WO2018088567A1 - Heat caulking device and heat caulking method - Google Patents

Heat caulking device and heat caulking method Download PDF

Info

Publication number
WO2018088567A1
WO2018088567A1 PCT/JP2017/040892 JP2017040892W WO2018088567A1 WO 2018088567 A1 WO2018088567 A1 WO 2018088567A1 JP 2017040892 W JP2017040892 W JP 2017040892W WO 2018088567 A1 WO2018088567 A1 WO 2018088567A1
Authority
WO
WIPO (PCT)
Prior art keywords
caulking
horn
lens
pressing
axis
Prior art date
Application number
PCT/JP2017/040892
Other languages
French (fr)
Japanese (ja)
Inventor
典光 永山
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018088567A1 publication Critical patent/WO2018088567A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a thermal caulking device and a thermal caulking method.
  • Priority is claimed on Japanese Patent Application No. 2016-221480, filed Nov. 14, 2016, the content of which is incorporated herein by reference.
  • Thermal caulking is used when assembling various members.
  • thermal caulking may be used (see Patent Document 1).
  • a lens frame in which a lens is inserted is fixed to a fixing jig.
  • the pressing member heated by the heater head is pressed by the lens frame.
  • the crimped portion of the lens frame is bent along the surface of the lens, so the lens is thermally caulked to the lens frame.
  • a movable gap may be provided between the lens and the inner peripheral surface of the lens frame. In this case, for example, as described in Patent Document 2, after the position of the lens is adjusted in the range of the gap, heat caulking is performed.
  • the prior art as described above has the following problems.
  • the lens when fixing the lens to the lens frame by thermal caulking, if the contact position of the pressing member with respect to the caulking portion is shifted, the deformation of the caulking portion becomes uneven in the circumferential direction.
  • the pressing force acting on the lens from the caulking portion during thermal caulking also varies in the circumferential direction.
  • the lens may move within the lens frame, or the lens holding power by the crimped portion after curing may vary in the circumferential direction.
  • the amount of eccentricity may increase and the optical characteristics may deteriorate.
  • the holding power varies in the circumferential direction
  • the pressing force from the caulking portion varies in the circumferential direction
  • lens distortion is likely to occur at a portion where the pressing force is large, and the production yield may be reduced due to the optical characteristic failure.
  • the position of the lens with respect to the optical axis is fixed by the pressing member during heat caulking as in the technique described in Patent Document 2, movement during heat caulking can be prevented.
  • thermal crimping is performed with the lens held at a position where the lens is decentered with respect to the center of the lens frame, the contact state of the crimped portion with respect to the lens will vary in the circumferential direction. Therefore, variations in holding power and lens distortion can not be eliminated.
  • the lens fixing position must be shifted from the center of the lens frame and fixed so that manufacturing errors of the lens and lens frame can be corrected in order to increase manufacturing yield. There is. In this case, since the fixed position of the lens needs to be precisely aligned with the target position, it takes a lot of adjustment time even if it has the adjusting mechanism. This increases the manufacturing cost.
  • the present invention has been made in view of the problems as described above, and it is preferable that the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame be thermally caulked uniformly in the circumferential direction It is an object of the present invention to provide a thermal caulking device and a thermal caulking method that are easier.
  • the heat caulking device of the 1st mode of the present invention is arranged so that the frame part which an assembly member can insert, and the inner skin of the frame may be surrounded by thermoplastic resin. And a holder for holding the assembly frame having the formed protrusion, and the holder is provided so as to be movable relative to the holder in the axial direction along the first axis, and the protrusion is provided at the tip.
  • a caulking horn having a caulking pressing surface for applying a pressing force capable of bending the protuberance to the inside of the frame when the coping portion can be heated and relatively moved in a direction approaching the holding table;
  • the holding base and the caulking horn such that the holding base on which the assembly frame is held and the caulking horn can be relatively moved in the axial perpendicular direction by a component in a direction perpendicular to the first axis.
  • Less of Also comprises a slide support for supporting one.
  • the slide support portion includes a first substrate for fixing the holding table, a second substrate facing the first substrate in the axial direction, and the second substrate in the axial direction. And a slide moving unit that slidably supports the first substrate relative to two substrates.
  • an axial driving portion for relatively moving the caulking horn and the holding base in the axial direction, a force component in a direction perpendicular to the axis received by the caulking horn or the holding base, the caulking horn and the holding
  • a control unit that controls the operation of the axial drive unit, and the slide support unit is configured to detect the pressing force when the pressing force is released.
  • control unit drives the axial direction drive unit to hold the crimp horn and the holding. And the contact operation for bringing the pressing surface for crimping and the protruding portion into contact with each other in the axial direction, and the pressing surface for crimping and the protrusion being contacted by the contact state detection unit.
  • the separation operation for moving the crimping horn and the holding base away from each other, and after the separation operation, the crimping horn and the holding base Are made close to each other in the axial direction, and the pressing operation is performed to press the protrusion by the pressing surface for caulking, and in the pressing operation, the relative movement limit is reached based on the information of the contact state detection unit And the separation operation, the pressing operation, and the pressing operation, when it is determined in the determination operation that the relative movement limit has not been reached.
  • the axial driving unit is driven to thermally caulk the projection, thereby driving the caulking horn and the holding base in the axial direction. And may be closer to each other.
  • control unit further controls the temperature of the caulking pressing surface, and until it is determined that the relative movement limit is reached, the glass transition of the material of the protruding portion is performed until the temperature reaches the relative movement limit.
  • the temperature may be controlled to be higher than the glass transition temperature Tg after the temperature is controlled to be lower than the temperature Tg and it is judged that the relative movement limit is reached.
  • a thermal caulking method is a thermal caulking method for thermally caulking the caulking assembly by pressing the caulking horn in a heated state to the caulking assembly held by the holding table.
  • the assembling is performed on the frame portion of the assembly frame having a frame portion into which the attachment member can be inserted, and a projecting portion which is disposed so as to surround the inner peripheral surface of the frame portion and is formed of a thermoplastic resin.
  • the caulking assembly into which the member is inserted is provided so as to be relatively movable with respect to the holder in the axial direction along the first axis, and the protrusion can be heated at the tip and the holder Preparing a caulking horn having a caulking pressing surface for applying a pressing force capable of bending the protuberance to the inside of the frame when moving relatively to a direction approaching c.
  • the holding stand and the front Making at least one of the crimping horns relatively movable in the axis-perpendicular direction by the component in the direction perpendicular to the first axis in the pressing force and allowing relative movement of the holding base and the crimping horn; And relatively moving the holding base closer to each other in the axial direction, pressing the caulking pressing surface against the projection to align the relative positions of the caulking horn and the holding base in the direction perpendicular to the axis After the relative positions of the crimp horn and the holder in the direction perpendicular to the axis are aligned, the crimp horn in the heated state and the holder are further moved relative to each other in the axial direction so as to approach the protrusion Heat caulking the protuberance to the assembly member.
  • to align the relative positions of the caulking horn and the holder in the direction perpendicular to the axis means that the caulking horn and the holder are brought close to each other in the axial direction, and the pressing surface for caulking After the contact operation for bringing the protruding portion and the protruding portion into contact with each other and the protruding portion and the pressing surface for crimping contact each other, the crimping horn and the protruding portion are separated from each other.
  • the positioning causes the temperature of the caulking pressing surface to be less than the glass transition temperature Tg of the material of the projecting portion until it is determined that the relative movement limit is reached.
  • Heat staking may include making the temperature equal to or higher than the glass transition temperature Tg after it is determined that the relative movement limit has been reached.
  • the heat caulking device and the heat caulking method of the present invention it becomes easier to uniformly heat caulk the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame in the circumferential direction .
  • FIG. 1 is a schematic front view showing an example of a thermal caulking device according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of portions A1, A2, B1 and B2 in FIG.
  • FIG. 3A and FIG. 3B are schematic cross-sectional views showing an example of the slide support portion of the thermal caulking device of the embodiment of the invention.
  • Each drawing is a schematic drawing, and the shape and size are exaggerated (the same applies to the following drawings).
  • the thermal caulking device 10 of the present embodiment shown in FIG. 1 fixes the assembling member to the assembling frame by thermally caulking the assembling frame into which the assembling member of an appropriate shape is inserted.
  • the shape of the assembly frame is as long as it has a frame portion into which the assembling member can be inserted, and a projecting portion disposed so as to surround the inner peripheral surface of the frame portion and formed of a thermoplastic resin.
  • the inner peripheral surface of the frame portion can have various tubular shapes.
  • the inner circumferential surface of the frame may have a cylindrical shape, a cylindrical shape having a polygonal cross section, or the like.
  • the assembly member is a lens and the assembly frame is a lens frame will be described.
  • the thermal caulking device 10 as shown in FIG. 1, comprises a base 1 that supports the entire device.
  • the thermal caulking device 10 includes a lens frame holding portion 6 (holding base), a slide supporting portion 7, a supporting portion 2, a pressing portion 3 (axial direction driving portion), a heating portion 4, and a horn portion 5 (crimping horn) ).
  • the lens frame holding portion 6 is a device for holding the assembly 53 (assembly for caulking) as shown in FIG.
  • the assembly 53 is configured by inserting the first lens 51 (assembly member) into the lens frame 52 (assembly frame).
  • the assembly 53 is held by the lens frame holding portion 6 so that a heat caulking protrusion 52B (a protrusion) of the lens frame 52 described later is directed upward.
  • the holding central axis H of the lens frame holding portion 6 is parallel to a reference axis Z (first axis) of the thermal caulking device 10 extending in the vertical direction.
  • a direction along the axis is an axial direction
  • a circumferential direction is a circumferential direction
  • a direction along a line intersecting the axis in a plane orthogonal to the axis is referred to as a radial direction.
  • the direction along the optical axis may be referred to as the optical axis direction.
  • a region farther from the axis with respect to the reference position may be referred to as a radially outer side, and a region closer to the axis may be referred to as a radially inner side.
  • the first lens 51 has a first lens surface 51 a and a second lens surface 51 b.
  • a lens side surface 51c which is a cylindrical surface coaxial with the optical axis O1 is formed on an outer peripheral portion between the first lens surface 51a and the second lens surface 51b.
  • the shapes of the first lens surface 51a and the second lens surface 51b are not particularly limited, and, for example, appropriate surface shapes such as a spherical surface, an aspheric surface, a free curved surface, and a flat surface can be adopted.
  • the shapes of the first lens surface 51a and the second lens surface 51b may be any of a convex surface, a flat surface, and a concave surface. Furthermore, the first lens 51 may have a shape having a flange at its outer peripheral portion. In the following, as an example, the first lens surface 51a of the first lens 51 is a convex spherical surface, and the second lens surface 51b of the first lens 51 is a plano-convex lens having a flat surface.
  • the material of the first lens 51 may be glass or synthetic resin, as long as it can be thermally crimped.
  • the glass lens may be a polished lens or a glass molded lens.
  • the lens frame 52 is a member to which the first lens 51 is fixed by performing a thermal caulking method of the present embodiment described later in a state in which the first lens 51 is accommodated.
  • 1 and 2 show the shape of the lens frame 52 before heat caulking.
  • a second lens (not shown, the same applies hereinafter) is fixed to the lens frame 52.
  • the second lens is disposed on the lens frame 52 after the thermal swaging of the first lens 51 is completed.
  • the shape of the lens surface of the second lens is not limited, but the second lens has a cylindrical lens side surface.
  • the outer diameter of the lens side surface of the second lens is larger than the outer diameter of the lens side surface 51c.
  • the horn 5 to be described later may be replaced with another horn corresponding to the shape of the second lens and the shape of the protruding portion for fixing the second lens. Good.
  • a first outer frame 52a, a step 52b, and a second outer frame 52c are provided on the outer periphery of the lens frame 52.
  • the first outer frame 52a, the step 52b, and the second outer frame 52c are arranged in this order in the axial direction of the lens frame 52.
  • the end where the first outer frame 52a is located is the first end E1
  • the end where the second outer frame 52c is located is the second end E2.
  • the position closer to the second end E2 is the upper position than the first end E1 based on the disposition attitude to the lens frame holding portion 6 May be referred to as the lower side.
  • the first outer frame portion 52 a is a cylindrical member having a diameter larger than that of the first lens 51.
  • the central axis of the outer peripheral surface of the first outer frame portion 52 a defines the central axis C of the lens frame 52.
  • the inner diameter of the inner peripheral surface of the first outer frame portion 52a is smaller at the end on the upper side than the outer diameter of the second lens and larger than the lens effective diameter of the second lens.
  • a bottom surface 52d extends radially inward inside the first outer frame 52a at the first end E1.
  • a through hole 52e passes through the central portion of the bottom surface portion 52d.
  • the inner diameter of the through hole 52 e is smaller than the outer diameter of the first lens 51 and larger than the lens effective diameter of the first lens 51.
  • a first inner frame portion 52f is provided upright on the surface of the bottom surface portion 52d on the second end E2 side.
  • the first inner frame portion 52 f is a frame portion for inserting the first lens 51.
  • the first inner frame portion 52f includes an inner frame main body 52A and a thermal caulking protrusion 52B in this order from the bottom surface portion 52d side.
  • the inner frame main body 52 ⁇ / b> A detachably fits the first lens 51.
  • the inner circumferential surface 52g of the inner frame main body 52A is a cylindrical surface slightly smaller in diameter than the outer diameter of the lens side surface 51c. Thereby, the inner frame main body 52A positions the first lens 51 in the radial direction in the lens frame 52.
  • the protruding height of the inner frame main body 52A from the bottom surface 52d is substantially the same (including the same case) as the length of the lens side surface 51c in the axial direction.
  • the upper surface of the bottom surface portion 52d inside the inner frame main body 52A constitutes a lens receiving surface for positioning the first lens 51 inserted in the inner frame main body 52A in the direction along the central axis C.
  • the thermal caulking projection 52B is a thermal caulking device that is thermally caulked by the thermal caulking device 10 in order to fix the first lens 51 to the first inner frame 52f.
  • the thermal caulking projections 52B are formed of a thermoplastic resin that can be thermally caulked.
  • the entire lens frame 52 is formed of a thermoplastic resin.
  • the lens frame 52 may be manufactured by resin molding or cutting. However, if the thermal caulking projections 52B and the thermal caulking projections 52D to be described later are formed of a thermoplastic resin capable of thermal caulking, the other parts of the lens frame 52 may be formed of different materials. Good.
  • the lens frame 52 is formed by resin molding
  • an appropriate draft can be provided depending on the mold structure of the mold.
  • a shape in which the draft required for forming is ignored is described.
  • a conical surface is also included, which should be called a conical surface strictly because of the draft.
  • the thermal caulking projection 52B protrudes in the direction along the central axis C from the upper end of the inner frame main body 52A.
  • the thermal caulking projection 52 ⁇ / b> B may be configured of, for example, a plurality of projections (protrusions) separated in the circumferential direction.
  • the plurality of protrusions may be formed at positions at the upper end portion of the inner frame main body 52A to equally divide the circumferential direction.
  • the thermal caulking protrusion 52 B is a cylindrical protrusion that is continuous in the circumferential direction.
  • the thermal caulking projections 52B which are bent when thermal caulking, contact the first lens 51 evenly throughout the circumferential direction.
  • the stress due to the bent thermal caulking protrusion 52B coming into contact with the first lens 51 is dispersed.
  • the first lens 51 fixed by the thermal caulking protrusion 52B formed of a cylindrical protrusion continuous in the circumferential direction deterioration of the optical characteristics due to lens distortion is reduced.
  • the inner diameter of the inner circumferential surface 52i of the thermal caulking protrusion 52B may be the same as the inner diameter of the inner circumferential surface 52g, as shown in FIG. However, the inner diameter of the inner circumferential surface 52i may be larger than the inner diameter of the inner circumferential surface 52g.
  • the inner peripheral surface 52i may be a tapered surface which is inclined radially outward from the lower end to the upper end. In this case, the insertion of the first lens 51 becomes easier.
  • the outer peripheral surface 52j of the thermal caulking protrusion 52B may be connected to the outer peripheral surface of the inner frame main body 52A without any level difference, as shown in FIG.
  • outer circumferential surface 52 j may have a step with respect to the outer circumferential surface of the inner frame main body 52 ⁇ / b> A.
  • the outer peripheral surface 52 j may be a tapered surface which inclines inward in the radial direction from the lower end to the upper end as in the example shown in FIG. 2.
  • the thickness in the radial direction of the thermal caulking projection 52B is thinner than the thickness in the radial direction of the inner frame main body 52A.
  • the protruding height of the thermal caulking protuberance 52B from the inner frame main body 52A is such that a caulking margin necessary for thermal caulking can be secured, and in the state of being bent after thermal caulking, the first lens surface 51a The size is set outside the lens effective area.
  • the tip end surface 52 h in the protrusion direction of the thermal caulking protrusion 52 B is a plane orthogonal to the central axis C.
  • the first inner frame portion 52f in the present embodiment is formed in a cylindrical shape as a whole.
  • the inner diameter of the inner peripheral surface 52g of the first inner frame portion 52f has a size that allows the first lens 51 to be detachably fitted.
  • the gap between the inner circumferential surface 52 g and the lens side surface 51 c of the first lens 51 is more preferably smaller than the allowable eccentric error of the first lens 51.
  • An annular gap is formed between the first inner frame portion 52 f and the first outer frame portion 52 a as viewed in the axial direction. The size of the gap is such that the tip of the horn 5 described later can be inserted.
  • the stepped portion 52 b is a plate-like portion that protrudes outward in the radial direction from the upper end of the first outer frame 52 a.
  • a second inner frame 52k is provided upright on the surface of the step 52b on the second end E2 side.
  • the second inner frame portion 52k is a frame portion for inserting the second lens.
  • the second inner frame portion 52k includes an inner frame main body 52C and a thermal caulking protrusion 52D in this order from the step 52b side.
  • the inner frame main body 52C is configured in the same manner as the inner frame main body 52A in the first inner frame portion 52f, except that the shape and the arrangement position are changed to hold the second lens, and the protrusion for thermal caulking 52D is comprised similarly to projection part 52B for heat caulking. That is, the inner frame main body 52 ⁇ / b> C positions the second lens in the radial direction in the lens frame 52 by detachably fitting the second lens.
  • the inner circumferential surface 52m is a cylindrical surface slightly smaller in diameter than the outer diameter of the second lens.
  • the surface of the stepped portion 52b inside the inner frame main body 52C constitutes a lens receiving surface for positioning the second lens inserted in the inner frame main body 52C in the direction along the central axis C.
  • the thermal caulking projections 52D are projections made of thermoplastic resin that are thermally caulked by the thermal caulking device 10 in order to fix the second lens to the second inner frame 52k.
  • the shape of the horn used is different from that of the horn 5 shown in FIG.
  • a second outer frame portion 52c is erected at the outer edge of the step 52b.
  • the second outer frame portion 52c is a cylindrical member larger in diameter than the second outer frame portion 52c.
  • the outer peripheral surface of the second outer frame portion 52c is coaxial with the central axis C.
  • the protruding height of the second outer frame portion 52c is set to an appropriate height according to, for example, the lens thickness of the second lens. In the example shown in FIG. 1, the height of the second outer frame portion 52c is higher than the height of the second inner frame portion 52k.
  • An annular gap is formed between the second outer frame portion 52c and the second inner frame portion 52k as viewed in the axial direction. The size of this gap is such that it can be inserted into the tip of the horn for heat crimping the second lens.
  • the arrangement positions of the first inner frame portion 52f and the second inner frame portion 52k in the radial direction are determined such that the first lens 51 and the second lens can be arranged in the positional relationship necessary for design. ing.
  • the first inner frame portion 52f is arranged such that the optical axis O1 and the optical axis of the second lens are deviated by the necessary decentering amount in design.
  • the placement position of is determined.
  • the arrangement position of the first inner frame 52f is determined so as to be coaxial with the optical axis O1 and the optical axis of the second lens.
  • the lens unit it may be known that a substantially constant decentration error occurs in the lens unit or a part of the lens frame for manufacturing reasons. In this case, it may be more economical to shift the position of the specific lens in the direction of reducing the decentering error of the lens unit rather than reducing the manufacturing error of each member causing the decentering error. Such correction may be effective particularly for a lens unit that requires high precision optical characteristics. For this reason, even in the case of a lens frame of a coaxial optical system, there are cases where the central axis of the frame portion holding each lens is not coaxial.
  • the central axis C2 of the inner peripheral surface 52m of the second inner frame 52k is coaxial with the central axis C.
  • the central axis C1 of the inner circumferential surface 52i of the first inner frame portion 52f is offset by ⁇ from the central axis C1 (see FIG. 2).
  • the amount of eccentricity ⁇ and the direction of eccentricity of the central axis C1 are set to values for correcting an eccentricity error due to a manufacturing error generated by the member of the lens unit.
  • the amount of eccentricity ⁇ and the decentered direction may be set to design values in the decentered optical system.
  • the lens frame holding portion 6 holds the outer peripheral surface of the first outer frame portion 52a of the lens frame 52 described above from the side and the lower surface of the bottom surface portion 52d from the lower side.
  • the lens frame holding portion 6 is disposed on the base 1 via the slide support portion 7.
  • the slide support portion 7 supports the lens frame holding portion 6 so as to be movable in a direction orthogonal to the reference axis Z (hereinafter, referred to as a direction perpendicular to the axis).
  • the slide support portion 7 is an axis of a minute pressing force that acts from the contact portion with the thermal caulking protrusion 52B when the horn portion 5 described later is lowered with a pressing force lower than the pressing force at the time of thermal caulking.
  • a configuration is used in which the lens frame holding portion 6 moves in the direction perpendicular to the axis by the perpendicular direction component.
  • the slide support 7 includes, for example, a first substrate for fixing the lens frame holding portion 6, a second substrate facing the first substrate in the direction along the reference axis Z, and a second substrate in a direction perpendicular to the axis.
  • a configuration including a slide moving unit that slidably supports the first substrate with respect to the substrate may be used.
  • the slide moving portion various bearing structures in which the friction force acting between at least one of the first substrate and the second substrate is a low friction can be used.
  • the slide support portion 7 include an example of a compliance device movable in the XY axis direction, an XY stage from which a drive mechanism (micrometer head, tension spring, etc.) is removed, and the like.
  • a compliance module SHM62S (trade name; manufactured by Koganei Co., Ltd.) and the like can be mentioned.
  • FIG. 3A shows the slide support 7 in the neutral position when no external force in the direction perpendicular to the axis acts.
  • FIG. 3B shows a state in which an external force f in a direction perpendicular to the axial direction acts on the slide support 7 via a fixing portion with the lens frame holding portion 6 and slides.
  • the slide support 7 includes a first plate 7a (first substrate), a second plate 7f (second substrate), and rolling elements 7e (slide moving unit).
  • the first plate 7a is a substantially flat member in which the wall 7d is protruded from the lower surface of the outer peripheral portion of the flat plate.
  • the lower surface surrounded by the wall portion 7d constitutes a guide surface 7c for guiding the rolling of a rolling element 7e described later.
  • the guide surface 7c and the back surface 7b of the guide surface 7c are parallel to each other.
  • the lower surface of the lens frame holding portion 6 can be fixed to the surface 7 b.
  • the second plate 7 f is a substantially flat member in which the wall 7 i is projected on the upper surface of the outer peripheral portion of the flat plate.
  • the upper surface surrounded by the wall portion 7i constitutes a guide surface 7h for guiding the rolling of a rolling element 7e described later.
  • the guide surface 7h and the back surface 7g of the guide surface 7h are parallel to each other.
  • the surface 7 g is fixed to the upper surface of the base 1 of the thermal caulking device 10.
  • the plan view shape of the first plate 7a and the second plate 7f may be rectangular or circular. In the example shown to FIG. 3A, the planar view shape of the 1st plate 7a and the 2nd plate 7f is mutually identical.
  • a highly rigid material such as metal is used as a material of the first plate 7a and the second plate 7f.
  • the protruding heights of the walls 7d and 7i may be different from each other, but the protruding heights are constant in each other. The sum of the projection heights of the wall portions 7d and 7i is less than the diameter of the rolling element 7e described later.
  • the rolling element 7e is a highly rigid ball having a diameter exceeding the sum of the projecting heights of the wall portions 7d and 7i.
  • a steel ball or the like may be used as the rolling element 7e.
  • a plurality of rolling elements 7e are provided apart from each other in a state of being sandwiched by the guide surfaces 7c and 7h.
  • cages may be disposed between the plurality of rolling elements 7e so as to hold the rolling elements 7e in a rollable manner and to restrict the arrangement interval between the rolling elements 7e.
  • the plurality of rolling elements 7e sandwiched between the guide surface 7c of the first plate 7a and the guide surface 7h of the second plate 7f roll to form the second plate 7f.
  • the first plate 7a is movable in a direction perpendicular to the axis. Since the first plate 7a receives only rolling friction by the rolling elements 7e, it can move in the direction perpendicular to the axis even if the external force f acting in the direction perpendicular to the axis is minute.
  • the slide support 7 has a lock mechanism that locks the first plate 7a and the second plate 7f so that they do not move in the direction perpendicular to each other.
  • the first plate 7a is fixed at the neutral position by bringing the lock mechanism into the locked state.
  • the lock mechanism By unlocking the lock mechanism, the first plate 7a can be moved in the direction perpendicular to the second plate 7f only by the application of a minute external force f in the direction perpendicular to the axis.
  • the lock mechanism may be configured to be operated directly by the operator, or may be operated under control of the control unit 11 described later by the operator performing an operation input on the operation unit 12 described later.
  • the support unit 2 is an apparatus that arranges a pressing unit 3, a heating unit 4, and a horn unit 5 which will be described later, above the lens frame holding unit 6.
  • the support portion 2 includes a plurality of columns erected on the base 1 and an upper structure such as a beam, a flat plate and the like installed between the columns.
  • the pressing unit 3 is a device that generates a pressing force for pressing the thermal caulking protrusion 52B.
  • the pressing unit 3 includes a motor (not shown) as a drive source, and a load cell that detects a load received in the axial direction to detect a pressing force.
  • the load cell may constitute a part of the contact state detection unit 8 described later.
  • the upper end portion of the pressing portion 3 is connected to the upper structure of the support portion 2.
  • a heating unit 4 described later is connected to the lower end of the pressing unit 3.
  • the lower end portion of the pressing portion 3 can be advanced and retracted along the reference axis Z by a drive source (not shown).
  • the heating unit 4 is a device for heating the thermal caulking protrusion 52B via the horn unit 5 described later.
  • the upper portion of the heating unit 4 is fixed to the lower end portion of the pressing unit 3. Therefore, the heating unit 4 is supported by the moving mechanism included in the pressing unit 3 so as to be movable along the reference axis Z.
  • a horn unit 5 described later is fixed to the lower surface side of the heating unit 4.
  • the specific structure of the heating part 4 can employ
  • the heating unit 4 when heat caulking is performed by applying ultrasonic vibration to the horn unit 5, the heating unit 4 includes an ultrasonic transducer (not shown).
  • the heating unit 4 may include a heater in addition to the ultrasonic transducer.
  • a heater in addition to the ultrasonic transducer.
  • the horn portion 5 heats and presses the heat caulking protuberance 52B of the lens frame 52, thereby softening and bending the heat caulking protuberance 52B.
  • the bent portion 52 B for thermal caulking is formed along the shape of the tip of the horn 5.
  • the horn portion 5 is formed of a substantially cylindrical metal member. The horn portion 5 is fixed to the lower portion of the heating portion 4 so that the central axis thereof is coaxial with the reference axis Z.
