WO2018088706A1 - Virtual moving lens and manufacturing method therefor - Google Patents

Virtual moving lens and manufacturing method therefor Download PDF

Info

Publication number
WO2018088706A1
WO2018088706A1 PCT/KR2017/011387 KR2017011387W WO2018088706A1 WO 2018088706 A1 WO2018088706 A1 WO 2018088706A1 KR 2017011387 W KR2017011387 W KR 2017011387W WO 2018088706 A1 WO2018088706 A1 WO 2018088706A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
polarization
polarization dependent
dependent
polymer
Prior art date
Application number
PCT/KR2017/011387
Other languages
French (fr)
Korean (ko)
Inventor
김학린
박민규
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2018088706A1 publication Critical patent/WO2018088706A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification

Definitions

  • the present invention relates to a virtual moving lens and a method of manufacturing the same, and more particularly, to stack two polarization-dependent lenses in which the driving to the lens is determined according to the polarization direction of the incident light and configured to By controlling the polarization direction, the present invention relates to a virtual moving lens configured to be able to move a focal position of a micro lens array, and a manufacturing method thereof.
  • Auto-stereoscopic 3D displays which are representative examples of such 3D application devices, include mult i-view displays and integrated image displays.
  • an auto-stereoscopic 3D display device In order to support both 2D and 3D images, an auto-stereoscopic 3D display device must be implemented in a form that can select 2D and 3D modes, and various techniques for implementing the same have been developed.
  • One of these techniques is to form a lens array structure on a 2D display that is actively driven by a lens only when the viewer watches a 3D image.
  • Representative techniques for implementing such an active lens include a method using an electrowetting effect and a method using an electro-optic effect of a liquid crystal.
  • Mult i-view displays can be classified into two types: parallax barriers and microlens arrays.
  • Parallax Barrier is a structure that blocks unwanted light, which is advantageous in terms of crosstalk, but the overall brightness characteristics are not good because the light is blocked by slit.
  • Mult i-view 3D Display using microlens array can realize 3D image with little brightness reduction, and when only horizontal parallax is implemented, 1D array microlens array such as lenticular lens is applied, and horizontal / vertical parallax can be realized. In this case, the 2D array microlens array is applied, and the integrated image display is also applied to the 2D array microlens array.
  • FIG. 1 is a conceptual diagram illustrating a mult i-view 3D display. Referring to FIG. 1, it can be seen that five views are formed through a lenticular lens in a 5D 3D display.
  • a mult i-view 3D display with multiple views in the view zone In addition to providing binocular disparity, as the viewer moves within the view zone, different images are displayed. For example, the front of the object is seen from the front, and the side of the object is seen as the viewer moves to the side. Thus, the more views in a given view zone, the more continuous and natural motion parallax can be felt. In particular, when two or more views are formed in the pupil of a person having a size of about 2 ⁇ , the convergence-focus mismatch problem can be solved. do. Such a 3D display is called an ultra multiview 3D display.
  • the focal position adjusted by the thickness of the lens is in front of the display panel, but the position perceived by the angle between the lens of both eyes is determined by the depth information and convergence perceived by the display panel, and thus the focus. Difference in depth information causes dizziness, which is called convergence-focus mismatch (vergence ⁇ accommodat ion conf l ict).
  • the resolution of the 3D image decreases.
  • the resolution of the 3D image is 1/2 of the 2D display resolution in 2-view, 1/3 of the 2D display resolution in 3-view, and 1/10 of the 2D display resolution in 10-view. Therefore, the number of views (angular resolut ion) and the resolution of the 3D image (lateral resolut ion) have a trade-off relationship.
  • the aforementioned trade-of f relationship between the angular resolut ion and the lateral resolut ion is equally applied to the 3D information acquisition process.
  • the lens may be any type of the lens.
  • An object of the present invention for solving the above problems is to increase the resolution of the 3D image without reducing the number of viewpoints or to increase the number of viewpoints without reducing the resolution of the 3D image, according to the polarization direction of the incident light It is to provide a virtual moving lens to move the position of.
  • Another object of the present invention is to provide a manufacturing method of the above-described virtual moving lens.
  • a virtual moving lens includes: a first polarization dependent lens configured to be driven by a lens according to a polarization direction of incident light; And driven by the lens according to the polarization direction of the incident light.
  • a second polarization dependent lens stacked on a surface of the first polarization dependent lens;
  • the polarization direction in which the first polarization dependent lens and the second polarization dependent lens are driven by the lens is perpendicular to each other, so that only one of the first polarization dependent lens and the second polarization dependent lens is a lens according to the polarization direction of the incident light. Configured to be driven.
  • the valley of the first polarization-dependent lens and the valley of the second polarization-dependent lens are arranged to be spaced apart from each other, and the focal position is shifted and varied according to the polarization direction of the incident light. It is desirable to be.
  • the system-dependent polarization dependent lens comprises: a first lens structure made of optical isotropic polymer having an inverse phase structure of the lens; A first lens made of a liquid crystalline polymer material oriented in a first direction and formed in the first lens structure; And a first RM alignment layer for alignment of liquid crystal phase polymer between the system 1 lens structure and the first lens.
  • the second polarization dependent lens comprises: a system two lens structure made of an optically isotropic polymer having an inverse phase structure of the lens; A second lens made of a liquid crystalline polymer oriented in a second direction perpendicular to the first direction of the system and formed in the second lens structure; And a second RM alignment film for the alignment of the liquid crystal polymer between the second lens structure and the second lens, wherein the alignment directions of the liquid crystal polymer constituting the first lens and the second lens are perpendicular to each other. It is preferable.
  • the virtual moving lens further comprises a polarization switching unit configured to selectively convert the polarization direction of the incident light by adjusting the applied voltage, wherein the polarization switching unit is the first polarization It is preferable to be disposed on the surface of one of the dependent lens and the second polarization dependent lens, so as to be able to control the polarization direction of the light incident thereon.
  • the first polarization dependent lens and the second polarization dependent lens are preferably composed of a lenticular lens of a one-dimensional array or a lens of a two-dimensional array.
  • a method for fabricating a virtual moving lens comprising: ( a ) a first lens made of a liquid crystal polymer oriented in a first direction in a first lens structure made of an optically isotropic polymer material having a reverse lens structure; Manufacturing a first polarization dependent lens; (b) manufacturing a second polarization dependent lens composed of a second lens made of a liquid crystal phase polymer oriented in a second direction in a second lens structure made of an optically isotropic polymer material having a lens reverse phase structure; (c) applying a photocurable resin to the surface of the first polarization dependent lens; (d) arranging and arranging a second polarization dependent lens on the surface coated with the photocurable resin, and then photocuring the photocurable resin to bond the first polarization dependent lens to the second polarization dependent lens; And first and second directions perpendicular to each other. It is desirable.
  • the virtual moving lens manufacturing method (e) polarization switching for selecting the polarization direction of the light incident on the first polarization-dependent lens and the second polarization-dependent lens It is preferable to further comprise a step of producing a portion and placing on the surface of one of the first polarization-dependent lens and the second polarization-dependent lens.
  • Step (a) comprises the steps of (al) forming an optically isotropic polymer layer on the substrate; (a2) imprinting a lens-shaped stamp on the optically cylindrical polymer layer and photocuring to complete a first lens structure having a lens reverse phase structure on an upper surface of the optically isotropic polymer layer; 3) forming an RM alignment layer on the imprinted surface of the first lens structure to align the liquid crystal phase polymer in the first direction and rubbing along the system 1 direction; (a4) covering the film substrate having an additional RM alignment layer formed on top of the first lens structure; (a5) injecting and curing the liquid crystal phase polymer into the first lens structure formed by the RM alignment layer and the additional RM alignment layer, thereby forming a first lens comprising a lens-shaped liquid crystal phase polymer; (a6) separating and removing the film substrate on which the additional RM alignment layer is formed; preferably, manufacturing a first polarization dependent lens.
  • the step (a3) may include hydrophilicity after UV ozone treatment on the imprinted surface of the first lens structure having the reverse lens structure. It is preferable to form an RM alignment film on the ized surface.
  • the step (d) is preferably aligned so that the valley of the first polarization-dependent lens and the valley of the second polarization-dependent lens are spaced apart from each other.
  • the virtual moving lens according to the present invention stacks two polarization-dependent lenses in which driving to the lens is determined according to the polarization direction of incident light, thereby switching the polarization direction of the incident light without physically moving the lens, thereby shifting the focus position. You can move the.
  • the virtual moving lens according to the present invention may adopt a time-division technique by field swirling by introducing a polarization switching element capable of high speed driving. Accordingly, the virtual moving lens according to the present invention can increase the resolution of a 3D image without decreasing the number of viewpoints or increase the number of viewpoints without decreasing the resolution of the 3D image with time division technology.
  • the virtual moving lens according to the present invention comprises a lens using a photocurable liquid crystal phase polymer, unlike a lens using a conventional liquid crystal, a liquid crystal phase After curing the polymer by photocuring, it is possible to remove all the films used as the substrate. As a result, it is possible to minimize the separation gap Gap between the first polarization dependent lens and the second polarization dependent lens that are stacked on each other. Thus, it is possible to minimize the problem that the position where the focus is formed by each lens is changed by the gap between each lens.
  • 1 is a conceptual diagram illustrating a mul t- view 3D display.
  • 2 is a conceptual diagram illustrating a configuration and operation principle of a polarization dependent lens used in a virtual moving lens according to an exemplary embodiment of the present invention.
  • 3 is a conceptual diagram illustrating the structure and operation principle of a virtual moving lens according to an exemplary embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to a preferred embodiment of the present invention is configured as a two-dimensional array of square shapes.
  • FIG. 5 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to an exemplary embodiment of the present invention is configured as a 2D array lens having a 2D hexagonal shape.
  • FIG. 6 shows microscope images observed on a crossed polarizer for a microlens array of a polarization dependent 2D hexagonal array in a virtual moving lens according to a preferred embodiment of the present invention.
  • FIG. 7 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are composed of 1D lenticular lenses in a virtual moving lens according to an exemplary embodiment of the present invention. .
  • FIG. 8 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are composed of 2D hexagonal array structures in a virtual moving lens according to an exemplary embodiment of the present invention. .
  • FIG. 9 illustrates an image captured in an image plane according to polarization of incident light when the first and second polarization dependent lenses are configured in a 2D hexagonal array structure in a virtual moving lens according to an exemplary embodiment of the present invention.
  • FIG. 10 is a flowchart sequentially illustrating a process of manufacturing a first or second polarization dependent lens in a method of manufacturing a virtual moving lens according to an exemplary embodiment of the present invention.
  • FIG. 11 is a flowchart sequentially illustrating a process of completing the virtual moving lens by combining the first and the second polarization dependent lenses in the method of manufacturing the virtual moving lens according to the preferred embodiment of the present invention.
  • the virtual moving lens according to the present invention is constructed by stacking polarization-dependent lenses in which driving to a lens is determined according to a polarization direction of incident light, and uses a polarization switching unit that is driven at a high speed according to an applied voltage. By switching the, the focus position can be changed without moving the physical position of the lens.
  • the polarization dependent lens 20 includes a lens structure 200 having a reverse phase structure of a microlens and a lens made of a liquid crystal polymer (React ive Mesogen; 'RM') filling the inside of the lens structure ( 210, and the liquid crystal phase polymer is oriented in one direction of the microlenses, and has a structure in which the lens is silver (On) / off (Off) according to the polarization direction of incident light.
  • a liquid crystal polymer React ive Mesogen
  • the rod-like liquid crystal polymer has birefringence characteristics, the refractive index in the major axis direction of the liquid crystal polymer is, and the refractive index in the minor axis direction is n 0 . Therefore, the refractive index of the liquid crystal phase polymer is determined to be one of n e and n 0 depending on the polarization direction of the incident light.
  • the lens structure 200 is composed of an optically isotropic polymer, the refractive index is 3 ⁇ 4 and n P coincides with the refractive index n 0 in the axial direction of the RM.
  • the refractive index of RM is n 0 , which is the refractive index ⁇ ⁇ of the lens structure.
  • the lens function disappears.
  • the refractive index of RM is n e , which is the lens structure refractive index.
  • n p is inconsistent with the lens.
  • FIG. 3 is a conceptual diagram illustrating the structure and operation principle of a virtual moving lens according to an exemplary embodiment of the present invention.
  • the lens 30 includes a first polarization dependent lens 300, a second polarization dependent lens 310, and a polarization switching unit 320.
  • the polarization switching unit 320 may be integrally formed with the first and second polarization dependent lenses or may be manufactured separately from the first and second polarization dependent lenses.
  • the first and second polarization dependent lenses and the polarization switching unit will be described on the basis of being integrated.
  • the first polarization dependent lens 300 and the second polarization dependent lens 310 are configured to be driven by a lens according to the polarization direction of incident light, and the first polarization dependent lens and the second polarization dependent lens are incident light. According to the polarization direction of only one of the first polarization-dependent lens and the second polarization dependent lens to drive the lens The focus position is shifted and varied according to the polarization direction of the incident light.
  • the valley of the first polarization dependent lens and the valley of the second polarization dependent lens are disposed to be spaced apart from each other.
  • the first polarization dependent lens 300 has a first lens structure 302 and a first lens 304.
