WO2018088484A1 - Method for producing modified conjugated diene rubber - Google Patents

Method for producing modified conjugated diene rubber Download PDF

Info

Publication number
WO2018088484A1
WO2018088484A1 PCT/JP2017/040455 JP2017040455W WO2018088484A1 WO 2018088484 A1 WO2018088484 A1 WO 2018088484A1 JP 2017040455 W JP2017040455 W JP 2017040455W WO 2018088484 A1 WO2018088484 A1 WO 2018088484A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conjugated diene
rubber
general formula
modified conjugated
Prior art date
Application number
PCT/JP2017/040455
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 杉村
慎吾 桑原
山岸 英哲
岸本 典久
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018550259A priority Critical patent/JP7225802B2/en
Publication of WO2018088484A1 publication Critical patent/WO2018088484A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a method for producing a modified conjugated diene rubber, and more particularly to a method for producing a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up.
  • the present invention also relates to a modified conjugated diene rubber obtained by this production method, a rubber composition containing the modified conjugated diene rubber, and a crosslinked rubber product thereof.
  • Patent Document 1 a compound having a protected primary amino group and an alkoxysilyl group such as N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane is reacted with the active terminal of a conjugated diene polymer. Therefore, attempts have been made to increase the affinity between the conjugated diene polymer and silica.
  • the resulting conjugated diene polymer has a certain degree of affinity for silica, but the dispersibility of silica when blended with silica is not always sufficient, and therefore, the wet grip The improvement effect of heat resistance and low exothermicity was also limited.
  • the present invention has been made in view of such a situation, and provides a method for producing a modified conjugated diene rubber that can give a crosslinked rubber excellent in wet grip and low heat build-up. With the goal.
  • the present inventors have conducted extensive studies on a modifier for modifying the active terminal of a conjugated diene polymer.
  • the modifier is represented by -Si-O-.
  • a specific amount of a specific silane compound having a siloxane structure in the main chain structure and a primary amino group protected by a protective group is used as an active end of a conjugated diene polymer having an active end. It has been found that the modified conjugated diene rubber obtained by reacting can disperse a filler such as silica satisfactorily, thereby providing a rubber cross-linked product excellent in wet grip and low heat build-up, The present invention has been completed.
  • a conjugated diene polymer having an active terminal is obtained by polymerizing a monomer comprising at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. And a second step of reacting a compound represented by the following general formula (1) with the active terminus of the conjugated diene polymer having the active terminus, the general formula (1)
  • a method for producing a modified conjugated diene rubber is provided in which the amount of the compound represented by the formula (1) is 0.15 mol or more relative to 1 mol of the metal atom in the organic active metal compound.
  • R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 5 is any organic group, hydrogen An atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 500, n is an integer of 0 to 499, m + n is 2 to 500.)
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
  • R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is protected by a protecting group.
  • a protected amino group-containing organic group containing a primary amino group X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 499, p is an integer of 1 to 499, q is an integer of 0 to 498, and m + p + q is 2 to 500.
  • the compound represented by the general formula (1) contains a group represented by the following general formula (3) or the following general formula (4) as the protected amino group-containing organic group.
  • R 13 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and e is an integer of 1 to 12
  • F is an integer from 1 to 12.
  • R 17 to R 22 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and g is an integer of 1 to 12) .
  • an organic alkali metal amide compound is preferably used as the polymerization initiator, and the organic alkali metal amide compound is more preferably a compound represented by the following general formula (5).
  • M 1 represents an alkali metal atom
  • R 23 and R 24 are each independently an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or Represents a group capable of hydrolyzing to form a hydroxyl group, and R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded; In addition to the nitrogen atom to which is bonded, a ring structure may be formed together with a heteroatom other than the nitrogen atom to which these are bonded.
  • the present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods. Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
  • the rubber composition of the present invention preferably contains a crosslinking agent.
  • a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
  • a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up properties
  • a rubber composition containing the modified conjugated diene rubber, and the rubber composition are cross-linked. It is possible to provide a rubber cross-linked product excellent in wet grip and low heat build-up, and a tire comprising the rubber cross-linked product.
  • the method for producing a modified conjugated diene rubber according to the present invention has an active terminal by polymerizing a monomer containing at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent.
  • the amount of the compound represented by the general formula (1) is 0.15 mol or more per 1 mol of the metal atom in the organic active metal compound.
  • a monomer comprising at least a conjugated diene compound is polymerized in an inert solvent using an organic active metal compound as a polymerization initiator, and a conjugated diene having an active terminal is obtained. This is a step of obtaining a polymer.
  • the conjugated diene compound used for polymerization in order to obtain a conjugated diene polymer having an active terminal is not particularly limited, and for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1 , 3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, etc. Can be mentioned. Of these, 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are particularly preferred. In addition, these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the conjugated diene polymer having an active end produced in the first step may be obtained by copolymerizing an aromatic vinyl compound in addition to the conjugated diene compound.
  • the aromatic vinyl compound is not particularly limited, and for example, styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, etc.
  • the conjugated diene polymer having an active end produced in the first step preferably contains 50 to 100% by weight of a conjugated diene monomer unit, particularly preferably contains 55 to 100% by weight, Those containing 0 to 50% by weight of the vinyl group monomer group are preferred, and those containing 0 to 45% by weight are particularly preferred.
  • the conjugated diene polymer having an active end is optionally added to the conjugated diene compound as well as other units other than the aromatic vinyl compound as long as the object of the present invention is not impaired. It may be obtained by copolymerizing a monomer.
  • Examples of other monomers include ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid, and maleic anhydride; methyl methacrylate, acrylic Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; Non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; etc. Can be mentioned. These monomers are preferably 10% by weight or less, more preferably 5% by weight or less as monomer units in the conjugated diene polymer having an active terminal.
  • the inert solvent used in the first step of the production method of the present invention is not particularly limited as long as it is usually used in solution polymerization and does not inhibit the polymerization reaction.
  • Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclohexene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; and the like.
  • These inert solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the inert solvent used is such that the monomer concentration is, for example, 1 to 50% by weight, preferably 10 to 40% by weight.
  • the organic active metal compound used as a polymerization initiator is not particularly limited as long as it can polymerize a monomer containing a conjugated diene compound to give a conjugated diene polymer having an active terminal,
  • a polymerization initiator mainly comprising an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium
  • dilithiomethane 1,4-dilithiobutane
  • organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like.
  • a polymerization initiator having a lanthanum series metal compound as a main catalyst for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
  • a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid
  • a polymerization initiator composed of this salt and a cocatalyst such as an alkylalumin
  • an organic monolithium compound and an organic polyvalent lithium compound are preferable, an organic monolithium compound is more preferable, and n-butyllithium is particularly preferable.
  • These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Organic alkali metal compounds are used as organic alkali metal amide compounds by reacting with secondary amine compounds such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine in advance. May be.
  • secondary amine compounds such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine in advance. May be.
  • secondary amine compounds such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine in advance. May be.
  • an organic alkali metal amide compound as a polymerization initiator, the resulting rubber cross-linked product can be made more excellent in low heat buildup and wet grip properties.
  • Examples of the organic alkali metal amide compound include those obtained by reacting an organic alkali metal compound with a secondary amine compound, and among them, a compound represented by the following general formula (5) is preferably used. it can.
  • M 1 represents an alkali metal atom
  • R 23 and R 24 are each independently an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or Represents a group capable of hydrolyzing to form a hydroxyl group
  • R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded;
  • a ring structure may be formed together with a heteroatom other than the nitrogen atom to which these are bonded.
  • the alkyl group is not particularly limited, but an alkyl group having 1 to 20 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl.
  • the cycloalkyl group is not particularly limited, but is preferably a cycloalkyl group having 3 to 20 carbon atoms, and more preferably a cycloalkyl group having 3 to 12 carbon atoms.
  • Examples of such cycloalkyl groups include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
  • the aryl group is not particularly limited, but an aryl group having 6 to 12 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable.
  • Examples of such an aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the aralkyl group is not particularly limited, but an aralkyl group having 7 to 13 carbon atoms is preferable, and an aralkyl group having 7 to 9 carbon atoms is more preferable.
  • Examples of such aralkyl groups include benzyl group and phenethyl group.
  • the amino-protecting group is not particularly limited, and more specifically, an amino-protecting group, more specifically, a primary amino group (ie, —NH 2 ) or a secondary amino group (ie,> NH).
  • Any group that acts as a protecting group may be used, and examples thereof include an alkylsilyl group.
  • alkylsilyl groups include trimethylsilyl group, triethylsilyl group, triphenylsilyl group, methyldiphenylsilyl group, ethylmethylphenylsilyl group, tert-butyldimethylsilyl group, and the like.
  • the group capable of generating a hydroxyl group by hydrolysis is not particularly limited, and may be any group that generates a hydroxyl group by hydrolysis in the presence of an acid, for example, an alkoxyalkyl group, an epoxy group, and the like.
  • a group containing Examples of the alkoxyalkyl group include a methoxymethyl group, an ethoxymethyl group, an ethoxyethyl group, a propoxymethyl group, a butoxymethyl group, a butoxyethyl group, and a propoxyethyl group.
  • Examples of the group containing an epoxy group include a group represented by the following general formula (6).
  • Z 1 is an alkylene group having 1 to 10 carbon atoms or an alkylarylene group
  • Z 2 is a methylene group, a sulfur atom or an oxygen atom
  • E 1 is a glycidyl group.
  • R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in this case, formed by R 23 and R 24 and the nitrogen atom to which they are bonded.
  • Specific examples of the structure to be formed include an azetidine ring (R 23 and R 24 are propylene groups), a pyrrolidine ring (R 23 and R 24 are butylene groups), a piperidine ring (R 23 and R 24 are pentylene groups). And hexamethyleneimine ring (R 23 and R 24 are hexylene groups) and the like.
  • the ring structure is preferably a 4- to 8-membered ring structure.
  • M 1 is an alkali metal atom.
  • alkali metal atom examples include a lithium atom, a sodium atom, and a potassium atom. Among these, a viewpoint of polymerization activity. More preferred is a lithium atom.
  • the compound represented by the general formula (5) when used as the polymerization initiator, the amine structure forming the organic alkali metal amide compound is the polymerization start of the polymer chain. It will remain attached to the end. Therefore, when the compound represented by the general formula (5) is used as a polymerization initiator, it is represented by the following general formula (7) at one end of the polymer chain forming the resulting conjugated diene rubber. A structure is introduced.
  • each of R 25 and R 26 independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or a hydrolyzed hydroxyl group.
  • R 25 and R 26 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in the case of forming the ring structure, In addition, a ring structure may be formed together with a hetero atom other than the nitrogen atom to which they are bonded.
  • Examples of the alkyl group, cycloalkyl group, aryl group, aralkyl group, amino-protecting group, or group capable of hydrolyzing to generate a hydroxyl group that can be R 25 and R 26 include R 23 and R in the above general formula (5).
  • R 25 and R 26 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, R 23 in the above general formula (5), it can be similar to R 24.
  • the hydrogen atom which can become R 25 and R 26 is introduced when the protecting group of the amino group is removed.
  • the resulting conjugated diene rubber has an amine structure at one end and the other end. And a specific modified structure derived from the compound represented by the general formula (1). As a result, due to the effect of such an amine structure, the resulting rubber cross-linked product using the conjugated diene rubber is more excellent in low heat generation and wet grip properties.
  • the method of adding the organic alkali metal amide compound as a polymerization initiator to the polymerization system is not particularly limited, and a secondary amine compound is reacted with the organic alkali metal compound in advance to obtain an organic alkali metal amide compound.
  • a method of mixing this with a monomer containing a conjugated diene compound and allowing the polymerization reaction to proceed can be employed.
  • an organic alkali metal amide compound is generated in the polymerization system by adding the organic alkali metal compound and the secondary amine compound separately to the polymerization system and mixing them with a monomer containing a conjugated diene compound.
  • a method of advancing the polymerization reaction may be employed.
  • the reaction conditions such as the reaction temperature are not particularly limited, and may be according to the intended polymerization reaction conditions, for example.
  • the amount of secondary amine compound used may be determined according to the amount of the desired polymerization initiator added, but is usually 0.01 to 1.5 mmol, preferably 0.1, per 1 mmol of the organic alkali metal compound. It is in the range of ⁇ 1.4 mmol, more preferably 0.5 to 1.3 mmol.
  • the amount of the polymerization initiator used may be determined according to the molecular weight of the target conjugated diene polymer chain, but is usually 1 to 50 mmol, preferably 1.5 to 20 mmol, per 1000 g of monomer. The range of 2 to 15 mmol is preferred.
  • the polymerization temperature in the first step of the production method of the present invention is usually in the range of ⁇ 80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C.
  • any of batch type and continuous type can be adopted.
  • a conjugated diene monomer unit and an aromatic vinyl monomer are used.
  • the batch method is preferred because it is easy to control the randomness of the bond with the unit.
  • the conjugated diene polymer having an active terminal is composed of two or more types of monomer units
  • various bonding modes such as a block shape, a taper shape, and a random shape.
  • a random binding mode is preferred. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
  • a polar compound is added to the inert organic solvent during the polymerization. It is preferable to do.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds.
  • ether compounds and tertiary amines are preferable, tertiary amines are more preferable, and tetramethylethylenediamine is particularly preferable.
  • These polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0, relative to 1 mol of the organic active metal compound used as the polymerization initiator. .01 to 10 moles. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to deactivation of the polymerization initiator hardly occur.
  • a conjugated diene polymer having an active terminal can be obtained by polymerizing a monomer containing a conjugated diene compound.
  • the vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is preferably 1 to 90 mol%, more preferably 5 ⁇ 85 mol%.
  • the vinyl bond amount is in the above range, the resulting rubber cross-linked product has excellent low heat build-up.
  • the peak top molecular weight detected by gel permeation chromatography (hereinafter also referred to as GPC) of the conjugated diene polymer having an active terminal obtained in the first step of the production method of the present invention is 10 in terms of polystyrene. It is preferably from 1,000,000 to 1,000,000, more preferably from 50,000 to 850,000, and particularly preferably from 100,000 to 700,000. When a plurality of peaks of the conjugated diene polymer are observed, the peak top molecular weight of the peak having the smallest molecular weight derived from the conjugated diene polymer detected by GPC is used as the conjugated diene polymer having an active end.
  • the peak top molecular weight of When the peak top molecular weight of the conjugated diene polymer having an active end is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is: Preferably it is 1.0 to 1.5, more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.3.
  • this molecular weight distribution value (Mw / Mn) is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
  • R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 5 is any organic group, hydrogen An atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 500, n is an integer of 0 to 499, m + n is 2 to 500.)
  • the conjugated diene is reacted by reacting the compound represented by the general formula (1) with the active terminus of the conjugated diene polymer having an active terminus obtained in the first step.
  • System rubber can be modified to improve the affinity for silica and other fillers, and when silica and other fillers are blended, the dispersibility of silica and other fillers can be increased.
  • a rubber cross-linked product having wet grip properties.
  • m is an integer of 1 to 500, preferably an integer of 1 to 250, more preferably an integer of 1 to 100.
  • n is an integer of 0 to 499, preferably an integer of 0 to 249, more preferably an integer of 0 to 99.
  • m + n is 2 to 500, preferably 2 to 250, more preferably 2 to 100.
  • X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group (hereinafter, also simply referred to as “protected amino group-containing organic group”).
  • the protected amino group-containing organic group containing a primary amino group protected by a protecting group include groups in which two hydrogen atoms of a primary amino group (that is, —NH 2 ) act as protecting groups for amino groups.
  • An organic group containing a protected amino group having a structure substituted with, and the protective group can be deprotected by a method using an acid or a base, or by a hydrolysis reaction. Any group providing a secondary amino group may be used, and is not particularly limited. Examples thereof include a silyl group.
  • Such a protected amino group-containing organic group contains a primary amino group as a result of deprotection of the protective group, thereby mainly improving the affinity with a filler such as silica. It is thought that it acts on.
  • a protected amino group-containing organic group for example, a group represented by the following general formula (3) or the following general formula (4) is preferably exemplified.
  • the general formula (1) when m is 2 or more, a plurality of X 1 are present, but the plurality of protected amino group-containing organic groups may be the same as or different from each other.
  • R 13 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • E is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.
  • R 17 to R 22 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
  • G is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.
  • the group represented by —SiR 13 R 14 — (CH 2 ) f —SiR 15 R 16 — represents a method using an acid or a base, hydrolysis It acts as a protecting group that can be deprotected by the reaction.
  • the group represented by —SiR 17 R 18 R 19 and the group represented by —SiR 20 R 21 R 22 use an acid or a base. It acts as a protecting group that can be deprotected by a method or hydrolysis reaction.
  • those having a silyl group as the protecting group are preferable from the viewpoint that they function well as a protecting group and can also perform a deprotection reaction well, and are represented by the above formula (3).
  • a group represented by the above formula (4) is preferred, and a group represented by the above formula (4) is more preferred.
  • the protected amino group constituting the protected amino group-containing organic group include bis (trimethylsilyl) amino group, bis (triethylsilyl) amino group, bis (triisopropylsilyl) amino group, and bis (triphenylsilyl) amino group.
  • R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group.
  • R 5 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, and examples of the arbitrary organic group include an alkoxy group-containing organic group, an epoxy group-containing organic group, and a monovalent hydrocarbon group.
  • n is 2 or more, but so that the R 5 there are a plurality, the plurality of R 5 may be different be the same as each other.
  • the modification effect of the conjugated diene rubber specifically, the affinity for the filler such as silica is improved, and the filler such as silica is blended.
  • the effect of enhancing the dispersibility of fillers such as silica is high, and thereby, the resulting rubber cross-linked product can be made more excellent in low exothermic property and wet grip property, from the following general formula
  • the compound represented by (2) is preferred.
  • R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is protected by a protecting group.
