射源11,第一放射源11发出第一放射束13,第一放射束13通过准直器12可以调节第一放射束13的射野直径,多个第一放射束13聚焦于聚焦点,该聚焦点照射在人体30的肿瘤31的部分区域。适形治疗头20包括第二放射源21,该第二放射源21发出散射的锥形束23,多叶准直器22形成与肿瘤31形状相似的射束可穿过区域,锥形束23穿过该射束可穿过区域照射在肿瘤31上,从而实现肿瘤31的放射治疗。
本申请提供了一种放射治疗计划的生成方法,如图3所示,包括:
步骤S101、获取患者的身体图像。身体图像包括肿瘤的图像,一般为包括肿瘤区域的身体图像。示例的,本申请中,身体图像为患者身体的任何部位或全身的图像。示例的,身体图像包括患者的头部图像和/或患者的体部图像。
身体图像一般为三维图像,包括CT、MR或PET等,将身体的图像导入治疗设备的治疗计划系统。在本实施例中,根据CT设备的物质密度标定曲线对CT图像进行密度转换。把其它图像与用于做计划的主要图像(比如CT图像)进行融合和配准,来保证同一患者的图像可以精确地注册重叠在一起,特别是在感兴趣区(肿瘤治疗区和重要敏感器官或组织),以保证患者在感兴趣区的解刨结构位置在所有的图像上都统一起来。
其中,对不同图像进行融合与配准,目的是为了借助不同图像形式的特性来精确定位患者解刨结构、确定肿瘤的边界、肿瘤形态、分布特性和健康组织的位置与形状,为精确确定治疗靶区、精准治疗方案和避让敏感器官提供依据。
步骤S102、根据获取的身体图像,确定治疗靶区。治疗靶区包括肿瘤,为放射治疗时放射束照射的区域。
示例的,根据获取的身体图像,由肿瘤科医师利用放疗设备根据肿 瘤及其周围组织的复杂程度,对肿瘤及周围组织进行划分,勾画治疗靶区,系统可直接获取该治疗靶区。当然,也可以是通过肿瘤及周围组织的颜色区分,由计算机存储的算法,并根据系统算法例如根据颜色进行肿瘤靶区的自动勾画。
示例的,确定治疗靶区包括:确定肿瘤及其周围组织的复杂程度,对肿瘤及周围组织进行划分,或根据功能图像和其它诊断信息确定肿瘤内的特征区域,包括缺氧区域、肿瘤细胞密集区域等,以便对这些区域实行针对性的治疗,比如增大剂量、改变分次等。对于存在远端转移和不相连多靶区的情况,根据每个靶区的特性,也可以采用不同的治疗方法和分次治疗剂量等。
步骤S103、获取治疗靶区的处方剂量。其中,处方剂量包括:处方剂量值,处方剂量值为为达到治疗效果治疗靶区中肿瘤应该接收的剂量的大小。
示例的,根据癌症细胞类型和位置,处方剂量大小不同,一般根据肿瘤的具体特性,确定对应的剂量的大小。一般的,处方剂量的大小可以由主治医师输入,当然也可以是根据预先存储的模板,根据肿瘤的各项参数值,选择治疗靶区的处方剂量大小。
步骤S104、根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗头、治疗方式及治疗驱动方式。
其中,治疗方式包括照射技术、治疗头的照射时间和射野形状等。示例的,治疗驱动方式包括:同步驱动或异步驱动,其中,同步驱动为两个治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗。例如同时利用适形治疗头进行肿瘤的大面积适形治疗,并利用聚焦治疗头对肿瘤的局部进行剂量增强,增大肿瘤的局部接收剂量。例如可以是对缺氧区域、肿瘤细胞密集区域等进行局部剂量增强。异步驱动为两个治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。例如,若肿瘤较大,则先利用适形治疗头进行肿瘤的大面积适形治疗,若在照射过程中,由于剂量分布不均匀导致部分肿瘤区域接收的剂量较少,或需要对缺氧区域、肿瘤细胞密集区域等进行 剂量增强,则可以在完成适形治疗后,再利用聚焦治疗头进行局部的剂量增强照射治疗。
照射技术是指不同的照射方式,包括聚焦治疗头拉全弧照射、拉局部弧照射和定向照射等,还包括适形治疗头的三维适形治疗方式、定向调强治疗方式和拉弧调强治疗方式等。
对于聚焦治疗头,射野形状一般为类圆形,几个可选大小;对于适形治疗头,射野形状一般为多叶准直器适形形成的任意形状,参照图5所示,一般的,经过适形后的照射到人体的治疗靶区310要大于肿瘤31。照射时间越长,人体接收的辐射越多,因此,照射野形状和照射时间直接影响人体接收辐射的量。
示例的,步骤S104可以是由主治医师输入各项参数确定的治疗头、治疗方式及治疗驱动方式。也可以是系统通过自动化处理,根据肿瘤靶区处方剂量,通过自动优化和迭代逆向计划过程,确定的治疗头、治疗方式及治疗驱动方式的治疗计划。
由于本申请中的放疗设备包括聚焦治疗头和适形治疗头,聚焦治疗头对治疗小肿瘤具有更加精确的优势,适形治疗头对于治疗大肿瘤能够更好的进行肿瘤的适形。因此,本申请中,在对肿瘤进行治疗计划的过程中,可以根据具体的肿瘤图像,采用聚焦治疗头、适形治疗头或结合的方式,减少了多次摆位造成的误差,提高放疗精准度和速度,从而实现更高效、更精准的治疗。
本申请提供了一种放射治疗计划的生成方法,应用于放疗设备,放疗设备包括两个治疗头。本实施例中,所述两个治疗头分别为聚焦治疗头和适形治疗头。放射治疗计划的生成方法包括:获取患者的身体图像;根据获取的身体图像,确定治疗靶区;获取治疗靶区的处方剂量;根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗头、治疗方式及治疗驱动方式,其中,治疗方式包括照射技术、治疗头的照射时间和射野形状等;治疗驱动方式包括:同步驱动或异步驱动。通过本申请提供的治疗计划生成方法,可以根据具体的肿瘤图像,采用聚焦治疗头、适形治疗头或结合的方式,减少了多次摆位造成的误差,提高放疗精准 度和速度,从而实现更高效、更精准的治疗。
在确定的治疗头、治疗方式以及治疗驱动方式下,计算该治疗计划的剂量或剂量分布,从而确定治疗靶区内的剂量或剂量分布是否满足处方剂量的要求。在治疗靶区内的剂量或剂量分布不满足处方剂量的情况下,调整治疗头、治疗方式以及治疗驱动方式,以使得治疗靶区内的剂量或剂量分布满足处方剂量的要求。关于剂量分布,在后面进行详细说明。
本申请提供的一种治疗计划的生成方法,如图4所示,在步骤S102之后,在步骤S104之前,治疗计划的生成方法还包括:
步骤S105、对治疗靶区进行区域细分,确定出至少一个子区域。
则上述步骤S103中,处方剂量还包括:处方剂量分布,即为达到治疗效果治疗靶区不同子区域应该接受的剂量。上述步骤S104具体可以是采用适形治疗头对治疗靶区进行适形治疗,并采用聚焦治疗头对治疗靶区内的子区域进行局部剂量增强治疗。