  • the first lens structure 302 is made of an optically isotropic polymer and consists of an inverted form of microlenses.
  • the first lens 304 is made of a liquid crystalline polymer (React ive Mesogen) oriented in the system 1 direction and is formed in the lens 1 lens structure.
  • the second polarization dependent lens 310 includes a second lens structure 312 and a second lens 314 and has the same structure as that of the first polarization dependent lens, and includes the alignment direction of the liquid crystal phase polymer of the low 12 lens.
  • the alignment direction of the liquid crystal phase polymer of the first lens is disposed to be perpendicular to each other.
  • the first polarization dependent lens further comprises a first RM alignment layer for the alignment of the liquid crystal phase polymer between the first lens structure and the first lens, wherein the second polarization dependent lens comprises: the second lens structure and the first lens structure; It is preferable to further provide a 2nd RM alignment film for orientation of a liquid crystalline polymer between two lenses.
  • the first polarization-dependent lens and the second polarization-dependent lens are stacked on each other, and as shown in FIG. 3, the RM plane of the first lens and the RM plane of the second lens are laminated so as to be in contact with each other, or the first lens.
  • the RM surface of the first lens structure and the isotropic polymer surface of the second lens structure are laminated so as to be in contact, or the isotropic polymer surface of the first lens structure and the RM surface of the second lens It is also possible to laminate so that the isotropic polymer surface of a 2nd lens structure contact
  • the virtual moving lens according to the present invention may be made of a photocurable liquid crystal polymer, thereby curing the liquid crystal polymer to solidify the film to a film state, and then removing the substrate.
  • the first and second polarization dependent lenses It is possible to minimize the gap (Gap) of the. If the lens is made of liquid crystal, the substrate cannot be removed so that a gap exists between the first and second polarization dependent lenses. If the gap between the stacked first and second polarization dependent lenses is not minimized, a problem arises in that the position where the focus is formed by each lens is changed. Therefore, the virtual moving lens according to the present invention is a photocurable liquid crystal phase polymer
  • the liquid crystal phase polymer may be solidified to remove the upper film used as the substrate, thereby minimizing the gap between the first and second polarization dependent lenses.
  • the polarization switching unit 320 selectively converts the polarization direction of the incident light according to the applied voltage and outputs the incident light to the first polarization dependent lens or the second polarization dependent lens.
  • the polarization switching unit may be disposed on a surface of one of the first polarization dependent lens and the second polarization dependent lens to control the polarization direction of the light incident thereto.
  • the second lens 314 when the polarization of light incident to the virtual moving lens by the polarization switching unit 320 is in the Y-axis direction, the second lens 314 may have a refractive index of n 0 in the second polarization dependent lens.
  • the refractive index between the second lens 314 and the second lens structure 312 is matched so that light travels without refraction.
  • the first lens 304 reduces the refractive index of n p .
  • the refractive index between the first lens 304 and the first lens structure 302 is inconsistent such that light is refracted.
  • the second lens 314 when the polarization of the light incident by the polarization switching unit 320 into the virtual moving lens is in the X-axis direction, the second lens 314 is formed of n P in the second polarization dependent lens. Since the refractive index between the second lens 314 and the second lens structure 312 does not match, the light is refracted and proceeds.
  • the first lens 304 is formed of n 0 .
  • the refractive index is such that the refractive index between the first lens 304 and the first lens structure 302 coincide so that light travels without refraction.
  • the first polarization dependent lens and the liquid crystal phase polymer of the second polarization dependent lens are oriented in the vertical direction to each other, the first polarization dependent lens and the second polarization dependent lens are dependent on the polarization direction of the incident light. Only one of the lenses is driven by the lens.
  • the valley of the first polarization-dependent lens and the valley of the second polarization-dependent lens are arranged to be spaced apart from each other, the position of the focal point of the virtual moving lens is shifted according to the lens driven by the polarization direction of the incident light.
  • the first polarization dependent lens and the second polarization dependent lens may be configured as a lenticular lens in a one-dimensional array, or may be configured as a lens in a two-dimensional array having a rectangular or hexagonal shape.
  • the disposition position of the first polarization dependent lens and the second polarization dependent lens may be determined according to the direction of movement of the focus required in the system. As shown in FIG. 4 and FIG. 5, it can be seen that the moving direction of the focus varies according to the arrangement positions of the first polarization dependent lens and the second polarization dependent lens.
  • FIG. 4 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to an exemplary embodiment of the present invention is configured as a two-dimensional array of square shapes.
  • FIG. 4A illustrates a case where the two-dimensional array of square-shaped lenses are disposed at a reference position
  • FIG. 4B illustrates a case where the first polarization dependent lens is moved in the horizontal direction at the reference position of (a).
  • (D) shows the focus images when the first polarization dependent lens is moved in the diagonal direction, respectively.
  • FIG. 5 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to an exemplary embodiment of the present invention is configured as a 2D array lens having a 2D hexagonal shape.
  • A) of FIG. 5 shows that when the lenses of the two-dimensional array of the hexagonal shape are arranged at the reference position,
  • (b) is the first polarization dependent type at the reference position of (a).
  • (c) shows the focus images when the first polarization dependent lens is moved in the diagonal direction, respectively.
  • FIG. 6 illustrates microscope images observed on a crossed polarizer for a microlens array of a polarization dependent 2D hexagonal array in a virtual moving lens according to a preferred embodiment of the present invention.
  • 6 (a) shows a dark state because retardat ions do not occur when the polarization direction (P) and the alignment direction (R) coincide.
  • FIG. 6 (b) shows the polarization direction (P) and the orientation direction. When (R) is 45 degrees to each other
  • FIG. 7 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are configured as 1D lenticular lenses in a virtual moving lens according to an exemplary embodiment of the present invention.
  • 7 (a) shows that the polarized light in the X-axis direction is incident and focused by the second polarization dependent lens.
  • the first polarization-dependent lens does not cause refraction due to refractive index matching between the first lens and the first lens structure.
  • FIG. 7B shows polarized light in the Y-axis direction incident to the system of the first polarization-dependent lens.
  • the second polarization dependent lens does not cause refraction due to refractive index matching of the second lens and the second lens structure.
  • FIG. 8 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are configured as a 2D hexagonal array structure in a virtual moving lens according to an exemplary embodiment of the present invention.
  • FIG. 8A is an image in which polarized light in the X-axis direction is incident and focused by the second polarization dependent lens
  • FIG. 8B is an image in which polarized light in the 45-degree direction is incident from the focal plane
  • 8C illustrates an image in which polarized light in the Y-axis direction is incident and focused by the first polarization dependent lens.
  • the X-axis polarization component and the Y-axis polarization component exist at a ratio of 1: 1 in the case of 45 degree polarization
  • the X-axis polarization component is focused by the second polarization dependent lens and Y
  • the axial polarization component is focused by the first polarization dependent lens so that both the focus focused by the two polarization dependent lenses is observed, but the intensity is reduced in half.
  • the lens structures used in FIGS. 7 to 8 are 1D array microlenses having a period of 150 and a height of 3m, and 2D hexagonal arrays having a period of 28m and a height of 25, respectively.
  • FIG. 9 illustrates an image captured in an image plane according to polarization of incident light when the first and second polarization dependent lenses are configured as a 2D hexagonal array structure in a virtual moving lens according to an exemplary embodiment of the present invention.
  • a method of manufacturing a virtual moving lens may include manufacturing and aligning first and second polarization dependent lenses, and then coating and aligning a photocurable resin on surfaces abutting the first and second polarization dependent lenses. Thereafter, photocuring is performed to bond the first and second polarization dependent lenses together.
  • FIG. 10 is a flowchart sequentially illustrating a process of manufacturing a first and a second polarization dependent lens in a method of manufacturing a virtual moving lens according to an exemplary embodiment of the present invention.
  • a photocurable isotropic polymer material 410 is coated on a film substrate 400, followed by imprinting a stamp 420 having a microlens structure, followed by photocuring to form a microlens made of an isotropic polymer material.
  • the lens structure 412 of the reversed phase structure is completed (a, b, c in FIG. 10).
  • N0A65 TM product having a refractive index of 1.524 of Normand Corporation may be used.
  • N0A65 TM product having a refractive index of 1.524 of Normand Corporation may be used.
  • Polyvinylachol (PVA) is applied to a thickness of about 200nm and then rubbed according to the alignment direction required for the system to complete the RM alignment layer 430, which is used to align the liquid crystal phase polymer injected in the post process in a bottom-up manner.
  • the alignment film in the manufacturing method according to the present invention a low temperature process of about 90-100 ° C. is possible, and PVA dissolved in a polar solvent such as DI water is preferably used.
  • a polyimide (' ⁇ ) is used for the liquid crystal alignment, and the polyimide requires a high-silver heat treatment of about 230 to 250 ° C. in order to perform polymer izat ion. Is difficult.
  • an additional RM alignment layer 440 on the film substrate 442 is disposed on the upper surface of the lens structure, which is used to orient the liquid crystal phase polymer injected in the post-process in a top-down manner (F of FIG. 10). Also in this case, in order to improve the coating property of PVA, it is preferable to carry out UV ozone treatment of the film substrate 442, and to make a surface hydrophilic.
  • the film substrate 442 and the additional RM alignment layer 440 are separated and removed to complete the first polarization dependent lens including the lens structure 412, the RM alignment layer 430, and the lens 450 (FIG. 10).
  • Second polarization dependent type through the same process The lens is also completed, except that the alignment direction of the liquid crystal phase polymer of the second polarization dependent lens is perpendicular to the alignment direction of the liquid crystal phase polymer of the first polarization dependent lens.
  • the method may further include removing the lower substrate after completing the first and second polarization dependent lenses.
  • FIG. 11 is a flowchart sequentially illustrating a process of completing a virtual moving lens by adhering a first and a second polarization dependent lens in a method of manufacturing a virtual moving lens according to an exemplary embodiment of the present invention.
  • a UV curable resin 480 is applied to an adhesive surface of one of the first and system 2 polarization dependent lenses 460 and 462 (FIG. 11 a), and the first And aligning the second polarization dependent lenses 460 and 462 (b of FIG. 11), followed by photocuring to bond the first and second polarization dependent lenses (FIG. 11 c).
  • the first and second polarization dependent lenses of the first polarization dependent lens are removed by removing all of the substrate films on the upper and lower surfaces of the first and second polarization dependent lenses.
  • the second lens of the first polarization-dependent lens or the first lens structure of the first polarization-dependent lens and the second lens structure of the second polarization-dependent lens And the second lens structure of the second polarization dependent lens to abut each other.
  • the first lens structure of the second polarization dependent lens and the second lens of the second polarization dependent lens may be bonded to each other.
  • the virtual moving lens according to the present invention can be used for a multiview 3D display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention relates to a virtual moving lens. The virtual moving lens comprises: a first polarization dependent lens formed so as to be driven as a lens according to a polarization direction of incident light; and a second polarization dependent lens formed so as to be driven as a lens according to a polarization direction of incident light, and stacked on the surface of the first polarization dependent lens, wherein the polarization direction in which the first polarization dependent lens is driven as a lens and the polarization direction in which the second polarization dependent lens is driven as a lens are formed to be perpendicular to each other, such that only one of the first polarization dependent lens or the second polarization dependent lens is driven as a lens according to the polarization direction of incident light. It is preferable that a valley of the first polarization dependent lens and a valley of the second polarization dependent lens are disposed to be spaced apart from each other such that a focal position moves and varies according to the polarization direction of incident light. The virtual moving lens according to the present invention is formed by stacking polarization dependent lenses, which are determined to be driven as lenses according to the polarization direction of incident light, and switches the polarization direction of incident light by using a polarization switching unit driven at a high speed according to an applied voltage, thereby enabling the focal position to vary without a physical position movement of the lens.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
가상 이동 렌즈 및 그 제조 방법  Virtual moving lens and manufacturing method thereof
【기술분야】 Technical Field
본 발명은 가상 이동 렌즈 및 그 제조방법에 관한 것으로서, 더욱 구체적으로는 입사되는 빛의 편광 방향에 따라 렌즈로의 구동이 결정되는 2개의 편광 의존형 렌즈를 적층하여 구성하고 전기적 스위칭으로 입사되는 빛의 편광 방향을 제어함으로써, 마이크로 렌즈 어레이의 초점 위치를 이동할 수 있도록 구성된 가상 이동 렌즈 및 그 제조 방법에 관한 것이다.  The present invention relates to a virtual moving lens and a method of manufacturing the same, and more particularly, to stack two polarization-dependent lenses in which the driving to the lens is determined according to the polarization direction of the incident light and configured to By controlling the polarization direction, the present invention relates to a virtual moving lens configured to be able to move a focal position of a micro lens array, and a manufacturing method thereof.
【배경기술】 Background Art
최근 마이크로렌즈어레이를 적용한 3차원 어플리케이션 장치에 대한 관심이 증대되고 있다. 이러한 3차원 어플리켄이션 장치 중 대표적인 예인 auto- stereoscopic 3차원 디스플레이에는 mul t i-view디스플레이 및 집적 영상 디스플레이가 있다.  Recently, interest in three-dimensional application devices using microlens arrays is increasing. Auto-stereoscopic 3D displays, which are representative examples of such 3D application devices, include mult i-view displays and integrated image displays.