  • annular tip end surface 5 a centered on the reference axis Z is formed.
  • a tip inner circumferential surface 5b crimp pressing surface
  • a pressing surface 5c crimp pressing surface
  • a relief 5f are concentrically formed in this order from the inner edge of the tip surface 5a toward the reference axis Z in this order. Is formed.
  • the shapes of the tip inner circumferential surface 5b, the pressing surface 5c, and the relief portion 5f are axially symmetrical with respect to the reference axis Z in the present embodiment.
  • the tip inner circumferential surface 5b is a portion that covers the inner frame main body 52A from the outer side in the radial direction so that the resin that deforms when thermally caulking the heat caulking protrusion 52B does not escape to the outer side in the radial direction.
  • the shape (inner diameter, taper) of the tip inner circumferential surface 5b may be substantially the same as the outer circumferential surface of the inner frame main body 52A in order to efficiently suppress the escape of the resin to the radially outer side.
  • at least one of the tip inner circumferential surface 5b and the outer circumferential surface of the first inner frame portion 52f is formed with a taper which is inclined radially outward as it goes downward.
  • the shape of the tip inner circumferential surface 5b is made with respect to the inner frame main body 52A while the horn portion 5 is lowered to the position where the heat caulking is performed. It may be shaped to bite slightly inward in the radial direction.
  • the tip inner peripheral surface 5b is formed with a taper having a larger inclination than the outer peripheral surface of the inner frame main body 52A so that the upper portion of the tip inner peripheral surface 5b bites particularly into the inner frame main body 52A. It may be
  • the pressing surface 5c bends the thermal caulking protrusion 52B inward on the upper side of the tip inner circumferential surface 5b, and the outer edge portion of the first lens surface 51a of the first lens 51 inserted in the first inner frame 52f. It is a part of horn part 5 which presses projecting part 52B for heat caulking towards.
  • the pressing surface 5 c is formed of a tapered surface having a shape substantially along the outer peripheral portion of the first lens surface 51 a of the first lens 51.
  • the relief portion 5 f is an inner peripheral surface that constitutes a hole that prevents contact between the horn portion 5 and the lens effective area of the first lens surface 51 a when heat caulking is performed.
  • the relief portion 5 f is formed of a tapered surface which decreases in diameter toward the upper side from the inner edge portion of the pressing surface 5 c.
  • An upper end portion of the relief portion 5 f is connected to a cylindrical surface 5 g extending along the reference axis Z.
  • the thermal caulking device 10 further includes a contact state detection unit 8, an operation unit 12, a control unit 11, and a display unit 13.
  • the contact state detection unit 8 holds, for example, whether or not the pressing surface 5c and the thermal caulking protrusion 52B are in contact with each other (hereinafter referred to as contact detection). It is a device that detects whether the relative movement limit of the part 6 has been reached (hereinafter referred to as relative movement limit detection).
  • the tip of the horn 5 is The inner circumferential surface 5b or the pressing surface 5c comes in contact with the tip of the thermal caulking protrusion 52B.
  • the contact state detection unit 8 monitors whether or not this contact has occurred, and sends out a detection signal to the control unit 11 when the contact is detected. Examples of specific means for contact detection include a force detection sensor, a motion detection sensor, and the like.
  • Motion detection sensors include acceleration sensors, speed sensors, and position detection sensors. According to these sensors, it is possible to detect changes in acceleration, speed, and movement amount generated at the time of contact, so that contact detection is possible.
  • These motion detection sensors may be provided on at least one of the horn 5 and the slide support 7.
  • the use of a three-axis acceleration sensor is more preferable because minute changes in acceleration in the axial direction can be detected with high accuracy.
  • the three-axis acceleration sensor can also detect a three-dimensional change in posture of the subject.
  • the tip of the thermal caulking protrusion 52B and the horn 5 may be in different parts depending on the amount of offset, but from the top to the bottom Point contact occurs at the tapered surface which inclines radially outward as it goes to the side.
  • a pressing force component toward the inside in the radial direction is generated at the contact portion between the distal end portion of the thermal caulking protrusion 52B and the horn portion 5.
  • this pressing force component exceeds the frictional resistance in the slide support portion 7, the lens frame holding portion 6 can move in the direction perpendicular to the axis.
  • the contact portion of the point contact in the thermal caulking protrusion 52B slides along the tapered surface, and as a result, the lens frame holding portion 6 moves in the direction toward the reference axis Z.
  • the tip of the thermal caulking protrusion 52B contacts the pressing surface 5c of the horn 5 in a circular shape.
  • the movement of the lens frame holding portion 6 in the direction perpendicular to the axis is completed.
  • the lens frame holding portion 6 reaches the movement limit in the direction perpendicular to the axis in the state of being in contact with the horn portion 5.
  • the horn 5 reaches the limit of the downward movement in the axial direction under the condition that the thermal caulking protrusion 52B is not deformed in the axial direction.
  • the relative movement limit of the lens frame holding portion 6 in the direction perpendicular to the axis is determined such that the central axis C1 of the lens frame holding portion 6 is coaxial with the reference axis Z, or the height of the horn portion 5 is a protrusion for thermal caulking It can detect by having reached the predetermined height circularly contacted with the tip of shape part 52B.
  • the contact state detection unit 8 monitors whether or not the lens frame holding unit 6 has reached the movement limit, and sends out a detection signal to the control unit 11 when detecting that the movement limit has been reached.
  • an appropriate sensor for detecting the position of the lens frame holding portion 6 in the direction perpendicular to the axial direction or the position of the horn portion 5 in the axial direction, and displacement measurement means are used.
  • a sensor for detecting the position of the lens frame holding portion 6 in the direction perpendicular to the axis an image sensor, a laser displacement gauge, a contact displacement gauge, etc. may be mentioned.
  • an encoder of a drive motor in the pressing unit 3 a laser displacement gauge, a contact displacement gauge, an image sensor, etc. may be mentioned.
  • the operation unit 12 is a device for performing an operation input for the operator to operate the thermal caulking device 10.
  • the operation input from the operation unit 12 includes, for example, an operation input for controlling the lowering and rising of the horn unit 5 in the axial direction by the pressing unit 3, an operation input for heating the horn unit 5 by the heating unit 4 at an appropriate temperature, Operation input for automatically performing caulking is included.
  • the configuration of the operation unit 12 can include, for example, one or more appropriate operation means such as an operation button, an operation lever, a keyboard, and a mouse.
  • the control unit 11 controls the operation of the thermal caulking device 10 based on the operation input via the operation unit 12.
  • the control unit 11 is communicably connected to the pressing unit 3, the heating unit 4, the contact state detection unit 8, the operation unit 12, and the display unit 13.
  • the control unit 11 includes a manual mode in which heat caulking is performed in accordance with the control of the operator, and an auto mode in which the heat caulking method of the present embodiment is automatically executed based on a preset procedure. The details of each control will be described in the operation description to be described later.
  • the display unit 13 displays character information, image information, and the like based on the information sent from the control unit 11. Examples of the information displayed on the display unit 13 include an operation screen used for a GUI, information on the amount of movement of the horn unit 5 for performing heat caulking, and heating temperature. Further, the display unit 13 displays information on contact detection by the contact state detection unit 8 and relative movement limit detection.
  • FIG. 5 is a flowchart showing an example of the alignment operation in the thermal caulking method of the embodiment of the present invention.
  • FIG. 6 is a flowchart showing an example of the thermal caulking method according to the embodiment of the present invention.
  • 7 to 9 are operation explanatory diagrams of the thermal caulking device according to the embodiment of the present invention.
  • the thermal caulking method of the present embodiment is performed by executing steps S1 to S5 in the order of flow as shown in the flowchart of FIG.
  • steps S1 to S5 an example in which the assembly 53 in which the first lens 51 is inserted into the first inner frame portion 52f of the lens frame 52 is used as a caulking assembly will be described.
  • the horn unit 5 is used as the crimping horn.
  • step S1 an assembly 53 which is a caulking assembly and a horn 5 which is a caulking horn are prepared.
  • the assembly 53 is assembled, and the horn unit 5 is attached to the thermal caulking device 10.
  • step S2 is performed.
  • the holding assembly holds the caulking assembly.
  • the assembly 53 is held by the lens frame holding portion 6 of the thermal caulking device 10.
  • the slide support 7 is in a locked state.
  • the assembly 53 is held by the lens frame holder 6 fixed on the slide support 7 in the neutral position.
  • the holding central axis H of the lens frame holding portion 6 is coaxial with the reference axis Z of the thermal caulking device 10.
  • step S3 is performed.
  • the holding base can be moved in the direction perpendicular to the axis by the component in the direction perpendicular to the axis of the pressing force of the caulking horn.
  • the lock mechanism of the slide support 7 is unlocked.
  • the slide support 7 has, for example, a slide moving part such as the rolling element 7 e. Therefore, when the lock is released, the lens frame holding part 6 is opposed to the horn 5 by the component in the direction perpendicular to the axis of the pressing force of the horn 5. It is movable in the direction perpendicular to the axis.
  • the execution timing of this step is not limited after step S2. This step may be executed any time before step S4 described later is started. In particular, when the slide support portion 7 is not provided with the lock mechanism, a specific operation for executing this step is not necessary.
  • step S4 is performed.
  • step S4 an alignment operation of the relative position between the crimping horn and the holder in the direction perpendicular to the axis is performed.
  • the alignment operation is performed by pressing the caulking pressing surface of the caulking horn against the projecting portion of the assembly frame.
  • the alignment operation may be performed in the manual mode of the thermal caulking device 10 or in the automatic mode.
  • an example of the operation in the auto mode will be described.
  • An example of a specific operation of step S4 is shown in the flowchart of FIG.
  • step S4 is performed by sequentially executing steps S11 to S14 shown in the flowchart of FIG. Throughout the whole of step S14, the temperature of the crimping pressure surface of the crimping horn is maintained at the alignment temperature.
  • the alignment temperature is lower than the thermal caulking temperature described later.
  • the alignment temperature is a temperature at which the projection is not plastically deformed by the pressing force received by the projection during the alignment operation described below. Specifically, the alignment temperature may be less than the glass transition temperature Tg of the material of the projection.
  • the protruding portion may not be plastically deformed even at a temperature higher than the glass transition temperature Tg is there.
  • the temperature for alignment may be equal to or higher than the glass transition temperature Tg of the material of the protruding portion.
  • the temperature rise time of the horn unit 5 in the thermal caulking operation described later can be reduced as compared with the case where the heating is not performed. For this reason, the thermal caulking operation described later is performed quickly.
  • the alignment operation is started.
  • the control unit 11 controls the temperature of the heating unit 4 to raise the temperature of the pressing surface 5 c to the glass transition temperature Tg ⁇ 5 ° C. of the material of the thermal caulking protrusion 52 ⁇ / b> B.
  • a contact operation is performed.
  • the contact operation is an operation of bringing the caulking horn and the holding table close to each other in the axial direction to bring the caulking pressing surface and the projecting portion into contact with each other.
  • the control unit 11 sends a control signal to the pressing unit 3 to lower the horn unit 5.
  • the pressing unit 3 lowers the horn unit 5 at a preset speed.
  • the contact state detection unit 8 starts a monitoring operation for contact detection and relative movement limit detection. The monitoring operation is continued until the alignment operation is finished.
  • the point P of the tip of the thermal caulking projection 52B at which the distance from the reference axis Z becomes maximum is a point contact with the point p on the pressing surface 5c.
  • a point Q other than the point P at the outer edge of the tip of the thermal caulking protrusion 52B is separated from the pressing surface 5c.
  • the thermal caulking protrusion 52B may be in contact with the tip inner circumferential surface 5b. Also in this case, the thermal caulking protrusion 52B does not contact the pressing surface 5c except for the point P.
  • step S11 is completed.
  • step S12 is performed.
  • the separation operation is an operation to move the caulking horn and the holding base away from each other so that the caulking pressing surface and the protrusive part are separated after the caulking pressing surface and the protrusive part are in contact with each other.
  • the control unit 11 sends a control signal to the pressing unit 3 to raise the horn unit 5.
  • the pressing unit 3 raises the horn unit 5 by a predetermined distance as in the horn unit 5B indicated by a two-dot chain line.
  • the amount of rise of the horn portion 5B can be set to an appropriate size such that the pressing surface 5c and the thermal caulking projection 52B reliably come in non-contact with each other.
  • the amount of rise of the horn portion 5B may be, for example, about 1 mm to 5 mm. This is the end of step S12.
  • step S11 due to the time required for detecting the contact detection, the time required for the detection signal to drop after receiving the detection signal, or the inertia of the horn unit 5, the horn unit 5 starts from the position at the start of contact like the horn unit 5A. Stop at a slightly lowered position.
  • the frictional force at the slide support 7 is sufficiently small.
  • the component force FH which is a component perpendicular to the axial direction of the pressing force F is larger than the component perpendicular to the axial direction of the frictional force generated at the contact portion between the pressing surface 5c and the thermal caulking projection 52B.
  • the lens frame 52 and the lens frame holding portion 6 move in a direction perpendicular to the reference axis Z due to the difference between the component in the direction perpendicular to the axis of the frictional force and the component force FH (lens frame 52E and lens frame in FIG. 7). See holding unit 6A).
  • the lens frame 52 and the lens frame holding portion 6 can move in the direction perpendicular to the axis even if the descent is continued.
  • the thermal caulking protrusion 52B is elastically deformed by the component force FV of the pressing force F in the axial direction.
  • the contact area may increase.
  • the adhesion between the pressing surface 5c and the first outer frame portion 52a may be strong, and the lens frame holding portion 6 may not easily move toward the reference axis Z.
  • the movement of the lens frame holding portion 6 and the lens frame 52 in the direction perpendicular to the axis proceeds because the deformation of the thermal caulking protrusion 52B progresses especially when the descent continues further, especially around the point P. May not progress.
  • the horn portion 5 is pressed against the heat caulking protrusion 52B in a state where the central axis C1 is deviated from the reference axis Z.
  • the bent state of the thermal caulking projection 52B becomes uneven in the circumferential direction.
  • the pressing force 5c and the thermal caulking projection 52B are separated once the adhesion is released.
  • the thermal caulking protuberance 52B returns to the shape before elastic deformation.
  • step S13 is performed.
  • a pressing operation is performed.
  • the pressing operation is an operation of bringing the caulking horn and the holding stand close to each other in the axial direction after the separating operation, and pushing the protrusion by the caulking pressing surface.
  • the control unit 11 sends a control signal to the pressing unit 3 to lower the horn unit 5.
  • the pressing unit 3 lowers the horn unit 5 by a predetermined lowering amount at a preset speed. This is the end of step S13.
  • the pressing surface 5c comes into contact again with the thermal caulking protrusion 52B by lowering the horn 5 more than the amount of increase in step S12.
  • the descent amount in the pressing operation is equal to or more than the rising amount in step S12, and is set to a size that can smoothly slide on the pressing surface 5c according to the rigidity, material, etc. of the thermal caulking protrusion 52B. Ru. That is, when the thermal caulking projections 52B are difficult to deform or when the friction coefficient of the material of the thermal caulking projections 52B with respect to the pressing surface 5c is small, the amount of descent may be large. On the contrary, when the thermal caulking projections 52B are easily deformed or when the coefficient of friction of the material of the thermal caulking projections 52B with respect to the pressing surface 5c is large, the lowering amount may be small.
  • the descent amount in the pressing operation may be calculated by the control unit 11 based on the current position in the axial direction of the horn unit 5 and the target value of the descent position after the pressing. For example, assuming that the coordinate in the axial direction of the lowered position of the horn 5 in the contact operation is h1, and the coordinate in the axial direction of the lowered position of the horn 5 in the relative movement limit is h2 (where h1> h), one press The amount by which the alignment operation may end in the operation is h1 ⁇ h2 or more. The amount of descent that may cause the alignment operation to end in n pressing operations is (h 1 ⁇ h 2) / 2 or more.
  • the horn 5 descends from a position higher than the upper end of the lens frame 52.
  • the lowering amount of the horn portion 5 in the contact operation is much larger than the lowering amount in the pressing operation. For this reason, if the lowering speed in the contact operation is too low, the operation time becomes too long. However, since the descent amount is small in the pressing operation, the operating time does not become too long even if the descent speed is much lower than the descent speed of the contact operation.
  • the pressing surface 5c and the thermal caulking protrusion 52B can slide smoothly with each other during the lowering.
  • the lens frame 52 and the lens frame holding portion 6 are set to the reference axis Z by moving slightly smaller than the contact position. A small amount of movement can be made in the direction perpendicular to the direction of the axis.
  • step S14 is performed.
  • the determination operation is an operation to determine whether or not the relative movement limit has been reached based on the information of the contact state detection unit in the pressing operation. Specifically, the control unit 11 determines whether or not the detection signal in which the relative movement limit has been detected is transmitted from the contact state detection unit 8. When the detection signal regarding relative movement limit detection is not received, it shifts to Step S12. When the detection signal regarding relative movement limit detection is received, step S14 is ended and it transfers to step S5 of FIG.
  • step S4 the separation operation, the pressing operation, and the determination operation are repeated until the lens frame 52 reaches the relative movement limit, so the lens frame 52 and the lens frame holding portion 6 Gradually move in the direction perpendicular to the limit of relative movement.
  • FIG. 8 shows a state in which the alignment operation is completed.
  • the point P on the thermal caulking protuberance 52B moves from the point p at the time of the first contact with the pressing surface 5c to a point p3 on the pressing surface 5c, which has moved radially inward by ⁇ in a direction perpendicular to the axis. There is.
  • a point Q other than the point P at the outer edge of the tip of the thermal caulking protrusion 52B is in contact with the pressing surface 5c at a point q3 which is rotationally symmetrical to the point p3 with respect to the central axis C1. In this way, the alignment operation of the relative positions of the crimping horn and the holding base in the direction perpendicular to the axis is completed.
  • step S5 after the positioning operation is completed, the caulking horn in a heated state and the holder move relative to each other so as to approach each other in the axial direction to thermally caulk the projecting portion to the assembling member.
  • a heat caulking operation is performed.
  • the control unit 11 sends a control signal to the heating unit 4 and heats the horn unit 5 so that the temperature of the pressing surface 5 c becomes the temperature for thermal caulking set in advance.
  • the temperature for thermal caulking is set to a temperature at which the thermal caulking protrusion 52B at least in contact with the horn 5 is softened.
  • the thermal caulking temperature may be set to a temperature at which the thermal caulking projecting portion 52B can be deformed by the pressing force of the pressing portion 3.
  • the temperature for thermal caulking can be determined according to the material characteristics of the resin material of the thermal caulking protuberance 52B.
  • the temperature for thermal caulking may be 20 ° C. or more higher than the glass transition temperature Tg of the material of the thermal caulking convex portion 52B.
  • the control unit 11 sends a control signal to the pressing unit 3 to lower the horn unit 5 and thermally caulk the thermal caulking protrusion 52B.
  • the control unit 11 stops the driving of the pressing unit 3.
  • the proper position of the horn 5 is determined, for example, by detecting at least one of the lowered position of the horn 5 and the reaction force received by the horn 5 and comparing the detected position with a determination value stored in advance. As shown in FIG. 9, in this stopped state, the thermal caulking protrusion 52B is brought into close contact with the outer edge outside the lens effective area on the first lens 51 by being pressed while being heated by the pressing surface 5c.
  • the optical axis O1 of the first lens 51 is substantially coaxial with the central axis C1 within the range of an error corresponding to the size of the gap between the inner peripheral surface 52g and the lens side surface 51c. (Including the case of).
  • the thermal caulking projections 52B are continuous in the circumferential direction. Since the reference axis Z and the central axis C1 are aligned in the direction perpendicular to the axis, the bending of the thermal caulking projection 52B in the circumferential direction maintains the state of axial symmetry with respect to the reference axis Z and the central axis C1. Progress.
  • the pressing force acting on the first lens 51 from the thermal caulking protuberance 52B is also axially symmetrical with respect to the central axis C1 at the time of bending.
  • the central axis of the lens side surface 51c is the reference axis in the process of progress of the thermal caulking. It is easy to align toward Z and central axis C1.
  • step S5 is completed. Thereby, the heat caulking method of this embodiment using the heat caulking device 10 is completed.
  • the first lens 51 is fixed to the lens frame 52 by the caulking portion 54B.
  • an assembly 53A in which the first lens 51 is fixed to the lens frame 52 is manufactured.
  • the second inner frame portion 52k of the assembly 53A is replaced with the above-described caulking assembly and the caulking horn.
  • An assembly for caulking in which two lenses are inserted and a horn portion for thermally caulking the projection 52D for thermal caulking are used.
  • the heat caulking method of the present embodiment is performed in the same manner as described above except for the above. As a result, a lens unit in which the first lens 51 and the second lens are heat crimped to the lens frame 52 is manufactured.
  • the lens frame holding portion 6 is supported by the slide support portion 7. Therefore, by repeatedly pressing and separating the pressing surface 5c of the horn portion 5 and the thermal caulking protrusion 52B, the positioning operation of the relative position in the direction perpendicular to the axis becomes possible.
  • the reference axis Z in the thermal caulking device 10 and the central axis C1 of the thermal caulking protrusion 52B are positions where the pressing surface 5c or the tip inner circumferential surface 5b can contact the thermal caulking protrusion 52B. As long as they are related, they may be shifted in the direction perpendicular to the axis.
  • the heat caulking device and the heat caulking method of the present embodiment it is possible to improve the assembly efficiency (manufacturing efficiency) by heat caulking and the fixing performance by heat caulking.
  • the thermal caulking device and the thermal caulking method of the present embodiment particularly when there are a plurality of frame portions whose central axes are not coaxial with each other, like the thermal caulking protrusions 52B and 52D in the lens frame 52, The manufacturing efficiency as a lens unit can be improved.
  • the thermal caulking method of this modification is different from the thermal caulking method of the above embodiment in that the operation automatically executed by the control unit 11 in the above embodiment is performed based on the operator's operation input.
  • the description of each step in FIGS. 5 and 6 below is the description of the operation in this modified example unless otherwise specified.
  • Steps S1 to S3 in FIG. 5 are performed in the same manner as the above embodiment.
  • Step S4 is started by the operator using the operation unit 12 to input an operation to start thermal caulking in the manual mode.
  • the operator can select the temperature setting of the horn unit 5 in the alignment operation.
  • the operator may heat the horn 5 by the heating unit 4 during the alignment operation. You may stop it.
  • the thermal caulking projection 52B is not softened by heating.
  • the rigidity of the thermal caulking projection 52B at the time of contact is improved, and the sliding with the pressing surface 5c is also smooth.
  • step S11 the contact operation is performed by the operator's operation input.
  • the operator operates the operation unit 12 to drive the pressing unit 3 to lower the horn unit 5.
  • the control unit 11 causes the display unit 13 to display the moving amount of the horn unit 5 based on the driving amount of the pressing unit 3.
  • the control unit 11 causes the display unit 13 to display at least a detection signal from the contact state detection unit 8.
  • the control unit 11 may cause the display unit 13 to display information such as numerical values and graphs of sensor outputs of the contact state detection unit 8.
  • the operator adjusts the descent amount of the horn unit 5 while looking at the information displayed on the display unit 13, and brings the pressing surface 5c into contact with the thermal caulking protrusion 52B.
  • the operator operates the operation unit 12 to stop the descent of the horn unit 5. Above, step S11 is completed.
  • step S12 is performed.
  • step S12 the separation operation is performed by the operator's operation input.
  • the operator operates the operation unit 12 to raise the horn unit 5.
  • the amount of increase may be input to the operation unit 12 by the operator. However, the operator may only use the operation unit 12 to input operation to start raising the horn unit 5.
  • the increase amount of the horn unit 5 is automatically set by the control unit 11 to the same increase amount as step S12 of the above embodiment. This is the end of step S12.
  • step S13 is performed.
  • the pressing operation is performed by the operator's operation input.
  • the operator operates the operation unit 12 to lower the horn unit 5 to press the thermal caulking protrusion 52B.
  • the operator may input the lowering amount to the operation unit 12.
  • the operator may only use the operation unit 12 to input the start of lowering of the horn unit 5.
  • the descent amount of the horn 5 is automatically set by the controller 11 to the same descent amount as that of step S13 in the above embodiment. This is the end of step S13.
  • step S14 is performed.
  • step S14 the determination operation by the operator is performed. The operator determines whether the relative movement limit has been reached based on the information from the contact state detection unit 8 displayed on the display unit 13. If it is determined that the relative movement limit has been reached, the process proceeds to step S12. If it is determined that the relative movement limit has been reached, step S14 is ended and the process proceeds to step S5 of FIG.
  • step S5 after the alignment operation is completed, the thermal caulking operation is performed by the operation of the operation unit 12 by the operator.
  • the operator can appropriately set the temperature for thermal caulking, the amount of descent of the horn portion 5 and the descent speed in the thermal caulking by the operation portion 12.
  • the operation unit 12 may be configured to be able to select a plurality of setting patterns. However, the operator may only use the operation unit 12 to input the start of the thermal caulking operation of the horn unit 5. In this case, the temperature for thermal caulking, the lowering amount of the horn unit 5 and the lowering speed are automatically set by the control unit 11 under the same conditions as step S13 in the above embodiment. Above, step S5 is completed. Thus, the thermal caulking method of the present modification in the manual mode using the thermal caulking device 10 is completed.
  • the example in which two lenses are fixed to the assembling frame has been described as an example.
  • one lens may be fixed to the assembly frame.
  • the number of lenses may be fixed to one or three or more as long as they are fixed by heat caulking.
  • the holding base is supported movably in the direction perpendicular to the axial direction by the slide support portion and the crimping horn is supported movably only in the axial direction
  • the holder and the caulking horn may be provided so as to be movable relative to each other in the axial direction and the direction perpendicular to the axis.
  • at least one of the holding base and the caulking horn may be provided so as to be movable in the axial direction and the direction perpendicular to the axial direction.
  • step S14 is performed after step S13 has been described.
  • the control unit 11 receives the detection signal of relative movement limit detection during execution of step S13, the control unit 11 immediately stops the descent of the horn unit 5 and does not execute step S14, and step S4. You may complete the process.
  • the example in the case where the information from the contact state detection unit 8 is displayed on the display unit 13 in the manual mode has been described.
  • the manual mode when the operator operates the thermal caulking device 10 based on visual observation or based on information of a measuring instrument, a sensor, etc. arranged separately from the thermal caulking device 10, The information of the contact state detection unit 8 may not be displayed on the display unit 13. In this case, in the thermal caulking device 10, the contact state detection unit 8 may be deleted.
  • the separation operation is performed in the alignment operation
  • the assembly frame and the holding are continued by continuing the lowering after the crimping horn comes in contact with the projecting portion.
  • the pressing operation may be performed following the contact operation.
  • the control unit may perform such control in the auto mode.
  • control unit or the operator can confirm that the assembly frame and the holding base move in the direction perpendicular to the axis by the output of the movement state detection sensor at the time of contact, etc.
  • the control unit or the operator The separation operation may be omitted.
  • the heat caulking device and the heat caulking method of the above-described embodiment it is easier to heat caulk evenly the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame in the circumferential direction It becomes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Lens Barrels (AREA)