  • a protected amino group-containing organic group containing a primary amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 499, p is an integer of 1 to 499, q is an integer of 0 to 498, and m + p + q is 2 to 500.
  • m is an integer of 1 to 499, preferably an integer of 1 to 249, more preferably an integer of 1 to 99.
  • p is an integer of 1 to 499, preferably an integer of 1 to 249, more preferably an integer of 1 to 99, and
  • q is an integer of 0 to 498, preferably an integer of 0 to 248, more preferably It is an integer of 0 to 98, more preferably q is 0.
  • M + p + q is 2 to 500, preferably 2 to 250, more preferably 2 to 100.
  • X 1 is the same as the above general formula (1), and the preferred embodiment is also the same as the above general formula (1).
  • X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group is preferably an alkoxy group-containing organic group.
  • p is 2 or more, but so that the X 2 there are a plurality, the plurality of X 2 may be different and the same as each other.
  • the alkoxy group-containing organic group may be any group that contains an alkoxy group, and is not particularly limited.
  • Examples of the alkoxy group include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group, Alkoxysilyl groups, etc.
  • the alkoxysilyl group-containing organic group is not particularly limited as long as it is a group containing an alkoxysilyl group, and the alkoxysilyl group contains any of a monoalkoxysilyl group, a dialkoxysilyl group, or a trialkoxysilyl group.
  • a group represented by the following general formula (8) may be mentioned.
  • each R 27 independently represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and R 28 represents a hydrogen atom or a carbon number.
  • j is an integer of 1 to 20, preferably an integer of 1 to 10
  • k is an integer of 1 to 3.
  • R 27 is a presence of a plurality
  • the plurality of R 27 may be different be the same as each other.
  • R 28 is a presence of a plurality
  • the plurality of R 28 may be different be the same as each other.
  • alkoxysilyl group contained in the alkoxysilyl group-containing organic group include a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group; a dimethoxymethylsilyl group, a diethoxymethylsilyl group, a dimethoxyethylsilyl group, Dialkoxyalkylsilyl groups such as diethoxyethylsilyl group; monoalkoxydialkylsilyl groups such as methoxydimethylsilyl group, ethoxydimethylsilyl group, methoxydiethylsilyl group, ethoxydiethylsilyl group; and the like.
  • the modification effect of the conjugated diene rubber specifically, the affinity for the filler such as silica is improved, and the dispersibility of the filler such as silica when the filler such as silica is blended.
  • a trialkoxysilyl group is preferred, and a trimethoxysilyl group is more preferred.
  • the epoxy group-containing organic group is not particularly limited as long as it is an organic group containing an epoxy group, but is not limited to 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group.
  • a glycidoxyalkyl group such as 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group, 2- (3,4-epoxynorbornyl) ethyl group, 2 -Epoxycycloalkylalkyl groups such as (3,4-epoxy-3-methylcyclohexyl) -2-methylethyl group; oxiranylalkyl groups such as 4-oxiranylbutyl group and 8-oxiranyloctyl group; Etc.
  • a glycidoxyalkyl group is preferable, and a 3-glycidoxypropyl group is particularly preferable.
  • R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group. It is.
  • the content ratio of the protected amino group-containing organic group and the alkoxy group-containing organic group and / or the epoxy group-containing organic group is not particularly limited.
  • the molar ratio of “group-containing organic group / (alkoxy group-containing organic group and / or epoxy group-containing organic group)” is preferably 1/30 to 30/1, more preferably 1/20 to 20/1, It is preferably 1/10 to 10/1.
  • the usage-amount of the compound represented by the said General formula (1) in a 2nd process is the metal in the organic active metal compound used as a polymerization initiator in the 1st process mentioned above. It is 0.15 mol or more, preferably 0.15 to 20 mol, more preferably 0.15 to 15 mol, more preferably 0.15 to 10 mol, per mol of atom. More preferably, the ratio is as follows. If the amount of the compound represented by the general formula (1) is too small, the modification effect by the compound represented by the general formula (1) becomes insufficient, and the wet grip property when the rubber cross-linked product is obtained. The improvement effect of low exothermic property is insufficient.
  • a modifier used when producing a modified conjugated diene rubber as shown in the general formula (1), it has a main chain structure composed of a siloxane structure represented by —Si—O—.
  • a specific amount of a compound in which a protected amino group-containing organic group is introduced into such a main chain structure is used. Therefore, a main chain structure composed of a siloxane structure represented by —Si—O— is used.
  • the function by the protected amino group-containing organic group including the primary amino group protected by the protecting group described above can be sufficiently exhibited. And thereby, the effect of improving the affinity for fillers such as silica can be made more satisfactory, and as a result, the obtained rubber cross-linked product is excellent in wet grip and low heat build-up. Is something that can be done.
  • the second step of the production method of the present invention as a method of reacting the compound represented by the general formula (1) with the active end of the conjugated diene polymer having the active end obtained in the first step described above.
  • the conjugated diene polymer having an active end obtained in the first step described above and the compound represented by the general formula (1) in a solvent capable of dissolving them The method of mixing etc. is mentioned.
  • the solvent used at this time those exemplified as the solvent used for the polymerization of the conjugated diene polymer described above can be used.
  • the conjugated diene polymer having an active end obtained in the first step described above is kept in the polymerization solution used for the polymerization, and is represented by the general formula (1).
  • the method of adding the compound is simple and preferred.
  • the compound represented by the general formula (1) is preferably dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the solution concentration is 1 to 50. It is preferable to set it as the range of weight%.
  • the reaction temperature in the second step is not particularly limited, but is usually 0 to 120 ° C.
  • the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • the timing of adding the compound represented by the general formula (1) to the solution containing the conjugated diene polymer having an active terminal is not particularly limited, but the polymerization reaction is not completed and the conjugate having an active terminal is present.
  • the state in which the solution containing the diene polymer also contains a monomer, more specifically, the solution containing the conjugated diene polymer having an active terminal is 100 ppm or more, more preferably 300 to 50. It is desirable to add the compound represented by the general formula (1) to this solution in a state containing 1,000 ppm of monomer.
  • the active end of the conjugated diene polymer is not limited so long as the effect of the present invention is not inhibited.
  • the part may be inactivated by adding a coupling agent, a modifier and the like conventionally used in the polymerization system.
  • An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the modified conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc.
  • an extension oil may be blended to form an oil-extended rubber.
  • the extender oil include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids.
  • the content of polycyclic aromatics extracted by the method of IP346 the inspection method of THE INSTITUTE PETROLEUM in the UK
  • the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the modified conjugated diene rubber.
  • the modified conjugated diene rubber after the modification reaction thus obtained is separated from the reaction mixture by removing the solvent by steam stripping to obtain a solid modified conjugated diene rubber. be able to.
  • the compound is protected by a protective group derived from the compound represented by the general formula (1) introduced into the modified conjugated diene rubber after the modification reaction by steam stripping. It is considered that the primary amino group is formed by the deprotection of the protective group in the protected amino group-containing organic group containing the primary amino group by hydrolysis.
  • the weight average molecular weight (Mw) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 1,000 to 3,000 as a value measured by gel permeation chromatography in terms of polystyrene. 1,000, preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000.
  • Mw weight average molecular weight
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.0 to 5.0, particularly preferably 1.0 to 3.0. By setting the molecular weight distribution of the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product becomes more excellent due to low heat build-up.
  • the Mooney viscosity (ML 1 + 4, 100 ° C.) of the modified conjugated diene rubber obtained by the production method of the present invention is also not particularly limited, but is usually in the range of 20 to 200, preferably 30 to 150. By setting the Mooney viscosity of the modified conjugated diene rubber to the above range, the processability of the rubber composition becomes excellent.
  • the modified conjugated diene rubber is an oil-extended rubber
  • the Mooney viscosity of the oil-extended rubber is preferably in the above range.
  • the modified conjugated diene rubber thus obtained can be suitably used for various applications after adding compounding agents such as a filler and a crosslinking agent.
  • compounding agents such as a filler and a crosslinking agent.
  • silica is blended as a filler
  • a rubber composition suitably used for obtaining a crosslinked rubber product having excellent wet grip properties and low heat build-up properties is provided.
  • the rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
  • silica used in the present invention examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferable.
  • a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • nitrogen adsorption specific surface area of silica used is preferably 50 ⁇ 300m 2 / g, more preferably 80 ⁇ 220m 2 / g, particularly preferably 100 ⁇ 170m 2 / g.
  • the pH of silica is preferably 5-10.
  • the compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • the rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up.
  • a silane coupling agent examples include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) prol) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and ⁇ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like.
  • These silane coupling agents can be used alone or
  • the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more.
  • the compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
  • the method of adding silica to the rubber component containing the modified conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading a solid rubber component (dry kneading method) or a modified conjugated diene A method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used.
  • the amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
  • the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods.
  • a crosslinking accelerator excluding silica and carbon black
  • a filler excluding silica and carbon black
  • an activator excluding silica and carbon black
  • a process oil in accordance with conventional methods.
  • Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
  • crosslinking accelerator When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination.
  • the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • crosslinking activator examples include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more.
  • the amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
  • the rubber composition of the present invention may be blended with other rubber other than the modified conjugated diene rubber obtained by the production method of the present invention described above.
  • other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR).
  • polybutadiene rubber containing crystal fibers made of 1,2-polybutadiene polymer.
  • Styrene-isoprene copolymer rubber butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile- Of butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, etc., those other than the above-mentioned modified conjugated diene rubber.
  • natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
  • the modified conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight of the rubber component in the rubber composition, and occupies 50 to 100% by weight. Is particularly preferred.
  • the modified conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, it is possible to obtain a crosslinked rubber product having low heat build-up and excellent wet grip properties.
  • each component may be kneaded according to a conventional method.
  • a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a modified conjugated diene rubber are used.
  • a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition.
  • the kneading temperature of the component excluding the thermally unstable component and the modified conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is.
  • the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product.
  • crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the modified conjugated diene rubber obtained by the above-described production method of the present invention, and therefore has excellent wet grip properties and low heat build-up properties. It is.
  • the modified conjugated diene rubber obtained by the production method of the present invention is obtained by reacting a specific amount of the compound represented by the general formula (1) as a modifier. As described above, the affinity for the filler such as silica is high, and the filler such as silica can be favorably dispersed. Therefore, the rubber cross-linked product of the present invention obtained by using the modified conjugated diene rubber obtained by the production method of the present invention has excellent wet grip properties and low heat build-up properties.
  • the rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for tire parts such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls;
  • the rubber cross-linked product of the present invention is excellent in wet grip properties and low heat build-up properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications.
  • the molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows. Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8320” manufactured by Tosoh Corporation) Column: manufactured by Tosoh Corporation, two product names “GMH-HR-H” were connected in series. Detector: Differential refractometer (trade name “RI-8320” manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran Column temperature: 40 ° C
  • Example 1 [Production of denaturant 1] The reactor was charged with 38.0 g of methyl hydrogen polysiloxane represented by the following formula (9), and heated to 40 ° C. with stirring under a nitrogen stream. Next, 0.9 g of a toluene solution of platinum-1,3-divinyl-1,3-dimethyldisiloxane complex (Pt concentration 0.17 wt%) was added, and N-allyl-N, N-bis (trimethylsilyl) amine 79 was added. 0.7 g was added dropwise so as to keep the reaction temperature at 40 to 80 ° C. After completion of the dropping, stirring was continued at 80 ° C.
  • Pt concentration 0.17 wt% platinum-1,3-divinyl-1,3-dimethyldisiloxane complex
  • reaction solution 0.5 g was sampled and it was confirmed that the reaction was completed by an alkali decomposition gas generation method.
  • the reaction solution was heated to 150 ° C. under reduced pressure to distill off the low-boiling components for 3.5 hours, and 138.6 g of the modifier 1 represented by the following formula (10) was obtained.
  • the structure represented by the following formula (10) was also confirmed by 1 H-NMR.
  • the viscosity was measured according to JIS-Z-8803 at 25 ° C. using an Ubbelohde viscosity tube, and it was 1040 mm 2 / s.
  • the resulting modified conjugated diene rubber 1 had a weight average molecular weight (Mw) of 410,000.
  • the modified conjugated diene rubber 1 had a styrene unit content of 21.2% by weight and a vinyl bond content in the butadiene unit of 62.8 mol%.
  • the obtained kneaded product was mixed with 1.5 parts of sulfur and a crosslinking accelerator: N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, Ouchi After adding 1.8 parts of Shinsei Chemical Co., Ltd.) and 1.5 parts of crosslinking accelerator: 1,3-diphenylguanidine (trade name “Noxeller D”, produced by Ouchi Shinsei Chemical Co., Ltd.) and kneading them. Then, the sheet-like rubber composition was taken out. Next, the obtained rubber composition was press-crosslinked at 160 ° C. for 20 minutes to produce a rubber cross-linked test piece. The test piece was evaluated for low heat build-up and wet grip. The results are shown in Table 1.
  • Example 2 [Production of Modified Conjugated Diene Rubber 2, Rubber Composition, and Rubber Cross-Linked Product] Except that the amount of modifier 1 used was changed from 0.589 parts to 1.473 parts (0.75 times the amount of n-butyllithium used), the same operation as in Example 1 was carried out. A solid modified conjugated diene rubber 2 was obtained. The resulting modified conjugated diene rubber 2 had a weight average molecular weight (Mw) of 432,000. Then, instead of the modified conjugated diene rubber 1, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 2 was used. went. The results are shown in Table 1.
  • Example 3 [Production of Modified Conjugated Diene Rubber 3, Rubber Composition and Crosslinked Rubber] Except that the amount of modifier 1 used was changed from 0.589 parts to 1.963 parts (1.00 times the amount of n-butyllithium used), the same operation as in Example 1 was carried out. A solid modified conjugated diene rubber 3 was obtained. The resulting modified conjugated diene rubber 3 had a weight average molecular weight (Mw) of 444,000. Then, in place of the modified conjugated diene rubber 1, the rubber composition and the crosslinked rubber were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 3 was used. went. The results are shown in Table 1.
  • Example 4 [Production of denaturant 2]
  • the amount of N-allyl-N, N-bis (trimethylsilyl) amine and 5-hexenyltrimethoxysilane used was changed to a molar ratio of 6: 1, the following formula
  • the modifier 2 represented by (11) was obtained.
  • the structure represented by the following formula (11) was also confirmed by 1 H-NMR.
  • the viscosity of the obtained modifier 2 was 1940 mm 2 / s as measured according to JIS-Z-8803 using an Ubbelohde viscosity tube at 25 ° C.
  • Example 5 [Production of denaturant 3] Instead of methylhydrogenpolysiloxane represented by the above formula (9), 44.0 g of methylhydrogenpolysiloxane represented by the following formula (12) was used, and N-allyl-N, N-bis ( Example 3 except that the amount of trimethylsilyl) amine used was 75.4 g, the amount of 5-hexenyltrimethoxysilane used was 25.5 g, and these ratios were changed to a molar ratio of 3: 1. Thus, a modifier 3 represented by the following formula (13) was obtained. The structure represented by the following formula (13) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 3 was 230 mm 2 / s when measured according to JIS-Z-8803 using an Ubbelohde viscosity tube at 25 ° C.
  • Example 6 [Production of denaturant 4]
  • the amount of N-allyl-N, N-bis (trimethylsilyl) amine and 5-hexenyltrimethoxysilane used was changed to a molar ratio of 1: 4, the following formula
  • the modifier 4 represented by (14) was obtained.
  • the structure represented by the following formula (14) was also confirmed by 1 H-NMR.
  • the viscosity of the obtained modifier 4 was 250 mm 2 / s as measured according to JIS-Z-8803 using an Ubbelohde type viscosity tube at 25 ° C.
  • Example 7 [Production of denaturant 5] Instead of 5-hexenyltrimethoxysilane, 45.3 g of allyl glycidyl ether was used, and the amount of N-allyl-N, N-bis (trimethylsilyl) amine used was changed to N-allyl-N, N-bis (trimethylsilyl).
  • a modifier 5 represented by the following formula (15) was obtained in the same manner as in Example 1 except that the molar ratio of amine to allyl glycidyl ether was changed to 1: 1.
  • the structure represented by the following formula (15) was also confirmed by 1 H-NMR.
  • the viscosity of the obtained modifier 5 was measured according to JIS-Z-8803 using an Ubbelohde type viscosity tube at 25 ° C. and found to be 890 mm 2 / s.
  • Example 8 [Production of Modified Conjugated Diene Rubber 8, Rubber Composition and Crosslinked Rubber] Except that the amount of modifier 5 used was changed from 1.665 parts to 2.498 parts (1.50 mol per mole of n-butyllithium), the same operation as in Example 7 was carried out. A solid modified conjugated diene rubber 8 was obtained. The resulting modified conjugated diene rubber 8 had a weight average molecular weight (Mw) of 536,000. Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 8 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 1.
  • Example 9 [Production of denaturant 6] Synthesis was carried out in the same manner as in Example 1 except that 5-hexenyltrimethoxysilane was not used and the amount of N-allyl-N, N-bis (trimethylsilyl) amine used was 117.1 g. The modifier 6 represented by this was obtained. The structure represented by the following formula (16) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 6 was measured according to JIS-Z-8803 using an Ubbelohde viscosity tube at 25 ° C., and it was 4410 mm 2 / s.
  • Example 10 [Production of Modified Conjugated Diene Rubber 10]
  • an autoclave was charged with 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, 0.187 parts of tetramethylethylenediamine and 0.059 parts of piperidine, and then n-butyllithium. 0.042 part was added and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, the modifier 1 (compound represented by the above formula (10)) obtained in Example 1 was used.
  • the modifier 1 compound represented by the above formula (10)
  • Example 11 [Production of Modified Conjugated Diene Rubber 11, Rubber Composition and Crosslinked Rubber]
  • a solid modified conjugated diene rubber 11 was obtained in the same manner as in Example 10 except that 0.071 part of azepan was used instead of piperidine.