Auto-stereoscopic 3차원 디스플레이 장치는 2D 영상물과 3D 영상물을 모두 지원할 수 있도록 하기 위하여, 2D와 3D모드를 선택할수 있는 형태로 구현되어야 하는데, 이를 구현하기 위한 다양한 기술들이 개발되고 있다. 이러한 기술들 중 하나는 시청자가 3D 영상을 관람할 경우에만 능동적으로 렌즈로 구동되는 렌즈 어레이 구조체 (Lens array structure)를 2D디스플레이 위에 형성하는 것이다. 이러한 능동형 렌즈를 구현할 수 있는 대표적인 기술로는 전기습윤 현상 (electrowett ing ef fect )을 이용하는 방법과 액정의 전기광학 효과를 이용하는 방법이 있다.  In order to support both 2D and 3D images, an auto-stereoscopic 3D display device must be implemented in a form that can select 2D and 3D modes, and various techniques for implementing the same have been developed. One of these techniques is to form a lens array structure on a 2D display that is actively driven by a lens only when the viewer watches a 3D image. Representative techniques for implementing such an active lens include a method using an electrowetting effect and a method using an electro-optic effect of a liquid crystal.
Mul t i-view 디스플레이는 패럴럭스 베리어 및 마이크로렌즈 어레이의 두가지 타입으로 분류할수 있다. 패럴럭스 베리어는 원치 않는 빛을 차단하는 구조로써, crosstalk (영상겹침현상) 측면에서는 유리하나, 슬릿에 의해 빛이 차단되므로 전체 휘도 특성이 매우 좋지 않으며, 특히 시점수가 많아질수록 급격하게 휘도가 감소하게 되는 문제점이 있다. 마이크로렌즈 어레이를 이용한 Mul t i-view 3D Display는 휘도 감소가 거의 없이 3D 영상을 구현할 수 있으며, 수평 시차만 구현할 경우 렌티큘라 렌즈 등과 같은 1D 배열 마이크로렌즈 어레이가 적용되며, 수평 /수직 시차를 구현할 경우 2D 배열 마이크로렌즈 어레이가 적용되며, 집적 영상 디스플레이도 2D 배열 마이크로렌즈 어레이가 적용된다.  Mult i-view displays can be classified into two types: parallax barriers and microlens arrays. Parallax Barrier is a structure that blocks unwanted light, which is advantageous in terms of crosstalk, but the overall brightness characteristics are not good because the light is blocked by slit. There is a problem. Mult i-view 3D Display using microlens array can realize 3D image with little brightness reduction, and when only horizontal parallax is implemented, 1D array microlens array such as lenticular lens is applied, and horizontal / vertical parallax can be realized. In this case, the 2D array microlens array is applied, and the integrated image display is also applied to the 2D array microlens array.
도 1은 Mul t i-view 3D디스플레이를 설명하기 위하여 도시한 개념도이다. 도 1을 참조하면, 5 시점의 3D디스플레이에서 렌티귤라 렌즈를 통해 5 시점이 형성되는 것을 알수 있다.  1 is a conceptual diagram illustrating a mult i-view 3D display. Referring to FIG. 1, it can be seen that five views are formed through a lenticular lens in a 5D 3D display.
View zone에서 여러 개의 view를 가지는 mul t i-view 3D 디스플레이는 양안시차를 제공함과 동시에, view zone 내에서 시청자가 이동함에 따라 다른 영상이 보이게 된다. 예를 들면, 정면에서는 물체의 정면모습이 보이며, 시청자가 옆으로 이동함에 따라 물체의 옆모습이 보이게 된다. 이와 같이 주어진 view zone에서 view수가 많으면 많을수록 연속적이고 자연스러운 운동시차를 느낄 수 있게 되고, 특히, 약 2隱의 크기를 갖는 사람의 동공에 2개 이상의 view가 맺히면 수렴 -초점 불일치 문제를 해결할 수 있게 된다. 이러한 3D디스플레이를 초다시점 3D 디스플레이라 한다. A mult i-view 3D display with multiple views in the view zone In addition to providing binocular disparity, as the viewer moves within the view zone, different images are displayed. For example, the front of the object is seen from the front, and the side of the object is seen as the viewer moves to the side. Thus, the more views in a given view zone, the more continuous and natural motion parallax can be felt. In particular, when two or more views are formed in the pupil of a person having a size of about 2 隱, the convergence-focus mismatch problem can be solved. do. Such a 3D display is called an ultra multiview 3D display.
3D 영상을 시청할 때, 수정체의 두께에 의해 조절된 초점위치는 디스플레이 패널 앞이지만, 양눈의 수정체간의 각도에 의해 인지하는 위치는 디스플레이 패널, 이에 따라초점에 의해 인지하는 깊이정보와수렴에 의해 인지하는 깊이정보가 달라 어지러움을 유발하게 되는데, 이를 수렴 -초점 불일치 (vergence一 accommodat ion conf l ict ) 라고 한다.  When viewing 3D images, the focal position adjusted by the thickness of the lens is in front of the display panel, but the position perceived by the angle between the lens of both eyes is determined by the depth information and convergence perceived by the display panel, and thus the focus. Difference in depth information causes dizziness, which is called convergence-focus mismatch (vergence 一 accommodat ion conf l ict).
그러나, 주어진 view zone에서 view수 (angular resolut ion)가  However, the number of views (angular resolut ion) in a given view zone
증가할수록 3D 영상의 해상도 ( lateral resolut ion)는 감소하게 된다. 3D 영상의 해상도는 2-view일 때 2D 디스플레이 해상도의 1/2이 되며, 3-view일 때 2D 디스플레이 해상도의 1/3이 되며, 10-view일 때 2D 디스플레이 해상도의 1/10이 된다. 따라서, view수 (angular resolut ion)와 3D 영상의 해상도 ( lateral resolut ion)는 trade-off 관계가 갖게 된다. 전술한 Angular resolut ion와 lateral resolut ion의 trade-of f 관계는 3차원 정보 획득 과정에서도 동일하게 적용된다. As it increases, the resolution of the 3D image (lateral resolut ion) decreases. The resolution of the 3D image is 1/2 of the 2D display resolution in 2-view, 1/3 of the 2D display resolution in 3-view, and 1/10 of the 2D display resolution in 10-view. Therefore, the number of views (angular resolut ion) and the resolution of the 3D image (lateral resolut ion) have a trade-off relationship. The aforementioned trade-of f relationship between the angular resolut ion and the lateral resolut ion is equally applied to the 3D information acquisition process.
기존의 연구에서는 물리적인 힘으로 렌즈를 이동시켜 다시점  In previous research, the lens was moved by physical force
디스플레이를 구현하였으나, 물리적인 힘이나도구를 이용하여 렌즈를 Although the display is implemented, the lens may be
이동시키는 경우 시분할 기술의 적용이 어려우며, 시스템의 부피기" 커지게 되고 시스템의 안정도 (stabi l i ty)가 떨어지는 문제점들이 발생하게 된다. In case of moving, it is difficult to apply the time division technology, and the problems of the system become large and the system stability is low.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
전술한문제점을 해결하기 위한본 발명의 목적은 시점수의 감소없이 3D 영상의 해상도를 증가시키거나 3D 영상의 해상도 감소없이 시점수를 증가시킬 수 있도록 하기 위하여, 입사되는 빛의 편광 방향에 따라 렌즈의 위치가 이동되는 가상 이동 렌즈를 제공하는 것이다.  An object of the present invention for solving the above problems is to increase the resolution of the 3D image without reducing the number of viewpoints or to increase the number of viewpoints without reducing the resolution of the 3D image, according to the polarization direction of the incident light It is to provide a virtual moving lens to move the position of.
또한, 본 발명의 다른 목적은 전술한 가상 이동 렌즈의 제작 방법을 제공하는 것이다.  In addition, another object of the present invention is to provide a manufacturing method of the above-described virtual moving lens.
【기술적 해결방법】 Technical Solution
전술한 기술적 과제를 달성하기 위한본 발명의 계 1 특징에 따른 가상 이동 렌즈는, 입사되는 빛의 편광 방향에 따라 렌즈로 구동되도록 구성된 제 1 편광 의존형 렌즈; 및 입사되는 빛의 편광 방향에 따라 렌즈로 구동되도록 구성되며, 상기 제 1 편광 의존형 렌즈의 표면에 적층된 제 2 편광 의존형 렌즈;를 구비하고, According to an aspect of the present invention, a virtual moving lens includes: a first polarization dependent lens configured to be driven by a lens according to a polarization direction of incident light; And driven by the lens according to the polarization direction of the incident light. A second polarization dependent lens stacked on a surface of the first polarization dependent lens;
상기 제 1 편광 의존형 렌즈와 계 2 편광 의존형 렌즈가 렌즈로 구동되는 편광 방향은 서로 수직이 되도록 하여 , 입사되는 빛의 편광 방향에 따라 상기 제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈 중 하나만 렌즈로 구동되도록 구성된다.  The polarization direction in which the first polarization dependent lens and the second polarization dependent lens are driven by the lens is perpendicular to each other, so that only one of the first polarization dependent lens and the second polarization dependent lens is a lens according to the polarization direction of the incident light. Configured to be driven.
전술한 제 1 특징에 따른 가상 이동 렌즈에 있어서, 상기 제 1 편광 의존형 렌즈의 골과 제 2 편광 의존형 렌즈의 골이 서로 이격되게 배치되어, 입사되는 빛의 편광 방향에 따라초점 위치가 이동되어 가변되는 것이 바람직하다.  In the virtual moving lens according to the first feature described above, the valley of the first polarization-dependent lens and the valley of the second polarization-dependent lens are arranged to be spaced apart from each other, and the focal position is shifted and varied according to the polarization direction of the incident light. It is desirable to be.
전술한 제 1 특징에 따른 가상 이동 렌즈에 있어서, 상기 계 1 편광 의존형 렌즈는, 렌즈의 역상 구조를 갖는 광학적 등방상고분자로 이루어진 제 1 렌즈 구조체; 제 1 방향으로 배향된 액정상고분자 물질로 이루어지고 상기 제 1 렌즈 구조체에 형성된 제 1 렌즈; 및 상기 계 1 렌즈구조체와 제 1 렌즈의 사이에 액정상고분자의 배향을 위한 제 1 RM 배향막;을 구비하고,  In the virtual moving lens according to the first aspect, the system-dependent polarization dependent lens comprises: a first lens structure made of optical isotropic polymer having an inverse phase structure of the lens; A first lens made of a liquid crystalline polymer material oriented in a first direction and formed in the first lens structure; And a first RM alignment layer for alignment of liquid crystal phase polymer between the system 1 lens structure and the first lens.
상기 제 2 편광 의존형 렌즈는, 렌즈의 역상 구조를 갖는 광학적 등방상 고분자로 이루어진 계 2 렌즈 구조체 ; 상기 계 1 방향과 수직인 제 2 방향으로 배향된 액정상 고분자로 이루어지고 상기 제 2 렌즈 구조체에 형성된 제 2 렌즈; 및 상기 제 2 렌즈 구조체와 제 2 렌즈의 사이에 액정상 고분자의 배향을 위한 제 2 RM배향막;을 구비하고, 상기 계 1 렌즈 및 제 2 렌즈를 구성하는 액정상 고분자의 배향 방향은 서로 수직인 것이 바람직하다.  The second polarization dependent lens comprises: a system two lens structure made of an optically isotropic polymer having an inverse phase structure of the lens; A second lens made of a liquid crystalline polymer oriented in a second direction perpendicular to the first direction of the system and formed in the second lens structure; And a second RM alignment film for the alignment of the liquid crystal polymer between the second lens structure and the second lens, wherein the alignment directions of the liquid crystal polymer constituting the first lens and the second lens are perpendicular to each other. It is preferable.
전술한 계 1 특징에 따른 가상 이동 렌즈에 있어서, 상기 가상 이동 렌즈는 인가되는 전압을 조절하여 입사되는 광의 편광 방향을 선택적으로 변환시키도록 구성된 편광스위칭부를 더 구비하고, 상기 편광스위칭부는 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈 중 하나의 표면에 배치되어, 이들로 입사되는 빛의 편광 방향을 제어할수 있도록 한 것이 바람직하다.  In the virtual moving lens according to the above-described feature 1, the virtual moving lens further comprises a polarization switching unit configured to selectively convert the polarization direction of the incident light by adjusting the applied voltage, wherein the polarization switching unit is the first polarization It is preferable to be disposed on the surface of one of the dependent lens and the second polarization dependent lens, so as to be able to control the polarization direction of the light incident thereon.
전술한 제 1특징에 따른 가상 이동 렌즈에 있어서, 상기 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈는 1차원 배열의 렌티클라 렌즈로 구성되거나, 2차원 배열의 렌즈로 구성된 것이 바람직하다.  In the virtual moving lens according to the first feature described above, the first polarization dependent lens and the second polarization dependent lens are preferably composed of a lenticular lens of a one-dimensional array or a lens of a two-dimensional array.