Abstract

A heat caulking device is provided with: a lens frame holding part that holds a lens frame having a first inner frame part and a heat caulking protrusion part; a horn part having a pressing surface that applies a pressing force with which the heat caulking protrusion part is foldable to an inner side of the first inner frame part; and a slide supporting part that supports at least one of the lens frame holding part and the horn part so as to be made relatively movable in a direction orthogonal to an axis by a component of the pressing force in the direction orthogonal to the axis.

Description

熱カシメ装置および熱カシメ方法Thermal caulking device and thermal caulking method
 本発明は、熱カシメ装置および熱カシメ方法に関する。
 本願は、2016年11月14日に、日本に出願された特願2016-221480号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermal caulking device and a thermal caulking method.
Priority is claimed on Japanese Patent Application No. 2016-221480, filed Nov. 14, 2016, the content of which is incorporated herein by reference.
 種々の部材を組み立てる際に、熱カシメが用いられている。例えば、レンズ枠にレンズなどの光学部品を組み立てる際にも、熱カシメが用いられる場合がある(特許文献1参照)。
 特許文献1に記載の熱カシメ装置では、レンズが挿入されたレンズ枠が固定治具に固定されている。このレンズ枠に、ヒータヘッドによって加熱された押圧部材が押圧される。これにより、レンズ枠におけるカシメ部がレンズの表面に沿って折り曲げられるため、レンズがレンズ枠に熱カシメされる。
 レンズユニットによっては、レンズと、レンズ枠の内周面との間に、移動可能な隙間が設けられている場合もある。この場合、例えば、特許文献2に記載されたように、隙間の範囲でレンズの位置が調整された後、熱カシメが行われる。
Thermal caulking is used when assembling various members. For example, also when assembling an optical component such as a lens to a lens frame, thermal caulking may be used (see Patent Document 1).
In the thermal caulking device described in Patent Document 1, a lens frame in which a lens is inserted is fixed to a fixing jig. The pressing member heated by the heater head is pressed by the lens frame. As a result, the crimped portion of the lens frame is bent along the surface of the lens, so the lens is thermally caulked to the lens frame.
Depending on the lens unit, a movable gap may be provided between the lens and the inner peripheral surface of the lens frame. In this case, for example, as described in Patent Document 2, after the position of the lens is adjusted in the range of the gap, heat caulking is performed.
日本国特許第4764739号公報Japanese Patent No. 4764739 日本国特開2001-51175号公報Japanese Patent Laid-Open Publication 2001-51175
 しかしながら、上記のような従来技術には、以下のような問題がある。
 例えば、熱カシメによって、レンズをレンズ枠に固定する場合、カシメ部に対する押圧部材の当接位置がずれると、カシメ部の変形が周方向において不均等になる。この場合、熱カシメ中にカシメ部からレンズに作用する押圧力も周方向においてばらつく。このため、レンズがレンズ枠内で移動したり、硬化後のカシメ部によるレンズ保持力が周方向においてばらついたりする場合がある。レンズ枠内でレンズが移動すると、偏心量が増大して光学特性が悪化する場合がある。保持力が周方向においてばらつくと、経時的にレンズがレンズ枠から脱落したり、回転したりすることも懸念される。
 さらに、カシメ部からの押圧力が周方向にばらつくことによって、押圧力が大きい部位でレンズ歪みが発生しやすくなり、光学特性不良による生産歩留まりが低下する可能性がある。
 特許文献2に記載の技術のように、熱カシメ中に、押圧部材によって光軸に対するレンズの位置を固定すれば、熱カシメ中に移動することは防止できる。ただし、この場合、レンズ枠の中心に対してレンズを偏心させた位置にレンズが保持された状態で熱カシメが行われると、レンズに対するカシメ部の当接状態は周方向においてばらついてしまう。このため、保持力のバラツキおよびレンズ歪みは、解消できない。
However, the prior art as described above has the following problems.
For example, when fixing the lens to the lens frame by thermal caulking, if the contact position of the pressing member with respect to the caulking portion is shifted, the deformation of the caulking portion becomes uneven in the circumferential direction. In this case, the pressing force acting on the lens from the caulking portion during thermal caulking also varies in the circumferential direction. For this reason, the lens may move within the lens frame, or the lens holding power by the crimped portion after curing may vary in the circumferential direction. When the lens moves within the lens frame, the amount of eccentricity may increase and the optical characteristics may deteriorate. If the holding power varies in the circumferential direction, there is a concern that the lens may come off from the lens frame or rotate with time.
Furthermore, when the pressing force from the caulking portion varies in the circumferential direction, lens distortion is likely to occur at a portion where the pressing force is large, and the production yield may be reduced due to the optical characteristic failure.
If the position of the lens with respect to the optical axis is fixed by the pressing member during heat caulking as in the technique described in Patent Document 2, movement during heat caulking can be prevented. However, in this case, if thermal crimping is performed with the lens held at a position where the lens is decentered with respect to the center of the lens frame, the contact state of the crimped portion with respect to the lens will vary in the circumferential direction. Therefore, variations in holding power and lens distortion can not be eliminated.
 例えば、レンズ枠の固定治具をXYステージで支持することで、レンズ枠の中心軸線と押圧部材の中心軸線とを位置合わせすることも考えられる。
 ところが、複数のレンズを含むレンズユニットの場合、製造歩留まりを上げるために、レンズおよびレンズ枠の製造誤差を補正できるように、レンズの固定位置をレンズ枠の中心からずらして固定しなければならない場合がある。この場合、レンズの固定位置は、目標位置に対して高精度に位置合わせされる必要があるため、調整機構を有していても多大な調整時間がかかる。このため、製造コストが増大してしまう。
For example, it is also conceivable to align the central axis of the lens frame with the central axis of the pressing member by supporting the fixing jig of the lens frame on the XY stage.
However, in the case of a lens unit including a plurality of lenses, the lens fixing position must be shifted from the center of the lens frame and fixed so that manufacturing errors of the lens and lens frame can be corrected in order to increase manufacturing yield. There is. In this case, since the fixed position of the lens needs to be precisely aligned with the target position, it takes a lot of adjustment time even if it has the adjusting mechanism. This increases the manufacturing cost.
 本発明は、上記のような問題に鑑みてなされたものであり、組立用枠体の枠部の内周面を囲むように配置された突状部を周方向において均等に熱カシメすることがより容易となる熱カシメ装置および熱カシメ方法を提供することを目的とする。 The present invention has been made in view of the problems as described above, and it is preferable that the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame be thermally caulked uniformly in the circumferential direction It is an object of the present invention to provide a thermal caulking device and a thermal caulking method that are easier.
 上記の課題を解決するために、本発明の第1の態様の熱カシメ装置は、組付部材が挿入可能な枠部と、前記枠部の内周面を囲むように配置され熱可塑性樹脂で形成された突状部と、を有する組立用枠体を保持する保持台と、第1の軸線に沿う軸方向において前記保持台に対して相対移動可能に設けられており、先端部に前記突状部を加熱可能かつ前記保持台に近づく方向に相対移動する際に前記突状部を前記枠部の内側に折り曲げ可能な押圧力を加えるカシメ用押圧面を有するカシメホーンと、前記押圧力における前記第1の軸線に直交する軸直角方向における成分によって、前記組立用枠体が保持された前記保持台と前記カシメホーンとが前記軸直角方向において相対移動可能となるように、前記保持台および前記カシメホーンの少なくとも一方を支持するスライド支持部と、を備える。 In order to solve the above-mentioned subject, the heat caulking device of the 1st mode of the present invention is arranged so that the frame part which an assembly member can insert, and the inner skin of the frame may be surrounded by thermoplastic resin. And a holder for holding the assembly frame having the formed protrusion, and the holder is provided so as to be movable relative to the holder in the axial direction along the first axis, and the protrusion is provided at the tip. A caulking horn having a caulking pressing surface for applying a pressing force capable of bending the protuberance to the inside of the frame when the coping portion can be heated and relatively moved in a direction approaching the holding table; The holding base and the caulking horn such that the holding base on which the assembly frame is held and the caulking horn can be relatively moved in the axial perpendicular direction by a component in a direction perpendicular to the first axis. Less of Also comprises a slide support for supporting one.
 上記熱カシメ装置においては、前記スライド支持部は、前記保持台を固定する第1の基板と、前記軸方向において前記第1の基板と対向する第2の基板と、前記軸直角方向において前記第2の基板に対して前記第1の基板をスライド移動可能に支持するスライド移動部と、を備えてもよい。 In the heat caulking device, the slide support portion includes a first substrate for fixing the holding table, a second substrate facing the first substrate in the axial direction, and the second substrate in the axial direction. And a slide moving unit that slidably supports the first substrate relative to two substrates.
 上記熱カシメ装置においては、前記軸方向において前記カシメホーンと前記保持台とを相対移動させる軸方向駆動部と、前記カシメホーンまたは前記保持台が受ける前記軸直角方向における力成分、および前記カシメホーンと前記保持台との相対位置、の少なくとも一方を監視することによって、前記カシメ用押圧面と前記突状部とが接触したかどうかと、前記軸直角方向における前記保持台の相対移動限度に達したかどうかと、を検知する当接状態検知部と、前記軸方向駆動部の動作を制御する制御部と、をさらに備え、前記スライド支持部は、前記押圧力が解除される際に、前記押圧力の解除時における前記軸直角方向における位置を保持するように設けられ、前記制御部は、前記軸方向駆動部を駆動して前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて前記カシメ用押圧面と前記突状部とを接触させる接触動作と、前記当接状態検知部によって前記カシメ用押圧面と前記突状部とが接触したことが検知された後、前記カシメ用押圧面と前記突状部とが離間するように、前記カシメホーンと前記保持台とを互いに遠ざける離間動作と、前記離間動作の後、前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて、前記カシメ用押圧面によって前記突状部を押圧する押圧動作を行い、前記押圧動作において、前記当接状態検知部の情報に基づいて前記相対移動限度に達したかどうか判定する判定動作と、を行い、前記判定動作において、前記相対移動限度に達していないと判定された場合に、前記離間動作、前記押圧動作、および前記判定動作を繰り返し、前記相対移動限度に達したと判定された場合に、前記突状部を熱カシメするために、前記軸方向駆動部を駆動して前記カシメホーンと前記保持台とを前記軸方向においてさらに近接させてもよい。 In the heat caulking device, an axial driving portion for relatively moving the caulking horn and the holding base in the axial direction, a force component in a direction perpendicular to the axis received by the caulking horn or the holding base, the caulking horn and the holding By monitoring at least one of the relative position to the platform, whether the caulking pressing surface and the projecting portion are in contact with each other and whether the relative movement limit of the holding platform in the direction perpendicular to the axis has been reached. And a control unit that controls the operation of the axial drive unit, and the slide support unit is configured to detect the pressing force when the pressing force is released. It is provided to hold the position in the direction perpendicular to the axis at the time of release, and the control unit drives the axial direction drive unit to hold the crimp horn and the holding. And the contact operation for bringing the pressing surface for crimping and the protruding portion into contact with each other in the axial direction, and the pressing surface for crimping and the protrusion being contacted by the contact state detection unit. After the pressure detection surface and the projection are separated, the separation operation for moving the crimping horn and the holding base away from each other, and after the separation operation, the crimping horn and the holding base Are made close to each other in the axial direction, and the pressing operation is performed to press the protrusion by the pressing surface for caulking, and in the pressing operation, the relative movement limit is reached based on the information of the contact state detection unit And the separation operation, the pressing operation, and the pressing operation, when it is determined in the determination operation that the relative movement limit has not been reached. When it is determined that the relative movement limit has been reached by repeating the constant operation, the axial driving unit is driven to thermally caulk the projection, thereby driving the caulking horn and the holding base in the axial direction. And may be closer to each other.
 上記熱カシメ装置においては、前記制御部は、前記カシメ用押圧面の温度をさらに制御し、前記相対移動限度に達したと判定されるまでは、前記温度を前記突状部の材料のガラス転移温度Tg未満に制御し、前記相対移動限度に達したと判定された後、前記温度を前記ガラス転移温度Tg以上に制御してもよい。 In the heat caulking device, the control unit further controls the temperature of the caulking pressing surface, and until it is determined that the relative movement limit is reached, the glass transition of the material of the protruding portion is performed until the temperature reaches the relative movement limit. The temperature may be controlled to be higher than the glass transition temperature Tg after the temperature is controlled to be lower than the temperature Tg and it is judged that the relative movement limit is reached.
 本発明の第2の態様の熱カシメ方法は、保持台に保持されたカシメ用組立体に、カシメホーンを加熱状態で押圧して前記カシメ用組立体を熱カシメする熱カシメ方法であって、組付部材が挿入可能な枠部と、前記枠部の内周面を囲むように配置され熱可塑性樹脂で形成された突状部と、を有する組立用枠体の前記枠部に、前記組付部材が挿入された前記カシメ用組立体と、第1の軸線に沿う軸方向において前記保持台に対して相対移動可能に設けられており、先端部に前記突状部を加熱可能かつ前記保持台に近づく方向に相対移動する際に前記突状部を前記枠部の内側に折り曲げ可能な押圧力を加えるカシメ用押圧面を有するカシメホーンと、を準備することと、前記保持台に前記カシメ用組立体を支持させることと、前記保持台および前記カシメホーンの少なくとも一方を、前記押圧力における前記第1の軸線に直交する軸直角方向における成分によって、前記保持台と前記カシメホーンとが前記軸直角方向において相対移動可能な状態にすることと、前記カシメホーンおよび前記保持台を互いに前記軸方向において近づくように相対移動し、前記カシメ用押圧面を前記突状部に押圧して前記軸直角方向における前記カシメホーンと前記保持台との相対位置を位置合わせすることと、前記軸直角方向における前記カシメホーンと前記保持台との相対位置を位置合わせした後、さらに、加熱状態の前記カシメホーンと前記保持台と互いに前記軸方向において近づくように相対移動して前記突状部を前記組付部材に熱カシメすることと、を含む。 A thermal caulking method according to a second aspect of the present invention is a thermal caulking method for thermally caulking the caulking assembly by pressing the caulking horn in a heated state to the caulking assembly held by the holding table. The assembling is performed on the frame portion of the assembly frame having a frame portion into which the attachment member can be inserted, and a projecting portion which is disposed so as to surround the inner peripheral surface of the frame portion and is formed of a thermoplastic resin. The caulking assembly into which the member is inserted is provided so as to be relatively movable with respect to the holder in the axial direction along the first axis, and the protrusion can be heated at the tip and the holder Preparing a caulking horn having a caulking pressing surface for applying a pressing force capable of bending the protuberance to the inside of the frame when moving relatively to a direction approaching c. Supporting a solid body, the holding stand and the front Making at least one of the crimping horns relatively movable in the axis-perpendicular direction by the component in the direction perpendicular to the first axis in the pressing force and allowing relative movement of the holding base and the crimping horn; And relatively moving the holding base closer to each other in the axial direction, pressing the caulking pressing surface against the projection to align the relative positions of the caulking horn and the holding base in the direction perpendicular to the axis After the relative positions of the crimp horn and the holder in the direction perpendicular to the axis are aligned, the crimp horn in the heated state and the holder are further moved relative to each other in the axial direction so as to approach the protrusion Heat caulking the protuberance to the assembly member.
 上記熱カシメ方法においては、前記軸直角方向における前記カシメホーンと前記保持台との相対位置を位置合わせすることは、前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて前記カシメ用押圧面と前記突状部とを接触させる接触動作と、前記カシメ用押圧面と前記突状部とが接触した後、前記カシメ用押圧面と前記突状部とが離間するように、前記カシメホーンと前記保持台とを互いに遠ざける離間動作と、前記離間動作の後、前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて、前記カシメ用押圧面によって前記突状部を押圧する押圧動作と、前記押圧動作において、前記軸直角方向における前記保持台の相対移動限度に達したかどうか判定する判定動作と、を含み、前記判定動作において、前記相対移動限度に達していないと判定した場合に、前記離間動作、前記押圧動作、および前記判定動作を繰り返し、前記相対移動限度に達したと判定した場合に、位置合わせを終了してもよい。 In the thermal caulking method, to align the relative positions of the caulking horn and the holder in the direction perpendicular to the axis means that the caulking horn and the holder are brought close to each other in the axial direction, and the pressing surface for caulking After the contact operation for bringing the protruding portion and the protruding portion into contact with each other and the protruding portion and the pressing surface for crimping contact each other, the crimping horn and the protruding portion are separated from each other. A separation operation for moving away from the holding table, and a pressing operation for moving the caulking horn and the holding table closer to each other in the axial direction after the separation operation and pressing the protrusion by the caulking pressing surface; Determining whether the relative movement limit of the holding base in the direction perpendicular to the axis has been reached in the pressing operation; When it is determined that the relative movement limit is not reached, the separation operation, the pressing operation, and the determination operation are repeated, and when it is determined that the relative movement limit is reached, the alignment is completed. Good.
 上記熱カシメ方法においては、前記位置合わせすることは、前記相対移動限度に達したと判定されるまでは、前記カシメ用押圧面の温度を前記突状部の材料のガラス転移温度Tg未満にすることを含み、前記熱カシメすることは、前記相対移動限度に達したと判定された後、前記温度を前記ガラス転移温度Tg以上にすることを含んでもよい。 In the thermal caulking method, the positioning causes the temperature of the caulking pressing surface to be less than the glass transition temperature Tg of the material of the projecting portion until it is determined that the relative movement limit is reached. Heat staking may include making the temperature equal to or higher than the glass transition temperature Tg after it is determined that the relative movement limit has been reached.
 本発明の熱カシメ装置および熱カシメ方法によれば、組立用枠体の枠部の内周面を囲むように配置された突状部を周方向において均等に熱カシメすることがより容易となる。 According to the heat caulking device and the heat caulking method of the present invention, it becomes easier to uniformly heat caulk the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame in the circumferential direction .
本発明の実施形態の熱カシメ装置の一例を示す模式的な正面図である。It is a typical front view showing an example of the heat caulking device of an embodiment of the present invention. 図1におけるA1、A2、B1、B2部の部分拡大図である。It is the elements on larger scale of A1, A2, B1, B2 part in FIG. 本発明の実施形態の熱カシメ装置のスライド支持部の一例を示す模式的な断面図である。It is a typical sectional view showing an example of a slide supporter of a heat caulking device of an embodiment of the present invention. 本発明の実施形態の熱カシメ装置のスライド支持部の一例を示す模式的な断面図である。It is a typical sectional view showing an example of a slide supporter of a heat caulking device of an embodiment of the present invention. 本発明の実施形態の熱カシメ装置の制御系の構成を示すブロック図である。It is a block diagram showing composition of a control system of a thermal caulking device of an embodiment of the present invention. 本発明の実施形態の熱カシメ方法の一例を示すフローチャートである。It is a flowchart which shows an example of the heat | fever crimping method of embodiment of this invention. 本発明の実施形態の熱カシメ方法における位置合わせ動作の一例を示すフローチャートである。It is a flowchart which shows an example of the alignment operation | movement in the heat | fever crimping method of embodiment of this invention. 本発明の実施形態の熱カシメ装置の動作説明図である。It is operation | movement explanatory drawing of the heat | fever crimping apparatus of embodiment of this invention. 本発明の実施形態の熱カシメ装置の動作説明図である。It is operation | movement explanatory drawing of the heat | fever crimping apparatus of embodiment of this invention. 本発明の実施形態の熱カシメ装置の動作説明図である。It is operation | movement explanatory drawing of the heat | fever crimping apparatus of embodiment of this invention.
 以下では、本発明の実施形態の熱カシメ装置および熱カシメ方法について添付図面を参照して説明する。
 図1は、本発明の実施形態の熱カシメ装置の一例を示す模式的な正面図である。図2は、図1におけるA1、A2、B1、B2部の部分拡大図である。図3A、図3Bは、発明の実施形態の熱カシメ装置のスライド支持部の一例を示す模式的な断面図である。
 各図面は、模式図のため、形状や寸法は誇張されている(以下の図面も同じ)。
Hereinafter, a thermal caulking device and a thermal caulking method according to an embodiment of the present invention will be described with reference to the attached drawings.
FIG. 1 is a schematic front view showing an example of a thermal caulking device according to an embodiment of the present invention. FIG. 2 is a partially enlarged view of portions A1, A2, B1 and B2 in FIG. FIG. 3A and FIG. 3B are schematic cross-sectional views showing an example of the slide support portion of the thermal caulking device of the embodiment of the invention.
Each drawing is a schematic drawing, and the shape and size are exaggerated (the same applies to the following drawings).
 図1に示す本実施形態の熱カシメ装置10は、適宜の形状の組付部材が挿入された組立用枠体を熱カシメすることによって、組付部材を組立用枠体に固定する。
 組立用枠体の形状は、組付部材が挿入可能な枠部と、この枠部の内周面を囲むように配置され熱可塑性樹脂で形成された突状部と、を有していれば、特に限定されない。例えば、枠部の内周面は、種々の筒状の形状が可能である。例えば、枠部の内周面は、円筒状、多角形断面を有する筒状などの形状であってもよい。
 以下では、一例として、組付部材がレンズであり、組立用枠体がレンズ枠である場合の例で説明する。
The thermal caulking device 10 of the present embodiment shown in FIG. 1 fixes the assembling member to the assembling frame by thermally caulking the assembling frame into which the assembling member of an appropriate shape is inserted.
The shape of the assembly frame is as long as it has a frame portion into which the assembling member can be inserted, and a projecting portion disposed so as to surround the inner peripheral surface of the frame portion and formed of a thermoplastic resin. There is no particular limitation. For example, the inner peripheral surface of the frame portion can have various tubular shapes. For example, the inner circumferential surface of the frame may have a cylindrical shape, a cylindrical shape having a polygonal cross section, or the like.
Hereinafter, as an example, an example in which the assembly member is a lens and the assembly frame is a lens frame will be described.
 熱カシメ装置10は、図1に示すように、装置全体を支持するベース1を備える。熱カシメ装置10は、ベース1上に、レンズ枠保持部6(保持台)、スライド支持部7、支持部2、押圧部3(軸方向駆動部)、加熱部4、およびホーン部5(カシメホーン)を備える。 The thermal caulking device 10, as shown in FIG. 1, comprises a base 1 that supports the entire device. The thermal caulking device 10 includes a lens frame holding portion 6 (holding base), a slide supporting portion 7, a supporting portion 2, a pressing portion 3 (axial direction driving portion), a heating portion 4, and a horn portion 5 (crimping horn) ).
 レンズ枠保持部6は、図2に示すように、組立体53(カシメ用組立体)を保持する装置である。
 組立体53は、レンズ枠52(組立用枠体)に第1レンズ51(組付部材)を挿入して構成される。組立体53は、レンズ枠保持部6によって、後述するレンズ枠52の熱カシメ用突状部52B(突状部)が上向きとなるように保持される。
 レンズ枠保持部6の保持中心軸線Hは、鉛直方向に延びる熱カシメ装置10の基準軸線Z(第1の軸線)と平行である。
The lens frame holding portion 6 is a device for holding the assembly 53 (assembly for caulking) as shown in FIG.
The assembly 53 is configured by inserting the first lens 51 (assembly member) into the lens frame 52 (assembly frame). The assembly 53 is held by the lens frame holding portion 6 so that a heat caulking protrusion 52B (a protrusion) of the lens frame 52 described later is directed upward.
The holding central axis H of the lens frame holding portion 6 is parallel to a reference axis Z (first axis) of the thermal caulking device 10 extending in the vertical direction.
 本明細書では、光軸や中心軸線等の軸線が特定できる軸状、筒状等の部材に関する相対位置について説明する場合に、軸線に沿う方向を軸方向、軸線回りに周回する方向を周方向、軸線に直交する平面において軸線に交差する線に沿う方向を径方向と称する。また、特に、光軸に沿う方向を光軸方向と称する場合がある。また、径方向においては、基準位置に対して軸線からより離れる方の領域を径方向外側、軸線により近づく方の領域を径方向内側と称する場合がある。 In the present specification, when a relative position of a member such as an axial or cylindrical member capable of specifying an axis such as an optical axis or a central axis is described, a direction along the axis is an axial direction, and a circumferential direction is a circumferential direction A direction along a line intersecting the axis in a plane orthogonal to the axis is referred to as a radial direction. Further, in particular, the direction along the optical axis may be referred to as the optical axis direction. Further, in the radial direction, a region farther from the axis with respect to the reference position may be referred to as a radially outer side, and a region closer to the axis may be referred to as a radially inner side.
 ここで、第1レンズ51と、第1レンズ51を固定するレンズ枠52と、の構成の一例について説明する。
 図1に示すように、第1レンズ51は、第1レンズ面51aおよび第2レンズ面51bを有する。第1レンズ面51aおよび第2レンズ面51bの間の外周部には、光軸O1と同軸の円筒面であるレンズ側面51cが形成されている。
 第1レンズ面51a、第2レンズ面51bの形状は、特に限定されず、例えば、球面、非球面、自由曲面、平面等の適宜の面形状を採用することができる。第1レンズ面51a、第2レンズ面51bの形状は、凸面、平面、凹面のいずれでもよい。さらに、第1レンズ51は外周部にフランジを有する形状が用いられてもよい。
 以下では、一例として、第1レンズ51の第1レンズ面51aが凸球面、第1レンズ51の第2レンズ面51bが平面により構成された平凸レンズであるとして説明する。
Here, an example of the configuration of the first lens 51 and the lens frame 52 for fixing the first lens 51 will be described.
As shown in FIG. 1, the first lens 51 has a first lens surface 51 a and a second lens surface 51 b. A lens side surface 51c which is a cylindrical surface coaxial with the optical axis O1 is formed on an outer peripheral portion between the first lens surface 51a and the second lens surface 51b.
The shapes of the first lens surface 51a and the second lens surface 51b are not particularly limited, and, for example, appropriate surface shapes such as a spherical surface, an aspheric surface, a free curved surface, and a flat surface can be adopted. The shapes of the first lens surface 51a and the second lens surface 51b may be any of a convex surface, a flat surface, and a concave surface. Furthermore, the first lens 51 may have a shape having a flange at its outer peripheral portion.
In the following, as an example, the first lens surface 51a of the first lens 51 is a convex spherical surface, and the second lens surface 51b of the first lens 51 is a plano-convex lens having a flat surface.
 第1レンズ51の材質は、熱カシメが可能であれば、ガラスでもよいし、合成樹脂でもよい。ガラスレンズの種類としては、研磨レンズでもよいし、ガラスモールドレンズでもよい。 The material of the first lens 51 may be glass or synthetic resin, as long as it can be thermally crimped. The glass lens may be a polished lens or a glass molded lens.
 レンズ枠52は、第1レンズ51が収容された状態で、後述する本実施形態の熱カシメ方法が行われることによって、第1レンズ51が固定される部材である。図1、図2には、熱カシメ前のレンズ枠52の形状が示されている。
 ただし、レンズ枠52には、図示された第1レンズ51の他に、第2レンズ(図示略。以下同様。)が固定される。第2レンズは、第1レンズ51の熱カシメが終了してから、レンズ枠52に配置される。
 第1レンズ51と同様、第2レンズのレンズ面の形状は限定されないが、第2レンズは円筒状のレンズ側面を有している。第2レンズのレンズ側面の外径は、レンズ側面51cの外径よりも大径である。第2レンズを熱カシメするには、熱カシメ装置10において、後述するホーン部5を第2レンズの形状および第2レンズを固定する突状部の形状に対応した他のホーン部に交換すればよい。
The lens frame 52 is a member to which the first lens 51 is fixed by performing a thermal caulking method of the present embodiment described later in a state in which the first lens 51 is accommodated. 1 and 2 show the shape of the lens frame 52 before heat caulking.
However, in addition to the illustrated first lens 51, a second lens (not shown, the same applies hereinafter) is fixed to the lens frame 52. The second lens is disposed on the lens frame 52 after the thermal swaging of the first lens 51 is completed.
Similar to the first lens 51, the shape of the lens surface of the second lens is not limited, but the second lens has a cylindrical lens side surface. The outer diameter of the lens side surface of the second lens is larger than the outer diameter of the lens side surface 51c. In order to thermally caulk the second lens, in the thermal caulking device 10, the horn 5 to be described later may be replaced with another horn corresponding to the shape of the second lens and the shape of the protruding portion for fixing the second lens. Good.
 以下、熱カシメ前のレンズ枠52の形状について説明する。
 図1に示すように、レンズ枠52の外周には、第1外枠部52a、段部52b、および第2外枠部52cが設けられている。第1外枠部52a、段部52b、および第2外枠部52cは、レンズ枠52の軸方向においてこの順に配置されている。
 以下では、レンズ枠52における軸方向における両端部のうち、第1外枠部52aが位置する端部を第1端部E1、第2外枠部52cが位置する端部を第2端部E2と表記する。さらに、レンズ枠52の軸方向に沿う相対位置に関して説明する場合に、レンズ枠保持部6への配置姿勢に基づいて、第2端部E2寄りの位置を上側、第1端部E1よりの位置を下側と称する場合がある。
Hereinafter, the shape of the lens frame 52 before heat caulking will be described.
As shown in FIG. 1, on the outer periphery of the lens frame 52, a first outer frame 52a, a step 52b, and a second outer frame 52c are provided. The first outer frame 52a, the step 52b, and the second outer frame 52c are arranged in this order in the axial direction of the lens frame 52.
Below, among the both ends in the axial direction in the lens frame 52, the end where the first outer frame 52a is located is the first end E1, and the end where the second outer frame 52c is located is the second end E2. It is written as Furthermore, when the relative position along the axial direction of the lens frame 52 is described, the position closer to the second end E2 is the upper position than the first end E1 based on the disposition attitude to the lens frame holding portion 6 May be referred to as the lower side.
 第1外枠部52aは、第1レンズ51よりも大径の円筒部材である。第1外枠部52aの外周面の中心軸線は、レンズ枠52の中心軸線Cを規定する。第1外枠部52aの内周面の内径は、上側の端部において、第2レンズの外径よりも小径、かつ第2レンズのレンズ有効径よりも大径である。
 第1端部E1における第1外枠部52aの内側には、底面部52dが径方向内側に延びている。底面部52dの中心部には、貫通孔52eが貫通している。貫通孔52eの内径は、第1レンズ51の外径よりも小径であり、かつ第1レンズ51のレンズ有効径よりも大径である。
The first outer frame portion 52 a is a cylindrical member having a diameter larger than that of the first lens 51. The central axis of the outer peripheral surface of the first outer frame portion 52 a defines the central axis C of the lens frame 52. The inner diameter of the inner peripheral surface of the first outer frame portion 52a is smaller at the end on the upper side than the outer diameter of the second lens and larger than the lens effective diameter of the second lens.
A bottom surface 52d extends radially inward inside the first outer frame 52a at the first end E1. A through hole 52e passes through the central portion of the bottom surface portion 52d. The inner diameter of the through hole 52 e is smaller than the outer diameter of the first lens 51 and larger than the lens effective diameter of the first lens 51.
 底面部52dにおける第2端部E2側の表面には、第1内枠部52fが立設されている。第1内枠部52fは、第1レンズ51を挿入するための枠部である。