  • the resulting modified conjugated diene rubber 11 had a weight average molecular weight (Mw) of 359,000.
  • Mw weight average molecular weight
  • a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 11 was used in place of the modified conjugated diene rubber 1, and evaluation was similarly performed. went. The results are shown in Table 2.
  • Example 12 [Production of Modified Conjugated Diene Rubber 12, Rubber Composition, and Rubber Cross-Linked Product]
  • a solid modified conjugated diene rubber 12 was obtained in the same manner as in Example 10 except that 0.153 part of dihexylamine was used instead of piperidine.
  • the resulting modified conjugated diene rubber 12 had a weight average molecular weight (Mw) of 421,000.
  • Mw weight average molecular weight
  • a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 12 was used instead of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 2.
  • Example 13 [Production of Modified Conjugated Diene Rubber 13, Rubber Composition and Crosslinked Rubber]
  • 0.153 parts of dihexylamine was used, and in place of the modifier 1, the modifier 5 obtained in Example 7 (compound represented by the above formula (15)) 2.498 parts
  • a solid modified conjugated diene rubber 13 was obtained in the same manner as in Example 10 except that 1.50 times mol) was used relative to the amount of n-butyllithium used.
  • the resulting modified conjugated diene rubber 13 had a weight average molecular weight (Mw) of 509,000.
  • Example 1 [Production of Modified Conjugated Diene Rubber 14]
  • Example 1 and Example 1 were used except that 0.207 parts of the modifying agent 7 represented by the following formula (17) (0.20 times mol with respect to the amount of n-butyllithium) used was used instead of the modifying agent 1.
  • a solid modified conjugated diene rubber 14 was obtained.
  • the resulting modified conjugated diene rubber 14 had a weight average molecular weight (Mw) of 455,000.
  • Example 1 and Example 1 were used except that 5.310 parts of a modifier 8 represented by the following formula (18) (1.00 moles relative to the amount of n-butyllithium) used was used instead of the modifier 1.
  • a modifier 8 represented by the following formula (18) (1.00 moles relative to the amount of n-butyllithium) used was used instead of the modifier 1.
  • Mw weight average molecular weight
  • a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 17 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 3.
  • Example 6 [Production of Modified Conjugated Diene Rubber 19, Rubber Composition and Crosslinked Rubber]
  • Example 1 was used except that 0.315 parts of the modifying agent 10 represented by the following formula (21) (1.00 times the amount of n-butyllithium used) was used in place of the modifying agent 1.
  • a solid modified conjugated diene rubber 19 was obtained.
  • the resulting modified conjugated diene rubber 19 had a weight average molecular weight (Mw) of 383,000.
  • Mw weight average molecular weight
  • a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 19 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went.
  • the results are shown in Table 3.
  • the modified conjugated diene rubber is synthesized, even when the compound represented by the above general formula (1) is used as a modifier, if the amount used is too small, the resulting rubber cross-linked product is a wet grip. The improvement effect of heat resistance and low exothermic property was not obtained (Comparative Examples 2 and 3). Furthermore, when synthesizing a modified conjugated diene rubber, a modifier having a protected amino group-containing organic group but not corresponding to the compound represented by the above general formula (1) is also obtained. The resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Examples 5 and 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Tires In General (AREA)

Abstract

Provided is a method for producing a modified conjugated diene rubber, which comprises: a first step wherein a monomer containing at least a conjugated diene compound is polymerized in an inert solvent, while using an organic active metal compound as a polymerization initiator, so that a conjugated diene polymer having an active terminal is obtained; and a second step wherein the active terminal of the conjugated diene polymer having an active terminal is reacted with a compound represented by general formula (1). This method for producing a modified conjugated diene rubber is configured such that 0.15 mol or more of the compound represented by general formula (1) is used per 1 mol of metal atoms in the organic active metal compound. (In general formula (1), each of R1-R4 and R6-R9 independently represents a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group; R5 represents an arbitrary organic group, a hydrogen atom or a hydroxyl group; X1 represents a protected amino group-containing organic group that contains a primary amino group protected by a protecting group; m represents an integer of 1-500; n represents an integer of 0-499; and (m + n) is 2-500.)

Description

変性共役ジエン系ゴムの製造方法Process for producing modified conjugated diene rubber
 本発明は、変性共役ジエン系ゴムの製造方法に関し、より詳しくは、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることのできる変性共役ジエン系ゴムを製造するための方法に関する。また、本発明は、この製造方法により得られる変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含有するゴム組成物およびそのゴム架橋物にも関する。 The present invention relates to a method for producing a modified conjugated diene rubber, and more particularly to a method for producing a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up. The present invention also relates to a modified conjugated diene rubber obtained by this production method, a rubber composition containing the modified conjugated diene rubber, and a crosslinked rubber product thereof.
 近年、環境問題や資源問題から、自動車用のタイヤにも低発熱性が強く求められており、さらに安全性の面からは優れたウエットグリップ性が求められている。シリカを配合したゴム組成物から得られるタイヤは、通常使用されるカーボンブラックを配合したゴム組成物から得られるタイヤに比べて低発熱性に優れるため、これを用いることにより低燃費なタイヤを製造することができる。しかしその一方で、通常使用されているゴムにシリカを配合しても、シリカとの親和性に劣るため、分離が発生しやすく、結果として、低発熱性およびウエットグリップ性を向上させることができないという課題があった。 In recent years, there has been a strong demand for low heat build-up for automobile tires due to environmental problems and resource problems, and from the viewpoint of safety, excellent wet grip properties are also demanded. A tire obtained from a rubber composition blended with silica is superior in low heat build-up compared to a tire obtained from a rubber composition blended with commonly used carbon black. can do. However, on the other hand, even if silica is blended with the rubber that is usually used, it is inferior in affinity with silica, so separation is likely to occur, and as a result, low heat build-up and wet grip properties cannot be improved. There was a problem.
 このような課題に対し、ゴムとシリカとの親和性を高めるために、ゴムの重合活性末端等に変性剤を反応させることにより、シリカに対する親和性の高い官能基を導入する技術が知られている。 In order to increase the affinity between rubber and silica for such a problem, a technique for introducing a functional group having a high affinity for silica by reacting a modifier with a polymerization active terminal of rubber is known. Yes.
 たとえば、特許文献1には、共役ジエン系重合体の活性末端に、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシランなどの、保護された1級アミノ基とアルコキシシリル基を有する化合物を反応させることにより、共役ジエン系重合体とシリカとの親和性を高める試みが行われている。この特許文献1の技術では、得られる共役ジエン系重合体は、シリカに対する親和性がある程度向上したものとなるものの、シリカを配合した際におけるシリカの分散性が必ずしも十分でなく、そのため、ウエットグリップ性および低発熱性の向上効果も限定的なものであった。 For example, in Patent Document 1, a compound having a protected primary amino group and an alkoxysilyl group such as N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane is reacted with the active terminal of a conjugated diene polymer. Therefore, attempts have been made to increase the affinity between the conjugated diene polymer and silica. In the technique of Patent Document 1, the resulting conjugated diene polymer has a certain degree of affinity for silica, but the dispersibility of silica when blended with silica is not always sufficient, and therefore, the wet grip The improvement effect of heat resistance and low exothermicity was also limited.
特開2004-67982号公報JP 2004-67982 A
 本発明は、このような実状に鑑みてなされたものであり、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることのできる変性共役ジエン系ゴムを製造するための方法を提供することを目的とする。 The present invention has been made in view of such a situation, and provides a method for producing a modified conjugated diene rubber that can give a crosslinked rubber excellent in wet grip and low heat build-up. With the goal.
 本発明者等は、上記目的を達成するために、共役ジエン系重合体の活性末端を変性させるための変性剤ついて鋭意検討を行った結果、変性剤として、-Si-O-で表されるシロキサン構造を主鎖構造に有し、かつ、保護基により保護された第1級アミノ基を備えた特定のシラン化合物を特定量用い、これを活性末端を有する共役ジエン系重合体の活性末端に反応させることにより得られる変性共役ジエン系ゴムが、シリカなどの充填剤を良好に分散可能であり、これにより、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることができることを見出し、本発明を完成させるに至った。 In order to achieve the above object, the present inventors have conducted extensive studies on a modifier for modifying the active terminal of a conjugated diene polymer. As a result, the modifier is represented by -Si-O-. A specific amount of a specific silane compound having a siloxane structure in the main chain structure and a primary amino group protected by a protective group is used as an active end of a conjugated diene polymer having an active end. It has been found that the modified conjugated diene rubber obtained by reacting can disperse a filler such as silica satisfactorily, thereby providing a rubber cross-linked product excellent in wet grip and low heat build-up, The present invention has been completed.
 すなわち、本発明によれば、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、前記活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させる第2工程と、を備え、前記一般式(1)で表される化合物の使用量を、前記有機活性金属化合物中の金属原子1モルに対して、0.15モル以上とする変性共役ジエン系ゴムの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000006
 (上記一般式(1)中、R~R、R~Rは、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、Rは、任意の有機基、水素原子または水酸基であり、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、mは1~500の整数、nは0~499の整数であり、m+nは2~500である。)
That is, according to the present invention, a conjugated diene polymer having an active terminal is obtained by polymerizing a monomer comprising at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. And a second step of reacting a compound represented by the following general formula (1) with the active terminus of the conjugated diene polymer having the active terminus, the general formula (1) A method for producing a modified conjugated diene rubber is provided in which the amount of the compound represented by the formula (1) is 0.15 mol or more relative to 1 mol of the metal atom in the organic active metal compound.
Figure JPOXMLDOC01-appb-C000006
(In the general formula (1), R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 5 is any organic group, hydrogen An atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 500, n is an integer of 0 to 499, m + n is 2 to 500.)
 本発明において、前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 (上記一般式(2)中、R~R、R~R12は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、Xは、アルコキシ基含有有機基またはエポキシ基含有有機基であり、mは1~499の整数、pは1~499の整数、qは0~498の整数であり、m+p+qは2~500である。)
In the present invention, the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
(In the general formula (2), R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is protected by a protecting group. A protected amino group-containing organic group containing a primary amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 499, p is an integer of 1 to 499, q is an integer of 0 to 498, and m + p + q is 2 to 500.)
 本発明において、前記一般式(1)で表される化合物が、前記保護アミノ基含有有機基として、下記一般式(3)、または下記一般式(4)で表される基を含有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 (上記一般式(3)中、R13~R16は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、eは1~12の整数である。fは1~12の整数である。)
Figure JPOXMLDOC01-appb-C000009
 (上記一般式(4)中、R17~R22は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、gは1~12の整数である。)
In the present invention, the compound represented by the general formula (1) contains a group represented by the following general formula (3) or the following general formula (4) as the protected amino group-containing organic group. Preferably there is.
Figure JPOXMLDOC01-appb-C000008
(In the general formula (3), R 13 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and e is an integer of 1 to 12) F is an integer from 1 to 12.)
Figure JPOXMLDOC01-appb-C000009
(In the general formula (4), R 17 to R 22 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and g is an integer of 1 to 12) .)
 本発明において、前記重合開始剤として有機アルカリ金属アミド化合物を用いることが好ましく、前記有機アルカリ金属アミド化合物が、下記一般式(5)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
 (上記一般式(5)中、Mはアルカリ金属原子を表し、R23、R24は、それぞれ独立して、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R23およびR24は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のヘテロ原子とともに環構造を形成していてもよい。)
In the present invention, an organic alkali metal amide compound is preferably used as the polymerization initiator, and the organic alkali metal amide compound is more preferably a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000010
(In the above general formula (5), M 1 represents an alkali metal atom, and R 23 and R 24 are each independently an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or Represents a group capable of hydrolyzing to form a hydroxyl group, and R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded; In addition to the nitrogen atom to which is bonded, a ring structure may be formed together with a heteroatom other than the nitrogen atom to which these are bonded.
 また、本発明によれば、上記いずれかの製造方法により得られる変性共役ジエン系ゴムが提供される。
 さらに、本発明によれば、上記変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物が提供される。
 本発明のゴム組成物は、架橋剤をさらに含有してなるものであることが好ましい。
The present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods.
Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
The rubber composition of the present invention preferably contains a crosslinking agent.
 また、本発明によれば、上記ゴム組成物を架橋してなるゴム架橋物、および該ゴム架橋物を含んでなるタイヤが提供される。 Further, according to the present invention, there are provided a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
 本発明によれば、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることのできる変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含有するゴム組成物、該ゴム組成物を架橋してなる、ウエットグリップ性および低発熱性に優れたゴム架橋物、および、該ゴム架橋物を含んでなるタイヤを提供することができる。 According to the present invention, a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up properties, a rubber composition containing the modified conjugated diene rubber, and the rubber composition are cross-linked. It is possible to provide a rubber cross-linked product excellent in wet grip and low heat build-up, and a tire comprising the rubber cross-linked product.
<変性共役ジエン系ゴムの製造方法>
 本発明の変性共役ジエン系ゴムの製造方法は、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、前記活性末端を有する共役ジエン系重合体の活性末端に、後述する一般式(1)で表される化合物を反応させる第2工程と、を備え、
 前記一般式(1)で表される化合物の使用量を、前記有機活性金属化合物中の金属原子1モルに対して、0.15モル以上とするものである。
<Method for producing modified conjugated diene rubber>
The method for producing a modified conjugated diene rubber according to the present invention has an active terminal by polymerizing a monomer containing at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. A first step of obtaining a conjugated diene polymer, and a second step of reacting the active terminus of the conjugated diene polymer having an active terminus with a compound represented by the general formula (1) described later,
The amount of the compound represented by the general formula (1) is 0.15 mol or more per 1 mol of the metal atom in the organic active metal compound.
<第1工程>
 まず、本発明の製造方法における第1工程について説明する。本発明の製造方法における第1工程は、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る工程である。
<First step>
First, the 1st process in the manufacturing method of this invention is demonstrated. In the first step of the production method of the present invention, a monomer comprising at least a conjugated diene compound is polymerized in an inert solvent using an organic active metal compound as a polymerization initiator, and a conjugated diene having an active terminal is obtained. This is a step of obtaining a polymer.
 第1工程において、活性末端を有する共役ジエン系重合体を得るために、重合に用いる共役ジエン化合物としては、特に限定されず、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、および1,3-シクロヘキサジエンなどを挙げることができる。これらのなかでも、1,3-ブタジエン、イソプレンおよび1,3-ペンタジエンが好ましく、1,3-ブタジエン、およびイソプレンが特に好ましい。なお、これらの共役ジエン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the first step, the conjugated diene compound used for polymerization in order to obtain a conjugated diene polymer having an active terminal is not particularly limited, and for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1 , 3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, etc. Can be mentioned. Of these, 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are particularly preferred. In addition, these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、本発明の製造方法においては、第1工程において製造する、活性末端を有する共役ジエン系重合体として、共役ジエン化合物に加えて、芳香族ビニル化合物を共重合してなるものであってもよい。芳香族ビニル化合物としては、特に限定されず、たとえば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、およびジメチルアミノエチルスチレンなどを挙げることができる。これらのなかでも、スチレン、α-メチルスチレン、および4-メチルスチレンが好ましく、スチレンが特に好ましい。なお。これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。第1工程において製造する、活性末端を有する共役ジエン系重合体は、共役ジエン単量体単位50~100重量%を含むものが好ましく、55~100重量%を含むものが特に好ましく、また、芳香族ビニル単量体単位0~50重量%を含むものが好ましく、0~45重量%を含むものが特に好ましい。 In the production method of the present invention, the conjugated diene polymer having an active end produced in the first step may be obtained by copolymerizing an aromatic vinyl compound in addition to the conjugated diene compound. Good. The aromatic vinyl compound is not particularly limited, and for example, styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, etc. Can do. Of these, styrene, α-methylstyrene, and 4-methylstyrene are preferable, and styrene is particularly preferable. Note that. These aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The conjugated diene polymer having an active end produced in the first step preferably contains 50 to 100% by weight of a conjugated diene monomer unit, particularly preferably contains 55 to 100% by weight, Those containing 0 to 50% by weight of the vinyl group monomer group are preferred, and those containing 0 to 45% by weight are particularly preferred.
 また、本発明の製造方法においては、活性末端を有する共役ジエン系重合体は、本発明の目的を損なわない範囲において、所望により、共役ジエン化合物に加えて、芳香族ビニル化合物以外の他の単量体を共重合してなるものであってもよい。他の単量体としては、たとえば、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン;などを挙げることができる。これらの単量体は、活性末端を有する共役ジエン系重合体中に、単量体単位として、10重量%以下とするのが好ましく、5重量%以下とするのがより好ましい。 In addition, in the production method of the present invention, the conjugated diene polymer having an active end is optionally added to the conjugated diene compound as well as other units other than the aromatic vinyl compound as long as the object of the present invention is not impaired. It may be obtained by copolymerizing a monomer. Examples of other monomers include α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid, and maleic anhydride; methyl methacrylate, acrylic Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; Non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; etc. Can be mentioned. These monomers are preferably 10% by weight or less, more preferably 5% by weight or less as monomer units in the conjugated diene polymer having an active terminal.
 本発明の製造方法の第1工程において用いられる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、2-ブテン等の鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘキセン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;等が挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、単量体濃度が、たとえば、1~50重量%であり、好ましくは10~40重量%となる量である。 The inert solvent used in the first step of the production method of the present invention is not particularly limited as long as it is usually used in solution polymerization and does not inhibit the polymerization reaction. Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclohexene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; and the like. These inert solvents may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the inert solvent used is such that the monomer concentration is, for example, 1 to 50% by weight, preferably 10 to 40% by weight.