需要说明的是,步骤S105在步骤S102之后,在步骤S104之前,则表示步骤S105可以是在步骤S103之前,也可以是在步骤S103之后,也可以是与步骤S103同时进行。本发明实施例不以附图对步骤进行具体限定,仅以附图为例进行详细说明。
示例的,如图5所示,对治疗靶区310进行区域细分,例如子区域311为缺氧区域以及除了子区域311之外的其他区域,则要想达到治疗肿瘤的效果,子区域311的局部剂量要比其他区域的剂量大。则本申请中的治疗计划生成方法中,可以是利用适形治疗头对肿瘤进行适形治疗,同时利用聚焦治疗头对各子区域进行局部剂量增加。例如,可以是使得多叶准直器适形形成类似肿瘤31的射束可穿过区域,适形治疗头的放射源发出放射束,穿过该射束可穿过区域照射在人体上,形成如图5所示的治疗靶区310,从而对该治疗靶区310进行适形放射治疗。再利用聚焦治疗头,使得聚焦治疗头的聚焦点对准子区域,从而对子区域进行局部的剂量增强。
本申请提供的治疗计划的生成方法,能够通过对治疗靶区进行子区 域划分,并利用适形治疗头实现对治疗靶区的适形治疗,利用聚焦治疗头实现对治疗靶区中子区域的局部剂量增强治疗,从而在一次治疗过程中,实现对肿瘤的最佳协同治疗。避免多次治疗和摆位给患者带来的治疗位置误差,提高治疗精度和效率。
需要说明的是,在对治疗靶区进行区域细分,确定出至少一个子区域的步骤中,可以是如图5所示,确定出一个子区域311,还可以是如图6所示,确定出两个子区域,即子区域311和子区域312。当然,根据肿瘤的具体结构情况,还可以是确定出多个子区域。下面以治疗靶区包括两个子区域为例进行说明。
本申请提供的一种治疗计划的生成方法,参照图6所示,在治疗靶区310包括至少两个子区域311、312的情况下;采用聚焦治疗头对治疗靶区内的子区域进行局部剂量增强治疗具体包括:对两个以上子区域均进行局部剂量增强治疗;聚焦治疗头的治疗方式还包括焦点在不同子区域的移动。
示例的,若采用聚焦治疗头和适形治疗头同步驱动,对如图6所示的肿瘤进行放射治疗,则可以利用适形治疗头对治疗靶区进行适形照射,且在适形照射过程中,聚焦治疗头可以在子区域311和子区域312之间移动,从而对子区域311和子区域312均进行局部的剂量增强。
当然,本申请中,治疗设备包括聚焦治疗头和适形治疗头,其中,聚焦治疗头和/或治疗头也可以是包括至少两个。参照图6所示,在治疗靶区310包括至少两个子区域311、312的情况下;也可以是采用其中一个适形治疗头对治疗靶区进行适形治疗,并采用另一个适形治疗头对治疗靶区内的子区域进行局部剂量增强治疗。
一般的,肿瘤容易转移,从而形成多个不相连的靶区,可以是两个不相连的子靶区,也可以是多个不相连的子靶区。如图7所示,以靶区310包括两个不相连的子靶区313和子靶区314为例。本申请提供的一种治疗计划的生成方法,在靶区包括多个不相连的子靶区的情况下,确定适合靶区的治疗头具体包括:不同的子靶区采用不同的治疗头。
示例的,参照图7所示,可以是利用适形治疗头对子靶区313进行 适形治疗,利用聚焦治疗头对子靶区314进行聚焦放射治疗。一般的,在靶区的最大直径大于5cm的情况下,采用适形治疗头进行治疗;在靶区的最大直径小于5cm的情况下,采用聚焦治疗头进行治疗。
当然,本申请中,不同的子靶区采用不同的治疗头,还可以是不同的子靶区采用相同类型的治疗头进行治疗。参照图7所示,治疗设备包括两个适形治疗头。在治疗过程中,可以是利用其中一个适形治疗头对子靶区313进行适形治疗,利用另一个适形治疗头对子靶区314进行适形治疗。或者,在治疗设备包括两个聚焦治疗头的情况下,可以是利用其中一个聚焦治疗头对子靶区313进行聚焦放射治疗,利用另一个聚焦治疗头对子靶区314进行聚焦放射治疗。
本申请提供的一种治疗计划的生成方法,如图8所示,还包括:
步骤S106、在确定的治疗头、治疗方式及治疗驱动方式下,计算治疗靶区的预测剂量,确定治疗靶区内预测剂量是否满足处方剂量的要求。
在预测剂量不满足处方剂量要求的情况下,调整治疗头、治疗方式及治疗驱动方式中的至少一种,以使得治疗靶区内的剂量或剂量分布满足处方剂量的要求。
其中,预测剂量一般是根据放射源发出的射束剂量以及射束穿过人体后的剂量,预测人体肿瘤接收的剂量,从而确定该剂量是否满足处方剂量的要求。一般的,预测剂量与处方剂量对应,若处方剂量包括处方剂量值和处方剂量分布,则预测剂量包括预测剂量值和预测剂量分布。通过进行剂量计算方法预测患者接受治疗后体内的剂量分布,判断是否满足处方剂量要求,从而判断患者治疗是否能达到预期治疗效果。
本申请提供的一种治疗计划的生成方法,如图9所示,还包括:
步骤S107、根据获取的患者图像,确定治疗靶区周围的重要器官。
步骤S108、获取重要器官的剂量限值。重要器官的剂量限值是为了避免辐射对重要器官造成严重损伤,从而保护重要器官。
步骤S109、在确定的治疗头、治疗方式及治疗驱动方式下,计算重要器官的预测剂量值,并确定重要器官的预测剂量值是否超过重要器官的剂量限值。
在预测剂量值超过重要器官的剂量限值的情况下,调整治疗头、治疗方式及治疗驱动方式中的至少一种,以使得重要器官的剂量或剂量分布不超过剂量限值,以避免对重要器官的过度伤害,影像治疗效果。
需要说明的是,在治疗计划的生成方法包括步骤S107、步骤S108和步骤S109的情况下,其与其他步骤的先后顺序不做固定限定,仅以图9所示的为例进行说明。例如图9所示的方法中,步骤S103和步骤S107的先后顺序可以是同时进行,也可以是先进行步骤S107,再进行步骤S103。
本申请提供的一种治疗计划的生成方法,如图10所示,还包括:
步骤S201、对治疗计划进行剂量验证。
对治疗计划进行剂量验证,一般是对处方剂量进行验证,主要是对剂量的大小和剂量的分布进行验证,确认放疗设备与治疗计划匹配,以确定治疗计划的准确性。此外,剂量验证还可以确认治疗计划系统预测的剂量分布的准确性、治疗参数在不同系统间传递的正确性和设备执行治疗计划的正确性。如剂量验证结果不理想,还可以对每个步骤做检验和确认。
示例的,以适形治疗为例,如果多叶准直器叶片运动位置精度出现偏差,测量得到的剂量分布就会体现出区别。则本申请提供的治疗计划的生成方法,通过对治疗计划进行剂量验证,以便根据设备情况调整治疗计划,以达到治疗要求。
示例的,如图11所示,对治疗计划进行剂量验证具体包括:
步骤S2011、利用放疗设备、探测器以及测量模体模拟治疗过程。其中,探测器接收治疗头的放射束,并确定放射束的实际剂量。其中,放疗设备的实际剂量包括剂量大小和/或剂量分布。对治疗计划进行剂量验证还可以是利用放疗设备接收治疗头的放射束,并确定放射束的实际剂量。本申请中,利用模体还可以模拟人体照射,演练真实的治疗过程,验证结果更加接近实际结果。