 図2に示すように、第1内枠部52fは、底面部52d側から内枠本体52A、熱カシメ用突状部52Bをこの順に備える。
A first inner frame portion 52f is provided upright on the surface of the bottom surface portion 52d on the second end E2 side. The first inner frame portion 52 f is a frame portion for inserting the first lens 51.
As shown in FIG. 2, the first inner frame portion 52f includes an inner frame main body 52A and a thermal caulking protrusion 52B in this order from the bottom surface portion 52d side.
 内枠本体52Aは、第1レンズ51を着脱可能に嵌合する。内枠本体52Aの内周面52gは、レンズ側面51cの外径よりもわずかに小径の円筒面である。これにより、内枠本体52Aは、レンズ枠52において、第1レンズ51を径方向において位置決めする。
 内枠本体52Aの底面部52dからの突出高さは、レンズ側面51cの軸方向における長さと略同一(同一の場合を含む)である。
 内枠本体52Aの内側における底面部52dの上側の表面は、内枠本体52Aに挿入された第1レンズ51を中心軸線Cに沿う方向において位置決めするレンズ受け面を構成している。
The inner frame main body 52 </ b> A detachably fits the first lens 51. The inner circumferential surface 52g of the inner frame main body 52A is a cylindrical surface slightly smaller in diameter than the outer diameter of the lens side surface 51c. Thereby, the inner frame main body 52A positions the first lens 51 in the radial direction in the lens frame 52.
The protruding height of the inner frame main body 52A from the bottom surface 52d is substantially the same (including the same case) as the length of the lens side surface 51c in the axial direction.
The upper surface of the bottom surface portion 52d inside the inner frame main body 52A constitutes a lens receiving surface for positioning the first lens 51 inserted in the inner frame main body 52A in the direction along the central axis C.
 熱カシメ用突状部52Bは、第1内枠部52fに第1レンズ51を固定するために、熱カシメ装置10によって熱カシメされる突状部である。このため、熱カシメ用突状部52Bは、熱カシメ可能な熱可塑性樹脂によって形成される。本実施形態では、レンズ枠52全体が熱可塑性樹脂によって形成されている。レンズ枠52の製造方法は、樹脂モールド成形でもよいし、切削加工でもよい。
 しかし、熱カシメ用突状部52Bおよび後述する熱カシメ用突状部52Dが熱カシメ可能な熱可塑性樹脂で形成されていれば、レンズ枠52の他の部位は別材料で形成されていてもよい。
 レンズ枠52が樹脂モールド成形で形成される場合、成形型の型構造に応じて適宜の抜き勾配がつけられる。以下の説明では、特に断らない限り、成形上必要な抜き勾配を無視した形状について説明する。例えば、以下において円筒面と言う場合、成形品においては、抜き勾配が付いているため厳密には円錐面と言うべき、円筒面の近似形状も含まれる。
The thermal caulking projection 52B is a thermal caulking device that is thermally caulked by the thermal caulking device 10 in order to fix the first lens 51 to the first inner frame 52f. For this reason, the thermal caulking projections 52B are formed of a thermoplastic resin that can be thermally caulked. In the present embodiment, the entire lens frame 52 is formed of a thermoplastic resin. The lens frame 52 may be manufactured by resin molding or cutting.
However, if the thermal caulking projections 52B and the thermal caulking projections 52D to be described later are formed of a thermoplastic resin capable of thermal caulking, the other parts of the lens frame 52 may be formed of different materials. Good.
In the case where the lens frame 52 is formed by resin molding, an appropriate draft can be provided depending on the mold structure of the mold. In the following description, unless otherwise specified, a shape in which the draft required for forming is ignored is described. For example, in the following, when a cylindrical surface is referred to, in a molded product, the approximate shape of a cylindrical surface is also included, which should be called a conical surface strictly because of the draft.
 熱カシメ用突状部52Bは、内枠本体52Aの上端部から中心軸線Cに沿う方向に突出している。熱カシメ用突状部52Bは、例えば、周方向に離間する複数の突片(突状部)で構成されてもよい。この場合、複数の突片は、内枠本体52Aの上端部において、周方向を等分する位置に形成されてもよい。
 図1、図2に示す例では、熱カシメ用突状部52Bは、周方向に連続する円筒状の突起である。この場合、熱カシメしたときに折り曲げられる熱カシメ用突状部52Bは周方向における全体にわたって、均等に第1レンズ51に接触する。折り曲げられた熱カシメ用突状部52Bが第1レンズ51に接触することによる応力は分散される。この結果、周方向に連続する円筒状の突起で構成された熱カシメ用突状部52Bによって固定される第1レンズ51は、レンズ歪みによる光学特性の劣化が低減される。
The thermal caulking projection 52B protrudes in the direction along the central axis C from the upper end of the inner frame main body 52A. The thermal caulking projection 52 </ b> B may be configured of, for example, a plurality of projections (protrusions) separated in the circumferential direction. In this case, the plurality of protrusions may be formed at positions at the upper end portion of the inner frame main body 52A to equally divide the circumferential direction.
In the example shown in FIG. 1 and FIG. 2, the thermal caulking protrusion 52 B is a cylindrical protrusion that is continuous in the circumferential direction. In this case, the thermal caulking projections 52B, which are bent when thermal caulking, contact the first lens 51 evenly throughout the circumferential direction. The stress due to the bent thermal caulking protrusion 52B coming into contact with the first lens 51 is dispersed. As a result, in the first lens 51 fixed by the thermal caulking protrusion 52B formed of a cylindrical protrusion continuous in the circumferential direction, deterioration of the optical characteristics due to lens distortion is reduced.
 熱カシメ用突状部52Bの内周面52iの内径は、図2に示すように、内周面52gの内径と同じであってもよい。
 ただし、内周面52iの内径は、内周面52gの内径より大きくてもよい。内周面52iが内周面52gよりも大径の場合、内周面52iは、下端部から上端部に向かうにつれて径方向外側に傾斜するテーパ面であってもよい。この場合、第1レンズ51の挿入がより容易になる。
 熱カシメ用突状部52Bの外周面52jは、図2に示すように、内枠本体52Aの外周面に段差なく接続していてもよい。ただし、外周面52jは、内枠本体52Aの外周面に対して段差を有していてもよい。
 外周面52jは、図2に示す例のように、下端部から上端部に向かうにつれて径方向内側に傾斜するテーパ面であってもよい。
The inner diameter of the inner circumferential surface 52i of the thermal caulking protrusion 52B may be the same as the inner diameter of the inner circumferential surface 52g, as shown in FIG.
However, the inner diameter of the inner circumferential surface 52i may be larger than the inner diameter of the inner circumferential surface 52g. When the diameter of the inner peripheral surface 52i is larger than that of the inner peripheral surface 52g, the inner peripheral surface 52i may be a tapered surface which is inclined radially outward from the lower end to the upper end. In this case, the insertion of the first lens 51 becomes easier.
The outer peripheral surface 52j of the thermal caulking protrusion 52B may be connected to the outer peripheral surface of the inner frame main body 52A without any level difference, as shown in FIG. However, the outer circumferential surface 52 j may have a step with respect to the outer circumferential surface of the inner frame main body 52 </ b> A.
The outer peripheral surface 52 j may be a tapered surface which inclines inward in the radial direction from the lower end to the upper end as in the example shown in FIG. 2.
 熱カシメ用突状部52Bの径方向における厚さは、内枠本体52Aの径方向における厚さよりも薄い。熱カシメ用突状部52Bの内枠本体52Aからの突出高さは、熱カシメにおいて必要なカシメ代が確保できる大きさであって、かつ熱カシメ後に折り曲げられた状態で第1レンズ面51aのレンズ有効領域の外側に位置する大きさに設定されている。
 熱カシメ用突状部52Bの突出方向における先端面52hは、中心軸線Cと直交する平面である。
The thickness in the radial direction of the thermal caulking projection 52B is thinner than the thickness in the radial direction of the inner frame main body 52A. The protruding height of the thermal caulking protuberance 52B from the inner frame main body 52A is such that a caulking margin necessary for thermal caulking can be secured, and in the state of being bent after thermal caulking, the first lens surface 51a The size is set outside the lens effective area.
The tip end surface 52 h in the protrusion direction of the thermal caulking protrusion 52 B is a plane orthogonal to the central axis C.
 このような構成により、本実施形態における第1内枠部52fは、全体として円筒状に形成されている。第1内枠部52fの内周面52gの内径は、第1レンズ51を着脱可能に嵌合できる大きさである。内周面52gと第1レンズ51のレンズ側面51cとの間の隙間は、第1レンズ51の許容偏心誤差未満の大きさとされることがより好ましい。
 第1内枠部52fと第1外枠部52aとの間には、軸方向から見て環状の隙間が形成されている。この隙間の大きさは、後述するホーン部5の先端部を挿入できる大きさである。
With such a configuration, the first inner frame portion 52f in the present embodiment is formed in a cylindrical shape as a whole. The inner diameter of the inner peripheral surface 52g of the first inner frame portion 52f has a size that allows the first lens 51 to be detachably fitted. The gap between the inner circumferential surface 52 g and the lens side surface 51 c of the first lens 51 is more preferably smaller than the allowable eccentric error of the first lens 51.
An annular gap is formed between the first inner frame portion 52 f and the first outer frame portion 52 a as viewed in the axial direction. The size of the gap is such that the tip of the horn 5 described later can be inserted.
 図1に示すように、段部52bは、第1外枠部52aの上側の端部から径方向外側に張り出した板状部である。
 段部52bにおける第2端部E2側の表面には、第2内枠部52kが立設されている。
第2内枠部52kは、第2レンズを挿入するための枠部である。
 第2内枠部52kは、段部52b側から内枠本体52C、熱カシメ用突状部52Dをこの順に備える。第2レンズを保持するために形状および配置位置が変更されている点を除き、内枠本体52Cは、第1内枠部52fにおける内枠本体52Aと同様に構成され、熱カシメ用突状部52Dは、熱カシメ用突状部52Bと同様に構成されている。
 すなわち、内枠本体52Cは、第2レンズを着脱可能に嵌合することにより、レンズ枠52において、第2レンズを径方向において位置決めする。この内周面52mは、第2レンズの外径よりもわずかに小径の円筒面である。内枠本体52Cの内側における段部52bの表面は、内枠本体52Cに挿入された第2レンズを中心軸線Cに沿う方向において位置決めするレンズ受け面を構成している。
 熱カシメ用突状部52Dは、第2内枠部52kに第2レンズを固定するために、熱カシメ装置10によって熱カシメされる熱可塑性樹脂製の突状部である。ただし、上述したように、使用されるホーン部の形状は、図1に示すホーン部5とは異なる。
As shown in FIG. 1, the stepped portion 52 b is a plate-like portion that protrudes outward in the radial direction from the upper end of the first outer frame 52 a.
A second inner frame 52k is provided upright on the surface of the step 52b on the second end E2 side.
The second inner frame portion 52k is a frame portion for inserting the second lens.
The second inner frame portion 52k includes an inner frame main body 52C and a thermal caulking protrusion 52D in this order from the step 52b side. The inner frame main body 52C is configured in the same manner as the inner frame main body 52A in the first inner frame portion 52f, except that the shape and the arrangement position are changed to hold the second lens, and the protrusion for thermal caulking 52D is comprised similarly to projection part 52B for heat caulking.
That is, the inner frame main body 52 </ b> C positions the second lens in the radial direction in the lens frame 52 by detachably fitting the second lens. The inner circumferential surface 52m is a cylindrical surface slightly smaller in diameter than the outer diameter of the second lens. The surface of the stepped portion 52b inside the inner frame main body 52C constitutes a lens receiving surface for positioning the second lens inserted in the inner frame main body 52C in the direction along the central axis C.
The thermal caulking projections 52D are projections made of thermoplastic resin that are thermally caulked by the thermal caulking device 10 in order to fix the second lens to the second inner frame 52k. However, as described above, the shape of the horn used is different from that of the horn 5 shown in FIG.
 段部52bの外縁部には、第2外枠部52cが立設されている。
 第2外枠部52cは、第2外枠部52cよりも大径の円筒部材である。第2外枠部52cの外周面は、中心軸線Cと同軸である。第2外枠部52cの突出高さは、例えば、第2レンズのレンズ厚などに応じて適宜の高さに設定される。図1に示す例では、第2外枠部52cの高さは第2内枠部52kの高さよりも高い。
 第2外枠部52cと第2内枠部52kとの間には、軸方向から見て環状の隙間が形成されている。この隙間の大きさは、第2レンズを熱カシメするホーン部の先端部を挿入できる大きさである。
A second outer frame portion 52c is erected at the outer edge of the step 52b.
The second outer frame portion 52c is a cylindrical member larger in diameter than the second outer frame portion 52c. The outer peripheral surface of the second outer frame portion 52c is coaxial with the central axis C. The protruding height of the second outer frame portion 52c is set to an appropriate height according to, for example, the lens thickness of the second lens. In the example shown in FIG. 1, the height of the second outer frame portion 52c is higher than the height of the second inner frame portion 52k.
An annular gap is formed between the second outer frame portion 52c and the second inner frame portion 52k as viewed in the axial direction. The size of this gap is such that it can be inserted into the tip of the horn for heat crimping the second lens.
 レンズ枠52において、第1内枠部52fと第2内枠部52kとの径方向における配置位置は、第1レンズ51と第2レンズとを設計上必要な位置関係に配置できるように決められている。
 例えば、第1レンズ51と第2レンズとが偏心光学系を構成する場合には、光軸O1と第2レンズの光軸とが設計上必要な偏心量だけずれるように第1内枠部52fの配置位置が決められる。
 例えば、第1レンズ51と第2レンズとが共軸光学系を構成する場合には、光軸O1と第2レンズの光軸と同軸になるように第1内枠部52fの配置位置が決められる。
 ただし、レンズユニットにおいて、製造上の理由で、レンズ群またはレンズ枠の一部に略一定の偏心誤差が生じることが分かっていることがある。この場合、偏心誤差を生じる各部材の製造誤差を低減するよりも、レンズユニットとしての偏心誤差を低減する方向に特定のレンズの配置位置をずらす修正を加える方が経済的な場合がある。特に高精度な光学特性が求められるレンズユニットでは、このような修正が有効になる場合がある。
 このため、共軸光学系のレンズ枠であっても、各レンズを保持する枠部の中心軸線が同軸上にない場合がある。
In the lens frame 52, the arrangement positions of the first inner frame portion 52f and the second inner frame portion 52k in the radial direction are determined such that the first lens 51 and the second lens can be arranged in the positional relationship necessary for design. ing.
For example, in the case where the first lens 51 and the second lens constitute a decentered optical system, the first inner frame portion 52f is arranged such that the optical axis O1 and the optical axis of the second lens are deviated by the necessary decentering amount in design. The placement position of is determined.
For example, when the first lens 51 and the second lens constitute a coaxial optical system, the arrangement position of the first inner frame 52f is determined so as to be coaxial with the optical axis O1 and the optical axis of the second lens. Be
However, in the lens unit, it may be known that a substantially constant decentration error occurs in the lens unit or a part of the lens frame for manufacturing reasons. In this case, it may be more economical to shift the position of the specific lens in the direction of reducing the decentering error of the lens unit rather than reducing the manufacturing error of each member causing the decentering error. Such correction may be effective particularly for a lens unit that requires high precision optical characteristics.
For this reason, even in the case of a lens frame of a coaxial optical system, there are cases where the central axis of the frame portion holding each lens is not coaxial.
 レンズ枠52では、一例として、第2内枠部52kの内周面52mの中心軸線C2は、中心軸線Cと同軸である。第1内枠部52fの内周面52iの中心軸線C1は、中心軸線C1に対してΔだけ偏心している(図2参照)。中心軸線C1の偏心量Δおよび偏心方向は、レンズユニットの部材の生じた製造誤差による偏心誤差を補正する値に設定されている。ただし、第1レンズ51と第2レンズとが偏心光学系を構成する場合には、偏心量Δおよび偏心方向は、偏心光学系における設計上の値に設定されてもよい。 In the lens frame 52, as an example, the central axis C2 of the inner peripheral surface 52m of the second inner frame 52k is coaxial with the central axis C. The central axis C1 of the inner circumferential surface 52i of the first inner frame portion 52f is offset by Δ from the central axis C1 (see FIG. 2). The amount of eccentricity Δ and the direction of eccentricity of the central axis C1 are set to values for correcting an eccentricity error due to a manufacturing error generated by the member of the lens unit. However, when the first lens 51 and the second lens constitute a decentered optical system, the amount of eccentricity Δ and the decentered direction may be set to design values in the decentered optical system.
 ここで、熱カシメ装置10の説明に戻る。
 図1に示すように、レンズ枠保持部6は、上述したレンズ枠52の第1外枠部52aの外周面を側方から、および底面部52dの下面を下方から、それぞれ保持する。
 レンズ枠保持部6は、スライド支持部7を介して、ベース1上に配置されている。
 スライド支持部7は、レンズ枠保持部6を基準軸線Zに直交する方向(以下、軸直角方向と称する)において移動可能に支持する。スライド支持部7は、後述するホーン部5を熱カシメ時の押圧力よりも低い押圧力で下降させたときに熱カシメ用突状部52Bとの当接部から作用する微小な押圧力の軸直角方向成分によって、レンズ枠保持部6が軸直角方向に移動する構成が用いられる。
Here, the description returns to the heat caulking device 10.
As shown in FIG. 1, the lens frame holding portion 6 holds the outer peripheral surface of the first outer frame portion 52a of the lens frame 52 described above from the side and the lower surface of the bottom surface portion 52d from the lower side.
The lens frame holding portion 6 is disposed on the base 1 via the slide support portion 7.
The slide support portion 7 supports the lens frame holding portion 6 so as to be movable in a direction orthogonal to the reference axis Z (hereinafter, referred to as a direction perpendicular to the axis). The slide support portion 7 is an axis of a minute pressing force that acts from the contact portion with the thermal caulking protrusion 52B when the horn portion 5 described later is lowered with a pressing force lower than the pressing force at the time of thermal caulking. A configuration is used in which the lens frame holding portion 6 moves in the direction perpendicular to the axis by the perpendicular direction component.
 スライド支持部7としては、例えば、レンズ枠保持部6を固定する第1の基板と、基準軸線Zに沿う方向において第1の基板と対向する第2の基板と、軸直角方向において第2の基板に対して第1の基板をスライド移動可能に支持するスライド移動部と、を備える構成が用いられてもよい。スライド移動部としては、第1の基板および第2の基板の少なくとも一方との間に働く摩擦力が低摩擦になる種々の軸受構造を用いることができる。
 スライド支持部7としては、例えば、XY軸方向に移動可能なコンプライアンス装置、駆動機構(マイクロメータヘッド、引っ張りスプリングなど)が除去されたXYステージなどの例が挙げられる。コンプライアンス装置の具体例としては、例えば、コンプライアンスモジュールSHM62S(商品名;(株)コガネイ製)などが挙げられる。
The slide support 7 includes, for example, a first substrate for fixing the lens frame holding portion 6, a second substrate facing the first substrate in the direction along the reference axis Z, and a second substrate in a direction perpendicular to the axis. A configuration including a slide moving unit that slidably supports the first substrate with respect to the substrate may be used. As the slide moving portion, various bearing structures in which the friction force acting between at least one of the first substrate and the second substrate is a low friction can be used.
Examples of the slide support portion 7 include an example of a compliance device movable in the XY axis direction, an XY stage from which a drive mechanism (micrometer head, tension spring, etc.) is removed, and the like. As a specific example of the compliance device, for example, a compliance module SHM62S (trade name; manufactured by Koganei Co., Ltd.) and the like can be mentioned.
 図3A、図3Bに、スライド支持部7の一例を示す。図3Aには、軸直角方向への外力が作用しない場合の中立位置のスライド支持部7が示されている。図3Bには、レンズ枠保持部6との固定部を介して軸直角方向における外力fがスライド支持部7に作用してスライド移動した状態が示されている。
 スライド支持部7は、第1プレート7a(第1の基板)、第2プレート7f(第2の基板)、および転動体7e(スライド移動部)を備える。
An example of the slide support part 7 is shown to FIG. 3A and FIG. 3B. FIG. 3A shows the slide support 7 in the neutral position when no external force in the direction perpendicular to the axis acts. FIG. 3B shows a state in which an external force f in a direction perpendicular to the axial direction acts on the slide support 7 via a fixing portion with the lens frame holding portion 6 and slides.
The slide support 7 includes a first plate 7a (first substrate), a second plate 7f (second substrate), and rolling elements 7e (slide moving unit).
 第1プレート7aは、平板の外周部の下面に壁部7dが突出された略平板状部材である。壁部7dに囲まれた下面は、後述する転動体7eの転動を案内するガイド面7cを構成している。ガイド面7cと、ガイド面7cの裏側の表面7bとは互いに平行である。表面7bには、レンズ枠保持部6の下面が固定可能である。
 第2プレート7fは、平板の外周部の上面に壁部7iが突出された略平板状部材である。壁部7iに囲まれた上面は、後述する転動体7eの転動を案内するガイド面7hを構成している。ガイド面7hと、ガイド面7hの裏側の表面7gとは互いに平行である。表面7gは、熱カシメ装置10のベース1の上面に固定されている。
 第1プレート7aおよび第2プレート7fの平面視形状は、矩形状でも円状でもよい。図3Aに示す例では、第1プレート7aおよび第2プレート7fの平面視形状は互いに同一である。
 第1プレート7aおよび第2プレート7fの材質としては、金属などの高剛性の材料が用いられる。
 壁部7d、7iの突出高さは互いに異なっていてもよいが、突出高さはそれぞれにおいて一定である。壁部7d、7iの各突出高さの和は、後述する転動体7eの直径未満である。
The first plate 7a is a substantially flat member in which the wall 7d is protruded from the lower surface of the outer peripheral portion of the flat plate. The lower surface surrounded by the wall portion 7d constitutes a guide surface 7c for guiding the rolling of a rolling element 7e described later. The guide surface 7c and the back surface 7b of the guide surface 7c are parallel to each other. The lower surface of the lens frame holding portion 6 can be fixed to the surface 7 b.
The second plate 7 f is a substantially flat member in which the wall 7 i is projected on the upper surface of the outer peripheral portion of the flat plate. The upper surface surrounded by the wall portion 7i constitutes a guide surface 7h for guiding the rolling of a rolling element 7e described later. The guide surface 7h and the back surface 7g of the guide surface 7h are parallel to each other. The surface 7 g is fixed to the upper surface of the base 1 of the thermal caulking device 10.
The plan view shape of the first plate 7a and the second plate 7f may be rectangular or circular. In the example shown to FIG. 3A, the planar view shape of the 1st plate 7a and the 2nd plate 7f is mutually identical.
As a material of the first plate 7a and the second plate 7f, a highly rigid material such as metal is used.
The protruding heights of the walls 7d and 7i may be different from each other, but the protruding heights are constant in each other. The sum of the projection heights of the wall portions 7d and 7i is less than the diameter of the rolling element 7e described later.
 転動体7eは、壁部7d、7iの各突出高さの和を超える直径を有する高剛性の球である。例えば、転動体7eは、鋼球などが用いられてもよい。
 転動体7eは、ガイド面7c、7hに挟まれた状態で、互いに離間して、複数設けられている。図示は省略するが、複数の転動体7eの間には、各転動体7eを転動可能に保持しかつ互いの配置間隔を規制する保持器が配置されてもよい。
The rolling element 7e is a highly rigid ball having a diameter exceeding the sum of the projecting heights of the wall portions 7d and 7i. For example, a steel ball or the like may be used as the rolling element 7e.
A plurality of rolling elements 7e are provided apart from each other in a state of being sandwiched by the guide surfaces 7c and 7h. Although not shown, cages may be disposed between the plurality of rolling elements 7e so as to hold the rolling elements 7e in a rollable manner and to restrict the arrangement interval between the rolling elements 7e.
 このような構成のスライド支持部7によれば、第1プレート7aのガイド面7cおよび第2プレート7fのガイド面7hに挟まれた複数の転動体7eが転動することで、第2プレート7fに対して第1プレート7aが軸直角方向に移動可能である。第1プレート7aは、各転動体7eによるころがり摩擦しか受けないため、軸直角方向に作用する外力fが微小でも、軸直角方向に移動可能である。 According to the slide supporting portion 7 having such a configuration, the plurality of rolling elements 7e sandwiched between the guide surface 7c of the first plate 7a and the guide surface 7h of the second plate 7f roll to form the second plate 7f. The first plate 7a is movable in a direction perpendicular to the axis. Since the first plate 7a receives only rolling friction by the rolling elements 7e, it can move in the direction perpendicular to the axis even if the external force f acting in the direction perpendicular to the axis is minute.
 図示は省略するが、スライド支持部7は、第1プレート7aおよび第2プレート7fが互いに軸直角方向に移動しないようにロックするロック機構を有している。例えば、ロック機構をロック状態とすることで、第1プレート7aが中立位置に固定される。ロック機構をロック解除することで、軸直角方向において微小な外力fが作用するだけで、第2プレート7fに対して第1プレート7aが軸直角方向に移動可能になる。
 ロック機構は、操作者が直接的に操作できる構成でもよいし、操作者が後述する操作部12に操作入力することで、後述する制御部11の制御によって動作する構成でもよい。
Although not shown, the slide support 7 has a lock mechanism that locks the first plate 7a and the second plate 7f so that they do not move in the direction perpendicular to each other. For example, the first plate 7a is fixed at the neutral position by bringing the lock mechanism into the locked state. By unlocking the lock mechanism, the first plate 7a can be moved in the direction perpendicular to the second plate 7f only by the application of a minute external force f in the direction perpendicular to the axis.
The lock mechanism may be configured to be operated directly by the operator, or may be operated under control of the control unit 11 described later by the operator performing an operation input on the operation unit 12 described later.
 図1に示すように、支持部2は、後述する押圧部3、加熱部4、ホーン部5を、レンズ枠保持部6の上方に配置する装置である。支持部2は、ベース1上に立設された複数の支柱と、支柱間に架設された梁、平板などの上部構造体とを備える。 As shown in FIG. 1, the support unit 2 is an apparatus that arranges a pressing unit 3, a heating unit 4, and a horn unit 5 which will be described later, above the lens frame holding unit 6. The support portion 2 includes a plurality of columns erected on the base 1 and an upper structure such as a beam, a flat plate and the like installed between the columns.
 押圧部3は、熱カシメ用突状部52Bを押圧するための押圧力を発生する装置である。押圧部3は、駆動源として図示略のモータと、押圧力を検出するため軸方向に受ける荷重を検出するロードセルとを備えている。ロードセルは後述する当接状態検知部8の一部を構成してもよい。
 押圧部3の上端部は支持部2の上部構造体に連結されている。押圧部3の下端部には後述する加熱部4が連結されている。
 押圧部3の下端部は、図示略の駆動源により基準軸線Zに沿って進退することが可能である。
The pressing unit 3 is a device that generates a pressing force for pressing the thermal caulking protrusion 52B. The pressing unit 3 includes a motor (not shown) as a drive source, and a load cell that detects a load received in the axial direction to detect a pressing force. The load cell may constitute a part of the contact state detection unit 8 described later.
The upper end portion of the pressing portion 3 is connected to the upper structure of the support portion 2. A heating unit 4 described later is connected to the lower end of the pressing unit 3.
The lower end portion of the pressing portion 3 can be advanced and retracted along the reference axis Z by a drive source (not shown).
 加熱部4は、後述するホーン部5を介して熱カシメ用突状部52Bを加熱するための装置である。加熱部4は、その上部が押圧部3の下端部に固定されている。このため、加熱部4は、押圧部3に含まれる移動機構によって基準軸線Zに沿って移動可能に支持されている。加熱部4の下面側には、後述するホーン部5が固定されている。
 加熱部4の具体的な構成は、熱カシメの方式に応じて適宜の装置構成を採用することができる。
 例えば、ホーン部5を加熱することにより熱カシメが行われる場合には、加熱部4は図示略のヒータを備える。
 例えば、ホーン部5に超音波振動を印加することにより熱カシメが行われる場合には、加熱部4は図示略の超音波振動子を備える。
 例えば、加熱部4は、超音波振動子に加えてヒータを備えてもよい。
 以下では、一例として、加熱部4がヒータを備える場合の例で説明する。
The heating unit 4 is a device for heating the thermal caulking protrusion 52B via the horn unit 5 described later. The upper portion of the heating unit 4 is fixed to the lower end portion of the pressing unit 3. Therefore, the heating unit 4 is supported by the moving mechanism included in the pressing unit 3 so as to be movable along the reference axis Z. A horn unit 5 described later is fixed to the lower surface side of the heating unit 4.
The specific structure of the heating part 4 can employ | adopt an appropriate apparatus structure according to the system of heat caulking.
For example, when heat caulking is performed by heating the horn unit 5, the heating unit 4 includes a heater (not shown).
For example, when heat caulking is performed by applying ultrasonic vibration to the horn unit 5, the heating unit 4 includes an ultrasonic transducer (not shown).
For example, the heating unit 4 may include a heater in addition to the ultrasonic transducer.
Below, an example in case heating part 4 is provided with a heater is explained as an example.
 ホーン部5は、レンズ枠52の熱カシメ用突状部52Bを加熱するとともに押圧することにより、熱カシメ用突状部52Bを軟化させて折り曲げる。折り曲げられた熱カシメ用突状部52Bは、ホーン部5の先端部の形状に沿って成形される。
 本実施形態では、ホーン部5は、略円筒状の金属部材で構成されている。ホーン部5は、その中心軸線が基準軸線Zと同軸となるように、加熱部4の下部に固定されている。
The horn portion 5 heats and presses the heat caulking protuberance 52B of the lens frame 52, thereby softening and bending the heat caulking protuberance 52B. The bent portion 52 B for thermal caulking is formed along the shape of the tip of the horn 5.
In the present embodiment, the horn portion 5 is formed of a substantially cylindrical metal member. The horn portion 5 is fixed to the lower portion of the heating portion 4 so that the central axis thereof is coaxial with the reference axis Z.
 図2に示すように、ホーン部5の下端部には、基準軸線Zを中心とする円環状の先端面5aが形成されている。
 先端面5aの内縁部から内側には、先端内周面5b(カシメ用押圧面)、押圧面5c(カシメ用押圧面)、および逃げ部5fが、基準軸線Zに向かって、この順に同心円状に形成されている。
 これら先端内周面5b、押圧面5c、および逃げ部5fの形状は、本実施形態では、基準軸線Zに関して軸対称な形状である。
As shown in FIG. 2, at the lower end portion of the horn portion 5, an annular tip end surface 5 a centered on the reference axis Z is formed.
A tip inner circumferential surface 5b (crimp pressing surface), a pressing surface 5c (crimp pressing surface), and a relief 5f are concentrically formed in this order from the inner edge of the tip surface 5a toward the reference axis Z in this order. Is formed.
The shapes of the tip inner circumferential surface 5b, the pressing surface 5c, and the relief portion 5f are axially symmetrical with respect to the reference axis Z in the present embodiment.
 先端内周面5bは、熱カシメ用突状部52Bを熱カシメする際に変形する樹脂が径方向外側に逃げないように、内枠本体52Aを径方向外側から覆う部位である。径方向外側への樹脂の逃げを効率的に抑制するためには、先端内周面5bの形状(内径、テーパ)は、内枠本体52Aの外周面と略同じであってもよい。ただし、先端内周面5bと、第1内枠部52fの外周面との少なくとも一方には、下側に向かうにつれてって径方向外側に傾斜するテーパが形成される。
 径方向外側への樹脂の逃げを効率的に抑制するためには、先端内周面5bの形状は、熱カシメが行われる位置までホーン部5を下降する間に、内枠本体52Aに対して径方向内側にわずかに食い込む形状であってもよい。この場合、先端内周面5bの上部が特に内枠本体52Aに対して食い込むように、先端内周面5bには、内枠本体52Aの外周面のテーパよりも大きな傾斜を有するテーパが形成されていてもよい。
The tip inner circumferential surface 5b is a portion that covers the inner frame main body 52A from the outer side in the radial direction so that the resin that deforms when thermally caulking the heat caulking protrusion 52B does not escape to the outer side in the radial direction. The shape (inner diameter, taper) of the tip inner circumferential surface 5b may be substantially the same as the outer circumferential surface of the inner frame main body 52A in order to efficiently suppress the escape of the resin to the radially outer side. However, at least one of the tip inner circumferential surface 5b and the outer circumferential surface of the first inner frame portion 52f is formed with a taper which is inclined radially outward as it goes downward.