본 발명의 계 2 특징에 따른 가상 이동 렌즈 제작 방법은, (a) 렌즈 역상의 구조를 갖는 광학적 등방상 고분자물질로 이루어진 제 1 렌즈 구조체내에 제 1 방향으로 배향된 액정상 고분자로 이루어진 제 1 렌즈로 구성된 제 1 편광 의존형 렌즈를 제작하는 단계; (b) 렌즈 역상의 구조를 갖는 광학적 등방상 고분자물질로 이루어진 제 2 렌즈 구조체내에 제 2 방향으로 배향된 액정상 고분자로 이루어진 제 2 렌즈로 구성된 제 2 편광 의존형 렌즈를 제작하는 단계; (c) 제 1 편광의존형 렌즈의 표면에 광경화성 수지를 도포하는 단계; (d) 상기 광경화성 수지가도포된 표면에 제 2 편광 의존형 렌즈를 정렬하여 배치한후, 상기 광경화성 수지를 광경화시켜 제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈를 접착시키는 단계 ; 를 구비하고, 상기 제 1 방향과 제 2 방향은 서로 수직인 것이 바람직하다 . According to a second aspect of the present invention, there is provided a method for fabricating a virtual moving lens, comprising: ( a ) a first lens made of a liquid crystal polymer oriented in a first direction in a first lens structure made of an optically isotropic polymer material having a reverse lens structure; Manufacturing a first polarization dependent lens; (b) manufacturing a second polarization dependent lens composed of a second lens made of a liquid crystal phase polymer oriented in a second direction in a second lens structure made of an optically isotropic polymer material having a lens reverse phase structure; (c) applying a photocurable resin to the surface of the first polarization dependent lens; (d) arranging and arranging a second polarization dependent lens on the surface coated with the photocurable resin, and then photocuring the photocurable resin to bond the first polarization dependent lens to the second polarization dependent lens; And first and second directions perpendicular to each other. It is desirable.
본 발명의 제 2 특징에 따른 가상 이동 렌즈 제작 방법에 있어서, 상기 가상 이동 렌즈 제작 방법은, (e) 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈로 입사되는 광의 편광 방향을 선택하기 위한편광 스위칭부를 제작하여 상기 제 1 편광 의존형 렌즈 및 계 2 편광.의존형 렌즈 중 하나의 표면에 배치하는 단계 ;를 더 구비하는 것이 바람직하다.  In the virtual moving lens manufacturing method according to the second aspect of the present invention, the virtual moving lens manufacturing method, (e) polarization switching for selecting the polarization direction of the light incident on the first polarization-dependent lens and the second polarization-dependent lens It is preferable to further comprise a step of producing a portion and placing on the surface of one of the first polarization-dependent lens and the second polarization-dependent lens.
본 발명의 제 2 특징에 따른 가상 이동 렌즈 제작 방법에 있어서, 상기 In the virtual moving lens manufacturing method according to the second aspect of the present invention,
(a) 단계는, (al) 기판위에 광학적 등방상고분자층을 형성하는 단계; (a2) 상기 광학적 둥방상 고분자층에 렌즈 형상의 스탬프를 임프린팅하고 광경화시켜 광학적 등방상 고분자층의 상부 표면에 렌즈 역상의 구조를 갖는 제 1 렌즈 구조체를 완성하는 단계; 3) 액정상 고분자를 제 1 방향으로 배향시키기 위한 RM 배향막을상기 제 1 렌즈구조체의 임프린팅된 표면에 형성하고 계 1 방향을 따라 러빙하는 단계; (a4) 제 1 렌즈 구조체의 상부에 추가의 RM 배향막이 형성된 필름 기판을 덮는 단계; (a5) RM 배향막과 추가의 RM 배향막에 의해 형성된 제 1 렌즈 구조체의 내부에 액정상고분자를 주입시킨 후 경화시켜, 렌즈 형상의 액정상고분자로 이루어진 계 1 렌즈를 형성하는 단계; (a6) 상기 추가의 RM 배향막이 형성된 필름 기판을 분리하여 제거하는 단계;를 구비하여 제 1 편광 의존형 렌즈를 제작하는 것이 바람직하다. Step (a) comprises the steps of (al) forming an optically isotropic polymer layer on the substrate; (a2) imprinting a lens-shaped stamp on the optically cylindrical polymer layer and photocuring to complete a first lens structure having a lens reverse phase structure on an upper surface of the optically isotropic polymer layer; 3) forming an RM alignment layer on the imprinted surface of the first lens structure to align the liquid crystal phase polymer in the first direction and rubbing along the system 1 direction; (a4) covering the film substrate having an additional RM alignment layer formed on top of the first lens structure; (a5) injecting and curing the liquid crystal phase polymer into the first lens structure formed by the RM alignment layer and the additional RM alignment layer, thereby forming a first lens comprising a lens-shaped liquid crystal phase polymer; (a6) separating and removing the film substrate on which the additional RM alignment layer is formed; preferably, manufacturing a first polarization dependent lens.
본 발명의 제 2 특징에 따른 가상 이동 렌즈 제작 방법에 있어서, 상기 (a3) 단계는, 렌즈 역상의 구조를 갖는 제 1 렌즈 구조체의 임프린팅된 표면에 UV 오존처리를 하여 친수성화시킨 후, 친수성화된 표면에 RM 배향막을 형성하는 것이 바람직하다.  In the method of manufacturing a virtual moving lens according to the second aspect of the present invention, the step (a3) may include hydrophilicity after UV ozone treatment on the imprinted surface of the first lens structure having the reverse lens structure. It is preferable to form an RM alignment film on the ized surface.
본 발명의 제 2 특징에 따른 가상 이동 렌즈 제작 방법에 있어서, 상기 (d) 단계는 제 1 편광 의존형 렌즈의 골과 제 2 편광 의존형 렌즈의 골이 서로 이격되도록 정렬시키는 것이 바람직하다.  In the virtual moving lens manufacturing method according to the second aspect of the present invention, the step (d) is preferably aligned so that the valley of the first polarization-dependent lens and the valley of the second polarization-dependent lens are spaced apart from each other.
【발명의 효과】 【Effects of the Invention】
본 발명에 따른 가상 이동 렌즈는 입사되는 빛의 편광 방향에 따라 렌즈로의 구동이 결정되는 2개의 편광 의존형 렌즈들을 적층시킴으로써, 렌즈의 물리적인 위치 이동없이도 입사되는 빛의 편광 방향을 스위칭하여 초점 위치를 이동시킬 수 있게 된다.  The virtual moving lens according to the present invention stacks two polarization-dependent lenses in which driving to the lens is determined according to the polarization direction of incident light, thereby switching the polarization direction of the incident light without physically moving the lens, thereby shifting the focus position. You can move the.
또한, 본 발명에 따른 가상 이동 렌즈는 고속 구동 가능한 편광스위칭 소자를 도입함으로써, f ield swi tching으로 시분할 기술을 적용할수 있다. 따라서, 본 발명에 따른 가상 이동 렌즈는 시분할 기술과 함께, 시점 수의 감소없이 3D 영상의 해상도를 증가시키거나 3D 영상의 해상도 감소없이 시점 수를 증가시킬 수 있게 된다.  In addition, the virtual moving lens according to the present invention may adopt a time-division technique by field swirling by introducing a polarization switching element capable of high speed driving. Accordingly, the virtual moving lens according to the present invention can increase the resolution of a 3D image without decreasing the number of viewpoints or increase the number of viewpoints without decreasing the resolution of the 3D image with time division technology.
또한, 본 발명에 따른 가상 이동 렌즈는 광경화성 액정상 고분자를 이용하여 렌즈를 구성함으로써, 종래의 액정을 이용한 렌즈와는 달리, 액정상 고분자를 광경화시켜 고형화시킨 후 기판으로사용된 필름들을 모두 제거할 수 있게 된다. 그 결과, 서로 적층되는 계 1 편광의존형 렌즈와 제 2 편광 의존형 렌즈의 사이의 이격 거리 (Gap)을 최소화시킬 수 있게 된다. 이로써 , 각 렌즈 사이의 갭에 의해 각각의 렌즈에 의한초점이 맺히는 위치가 달라지게 되는 문제점을 최소화시킬 수 있게 된다. In addition, the virtual moving lens according to the present invention comprises a lens using a photocurable liquid crystal phase polymer, unlike a lens using a conventional liquid crystal, a liquid crystal phase After curing the polymer by photocuring, it is possible to remove all the films used as the substrate. As a result, it is possible to minimize the separation gap Gap between the first polarization dependent lens and the second polarization dependent lens that are stacked on each other. Thus, it is possible to minimize the problem that the position where the focus is formed by each lens is changed by the gap between each lens.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 Mul t i— view 3D디스플레이를 설명하기 위하여 도시한 개념도이다. 도 2는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에서 사용되는 편광 의존형 렌즈의 구성 및 동작 원리를 설명하기 위하여 도시한 개념도이다. 도 3은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈의 구조 및 동작 원리를 설명하기 위하여 도시한 개념도이다.  1 is a conceptual diagram illustrating a mul t- view 3D display. 2 is a conceptual diagram illustrating a configuration and operation principle of a polarization dependent lens used in a virtual moving lens according to an exemplary embodiment of the present invention. 3 is a conceptual diagram illustrating the structure and operation principle of a virtual moving lens according to an exemplary embodiment of the present invention.
도 4는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, Square 형상의 2차원 배열의 렌즈로 구성된 경우 렌즈의 초점에 대한 이미지를 도시한 개념도이다.  4 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to a preferred embodiment of the present invention is configured as a two-dimensional array of square shapes.
도 5는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 2D Hexagonal 형상의 2차원 배열의 렌즈로 구성된 경우 렌즈의 초점에 대한 이미지를 도시한 개념도이다.  FIG. 5 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to an exemplary embodiment of the present invention is configured as a 2D array lens having a 2D hexagonal shape.
도 6은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 편광 의존형 2D Hexagonal 배열의 마이크로렌즈 어레이에 대하여 crossed polar izer 상에서 관측된 현미경 이미지들이다.  FIG. 6 shows microscope images observed on a crossed polarizer for a microlens array of a polarization dependent 2D hexagonal array in a virtual moving lens according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 제 1 및 제 2 편광 의존형 렌즈를 1D 렌티큘라 렌즈들로 구성한 경우 입사광의 편광에 따른 포커싱 빔 (focusing beam) 이미지를 도시한 것이다.  FIG. 7 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are composed of 1D lenticular lenses in a virtual moving lens according to an exemplary embodiment of the present invention. .
도 8은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 제 1 및 제 2 편광 의존형 렌즈를 2D Hexagonal 배열 구조들로 구성한 경우 입사광의 편광에 따른 포커싱 빔 ( focusing beam) 이미지를 도시한 것이다.  FIG. 8 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are composed of 2D hexagonal array structures in a virtual moving lens according to an exemplary embodiment of the present invention. .
도 9는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서 제 1 및 제 2 편광의존형 렌즈를 2D Hexagonal 배열 구조로 구성한 경우 입사광의 편광에 따른 Image plane 에서 캡쳐한 이미지를 도시한 것이다.  FIG. 9 illustrates an image captured in an image plane according to polarization of incident light when the first and second polarization dependent lenses are configured in a 2D hexagonal array structure in a virtual moving lens according to an exemplary embodiment of the present invention.
도 10은 본 발명의 바람직한 실시예에 따른 가상 이동 렌즈의 제작 방법에 있어서, 계 1 또는 제 2 편광 의존형 렌즈를 제작하는 과정을 순차적으로 도시한순서도이다.  FIG. 10 is a flowchart sequentially illustrating a process of manufacturing a first or second polarization dependent lens in a method of manufacturing a virtual moving lens according to an exemplary embodiment of the present invention.
도 11은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈의 제작 방법에 있어서, 제 1 및 게 2 편광 의존형 렌즈를 합착하여 가상 이동 렌즈를 완성하는 과정을 순차적으로 도시한 순서도이다.  FIG. 11 is a flowchart sequentially illustrating a process of completing the virtual moving lens by combining the first and the second polarization dependent lenses in the method of manufacturing the virtual moving lens according to the preferred embodiment of the present invention.