其中,探测器可以是固定安装在放疗设备上,也可以仅仅对放疗设备进行验证时临时使用的可移动探测器。示例的,以适形治疗头为例, 例如放疗设备包括适形治疗头以及位于适形治疗头对面的探测器,从而适形治疗头发出的射束穿过测量模体被探测器接收,探测器根据接收到的射束确定实际剂量,包括剂量大小以及剂量分布。
步骤S2012、对实际剂量与处方剂量进行比较验证。
在所述验证结果不满足处方剂量要求的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
示例的,根据探测器确定的剂量的大小以及剂量分布等,与治疗计划中的处方剂量进行比较分析,确定实际剂量是否满足处方剂量的要求。如果实际剂量不满足处方剂量的要求,则可以优化调整治疗计划。
当然,还可以利用其它方式完成剂量验证,例如,直接利用治疗头发出放射束并接收放射束进行剂量验证,从而通过预先存储的算法等进行剂量验证。本申请以上述为例进行说明。
下面,结合本申请中的方法列举一具体实施例,详细说明本申请中治疗计划的生成方法,其中,治疗靶区参照图6所示,治疗靶区310包括至少两个子区域311、312,如图12所示,该方法包括:
步骤S301、获取患者的身体图像。具体可以参照上述步骤S101。
步骤S302、根据获取的身体图像,确定治疗靶区。具体可以参照上述步骤S102。
步骤S303、对治疗靶区进行区域细分,确定出至少一个子区域。具体可以参照上述步骤S105。
步骤S304、获取治疗靶区的处方剂量。其中,处方剂量包括:处方剂量值以及处方剂量分布,其中,处方剂量值为为达到治疗效果治疗靶区中肿瘤应该接收的剂量的大小。处方剂量分布为为达到治疗效果治疗靶区不同子区域应该接受的剂量。
参照图6所示,治疗靶区310包括至少两个子区域311、312,子区域311为缺氧区域,子区域312为肿瘤细胞密集区域。则处方剂量的分布在对应子区域311、312的剂量大于其他区域的剂量。
步骤S305、根据获取的患者图像,确定治疗靶区周围的重要器官。具体可以参照上述步骤S107。
步骤S306、获取重要器官的剂量限值。具体可以参照上述步骤S108所述。
步骤S307、根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗头、治疗方式及治疗驱动方式。
具体的,由于需要对治疗靶区的子区域311、312进行局部的剂量增强,则治疗头可以选择聚焦治疗头和适形治疗头两种治疗头配合,由适形治疗头对治疗靶区进行适形治疗,聚焦治疗头对子区域311、312进行局部剂量增强治疗。驱动方式可以是同步驱动,即同时驱动聚焦治疗头和适形治疗头,且在治疗过程中,聚焦治疗头的聚焦点还需要在子区域311和312之间进行移动。
步骤S308、在确定的治疗头、治疗方式及治疗驱动方式下,计算治疗靶区的预测剂量以及重要器官的预测剂量值,并确定治疗靶区内预测剂量是否满足处方剂量的要求,确定重要器官的预测剂量值是否超过重要器官的剂量限值。
即预测剂量大小和剂量分布在治疗靶区内的情况是否满足处方剂量的要求,以达到必要的治疗效果。并预测重要器官的预测剂量值是否超过重要器官的剂量限值,防止剂量过大,对重要器官损伤严重,对患者带来其他危害。
在预测剂量不满足处方剂量要求的情况下,调整治疗头、治疗方式及治疗驱动方式中的至少一种,以使得治疗靶区内的剂量或剂量分布满足处方剂量的要求。
在预测剂量值超过重要器官的剂量限值的情况下,调整治疗头、治疗方式及治疗驱动方式中的至少一种,以使得重要器官的剂量或剂量分布不超过剂量限值,以避免对重要器官的过度伤害,影像治疗效果。
即须同时满足处方剂量的要求以及对重要器官的限制要求,治疗计划才得以实施,若不满足其中一个,需要调整治疗计划。
步骤S309、利用放疗设备、探测器以及测量模体模拟治疗计划。探测器接收治疗头的放射束,并确定放射束的实际剂量。其中,放疗设备的实际剂量包括剂量大小和/或剂量分布。具体可以参照上述步骤S2011。
步骤S310、对实际剂量与处方剂量进行比较验证。具体可以参照上述步骤S2012。
根据探测器确定的剂量的大小以及剂量分布等,与治疗计划中的处方剂量进行比较分析,确定实际剂量是否满足处方剂量的要求。如果实际剂量不满足处方剂量的要求,则可以优化调整治疗计划。
在满足以上各步骤的条件下,生成对应治疗如图6所示的治疗靶区的治疗计划,并由治疗计划系统控制实施,以对病人进行治疗。
下面,本申请提供了与上述的治疗计划生成方法相对应的治疗计划系统,需要说明的是,以下治疗计划系统所包含的各个功能单元可以执行上述方法中的相应步骤,故在下面的实施例中对装置的各个功能单元不做详细描述。
本申请提供了一种放射治疗计划系统,应用于放疗设备,该放疗设备包括至少两个治疗头。本实施例中,所述两个治疗头分别为聚焦治疗头和适形治疗头,其中每种类型的治疗头包括至少一个;放射治疗计划系统包括处理器200;示例的,如图13所示,该处理器200包括:
第一获取模块201,用于获取患者的身体图像,身体图像包括肿瘤的图像。
身体图像一般为三维图像,包括CT、MR和PET等,将身体的图像导入治疗设备的治疗计划系统,根据CT设备的物质密度标定曲线对CT图像进行密度转换。把其它图像与用于做计划的主要图像(比如CT图像)进行融合和配准,来保证同一患者的图像可以精确地注册重叠在一起,特别是在感兴趣区(肿瘤治疗区和重要敏感器官或组织),以保证患者在感兴趣区的解刨结构位置在所有的图像上都统一起来。
第一确定模块202,用于根据获取的身体图像,确定治疗靶区,治疗靶区包括肿瘤,为放射治疗时放射束照射的区域。
一般的,根据获取的身体图像,由肿瘤科医师利用放疗设备根据肿瘤及其周围组织的复杂程度,对肿瘤及周围组织进行划分,勾画治疗靶区。当然,也可以是通过肿瘤及周围组织的颜色区分,由系统根据颜色进行肿瘤靶区的自动勾画。
第二获取模块203,用于获取治疗靶区的处方剂量,其中,处方剂量包括:处方剂量值,处方剂量值为为达到治疗效果肿瘤接收的剂量的大小。
示例的,根据癌症细胞类型和位置,处方剂量大小不同,一般根据肿瘤的具体特性,确定对应的剂量的大小。一般的,处方剂量的大小可以由主治医师输入,当然也可以是根据预先存储的模板,根据肿瘤的各项参数值,选择治疗靶区的处方剂量大小。
第二确定模块204,用于根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗头、治疗方式及治疗驱动方式,其中,治疗方式包括照射技术、治疗头的照射时间和射野形状等;治疗驱动方式包括:同步驱动或异步驱动,其中,同步驱动为两种治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗;异步驱动为两种治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。