In order to effectively suppress the escape of the resin to the radially outer side, the shape of the tip inner circumferential surface 5b is made with respect to the inner frame main body 52A while the horn portion 5 is lowered to the position where the heat caulking is performed. It may be shaped to bite slightly inward in the radial direction. In this case, the tip inner peripheral surface 5b is formed with a taper having a larger inclination than the outer peripheral surface of the inner frame main body 52A so that the upper portion of the tip inner peripheral surface 5b bites particularly into the inner frame main body 52A. It may be
 押圧面5cは、先端内周面5bよりも上側において熱カシメ用突状部52Bを内側に折り曲げるとともに、第1内枠部52fに挿入された第1レンズ51の第1レンズ面51aの外縁部に向かって熱カシメ用突状部52Bを押圧するホーン部5の一部である。
 押圧面5cは、第1レンズ51の第1レンズ面51aの外周部に略沿う形状のテーパ面で構成される。
The pressing surface 5c bends the thermal caulking protrusion 52B inward on the upper side of the tip inner circumferential surface 5b, and the outer edge portion of the first lens surface 51a of the first lens 51 inserted in the first inner frame 52f. It is a part of horn part 5 which presses projecting part 52B for heat caulking towards.
The pressing surface 5 c is formed of a tapered surface having a shape substantially along the outer peripheral portion of the first lens surface 51 a of the first lens 51.
 逃げ部5fは、熱カシメ時に、ホーン部5と、第1レンズ面51aにおけるレンズ有効領域との接触を防止する穴部を構成する内周面である。
 逃げ部5fは、押圧面5cの内縁部から上方に向かうにつれて内側に縮径するテーパ面で構成される。逃げ部5fの上端部には、基準軸線Zに沿って延びる円筒面5gに接続されている。
The relief portion 5 f is an inner peripheral surface that constitutes a hole that prevents contact between the horn portion 5 and the lens effective area of the first lens surface 51 a when heat caulking is performed.
The relief portion 5 f is formed of a tapered surface which decreases in diameter toward the upper side from the inner edge portion of the pressing surface 5 c. An upper end portion of the relief portion 5 f is connected to a cylindrical surface 5 g extending along the reference axis Z.
 次に、図4を参照して、熱カシメ装置10の動作および制御系に関連する構成について説明する。
 図4に示すように、熱カシメ装置10は、さらに、当接状態検知部8、操作部12、制御部11、および表示部13を備えている。
Next, the configuration related to the operation and control system of the thermal caulking device 10 will be described with reference to FIG.
As shown in FIG. 4, the thermal caulking device 10 further includes a contact state detection unit 8, an operation unit 12, a control unit 11, and a display unit 13.
 当接状態検知部8は、熱カシメ装置10において、例えば、押圧面5cと熱カシメ用突状部52Bとが接触したかどうか(以下、接触検知と称する)と、軸直角方向におけるレンズ枠保持部6の相対移動限度に達したかどうか(以下、相対移動限度検知と称する)と、を検知する装置である。 In the thermal caulking device 10, the contact state detection unit 8 holds, for example, whether or not the pressing surface 5c and the thermal caulking protrusion 52B are in contact with each other (hereinafter referred to as contact detection). It is a device that detects whether the relative movement limit of the part 6 has been reached (hereinafter referred to as relative movement limit detection).
 後述するように、軸方向から見て、熱カシメ用突状部52Bの上端がホーン部5の先端面5aの内側に入る位置関係で、ホーン部5をある程度下降させると、ホーン部5の先端内周面5bまたは押圧面5cが熱カシメ用突状部52Bの先端と接触する。
 当接状態検知部8はこの接触が発生したかどうかを監視し、接触を検知すると検出信号を制御部11に送出する。
 接触検知の具体的な手段の例としては、力検出センサ、運動検出センサなどが挙げられる。
 力検出センサを用いる場合、接触時に発生する軸方向における力成分をホーン部5またはスライド支持部7において検出することができる。具体的には、押圧部3におけるロードセルなどが使用可能である。
 運動検出センサとしては、加速度センサ、速度センサ、および位置検出センサが挙げられる。これらのセンサによれば、接触時に発生する加速度、速度、移動量の変化を検出することができるため、接触検知が可能である。これらの運動検出センサは、ホーン部5およびスライド支持部7の少なくとも一方に設けられていればよい。特に、3軸加速度センサを用いると、軸方向における微小な加速度の変化を高精度に検出することができるためより好ましい。3軸加速度センサによれば、被検体の3次元的な姿勢の変化も検出可能である。
As will be described later, when the horn 5 is lowered to a certain extent with the positional relationship in which the upper end of the thermal caulking protrusion 52B enters the inside of the tip surface 5a of the horn 5 as viewed from the axial direction, the tip of the horn 5 is The inner circumferential surface 5b or the pressing surface 5c comes in contact with the tip of the thermal caulking protrusion 52B.
The contact state detection unit 8 monitors whether or not this contact has occurred, and sends out a detection signal to the control unit 11 when the contact is detected.
Examples of specific means for contact detection include a force detection sensor, a motion detection sensor, and the like.
When a force detection sensor is used, a force component in the axial direction generated at the time of contact can be detected by the horn 5 or the slide support 7. Specifically, a load cell in the pressing unit 3 or the like can be used.
Motion detection sensors include acceleration sensors, speed sensors, and position detection sensors. According to these sensors, it is possible to detect changes in acceleration, speed, and movement amount generated at the time of contact, so that contact detection is possible. These motion detection sensors may be provided on at least one of the horn 5 and the slide support 7. In particular, the use of a three-axis acceleration sensor is more preferable because minute changes in acceleration in the axial direction can be detected with high accuracy. The three-axis acceleration sensor can also detect a three-dimensional change in posture of the subject.
 基準軸線Zと中心軸線C1とが径方向にずれている場合、熱カシメ用突状部52Bの先端部とホーン部5とは、軸ずれ量に応じて接触する部位は異なるが、上側から下側に向かうにつれて径方向外側に傾斜するテーパ面において点接触が生じる。この接触状態で、ホーン部5が下降すると、熱カシメ用突状部52Bの先端部とホーン部5との接触部において、径方向内側に向かう押圧力成分が発生する。この押圧力成分が、スライド支持部7における摩擦抵抗を超えると、レンズ枠保持部6が軸直角方向に移動可能になる。熱カシメ用突状部52Bにおける点接触の接触部は、テーパ面に沿って滑る結果、レンズ枠保持部6が基準軸線Zに向かう方向に移動する。
 基準軸線Zと中心軸線C1とが同軸になるまで、レンズ枠保持部6が移動すると、熱カシメ用突状部52Bの先端部は、ホーン部5の押圧面5cと円状に接触する。このとき、レンズ枠保持部6に作用する押圧力の軸直角方向成分は全体として釣り合うため、レンズ枠保持部6の軸直角方向における移動が終了する。すなわち、レンズ枠保持部6は、ホーン部5と接触した状態における軸直角方向における移動限界に達する。このとき、ホーン部5は、熱カシメ用突状部52Bを軸方向に変形させない条件下においては、軸方向における下降移動の限界に達する。
When the reference axis Z and the central axis C1 are offset in the radial direction, the tip of the thermal caulking protrusion 52B and the horn 5 may be in different parts depending on the amount of offset, but from the top to the bottom Point contact occurs at the tapered surface which inclines radially outward as it goes to the side. In this contact state, when the horn portion 5 is lowered, a pressing force component toward the inside in the radial direction is generated at the contact portion between the distal end portion of the thermal caulking protrusion 52B and the horn portion 5. When this pressing force component exceeds the frictional resistance in the slide support portion 7, the lens frame holding portion 6 can move in the direction perpendicular to the axis. The contact portion of the point contact in the thermal caulking protrusion 52B slides along the tapered surface, and as a result, the lens frame holding portion 6 moves in the direction toward the reference axis Z.
When the lens frame holding portion 6 moves until the reference axis Z and the central axis C1 become coaxial, the tip of the thermal caulking protrusion 52B contacts the pressing surface 5c of the horn 5 in a circular shape. At this time, since the component in the direction perpendicular to the axis of the pressing force acting on the lens frame holding portion 6 is balanced as a whole, the movement of the lens frame holding portion 6 in the direction perpendicular to the axis is completed. That is, the lens frame holding portion 6 reaches the movement limit in the direction perpendicular to the axis in the state of being in contact with the horn portion 5. At this time, the horn 5 reaches the limit of the downward movement in the axial direction under the condition that the thermal caulking protrusion 52B is not deformed in the axial direction.
 したがって、レンズ枠保持部6の軸直角方向における相対移動限度は、レンズ枠保持部6における中心軸線C1が基準軸線Zと同軸になること、または、ホーン部5の高さが、熱カシメ用突状部52Bの先端と円状に接触する所定高さに達したこと、によって検知できる。
 当接状態検知部8は、レンズ枠保持部6が移動限界に達したかどうかを監視し、移動限界に達したことを検知すると検出信号を制御部11に送出する。
 相対動限度検知の具体的な手段の例としては、軸直角方向におけるレンズ枠保持部6の位置、または軸方向におけるホーン部5の位置を検出する適宜のセンサ、変位測定手段が用いられる。例えば、レンズ枠保持部6の軸直角方向における位置を検出するセンサとしては、画像センサ、レーザ変位計、接触式変位計などが挙げられる。例えば、ホーン部5の軸方向における位置を検出するセンサとしては、押圧部3における駆動モータのエンコーダ、レーザ変位計、接触式変位計、画像センサなどが挙げられる。
Therefore, the relative movement limit of the lens frame holding portion 6 in the direction perpendicular to the axis is determined such that the central axis C1 of the lens frame holding portion 6 is coaxial with the reference axis Z, or the height of the horn portion 5 is a protrusion for thermal caulking It can detect by having reached the predetermined height circularly contacted with the tip of shape part 52B.
The contact state detection unit 8 monitors whether or not the lens frame holding unit 6 has reached the movement limit, and sends out a detection signal to the control unit 11 when detecting that the movement limit has been reached.
As a specific example of the relative movement limit detection, an appropriate sensor for detecting the position of the lens frame holding portion 6 in the direction perpendicular to the axial direction or the position of the horn portion 5 in the axial direction, and displacement measurement means are used. For example, as a sensor for detecting the position of the lens frame holding portion 6 in the direction perpendicular to the axis, an image sensor, a laser displacement gauge, a contact displacement gauge, etc. may be mentioned. For example, as a sensor for detecting the position of the horn unit 5 in the axial direction, an encoder of a drive motor in the pressing unit 3, a laser displacement gauge, a contact displacement gauge, an image sensor, etc. may be mentioned.
 操作部12は、操作者が熱カシメ装置10を操作するための操作入力を行う装置である。操作部12からの操作入力には、例えば、押圧部3によってホーン部5を軸方向における下降、上昇を制御する操作入力、加熱部4によってホーン部5を適宜の温度の加熱する操作入力、熱カシメを自動的に実行させるための操作入力が含まれる。
 操作部12の構成としては、例えば、操作ボタン、操作レバー、キーボード、マウスなどの適宜の操作手段を1以上有することが可能である。
The operation unit 12 is a device for performing an operation input for the operator to operate the thermal caulking device 10. The operation input from the operation unit 12 includes, for example, an operation input for controlling the lowering and rising of the horn unit 5 in the axial direction by the pressing unit 3, an operation input for heating the horn unit 5 by the heating unit 4 at an appropriate temperature, Operation input for automatically performing caulking is included.
The configuration of the operation unit 12 can include, for example, one or more appropriate operation means such as an operation button, an operation lever, a keyboard, and a mouse.
 制御部11は、操作部12を介した操作入力に基づいて、熱カシメ装置10の動作を制御する。制御部11は、押圧部3、加熱部4、当接状態検知部8、操作部12、および表示部13と通信可能に接続されている。
 制御部11は、操作者の制御に応じて熱カシメを行うマニュアルモードと、予め設定された手順に基づいて本実施形態の熱カシメ方法を自動的に実行するオートモードとを備える。それぞれの制御の詳細は、後述の動作説明の中で説明される。
The control unit 11 controls the operation of the thermal caulking device 10 based on the operation input via the operation unit 12. The control unit 11 is communicably connected to the pressing unit 3, the heating unit 4, the contact state detection unit 8, the operation unit 12, and the display unit 13.
The control unit 11 includes a manual mode in which heat caulking is performed in accordance with the control of the operator, and an auto mode in which the heat caulking method of the present embodiment is automatically executed based on a preset procedure. The details of each control will be described in the operation description to be described later.
 表示部13は、制御部11から送出される情報に基づいて、文字情報、画像情報などを表示する。表示部13に表示される情報としては、例えば、GUIに用いる操作画面、熱カシメを行うための、ホーン部5の移動量、加熱温度の情報が挙げられる。さらに表示部13には、当接状態検知部8による接触検知、相対移動限度検知に関する情報が表示される。 The display unit 13 displays character information, image information, and the like based on the information sent from the control unit 11. Examples of the information displayed on the display unit 13 include an operation screen used for a GUI, information on the amount of movement of the horn unit 5 for performing heat caulking, and heating temperature. Further, the display unit 13 displays information on contact detection by the contact state detection unit 8 and relative movement limit detection.
 次に、このような構成の熱カシメ装置10を用いて行うことができる本実施形態の熱カシメ方法について、熱カシメ装置10の動作とともに説明する。
 図5は、本発明の実施形態の熱カシメ方法における位置合わせ動作の一例を示すフローチャートである。図6は、本発明の実施形態の熱カシメ方法の一例を示すフローチャートである。図7~図9は、本発明の実施形態の熱カシメ装置の動作説明図である。
Next, the thermal caulking method of the present embodiment that can be performed using the thermal caulking device 10 having such a configuration will be described together with the operation of the thermal caulking device 10.
FIG. 5 is a flowchart showing an example of the alignment operation in the thermal caulking method of the embodiment of the present invention. FIG. 6 is a flowchart showing an example of the thermal caulking method according to the embodiment of the present invention. 7 to 9 are operation explanatory diagrams of the thermal caulking device according to the embodiment of the present invention.
 本実施形態の熱カシメ方法は、図5のフローチャートに示されるように、ステップS1~S5をフロー順に実行することで行われる。
 以下では、カシメ用組立体として、レンズ枠52の第1内枠部52fに第1レンズ51が挿入された組立体53が用いられる場合の例で説明する。この場合、カシメホーンとしては、ホーン部5が用いられる。
 ステップS1では、カシメ用組立体である組立体53とカシメホーンであるホーン部5とを準備する。本ステップでは、組立体53が組み立てられ、熱カシメ装置10にホーン部5が装着される。
The thermal caulking method of the present embodiment is performed by executing steps S1 to S5 in the order of flow as shown in the flowchart of FIG.
Hereinafter, an example in which the assembly 53 in which the first lens 51 is inserted into the first inner frame portion 52f of the lens frame 52 is used as a caulking assembly will be described. In this case, the horn unit 5 is used as the crimping horn.
In step S1, an assembly 53 which is a caulking assembly and a horn 5 which is a caulking horn are prepared. In this step, the assembly 53 is assembled, and the horn unit 5 is attached to the thermal caulking device 10.
 ステップS1の後、ステップS2が行われる。本ステップでは、保持台にカシメ用組立体を保持させる。具体的には、図1に示すように、熱カシメ装置10のレンズ枠保持部6に組立体53を保持させる。このとき、スライド支持部7はロック状態とされている。このため、組立体53は、中立位置におけるスライド支持部7上に固定されたレンズ枠保持部6に保持される。スライド支持部7の中立位置では、レンズ枠保持部6の保持中心軸線Hは、熱カシメ装置10の基準軸線Zと同軸である。
 ただし、本ステップにおいて、スライド支持部7をロック状態とすることは必須ではない。例えば、スライド支持部7がロック解除されていても、組立体53を支障なくレンズ枠保持部6に保持させることができる場合には、スライド支持部7がロック解除されていてもよい。
After step S1, step S2 is performed. In this step, the holding assembly holds the caulking assembly. Specifically, as shown in FIG. 1, the assembly 53 is held by the lens frame holding portion 6 of the thermal caulking device 10. At this time, the slide support 7 is in a locked state. For this reason, the assembly 53 is held by the lens frame holder 6 fixed on the slide support 7 in the neutral position. At the neutral position of the slide support portion 7, the holding central axis H of the lens frame holding portion 6 is coaxial with the reference axis Z of the thermal caulking device 10.
However, in this step, it is not essential to bring the slide support 7 into the locked state. For example, even if the slide support 7 is unlocked, the slide support 7 may be unlocked if the assembly 53 can be held by the lens frame holding unit 6 without any problem.
 ステップS2の後、ステップS3が行われる。本ステップでは、保持台がカシメホーンの押圧力の軸直角方向成分によって軸直角方向に移動可能な状態とされる。具体的には、スライド支持部7のロック機構がロック解除される。
 スライド支持部7は、例えば、転動体7eなどのスライド移動部を有するため、ロック解除されると、ホーン部5の押圧力における軸直角方向成分によって、レンズ枠保持部6がホーン部5に対して軸直角方向に移動可能である。
 ただし、上述したように、ステップS2の動作に支障がない場合には、本ステップの実行タイミングは、ステップS2の後には限定されない。本ステップは、後述するステップS4が開始される前であれば、いつ実行されていてもよい。特に、スライド支持部7にロック機構が設けられていない場合には、本ステップを実行するための具体的な動作は不要になる。
After step S2, step S3 is performed. In this step, the holding base can be moved in the direction perpendicular to the axis by the component in the direction perpendicular to the axis of the pressing force of the caulking horn. Specifically, the lock mechanism of the slide support 7 is unlocked.
The slide support 7 has, for example, a slide moving part such as the rolling element 7 e. Therefore, when the lock is released, the lens frame holding part 6 is opposed to the horn 5 by the component in the direction perpendicular to the axis of the pressing force of the horn 5. It is movable in the direction perpendicular to the axis.
However, as described above, when there is no problem in the operation of step S2, the execution timing of this step is not limited after step S2. This step may be executed any time before step S4 described later is started. In particular, when the slide support portion 7 is not provided with the lock mechanism, a specific operation for executing this step is not necessary.
 ステップS3の後、ステップS4が行われる。ステップS4では、軸直角方向におけるカシメホーンと保持台との相対位置の位置合わせ動作が行われる。位置合わせ動作は、カシメホーンのカシメ用押圧面を組立用枠体の突状部に押圧することにより行われる。
 位置合わせ動作は、熱カシメ装置10のマニュアルモードで行われてもよいし、オートモードで行われてもよい。以下では、オートモードにおける動作の例で説明する。
 ステップS4の具体的な動作の一例を、図6のフローチャートに示す。
After step S3, step S4 is performed. In step S4, an alignment operation of the relative position between the crimping horn and the holder in the direction perpendicular to the axis is performed. The alignment operation is performed by pressing the caulking pressing surface of the caulking horn against the projecting portion of the assembly frame.
The alignment operation may be performed in the manual mode of the thermal caulking device 10 or in the automatic mode. Hereinafter, an example of the operation in the auto mode will be described.
An example of a specific operation of step S4 is shown in the flowchart of FIG.
 ステップS4における位置合わせ動作は、図6のフローチャートに示されるステップS11~S14を順に実行することによって行われる。
 ステップS14の全体を通して、カシメホーンのカシメ用押圧面の温度は、位置合わせ用温度に保たれる。位置合わせ用温度は、後述する熱カシメ用温度よりも低い。位置合わせ用温度は、以下に述べる位置合わせ動作の間に受ける突状部が受ける押圧力によって、突状部が塑性変形しない程度の温度である。具体的には、位置合わせ用温度は、突状部の材料のガラス転移温度Tg未満であってもよい。
 ただし、カシメ用押圧面と突状部との接触時の熱伝導状態、接触時間、押圧力の大きさなどの条件によっては、ガラス転移温度Tg以上の温度でも突状部が塑性変形しない場合がある。この場合には、位置合わせ用温度は、突状部の材料のガラス転移温度Tg以上であってもよい。
 以下では、位置合わせ動作の間、押圧面5cの温度が熱カシメ用突状部52Bの材料のガラス転移温度Tg±5℃の間に保たれる場合の例で説明する。
 このように、位置合わせ動作において、ホーン部5の加熱が行われると、加熱が行われない場合に比べて、後述する熱カシメ動作におけるホーン部5の昇温時間を低減できる。このため、後述する熱カシメ動作が迅速に行われる。
The alignment operation in step S4 is performed by sequentially executing steps S11 to S14 shown in the flowchart of FIG.
Throughout the whole of step S14, the temperature of the crimping pressure surface of the crimping horn is maintained at the alignment temperature. The alignment temperature is lower than the thermal caulking temperature described later. The alignment temperature is a temperature at which the projection is not plastically deformed by the pressing force received by the projection during the alignment operation described below. Specifically, the alignment temperature may be less than the glass transition temperature Tg of the material of the projection.
However, depending on conditions such as the heat conduction state at the time of contact between the crimping pressure surface and the protruding portion, the contact time, the magnitude of the pressing force, etc., the protruding portion may not be plastically deformed even at a temperature higher than the glass transition temperature Tg is there. In this case, the temperature for alignment may be equal to or higher than the glass transition temperature Tg of the material of the protruding portion.
In the following, an example in which the temperature of the pressing surface 5c is maintained between the glass transition temperature Tg ± 5 ° C. of the material of the thermal caulking protrusion 52B during the alignment operation will be described.
As described above, when the horn unit 5 is heated in the alignment operation, the temperature rise time of the horn unit 5 in the thermal caulking operation described later can be reduced as compared with the case where the heating is not performed. For this reason, the thermal caulking operation described later is performed quickly.
 操作者が操作部12にオートモードによる熱カシメを開始する操作入力をすると、位置合わせ動作が開始される。
 制御部11は、加熱部4を温度制御することによって、押圧面5cの温度を熱カシメ用突状部52Bの材料のガラス転移温度Tg±5℃の間になるように昇温させる。
 ステップS11では、接触動作が行われる。
 接触動作は、カシメホーンと保持台とを軸方向において互いに近接させてカシメ用押圧面と突状部とを接触させる動作である。
 具体的には、制御部11は、押圧部3に制御信号を送出して、ホーン部5を下降させる。押圧部3は予め設定された速度で、ホーン部5を下降させる。これと並行して、当接状態検知部8は、接触検知および相対移動限度検知のための監視動作を開始する。監視動作は、位置合わせ動作が終わるまで続けられる。
When the operator inputs an operation to start thermal caulking in the auto mode on the operation unit 12, the alignment operation is started.
The control unit 11 controls the temperature of the heating unit 4 to raise the temperature of the pressing surface 5 c to the glass transition temperature Tg ± 5 ° C. of the material of the thermal caulking protrusion 52 </ b> B.
In step S11, a contact operation is performed.
The contact operation is an operation of bringing the caulking horn and the holding table close to each other in the axial direction to bring the caulking pressing surface and the projecting portion into contact with each other.
Specifically, the control unit 11 sends a control signal to the pressing unit 3 to lower the horn unit 5. The pressing unit 3 lowers the horn unit 5 at a preset speed. At the same time, the contact state detection unit 8 starts a monitoring operation for contact detection and relative movement limit detection. The monitoring operation is continued until the alignment operation is finished.
 図7に示すように、ホーン部5の下降が進むと、基準軸線Zからの距離が最大となる熱カシメ用突状部52Bの先端の点Pが、押圧面5c上の点pと点接触する。このとき、熱カシメ用突状部52Bの先端の外縁において点P以外の点Qは、押圧面5cからは離間している。なお、中心軸線C1と基準軸線Zとの距離が図示よりも大きい場合には、熱カシメ用突状部52Bが先端内周面5bと接触する場合もある。この場合にも、熱カシメ用突状部52Bは、点P以外では押圧面5cと接触しない。
 このようにして、ホーン部5と熱カシメ用突状部52Bとが接触すると、それらの相互作用が発生し、ホーン部5が受ける力量およびホーン部5の運動状態が変化する。この結果、当接状態検知部8は接触の発生を検知する。当接状態検知部8は、制御部11に接触検知の検知信号を送出する。
 制御部11は、この検知信号を受信すると、押圧部3に制御信号を送出して、ホーン部5の下降を停止させる。
 以上で、ステップS11が終了する。
As shown in FIG. 7, as the descent of the horn portion 5 progresses, the point P of the tip of the thermal caulking projection 52B at which the distance from the reference axis Z becomes maximum is a point contact with the point p on the pressing surface 5c. Do. At this time, a point Q other than the point P at the outer edge of the tip of the thermal caulking protrusion 52B is separated from the pressing surface 5c. When the distance between the central axis C1 and the reference axis Z is larger than that shown in the drawing, the thermal caulking protrusion 52B may be in contact with the tip inner circumferential surface 5b. Also in this case, the thermal caulking protrusion 52B does not contact the pressing surface 5c except for the point P.
Thus, when the horn 5 and the thermal caulking protrusion 52B come into contact with each other, their interaction occurs, and the amount of force received by the horn 5 and the movement of the horn 5 change. As a result, the contact state detection unit 8 detects the occurrence of the contact. The contact state detection unit 8 sends a detection signal of contact detection to the control unit 11.
When receiving the detection signal, the control unit 11 sends a control signal to the pressing unit 3 to stop the descent of the horn unit 5.
Above, step S11 is completed.
 ステップS11の後、ステップS12が行われる。ステップS12では、離間動作が行われる。
 離間動作は、カシメ用押圧面と突状部とが接触した後、カシメ用押圧面と突状部とが離間するように、カシメホーンと保持台とを互いに遠ざける動作である。
 具体的には、制御部11は、押圧部3に制御信号を送
出して、ホーン部5を上昇させる。押圧部3は、二点鎖線で示すホーン部5Bのように、予め設定された距離だけホーン部5を上昇させる。ホーン部5Bの上昇量は、押圧面5cと熱カシメ用突状部52Bとが確実に非接触状態になる適宜の大きさにすることができる。ホーン部5Bの上昇量は、例えば、1mm~5mm程度でもよい。
 以上で、ステップS12が終了する。
After step S11, step S12 is performed. In step S12, the separation operation is performed.
The separation operation is an operation to move the caulking horn and the holding base away from each other so that the caulking pressing surface and the protrusive part are separated after the caulking pressing surface and the protrusive part are in contact with each other.
Specifically, the control unit 11 sends a control signal to the pressing unit 3 to raise the horn unit 5. The pressing unit 3 raises the horn unit 5 by a predetermined distance as in the horn unit 5B indicated by a two-dot chain line. The amount of rise of the horn portion 5B can be set to an appropriate size such that the pressing surface 5c and the thermal caulking projection 52B reliably come in non-contact with each other. The amount of rise of the horn portion 5B may be, for example, about 1 mm to 5 mm.
This is the end of step S12.
 ステップS11において、接触検知の検知に要する時間、検知信号受信後下降停止までに要する時間、あるいはホーン部5の慣性などによって、ホーン部5は、ホーン部5Aのように、接触開始時の位置よりわずかに下降した位置で停止する。
 押圧面5cと第1外枠部52aとが円滑に滑ることができる場合には、このホーン部5の下降におけるホーン部5の行き過ぎによって、熱カシメ用突状部52Bに加わる微小な押圧力Fが発生する。スライド支持部7における摩擦力は十分小さい。このため、実質的に、押圧力Fの軸直角方向成分である分力FHが、押圧面5cと熱カシメ用突状部52Bとの接触部で発生する摩擦力の軸直角方向成分よりも大きい場合に、摩擦力の軸直角方向成分と分力FHとの差によって、レンズ枠52およびレンズ枠保持部6が基準軸線Zに向かう軸直角方向に移動する(図7におけるレンズ枠52Eおよびレンズ枠保持部6A参照)。この場合には、さらに下降を続けてもレンズ枠52およびレンズ枠保持部6が軸直角方向に移動することが可能である。
In step S11, due to the time required for detecting the contact detection, the time required for the detection signal to drop after receiving the detection signal, or the inertia of the horn unit 5, the horn unit 5 starts from the position at the start of contact like the horn unit 5A. Stop at a slightly lowered position.
When the pressing surface 5c and the first outer frame portion 52a can slide smoothly, a minute pressing force F applied to the thermal caulking protuberance 52B due to excessive travel of the horn 5 when the horn 5 descends. Occurs. The frictional force at the slide support 7 is sufficiently small. For this reason, substantially, the component force FH which is a component perpendicular to the axial direction of the pressing force F is larger than the component perpendicular to the axial direction of the frictional force generated at the contact portion between the pressing surface 5c and the thermal caulking projection 52B. In this case, the lens frame 52 and the lens frame holding portion 6 move in a direction perpendicular to the reference axis Z due to the difference between the component in the direction perpendicular to the axis of the frictional force and the component force FH (lens frame 52E and lens frame in FIG. 7). See holding unit 6A). In this case, the lens frame 52 and the lens frame holding portion 6 can move in the direction perpendicular to the axis even if the descent is continued.
 しかし、例えば、ホーン部5の下降における行き過ぎ量が大きすぎたり、下降速度が速すぎたりする場合、押圧力Fの軸方向における分力FVによって熱カシメ用突状部52Bが弾性変形して、接触面積が増大する場合がある。この場合、押圧面5cと第1外枠部52aとの密着力が強くなり、レンズ枠保持部6が基準軸線Zに向かって移動しにくくなる場合がある。このような場合には、さらに下降を続けると、特に点Pの周りで熱カシメ用突状部52Bの変形が進行するために、レンズ枠保持部6およびレンズ枠52の軸直角方向への移動が進まない場合がある。この状態から、後述する熱カシメ動作が行われると、中心軸線C1が基準軸線Zとずれた状態において、ホーン部5が熱カシメ用突状部52Bに押しつけられてしまう。この場合、熱カシメ用突状部52Bの折り曲げ状態が周方向において不均一になってしまう。
 本実施形態では、ステップS12において離間動作が行われるため、押圧面5cと熱カシメ用突状部52Bとは一旦離間することで密着力が解除される。熱カシメ用突状部52Bは弾性変形前の形状に戻る。
However, for example, when the overshoot amount at the descent of the horn portion 5 is too large or the descent speed is too fast, the thermal caulking protrusion 52B is elastically deformed by the component force FV of the pressing force F in the axial direction. The contact area may increase. In this case, the adhesion between the pressing surface 5c and the first outer frame portion 52a may be strong, and the lens frame holding portion 6 may not easily move toward the reference axis Z. In such a case, the movement of the lens frame holding portion 6 and the lens frame 52 in the direction perpendicular to the axis proceeds because the deformation of the thermal caulking protrusion 52B progresses especially when the descent continues further, especially around the point P. May not progress. From this state, when the heat caulking operation described later is performed, the horn portion 5 is pressed against the heat caulking protrusion 52B in a state where the central axis C1 is deviated from the reference axis Z. In this case, the bent state of the thermal caulking projection 52B becomes uneven in the circumferential direction.
In the present embodiment, since the separation operation is performed in step S12, the pressing force 5c and the thermal caulking projection 52B are separated once the adhesion is released. The thermal caulking protuberance 52B returns to the shape before elastic deformation.
 ステップS12の後、ステップS13が行われる。ステップS13では、押圧動作が行われる。
 押圧動作は、離間動作の後、カシメホーンと保持台とを軸方向において互いに近接させて、カシメ用押圧面によって突状部を押圧する動作である。
 具体的には、制御部11は、押圧部3に制御信号を送出して、ホーン部5を下降させる。押圧部3は、予め設定された速度にて予め決められた下降量だけ、ホーン部5を下降させる。
 以上で、ステップS13が終了する。
After step S12, step S13 is performed. In step S13, a pressing operation is performed.
The pressing operation is an operation of bringing the caulking horn and the holding stand close to each other in the axial direction after the separating operation, and pushing the protrusion by the caulking pressing surface.
Specifically, the control unit 11 sends a control signal to the pressing unit 3 to lower the horn unit 5. The pressing unit 3 lowers the horn unit 5 by a predetermined lowering amount at a preset speed.
This is the end of step S13.
 押圧動作においては、ステップS12における上昇量以上、ホーン部5を下降させることで、押圧面5cは熱カシメ用突状部52Bと再び接触する。
 押圧動作における下降量は、ステップS12における上昇量以上であって、かつ熱カシメ用突状部52Bの剛性、材質などに応じて、押圧面5c上で円滑に滑ることができる大きさに設定される。
 すなわち、熱カシメ用突状部52Bが変形しにくい場合、あるいは熱カシメ用突状部52Bの材質の押圧面5cに対する摩擦係数が小さい場合には、下降量は大きくしてもよい。反対に、熱カシメ用突状部52Bが変形しやすい場合、あるいは熱カシメ用突状部52Bの材質の押圧面5cに対する摩擦係数が大きい場合には、下降量は小さくするとよい。