 重合開始剤として用いる有機活性金属化合物としては、共役ジエン化合物を含む単量体を重合させて、活性末端を有する共役ジエン系重合体を与えることができるものであれば、特に限定されないが、その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤が好ましく使用される。有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、例えば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく、有機モノリチウム化合物がより好ましく、n-ブチルリチウムが特に好ましい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The organic active metal compound used as a polymerization initiator is not particularly limited as long as it can polymerize a monomer containing a conjugated diene compound to give a conjugated diene polymer having an active terminal, As a specific example, a polymerization initiator mainly comprising an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used. Examples of the organic alkali metal compound include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like. Examples of the organic alkaline earth metal compound include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like. As a polymerization initiator having a lanthanum series metal compound as a main catalyst, for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound. Among these polymerization initiators, an organic monolithium compound and an organic polyvalent lithium compound are preferable, an organic monolithium compound is more preferable, and n-butyllithium is particularly preferable. These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
 なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ピペリジン、ヘキサメチレンイミン、およびヘプタメチレンイミンなどの2級アミン化合物と反応させて、有機アルカリ金属アミド化合物として使用してもよい。有機アルカリ金属アミド化合物を重合開始剤として用いることにより、得られるゴム架橋物を、低発熱性およびウエットグリップ性により優れたものとすることができる。 Organic alkali metal compounds are used as organic alkali metal amide compounds by reacting with secondary amine compounds such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine in advance. May be. By using an organic alkali metal amide compound as a polymerization initiator, the resulting rubber cross-linked product can be made more excellent in low heat buildup and wet grip properties.
 有機アルカリ金属アミド化合物としては、たとえば、有機アルカリ金属化合物に、2級アミン化合物を反応させたものなどが挙げられ、なかでも、下記一般式(5)で表される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000011
 (上記一般式(5)中、Mはアルカリ金属原子を表し、R23、R24は、それぞれ独立して、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R23およびR24は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のヘテロ原子とともに環構造を形成していてもよい。)
Examples of the organic alkali metal amide compound include those obtained by reacting an organic alkali metal compound with a secondary amine compound, and among them, a compound represented by the following general formula (5) is preferably used. it can.
Figure JPOXMLDOC01-appb-C000011
(In the above general formula (5), M 1 represents an alkali metal atom, and R 23 and R 24 are each independently an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or Represents a group capable of hydrolyzing to form a hydroxyl group, and R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded; In addition to the nitrogen atom to which is bonded, a ring structure may be formed together with a heteroatom other than the nitrogen atom to which these are bonded.
 アルキル基としては、特に限定されないが、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。このようなアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などが挙げられる。 The alkyl group is not particularly limited, but an alkyl group having 1 to 20 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Examples of such alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl. Group, n-heptyl group, n-octyl group, n-decyl group and the like.
 シクロアルキル基としては、特に限定されないが、炭素数3~20のシクロアルキル基が好ましく、炭素数3~12のシクロアルキル基がより好ましい。このようなシクロアルキル基としては、たとえば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基などが挙げられる。 The cycloalkyl group is not particularly limited, but is preferably a cycloalkyl group having 3 to 20 carbon atoms, and more preferably a cycloalkyl group having 3 to 12 carbon atoms. Examples of such cycloalkyl groups include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
 アリール基としては、特に限定されないが、炭素数6~12のアリール基が好ましく、炭素数6~10のアリール基がより好ましい。このようなアリール基としては、たとえば、フェニル基、1-ナフチル基、2-ナフチル基などが挙げられる。 The aryl group is not particularly limited, but an aryl group having 6 to 12 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable. Examples of such an aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
 アラルキル基としては、特に限定されないが、炭素数7~13のアラルキル基が好ましく、炭素数7~9のアラルキル基がより好ましい。このようなアラルキル基としては、たとえば、ベンジル基、フェネチル基などが挙げられる。 The aralkyl group is not particularly limited, but an aralkyl group having 7 to 13 carbon atoms is preferable, and an aralkyl group having 7 to 9 carbon atoms is more preferable. Examples of such aralkyl groups include benzyl group and phenethyl group.
 アミノ基の保護基としては、特に限定されず、アミノ基の保護基、より具体的には、第1級アミノ基(すなわち、-NH)または第2級アミノ基(すなわち、>NH)の保護基として作用する基であればよいが、たとえば、アルキルシリル基などが挙げられる。このようなアルキルシリル基としては、たとえば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、メチルジフェニルシリル基、エチルメチルフェニルシリル基、tert-ブチルジメチルシリル基などが挙げられる。 The amino-protecting group is not particularly limited, and more specifically, an amino-protecting group, more specifically, a primary amino group (ie, —NH 2 ) or a secondary amino group (ie,> NH). Any group that acts as a protecting group may be used, and examples thereof include an alkylsilyl group. Examples of such alkylsilyl groups include trimethylsilyl group, triethylsilyl group, triphenylsilyl group, methyldiphenylsilyl group, ethylmethylphenylsilyl group, tert-butyldimethylsilyl group, and the like.
 加水分解して水酸基を生じうる基としては、特に限定されず、たとえば、酸などの存在下で加水分解することで、水酸基を生成する基であればよいが、たとえば、アルコキシアルキル基、エポキシ基を含有する基などが挙げられる。
 アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、エトキシエチル基、プロポキシメチル基、ブトキシメチル基、ブトキシエチル基、プロポキシエチル基などが挙げられる。
 また、エポキシ基を含有する基としては、たとえば下記一般式(6)で表される基などが挙げられる。
 -Z-Z-E  (6)
 一般式(6)中、Zは炭素数1~10のアルキレン基またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子または酸素原子であり、Eはグリシジル基である。
The group capable of generating a hydroxyl group by hydrolysis is not particularly limited, and may be any group that generates a hydroxyl group by hydrolysis in the presence of an acid, for example, an alkoxyalkyl group, an epoxy group, and the like. And a group containing
Examples of the alkoxyalkyl group include a methoxymethyl group, an ethoxymethyl group, an ethoxyethyl group, a propoxymethyl group, a butoxymethyl group, a butoxyethyl group, and a propoxyethyl group.
Examples of the group containing an epoxy group include a group represented by the following general formula (6).
-Z 1 -Z 2 -E 1 (6)
In the general formula (6), Z 1 is an alkylene group having 1 to 10 carbon atoms or an alkylarylene group, Z 2 is a methylene group, a sulfur atom or an oxygen atom, and E 1 is a glycidyl group.
 また、R23およびR24は互いに結合して、これらが結合する窒素原子とともに環構造を形成していてもよく、この場合における、R23およびR24と、これと結合する窒素原子とで形成される構造の具体例としては、アゼチジン環(R23およびR24が、プロピレン基)、ピロリジン環(R23およびR24が、ブチレン基)、ピペリジン環(R23およびR24が、ペンチレン基)、ヘキサメチレンイミン環(R23およびR24が、ヘキシレン基)などが挙げられる。
 R23およびR24が互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合、環構造は、4~8員環構造であることが好ましい。
R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in this case, formed by R 23 and R 24 and the nitrogen atom to which they are bonded. Specific examples of the structure to be formed include an azetidine ring (R 23 and R 24 are propylene groups), a pyrrolidine ring (R 23 and R 24 are butylene groups), a piperidine ring (R 23 and R 24 are pentylene groups). And hexamethyleneimine ring (R 23 and R 24 are hexylene groups) and the like.
When R 23 and R 24 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, the ring structure is preferably a 4- to 8-membered ring structure.
 また、上記一般式(5)中、Mはアルカリ金属原子であり、このようなアルカリ金属原子としては、リチウム原子、ナトリウム原子、カリウム原子などが挙げられるが、これらの中でも、重合活性の観点より、リチウム原子が好ましい。 In the general formula (5), M 1 is an alkali metal atom. Examples of such an alkali metal atom include a lithium atom, a sodium atom, and a potassium atom. Among these, a viewpoint of polymerization activity. More preferred is a lithium atom.
 本発明の製造方法の第1工程において、重合開始剤として、上記一般式(5)で表される化合物を用いた場合、有機アルカリ金属アミド化合物を形成するアミン構造が、重合体鎖の重合開始末端に結合した状態で残存することとなる。そのため、重合開始剤として、上記一般式(5)で表される化合物を用いると、得られる共役ジエン系ゴムを形成する重合体鎖の一方の末端に、下記一般式(7)で表される構造が導入される。
Figure JPOXMLDOC01-appb-C000012
 (上記一般式(7)中、R25、R26は、それぞれ独立して、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R25およびR26は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のヘテロ原子とともに環構造を形成していてもよい。)
In the first step of the production method of the present invention, when the compound represented by the general formula (5) is used as the polymerization initiator, the amine structure forming the organic alkali metal amide compound is the polymerization start of the polymer chain. It will remain attached to the end. Therefore, when the compound represented by the general formula (5) is used as a polymerization initiator, it is represented by the following general formula (7) at one end of the polymer chain forming the resulting conjugated diene rubber. A structure is introduced.
Figure JPOXMLDOC01-appb-C000012
(In the general formula (7), each of R 25 and R 26 independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or a hydrolyzed hydroxyl group. R 25 and R 26 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in the case of forming the ring structure, In addition, a ring structure may be formed together with a hetero atom other than the nitrogen atom to which they are bonded.)
 R25、R26となりうるアルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基としては、上記一般式(5)におけるR23、R24と同様のものを挙げることができ、また、R25およびR26は互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合にも、上記一般式(5)におけるR23、R24と同様とすることができる。
 なお、R25、R26となりうる水素原子は、アミノ基の保護基が外れることにより、導入される。
Examples of the alkyl group, cycloalkyl group, aryl group, aralkyl group, amino-protecting group, or group capable of hydrolyzing to generate a hydroxyl group that can be R 25 and R 26 include R 23 and R in the above general formula (5). In the case where R 25 and R 26 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, R 23 in the above general formula (5), it can be similar to R 24.
In addition, the hydrogen atom which can become R 25 and R 26 is introduced when the protecting group of the amino group is removed.
 本発明の製造方法の第1工程において、重合開始剤として、有機アルカリ金属アミド化合物を用いた場合、得られる共役ジエン系ゴムを、一方の末端にアミン構造を有し、かつ、他方の末端に、上記一般式(1)で表される化合物に由来する特定の変性構造を有するものとすることができる。その結果、このようなアミン構造の効果により、得られる共役ジエン系ゴムを用いたゴム架橋物は、より低発熱性およびウエットグリップ性に優れたものとなる。 In the first step of the production method of the present invention, when an organic alkali metal amide compound is used as a polymerization initiator, the resulting conjugated diene rubber has an amine structure at one end and the other end. And a specific modified structure derived from the compound represented by the general formula (1). As a result, due to the effect of such an amine structure, the resulting rubber cross-linked product using the conjugated diene rubber is more excellent in low heat generation and wet grip properties.
 重合開始剤としての有機アルカリ金属アミド化合物を重合系に添加する方法としては、特に限定されず、予め、有機アルカリ金属化合物に、2級アミン化合物を反応させて、有機アルカリ金属アミド化合物を得て、これを共役ジエン化合物を含む単量体と混合して、重合反応を進行させる方法を採用することができる。あるいは、有機アルカリ金属化合物と、2級アミン化合物とを別々に重合系に添加し、これらを共役ジエン化合物を含む単量体と混合することで、重合系において、有機アルカリ金属アミド化合物を生成させることで、重合反応を進行させる方法を採用してもよい。反応温度等の反応条件は、特に限定されるものではなく、たとえば、目的とする重合反応条件に従えばよい。 The method of adding the organic alkali metal amide compound as a polymerization initiator to the polymerization system is not particularly limited, and a secondary amine compound is reacted with the organic alkali metal compound in advance to obtain an organic alkali metal amide compound. A method of mixing this with a monomer containing a conjugated diene compound and allowing the polymerization reaction to proceed can be employed. Alternatively, an organic alkali metal amide compound is generated in the polymerization system by adding the organic alkali metal compound and the secondary amine compound separately to the polymerization system and mixing them with a monomer containing a conjugated diene compound. Thus, a method of advancing the polymerization reaction may be employed. The reaction conditions such as the reaction temperature are not particularly limited, and may be according to the intended polymerization reaction conditions, for example.
 2級アミン化合物の使用量は、目的とする重合開始剤の添加量に応じて決定すればよいが、有機アルカリ金属化合物1ミリモル当り、通常0.01~1.5ミリモル、好ましくは0.1~1.4ミリモル、より好ましくは0.5~1.3ミリモルの範囲である。 The amount of secondary amine compound used may be determined according to the amount of the desired polymerization initiator added, but is usually 0.01 to 1.5 mmol, preferably 0.1, per 1 mmol of the organic alkali metal compound. It is in the range of ~ 1.4 mmol, more preferably 0.5 to 1.3 mmol.
 重合開始剤の使用量は、目的とする共役ジエン系重合体鎖の分子量に応じて決定すればよいが、単量体1000g当り、通常1~50ミリモル、好ましくは1.5~20ミリモル、より好ましくは2~15ミリモルの範囲である。 The amount of the polymerization initiator used may be determined according to the molecular weight of the target conjugated diene polymer chain, but is usually 1 to 50 mmol, preferably 1.5 to 20 mmol, per 1000 g of monomer. The range of 2 to 15 mmol is preferred.
 本発明の製造方法の第1工程における、重合温度は、通常、-80~+150℃、好ましくは0~100℃、より好ましくは30~90℃の範囲である。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。 The polymerization temperature in the first step of the production method of the present invention is usually in the range of −80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C. As the polymerization mode, any of batch type and continuous type can be adopted. However, when copolymerizing a conjugated diene compound and an aromatic vinyl compound, a conjugated diene monomer unit and an aromatic vinyl monomer are used. The batch method is preferred because it is easy to control the randomness of the bond with the unit.
 本発明の製造方法において、活性末端を有する共役ジエン系重合体が、2種以上の単量体単位から構成されている場合、その結合様式は、たとえば、ブロック状、テーパー状、ランダム状など種々の結合様式とすることができるが、ランダム状の結合様式であることが好ましい。ランダム状にすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。 In the production method of the present invention, when the conjugated diene polymer having an active terminal is composed of two or more types of monomer units, there are various bonding modes such as a block shape, a taper shape, and a random shape. However, a random binding mode is preferred. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
 また、本発明の製造方法においては、活性末端を有する共役ジエン系重合体における共役ジエン単量体単位中のビニル結合含有量を調節するために、重合に際し、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、2,2-ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらの中でも、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤として用いる有機活性金属化合物1モルに対して、好ましくは0.001~100モル、より好ましくは0.01~10モルである。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。 In the production method of the present invention, in order to adjust the vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer having an active terminal, a polar compound is added to the inert organic solvent during the polymerization. It is preferable to do. Examples of the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds. Among these, ether compounds and tertiary amines are preferable, tertiary amines are more preferable, and tetramethylethylenediamine is particularly preferable. These polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0, relative to 1 mol of the organic active metal compound used as the polymerization initiator. .01 to 10 moles. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to deactivation of the polymerization initiator hardly occur.
 以上のようにして、本発明の製造方法における第1工程によれば、共役ジエン化合物を含んでなる単量体を重合することで、活性末端を有する共役ジエン系重合体を得ることができる。 As described above, according to the first step in the production method of the present invention, a conjugated diene polymer having an active terminal can be obtained by polymerizing a monomer containing a conjugated diene compound.
 本発明の製造方法の第1工程で得られる活性末端を有する共役ジエン系重合体における共役ジエン単量体単位中のビニル結合含有量は、好ましくは1~90モル%であり、より好ましくは5~85モル%である。ビニル結合量が上記範囲にあると、得られるゴム架橋物は低発熱性に優れたものとなる。 The vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is preferably 1 to 90 mol%, more preferably 5 ~ 85 mol%. When the vinyl bond amount is in the above range, the resulting rubber cross-linked product has excellent low heat build-up.
 本発明の製造方法の第1工程で得られる活性末端を有する共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィ(以下、GPCとも言う)により検出されるピークトップ分子量は、ポリスチレン換算の値として、10,000~1,000,000であることが好ましく、50,000~850,000であることがより好ましく、100,000~700,000であることが特に好ましい。なお、共役ジエン系重合体のピークが複数認められる場合は、GPCにより検出される共役ジエン系重合体に由来する、分子量の最も小さいピークのピークトップ分子量を、活性末端を有する共役ジエン系重合体のピークトップ分子量とする。活性末端を有する共役ジエン系重合体のピークトップ分子量が上記範囲にあると、得られるゴム架橋物は低発熱性に優れたものとなる。 The peak top molecular weight detected by gel permeation chromatography (hereinafter also referred to as GPC) of the conjugated diene polymer having an active terminal obtained in the first step of the production method of the present invention is 10 in terms of polystyrene. It is preferably from 1,000,000 to 1,000,000, more preferably from 50,000 to 850,000, and particularly preferably from 100,000 to 700,000. When a plurality of peaks of the conjugated diene polymer are observed, the peak top molecular weight of the peak having the smallest molecular weight derived from the conjugated diene polymer detected by GPC is used as the conjugated diene polymer having an active end. The peak top molecular weight of When the peak top molecular weight of the conjugated diene polymer having an active end is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
 本発明の製造方法の第1工程で得られる活性末端を有する共役ジエン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、好ましくは1.0~1.5、より好ましくは1.0~1.4、特に好ましくは1.0~1.3である。この分子量分布の値(Mw/Mn)が上記範囲にあると、得られるゴム架橋物は低発熱性に優れたものとなる。 The molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is: Preferably it is 1.0 to 1.5, more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.3. When this molecular weight distribution value (Mw / Mn) is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
<第2工程>
 次いで、本発明の製造方法における第2工程について説明する。本発明の製造方法における第2工程は、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させることにより、変性共役ジエン系ゴムを得る工程である。
Figure JPOXMLDOC01-appb-C000013
 (上記一般式(1)中、R~R、R~Rは、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、Rは、任意の有機基、水素原子または水酸基であり、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、mは1~500の整数、nは0~499の整数であり、m+nは2~500である。)
<Second step>
Next, the second step in the production method of the present invention will be described. In the second step of the production method of the present invention, the compound represented by the following general formula (1) is reacted with the active end of the conjugated diene polymer having the active end obtained in the first step. In this step, a modified conjugated diene rubber is obtained.