【발명의 실시를 위한 최선의 형태】 본 발명에 따른 가상 이동 렌즈는 입사되는 빛의 편광 방향에 따라 렌즈로의 구동이 결정되는 편광 의존형 렌즈들을 적층하여 구성하고, 인가 전압에 따라 고속 구동되는 편광스위칭부를 이용하여 입사되는 빛의 편광 방향을 스위칭시킴으로써, 렌즈의 물리적인 위치 이동없이 초점 위치를 가변시킬 수 있는 것을 특징으로 한다. [Best form for implementation of the invention] The virtual moving lens according to the present invention is constructed by stacking polarization-dependent lenses in which driving to a lens is determined according to a polarization direction of incident light, and uses a polarization switching unit that is driven at a high speed according to an applied voltage. By switching the, the focus position can be changed without moving the physical position of the lens.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 가상 이동 렌즈의 구성 및 동작에 대하여 구체적으로 설명한다 .  Hereinafter, the configuration and operation of a virtual moving lens according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에서 사용되는 편광 의존형 렌즈의 구성 및 동작 원리를 설명하기 위하여 도시한 개념도이다. 도 2를 참조하면, 편광의존형 렌즈 (20)는 마이크로렌즈의 역상의 구조로 이루어진 렌즈 구조체 (200) 및 상기 렌즈 구조체의 내부를 채운 액정상 고분자 (React ive Mesogen ; 'RM' )로 이루어진 렌즈 (210)를 구비하며, 액정상 고분자는 마이크로렌즈의 한 방향으로 배향되어 구성되어 입사되는 빛의 편광 방향에 따라 렌즈가은 (On)/오프 (Off ) 되는 구조를 갖는다. 일반적으로, 막대 모양으로 구성된 액정상 고분자는 복굴절 특성을 가지며, 액정상 고분자의 장축 방향의 굴절률은 이며, 단축 방향의 굴절률은 n0이다. 따라서, 액정상 고분자는 입사하는 광의 편광 방향에 따라 굴절률이 ne 또는 n0중 하나로 결정된다. 한편, 렌즈 구조체 (200)는 광학적 등방상 고분자로 구성되며, 굴절률이 ¾이며 nP는 RM의 단축 방향의 굴절률 n0와 일치한다. 2 is a conceptual diagram illustrating a configuration and operation principle of a polarization dependent lens used in a virtual moving lens according to an exemplary embodiment of the present invention. Referring to FIG. 2, the polarization dependent lens 20 includes a lens structure 200 having a reverse phase structure of a microlens and a lens made of a liquid crystal polymer (React ive Mesogen; 'RM') filling the inside of the lens structure ( 210, and the liquid crystal phase polymer is oriented in one direction of the microlenses, and has a structure in which the lens is silver (On) / off (Off) according to the polarization direction of incident light. Generally, the rod-like liquid crystal polymer has birefringence characteristics, the refractive index in the major axis direction of the liquid crystal polymer is, and the refractive index in the minor axis direction is n 0 . Therefore, the refractive index of the liquid crystal phase polymer is determined to be one of n e and n 0 depending on the polarization direction of the incident light. On the other hand, the lens structure 200 is composed of an optically isotropic polymer, the refractive index is ¾ and n P coincides with the refractive index n 0 in the axial direction of the RM.
도 2의 (a)와 같 , 편광스위칭부 (22)에 전압이 인가된 ON상태에서 입사하는 편광 방향이 단축 방향과 일치하는 경우, RM의 굴절률은 n0 이며, 이는 렌즈 구조체의 굴절률 ηρ와 일치하여 렌즈 기능이 사라지게 된다. 한편, 도 2의 (b)와 같이, 편광 스위칭부 (22)에 전압이 인가되지 않은 OFF상태에서 입사하는 편광 방향이 장축 방향과 일치하는 경우, RM의 굴절률은 ne 이며, 이는 렌즈 구조체 굴절률 np와불일치하여 렌즈로써 동작하게 된다. As shown in FIG. 2A, when the polarization direction incident in the ON state where the voltage is applied to the polarization switching unit 22 coincides with the short axis direction, the refractive index of RM is n 0 , which is the refractive index η ρ of the lens structure. The lens function disappears. On the other hand, as shown in (b) of FIG. 2, when the polarization direction incident in the OFF state where no voltage is applied to the polarization switching unit 22 coincides with the major axis direction, the refractive index of RM is n e , which is the lens structure refractive index. n p is inconsistent with the lens.
도 3은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈의 구조 및 동작원리를 설명하기 위하여 도시한 개념도이다.  3 is a conceptual diagram illustrating the structure and operation principle of a virtual moving lens according to an exemplary embodiment of the present invention.
도 3을 참조하면, 본 발명의 바람직한실시예에 따른 가상 이동  3, the virtual movement according to the preferred embodiment of the present invention
렌즈 (30)는 제 1 편광 의존형 렌즈 (300), 제 2 편광 의존형 렌즈 (310) 및 편광 스위칭부 (320)를 구비한다. 본 발명에 따른 가상 이동 렌즈에 있어서, 편광 스위칭부 (320)는 제 1 및 제 2 편광 의존형 렌즈들과 일체형으로 구성되거나, 제 1 및 제 2 편광 의존형 렌즈들과 별개로 제작될 수도 있다. 다만, 본 발명에서는 설명의 편의상 제 1 및 제 2 편광 의존형 렌즈들과 편광스위칭부가 일체형으로 구성된 것으로 기준으로 설명한다. The lens 30 includes a first polarization dependent lens 300, a second polarization dependent lens 310, and a polarization switching unit 320. In the virtual moving lens according to the present invention, the polarization switching unit 320 may be integrally formed with the first and second polarization dependent lenses or may be manufactured separately from the first and second polarization dependent lenses. However, in the present invention, for convenience of description, the first and second polarization dependent lenses and the polarization switching unit will be described on the basis of being integrated.
상기 계 1 편광 의존형 렌즈 (300) 및 제 2 편광 의존형 렌즈 (310)는 입사되는 빛의 편광 방향에 따라 렌즈로 구동되도록 구성되며, 상기 제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈는 입사되는 빛의 편광 방향에 따라상기 제 1 편광의존형 렌즈와 제 2 편광 의존형 렌즈 중 하나만 렌즈로 구동되도록 구성되어, 입사되는 빛의 편광 방향에 따라초점 위치가 이동되어 가변된다. 상기 제 1 편광 의존형 렌즈의 골과 제 2 편광 의존형 렌즈의 골이 서로 이격되게 배치되는 것이 바람직하다. The first polarization dependent lens 300 and the second polarization dependent lens 310 are configured to be driven by a lens according to the polarization direction of incident light, and the first polarization dependent lens and the second polarization dependent lens are incident light. According to the polarization direction of only one of the first polarization-dependent lens and the second polarization dependent lens to drive the lens The focus position is shifted and varied according to the polarization direction of the incident light. Preferably, the valley of the first polarization dependent lens and the valley of the second polarization dependent lens are disposed to be spaced apart from each other.
상기 제 1 편광 의존형 렌즈 (300)는 제 1 렌즈 구조체 (302) 및 제 1 렌즈 (304)를 구비한다. 상기 제 1 렌즈 구조체 (302)는 광학적 등방상 고분자로 이루어지며 마이크로렌즈의 역상의 형태로 구성된다. 상기 제 1 렌즈 (304)는 계 1 방향으로 배향된 액정상 고분자 (React ive Mesogen)로 이루어지고 상기 저ᅵ1 렌즈 구조체에 형성된다.  The first polarization dependent lens 300 has a first lens structure 302 and a first lens 304. The first lens structure 302 is made of an optically isotropic polymer and consists of an inverted form of microlenses. The first lens 304 is made of a liquid crystalline polymer (React ive Mesogen) oriented in the system 1 direction and is formed in the lens 1 lens structure.
상기 제 2 편광 의존형 렌즈 (310)는 제 2 렌즈 구조체 (312) 및 제 2 렌즈 (314)를 구비하여 제 1 편광 의존형 렌즈와동일한구조로 이루어지되, 저 12 렌즈의 액정상 고분자의 배향 방향과 제 1 렌즈의 액정상 고분자의 배향 방향은 서로 수직이 되도록 배치된다.  The second polarization dependent lens 310 includes a second lens structure 312 and a second lens 314 and has the same structure as that of the first polarization dependent lens, and includes the alignment direction of the liquid crystal phase polymer of the low 12 lens. The alignment direction of the liquid crystal phase polymer of the first lens is disposed to be perpendicular to each other.
' 상기 제 1 편광 의존형 렌즈는 상기 제 1 렌즈 구조체와 제 1 렌즈의 사이에 액정상 고분자의 배향을 위한 제 1 RM 배향막을 더 구비하고, 상기 제 2 편광 의존형 렌즈는 상기 계 2 렌즈 구조체와 제 2 렌즈의 사이에 액정상 고분자의 배향을 위한 제 2 RM 배향막을 더 구비하는 것이 바람직하다.  The first polarization dependent lens further comprises a first RM alignment layer for the alignment of the liquid crystal phase polymer between the first lens structure and the first lens, wherein the second polarization dependent lens comprises: the second lens structure and the first lens structure; It is preferable to further provide a 2nd RM alignment film for orientation of a liquid crystalline polymer between two lenses.
제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈는 서로 적층된 구조로 이루어지는데, 도 3에 도시된 바와 같이 제 1 렌즈의 RM면과 제 2 렌즈의 RM면이 서로 접하도록 적층되거나, 제 1 렌즈의 RM면과 제 2 렌즈 구조체의 등방상 고분자면이 접하도록 적층되거나, 제 1 렌즈 구조체의 등방상 고분자면과 제 2 렌즈의 RM면이 접하도록 적층되거나 제 1 렌즈 구조체의 둥방상 고분자면과 제 2 렌즈 구조체의 등방상 고분자면이 접하도록 적층되는 것도 가능하다.  The first polarization-dependent lens and the second polarization-dependent lens are stacked on each other, and as shown in FIG. 3, the RM plane of the first lens and the RM plane of the second lens are laminated so as to be in contact with each other, or the first lens. The RM surface of the first lens structure and the isotropic polymer surface of the second lens structure are laminated so as to be in contact, or the isotropic polymer surface of the first lens structure and the RM surface of the second lens It is also possible to laminate so that the isotropic polymer surface of a 2nd lens structure contact | connects.
또한, 본 발명에 따른 가상 이동 렌즈는 광경화성 액정상 고분자로 제작함으로써, 액정상 고분자를 광경화시켜 필름 상태로 고형화시킨 후 기판을 제거할수 있으며, 그 결과 제 1 및 계 2 편광 의존형 렌즈들의 사이의 갭 (Gap)을 최소화시킬 수 있게 된다. 만약 렌즈를 액정으로 제작하는 경우, 기판이 제거할 수 없게 되어 제 1 및 제 2 편광 의존형 렌즈들의 사이에 Gap이 존재하게 된다. 적층된 제 1 및 제 2 편광 의존형 렌즈들의 사이의 Gap이 최소화되지 않을 경우, 각각의 렌즈에 의한초점이 맺히는 위치가 달라지게 되는 문제가 발생하게 된다. 따라서, 본 발명에 따른 가상 이동 렌즈는 광경화성 액정상고분자를  In addition, the virtual moving lens according to the present invention may be made of a photocurable liquid crystal polymer, thereby curing the liquid crystal polymer to solidify the film to a film state, and then removing the substrate. As a result, between the first and second polarization dependent lenses It is possible to minimize the gap (Gap) of the. If the lens is made of liquid crystal, the substrate cannot be removed so that a gap exists between the first and second polarization dependent lenses. If the gap between the stacked first and second polarization dependent lenses is not minimized, a problem arises in that the position where the focus is formed by each lens is changed. Therefore, the virtual moving lens according to the present invention is a photocurable liquid crystal phase polymer
이용함으로써, 광경화후 액정상고분자가고형화되어 기판으로사용된 상부 필름을 제거할수 있으며, 그 결과 제 1 및 제 2 편광 의존형 렌즈들의 사이의 갭을 최소화시킬 수 있게 된다. By using this, after the photocuring, the liquid crystal phase polymer may be solidified to remove the upper film used as the substrate, thereby minimizing the gap between the first and second polarization dependent lenses.
상기 편광 스위칭부 (320)는 인가되는 전압에 따라 입사된 광의 편광 방향을 선택적으로 변환시켜 출력하여 상기 제 1 편광 의존형 렌즈 또는 제 2 편광 의존형 렌즈로 입사시키게 된다. 상기 편광스위칭부는 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈 중 하나의 표면에 배치되어, 이들로 입사되는 빛의 편광 방향을 제어할수 있도록 한다. 도 3의 )를 참조하면, 편광스위칭부 (320)에 의해 가상 이동 렌즈로 입사되는 빛의 편광이 Y축 방향인 경우, 제 2 편광 의존형 렌즈에서는 제 2 렌즈 (314)가 n0 의 굴절률을 가지게 되어 계 2 렌즈 (314)와 제 2 렌즈 구조체 (312) 간의 굴절률이 일치하여 빛이 굴절없이 진행하게 되며, 제 1 편광 의존형 렌즈 (300)에서는 제 1 렌즈 (304)가 np 의 굴절률을 가지게 되어 계 1 렌즈 (304)와 제 1 렌즈 구조체 (302) 간의 굴절률이 불일치하여 빛이 굴절하게 된다. The polarization switching unit 320 selectively converts the polarization direction of the incident light according to the applied voltage and outputs the incident light to the first polarization dependent lens or the second polarization dependent lens. The polarization switching unit may be disposed on a surface of one of the first polarization dependent lens and the second polarization dependent lens to control the polarization direction of the light incident thereto. Referring to FIG. 3), when the polarization of light incident to the virtual moving lens by the polarization switching unit 320 is in the Y-axis direction, the second lens 314 may have a refractive index of n 0 in the second polarization dependent lens. The refractive index between the second lens 314 and the second lens structure 312 is matched so that light travels without refraction. In the first polarization-dependent lens 300, the first lens 304 reduces the refractive index of n p . The refractive index between the first lens 304 and the first lens structure 302 is inconsistent such that light is refracted.