In the pressing operation, the pressing surface 5c comes into contact again with the thermal caulking protrusion 52B by lowering the horn 5 more than the amount of increase in step S12.
The descent amount in the pressing operation is equal to or more than the rising amount in step S12, and is set to a size that can smoothly slide on the pressing surface 5c according to the rigidity, material, etc. of the thermal caulking protrusion 52B. Ru.
That is, when the thermal caulking projections 52B are difficult to deform or when the friction coefficient of the material of the thermal caulking projections 52B with respect to the pressing surface 5c is small, the amount of descent may be large. On the contrary, when the thermal caulking projections 52B are easily deformed or when the coefficient of friction of the material of the thermal caulking projections 52B with respect to the pressing surface 5c is large, the lowering amount may be small.
 押圧動作における下降量は、ホーン部5の軸方向における現在位置と、押圧後の下降位置の目標値とに基づいて、制御部11で算出されてもよい。
 例えば、接触動作におけるホーン部5の下降位置の軸方向の座標をh1、相対移動限界におけるホーン部5の下降位置の軸方向の座標をh2(ただし、h1>h)とすると、1回の押圧動作で位置合わせ動作が終了する可能性のある下降量は、h1-h2以上になる。n回の押圧動作で位置合わせ動作が終了する可能性のある下降量は、(h1-h2)/2以上になる。
The descent amount in the pressing operation may be calculated by the control unit 11 based on the current position in the axial direction of the horn unit 5 and the target value of the descent position after the pressing.
For example, assuming that the coordinate in the axial direction of the lowered position of the horn 5 in the contact operation is h1, and the coordinate in the axial direction of the lowered position of the horn 5 in the relative movement limit is h2 (where h1> h), one press The amount by which the alignment operation may end in the operation is h1−h2 or more. The amount of descent that may cause the alignment operation to end in n pressing operations is (h 1 −h 2) / 2 or more.
 接触動作では、ホーン部5がレンズ枠52の上端よりも高い位置から下降する。接触動作におけるホーン部5の下降量は、押圧動作における下降量よりも格段に大きい。このため、接触動作における下降速度を低速にしすぎると、動作時間が長くなりすぎる。
 しかし、押圧動作では下降量が小さいため、下降速度は、接触動作の下降速度よりも格段に低速であっても、動作時間が長くなりすぎることはない。押圧動作において、下降速度を低速にすることによって、下降中に、押圧面5cと熱カシメ用突状部52Bとが互いに円滑に滑ることができる。
 この結果、押圧動作においては、押圧面5cが熱カシメ用突状部52Bと接触した後、接触位置よりもさらに微小量下降することで、レンズ枠52およびレンズ枠保持部6を基準軸線Zに向かう軸直角方向に微小量移動させることができる。
In the contact operation, the horn 5 descends from a position higher than the upper end of the lens frame 52. The lowering amount of the horn portion 5 in the contact operation is much larger than the lowering amount in the pressing operation. For this reason, if the lowering speed in the contact operation is too low, the operation time becomes too long.
However, since the descent amount is small in the pressing operation, the operating time does not become too long even if the descent speed is much lower than the descent speed of the contact operation. In the pressing operation, by lowering the lowering speed, the pressing surface 5c and the thermal caulking protrusion 52B can slide smoothly with each other during the lowering.
As a result, in the pressing operation, after the pressing surface 5c comes in contact with the thermal caulking protrusion 52B, the lens frame 52 and the lens frame holding portion 6 are set to the reference axis Z by moving slightly smaller than the contact position. A small amount of movement can be made in the direction perpendicular to the direction of the axis.
 ステップS13の後、ステップS14が行われる。本ステップでは判定動作が行われる。
 判定動作は、押圧動作において、当接状態検知部の情報に基づいて相対移動限度に達したかどうか判定する動作である。
 具体的には、制御部11は、当接状態検知部8から相対移動限度を検知した検知信号が送出されているかどうかを判定する。
 相対移動限度検知に関する検知信号を受信していない場合には、ステップS12に移行する。
 相対移動限度検知に関する検知信号を受信している場合には、ステップS14を終了し、図5のステップS5に移行する。
After step S13, step S14 is performed. In this step, the determination operation is performed.
The determination operation is an operation to determine whether or not the relative movement limit has been reached based on the information of the contact state detection unit in the pressing operation.
Specifically, the control unit 11 determines whether or not the detection signal in which the relative movement limit has been detected is transmitted from the contact state detection unit 8.
When the detection signal regarding relative movement limit detection is not received, it shifts to Step S12.
When the detection signal regarding relative movement limit detection is received, step S14 is ended and it transfers to step S5 of FIG.
 このように、ステップS4では、レンズ枠52が相対移動限度に達するまで、離間動作、押圧動作、および判定動作が繰り返されるため、その繰り返し回数に応じて、レンズ枠52およびレンズ枠保持部6が徐々に相対移動限度まで軸直角方向に移動される。
 図8に、位置合わせ動作が終了した状態を示す。
 熱カシメ用突状部52B上の点Pは、押圧面5cとの最初の接触時の点pから軸直角方向において、径方向内側にΔだけ移動した押圧面5c上の点p3に移動している。熱カシメ用突状部52Bの先端の外縁において点P以外の点Qは、中心軸線C1に関して点p3と回転対称となる点q3において押圧面5cと接触している。
 このようにして、軸直角方向におけるカシメホーンと保持台との相対位置の位置合わせ動作が終了する。
As described above, in step S4, the separation operation, the pressing operation, and the determination operation are repeated until the lens frame 52 reaches the relative movement limit, so the lens frame 52 and the lens frame holding portion 6 Gradually move in the direction perpendicular to the limit of relative movement.
FIG. 8 shows a state in which the alignment operation is completed.
The point P on the thermal caulking protuberance 52B moves from the point p at the time of the first contact with the pressing surface 5c to a point p3 on the pressing surface 5c, which has moved radially inward by Δ in a direction perpendicular to the axis. There is. A point Q other than the point P at the outer edge of the tip of the thermal caulking protrusion 52B is in contact with the pressing surface 5c at a point q3 which is rotationally symmetrical to the point p3 with respect to the central axis C1.
In this way, the alignment operation of the relative positions of the crimping horn and the holding base in the direction perpendicular to the axis is completed.
 図5に示すように、ステップS5では、位置合わせ動作が終了した後、さらに、加熱状態のカシメホーンと保持台と互いに軸方向において近づくように相対移動して突状部を組付部材に熱カシメする熱カシメ動作が行われる。
 具体的には、制御部11は、加熱部4に制御信号を送出し、押圧面5cの温度が予め設定された熱カシメ用温度になるようにホーン部5を加熱する。熱カシメ用温度は、少なくともホーン部5に当接する熱カシメ用突状部52Bが軟化する程度の温度に設定する。熱カシメ用温度は、押圧部3の押圧力によって熱カシメ用突状部52Bを変形させることができる温度にすればよい。熱カシメ用温度は、熱カシメ用突状部52Bの樹脂材料の材料特性に応じて決めることができる。例えば、熱カシメ用温度は、熱カシメ用突状部52Bの材料のガラス転移温度Tgより20℃以上高い温度としてもよい。
As shown in FIG. 5, in step S5, after the positioning operation is completed, the caulking horn in a heated state and the holder move relative to each other so as to approach each other in the axial direction to thermally caulk the projecting portion to the assembling member. A heat caulking operation is performed.
Specifically, the control unit 11 sends a control signal to the heating unit 4 and heats the horn unit 5 so that the temperature of the pressing surface 5 c becomes the temperature for thermal caulking set in advance. The temperature for thermal caulking is set to a temperature at which the thermal caulking protrusion 52B at least in contact with the horn 5 is softened. The thermal caulking temperature may be set to a temperature at which the thermal caulking projecting portion 52B can be deformed by the pressing force of the pressing portion 3. The temperature for thermal caulking can be determined according to the material characteristics of the resin material of the thermal caulking protuberance 52B. For example, the temperature for thermal caulking may be 20 ° C. or more higher than the glass transition temperature Tg of the material of the thermal caulking convex portion 52B.
 押圧面5cが熱カシメ用温度に達したら、制御部11は、押圧部3に制御信号を送出して、ホーン部5を下降させて、熱カシメ用突状部52Bを熱カシメする。
 制御部11は、ホーン部5を適正な位置まで下降させたら、押圧部3の駆動を停止する。ホーン部5の適正位置は、例えば、制御部がホーン部5の下降位置およびホーン部5が受ける反力の少なくとも一方を検出して、予め記憶された判定値と比較することによって判定する。
 図9に示すように、この停止状態では、熱カシメ用突状部52Bは、押圧面5cによって加熱されつつ押圧されることによって、第1レンズ51上のレンズ有効領域外の外縁部に密着する。
 このとき、第1レンズ51は、内周面52gとレンズ側面51cとの間の隙間の大きさに応じた誤差の範囲で、第1レンズ51の光軸O1が中心軸線C1と略同軸(同軸の場合も含む)に位置合わせされた状態となる。
 本実施形態では、熱カシメ用突状部52Bが周方向に連続している。基準軸線Zと中心軸線C1とが軸直角方向において位置合わせされた状態であるため、周方向における熱カシメ用突状部52Bの折り曲げは、基準軸線Zおよび中心軸線C1に関して軸対称の状態を保って進行する。このため、折り曲げ時に、熱カシメ用突状部52Bから第1レンズ51に作用する押圧力も中心軸線C1に関して軸対称になる。この結果、熱カシメ動作の前に、第1レンズ51が内枠本体52Aの内部で偏って配置されていても、熱カシメによる押圧が進行する過程で、レンズ側面51cの中心軸線は、基準軸線Zおよび中心軸線C1に向かって調心されやすい。
When the pressing surface 5c reaches the thermal caulking temperature, the control unit 11 sends a control signal to the pressing unit 3 to lower the horn unit 5 and thermally caulk the thermal caulking protrusion 52B.
When the control unit 11 lowers the horn unit 5 to an appropriate position, the control unit 11 stops the driving of the pressing unit 3. The proper position of the horn 5 is determined, for example, by detecting at least one of the lowered position of the horn 5 and the reaction force received by the horn 5 and comparing the detected position with a determination value stored in advance.
As shown in FIG. 9, in this stopped state, the thermal caulking protrusion 52B is brought into close contact with the outer edge outside the lens effective area on the first lens 51 by being pressed while being heated by the pressing surface 5c. .
At this time, in the first lens 51, the optical axis O1 of the first lens 51 is substantially coaxial with the central axis C1 within the range of an error corresponding to the size of the gap between the inner peripheral surface 52g and the lens side surface 51c. (Including the case of).
In the present embodiment, the thermal caulking projections 52B are continuous in the circumferential direction. Since the reference axis Z and the central axis C1 are aligned in the direction perpendicular to the axis, the bending of the thermal caulking projection 52B in the circumferential direction maintains the state of axial symmetry with respect to the reference axis Z and the central axis C1. Progress. For this reason, the pressing force acting on the first lens 51 from the thermal caulking protuberance 52B is also axially symmetrical with respect to the central axis C1 at the time of bending. As a result, even if the first lens 51 is offset inside the inner frame main body 52A before the thermal caulking operation, the central axis of the lens side surface 51c is the reference axis in the process of progress of the thermal caulking. It is easy to align toward Z and central axis C1.
 カシメ部54Bが形成されたら、制御部11は、押圧部3に制御信号を送出して、ホーン部5を上昇させる。カシメ部54Bは、冷却され、折り曲げられた状態で硬化する。
 以上で、ステップS5が終了する。これにより、熱カシメ装置10を用いた本実施形態の熱カシメ方法が終了する。
 第1レンズ51は、カシメ部54Bによって、レンズ枠52と固定される。これにより、レンズ枠52に第1レンズ51が固定された組立体53Aが製造される。
When the crimped portion 54B is formed, the control unit 11 sends a control signal to the pressing unit 3 to raise the horn unit 5. The crimped portion 54B is cooled and cured in a bent state.
Above, step S5 is completed. Thereby, the heat caulking method of this embodiment using the heat caulking device 10 is completed.
The first lens 51 is fixed to the lens frame 52 by the caulking portion 54B. Thus, an assembly 53A in which the first lens 51 is fixed to the lens frame 52 is manufactured.
 本実施形態の熱カシメ方法によって、組立体53Aにさらに第2レンズを熱カシメするには、上述のカシメ用組立体と、カシメホーンとに代えて、組立体53Aの第2内枠部52kに第2レンズを挿入したカシメ用組立体と、熱カシメ用突状部52Dを熱カシメするためのホーン部とが用いられる。その他は上記と同様にして、本実施形態の熱カシメ方法が行われる。これにより、第1レンズ51および第2レンズがレンズ枠52に熱カシメされたレンズユニットが製造される。 In order to thermally caulk the second lens to the assembly 53A by the thermal caulking method of this embodiment, the second inner frame portion 52k of the assembly 53A is replaced with the above-described caulking assembly and the caulking horn. An assembly for caulking in which two lenses are inserted and a horn portion for thermally caulking the projection 52D for thermal caulking are used. The heat caulking method of the present embodiment is performed in the same manner as described above except for the above. As a result, a lens unit in which the first lens 51 and the second lens are heat crimped to the lens frame 52 is manufactured.
 以上説明したように、本実施形態の熱カシメ装置および熱カシメ方法によれば、スライド支持部7によってレンズ枠保持部6が支持されている。このため、ホーン部5の押圧面5cと熱カシメ用突状部52Bとの押圧と離間とを繰り返すことによって、軸直角方向における相対位置の位置合わせ動作が可能になる。その際、熱カシメ装置10における基準軸線Zと、熱カシメ用突状部52Bの中心軸線C1とは、押圧面5cまたは先端内周面5bが熱カシメ用突状部52Bと当接可能な位置関係であれば、軸直角方向にずれた状態でもよい。この結果、中心軸線C1と基準軸線Zとを同軸にするために、例えば、XYステージなどで押圧開始前に互いの軸線を厳密に同軸に調整する作業は不要になる。
 この位置合わせ動作後に熱カシメが行われることで、組立用枠体の枠部の内周面を囲むように配置された突状部を周方向において均等に熱カシメすることがより容易となる。
 特に、第1内枠部52fのように、レンズ枠52の中心軸線Cに対して、中心軸線C1が偏心している場合でも、基準軸線Zと中心軸線C1とが同軸になるように、レンズ枠52の保持位置を厳密に位置合わせする必要がない。
 このように本実施形態の熱カシメ装置および熱カシメ方法によれば、熱カシメによる組立効率(製造効率)と熱カシメによる固定性能とを向上できる。
 本実施形態の熱カシメ装置および熱カシメ方法によれば、レンズ枠52における熱カシメ用突状部52B、52Dのように、中心軸線が互いに同軸でない複数の枠部が含まれる場合に、特に、レンズユニットとしての製造効率を向上できる。
As described above, according to the heat caulking device and the heat caulking method of the present embodiment, the lens frame holding portion 6 is supported by the slide support portion 7. Therefore, by repeatedly pressing and separating the pressing surface 5c of the horn portion 5 and the thermal caulking protrusion 52B, the positioning operation of the relative position in the direction perpendicular to the axis becomes possible. At that time, the reference axis Z in the thermal caulking device 10 and the central axis C1 of the thermal caulking protrusion 52B are positions where the pressing surface 5c or the tip inner circumferential surface 5b can contact the thermal caulking protrusion 52B. As long as they are related, they may be shifted in the direction perpendicular to the axis. As a result, in order to make the central axis C1 and the reference axis Z coaxial with each other, for example, an operation of precisely adjusting the axes of each other coaxially before the start of pressing with an XY stage or the like becomes unnecessary.
By performing heat caulking after this positioning operation, it becomes easier to uniformly heat caulk the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame in the circumferential direction.
In particular, even if the central axis C1 is decentered with respect to the central axis C of the lens frame 52 as in the first inner frame portion 52f, the lens frame so that the reference axis Z and the central axis C1 are coaxial. It is not necessary to exactly align the 52 holding positions.
As described above, according to the heat caulking device and the heat caulking method of the present embodiment, it is possible to improve the assembly efficiency (manufacturing efficiency) by heat caulking and the fixing performance by heat caulking.
According to the thermal caulking device and the thermal caulking method of the present embodiment, particularly when there are a plurality of frame portions whose central axes are not coaxial with each other, like the thermal caulking protrusions 52B and 52D in the lens frame 52, The manufacturing efficiency as a lens unit can be improved.
[変形例]
 次に、本実施形態の変形例の熱カシメ方法について説明する。
 上記実施形態の熱カシメ方法では、上記実施形態の熱カシメ装置10におけるオートモードで実施される熱カシメ方法について説明した。
 本変形例は、熱カシメ装置10のマニュアルモードで実施される熱カシメ方法である。
 以下、上記実施形態と異なる点を中心に説明する。
[Modification]
Next, a thermal caulking method of a modification of the present embodiment will be described.
In the heat caulking method of the above embodiment, the heat caulking method implemented in the auto mode in the heat caulking device 10 of the above embodiment has been described.
This modification is a thermal caulking method implemented in the manual mode of the thermal caulking device 10.
Hereinafter, differences from the above embodiment will be mainly described.
 本変形例の熱カシメ方法は、上記実施形態において、制御部11によって自動的に実行された動作が、操作者の操作入力に基づいて行われる点が上記実施形態の熱カシメ方法と異なる。以下の図5、図6における各ステップの説明は、特に断らない限り、本変形例における動作の説明である。 The thermal caulking method of this modification is different from the thermal caulking method of the above embodiment in that the operation automatically executed by the control unit 11 in the above embodiment is performed based on the operator's operation input. The description of each step in FIGS. 5 and 6 below is the description of the operation in this modified example unless otherwise specified.
 図5におけるステップS1~S3は、上記実施形態と同様にして行われる。 Steps S1 to S3 in FIG. 5 are performed in the same manner as the above embodiment.
 ステップS4は、操作者が、操作部12を用いてマニュアルモードによる熱カシメを開始する操作入力することによって開始される。
 本変形例では、操作者は、位置合わせ動作におけるホーン部5の温度設定を選択できる。例えば、マニュアルによる位置合わせ動作では、熱カシメ用突状部52Bと押圧面5cとの接触時間が長引く場合があるため、操作者は、位置合わせ動作の間、加熱部4によるホーン部5の加熱を停止してもよい。この場合、非加熱のホーン部5が熱カシメ用突状部52Bに接触するため、熱カシメ用突状部52Bが加熱されることによって軟化することがない。この結果、接触時の熱カシメ用突状部52Bの剛性が向上し、押圧面5cとの滑りも円滑になる。
Step S4 is started by the operator using the operation unit 12 to input an operation to start thermal caulking in the manual mode.
In the present modification, the operator can select the temperature setting of the horn unit 5 in the alignment operation. For example, in the manual alignment operation, since the contact time between the thermal caulking protrusion 52B and the pressing surface 5c may be prolonged, the operator may heat the horn 5 by the heating unit 4 during the alignment operation. You may stop it. In this case, since the non-heated horn 5 is in contact with the thermal caulking projection 52B, the thermal caulking projection 52B is not softened by heating. As a result, the rigidity of the thermal caulking projection 52B at the time of contact is improved, and the sliding with the pressing surface 5c is also smooth.
 ステップS11では、操作者の操作入力による接触動作が行われる。
 操作者は、操作部12を操作して、押圧部3を駆動し、ホーン部5を下降させる。このとき、制御部11は、押圧部3の駆動量に基づいて、ホーン部5の移動量を表示部13に表示させる。さらに、制御部11は、少なくとも当接状態検知部8からの検知信号を表示部13に表示する。制御部11は、当接状態検知部8のセンサ出力の数値、グラフなどの情報を表示部13に表示させてもよい。
 操作者は、表示部13に表示された情報を見ながら、ホーン部5の下降量を調整して、押圧面5cを熱カシメ用突状部52Bに接触させる。
 当接状態検知部8の接触検知が確認されたら、操作者は、操作部12を操作することによってホーン部5の下降を停止させる。
 以上で、ステップS11が終了する。
In step S11, the contact operation is performed by the operator's operation input.
The operator operates the operation unit 12 to drive the pressing unit 3 to lower the horn unit 5. At this time, the control unit 11 causes the display unit 13 to display the moving amount of the horn unit 5 based on the driving amount of the pressing unit 3. Furthermore, the control unit 11 causes the display unit 13 to display at least a detection signal from the contact state detection unit 8. The control unit 11 may cause the display unit 13 to display information such as numerical values and graphs of sensor outputs of the contact state detection unit 8.
The operator adjusts the descent amount of the horn unit 5 while looking at the information displayed on the display unit 13, and brings the pressing surface 5c into contact with the thermal caulking protrusion 52B.
When the contact detection of the contact state detection unit 8 is confirmed, the operator operates the operation unit 12 to stop the descent of the horn unit 5.
Above, step S11 is completed.
 ステップS11の後、ステップS12が行われる。ステップS12では、操作者の操作入力による離間動作が行われる。
 操作者は、操作部12を操作して、ホーン部5を上昇させる。上昇量は、操作者が、操作部12に入力してもよい。ただし、操作者は、操作部12を用いてホーン部5の上昇開始を操作入力するのみでもよい。この場合、ホーン部5の上昇量は、制御部11によって、上記実施形態のステップS12と同様の上昇量に自動的に設定される。
 以上で、ステップS12が終了する。
After step S11, step S12 is performed. In step S12, the separation operation is performed by the operator's operation input.
The operator operates the operation unit 12 to raise the horn unit 5. The amount of increase may be input to the operation unit 12 by the operator. However, the operator may only use the operation unit 12 to input operation to start raising the horn unit 5. In this case, the increase amount of the horn unit 5 is automatically set by the control unit 11 to the same increase amount as step S12 of the above embodiment.
This is the end of step S12.
 ステップS12の後、ステップS13が行われる。ステップS13では、操作者の操作入力による押圧動作が行われる。
 操作者は、操作部12を操作して、ホーン部5を下降させて熱カシメ用突状部52Bの押圧を行う。このとき、下降量は、操作者が、操作部12に入力してもよい。ただし、操作者は、操作部12を用いてホーン部5の下降開始を操作入力するのみでもよい。この場合、ホーン部5の下降量は、制御部11によって、上記実施形態のステップS13と同様の下降量に自動的に設定される。
 以上で、ステップS13が終了する。
After step S12, step S13 is performed. In step S13, the pressing operation is performed by the operator's operation input.
The operator operates the operation unit 12 to lower the horn unit 5 to press the thermal caulking protrusion 52B. At this time, the operator may input the lowering amount to the operation unit 12. However, the operator may only use the operation unit 12 to input the start of lowering of the horn unit 5. In this case, the descent amount of the horn 5 is automatically set by the controller 11 to the same descent amount as that of step S13 in the above embodiment.
This is the end of step S13.
 ステップS13の後、ステップS14が行われる。ステップS14では、操作者による判定動作が行われる。
 操作者は、表示部13に表示された当接状態検知部8からの情報に基づいて、相対移動限度に達したかどうかを判定する。
 相対移動限度に達したと判定された場合、ステップS12に移行する。
 相対移動限度に達したと判定された場合には、ステップS14を終了し、図5のステップS5に移行する。
After step S13, step S14 is performed. In step S14, the determination operation by the operator is performed.
The operator determines whether the relative movement limit has been reached based on the information from the contact state detection unit 8 displayed on the display unit 13.
If it is determined that the relative movement limit has been reached, the process proceeds to step S12.
If it is determined that the relative movement limit has been reached, step S14 is ended and the process proceeds to step S5 of FIG.
 このようにして、軸直角方向におけるカシメホーンと保持台との相対位置の位置合わせ動作が終了する。 In this way, the alignment operation of the relative positions of the crimping horn and the holding base in the direction perpendicular to the axis is completed.
 図5に示すように、ステップS5では、位置合わせ動作が終了した後、操作者による操作部12の操作によって、熱カシメ動作が行われる。
 熱カシメにおける熱カシメ用温度、ホーン部5の下降量、下降速度は、操作者が操作部12によって適宜設定することができる。操作部12は、複数の設定パターンが選択できるように構成されていてもよい。
 ただし、操作者は、操作部12を用いてホーン部5の熱カシメ動作の開始を操作入力するのみでもよい。この場合、熱カシメ用温度、ホーン部5の下降量、下降速度は、制御部11によって、上記実施形態のステップS13と同様の条件に、自動的に設定される。
 以上で、ステップS5が終了する。これにより、熱カシメ装置10を用いたマニュアルモードによる本変形例の熱カシメ方法が終了する。
As shown in FIG. 5, in step S5, after the alignment operation is completed, the thermal caulking operation is performed by the operation of the operation unit 12 by the operator.
The operator can appropriately set the temperature for thermal caulking, the amount of descent of the horn portion 5 and the descent speed in the thermal caulking by the operation portion 12. The operation unit 12 may be configured to be able to select a plurality of setting patterns.
However, the operator may only use the operation unit 12 to input the start of the thermal caulking operation of the horn unit 5. In this case, the temperature for thermal caulking, the lowering amount of the horn unit 5 and the lowering speed are automatically set by the control unit 11 under the same conditions as step S13 in the above embodiment.
Above, step S5 is completed. Thus, the thermal caulking method of the present modification in the manual mode using the thermal caulking device 10 is completed.
 なお、上記実施形態および変形例の説明では、一例として、組立用枠体に、2枚のレンズが固定される場合の例で説明した。しかし、組立用枠体には、1枚のレンズが固定されてもよい。熱カシメによって固定されていれば、レンズ枚数は、1枚、もしくは3枚以上固定されてもよい。 In the description of the above embodiment and the modification, the example in which two lenses are fixed to the assembling frame has been described as an example. However, one lens may be fixed to the assembly frame. The number of lenses may be fixed to one or three or more as long as they are fixed by heat caulking.
 上記実施形態および変形例の説明では、保持台がスライド支持部で軸直角方向に移動可能に支持され、カシメホーンは軸方向のみに移動可能に支持されている場合の例で説明した。しかし、保持台とカシメホーンとは、軸方向および軸直角方向において、互いに相対移動可能に設けられていればよい。このため、保持台およびカシメホーンの少なくとも一方が軸方向および軸直角方向に移動可能に設けられていればよい。 In the description of the above embodiment and the modification, the example in which the holding base is supported movably in the direction perpendicular to the axial direction by the slide support portion and the crimping horn is supported movably only in the axial direction has been described. However, the holder and the caulking horn may be provided so as to be movable relative to each other in the axial direction and the direction perpendicular to the axis. For this reason, at least one of the holding base and the caulking horn may be provided so as to be movable in the axial direction and the direction perpendicular to the axial direction.
 上記実施形態および変形例の説明では、ステップS13の後に、ステップS14が行われる場合の例で説明した。しかし、ステップS13の実行中に制御部11が相対移動限度検知の検知信号を受信した場合には、制御部11がただちに、ホーン部5の下降を停止し、ステップS14を実行することなくステップS4を終了するようにしてもよい。 In the description of the above-described embodiment and modification, an example in which step S14 is performed after step S13 has been described. However, when the control unit 11 receives the detection signal of relative movement limit detection during execution of step S13, the control unit 11 immediately stops the descent of the horn unit 5 and does not execute step S14, and step S4. You may complete the process.
 上記変形例の説明では、マニュアルモードにおいて、当接状態検知部8からの情報が表示部13に表示される場合の例で説明した。しかし、マニュアルモードにおいて、目視観察に基づいて、あるいは、熱カシメ装置10とは別に配置した計測器、センサ等の情報に基づいて、操作者が熱カシメ装置10の操作を行う場合には、当接状態検知部8の情報が表示部13に表示されなくてもよい。この場合、熱カシメ装置10において、当接状態検知部8は削除されてもよい。 In the description of the above-mentioned modification, the example in the case where the information from the contact state detection unit 8 is displayed on the display unit 13 in the manual mode has been described. However, in the manual mode, when the operator operates the thermal caulking device 10 based on visual observation or based on information of a measuring instrument, a sensor, etc. arranged separately from the thermal caulking device 10, The information of the contact state detection unit 8 may not be displayed on the display unit 13. In this case, in the thermal caulking device 10, the contact state detection unit 8 may be deleted.
 上記実施形態および変形例の説明では、位置合わせ動作において、離間動作が行われる場合の例で説明したが、カシメホーンが突状部と接触した後、下降を続けることによって、組立用枠体および保持台が軸直角方向に移動する場合には、接触動作に続けて押圧動作が行われてもよい。
 例えば、下降を続けることによって、組立用枠体および保持台が軸直角方向に移動することが分かっている場合には、オートモードにおいて制御部がそのような制御を行ってもよい。
 例えば、接触時における運動状態の検出センサの出力などによって、制御部または操作者が、組立用枠体および保持台が軸直角方向に移動することが確認できる場合には、制御部または操作者は、離間動作を省略してもよい。
In the description of the above embodiment and the modification, an example in which the separation operation is performed in the alignment operation has been described, but the assembly frame and the holding are continued by continuing the lowering after the crimping horn comes in contact with the projecting portion. When the table moves in the direction perpendicular to the axis, the pressing operation may be performed following the contact operation.
For example, if it is known that the assembly frame and the holding table move in the direction perpendicular to the axis by continuing the descent, the control unit may perform such control in the auto mode.
For example, when the control unit or the operator can confirm that the assembly frame and the holding base move in the direction perpendicular to the axis by the output of the movement state detection sensor at the time of contact, etc., the control unit or the operator The separation operation may be omitted.
 以上、本発明の好ましい実施形態、変形例を説明したが、本発明はこれらの実施形態、変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
The preferred embodiments and modifications of the present invention have been described above, but the present invention is not limited to these embodiments and modifications. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.
上記の実施形態の熱カシメ装置および熱カシメ方法によれば、組立用枠体の枠部の内周面を囲むように配置された突状部を周方向において均等に熱カシメすることがより容易となる。
According to the heat caulking device and the heat caulking method of the above-described embodiment, it is easier to heat caulk evenly the protruding portions disposed so as to surround the inner peripheral surface of the frame portion of the assembly frame in the circumferential direction It becomes.
3 押圧部(軸方向駆動部)
4 加熱部
5、5A、5B ホーン部(カシメホーン)
5b 先端内周面(カシメ用押圧面)
5c 押圧面(カシメ用押圧面)
6、6A レンズ枠保持部(保持台)
7 スライド支持部
7a 第1プレート(第1の基板)
7e 転動体(スライド移動部)
7f 第2プレート(第2の基板)
8 当接状態検知部
10 熱カシメ装置
11 制御部
12 操作部
13 表示部
51 レンズ(組付部材)
52、52E レンズ枠(組立用枠体)
52B、52D 熱カシメ用突状部(突状部)
52f 第1内枠部(枠部)
52g、52m 内周面
52k 第2内枠部(枠部)
53、53A 組立体(カシメ用組立体)
C、C1、C2 中心軸線
F 押圧力
FH 分力
H 保持中心軸線
O1 光軸
Z 基準軸線(第1の軸線)
3 Press part (axial direction drive part)
4 heating part 5, 5A, 5B horn part (crimped horn)
5b Inner surface of tip (Pressing surface for crimping)
5c Pressed surface (Pressed surface for crimping)
6, 6A Lens frame holder (holder)
7 Slide Support 7a First Plate (First Substrate)
7e Rolling element (slide moving part)
7f Second plate (second board)
DESCRIPTION OF SYMBOLS 8 Contact state detection part 10 Thermal caulking device 11 Control part 12 Operation part 13 Display part 51 Lens (assembly member)
52, 52E Lens frame (frame for assembly)
52B, 52D Projections for thermal crimping (projections)
52f 1st inner frame part (frame part)
52g, 52m Inner circumferential surface 52k Second inner frame (frame)
53, 53A assembly (assembly for caulking)
C, C1, C2 central axis F pressing force FH component force H holding central axis O1 optical axis Z reference axis (first axis)