其中,治疗方式包括照射技术、治疗头的照射时间和射野形状等。治疗驱动方式包括:同步驱动或异步驱动,其中,同步驱动为两种治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗。例如同时利用适形治疗头进行肿瘤的大面积适形治疗,并利用聚焦治疗头对肿瘤的局部进行剂量增强,增大肿瘤的局部接收剂量。例如可以是对缺氧区域、肿瘤细胞密集区域等进行局部剂量增强。异步驱动为两种治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。例如,若肿瘤较大,则先利用适形治疗头进行肿瘤的大面积适形治疗,若在照射过程中,由于剂量分布不均匀导致部分肿瘤区域接收的剂量较少,或需要对缺氧区域、肿瘤细胞密集区域等进行剂量增强,则可以在完成适形治疗后,再利用聚焦治疗头进行局部的剂量增强照射治疗。
照射技术是指不同的照射方式,包括聚焦治疗头拉全弧照射、拉局部弧照射和定向照射等,还包括适形治疗头的三维适形治疗方式、定向调强治疗方式和拉弧调强治疗方式等。
参照图14所示,处理器200还包括:
第三确定模块205,用于对治疗靶区进行区域细分,确定出至少一个子区域。
示例的,如图5所示,对治疗靶区310进行区域细分,例如子区域311为缺氧区域,治疗靶区310除了子区域311之外的其他区域,则要想达到治疗肿瘤的效果,子区域311的局部剂量要比其他区域的剂量大。则本申请中的放射治疗计划系统的处理器200可以是利用适形治疗头对肿瘤进行适形治疗,同时利用聚焦治疗头对各子区域进行局部剂量增加。例如,可以是使得多叶准直器适形形成类似肿瘤31的射束可穿过区域,适形治疗头的放射源发出放射束,穿过该射束可穿过区域照射在人体上,形成如图5所示的治疗靶区310,从而对该治疗靶区310进行适形放射治疗。再利用聚焦治疗头,使得聚焦治疗头的聚焦点对准子区域,从而对子区域进行局部的剂量增强。
第二确定模块204具体采用适形治疗头对治疗靶区进行适形治疗,并采用聚焦治疗头对治疗靶区内的子区域进行局部剂量增强治疗。
处方剂量还包括处方剂量分布,处方剂量分布为达到治疗效果所述治疗靶区不同子区域应该接受的剂量。
在治疗靶区包括至少两个子区域的情况下;第二确定模块204还用于对两个以上子区域均进行局部剂量增强治疗;聚焦治疗头的治疗方式还包括焦点在不同子区域的移动。
示例的,若采用聚焦治疗头和适形治疗头同步驱动,对如图6所示的肿瘤进行放射治疗,则可以利用适形治疗头对治疗靶区进行适形照射,且在适形照射过程中,聚焦治疗头可以在子区域311和子区域312之间移动,从而对子区域311和子区域312均进行局部的剂量增强。
在靶区包括多个不相连的子靶区的情况下,第二确定模块204还用于对不同的子靶区采用不同的治疗头进行放射治疗。
示例的,参照图7所示,可以是利用适形治疗头对子靶区313进行适形治疗,利用聚焦治疗头对子靶区314进行聚焦放射治疗。一般的,在靶区的最大直径大于5cm的情况下,采用适形治疗头进行治疗;在靶 区的最大直径小于5cm的情况下,采用聚焦治疗头进行治疗。
如图15所示,处理器200包括第一计算模块206,用于计算治疗靶区的预测剂量,并确定治疗靶区内预测剂量是否满足处方剂量值的要求。在预测剂量不满足处方剂量要求的情况下,调整治疗头、治疗方式及治疗驱动方式中的至少一种。
其中,预测剂量一般是根据放射源发出的射束剂量以及射束穿过人体后的剂量,预测人体肿瘤接收的剂量,从而确定该剂量是否满足处方剂量的要求。一般的,预测剂量与处方剂量对应,若处方剂量包括处方剂量值和处方剂量分布,则预测剂量包括预测剂量值和预测剂量分布。通过进行剂量计算方法预测患者接受治疗后体内的剂量分布,判断是否满足处方剂量要求,从而判断患者治疗是否能达到预期治疗效果。
如图16所示,处理器200还包括:
第四确定模块207,用于根据获取的患者图像,确定治疗靶区周围的重要器官。
第三获取模块208,用于获取重要器官的剂量限值;
第二计算模块209,用于在确定的治疗头、治疗方式及治疗驱动方式下,计算重要器官的预测剂量值,确定重要器官的预测剂量值是否超过重要器官的剂量限值。在预测剂量值超过重要器官的剂量限值的情况下,调整治疗头、治疗方式及治疗驱动方式中的至少一种。
放疗设备包括两个适形治疗头;第三确定模块205还用于对治疗靶区进行区域细分,分出至少一个子区域;第二确定模块204还用于采用其中一个适形治疗头对治疗靶区进行适形治疗,并采用另一个适形治疗头对治疗靶区内的子区域进行局部剂量增强治疗。
进一步的,处理器200还接收剂量验证中放射束的实际剂量,并对放射束的实际剂量和处方剂量进行比较验证。在所述验证结果不满足处方剂量要求的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
示例的,放射束的实际剂量可以是由探测器传输给处理器200,处理器200可以对放射束的实际剂量和处方剂量进行比较验证,确 定实际剂量是否满足处方剂量的要求。如果实际剂量不满足处方剂量的要求,可以通过处理器200或主治医师优化调整治疗计划。
本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器200执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器200,从而使处理器200能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器200的组成部分。处理器200和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器200和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
示例的,以图3所示的方法为例,本申请提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由治疗计划系统的处理器200执行时,使得治疗计划系统能够执行一种放射治疗计划的生成方法,所述方法包括:
步骤S101、获取患者的身体图像。所述身体图像包括肿瘤的图像;
步骤S102、根据获取的身体图像,确定治疗靶区。所述治疗靶区包括肿瘤,为放射治疗时放射束照射的区域;
步骤S103、获取所述治疗靶区的处方剂量。
其中,所述处方剂量包括:处方剂量值,所述处方剂量值为为达到治疗效果治疗靶区中肿瘤应该接收的剂量的大小;
步骤S104、根据所述治疗靶区以及所述治疗靶区的处方剂量,确定适合所述靶区的治疗头、治疗方式及治疗驱动方式。