도 3의 (b)를 참조하면 , 편광 스위칭부 (320)에 의해 가상 이동 렌즈로 입사되는 빛의 편광이 X축 방향인 경우, 제 2 편광 의존형 렌즈에서는 제 2 렌즈 (314)가 nP 의 굴절률을 가지게 되어 제 2 렌즈 (314)와 제 2 렌즈 구조체 (312) 간의 굴절률이 불일치하여 빛이 굴절하여 진행하게 되며, 제 1 편광 의존형 렌즈 (300)에서는 제 1 렌즈 (304)가 n0의 굴절률올 가지게 되어 제 1 렌즈 (304)와 제 1 렌즈 구조체 (302) 간의 굴절률이 일치하여 빛이 굴절없이 진행하게 된다. 한편, 제 1 편광 의존형 렌즈의 액정상 고분자와 제 2 편광 의존형 렌즈의 액정상고분자가서로수직인 방향으로 배향되어 구성됨으로써 , 입사되는 빛의 편광 방향에 따라 제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈 중 하나만이 렌즈로 구동하게 된다. 또한, 제 1 편광 의존형 렌즈의 골과 제 2 편광 의존형 렌즈의 골이 서로 이격되도록 배치됨으로써, 입사되는 빛의 편광 방향에 의해 구동되는 렌즈에 따라가상 이동 렌즈의 초점의 위치가 이동하게 된다. ' Referring to FIG. 3B, when the polarization of the light incident by the polarization switching unit 320 into the virtual moving lens is in the X-axis direction, the second lens 314 is formed of n P in the second polarization dependent lens. Since the refractive index between the second lens 314 and the second lens structure 312 does not match, the light is refracted and proceeds. In the first polarization dependent lens 300, the first lens 304 is formed of n 0 . The refractive index is such that the refractive index between the first lens 304 and the first lens structure 302 coincide so that light travels without refraction. On the other hand, since the liquid crystal phase polymer of the first polarization dependent lens and the liquid crystal phase polymer of the second polarization dependent lens are oriented in the vertical direction to each other, the first polarization dependent lens and the second polarization dependent lens are dependent on the polarization direction of the incident light. Only one of the lenses is driven by the lens. In addition, since the valley of the first polarization-dependent lens and the valley of the second polarization-dependent lens are arranged to be spaced apart from each other, the position of the focal point of the virtual moving lens is shifted according to the lens driven by the polarization direction of the incident light. '
상기 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈는 1차원 배열의 렌티클라 렌즈로 구성되거나, 사각형 또는 육각형 형상의 2차원 배열의 렌즈로 구성될 수 있다. 특히, 2차원 배열의 렌즈로 구성하는 경우, 제 1 및 제 2 편광 의존형 렌즈들의 정렬 방향에 따라 X축 방향으로 이동시키거나, Y 축 방향으로 이동시키거나, 대각선 방향으로 이동시키는 것이 가능하게 된다.  The first polarization dependent lens and the second polarization dependent lens may be configured as a lenticular lens in a one-dimensional array, or may be configured as a lens in a two-dimensional array having a rectangular or hexagonal shape. In particular, in the case of a two-dimensional array of lenses, it is possible to move in the X-axis direction, the Y-axis direction, or the diagonal direction depending on the alignment direction of the first and second polarization dependent lenses. .
제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈의 배치 위치는 시스템에서 요구되는 초점의 이동 방향에 따라 결정될 수 있다. 도 4 및 도 5에 도시된 바와 같이, 제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈의 배치 위치에 따라초점의 이동 방향이 달라짐을 알수 있다.  The disposition position of the first polarization dependent lens and the second polarization dependent lens may be determined according to the direction of movement of the focus required in the system. As shown in FIG. 4 and FIG. 5, it can be seen that the moving direction of the focus varies according to the arrangement positions of the first polarization dependent lens and the second polarization dependent lens.
도 4는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, Square 형상의 2차원 배열의 렌즈로 구성된 경우 렌즈의 초점에 대한 이미지를 도시한 개념도이다. 도 4의 (a)는 Square 형상의 2차원 배열의 렌즈들이 기준 위치에 배치된 경우, (b)는 (a)의 기준위치에서 제 1 편광 의존형 렌즈를 가로 방향으로 이동한 경우, (c)는 계 1 편광 의존형 렌즈를 세로 방향으로 이동한 경우, (d)는 제 1 편광 의존형 렌즈를 대각선 방향으로 이동한 경우의 초점 이미지들을 각각도시한 것이다.  FIG. 4 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to an exemplary embodiment of the present invention is configured as a two-dimensional array of square shapes. FIG. 4A illustrates a case where the two-dimensional array of square-shaped lenses are disposed at a reference position, and FIG. 4B illustrates a case where the first polarization dependent lens is moved in the horizontal direction at the reference position of (a). (D) shows the focus images when the first polarization dependent lens is moved in the diagonal direction, respectively.
도 5는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 2D Hexagonal 형상의 2차원 배열의 렌즈로 구성된 경우 렌즈의 초점에 대한 이미지를 도시한 개념도이다. 도 5의 (a)는 Hexagonal 형상의 2차원 배열의 렌즈들이 기준 위치에 배치된 경우, (b)는 (a)의 기준 위치에서 제 1 편광 의존형 렌즈를 가로 또는 세로 방향으로 이동한 경우, (c)는 제 1 편광 의존형 렌즈를 대각선 방향으로 이동한 경우의 초점 이미지들을 각각 도시한 것이다. FIG. 5 is a conceptual diagram illustrating an image of a focal point of a lens when a virtual moving lens according to an exemplary embodiment of the present invention is configured as a 2D array lens having a 2D hexagonal shape. (A) of FIG. 5 shows that when the lenses of the two-dimensional array of the hexagonal shape are arranged at the reference position, (b) is the first polarization dependent type at the reference position of (a). When the lens is moved in the horizontal or vertical direction, (c) shows the focus images when the first polarization dependent lens is moved in the diagonal direction, respectively.
도 6은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 편광 의존형 2D Hexagonal 배열의 마이크로렌즈 어레이에 대하여 crossed polar i zer 상에서 관측된 현미경 이미지들이다. 도 6의 (a)는 편광 방향 (P)과 배향 방향 (R)이 일치할 때 retardat ion이 발생하지 않아 dark한상태를 보여주고 있으며, 도 6의 (b)는 편광 방향 (P)과 배향 방향 (R)이 서로 45도일 때  FIG. 6 illustrates microscope images observed on a crossed polarizer for a microlens array of a polarization dependent 2D hexagonal array in a virtual moving lens according to a preferred embodiment of the present invention. 6 (a) shows a dark state because retardat ions do not occur when the polarization direction (P) and the alignment direction (R) coincide. FIG. 6 (b) shows the polarization direction (P) and the orientation direction. When (R) is 45 degrees to each other
retardat ion이 발생하여 빛이 새며 렌즈 구조에 의해 높이가 달라짐에 따라 위치별로 retardat ion 양이 달라지게 되고 이에 따라 동심원 패턴이 형성된다. 도 7은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 제 1 및 제 2 편광 의존형 렌즈를 1D 렌티큘라 렌즈로 구성한 경우 입사광의 편광에 따른 포커싱 빔 (focusing beam) 이미지를 도시한 것이다. 도 7의 (a)는 X축 방향의 편광된 빛이 입사하여 제 2 편광 의존형 렌즈에 의해 포커싱된 As retardat ions are generated, light leaks, and the height is changed by the lens structure, the amount of retardat ions varies depending on the position, thereby forming a concentric circle pattern. FIG. 7 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are configured as 1D lenticular lenses in a virtual moving lens according to an exemplary embodiment of the present invention. 7 (a) shows that the polarized light in the X-axis direction is incident and focused by the second polarization dependent lens.
이미지로서, 제 1 편광 의존형 렌즈는 제 1 렌즈와 제 1 렌즈 구조체의 굴절률 매칭으로 굴절이 일어나지 않게 된다ᅳ 도 7의 (b)는 Y 축 방향의 편광된 빛이 입사하여 계 1 편광 의존형 렌즈에 의해 포커싱된 이미지로서, 제 2 편광 의존형 렌즈가 제 2 렌즈와 제 2 렌즈 구조체의 굴절률 매칭으로 굴절이 일어나지 않게 된다. As an image, the first polarization-dependent lens does not cause refraction due to refractive index matching between the first lens and the first lens structure. FIG. 7B shows polarized light in the Y-axis direction incident to the system of the first polarization-dependent lens. As a focused image, the second polarization dependent lens does not cause refraction due to refractive index matching of the second lens and the second lens structure.
도 8은 본 발명의 바람직한 실시예에 따른 가상 이동 렌즈에 있어서, 제 1 및 제 2 편광 의존형 렌즈를 2D Hexagonal 배열 구조로 구성한 경우 입사광의 편광에 따른포커싱 범 (focus ing beam) 이미지를 도시한 것이다. 도 8의 (a)는 X축 방향의 편광된 빛이 입사하여 제 2 편광 의존형 렌즈에 의해 포커싱된 이미지이며, 도 8의 (b)는 45도 방향으로 편광된 빛이 입사하여 focal plane으로부터 얻게 된 이미지이며 , 도 8의 (c)는 Y축 방향의 편광된 빛이 입사하여 제 1 편광 의존형 렌즈에 의해 포커싱된 이미지이다. 도 8의 (b)를 참조하면, 45도 편광의 경우, X축 편광 성분과 Y축 편광 성분이 1 : 1 의 비율로 존재하므로, X축 편광성분은 제 2 편광 의존형 렌즈에 의해 포커싱되며 Y축 편광성분은 제 1 편광 의존형 렌즈에 의해 포커싱되어, 두 편광 의존형 렌즈에 의해 포커싱된 범이 모두 관측되며 다만 그 세기는 각각 반으로 감소함을 알 수 있다.  FIG. 8 illustrates a focusing beam image according to polarization of incident light when the first and second polarization dependent lenses are configured as a 2D hexagonal array structure in a virtual moving lens according to an exemplary embodiment of the present invention. . FIG. 8A is an image in which polarized light in the X-axis direction is incident and focused by the second polarization dependent lens, and FIG. 8B is an image in which polarized light in the 45-degree direction is incident from the focal plane. 8C illustrates an image in which polarized light in the Y-axis direction is incident and focused by the first polarization dependent lens. Referring to FIG. 8B, since the X-axis polarization component and the Y-axis polarization component exist at a ratio of 1: 1 in the case of 45 degree polarization, the X-axis polarization component is focused by the second polarization dependent lens and Y It can be seen that the axial polarization component is focused by the first polarization dependent lens so that both the focus focused by the two polarization dependent lenses is observed, but the intensity is reduced in half.
도 7 내지 도 8에서 사용한 렌즈 구조체는 각각주기 150 , 높이 3 m 의 1D배열의 마이크로렌즈와주기 28 m, 높이 25 의 2D Hexagonal 배열의 마이크로렌즈이다.  The lens structures used in FIGS. 7 to 8 are 1D array microlenses having a period of 150 and a height of 3m, and 2D hexagonal arrays having a period of 28m and a height of 25, respectively.
도 9는 본 발명의 바람직한실시예에 따른 가상 이동 렌즈에 있어서, 제 1 및 제 2 편광 의존형 렌즈를 2D Hexagonal 배열 구조로 구성한 경우 입사광의 편광에 따른 Image plane 에서 캡쳐한 이미지를 도시한 것이다. 도 9를  FIG. 9 illustrates an image captured in an image plane according to polarization of incident light when the first and second polarization dependent lenses are configured as a 2D hexagonal array structure in a virtual moving lens according to an exemplary embodiment of the present invention. 9
참조하면, 입사되는 편광에 따라마이크로렌즈가 가상적으로 이동하여 캡쳐된 이미지가 이동됨을 확인할수 있다. 이하, 도 10 및 도 11을 참조하여 본 발명의 바람직한 실시예에 따른 가상 이동 렌즈의 제작 방법에 대하여 구체적으로 설명한다. For reference, it can be seen that the microlens is virtually moved according to the incident polarization to move the captured image. Hereinafter, a manufacturing method of a virtual moving lens according to an exemplary embodiment of the present invention will be described in detail with reference to FIGS. 10 and 11.
본 발명의 바람직한실시예에 따른 가상 이동 렌즈 제작 방법은, 제 1 및 계 2 편광의존형 렌즈를 각각 제작한후, 제 1 및 제 2 편광 의존형 렌즈의 서로 맞닿는 표면에 광경화성 수지를 도포시키고 정렬한후, 광경화시켜 제 1 및 제 2 편광의존형 렌즈를 합착시켜 완성하게 된다.  According to a preferred embodiment of the present invention, a method of manufacturing a virtual moving lens may include manufacturing and aligning first and second polarization dependent lenses, and then coating and aligning a photocurable resin on surfaces abutting the first and second polarization dependent lenses. Thereafter, photocuring is performed to bond the first and second polarization dependent lenses together.