Claims (7)

  1.  組付部材が挿入可能な枠部と、前記枠部の内周面を囲むように配置され熱可塑性樹脂で形成された突状部と、を有する組立用枠体を保持する保持台と、
     第1の軸線に沿う軸方向において前記保持台に対して相対移動可能に設けられており、先端部に前記突状部を加熱可能かつ前記保持台に近づく方向に相対移動する際に前記突状部を前記枠部の内側に折り曲げ可能な押圧力を加えるカシメ用押圧面を有するカシメホーンと、
     前記押圧力における前記第1の軸線に直交する軸直角方向における成分によって、前記組立用枠体が保持された前記保持台と前記カシメホーンとが前記軸直角方向において相対移動可能となるように、前記保持台および前記カシメホーンの少なくとも一方を支持するスライド支持部と、
    を備える、熱カシメ装置。
    A holding base for holding an assembly frame having a frame portion into which the assembly member can be inserted, and a projecting portion disposed so as to surround the inner peripheral surface of the frame portion and formed of a thermoplastic resin;
    The projection is provided so as to be movable relative to the holder in an axial direction along the first axis, and the projection is formed when the projection is relatively moveable in a direction that allows heating of the projection and approaching the holder. A caulking horn having a caulking pressing surface for applying a pressing force capable of bending the part inside the frame part;
    The component in the direction perpendicular to the first axis in the pressing force allows the relative movement of the holding base holding the assembly frame and the caulking horn in the direction perpendicular to the axis by the component in the direction perpendicular to the first axis. A holder and a slide support portion for supporting at least one of the caulking horn;
    , A heat caulking device.
  2.  前記スライド支持部は、
      前記保持台を固定する第1の基板と、
      前記軸方向において前記第1の基板と対向する第2の基板と、
      前記軸直角方向において前記第2の基板に対して前記第1の基板をスライド移動可能に支持するスライド移動部と、
    を備える
    請求項1に記載の熱カシメ装置。
    The slide support is
    A first substrate for fixing the holder;
    A second substrate facing the first substrate in the axial direction;
    A slide moving unit which slidably supports the first substrate with respect to the second substrate in the direction perpendicular to the axis;
    The thermal caulking device according to claim 1, comprising:
  3.  前記軸方向において前記カシメホーンと前記保持台とを相対移動させる軸方向駆動部と、
     前記カシメホーンまたは前記保持台が受ける前記軸直角方向における力成分、および前記カシメホーンと前記保持台との相対位置、の少なくとも一方を監視することによって、前記カシメ用押圧面と前記突状部とが接触したかどうかと、前記軸直角方向における前記保持台の相対移動限度に達したかどうかと、を検知する当接状態検知部と、
     前記軸方向駆動部の動作を制御する制御部と、
    をさらに備え、
     前記スライド支持部は、前記押圧力が解除される際に、前記押圧力の解除時における前記軸直角方向における位置を保持するように設けられ、
     前記制御部は、
      前記軸方向駆動部を駆動して前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて前記カシメ用押圧面と前記突状部とを接触させる接触動作と、
      前記当接状態検知部によって前記カシメ用押圧面と前記突状部とが接触したことが検知された後、前記カシメ用押圧面と前記突状部とが離間するように、前記カシメホーンと前記保持台とを互いに遠ざける離間動作と、
      前記離間動作の後、前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて、前記カシメ用押圧面によって前記突状部を押圧する押圧動作を行い、
      前記押圧動作において、前記当接状態検知部の情報に基づいて前記相対移動限度に達したかどうか判定する判定動作と、を行い、
      前記判定動作において、前記相対移動限度に達していないと判定された場合に、前記離間動作、前記押圧動作、および前記判定動作を繰り返し、
      前記相対移動限度に達したと判定された場合に、前記突状部を熱カシメするために、前記軸方向駆動部を駆動して前記カシメホーンと前記保持台とを前記軸方向においてさらに近接させる
    請求項1または2に記載の熱カシメ装置。
    An axial drive unit for relatively moving the caulking horn and the holder in the axial direction;
    By monitoring at least one of the force component in the direction perpendicular to the axis received by the crimping horn or the holder and the relative position between the crimping horn and the holder, the pressing surface for crimping and the protruding portion come into contact And a contact state detection unit that detects whether the relative movement limit of the holding base in the direction perpendicular to the axis has been reached, and
    A control unit that controls the operation of the axial drive unit;
    And further
    The slide support portion is provided to maintain a position in the direction perpendicular to the axis when the pressing force is released when the pressing force is released.
    The control unit
    A contact operation of driving the axial direction drive unit to move the caulking horn and the holding table close to each other in the axial direction to bring the caulking pressing surface and the projecting portion into contact with each other;
    The crimping horn and the holding are arranged such that the crimping pressing surface and the projecting portion are separated after the contact state detecting unit detects that the crimping pressing surface and the projecting portion are in contact with each other. Move away from each other
    After the separation operation, the caulking horn and the holding base are brought close to each other in the axial direction, and the caulking pressing surface is used to press the projecting portion.
    In the pressing operation, a determination operation is performed to determine whether the relative movement limit has been reached based on the information of the contact state detection unit,
    In the determination operation, when it is determined that the relative movement limit is not reached, the separation operation, the pressing operation, and the determination operation are repeated,
    When it is determined that the relative movement limit has been reached, in order to thermally caulk the projecting portion, the axial driving unit is driven to further bring the caulking horn and the holding base closer to each other in the axial direction. The thermal caulking device according to item 1 or 2.
  4.  前記制御部は、
      前記カシメ用押圧面の温度をさらに制御し、
      前記相対移動限度に達したと判定されるまでは、前記温度を前記突状部の材料のガラス転移温度Tg未満に制御し、
      前記相対移動限度に達したと判定された後、前記温度を前記ガラス転移温度Tg以上に制御する
    請求項3に記載の熱カシメ装置。
    The control unit
    Further control the temperature of the pressure surface for crimping;
    The temperature is controlled to be less than the glass transition temperature Tg of the material of the protrusion until it is determined that the relative movement limit is reached,
    The thermal caulking device according to claim 3, wherein the temperature is controlled to the glass transition temperature Tg or more after it is determined that the relative movement limit is reached.
  5.  保持台に保持されたカシメ用組立体に、カシメホーンを加熱状態で押圧して前記カシメ用組立体を熱カシメする熱カシメ方法であって、
     組付部材が挿入可能な枠部と、前記枠部の内周面を囲むように配置され熱可塑性樹脂で形成された突状部と、を有する組立用枠体の前記枠部に、前記組付部材が挿入された前記カシメ用組立体と、第1の軸線に沿う軸方向において前記保持台に対して相対移動可能に設けられており、先端部に前記突状部を加熱可能かつ前記保持台に近づく方向に相対移動する際に前記突状部を前記枠部の内側に折り曲げ可能な押圧力を加えるカシメ用押圧面を有するカシメホーンと、を準備することと、
     前記保持台に前記カシメ用組立体を支持させることと、
     前記保持台および前記カシメホーンの少なくとも一方を、前記押圧力における前記第1の軸線に直交する軸直角方向における成分によって、前記保持台と前記カシメホーンとが前記軸直角方向において相対移動可能な状態にすることと、
     前記カシメホーンおよび前記保持台を互いに前記軸方向において近づくように相対移動し、前記カシメ用押圧面を前記突状部に押圧して前記軸直角方向における前記カシメホーンと前記保持台との相対位置を位置合わせすることと、
     前記軸直角方向における前記カシメホーンと前記保持台との相対位置を位置合わせした後、さらに、加熱状態の前記カシメホーンと前記保持台と互いに前記軸方向において近づくように相対移動して前記突状部を前記組付部材に熱カシメすることと、を含む、熱カシメ方法。
    A thermal caulking method of thermally caulking the caulking assembly by pressing the caulking horn in a heated state to the caulking assembly held by the holding table,
    In the frame portion of an assembly frame having a frame portion into which an assembly member can be inserted, and a projecting portion disposed so as to surround the inner peripheral surface of the frame portion and formed of a thermoplastic resin, The caulking assembly into which the attachment member is inserted is provided so as to be relatively movable with respect to the holding base in the axial direction along the first axis, and the protrusion can be heated at the tip end and the holding is possible Preparing a caulking horn having a caulking pressing surface for applying a pressing force capable of bending the protrusion to the inside of the frame when moving relatively to a direction approaching the platform;
    Supporting the caulking assembly on the holding table;
    At least one of the holder and the caulking horn is configured such that the holder and the caulking horn can move relative to each other in the direction perpendicular to the axis by a component in a direction perpendicular to the first axis in the pressing force. And
    The crimping horn and the holder are moved relative to each other in the axial direction, and the pressing surface for crimping is pressed against the projecting portion to position the relative position between the crimping horn and the holder in the direction perpendicular to the axis. And adjusting
    After positioning the relative positions of the crimp horn and the holder in the direction perpendicular to the axis, the crimp horn and the holder in a heated state are further moved relative to each other in the axial direction to move the protruding portion And heat caulking the assembly member.
  6.  前記軸直角方向における前記カシメホーンと前記保持台との相対位置を位置合わせすることは、
     前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて前記カシメ用押圧面と前記突状部とを接触させる接触動作と、
     前記カシメ用押圧面と前記突状部とが接触した後、前記カシメ用押圧面と前記突状部とが離間するように、前記カシメホーンと前記保持台とを互いに遠ざける離間動作と、
     前記離間動作の後、前記カシメホーンと前記保持台とを前記軸方向において互いに近接させて、前記カシメ用押圧面によって前記突状部を押圧する押圧動作と、
     前記押圧動作において、前記軸直角方向における前記保持台の相対移動限度に達したかどうか判定する判定動作と、
     を含み、
     前記判定動作において、
     前記相対移動限度に達していないと判定した場合に、前記離間動作、前記押圧動作、および前記判定動作を繰り返し、
     前記相対移動限度に達したと判定した場合に、位置合わせを終了する
    請求項5に記載の熱カシメ方法。
    Aligning the relative positions of the caulking horn and the holder in the direction perpendicular to the axis is as follows:
    A contact operation in which the caulking horn and the holder are brought close to each other in the axial direction to bring the caulking pressing surface and the projecting portion into contact with each other;
    A separation operation of moving the crimping horn and the holding base away from each other so that the crimping pressing surface and the projecting portion are separated after the crimping pressing surface and the projecting portion come into contact with each other;
    After the separating operation, the crimping horn and the holder are brought close to each other in the axial direction, and the pressing operation of pressing the protruding portion by the crimping pressing surface;
    A determination operation of determining whether or not the relative movement limit of the holding base in the direction perpendicular to the axis has been reached in the pressing operation;
    Including
    In the determination operation,
    When it is determined that the relative movement limit is not reached, the separation operation, the pressing operation, and the determination operation are repeated,
    The thermal caulking method according to claim 5, wherein the alignment is ended when it is determined that the relative movement limit is reached.
  7.  前記位置合わせすることは、前記相対移動限度に達したと判定されるまでは、前記カシメ用押圧面の温度を前記突状部の材料のガラス転移温度Tg未満にすることを含み、
     前記熱カシメすることは、前記相対移動限度に達したと判定された後、前記温度を前記ガラス転移温度Tg以上にすることを含む
    請求項6に記載の熱カシメ方法。
    The aligning includes bringing the temperature of the pressing surface for caulking below the glass transition temperature Tg of the material of the protrusion until it is determined that the relative movement limit has been reached,
    The thermal caulking method according to claim 6, wherein the thermal caulking includes setting the temperature to the glass transition temperature Tg or more after it is determined that the relative movement limit is reached.
PCT/JP2017/040892 2016-11-14 2017-11-14 Heat caulking device and heat caulking method WO2018088567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221480A JP2018079579A (en) 2016-11-14 2016-11-14 Thermal caulking device and thermal caulking method
JP2016-221480 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088567A1 true WO2018088567A1 (en) 2018-05-17