其中,所述治疗方式包括照射技术、治疗头的照射时间和射野形状等;所述治疗驱动方式包括:同步驱动或异步驱动,其中,所述同步驱动为两种治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗;所述异步驱动为两种治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。
当然,该非临时性计算机可读存储介质,当所述存储介质中的指令由治疗计划系统的处理器200执行时,使得治疗计划系统能够执行一种放射治疗计划的生成方法,所述方法还可以是如图4、图8、图9、图10、图11以及图12中的任一方法。
下面,对适用本申请的治疗计划生成方法以及治疗计划系统的放疗设备的具体结构进行示例说明,当然,对放疗设备的具体结构也不局限于此,例如聚焦治疗头和适形治疗头可以是成90度夹角设置。
示例的,本发明实施例可用于如图1、图2所示的放疗设备,放疗设备100包括底座50、滚筒40、聚焦治疗头10、适形治疗头20以及治疗床60。底座50是整个放疗设备100的基础,起到承载整个放疗设备100及固定作用。底座50上设置有治疗床60,治疗床60通过螺钉、销钉与底座50连接。治疗床60则用于承载及固定病人,可以精确实现将病人的病症送到放疗设备指定位置。底座50上还设置有滚筒40,滚筒40通过滚动支撑与底座50相连,通过齿轮传动来实现滚筒40绕着轴线旋转。
示例的,如图1、图2所示,由于聚焦治疗头10和适形治疗头20分布在滚筒40轴心两侧,因滚筒40绕着轴线(回转中心)旋转,而带动聚焦治疗头10和适形治疗头20绕着滚筒40轴线(回转中心)进行360度连续或往复旋转治疗。此外,两种治疗头在滚筒40轴向上通过圆弧导轨70均与滚筒40相连,这样可以使治疗头10和20绕在滚筒40 轴向平面上绕焦点进行连续摆动,摆动角度可以为0~±47.5度范围,从而实现非共面、不同入射角的聚焦或适形治疗,从而可以更加灵活有效地进行肿瘤治疗。此外两种治疗头,在布局位置上,其相互间到轴心的夹角在30度到180度之间连续可调,示例的其相互间到轴心的夹角为90度。由于治疗头可以做到连续的最大±47.5度入射角改变及360度绕等中心旋转,使得该系统的治疗入射角可以超过2π。
聚焦治疗头10还包括多颗放射源、移动准直器以及预准直器。在本发明实施例中,放射源采用的是钴-60,而钴-60产生的伽玛放射射线通过预准直器以及移动准直器聚焦于一点,形成聚焦野也即治疗用的高剂量区。而移动准直器上设置了不同孔径,通过移动准直器的移动使得孔径可以切换用以改变聚焦野的尺寸和形状。通过该聚焦治疗头10可以实现小射野尺寸、高剂量的精确治疗。
适形调强治疗头20,包括放射源、预准直器以及多叶准直器。在本发明实施例中,放射源可以是单颗钴源或大于4MV-X射线发生器。放射源通过多叶准直器来实现治疗平面上不同的射野形状,从而实现三维适形调强照射。多叶准直器为现有技术,在本发明实施例中不再赘述。
聚焦治疗头可以进行SRS(Stereotaxic Radiosurgery立体定向放射手术治疗),或者是IGRT(Imaging Guide Radiation Therapy图像引导放射治疗)。适形调强治疗头可以进行3D-CRT(三维适形放射治疗),或者是IMRT(Intensity Modulated Radiation Therapy适形调强放射治疗),或者是SBRT(Stereotactic Body Radiation Therapy立体定向体部放射治疗),或者是IGRT(Imaging Guide Radiation Therapy图像引导放射治疗)。
此外,该本发明放疗设备设备还包括动态影像引导系统IGS,在旋转滚筒上通过焦点安装一组或成固定角度的两组立体影像装置(即X光发生器和影像探测采集系统)。即在滚筒上,安装一组或两组X光影像装置,来进行实时的患者体位、病灶空间位置的检测,利用检测结果对治疗床和治疗头进行空间位置补偿,从而保证治疗过程中的高精度定位,实现精确放疗。当采用两组X光成像装置时,两组成像装置的夹角范围 在20度到160度之间。
在本发明实施例中,通过将多源聚焦治疗头以及适形调强治疗头集成在一个放疗设备设备中,对某些特定的需要多源聚焦和适形调强两类方式同时或分别进行治疗的肿瘤病灶,具有较大的优势。该放疗设备可以通过一次摆位,用适形调强治疗头与多源聚焦治疗头同时或分别进行照射治疗,实现两种组合式的放射治疗,减少了多次摆位造成的误差,提高放疗精准度和速度,从而提高了质量和效率。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种放射治疗计划的生成方法,其特征在于,应用于放疗设备,所述放疗设备包括至少两个治疗头;
    所述放射治疗计划的生成方法包括:
    获取患者的身体图像,所述身体图像包括肿瘤的图像;
    根据获取的身体图像,确定治疗靶区,所述治疗靶区包括肿瘤,为放射治疗时放射束照射的区域;
    获取所述治疗靶区的处方剂量,其中,所述处方剂量包括:处方剂量值,所述处方剂量值为治疗靶区中所述肿瘤应该接收的剂量的大小;
    根据所述治疗靶区以及所述治疗靶区的处方剂量,确定适合所述靶区的治疗头、治疗方式及治疗驱动方式,其中,所述治疗方式包括照射技术、治疗头的照射时间和射野形状等;所述治疗驱动方式包括:同步驱动或异步驱动,其中,所述同步驱动为两个治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗;所述异步驱动为两个治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。
  2. 根据权利要求1所述的生成方法,其特征在于,所述至少两个治疗头包括至少一个聚焦治疗头和至少一个适形治疗头。
  3. 根据权利要求2所述的生成方法,其特征在于,在所述确定治疗靶区之后,在所述确定适合所述靶区的治疗头、治疗方式及治疗驱动方式之前,所述方法还包括:
    对治疗靶区进行区域细分,确定出至少一个子区域;
    所述处方剂量还包括处方剂量分布,所述处方剂量分布为所述治疗靶区不同子区域应该接受的剂量;
    所述确定适合所述靶区的治疗头、治疗方式及治疗驱动方式具体包括:
    采用适形治疗头对所述治疗靶区进行适形治疗,并采用聚焦治疗头对所述治疗靶区内的所述子区域进行局部剂量增强治疗。
  4. 根据权利要求3所述的生成方法,其特征在于,在所述治疗靶区包括至少两个子区域的情况下;
    所述采用聚焦治疗头对所述治疗靶区内的所述子区域进行局部剂量增强治疗具体包括:
    对两个以上所述子区域均进行局部剂量增强治疗;