Figure JPOXMLDOC01-appb-C000013
(In the general formula (1), R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 5 is any organic group, hydrogen An atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 500, n is an integer of 0 to 499, m + n is 2 to 500.)
 本発明の製造方法においては、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、上記一般式(1)で表される化合物を反応させることにより、共役ジエン系ゴムを改質し、シリカなどの充填剤に対する親和性を改良し、シリカなどの充填剤を配合した際における、シリカなどの充填剤の分散性を高めることができ、これにより、低発熱性およびウエットグリップ性を備えたゴム架橋物を与えることのできるものとすることができる。 In the production method of the present invention, the conjugated diene is reacted by reacting the compound represented by the general formula (1) with the active terminus of the conjugated diene polymer having an active terminus obtained in the first step. System rubber can be modified to improve the affinity for silica and other fillers, and when silica and other fillers are blended, the dispersibility of silica and other fillers can be increased. And a rubber cross-linked product having wet grip properties.
 上記一般式(1)中、mは1~500の整数であり、好ましくは1~250の整数、より好ましくは1~100の整数である。nは0~499の整数であり、好ましくは0~249の整数、より好ましくは0~99の整数である。また、m+nは2~500であり、好ましくは2~250、より好ましくは2~100である。 In the general formula (1), m is an integer of 1 to 500, preferably an integer of 1 to 250, more preferably an integer of 1 to 100. n is an integer of 0 to 499, preferably an integer of 0 to 249, more preferably an integer of 0 to 99. Further, m + n is 2 to 500, preferably 2 to 250, more preferably 2 to 100.
 上記一般式(1)中、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基(以下、単に「保護アミノ基含有有機基」とも言う。)である。保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基としては、第1級アミノ基(すなわち、-NH)の2つの水素原子を、アミノ基の保護基として作用する基で置換された構造を有する保護アミノ基を含有する有機基であり、保護基としては、酸や塩基を用いる方法や、加水分解反応により脱保護可能であり、かつ、脱保護することにより第1級アミノ基を与える基であればよく、特に限定されないが、たとえば、シリル基などが挙げられる。なお、このような保護アミノ基含有有機基は、保護基が脱保護することで、第1級アミノ基を含有するものとなり、これにより、主としてシリカなどの充填剤との親和性を向上させるために作用すると考えられる。 In the general formula (1), X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group (hereinafter, also simply referred to as “protected amino group-containing organic group”). Examples of the protected amino group-containing organic group containing a primary amino group protected by a protecting group include groups in which two hydrogen atoms of a primary amino group (that is, —NH 2 ) act as protecting groups for amino groups. An organic group containing a protected amino group having a structure substituted with, and the protective group can be deprotected by a method using an acid or a base, or by a hydrolysis reaction. Any group providing a secondary amino group may be used, and is not particularly limited. Examples thereof include a silyl group. Such a protected amino group-containing organic group contains a primary amino group as a result of deprotection of the protective group, thereby mainly improving the affinity with a filler such as silica. It is thought that it acts on.
 このような保護アミノ基含有有機基としては、たとえば、下記一般式(3)、または下記一般式(4)で表される基などが好適に挙げられる。なお、上記一般式(1)中、mが2以上の場合、Xは複数存在することとなるが、複数の保護アミノ基含有有機基は、互いに同じであっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000014
 (上記一般式(3)中、R13~R16は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、好ましくは炭素数1~4のアルキル基である。eは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。fは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000015
 (上記一般式(4)中、R17~R22は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、好ましくは炭素数1~4のアルキル基である。gは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。)
As such a protected amino group-containing organic group, for example, a group represented by the following general formula (3) or the following general formula (4) is preferably exemplified. In the general formula (1), when m is 2 or more, a plurality of X 1 are present, but the plurality of protected amino group-containing organic groups may be the same as or different from each other.
Figure JPOXMLDOC01-appb-C000014
(In the general formula (3), R 13 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. E is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4. f is an integer of 1 to 12, and preferably an integer of 1 to 6 More preferably, it is an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000015
(In the general formula (4), R 17 to R 22 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. (G is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.)
 なお、上記一般式(3)で表される基中において、-SiR1314-(CH-SiR1516-で表される基が、酸や塩基を用いる方法や、加水分解反応により脱保護可能な保護基として作用するものである。同様に、上記一般式(4)で表される基中において、-SiR171819で表される基、および-SiR202122で表される基が、酸や塩基を用いる方法や、加水分解反応により脱保護可能な保護基として作用するものである。 In the group represented by the general formula (3), the group represented by —SiR 13 R 14 — (CH 2 ) f —SiR 15 R 16 — represents a method using an acid or a base, hydrolysis It acts as a protecting group that can be deprotected by the reaction. Similarly, in the group represented by the general formula (4), the group represented by —SiR 17 R 18 R 19 and the group represented by —SiR 20 R 21 R 22 use an acid or a base. It acts as a protecting group that can be deprotected by a method or hydrolysis reaction.
 保護アミノ基含有有機基としては、保護基として良好に作用し、しかも、脱保護反応も良好に行えるという点より、保護基としてシリル基を有するものが好ましく、上記式(3)で表される基、および上記式(4)で表される基が好ましく、上記式(4)で表される基がより好ましい。 As the protected amino group-containing organic group, those having a silyl group as the protecting group are preferable from the viewpoint that they function well as a protecting group and can also perform a deprotection reaction well, and are represented by the above formula (3). A group represented by the above formula (4) is preferred, and a group represented by the above formula (4) is more preferred.
 保護アミノ基含有有機基を構成する保護アミノ基の具体例としては、ビス(トリメチルシリル)アミノ基、ビス(トリエチルシリル)アミノ基、ビス(トリイソプロピルシリル)アミノ基、ビス(トリフェニルシリル)アミノ基、ビス(ジメチルフェニルシリル)アミノ基、ビス(t-ブチルジメチルシリル)アミノ基、ビス(t-ブチルジフェニルシリル)アミノ基、ビス(ジ-t-ブチルメチルシリル)アミノ基、ビス(ジ-t-ブチルイソブチルシリル)アミノ基、2,2,5,5-テトラメチル-1,2,5-アザジシロリジン基などが挙げられる。 Specific examples of the protected amino group constituting the protected amino group-containing organic group include bis (trimethylsilyl) amino group, bis (triethylsilyl) amino group, bis (triisopropylsilyl) amino group, and bis (triphenylsilyl) amino group. Bis (dimethylphenylsilyl) amino group, bis (t-butyldimethylsilyl) amino group, bis (t-butyldiphenylsilyl) amino group, bis (di-t-butylmethylsilyl) amino group, bis (di-t -Butylisobutylsilyl) amino group, 2,2,5,5-tetramethyl-1,2,5-azadisilolidine group and the like.
 上記一般式(1)中、R~R、R~Rは、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、好ましくは1価炭化水素基である。1価炭化水素基としては、炭素数1~6のアルキル基または炭素数6~12のアリール基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、さらに好ましくはメチル基である。Rは、任意の有機基、水素原子または水酸基であり、任意の有機基としては、アルコキシ基含有有機基、エポキシ基含有有機基、または1価炭化水素基などである。なお、上記一般式(1)中、nが2以上の場合、Rは複数存在することとなるが、複数のRは、互いに同じであっても異なっていてもよい。 In the general formula (1), R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group. The monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group. It is. R 5 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, and examples of the arbitrary organic group include an alkoxy group-containing organic group, an epoxy group-containing organic group, and a monovalent hydrocarbon group. Incidentally, in the general formula (1), when n is 2 or more, but so that the R 5 there are a plurality, the plurality of R 5 may be different be the same as each other.
 また、上記一般式(1)で表される化合物としては、共役ジエン系ゴムの改質効果、具体的には、シリカなどの充填剤に対する親和性を改良し、シリカなどの充填剤を配合した際における、シリカなどの充填剤の分散性を高める効果が高く、これにより、得られるゴム架橋物を、低発熱性およびウエットグリップ性により優れたものとすることができるという点より、下記一般式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
 (上記一般式(2)中、R~R、R~R12は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、Xは、アルコキシ基含有有機基またはエポキシ基含有有機基であり、mは1~499の整数、pは1~499の整数、qは0~498の整数であり、m+p+qは2~500である。)
Further, as the compound represented by the general formula (1), the modification effect of the conjugated diene rubber, specifically, the affinity for the filler such as silica is improved, and the filler such as silica is blended. At the time, the effect of enhancing the dispersibility of fillers such as silica is high, and thereby, the resulting rubber cross-linked product can be made more excellent in low exothermic property and wet grip property, from the following general formula The compound represented by (2) is preferred.
Figure JPOXMLDOC01-appb-C000016
(In the general formula (2), R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is protected by a protecting group. A protected amino group-containing organic group containing a primary amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 499, p is an integer of 1 to 499, q is an integer of 0 to 498, and m + p + q is 2 to 500.)
 上記一般式(2)中、mは1~499の整数であり、好ましくは1~249の整数、より好ましくは1~99の整数である。pは1~499の整数であり、好ましくは1~249の整数、より好ましくは1~99の整数であり、qは0~498の整数であり、好ましくは0~248の整数、より好ましくは0~98の整数であり、さらに好ましくはqは0である。また、m+p+qは2~500であり、好ましくは2~250、より好ましくは2~100である。 In the general formula (2), m is an integer of 1 to 499, preferably an integer of 1 to 249, more preferably an integer of 1 to 99. p is an integer of 1 to 499, preferably an integer of 1 to 249, more preferably an integer of 1 to 99, and q is an integer of 0 to 498, preferably an integer of 0 to 248, more preferably It is an integer of 0 to 98, more preferably q is 0. M + p + q is 2 to 500, preferably 2 to 250, more preferably 2 to 100.
 上記一般式(2)中、Xは、上記一般式(1)と同様であり、好ましい態様についても、上記一般式(1)と同様である。 In the above general formula (2), X 1 is the same as the above general formula (1), and the preferred embodiment is also the same as the above general formula (1).
 また、上記一般式(2)中、Xは、アルコキシ基含有有機基またはエポキシ基含有有機基であり、アルコキシ基含有有機基であることが好ましい。なお、上記一般式(2)中、pが2以上の場合、Xは複数存在することとなるが、複数のXは、互いに同じであっても異なっていてもよい。 Further, in the above general formula (2), X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group is preferably an alkoxy group-containing organic group. Incidentally, in the general formula (2), when p is 2 or more, but so that the X 2 there are a plurality, the plurality of X 2 may be different and the same as each other.
 アルコキシ基含有有機基としては、アルコキシ基を含有する基であればよく、特に限定されないが、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などのアルコキシ基や、アルコキシシリル基などが挙げられるが、共役ジエン系ゴムの改質効果、具体的には、シリカなどの充填剤に対する親和性を改良し、シリカなどの充填剤を配合した際における、シリカなどの充填剤の分散性を高める効果が高く、これにより、得られるゴム架橋物を、低発熱性およびウエットグリップ性により優れたものとすることができるという点より、アルコキシシリル基を含有するものが好ましい。 The alkoxy group-containing organic group may be any group that contains an alkoxy group, and is not particularly limited. Examples of the alkoxy group include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group, Alkoxysilyl groups, etc. are mentioned, but the modification effect of conjugated diene rubber, specifically, the affinity for silica and other fillers is improved, and when silica and other fillers are blended, the filling of silica and the like A compound containing an alkoxysilyl group is preferred from the viewpoint that the effect of enhancing the dispersibility of the agent is high, and that the resulting rubber cross-linked product can be made more excellent in low heat build-up and wet grip properties.
 アルコキシシリル基含有有機基としては、アルコキシシリル基を含有する基であればよく、特に限定されないが、アルコキシシリル基として、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基のいずれを含有するものであってもよく、たとえば、下記一般式(8)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記一般式(8)中、R27は、それぞれ独立して、炭素数1~20のアルキル基であり、好ましくは炭素数1~10のアルキル基であり、R28は、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数6~20のアリロキシ基、またはハロゲン原子である。jは1~20の整数であり、好ましくは1~10の整数であり、kは1~3の整数である。なお、kが2または3である場合、R27は、複数存在することとなるが、複数のR27は互いに同じであっても異なっていてもよい。同様に、kが1である場合、R28は、複数存在することとなるが、複数のR28は互いに同じであっても異なっていてもよい。
The alkoxysilyl group-containing organic group is not particularly limited as long as it is a group containing an alkoxysilyl group, and the alkoxysilyl group contains any of a monoalkoxysilyl group, a dialkoxysilyl group, or a trialkoxysilyl group. For example, a group represented by the following general formula (8) may be mentioned.
Figure JPOXMLDOC01-appb-C000017
In the general formula (8), each R 27 independently represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and R 28 represents a hydrogen atom or a carbon number. An alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an allyloxy group having 6 to 20 carbon atoms, or a halogen atom. j is an integer of 1 to 20, preferably an integer of 1 to 10, and k is an integer of 1 to 3. Incidentally, when k is 2 or 3, R 27 is a presence of a plurality, the plurality of R 27 may be different be the same as each other. Similarly, when k is 1, R 28 is a presence of a plurality, the plurality of R 28 may be different be the same as each other.
 アルコキシシリル基含有有機基に含まれるアルコキシシリル基の具体例としては、トリメトキシシリル基、トリエトキシシリル基などのトリアルコキシシリル基;ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、ジエトキシエチルシリル基などのジアルコキシアルキルシリル基;メトキシジメチルシリル基、エトキシジメチルシリル基、メトキシジエチルシリル基、エトキシジエチルシリル基などのモノアルコキシジアルキルシリル基;などが挙げられる。これらのなかでも、共役ジエン系ゴムの改質効果、具体的には、シリカなどの充填剤に対する親和性を改良し、シリカなどの充填剤を配合した際における、シリカなどの充填剤の分散性を高める効果が高く、これにより、得られるゴム架橋物を、低発熱性およびウエットグリップ性により優れたものとすることができるという点より、トリアルコキシシリル基が好ましく、トリメトキシシリル基がより好ましい。 Specific examples of the alkoxysilyl group contained in the alkoxysilyl group-containing organic group include a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group; a dimethoxymethylsilyl group, a diethoxymethylsilyl group, a dimethoxyethylsilyl group, Dialkoxyalkylsilyl groups such as diethoxyethylsilyl group; monoalkoxydialkylsilyl groups such as methoxydimethylsilyl group, ethoxydimethylsilyl group, methoxydiethylsilyl group, ethoxydiethylsilyl group; and the like. Among these, the modification effect of the conjugated diene rubber, specifically, the affinity for the filler such as silica is improved, and the dispersibility of the filler such as silica when the filler such as silica is blended. From the viewpoint that the resulting rubber cross-linked product can be made more excellent in low heat build-up and wet grip properties, a trialkoxysilyl group is preferred, and a trimethoxysilyl group is more preferred. .
 また、エポキシ基含有有機基としては、エポキシ基を含有する有機基であればよく、特に限定されないが、2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基、2-(3,4-エポキシノルボルニル)エチル基、2-(3,4-エポキシ-3-メチルシクロヘキシル)-2-メチルエチル基等のエポキシシクロアルキルアルキル基;4-オキシラニルブチル基、8-オキシラニルオクチル基等のオキシラニルアルキル基;等が挙げられる。これらの中でも、グリシドキシアルキル基が好ましく、3-グリシドキシプロピル基が特に好ましい。 The epoxy group-containing organic group is not particularly limited as long as it is an organic group containing an epoxy group, but is not limited to 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group. A glycidoxyalkyl group such as 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group, 2- (3,4-epoxynorbornyl) ethyl group, 2 -Epoxycycloalkylalkyl groups such as (3,4-epoxy-3-methylcyclohexyl) -2-methylethyl group; oxiranylalkyl groups such as 4-oxiranylbutyl group and 8-oxiranyloctyl group; Etc. Among these, a glycidoxyalkyl group is preferable, and a 3-glycidoxypropyl group is particularly preferable.
 また、R~R、R~R12は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、好ましくは1価炭化水素基である。1価炭化水素基としては、炭素数1~6のアルキル基または炭素数6~12のアリール基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、さらに好ましくはメチル基である。 R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group. The monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group. It is.
 なお、上記一般式(2)で表される化合物中、保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合は、特に限定されないが、「保護アミノ基含有有機基/(アルコキシ基含有有機基および/またはエポキシ基含有有機基)」のモル比率で、好ましくは1/30~30/1であり、より好ましくは1/20~20/1、さらに好ましくは1/10~10/1である。保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合を上記範囲とすることにより、得られるゴム架橋物のウエットグリップ性および低発熱性をより適切に高めることができる。 In the compound represented by the general formula (2), the content ratio of the protected amino group-containing organic group and the alkoxy group-containing organic group and / or the epoxy group-containing organic group is not particularly limited. The molar ratio of “group-containing organic group / (alkoxy group-containing organic group and / or epoxy group-containing organic group)” is preferably 1/30 to 30/1, more preferably 1/20 to 20/1, It is preferably 1/10 to 10/1. By setting the content ratio of the protected amino group-containing organic group, the alkoxy group-containing organic group and / or the epoxy group-containing organic group to the above range, the wet grip property and low heat build-up property of the resulting rubber cross-linked product are more appropriately improved. Can be increased.