도 10은 본 발명의 바람직한실시예에 따른 가상 이동 렌즈의 제작 방법에 있어서, 제 1 및 계 2 편광 의존형 렌즈를 제작하는 과정을 순차적으로 도시한순서도이다. 도 10을 참조하면, 먼저 필름 기판 (400)위에 광경화성 등방상 고분자 물질 (410)을 도포한후 마이크로렌즈 구조의 스탬프 (420)를 임프린팅한후 광 경화시켜 등방상고분자물질로 이루어진 마이크로렌즈 역상 구조의 렌즈 구조체 (412)를 완성한다 (도 10의 a, b , c) . 상기 광경화성 등방상 고분자 물질은 Normand사의 굴절률 1.524인 N0A65 TM제품을사용할 수 있다. 다음, 마이크로렌즈 역상구조의 렌즈 구조체의 표면에 FIG. 10 is a flowchart sequentially illustrating a process of manufacturing a first and a second polarization dependent lens in a method of manufacturing a virtual moving lens according to an exemplary embodiment of the present invention. Referring to FIG. 10, first, a photocurable isotropic polymer material 410 is coated on a film substrate 400, followed by imprinting a stamp 420 having a microlens structure, followed by photocuring to form a microlens made of an isotropic polymer material. The lens structure 412 of the reversed phase structure is completed (a, b, c in FIG. 10). As the photocurable isotropic polymer material, N0A65 product having a refractive index of 1.524 of Normand Corporation may be used. Next, on the surface of the lens structure of the microlens reversed-phase structure
Polyvinylachol (PVA)를 약 200nm두께로 도포한후 시스템에 요구되는 배향방향에 따라 러빙하여 RM 배향막 (430)을 완성하며 , 이는 후공정에서 주입되는 액정상 고분자를 Bottom-up 방식으로 배향하기 위하여 사용된다 (도Polyvinylachol (PVA) is applied to a thickness of about 200nm and then rubbed according to the alignment direction required for the system to complete the RM alignment layer 430, which is used to align the liquid crystal phase polymer injected in the post process in a bottom-up manner. (Degrees
10의 d 및 e) . 본 발명에 따른 제작 방법에서의 배향막으로는 약 90-100 °C 의 저온 공정이 가능하며 DI water와 같은 극성 용매에 용해되는 PVA를 사용하는 것이 바람직하다. 일반적으로 액정 배향에는 폴리이미드 (Polyimide ; 'ΡΓ )가 사용되는데, 폴리이미드는 polymer izat ion을 하기 위해 약 230~250°C의 고은 열처리가 필요하므로, 본 발명과 같은 고분자의 렌즈 구조체에는 적용하기가 어렵다. 10 d and e). As the alignment film in the manufacturing method according to the present invention, a low temperature process of about 90-100 ° C. is possible, and PVA dissolved in a polar solvent such as DI water is preferably used. In general, a polyimide ('ΡΓ) is used for the liquid crystal alignment, and the polyimide requires a high-silver heat treatment of about 230 to 250 ° C. in order to perform polymer izat ion. Is difficult.
한편, PVA의 코팅성을 향상시키기 위하여 UV오존처리하여 렌즈 역상 구조를 갖는 표면올 친수성화시키는 것이 바람직하다.  On the other hand, in order to improve the coating property of PVA, it is preferable to hydrophilize the surface allol having a lens reverse phase structure by UV ozone treatment.
다음, 필름 기판 (442) 위에 추가의 RM배향막 (440)을 형성한 후, 이를 상기 렌즈 구조체의 상부 표면에 배치하여, 이는후공정에서 주입되는 액정상 고분자를 Top-down 방식으로 배향하기 위하여 사용된다 (도 10의 f ) . 이 경우에도, PVA의 코팅성을 향상시키기 위하여 필름 기판 (442)을 UV오존처리를 하여 표면을 친수성화시키는 것이 바람직하다.  Next, after forming an additional RM alignment layer 440 on the film substrate 442, it is disposed on the upper surface of the lens structure, which is used to orient the liquid crystal phase polymer injected in the post-process in a top-down manner (F of FIG. 10). Also in this case, in order to improve the coating property of PVA, it is preferable to carry out UV ozone treatment of the film substrate 442, and to make a surface hydrophilic.
다음, 렌즈 구조체의 RM 배향막 (430)과추가의 RM 배향막 (440)의 사이에 광경화성 액정상고분자를 70oC 온도에서 주입한후 50°C의 온도에서 30분간 열처리후 35 0C에서 광중합시켜 렌즈 (450)를 완성한다 (도 10의 g) . Next, photo-polymerization at 35 0 C after the heat treatment for 30 minutes at temperature and then injected into the photo-curable between the liquid crystal of the RM alignment film 430 gwachu of RM alignment film 440 of the lens structure polymer at 70 o C temperature 50 ° C To complete the lens 450 (Fig. 10G).
다음, 필름 기판 (442) 및 추가의 RM 배향막 (440)을 분리 및 제거하여 렌즈 구조체 (412), RM 배향막 (430) 및 렌즈 (450)을 구비하는 제 1 편광 의존형 렌즈를 완성한다 (도 10의 hᅳ i ) . 이와동일한공정을 통해 제 2 편광 의존형 렌즈도 완성하며, 다만 제 2 편광 의존형 렌즈의 액정상 고분자의 배향 방향은 제 1 편광 의존형 렌즈의 액정상 고분자의 배향 방향과는 수직이 되도록 한다는 점에서 차이가 있다. Next, the film substrate 442 and the additional RM alignment layer 440 are separated and removed to complete the first polarization dependent lens including the lens structure 412, the RM alignment layer 430, and the lens 450 (FIG. 10). H of i). Second polarization dependent type through the same process The lens is also completed, except that the alignment direction of the liquid crystal phase polymer of the second polarization dependent lens is perpendicular to the alignment direction of the liquid crystal phase polymer of the first polarization dependent lens.
상기 제 1 및 계 2 편광 의존형 렌즈를 완성한후 하부 기판을 제거하는 단계를 더 구비할수 있다.  The method may further include removing the lower substrate after completing the first and second polarization dependent lenses.
전술한 공정에 의해 제 1 및 제 2 편광 의존형 렌즈들을 완성하면, 이들을 합착하여 가상 이동 렌즈를 완성하게 된다. 도 11은 본 발명의 바람직한 실시예에 따른 가상 이동 렌즈의 제작 방법에 있어서, 제 1 및 제 2 편광 의존형 렌즈를 접착하여 가상 이동 렌즈를 완성하는 과정을 순차적으로 도시한 순서도이다.  When the first and second polarization dependent lenses are completed by the above-described process, they are combined to complete the virtual moving lens. FIG. 11 is a flowchart sequentially illustrating a process of completing a virtual moving lens by adhering a first and a second polarization dependent lens in a method of manufacturing a virtual moving lens according to an exemplary embodiment of the present invention.
도 11을 참조하면, 먼저 제 1 및 계 2 편광 의존형 렌즈들 (460, 462) 중 하나의 접착 표면에 광경화성 수지 (UV curable resin) (480)을 도포하고 (도 11의 a) , 제 1 및 제 2 편광 의존형 렌즈들 (460, 462)을 정렬시킨 후 (도 11의 b), 광경화시켜 제 1 및 제 2 편광 의존형 렌즈들을 합착시키게 된다 (도 11의 c) . 제 1 및 제 2 편광 의존형 렌즈들을 정렬시킴에 있어서, 제 1 및 제 2 편광 의존형 렌즈들의 상 /하부 표면의 기판 필름들을 모두 제거시킴으로써, 계 1 편광 의존형 렌즈의 제 1 렌즈와 제 2 편광 의존형 렌즈의 제 2 렌즈가서로 맞닿도록 접합시키거나, 제 1 편광 의존형 렌즈의 제 1 렌즈 구조체와 제 2 편광 의존형 렌즈의 제 2 렌즈 구조체가서로 맞닿도록 접합시키거나, 계 1 편광 의존형 렌즈의 제 1 렌즈와 제 2 편광 의존형 렌즈의 제 2 렌즈 구조체가서로 맞닿도록  Referring to FIG. 11, first, a UV curable resin 480 is applied to an adhesive surface of one of the first and system 2 polarization dependent lenses 460 and 462 (FIG. 11 a), and the first And aligning the second polarization dependent lenses 460 and 462 (b of FIG. 11), followed by photocuring to bond the first and second polarization dependent lenses (FIG. 11 c). In aligning the first and second polarization dependent lenses, the first and second polarization dependent lenses of the first polarization dependent lens are removed by removing all of the substrate films on the upper and lower surfaces of the first and second polarization dependent lenses. The second lens of the first polarization-dependent lens or the first lens structure of the first polarization-dependent lens and the second lens structure of the second polarization-dependent lens And the second lens structure of the second polarization dependent lens to abut each other.
접합시키거나, 제 편광 의존형 렌즈의 제 1 렌즈 구조체와 제 2 편광 의존형 렌즈의 계 2 렌즈가서로 맞닿도록 접합시킬 수 있다. The first lens structure of the second polarization dependent lens and the second lens of the second polarization dependent lens may be bonded to each other.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로  In the above, with reference to the preferred embodiment of the present invention
설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 웅용이 가능함을 알수 있을 것이다. 그리고, 이러한 변형과응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. Although described, this is merely an example and does not limit the present invention, those skilled in the art to which the present invention belongs without departing from the essential features of the present invention without departing from the various features and modifications of the above various You will see that this is possible. And differences relating to such modifications and applications will be construed as being included in the scope of the invention defined in the appended claims.
【산업상 이용가능성】 Industrial Applicability
본 발명에 따른 가상 이동 렌즈는 다시점 3D 디스플레이에 사용될 수 있다.  The virtual moving lens according to the present invention can be used for a multiview 3D display.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
입사되는 빛의 편광 방향에 따라 렌즈로 구동되도록 구성된 제 1 편광 의존형 렌즈; 및  A first polarization dependent lens configured to be driven by the lens according to the polarization direction of the incident light; And
입사되는 빛의 편광 방향에 따라 렌즈로 구동되도록 구성되며, 상기 제 1 편광 의존형 렌즈의 표면에 적층된 게 2 편광 의존형 렌즈;  A second polarization dependent lens configured to be driven by a lens according to a polarization direction of incident light, and laminated on a surface of the first polarization dependent lens;
를 구비하고 상기 계 1 편광 의존형 렌즈가 렌즈로 구동되는 편광 방향과 상기 제 2 편광 의존형 렌즈가 렌즈로 구동되는 편광 방향은서로 수직이 되도록 구성되어, 입사되는 빛의 편광 방향에 따라상기 제 1 편광 의존형 렌즈와 저 12 편광 의존형 렌즈 중 하나만 렌즈로 구동되도특 구성된 것을 특징으로 하는 가상 이동 렌즈.  And a polarization direction in which the first polarization dependent lens is driven by a lens and a polarization direction in which the second polarization dependent lens is driven by a lens are perpendicular to each other, and according to the polarization direction of incident light, the first polarization A virtual moving lens, characterized in that only one of the dependent lens and the low 12 polarization dependent lens is driven by the lens.
【청구항 2] [Claim 2]
제 1항에 있어서, 상기 제 1 편광 의존형 렌즈의 골과 제 2 편광 의존형 렌즈의 골이 서로 이격되게 배치되어, 입사되는 빛의 편광 방향에 따라 초점 위치가 이동되어 가변되는 것을 특징으로 하는 가상 이동 렌즈.  The virtual movement of claim 1, wherein the valleys of the first polarization-dependent lens and the valleys of the second polarization-dependent lens are arranged to be spaced apart from each other, and the focal position is shifted and varied according to the polarization direction of the incident light. lens.
【청구항 3】 [Claim 3]
제 1항에 있어서ᅳ 상기 계 1 편광 의존형 렌즈는  According to claim 1, wherein the system 1 polarization dependent lens
렌즈의 역상 구조를 갖는 광학적 등방상 고분자로 이루어진 제 1 렌즈 구조체; 및  A first lens structure made of an optically isotropic polymer having an inverse phase structure of the lens; And
계 1 방향으로 배향된 액정상 고분자 물질로 이루어지고 상기 제 1 렌즈 구조체에 형성된 계 1 렌즈;를 구비하고,  A system 1 lens made of a liquid crystalline polymer material oriented in a system 1 direction and formed in the first lens structure;
상기 제 2 편광 의존형 렌즈는,  The second polarization dependent lens,
렌즈의 역상 구조를 갖는 광학적 등방상 고분자로 이루어진 제 2 렌즈 구조체 ; 및  A second lens structure made of an optically isotropic polymer having an inverse phase structure of the lens; And
상기 제 1 방향과 수직인 제 2 방향으로 배향된 액정상 고분자로 이루어지고 상기 제 2 렌즈 구조체에 형성된 제 2 렌즈; 를 구비하고,  A second lens made of a liquid crystalline polymer oriented in a second direction perpendicular to the first direction and formed in the second lens structure; And
상기 제 1 렌즈 및 제 2 렌즈를 구성하는 액정상 고분자의 배향 방향은 서로 수직인 것을 특징으로 하는 가상 이동 렌즈.  The alignment direction of the liquid crystal phase polymer constituting the first lens and the second lens is perpendicular to each other.
【청구항 4】 [Claim 4]
제 3항에 있어서, 상기 제 1 편광 의존형 렌즈는 상기 제 1 렌즈 구조체와 제 1 렌즈의 사이에 액정상 고분자의 배향을 위한 제 1 RM 배향막을 더 구비하고, 상기 제 2 편광 의존형 렌즈는 상기 제 2 렌즈 구조체와 제 2 렌즈의 사이에 액정상 고분자의 배향을 위한 제 2 RM 배향막을 더 구비하는 것을 특징으로 하는 가상 이동 렌즈. The lens of claim 3, wherein the first polarization dependent lens further comprises a first RM alignment layer for the alignment of liquid crystal phase polymer between the first lens structure and the first lens, wherein the second polarization dependent lens comprises: the first polarization dependent lens; And a second RM alignment film for alignment of the liquid crystal phase polymer between the two lens structures and the second lens.