    所述聚焦治疗头的治疗方式还包括聚焦点在所述不同子区域的移动。
  5. 根据权利要求1所述的生成方法,其特征在于,在所述靶区包括多个不相连的子靶区的情况下,所述确定适合所述靶区的治疗头具体包括:
    不同的子靶区采用不同的治疗头。
  6. 根据权利要求5所述的生成方法,其特征在于,在所述靶区的最大直径大于等于5cm的情况下,采用所述适形治疗头进行治疗;在所述靶区的最大直径小于5cm的情况下,采用所述聚焦治疗头进行治疗。
  7. 根据权利要求1所述的生成方法,其特征在于,所述方法还包括:
    在确定的所述治疗头、治疗方式及治疗驱动方式下,计算所述治疗靶区的预测剂量,确定所述治疗靶区内所述预测剂量是否满足处方剂量的要求;
    在所述预测剂量不满足处方剂量要求的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
  8. 根据权利要求1所述的生成方法,其特征在于,所述方法还包括:
    根据获取的患者图像,确定治疗靶区周围的重要器官;
    获取所述重要器官的剂量限值;
    在确定的所述治疗头、治疗方式及治疗驱动方式下,计算所述重要器官的预测剂量值,确定所述重要器官的预测剂量值是否超过所述重要器官的剂量限值;
    在所述预测剂量值超过所述重要器官的剂量限值的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
  9. 根据权利要求1所述的生成方法,其特征在于,所述方法还包括:
    对所述治疗计划进行剂量验证。
  10. 根据权利要求9所述的生成方法,其特征在于,所述对所述治疗计划进行剂量验证具体包括:
    利用探测器接收所述治疗头的放射束,并测量所述放射束的实际剂量,所述实际剂量包括剂量大小;
    对所述放射束的实际剂量和所述处方剂量进行比较验证;
    在所述验证结果不满足处方剂量要求的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
  11. 根据权利要求1所述的生成方法,其特征在于,所述放疗设备包括两个适形治疗头;
    在所述根据获取的肿瘤图像之后,在所述根据获取的肿瘤图像之前,所述方法还包括:
    对治疗靶区进行区域细分,分出至少一个子区域;
    所述确定适合所述靶区的治疗头及治疗方式具体包括:
    采用其中一个适形治疗头对所述治疗靶区进行适形治疗,并采用另一个适形治疗头对所述治疗靶区内的所述子区域进行局部剂量增强治疗。
  12. 一种放射治疗计划系统,其特征在于,应用于放疗设备, 所述放疗设备包括至少两个治疗头,所述放射治疗计划系统包括处理器;所述处理器可用于:
    获取患者的身体图像,所述身体图像包括肿瘤的图像;
    所述处理器还用于根据获取的身体图像,确定治疗靶区,所述治疗靶区包括肿瘤,为放射治疗时放射束照射的区域;
    所述处理器还用于获取所述治疗靶区的处方剂量,其中,所述处方剂量包括:处方剂量值,所述处方剂量值为治疗靶区中所述肿瘤应该接收的剂量的大小;
    所述处理器还用于根据所述治疗靶区以及所述治疗靶区的处方剂量,确定适合所述靶区的治疗头、治疗方式及治疗驱动方式,其中,所述治疗方式包括照射技术、治疗头的照射时间和射野形状等;所述治疗驱动方式包括:同步驱动或异步驱动,其中,所述同步驱动为两个治疗头同步完成治疗,在同一时间段同时或交叉发出放射束进行放射治疗;所述异步驱动为两个治疗头分步完成治疗,一个治疗头完成治疗后,再开始另一个治疗头的治疗过程。
  13. 根据权利要求12所述的放射治疗计划系统,其特征在于,所述至少两个治疗头包括至少一个聚焦治疗头和至少一个适形治疗头。
  14. 根据权利要求13所述的系统,其特征在于,所述处理器还用于:
    对治疗靶区进行区域细分,确定出至少一个子区域;
    采用适形治疗头对所述治疗靶区进行适形治疗,并采用聚焦治疗头对所述治疗靶区内的所述子区域进行局部剂量增强治疗;
    其中,所述处方剂量还包括处方剂量分布,所述处方剂量分布为所述治疗靶区不同子区域应该接受的剂量。
  15. 根据权利要求14所述的系统,其特征在于,在所述治疗靶区包括至少两个子区域的情况下;
    所述处理器还用于对两个以上所述子区域均进行局部剂量增强治疗;
    所述聚焦治疗头的治疗方式还包括聚焦点在所述不同子区域的移动。
  16. 根据权利要求13所述的系统,其特征在于,在所述靶区包括多个不相连的子靶区的情况下,所述处理器还用于对不同的子靶区采用不同的治疗头进行放射治疗。
  17. 根据权利要求12所述的系统,其特征在于,所述处理器还用于计算所述治疗靶区的预测剂量,确定所述治疗靶区内所述预测剂量是否满足处方剂量值的要求;
    在所述预测剂量不满足处方剂量值要求的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
  18. 根据权利要求17所述的系统,其特征在于,所述处理器还用于:
    根据获取的患者图像,确定治疗靶区周围的重要器官;
    获取所述重要器官的剂量限值;
    在确定的所述治疗头、治疗方式及治疗驱动方式下,计算所述重要器官的预测剂量值,确定所述重要器官的预测剂量值是否超过所述重要器官的剂量限值;
    在所述预测剂量值超过所述重要器官的剂量限值的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
  19. 根据权利要求12所述的系统,其特征在于,所述放疗设备包括两个适形治疗头;所述处理器还用于对治疗靶区进行区域细分,分出至少一个子区域;并采用其中一个适形治疗头对所述治疗靶区进行适形治疗,并采用另一个适形治疗头对所述治疗靶区内的所述子区域进行局部剂量增强治疗。
  20. 根据权利要求12所述的系统,其特征在于,所述处理器还用于接收剂量验证中所述放射束的实际剂量,并对所述放射束的实际剂量和所述处方剂量进行比较验证;
    在所述验证结果不满足处方剂量要求的情况下,调整所述治疗头、治疗方式及治疗驱动方式中的至少一种。
PCT/CN2016/105935 2016-11-15 2016-11-15 一种放射治疗计划的生成方法和放射治疗计划系统 WO2018090195A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680090512.9A CN109922863A (zh) 2016-11-15 2016-11-15 一种放射治疗计划的生成方法和放射治疗计划系统