 また、上記一般式(1)で表される化合物としては、互いに異なる構造を有する化合物が複数混合されたものを用いてもよい。すなわち、たとえば、m=7、m+n=14である化合物と、m=8、m+n=16である化合物が混合されたものを用いてもよいし、あるいは、m=7、m+n=14であり、Xが異なる2以上の化合物が混合されたものを用いてもよい。さらには、m=7、m+n=14であり、Xが異なる2以上の化合物と、m=8、m+n=16であり、Xが異なる2以上の化合物とが混合されたものを用いてもよい。 Moreover, as a compound represented by the said General formula (1), you may use what mixed multiple compounds which have a mutually different structure. That is, for example, a mixture of a compound with m = 7 and m + n = 14 and a compound with m = 8 and m + n = 16 may be used, or m = 7 and m + n = 14. A mixture of two or more compounds having different X 1 may be used. Furthermore, m = 7, m + n = 14, and two or more compounds having different X 1 and m = 8, m + n = 16, and two or more compounds having different X 1 are mixed. Also good.
 また、本発明の製造方法においては、第2工程における、上記一般式(1)で表される化合物の使用量は、上述した第1工程において重合開始剤として用いた有機活性金属化合物中の金属原子1モルに対して、0.15モル以上であり、0.15~20モルの割合とすることが好ましく、0.15~15モルの割合とすることがより好ましく、0.15~10モルの割合とすることがさらに好ましい。上記一般式(1)で表される化合物の使用量が少なすぎると、上記一般式(1)で表される化合物による変性効果が不十分となり、ゴム架橋物とした場合における、ウエットグリップ性および低発熱性の向上効果が不十分となる。一方、多すぎると、上記一般式(1)で表される化合物による副反応・不純物が発生し、結果として、ゴム架橋物とした場合における、ウエットグリップ性および低発熱性が悪化する場合がある。 Moreover, in the manufacturing method of this invention, the usage-amount of the compound represented by the said General formula (1) in a 2nd process is the metal in the organic active metal compound used as a polymerization initiator in the 1st process mentioned above. It is 0.15 mol or more, preferably 0.15 to 20 mol, more preferably 0.15 to 15 mol, more preferably 0.15 to 10 mol, per mol of atom. More preferably, the ratio is as follows. If the amount of the compound represented by the general formula (1) is too small, the modification effect by the compound represented by the general formula (1) becomes insufficient, and the wet grip property when the rubber cross-linked product is obtained. The improvement effect of low exothermic property is insufficient. On the other hand, if it is too much, side reactions and impurities due to the compound represented by the general formula (1) are generated, and as a result, the wet grip property and the low heat build-up property in the case of a rubber cross-linked product may be deteriorated. .
 本発明においては、変性共役ジエン系ゴムを製造する際に用いる変性剤として、上記一般式(1)に示すように、-Si-O-で表されるシロキサン構造からなる主鎖構造を有し、かつ、このような主鎖構造に、保護アミノ基含有有機基が導入されてなる化合物を特定量用いるものであり、そのため、-Si-O-で表されるシロキサン構造からなる主鎖構造を有しない場合と比較して、上述した保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基による作用を十分に発揮させることができるものである。そして、これにより、シリカなどの充填剤に対する親和性の向上効果をより十分なものとすることができ、その結果として、得られるゴム架橋物を、ウエットグリップ性および低発熱性に優れたものとすることができるものである。 In the present invention, as a modifier used when producing a modified conjugated diene rubber, as shown in the general formula (1), it has a main chain structure composed of a siloxane structure represented by —Si—O—. In addition, a specific amount of a compound in which a protected amino group-containing organic group is introduced into such a main chain structure is used. Therefore, a main chain structure composed of a siloxane structure represented by —Si—O— is used. Compared with the case where it does not have, the function by the protected amino group-containing organic group including the primary amino group protected by the protecting group described above can be sufficiently exhibited. And thereby, the effect of improving the affinity for fillers such as silica can be made more satisfactory, and as a result, the obtained rubber cross-linked product is excellent in wet grip and low heat build-up. Is something that can be done.
 本発明の製造方法の第2工程において、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、上記一般式(1)で表される化合物を反応させる方法としては、特に限定されないが、上述した第1工程で得られた活性末端を有する共役ジエン系重合体と、上記一般式(1)で表される化合物とを、これらを溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した共役ジエン系重合体の重合に用いる溶媒として例示したものなどを用いることができる。また、この際においては、上述した第1工程で得られた活性末端を有する共役ジエン系重合体を、その重合に用いた重合溶液のままの状態とし、ここに上記一般式(1)で表される化合物を添加する方法が簡便であり好ましい。また、この際においては、上記一般式(1)で表される化合物は、上述した重合に用いる不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1~50重量%の範囲とすることが好ましい。第2工程における反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、1分~1時間である。 In the second step of the production method of the present invention, as a method of reacting the compound represented by the general formula (1) with the active end of the conjugated diene polymer having the active end obtained in the first step described above. Is not particularly limited, but the conjugated diene polymer having an active end obtained in the first step described above and the compound represented by the general formula (1) in a solvent capable of dissolving them, The method of mixing etc. is mentioned. As the solvent used at this time, those exemplified as the solvent used for the polymerization of the conjugated diene polymer described above can be used. In this case, the conjugated diene polymer having an active end obtained in the first step described above is kept in the polymerization solution used for the polymerization, and is represented by the general formula (1). The method of adding the compound is simple and preferred. In this case, the compound represented by the general formula (1) is preferably dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the solution concentration is 1 to 50. It is preferable to set it as the range of weight%. The reaction temperature in the second step is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
 活性末端を有する共役ジエン系重合体を含有する溶液に、上記一般式(1)で表される化合物を添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系重合体を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液に上記一般式(1)で表される化合物を添加することが望ましい。上記一般式(1)で表される化合物の添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体と重合系中に含まれる不純物等との副反応を抑制して、反応を良好に制御することが可能となる。 The timing of adding the compound represented by the general formula (1) to the solution containing the conjugated diene polymer having an active terminal is not particularly limited, but the polymerization reaction is not completed and the conjugate having an active terminal is present. The state in which the solution containing the diene polymer also contains a monomer, more specifically, the solution containing the conjugated diene polymer having an active terminal is 100 ppm or more, more preferably 300 to 50. It is desirable to add the compound represented by the general formula (1) to this solution in a state containing 1,000 ppm of monomer. By adding the compound represented by the general formula (1) in this way, side reactions between the conjugated diene polymer having an active terminal and impurities contained in the polymerization system are suppressed, and the reaction is performed. It becomes possible to control well.
 なお、活性末端を有する共役ジエン系重合体に、上記一般式(1)で表される化合物を反応させる前に、本発明の効果を阻害しない範囲で、共役ジエン系重合体の活性末端の一部を、従来から通常使用されているカップリング剤や変性剤などを重合系内に添加して、不活性化してもよい。 Before reacting the compound represented by the general formula (1) with the conjugated diene polymer having an active end, the active end of the conjugated diene polymer is not limited so long as the effect of the present invention is not inhibited. The part may be inactivated by adding a coupling agent, a modifier and the like conventionally used in the polymerization system.
 活性末端を有する共役ジエン系重合体に、上記一般式(1)で表される化合物を反応させた後に、未反応の活性末端が残存している場合、メタノール、エタノール、イソプロパノール等のアルコールまたは水等の、重合停止剤を重合溶液に添加して、未反応の活性末端を失活させることが好ましい。 When the compound represented by the general formula (1) is reacted with a conjugated diene polymer having an active end, and an unreacted active end remains, an alcohol such as methanol, ethanol, isopropanol, or water It is preferable to deactivate the unreacted active terminal by adding a polymerization terminator or the like to the polymerization solution.
 以上のようにして得られる変性共役ジエン系ゴムの溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、油展ゴムとしてもよい。伸展油としては、たとえば、パラフィン系、芳香族系及びナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、変性共役ジエン系ゴム100重量部に対して、通常5~100重量部である。 An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the modified conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, if desired, an extension oil may be blended to form an oil-extended rubber. Examples of the extender oil include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%. When the extender oil is used, the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the modified conjugated diene rubber.
 そして、このようにして得られた変性反応後の変性共役ジエン系ゴムは、スチームストリッピングにより、溶媒を除去することにより、反応混合物から分離することで、固形状の変性共役ジエン系ゴムを得ることができる。また、この際においては、スチームストリッピングにより、上述したように、変性反応後の変性共役ジエン系ゴム中に導入された、上記一般式(1)で表される化合物由来の保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基中の、保護基が加水分解により脱保護することで、第1級アミノ基が生成するものと考えられる。 The modified conjugated diene rubber after the modification reaction thus obtained is separated from the reaction mixture by removing the solvent by steam stripping to obtain a solid modified conjugated diene rubber. be able to. At this time, as described above, the compound is protected by a protective group derived from the compound represented by the general formula (1) introduced into the modified conjugated diene rubber after the modification reaction by steam stripping. It is considered that the primary amino group is formed by the deprotection of the protective group in the protected amino group-containing organic group containing the primary amino group by hydrolysis.
 本発明の製造方法により得られる変性共役ジエン系ゴムの重量平均分子量(Mw)は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、通常、1,000~3,000,000、好ましくは10,000~2,000,000、より好ましくは100,000~1,500,000の範囲である。変性共役ジエン系ゴムの重量平均分子量を上記範囲とすることにより、変性共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物は加工性に優れたものとなる。 The weight average molecular weight (Mw) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 1,000 to 3,000 as a value measured by gel permeation chromatography in terms of polystyrene. 1,000, preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. By setting the weight average molecular weight of the modified conjugated diene rubber within the above range, it is easy to add silica to the modified conjugated diene rubber, and the rubber composition has excellent processability.
 また、本発明の製造方法により得られる変性共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.0~5.0、特に好ましくは1.0~3.0である。変性共役ジエン系ゴムの分子量分布を上記範囲とすることにより、得られるゴム架橋物は低発熱性により優れたものとなる。 Further, the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.0 to 5.0, particularly preferably 1.0 to 3.0. By setting the molecular weight distribution of the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product becomes more excellent due to low heat build-up.
 また、本発明の製造方法により得られる変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)も、特に限定されないが、通常、20~200、好ましくは30~150の範囲である。変性共役ジエン系ゴムのムーニー粘度を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなる。なお、変性共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。 The Mooney viscosity (ML 1 + 4, 100 ° C.) of the modified conjugated diene rubber obtained by the production method of the present invention is also not particularly limited, but is usually in the range of 20 to 200, preferably 30 to 150. By setting the Mooney viscosity of the modified conjugated diene rubber to the above range, the processability of the rubber composition becomes excellent. When the modified conjugated diene rubber is an oil-extended rubber, the Mooney viscosity of the oil-extended rubber is preferably in the above range.
 このようにして得られた変性共役ジエン系ゴムは、充填剤および架橋剤などの配合剤を添加した上で、種々の用途に好適に用いることができる。特に、充填剤としてシリカを配合した場合に、ウエットグリップ性および低発熱性に優れたゴム架橋物を得るために好適に用いられるゴム組成物を与える。 The modified conjugated diene rubber thus obtained can be suitably used for various applications after adding compounding agents such as a filler and a crosslinking agent. In particular, when silica is blended as a filler, a rubber composition suitably used for obtaining a crosslinked rubber product having excellent wet grip properties and low heat build-up properties is provided.
<ゴム組成物>
 本発明のゴム組成物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなる組成物である。
<Rubber composition>
The rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
 本発明で用いるシリカとしては、たとえば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM  D3037-81に準じBET法で測定される)は、好ましくは50~300m/g、より好ましくは80~220m/g、特に好ましくは100~170m/gである。また、シリカのpHは、5~10であることが好ましい。 Examples of the silica used in the present invention include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon mainly containing hydrous silicic acid is preferable. Alternatively, a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used. These silicas can be used alone or in combination of two or more. Is (measured by the BET method according to ASTM D3037-81) nitrogen adsorption specific surface area of silica used is preferably 50 ~ 300m 2 / g, more preferably 80 ~ 220m 2 / g, particularly preferably 100 ~ 170m 2 / g. The pH of silica is preferably 5-10.
 本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100重量部に対して、10~200重量部であり、好ましくは30~150重量部、より好ましくは50~100重量部である。シリカの配合量を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなり、得られるゴム架橋物のウエットグリップ性および低発熱性が優れたものとなる。 The compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part. By setting the blending amount of silica in the above range, the processability of the rubber composition becomes excellent, and the resulting rubber cross-linked product has excellent wet grip properties and low exothermic properties.
 本発明のゴム組成物には、低発熱性をさらに改良するという観点より、さらにシランカップリング剤を配合してもよい。シランカップリング剤としては、たとえば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~15重量部である。 The rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up. Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) prol) tetrasulfide, γ-trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and γ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like. These silane coupling agents can be used alone or in combination of two or more. The amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
 また、本発明のゴム組成物には、さらに、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイトなどのカーボンブラックを配合してもよい。これらのなかでも、ファーネスブラックが好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100重量部に対して、通常、120重量部以下である。 Further, the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more. The compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
 なお、本発明の変性共役ジエン系ゴムを含むゴム成分に、シリカを添加する方法としては特に限定されず、固形のゴム成分に対して添加して混練する方法(乾式混練法)や変性共役ジエン系ゴムを含む溶液に対して添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。 The method of adding silica to the rubber component containing the modified conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading a solid rubber component (dry kneading method) or a modified conjugated diene A method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
 また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、たとえば、硫黄、ハロゲン化硫黄などの含硫黄化合物、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。 The rubber composition of the present invention preferably further contains a cross-linking agent. Examples of the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used. The amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
 さらに、本発明のゴム組成物には、上記成分以外に、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、充填剤(上記シリカおよびカーボンブラックを除く)、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤、などの配合剤をそれぞれ必要量配合できる。 Further, in addition to the above components, the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods. , Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、たとえば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。 When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination. Examples of the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more. The amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
 架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.05~20重量部、特に好ましくは0.5~15重量部である。 Examples of the crosslinking activator include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more. The amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
 また、本発明のゴム組成物には、上述した本発明の製造方法によって得られる変性共役ジエン系ゴム以外のその他のゴムを配合してもよい。その他のゴムとしては、たとえば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(高シス-BR、低シスBRであってもよい。また、1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい。)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、およびアクリロニトリル-スチレン-ブタジエン共重合ゴムなどのうち、上述した変性共役ジエン系ゴム以外のものをいう。これらのなかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、および溶液重合スチレン-ブタジエン共重合ゴムが好ましい。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 Further, the rubber composition of the present invention may be blended with other rubber other than the modified conjugated diene rubber obtained by the production method of the present invention described above. Examples of other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR). Further, it may be a polybutadiene rubber containing crystal fibers made of 1,2-polybutadiene polymer.), Styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile- Of butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, etc., those other than the above-mentioned modified conjugated diene rubber. Of these, natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
 本発明のゴム組成物において、本発明の製造方法により得られる変性共役ジエン系ゴムは、ゴム組成物中のゴム成分の10~100重量%を占めることが好ましく、50~100重量%を占めることが特に好ましい。このような割合で、本発明の製造方法により得られる変性共役ジエン系ゴムをゴム成分中に含めることにより、低発熱性およびウエットグリップ性に優れたゴム架橋物を得ることができる。 In the rubber composition of the present invention, the modified conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight of the rubber component in the rubber composition, and occupies 50 to 100% by weight. Is particularly preferred. By including the modified conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, it is possible to obtain a crosslinked rubber product having low heat build-up and excellent wet grip properties.
 本発明のゴム組成物を得るためには、常法に従って各成分を混練すればよく、たとえば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分と変性共役ジエン系ゴムとを混練後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的の組成物を得ることができる。熱に不安定な成分を除く成分と変性共役ジエン系ゴムとの混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。 In order to obtain the rubber composition of the present invention, each component may be kneaded according to a conventional method. For example, a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a modified conjugated diene rubber are used. After kneading, a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition. The kneading temperature of the component excluding the thermally unstable component and the modified conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is. The kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
<Rubber cross-linked product>
The rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
The rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。 In addition, depending on the shape and size of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。 As a heating method, a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
 このようにして得られる本発明のゴム架橋物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを用いて得られるものであるため、ウエットグリップ性および低発熱性に優れたものである。特に、本発明の製造方法により得られる変性共役ジエン系ゴムは、変性剤として、上記一般式(1)で表される化合物を特定量用い、これを反応させることにより得られたものであるため、上述したように、シリカなどの充填剤に対する親和性が高く、しかも、シリカなどの充填剤を良好に分散させることができるものである。したがって、このような本発明の製造方法により得られる変性共役ジエン系ゴムを用いて得られる、本発明のゴム架橋物は、ウエットグリップ性および低発熱性に優れたものとなる。 The rubber cross-linked product of the present invention thus obtained is obtained by using the modified conjugated diene rubber obtained by the above-described production method of the present invention, and therefore has excellent wet grip properties and low heat build-up properties. It is. In particular, the modified conjugated diene rubber obtained by the production method of the present invention is obtained by reacting a specific amount of the compound represented by the general formula (1) as a modifier. As described above, the affinity for the filler such as silica is high, and the filler such as silica can be favorably dispersed. Therefore, the rubber cross-linked product of the present invention obtained by using the modified conjugated diene rubber obtained by the production method of the present invention has excellent wet grip properties and low heat build-up properties.
 そして、本発明のゴム架橋物は、このような特性を活かし、たとえば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。とりわけ、本発明のゴム架橋物は、ウエットグリップ性および低発熱性に優れることから、タイヤの材料、特に低燃費タイヤの材料として好適に用いることができ、トレッド用途に最適である。 The rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for tire parts such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls; In particular, since the rubber cross-linked product of the present invention is excellent in wet grip properties and low heat build-up properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記に従った。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, “part” is based on weight unless otherwise specified. Moreover, the test and evaluation followed the following.
〔変性共役ジエン系ゴムの分子量〕
 ゴムの分子量は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
 測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8320」)
 カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結した。
 検出器:示差屈折計(東ソー社製、商品名「RI-8320」)
 溶離液:テトラヒドロフラン
 カラム温度:40℃
[Molecular weight of modified conjugated diene rubber]
The molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows.
Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8320” manufactured by Tosoh Corporation)
Column: manufactured by Tosoh Corporation, two product names “GMH-HR-H” were connected in series.