【청구항 5] [Claim 5]
제 1항에 있어서, 상기 가상 이동 렌즈는  The method of claim 1, wherein the virtual moving lens
인가되는 전압을 조절하여 입사광의 편광 방향을 선택적으로 변환시키도톡구성된 편광스위칭부를 더 구비하고,  Further comprising a polarization switching unit configured to selectively convert the polarization direction of the incident light by adjusting the applied voltage,
상기 편광 스위칭부는 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈 중 하나의 표면에 배치되어, 이들로 입사되는 빛의 편광 방향을 제어할 수 있도록 한 것을 특징으로 하는 가상 이동 렌즈.  And the polarization switching unit is disposed on a surface of one of the first polarization dependent lens and the second polarization dependent lens to control the polarization direction of light incident thereto.
【청구항 6】 [Claim 6]
제 1항 내지 제 5항 중 어느 한 항에 있어서, 상기 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈는 1차원 배열의 렌티클라 렌즈로 구성되거나, 2차원 배열의 렌즈로 구성된 것을 특징으로 하는 가상 이동 렌즈.  6. The virtual device according to any one of claims 1 to 5, wherein the first polarization dependent lens and the second polarization dependent lens are composed of a lenticular lens in a one-dimensional array or a lens in a two-dimensional array. Moving lens.
【청구항 7】 [Claim 7]
(a) 렌즈 역상의 구조를 갖는 광학적 둥방상 고분자 물질로 이루어진 계 1 렌즈 구조체내에 제 1 방향으로 배향된 액정상 고분자로 이루어진 제 1 렌즈로 구성된 제 1 편광 의존형 렌즈를 제작하는 단계;  (a) manufacturing a first polarization dependent lens composed of a first lens composed of a liquid crystalline polymer oriented in a first direction in a system one lens structure composed of an optically circular polymer material having a lens reverse phase structure;
(b) 렌즈 역상의 구조를 갖는 광학적 등방상 고분자 물질로 이루어진 겨 12 렌즈 구조체내에 제 2 방향으로 배향된 액정상 고분자로 이루어진 제 2 렌즈로 구성된 제 2 편광 의존형 렌즈를 제작하는 단계;  (b) fabricating a second polarization dependent lens composed of a second lens composed of a liquid crystalline polymer oriented in a second direction in a twelfth lens structure composed of an optically isotropic polymer material having a lens reverse phase structure;
(c) 게 1 편광 의존형 렌즈의 표면에 광경화성 수지를 도포하는 단계 ; (c) applying a photocurable resin to the surface of the crater 1 polarization dependent lens;
(d) 상기 광경화성 수지가 도포된 표면에 제 2 편광 의존형 렌즈를 정렬하여 배치한 후, 상기 광경화성 수지를 광경화시켜 제 1 편광 의존형 렌즈와 제 2 편광 의존형 렌즈를 접착시키는 단계; (d) arranging and arranging a second polarization dependent lens on the surface to which the photocurable resin is applied, and then bonding the first polarization dependent lens to the second polarization dependent lens by photocuring the photocurable resin;
를 구비하고, 상기 제 1 방향과 제 2 방향은 서로 수직인 것을 특징으로 하는 가상 이동 렌즈 제작 방법 .  And a first direction and a second direction are perpendicular to each other.
【청구항 8】 [Claim 8]
계 7항에 있어서, 상기 가상 이동 렌즈 제작 방법은  The method of claim 7, wherein the virtual moving lens manufacturing method
(e) 계 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈로 입사되는 광의 편광 방향을 선택하기 위한 편광 스위칭부를 제작하여 상기 제 1 편광 의존형 렌즈 및 제 2 편광 의존형 렌즈 중 하나의 표면에 배치하는 단계;를 더 구비하는 것을 특징으로 하는 가상 이동 렌즈 제작 방법 .  (e) manufacturing a polarization switching unit for selecting a polarization direction of light incident on the first polarization dependent lens and the second polarization dependent lens and disposing the polarization switching unit on a surface of one of the first polarization dependent lens and the second polarization dependent lens; Method of manufacturing a virtual moving lens, characterized in that it further comprises.
【청구항 9】 [Claim 9]
제 7항에 있어서, 상기 (a) 단계는,  The method of claim 7, wherein the step (a),
(al) 기판위에 광학적 등방상 고분자층을 형성하는단계;  (al) forming an optically isotropic polymer layer on the substrate;
(a2) 상기 광학적 등방상 고분자층에 렌즈 형상의 스램프를 임프린팅하고 광경화시켜 광학적 등방상 고분자층의 상부 표면에 렌즈 역상의 구조를 갖는 제 1 렌즈 구조체를 완성하는 단계; (a2) imprinting a lens-shaped ramp on the optically isotropic polymer layer Photocuring to complete a first lens structure having a lens reverse phase structure on an upper surface of the optically isotropic polymer layer;
(a3) 액정상 고분자를 제 1 방향으로 배향시키기 위한 RM 배향막을 상기 제 1 렌즈 구조체의 임프린팅된 표면에 형성하고 제 1 방향을 따라 러빙하는 단계 ;  (a3) forming an RM alignment layer on the imprinted surface of the first lens structure to align the liquid crystal phase polymer in the first direction and rubbing along the first direction;
(a4) 제 1 렌즈 구조체의 상부에 추가의 러빙된 RM 배향막이 형성된 필름 기판을 덮는 단계;  (a4) covering the film substrate on which the additional rubbed RM alignment layer is formed on top of the first lens structure;
(a5) RM 배향막과추가의 RM 배향막에 의해 형성된 제 1 렌즈 구조체의 내부에 액정상 고분자를 주입시킨 후 경화시켜, 렌즈 형상의 액정상 고분자로 이루어진 제 1 렌즈를 형성하는 단계 ;  (a5) injecting and curing the liquid crystal phase polymer into the first lens structure formed by the RM alignment layer and the additional RM alignment layer to form a first lens made of a lens-like liquid crystal phase polymer;
(a6) 상기 추가의 RM 배향막이 형성된 필름 기판을 분리하여 제거하는 단계;  (a6) separating and removing the film substrate on which the additional RM alignment layer is formed;
를 구비하여 제 1 편광의존형 렌즈를 제작하는 것을 특징으로 하는 가상 이동 렌즈 제작 방법.  And a first polarization dependent lens to manufacture a virtual moving lens.
【청구항 10】 [Claim 10]
제 9항에 있어서, 상기 (a3) 단계는,  The method of claim 9, wherein step (a3) comprises:
렌즈 역상의 구조를 갖는 제 1 렌즈 구조체의 임프린팅된 표면에 UV 오존처리를 하여 친수성화시킨 후, 친수성화된 표면에 RM 배향막을 형성하는 것을 특징으로 하는 가상 이동 렌즈 제작 방법 .  A method of fabricating a virtual moving lens, characterized in that an imprinted surface of a first lens structure having a reverse lens structure is subjected to UV ozone treatment to be hydrophilized to form an RM alignment layer on the hydrophilized surface.
【청구항 111 [Claim 111]
계 7항에 있어서, 상기 (d) 단계는 제 1 편광 의존형 렌즈의 골과 제 2 편광 의존형 렌즈의 골이 서로 이격되도록 정렬시키는 것을 특징으로 하는 가상 이동 렌즈 제작 방법.  The method of claim 7, wherein step (d) comprises arranging the valleys of the first polarization-dependent lens and the valleys of the second polarization-dependent lens to be spaced apart from each other.
【청구항 12] [Claim 12]
거 19항에 있어서, 상기 제 1 편광 의존형 렌즈를 완성한 후, 상기 기판을 제거하는 단계를 더 구비하는 것을 특징으로 하는 가상 이동 렌즈 제작 방법 .  20. The method of claim 19, further comprising removing the substrate after completing the first polarization dependent lens.
[청구항 13】 [Claim 13]
제 7항에 있어서, 상기 (d) 단계는,  The method of claim 7, wherein step (d),
저 U 편광 의존형 렌즈의 액정상 고분자 (RM)면과 제 2 편광 의존형 렌즈의 M면이 서로 맞닿도록 접합시키거나,  The liquid crystal phase polymer (RM) surface of the low U polarization dependent lens and the M surface of the second polarization dependent lens are bonded to each other,
제 1 편광 의존형 렌즈의 등방상 고분자면과 제 2 편광 의존형 렌즈의 등방상고분자면이 서로 맞닿도록 접합시키거나,  Bonding the isotropic polymer surface of the first polarization dependent lens and the isotropic polymer surface of the second polarization dependent lens to be in contact with each other;
제 1 편광 의존형 렌즈의 M 면과 제 2 편광 의존형 렌즈의 등방상 고분자면이서로 맞닿도록 접합시키거나,  M surface of the first polarization dependent lens and the isotropic polymer surface of the second polarization dependent lens are bonded to each other,
제 1 편광 의존형 렌즈의 등방상 고분자면과 제 2 편광 의존형 렌즈의 RM면이 서로 맞닿도록 접합시키는 것을 특징으로 하는 가상 이동 렌즈 제작 방법 Of the isotropic polymer surface of the first polarization dependent lens and the second polarization dependent lens Method of manufacturing a virtual moving lens characterized in that the RM surface is bonded to abut each other
PCT/KR2017/011387 2016-11-14 2017-10-16 Virtual moving lens and manufacturing method therefor WO2018088706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160151110A KR20180053936A (en) 2016-11-14 2016-11-14 Virtual movement lens for 3D display and fabrication method thereof
KR10-2016-0151110 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088706A1 true WO2018088706A1 (en) 2018-05-17

Family

ID=62109899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011387 WO2018088706A1 (en) 2016-11-14 2017-10-16 Virtual moving lens and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20180053936A (en)
WO (1) WO2018088706A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295726B1 (en) * 2019-11-26 2021-08-31 한양대학교 산학협력단 Optical Device, Method for Operating and Manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005182086A (en) * 2005-03-08 2005-07-07 Seiko Epson Corp Method for manufacturing electrooptical device
JP2005208644A (en) * 2004-01-21 2005-08-04 Sharp Corp Optical system, light source, projection display and direct-viewing display
KR20140003313A (en) * 2012-06-29 2014-01-09 엘지디스플레이 주식회사 Stereoscopic image display device and method for driving the same
KR20140140661A (en) * 2013-05-29 2014-12-10 경북대학교 산학협력단 Structure and fabrication method of the polarization dependent lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208644A (en) * 2004-01-21 2005-08-04 Sharp Corp Optical system, light source, projection display and direct-viewing display
JP2005182086A (en) * 2005-03-08 2005-07-07 Seiko Epson Corp Method for manufacturing electrooptical device
KR20140003313A (en) * 2012-06-29 2014-01-09 엘지디스플레이 주식회사 Stereoscopic image display device and method for driving the same
KR20140140661A (en) * 2013-05-29 2014-12-10 경북대학교 산학협력단 Structure and fabrication method of the polarization dependent lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SON, KI-BEOM ET AL.: "Polarization-Dependent Microlens Array Using Reactive Mesogen Aligned by Top-Down Nanogrooves for Switchable Three-Dimensional Applications", JOURNAL OF THE OPTICAL SOCIETY OF KOREA, vol. 19, no. 3, June 2015 (2015-06-01), pages 265 - 271, XP055486186, ISSN: 1226-4776 *

Also Published As

Publication number Publication date
KR20180053936A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
KR101122199B1 (en) 2D-3D switchable autostereoscopic display apparatus
JP4725654B2 (en) Lens array device and image display device
JP5022964B2 (en) 3D image display apparatus and 3D image display method
TWI417575B (en) Electrically-driven liquid crystal lens and stereoscopic display using the same
CN109328312B (en) Active lens structure and method for manufacturing the same
US20120268816A1 (en) Fresnel lens structure and 2d/3d image switching display apparatus using the same
JP2006079097A (en) Method and apparatus for manufacturing 3d image display
US8836873B2 (en) Display devices and methods of manufacturing the same
KR101495758B1 (en) Structure and fabrication method of the polarization dependent lens
TW200900827A (en) Beam-shaping device
WO2016086483A1 (en) Display capable of switching between 2d and 3d modes, and control method therefor
KR102207192B1 (en) Polarizing Control Film and Stereoscopic Display Device Using the Same
TWI417584B (en) Method for forming a microretarder film
TWI481907B (en) Panel acting as active retarder, method of fabricating the same, and 3-dimensional stereoscopic image displayable system including the panel
CN108206902B (en) Light field camera
KR102457205B1 (en) Polarizing Control Panel, Method for Manufacturing the Same, and Stereoscopic Display Device Using the Same
WO2018088706A1 (en) Virtual moving lens and manufacturing method therefor
KR102080488B1 (en) Panel acting as active retarder and method of fabricating the same, and 3 dimensional stereography image displayable system including the panel
KR101373200B1 (en) Optical film, sub pannel and three dimensinaol image display having the same
KR101866193B1 (en) Bi-focal gradient index lens and method for fabricating the lens
TW201333534A (en) Lenticular means for an autostereoscopic display apparatus, autostereoscopic display apparatus, and method of manufacturing same
KR102512629B1 (en) 3d display apparatus
KR102315964B1 (en) Polarizing Control Film and Stereoscopic Display Device Using the Same
KR101974961B1 (en) 3D image display device and driving method for the same
JP2013509607A (en) Multi-view display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869922

Country of ref document: EP

Kind code of ref document: A1