PCT/CN2016/105935 WO2018090195A1 (zh) 2016-11-15 2016-11-15 一种放射治疗计划的生成方法和放射治疗计划系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105935 WO2018090195A1 (zh) 2016-11-15 2016-11-15 一种放射治疗计划的生成方法和放射治疗计划系统

Publications (1)

Publication Number Publication Date
WO2018090195A1 true WO2018090195A1 (zh) 2018-05-24

Family

ID=62146028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105935 WO2018090195A1 (zh) 2016-11-15 2016-11-15 一种放射治疗计划的生成方法和放射治疗计划系统

Country Status (2)

Country Link
CN (1) CN109922863A (zh)
WO (1) WO2018090195A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113327681A (zh) * 2020-10-30 2021-08-31 重庆市璧山区人民医院 一种基于生成式对抗网络的肿瘤放疗计划自动设计方法
WO2023115261A1 (zh) * 2021-12-20 2023-06-29 西安大医集团股份有限公司 放疗设备控制方法、装置、设备及存储介质
CN117323584A (zh) * 2023-10-18 2024-01-02 迈胜医疗设备有限公司 用于放射治疗的计划调整方法、放射治疗系统及相关装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110349665A (zh) * 2019-07-01 2019-10-18 复旦大学附属肿瘤医院 基于深度学习的直肠癌放疗计划自动化设计方法
CN111540437B (zh) * 2020-04-23 2023-05-12 北京大学第三医院(北京大学第三临床医学院) 一种基于人工智能的剂量验证方法和系统
CN111863203A (zh) * 2020-07-20 2020-10-30 上海联影医疗科技有限公司 一种放疗数据的分类方法、装置、设备及存储介质
CN112382371B (zh) * 2020-10-16 2024-03-22 北京全域医疗技术集团有限公司 一种放疗剂量分析方法、装置、存储介质及计算机设备
CN115671577A (zh) * 2021-10-19 2023-02-03 中南大学湘雅二医院 基于心肌定位治疗心肌病的放疗设备
WO2023184178A1 (zh) * 2022-03-29 2023-10-05 西安大医集团股份有限公司 治疗计划生成方法、装置、设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393096B1 (en) * 1998-05-27 2002-05-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
US20030219098A1 (en) * 2002-05-23 2003-11-27 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
CN101861185A (zh) * 2007-12-07 2010-10-13 三菱重工业株式会社 放射线治疗计划装置以及放射线治疗计划方法
US7876882B2 (en) * 2007-02-02 2011-01-25 Wisconsin Alumni Research Foundation Automated software system for beam angle selection in teletherapy
CN102184334A (zh) * 2011-05-19 2011-09-14 南京航空航天大学 一种基于检索的放射治疗计划系统及检索方法
CN103119626A (zh) * 2010-09-17 2013-05-22 皇家飞利浦电子股份有限公司 用于辐射治疗规划的具有实时轮廓片断影响绘制的轮廓勾画
WO2015062093A1 (zh) * 2013-11-01 2015-05-07 西安大医数码技术有限公司 一种多用途放射治疗系统
CN104994909A (zh) * 2013-02-28 2015-10-21 三菱重工业株式会社 治疗计划装置、计划治疗系统、治疗计划生成方法以及程序

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243078A (ja) * 2003-02-14 2004-09-02 Naotoshi Maeda 位置合わせのためのx線横断断層画像装置を取り付けた医療用放射線の回転型集中照射装置と、回転中心に標的領域を移動するための可動ベッド

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393096B1 (en) * 1998-05-27 2002-05-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
US20030219098A1 (en) * 2002-05-23 2003-11-27 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
US7876882B2 (en) * 2007-02-02 2011-01-25 Wisconsin Alumni Research Foundation Automated software system for beam angle selection in teletherapy
CN101861185A (zh) * 2007-12-07 2010-10-13 三菱重工业株式会社 放射线治疗计划装置以及放射线治疗计划方法
CN103119626A (zh) * 2010-09-17 2013-05-22 皇家飞利浦电子股份有限公司 用于辐射治疗规划的具有实时轮廓片断影响绘制的轮廓勾画
CN102184334A (zh) * 2011-05-19 2011-09-14 南京航空航天大学 一种基于检索的放射治疗计划系统及检索方法