Detector: Differential refractometer (trade name “RI-8320” manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran Column temperature: 40 ° C
〔変性共役ジエン系ゴムのミクロ構造〕
 H-NMRにより測定した。
  測定器:(JEOL社製、商品名「JNM-ECA-400WB」
  測定溶媒:重クロロホルム
[Microstructure of Modified Conjugated Diene Rubber]
It was measured by 1 H-NMR.
Measuring instrument: (JEOL, product name “JNM-ECA-400WB”
Measuring solvent: deuterated chloroform
〔低発熱性〕
 長さ50mm、幅12.7mm、厚さ2mmとした試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み2.5%、10Hzの条件で60℃におけるtanδを測定した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、低発熱性に優れる。
[Low heat generation]
For a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) is used, and the dynamic strain is 2.5% and 10 Hz. Tan δ at 0 ° C. was measured. The value of tan δ is indicated by an index with the measured value of Comparative Example 1 being 100. The larger this index, the better the low heat buildup.
〔ウエットグリップ性〕
 長さ50mm、幅12.7mm、厚さ2mmとした試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、ウエットグリップ性に優れる。
[Wet grip]
For a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) was used, and the dynamic strain was 0.5% and 10 Hz. Tan δ at 0 ° C. was measured. The value of tan δ is indicated by an index with the measured value of Comparative Example 1 being 100. The larger this index, the better the wet grip.
〔実施例1〕
〔変性剤1の製造〕
 反応器に下記式(9)で表されるメチルハイドロジェンポリシロキサン38.0gを仕込み、窒素流通下で攪拌しながら40℃まで加温した。
Figure JPOXMLDOC01-appb-C000018
 次いで、白金-1,3-ジビニル-1,3-ジメチルジシロキサン錯体のトルエン溶液(Pt濃度0.17wt%)を0.9g添加し、N-アリル-N,N-ビス(トリメチルシリル)アミン79.7gを反応温度40~80℃に保つように滴下した。滴下終了後に80℃で攪拌を1.5時間継続した後、反応液を0.5g採取し、アルカリ分解ガス発生法(残存したSi-H基をKOHのエタノール/水溶液によって分解し、発生した水素ガスの体積から反応率を計算する)により反応率が約70%であることを確認した。次に、5-ヘキセニルトリメトキシシラン45.0gを反応温度80~90℃に保つように滴下した。滴下終了後、白金-1,3-ジビニル-1,3-ジメチルジシロキサン錯体のトルエン溶液(Pt濃度0.17wt%)を0.9g添加し、90~100℃で攪拌を12時間継続した。反応液を0.5g採取し、アルカリ分解ガス発生法により反応が完結したことを確認した。反応液を減圧下で150℃に加熱して3.5時間低沸分を溜去したのち、下記式(10)で表される変性剤1を138.6g得た。下記式(10)で表される構造はH-NMRによっても確認された。得られた変性剤1について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、1040mm/sであった。
Figure JPOXMLDOC01-appb-C000019
[Example 1]
[Production of denaturant 1]
The reactor was charged with 38.0 g of methyl hydrogen polysiloxane represented by the following formula (9), and heated to 40 ° C. with stirring under a nitrogen stream.
Figure JPOXMLDOC01-appb-C000018
Next, 0.9 g of a toluene solution of platinum-1,3-divinyl-1,3-dimethyldisiloxane complex (Pt concentration 0.17 wt%) was added, and N-allyl-N, N-bis (trimethylsilyl) amine 79 was added. 0.7 g was added dropwise so as to keep the reaction temperature at 40 to 80 ° C. After completion of the dropping, stirring was continued at 80 ° C. for 1.5 hours, and then 0.5 g of the reaction solution was collected, and an alkali decomposition gas generation method (remaining Si—H group was decomposed with KOH ethanol / water solution to generate hydrogen The reaction rate was confirmed to be about 70% by calculating the reaction rate from the gas volume). Next, 45.0 g of 5-hexenyltrimethoxysilane was added dropwise so as to keep the reaction temperature at 80 to 90 ° C. After completion of the dropping, 0.9 g of a toluene solution of platinum-1,3-divinyl-1,3-dimethyldisiloxane complex (Pt concentration 0.17 wt%) was added, and stirring was continued at 90-100 ° C. for 12 hours. 0.5 g of the reaction solution was sampled and it was confirmed that the reaction was completed by an alkali decomposition gas generation method. The reaction solution was heated to 150 ° C. under reduced pressure to distill off the low-boiling components for 3.5 hours, and 138.6 g of the modifier 1 represented by the following formula (10) was obtained. The structure represented by the following formula (10) was also confirmed by 1 H-NMR. With respect to the obtained modifier 1, the viscosity was measured according to JIS-Z-8803 at 25 ° C. using an Ubbelohde viscosity tube, and it was 1040 mm 2 / s.
Figure JPOXMLDOC01-appb-C000019
〔変性共役ジエン系ゴム1の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.187部を仕込んだ後、n-ブチルリチウム0.042部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記にて得られた変性剤1(上記式(10)で表される化合物)0.589部(n-ブチルリチウムの使用量に対して、0.3倍モル)を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して、共役ジエン系重合体を含有する溶液を得た。そして、得られた重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性共役ジエン系ゴム1を得た。得られた変性共役ジエン系ゴム1の重量平均分子量(Mw)は410,000であった。また、この変性共役ジエンゴム1のスチレン単位の含有量は21.2重量%、ブタジエン単位中のビニル結合含有量は62.8モル%であった。
[Production of Modified Conjugated Diene Rubber 1]
In a nitrogen atmosphere, charge 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.187 parts of tetramethylethylenediamine, and then add 0.042 part of n-butyllithium to the autoclave. Then, polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, the modifier 1 obtained above (compound represented by the above formula (10)) After adding 0.589 parts (0.3 times mole with respect to the amount of n-butyllithium used) and reacting for 30 minutes, 0.064 parts of methanol was added as a polymerization terminator to give a conjugated diene series. A solution containing the polymer was obtained. Then, 100 parts of the obtained polymer component was treated with 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals) as an anti-aging agent. After adding 15 parts to the solution, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 1. The resulting modified conjugated diene rubber 1 had a weight average molecular weight (Mw) of 410,000. The modified conjugated diene rubber 1 had a styrene unit content of 21.2% by weight and a vinyl bond content in the butadiene unit of 62.8 mol%.
〔ゴム組成物およびゴム架橋物の製造〕
 容量250mlのブラベンダータイプミキサー中で、上記にて得られた変性共役ジエン系ゴム1 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)53部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)30部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.4部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)27部、酸化亜鉛3部、ステアリン酸2部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名「ノクラック6C」)2部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混練終了時の混練物の温度は150℃であった。そして、得られた混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物に、硫黄1.5部、架橋促進剤:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部、および架橋促進剤:1,3-ジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.5部を加えてこれらを混練した後、シート状のゴム組成物を取り出した。
 次いで、得られたゴム組成物を、160℃で20分間プレス架橋して、ゴム架橋物の試験片を作製し、この試験片について、低発熱性およびウエットグリップ性の評価を行なった。結果を表1に示す。
[Production of rubber composition and rubber cross-linked product]
In a Brabender type mixer with a capacity of 250 ml, 100 parts of the modified conjugated diene rubber 1 obtained above was masticated for 30 seconds, and then 53 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), process oil ( 30 parts by Nippon Oil Corporation, trade name “Aromax T-DAE”), and silane coupling agent: bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa) 6 .4 parts was added and kneaded for 1.5 minutes at 110 ° C. as the starting temperature, followed by 27 parts of silica (trade name “Zeosil 1165MP” manufactured by Rhodia), 3 parts of zinc oxide, 2 parts of stearic acid, and an antioxidant: N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “NOKU” Tsu added click 6C ") 2 parts, was further kneaded for 2.5 minutes, discharging a kneaded product from the mixer. The temperature of the kneaded product at the end of kneading was 150 ° C. And after cooling the obtained kneaded material to room temperature, it knead | mixed again for 2 minutes in 110 degreeC start temperature in a Brabender type mixer, Then, the kneaded material was discharged | emitted from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product was mixed with 1.5 parts of sulfur and a crosslinking accelerator: N-cyclohexyl-2-benzothiazolylsulfenamide (trade name “Noxeller CZ-G”, Ouchi After adding 1.8 parts of Shinsei Chemical Co., Ltd.) and 1.5 parts of crosslinking accelerator: 1,3-diphenylguanidine (trade name “Noxeller D”, produced by Ouchi Shinsei Chemical Co., Ltd.) and kneading them. Then, the sheet-like rubber composition was taken out.
Next, the obtained rubber composition was press-crosslinked at 160 ° C. for 20 minutes to produce a rubber cross-linked test piece. The test piece was evaluated for low heat build-up and wet grip. The results are shown in Table 1.
〔実施例2〕
〔変性共役ジエン系ゴム2、ゴム組成物およびゴム架橋物の製造〕
 変性剤1の使用量を0.589部から1.473部(n-ブチルリチウムの使用量に対して、0.75倍モル)に変更した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム2を得た。得られた変性共役ジエン系ゴム2の重量平均分子量(Mw)は432,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム2を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Example 2]
[Production of Modified Conjugated Diene Rubber 2, Rubber Composition, and Rubber Cross-Linked Product]
Except that the amount of modifier 1 used was changed from 0.589 parts to 1.473 parts (0.75 times the amount of n-butyllithium used), the same operation as in Example 1 was carried out. A solid modified conjugated diene rubber 2 was obtained. The resulting modified conjugated diene rubber 2 had a weight average molecular weight (Mw) of 432,000.
Then, instead of the modified conjugated diene rubber 1, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 2 was used. went. The results are shown in Table 1.
〔実施例3〕
〔変性共役ジエン系ゴム3、ゴム組成物およびゴム架橋物の製造〕
 変性剤1の使用量を0.589部から1.963部(n-ブチルリチウムの使用量に対して、1.00倍モル)に変更した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム3を得た。得られた変性共役ジエン系ゴム3の重量平均分子量(Mw)は444,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム3を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
Example 3
[Production of Modified Conjugated Diene Rubber 3, Rubber Composition and Crosslinked Rubber]
Except that the amount of modifier 1 used was changed from 0.589 parts to 1.963 parts (1.00 times the amount of n-butyllithium used), the same operation as in Example 1 was carried out. A solid modified conjugated diene rubber 3 was obtained. The resulting modified conjugated diene rubber 3 had a weight average molecular weight (Mw) of 444,000.
Then, in place of the modified conjugated diene rubber 1, the rubber composition and the crosslinked rubber were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 3 was used. went. The results are shown in Table 1.
〔実施例4〕
〔変性剤2の製造〕
 N-アリル-N,N-ビス(トリメチルシリル)アミンと5-ヘキセニルトリメトキシシランの使用量を、モル比で6:1となるように変更した以外は、実施例1と同様にして、下記式(11)で表される変性剤2を得た。なお、下記式(11)で表される構造はH-NMRによっても確認された。そして、得られた変性剤2について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、1940mm/sであった。
Figure JPOXMLDOC01-appb-C000020
Example 4
[Production of denaturant 2]
In the same manner as in Example 1 except that the amount of N-allyl-N, N-bis (trimethylsilyl) amine and 5-hexenyltrimethoxysilane used was changed to a molar ratio of 6: 1, the following formula The modifier 2 represented by (11) was obtained. The structure represented by the following formula (11) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 2 was 1940 mm 2 / s as measured according to JIS-Z-8803 using an Ubbelohde viscosity tube at 25 ° C.
Figure JPOXMLDOC01-appb-C000020
〔変性共役ジエン系ゴム4、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、上記にて得られた変性剤2(上記式(11)で表される化合物)2.556部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム4を得た。得られた変性共役ジエン系ゴム4の重量平均分子量(Mw)は395,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム4を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Production of Modified Conjugated Diene Rubber 4, Rubber Composition and Crosslinked Rubber]
Instead of the modifier 1, 2.556 parts of the modifier 2 obtained above (compound represented by the above formula (11)) (1.00 mol per mol of n-butyllithium) The solid modified conjugated diene rubber 4 was obtained in the same manner as in Example 1 except that was used. The resulting modified conjugated diene rubber 4 had a weight average molecular weight (Mw) of 395,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 4 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 1.
〔実施例5〕
〔変性剤3の製造〕
 上記式(9)で表されるメチルハイドロジェンポリシロキサンに代えて、下記式(12)で表されるメチルハイドロジェンポリシロキサン44.0gを使用するとともに、N-アリル-N,N-ビス(トリメチルシリル)アミンの使用量を75.4g、5-ヘキセニルトリメトキシシランの使用量を25.5gとし、これらの割合をモル比で3:1となるように変更した以外は、実施例1と同様にして、下記式(13)で表される変性剤3を得た。なお、下記式(13)で表される構造はH-NMRによっても確認された。そして、得られた変性剤3について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、230mm/sであった。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Example 5
[Production of denaturant 3]
Instead of methylhydrogenpolysiloxane represented by the above formula (9), 44.0 g of methylhydrogenpolysiloxane represented by the following formula (12) was used, and N-allyl-N, N-bis ( Example 3 except that the amount of trimethylsilyl) amine used was 75.4 g, the amount of 5-hexenyltrimethoxysilane used was 25.5 g, and these ratios were changed to a molar ratio of 3: 1. Thus, a modifier 3 represented by the following formula (13) was obtained. The structure represented by the following formula (13) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 3 was 230 mm 2 / s when measured according to JIS-Z-8803 using an Ubbelohde viscosity tube at 25 ° C.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
〔変性共役ジエン系ゴム5、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、上記にて得られた変性剤3(上記式(13)で表される化合物)1.809部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム5を得た。得られた変性共役ジエン系ゴム5の重量平均分子量(Mw)は420,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム5を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Production of Modified Conjugated Diene Rubber 5, Rubber Composition and Crosslinked Rubber]
Instead of the modifier 1, 1.809 parts of the modifier 3 obtained above (compound represented by the above formula (13)) (1.00 mol per mol of n-butyllithium) The solid modified conjugated diene rubber 5 was obtained in the same manner as in Example 1 except that was used. The resulting modified conjugated diene rubber 5 had a weight average molecular weight (Mw) of 420,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 5 was used instead of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 1.
〔実施例6〕
〔変性剤4の製造〕
 N-アリル-N,N-ビス(トリメチルシリル)アミンと5-ヘキセニルトリメトキシシランの使用量を、モル比で1:4となるように変更した以外は、実施例1と同様にして、下記式(14)で表される変性剤4を得た。なお、下記式(14)で表される構造はH-NMRによっても確認された。そして、得られた変性剤4について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、250mm/sであった。
Figure JPOXMLDOC01-appb-C000023
Example 6
[Production of denaturant 4]
In the same manner as in Example 1 except that the amount of N-allyl-N, N-bis (trimethylsilyl) amine and 5-hexenyltrimethoxysilane used was changed to a molar ratio of 1: 4, the following formula The modifier 4 represented by (14) was obtained. The structure represented by the following formula (14) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 4 was 250 mm 2 / s as measured according to JIS-Z-8803 using an Ubbelohde type viscosity tube at 25 ° C.
Figure JPOXMLDOC01-appb-C000023
〔変性共役ジエン系ゴム6、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、上記にて得られた変性剤4(上記式(14)で表される化合物)2.574部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム6を得た。得られた変性共役ジエン系ゴム6の重量平均分子量(Mw)は611,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム6を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Production of Modified Conjugated Diene Rubber 6, Rubber Composition, and Rubber Cross-Linked Product]
Instead of the modifier 1, 2.574 parts of the modifier 4 obtained above (compound represented by the above formula (14)) (1.00 mol per mol of the amount of n-butyllithium used) The solid modified conjugated diene rubber 6 was obtained in the same manner as in Example 1 except that was used. The resulting modified conjugated diene rubber 6 had a weight average molecular weight (Mw) of 611,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 6 was used in place of the modified conjugated diene rubber 1, and evaluation was similarly performed. went. The results are shown in Table 1.
〔実施例7〕
〔変性剤5の製造〕
 5-ヘキセニルトリメトキシシランの代わりに、アリルグリシジルエーテル45.3gを用いるとともに、N-アリル-N,N-ビス(トリメチルシリル)アミンの使用量を、N-アリル-N,N-ビス(トリメチルシリル)アミンとアリルグリシジルエーテルとのモル比が1:1となるように変更した以外は実施例1と同様して、下記式(15)で表される変性剤5を得た。なお、下記式(15)で表される構造はH-NMRによっても確認された。そして、得られた変性剤5について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、890mm/sであった。
Figure JPOXMLDOC01-appb-C000024
Example 7
[Production of denaturant 5]
Instead of 5-hexenyltrimethoxysilane, 45.3 g of allyl glycidyl ether was used, and the amount of N-allyl-N, N-bis (trimethylsilyl) amine used was changed to N-allyl-N, N-bis (trimethylsilyl). A modifier 5 represented by the following formula (15) was obtained in the same manner as in Example 1 except that the molar ratio of amine to allyl glycidyl ether was changed to 1: 1. The structure represented by the following formula (15) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 5 was measured according to JIS-Z-8803 using an Ubbelohde type viscosity tube at 25 ° C. and found to be 890 mm 2 / s.
Figure JPOXMLDOC01-appb-C000024
〔変性共役ジエン系ゴム7、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、上記にて得られた変性剤5(上記式(15)で表される化合物)1.665部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム7を得た。得られた変性共役ジエン系ゴム7の重量平均分子量(Mw)は552,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム7を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Production of Modified Conjugated Diene Rubber 7, Rubber Composition and Crosslinked Rubber]
Instead of the modifier 1, the modifier 5 obtained above (compound represented by the above formula (15)) 1.665 parts (1.00 mol per mol of n-butyllithium) The solid modified conjugated diene rubber 7 was obtained in the same manner as in Example 1 except that was used. The resulting modified conjugated diene rubber 7 had a weight average molecular weight (Mw) of 552,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 7 was used instead of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 1.