Family

ID=62109387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040892 WO2018088567A1 (en) 2016-11-14 2017-11-14 Heat caulking device and heat caulking method

Country Status (2)

Country Link
JP (1) JP2018079579A (en)
WO (1) WO2018088567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142978A (en) * 2019-05-21 2019-08-20 常州星宇车灯股份有限公司 It is anti-with lifting device and with its wiring board pulse heat riveting tool
DE102021120256B3 (en) 2020-08-28 2021-12-09 Ifm Electronic Gmbh Laser module with a lens holder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934843B2 (en) * 2018-06-29 2021-09-15 オリンパス株式会社 Caulking device and caulking method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223121A (en) * 2006-02-22 2007-09-06 Fujinon Corp Heat-caulking device
JP2010005891A (en) * 2008-06-26 2010-01-14 Nippon Avionics Co Ltd Heat-caulking device and method
JP2016021005A (en) * 2014-07-15 2016-02-04 オリンパス株式会社 Lens retaining device, adjustment method of lens retaining device and lens retaining method
JP2016075806A (en) * 2014-10-07 2016-05-12 オリンパス株式会社 Lens retaining device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223121A (en) * 2006-02-22 2007-09-06 Fujinon Corp Heat-caulking device
JP2010005891A (en) * 2008-06-26 2010-01-14 Nippon Avionics Co Ltd Heat-caulking device and method
JP2016021005A (en) * 2014-07-15 2016-02-04 オリンパス株式会社 Lens retaining device, adjustment method of lens retaining device and lens retaining method
JP2016075806A (en) * 2014-10-07 2016-05-12 オリンパス株式会社 Lens retaining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142978A (en) * 2019-05-21 2019-08-20 常州星宇车灯股份有限公司 It is anti-with lifting device and with its wiring board pulse heat riveting tool
DE102021120256B3 (en) 2020-08-28 2021-12-09 Ifm Electronic Gmbh Laser module with a lens holder

Also Published As

Publication number Publication date
JP2018079579A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2018088567A1 (en) Heat caulking device and heat caulking method
JP4684010B2 (en) Lens holding device, lens centering device, and lens centering method
WO2012114956A1 (en) Lens mirror frame and lens assembly
JP4679906B2 (en) Lens fixing structure
US9365177B2 (en) Method and device for the serial production of a vehicle assembly, bearing unit, vehicle steering wheel and horn module for a steering wheel assembly and steering wheel assembly
CN111034169B (en) Camera module and assembling method thereof
JP7091445B2 (en) How to assemble the imaging module
JP2007065017A (en) Lens holding barrel
JPH10182173A (en) Glass formed product and forming of glass and device for forming glass
JP6456064B2 (en) Lens fixing device, method for adjusting lens fixing device, and lens fixing method
US10120157B2 (en) Lens unit
KR20140124325A (en) Mirror unit and exposure apparatus
WO2017022500A1 (en) Method for adhesion fixing of optical assembly, and optical assembly
JP4878537B2 (en) Optical element manufacturing method, mold unit, and molding apparatus
JP5396409B2 (en) Optical element manufacturing method
JP4815328B2 (en) Thermal caulking method, lens barrel manufacturing method, and thermal caulking device
JPH02107533A (en) Optical element forming device provided with centering mechanism
JP2017003736A (en) Lens fixing structure and fixing method
JP3618983B2 (en) Optical element molding method and apparatus
JPWO2005057264A1 (en) Lens system and assembly method thereof
US20190025538A1 (en) Lens fixation method, heat caulking tool, and lens fixation device
WO2021006194A1 (en) Mold for forming glass lens
JP2003246630A (en) Forming apparatus for glass and method of manufacturing glass formed goods
JP2018012122A (en) Projection welding device
CN113140476A (en) Bonding apparatus including variable force profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869203

Country of ref document: EP

Kind code of ref document: A1