CN104994909A (zh) * 2013-02-28 2015-10-21 三菱重工业株式会社 治疗计划装置、计划治疗系统、治疗计划生成方法以及程序
WO2015062093A1 (zh) * 2013-11-01 2015-05-07 西安大医数码技术有限公司 一种多用途放射治疗系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113327681A (zh) * 2020-10-30 2021-08-31 重庆市璧山区人民医院 一种基于生成式对抗网络的肿瘤放疗计划自动设计方法
WO2023115261A1 (zh) * 2021-12-20 2023-06-29 西安大医集团股份有限公司 放疗设备控制方法、装置、设备及存储介质
CN117323584A (zh) * 2023-10-18 2024-01-02 迈胜医疗设备有限公司 用于放射治疗的计划调整方法、放射治疗系统及相关装置
CN117323584B (zh) * 2023-10-18 2024-03-29 迈胜医疗设备有限公司 用于放射治疗计划调整的电子设备、放射治疗系统及相关装置

Also Published As

Publication number Publication date
CN109922863A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2018090195A1 (zh) 一种放射治疗计划的生成方法和放射治疗计划系统
Ruggieri et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique
US10806949B2 (en) Method and system of generating radiation treatment plan
JP6377762B2 (ja) 画像誘導放射線治療
Beavis Is tomotherapy the future of IMRT?
US9649509B2 (en) Systems and methods for use in emission guided radiation therapy
US8519370B2 (en) Modifying radiation beam shapes
CN108245787B (zh) 一种多用途放射治疗系统
KR100314902B1 (ko) 신체상에있는병소위치확인에이용되는장치
US7289599B2 (en) Radiation process and apparatus
US6393096B1 (en) Planning method and apparatus for radiation dosimetry
US11103726B2 (en) Creating treatment field using initial field and patient specific geometry and achievable dose
CN111107901A (zh) 辐射疗法计划和治疗的几何方面
US20070286342A1 (en) Systems and methods for performing radiosurgery using stereotactic techniques
Zhang et al. Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
US20130289400A1 (en) Devices, apparatus and methods for analyzing, affecting and/or treating one or more anatomical structures
Yoo et al. Dosimetric comparison of preoperative single‐fraction partial breast radiotherapy techniques: 3D CRT, noncoplanar IMRT, coplanar IMRT, and VMAT
Sasaki et al. Influence of multi-leaf collimator leaf transmission on head and neck intensity-modulated radiation therapy and volumetric-modulated arc therapy planning
Kim et al. Spinal stereotactic body radiotherapy (SBRT) planning techniques
Sova Effects of Rotational Motion on Dose Coverage in Single Isocenter Multiple Target Stereotactic Radiosurgery
Lalonde Treatment planning for SRS and SBRT
Wang et al. Treatment-Plan Comparison of Three Advanced Radiation Treatment Modalities for Fractionated Stereotactic Radiotherapy to the Head and Neck
Pinnaduwage et al. Image-Guided Hypofractionated Radiosurgery of Large and Complex Brain Lesions
Jiang et al. Analyzing the Treatment Delivery Accuracy of the uRT Treatment Planning System and uRT-Linac 506C by Use of AAPM TG 119 Test Cases
Bui et al. ADAPTIVE RADIOTHERAPY WITH SURFACEGUIDED BREATHING FOR BREAST CANCER PATIENTS IN VIETNAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921491

Country of ref document: EP

Kind code of ref document: A1