〔実施例8〕
〔変性共役ジエン系ゴム8、ゴム組成物およびゴム架橋物の製造〕
 変性剤5の使用量を1.665部から2.498部(n-ブチルリチウムの使用量に対して、1.50倍モル)に変更した以外は、実施例7と同様に操作して、固形状の変性共役ジエン系ゴム8を得た。得られた変性共役ジエン系ゴム8の重量平均分子量(Mw)は536,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム8を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
Example 8
[Production of Modified Conjugated Diene Rubber 8, Rubber Composition and Crosslinked Rubber]
Except that the amount of modifier 5 used was changed from 1.665 parts to 2.498 parts (1.50 mol per mole of n-butyllithium), the same operation as in Example 7 was carried out. A solid modified conjugated diene rubber 8 was obtained. The resulting modified conjugated diene rubber 8 had a weight average molecular weight (Mw) of 536,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 8 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 1.
〔実施例9〕
〔変性剤6の製造〕
 5-ヘキセニルトリメトキシシランを使用せず、N-アリル-N,N-ビス(トリメチルシリル)アミンの使用量を117.1gとした以外は、実施例1と同様に合成して、下記式(16)で表される変性剤6を得た。なお、下記式(16)で表される構造はH-NMRによっても確認された。そして、得られた変性剤6について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、4410mm/sであった。
Figure JPOXMLDOC01-appb-C000025
Example 9
[Production of denaturant 6]
Synthesis was carried out in the same manner as in Example 1 except that 5-hexenyltrimethoxysilane was not used and the amount of N-allyl-N, N-bis (trimethylsilyl) amine used was 117.1 g. The modifier 6 represented by this was obtained. The structure represented by the following formula (16) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 6 was measured according to JIS-Z-8803 using an Ubbelohde viscosity tube at 25 ° C., and it was 4410 mm 2 / s.
Figure JPOXMLDOC01-appb-C000025
〔変性共役ジエン系ゴム9、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、上記にて得られた変性剤6(上記式(16)で表される化合物)2.547部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム9を得た。得られた変性共役ジエン系ゴム9の重量平均分子量(Mw)は292,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム9を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Production of Modified Conjugated Diene Rubber 9, Rubber Composition, and Rubber Cross-Linked Product]
Instead of the modifier 1, 2.547 parts of the modifier 6 obtained above (compound represented by the above formula (16)) (1.00 mol per mol of n-butyllithium) The solid modified conjugated diene rubber 9 was obtained in the same manner as in Example 1 except that was used. The resulting modified conjugated diene rubber 9 had a weight average molecular weight (Mw) of 292,000.
Then, instead of the modified conjugated diene rubber 1, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 9 was used. went. The results are shown in Table 1.
〔実施例10〕
〔変性共役ジエン系ゴム10の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.187部、ピペリジン0.059部を仕込んだ後、n-ブチルリチウム0.042部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、実施例1において得られた変性剤1(上記式(10)で表される化合物)1.963部(n-ブチルリチウムの使用量に対して、1.00倍モル)を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して、共役ジエン系重合体を含有する溶液を得た。そして、得られた重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性共役ジエン系ゴム10を得た。得られた変性共役ジエン系ゴム10の重量平均分子量(Mw)は390,000であった。
Example 10
[Production of Modified Conjugated Diene Rubber 10]
In a nitrogen atmosphere, an autoclave was charged with 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, 0.187 parts of tetramethylethylenediamine and 0.059 parts of piperidine, and then n-butyllithium. 0.042 part was added and polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, the modifier 1 (compound represented by the above formula (10)) obtained in Example 1 was used. ) 1.963 parts (1.00 mol per mol of n-butyllithium) were added and reacted for 30 minutes, then 0.064 parts of methanol was added as a polymerization terminator, and conjugated diene was added. A solution containing a polymer was obtained. Then, 100 parts of the obtained polymer component was treated with 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals) as an anti-aging agent. After adding 15 parts to the solution, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 10. The resulting modified conjugated diene rubber 10 had a weight average molecular weight (Mw) of 390,000.
〔ゴム組成物およびゴム架橋物の製造〕
 そして、変性共役ジエン系ゴム1に代えて、上記にて得られた変性共役ジエン系ゴム10を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表2に示す。
[Production of rubber composition and rubber cross-linked product]
Then, in place of the modified conjugated diene rubber 1, the rubber composition and the crosslinked rubber were obtained in the same manner as in Example 1 except that the modified conjugated diene rubber 10 obtained above was used. Was evaluated. The results are shown in Table 2.
〔実施例11〕
〔変性共役ジエン系ゴム11、ゴム組成物およびゴム架橋物の製造〕
 ピペリジンに代えて、アゼパン0.071部を使用した以外は、実施例10と同様に操作して、固形状の変性共役ジエン系ゴム11を得た。得られた変性共役ジエン系ゴム11の重量平均分子量(Mw)は359,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム11を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表2に示す。
Example 11
[Production of Modified Conjugated Diene Rubber 11, Rubber Composition and Crosslinked Rubber]
A solid modified conjugated diene rubber 11 was obtained in the same manner as in Example 10 except that 0.071 part of azepan was used instead of piperidine. The resulting modified conjugated diene rubber 11 had a weight average molecular weight (Mw) of 359,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 11 was used in place of the modified conjugated diene rubber 1, and evaluation was similarly performed. went. The results are shown in Table 2.
〔実施例12〕
〔変性共役ジエン系ゴム12、ゴム組成物およびゴム架橋物の製造〕
 ピペリジンに代えて、ジヘキシルアミン0.153部を使用した以外は、実施例10と同様に操作して、固形状の変性共役ジエン系ゴム12を得た。得られた変性共役ジエン系ゴム12の重量平均分子量(Mw)は421,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム12を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表2に示す。
Example 12
[Production of Modified Conjugated Diene Rubber 12, Rubber Composition, and Rubber Cross-Linked Product]
A solid modified conjugated diene rubber 12 was obtained in the same manner as in Example 10 except that 0.153 part of dihexylamine was used instead of piperidine. The resulting modified conjugated diene rubber 12 had a weight average molecular weight (Mw) of 421,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 12 was used instead of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 2.
〔実施例13〕
〔変性共役ジエン系ゴム13、ゴム組成物およびゴム架橋物の製造〕
 ピペリジンに代えて、ジヘキシルアミン0.153部を使用するとともに、変性剤1に代えて、実施例7で得られた変性剤5(上記式(15)で表される化合物)2.498部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例10と同様に操作して、固形状の変性共役ジエン系ゴム13を得た。得られた変性共役ジエン系ゴム13の重量平均分子量(Mw)は509,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム13を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表2に示す。
Example 13
[Production of Modified Conjugated Diene Rubber 13, Rubber Composition and Crosslinked Rubber]
In place of piperidine, 0.153 parts of dihexylamine was used, and in place of the modifier 1, the modifier 5 obtained in Example 7 (compound represented by the above formula (15)) 2.498 parts ( A solid modified conjugated diene rubber 13 was obtained in the same manner as in Example 10 except that 1.50 times mol) was used relative to the amount of n-butyllithium used. The resulting modified conjugated diene rubber 13 had a weight average molecular weight (Mw) of 509,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 13 was used in place of the modified conjugated diene rubber 1, and evaluation was similarly performed. went. The results are shown in Table 2.
〔比較例1〕
〔変性共役ジエン系ゴム14の製造〕
 変性剤1に代えて、下記式(17)で示される変性剤7 0.207部(n-ブチルリチウムの使用量に対して、0.20倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム14を得た。得られた変性共役ジエン系ゴム14の重量平均分子量(Mw)は455,000であった。
Figure JPOXMLDOC01-appb-C000026
[Comparative Example 1]
[Production of Modified Conjugated Diene Rubber 14]
Example 1 and Example 1 were used except that 0.207 parts of the modifying agent 7 represented by the following formula (17) (0.20 times mol with respect to the amount of n-butyllithium) used was used instead of the modifying agent 1. By operating in the same manner, a solid modified conjugated diene rubber 14 was obtained. The resulting modified conjugated diene rubber 14 had a weight average molecular weight (Mw) of 455,000.
Figure JPOXMLDOC01-appb-C000026
〔ゴム組成物およびゴム架橋物の製造〕
 そして、変性共役ジエン系ゴム1に代えて、上記にて得られた変性共役ジエン系ゴム14を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表3に示す。
[Production of rubber composition and rubber cross-linked product]
Then, in place of the modified conjugated diene rubber 1, the rubber composition and the rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified conjugated diene rubber 14 obtained above was used. Was evaluated. The results are shown in Table 3.
〔比較例2〕
〔変性共役ジエン系ゴム15の製造、ゴム組成物およびゴム架橋物の製造〕
 変性剤1の使用量を0.589部から0.137部(n-ブチルリチウムの使用量に対して、0.07倍モル)に変更した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム15を得た。得られた変性共役ジエン系ゴム15の重量平均分子量(Mw)は355,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム15を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表3に示す。
[Comparative Example 2]
[Manufacture of Modified Conjugated Diene Rubber 15, Manufacturing of Rubber Composition and Crosslinked Rubber]
Except that the amount of modifier 1 used was changed from 0.589 parts to 0.137 parts (0.07 moles relative to the amount of n-butyllithium), the same operation as in Example 1 was carried out. A solid modified conjugated diene rubber 15 was obtained. The resulting modified conjugated diene rubber 15 had a weight average molecular weight (Mw) of 355,000.
Then, in place of the modified conjugated diene rubber 1, the rubber composition and the crosslinked rubber were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 15 was used. went. The results are shown in Table 3.
〔比較例3〕
〔変性共役ジエン系ゴム16の製造、ゴム組成物およびゴム架橋物の製造〕
 変性剤1の使用量を0.589部から0.275部(n-ブチルリチウムの使用量に対して、0.14倍モル)に変更した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム16を得た。得られた変性共役ジエン系ゴム16の重量平均分子量(Mw)は383,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム16を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表3に示す。
[Comparative Example 3]
[Production of Modified Conjugated Diene Rubber 16, Production of Rubber Composition and Crosslinked Rubber]
Except that the amount of modifier 1 used was changed from 0.589 parts to 0.275 parts (0.14 moles relative to the amount of n-butyllithium), the same operation as in Example 1 was carried out. A solid modified conjugated diene rubber 16 was obtained. The resulting modified conjugated diene rubber 16 had a weight average molecular weight (Mw) of 383,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 16 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 3.
〔比較例4〕
〔変性共役ジエン系ゴム17、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、下記式(18)で示される変性剤8 5.310部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム17を得た。得られた変性共役ジエン系ゴム17の重量平均分子量(Mw)は383,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム17を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000027
[Comparative Example 4]
[Production of Modified Conjugated Diene Rubber 17, Rubber Composition, and Rubber Cross-Linked Product]
Example 1 and Example 1 were used except that 5.310 parts of a modifier 8 represented by the following formula (18) (1.00 moles relative to the amount of n-butyllithium) used was used instead of the modifier 1. By operating in the same manner, a solid modified conjugated diene rubber 17 was obtained. The resulting modified conjugated diene rubber 17 had a weight average molecular weight (Mw) of 383,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 17 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-C000027
〔比較例5〕
〔変性剤9の製造〕
 上記式(9)で表されるメチルハイドロジェンポリシロキサンに代えて、下記式(19)で表されるメチルハイドロジェンシロキサン75.2gを使用するとともに、5-ヘキセニルトリメトキシシランを使用せずN-アリル-N,N-ビス(トリメチルシリル)アミンの使用量を74.9gとした以外は、実施例1と同様にして、下記式(20)で表される変性剤9を得た。なお、下記式(20)で表される構造はH-NMRによっても確認された。そして、得られた変性剤9について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、6mm/sであった。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[Comparative Example 5]
[Production of denaturant 9]
Instead of methylhydrogenpolysiloxane represented by the above formula (9), 75.2 g of methylhydrogensiloxane represented by the following formula (19) is used, and N is used without using 5-hexenyltrimethoxysilane. A modifier 9 represented by the following formula (20) was obtained in the same manner as in Example 1 except that the amount of allyl-N, N-bis (trimethylsilyl) amine used was changed to 74.9 g. The structure represented by the following formula (20) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 9 was measured according to JIS-Z-8803 using an Ubbelohde type viscosity tube at 25 ° C. and found to be 6 mm 2 / s.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
〔変性共役ジエン系ゴム18、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、上記にて得られた変性剤9(上記式(20)で表される化合物)0.284部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム18を得た。得られた変性共役ジエン系ゴム18の重量平均分子量(Mw)は229,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム18を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表3に示す。
[Production of Modified Conjugated Diene Rubber 18, Rubber Composition and Crosslinked Rubber]
Instead of the modifier 1, 0.284 parts of the modifier 9 obtained above (compound represented by the above formula (20)) (1.00 mol per mol of n-butyllithium) The solid modified conjugated diene rubber 18 was obtained in the same manner as in Example 1 except that was used. The resulting modified conjugated diene rubber 18 had a weight average molecular weight (Mw) of 229,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 18 was used in place of the modified conjugated diene rubber 1, and evaluation was similarly performed. went. The results are shown in Table 3.
〔比較例6〕
〔変性共役ジエン系ゴム19、ゴム組成物およびゴム架橋物の製造〕
 変性剤1に代えて、下記式(21)で表される変性剤10 0.315部(n-ブチルリチウムの使用量に対して、1.00倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム19を得た。得られた変性共役ジエン系ゴム19の重量平均分子量(Mw)は383,000であった。
 そして、変性共役ジエン系ゴム1に代えて、得られた変性共役ジエン系ゴム19を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000030
[Comparative Example 6]
[Production of Modified Conjugated Diene Rubber 19, Rubber Composition and Crosslinked Rubber]
Example 1 was used except that 0.315 parts of the modifying agent 10 represented by the following formula (21) (1.00 times the amount of n-butyllithium used) was used in place of the modifying agent 1. In the same manner as described above, a solid modified conjugated diene rubber 19 was obtained. The resulting modified conjugated diene rubber 19 had a weight average molecular weight (Mw) of 383,000.
Then, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the obtained modified conjugated diene rubber 19 was used in place of the modified conjugated diene rubber 1, and evaluation was performed in the same manner. went. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表1、表2、表3より、変性共役ジエン系ゴムを合成する際に、変性剤として、上記一般式(1)で表される化合物を特定量用いた場合には、得られるゴム架橋物は、いずれも、ウエットグリップ性および低発熱性に優れたものであった(実施例1~13)。
 一方、変性共役ジエン系ゴムを合成する際に、変性剤として、保護アミノ基含有有機基を有しないものを用いた場合には、得られるゴム架橋物はウエットグリップ性および低発熱性に劣るものであった(比較例1,4)。
 また、変性共役ジエン系ゴムを合成する際に、変性剤として、上記一般式(1)で表される化合物を用いた場合でも、その使用量が少なすぎると、得られるゴム架橋物はウエットグリップ性および低発熱性の向上効果が得られなかった(比較例2,3)。
 さらに、変性共役ジエン系ゴムを合成する際に、変性剤として、保護アミノ基含有有機基を有するものの、上記一般式(1)で表される化合物に該当しないものを用いた場合にも、得られるゴム架橋物はウエットグリップ性および低発熱性に劣るものであった(比較例5,6)。
From Table 1, Table 2, and Table 3, when a modified conjugated diene rubber is synthesized, when a specific amount of the compound represented by the above general formula (1) is used as a modifier, a crosslinked rubber product is obtained. Were excellent in wet grip and low heat build-up (Examples 1 to 13).
On the other hand, when synthesizing a modified conjugated diene rubber, if the modifier does not have a protected amino group-containing organic group, the resulting rubber cross-linked product is inferior in wet grip and low heat build-up. (Comparative Examples 1 and 4).
Further, when the modified conjugated diene rubber is synthesized, even when the compound represented by the above general formula (1) is used as a modifier, if the amount used is too small, the resulting rubber cross-linked product is a wet grip. The improvement effect of heat resistance and low exothermic property was not obtained (Comparative Examples 2 and 3).
Furthermore, when synthesizing a modified conjugated diene rubber, a modifier having a protected amino group-containing organic group but not corresponding to the compound represented by the above general formula (1) is also obtained. The resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Examples 5 and 6).

Claims (10)

  1.  不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、
     前記活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させる第2工程と、を備え、
     前記一般式(1)で表される化合物の使用量を、前記有機活性金属化合物中の金属原子1モルに対して、0.15モル以上とする変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)中、R~R、R~Rは、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、Rは、任意の有機基、水素原子または水酸基であり、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、mは1~500の整数、nは0~499の整数であり、m+nは2~500である。)
    A first step of polymerizing a monomer comprising at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent to obtain a conjugated diene polymer having an active end;
    A second step of reacting the active terminus of the conjugated diene polymer having the active terminus with a compound represented by the following general formula (1),
    A method for producing a modified conjugated diene rubber, wherein the amount of the compound represented by the general formula (1) is 0.15 mol or more relative to 1 mol of a metal atom in the organic active metal compound.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 to R 4 and R 6 to R 9 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 5 is any organic group, hydrogen An atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 500, n is an integer of 0 to 499, m + n is 2 to 500.)
  2.  前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物である請求項1に記載の変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (上記一般式(2)中、R~R、R~R12は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、Xは、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、Xは、アルコキシ基含有有機基またはエポキシ基含有有機基であり、mは1~499の整数、pは1~499の整数、qは0~498の整数であり、m+p+qは2~500である。)
    The method for producing a modified conjugated diene rubber according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 1 to R 4 and R 7 to R 12 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is protected by a protecting group. A protected amino group-containing organic group containing a primary amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 499, p is an integer of 1 to 499, q is an integer of 0 to 498, and m + p + q is 2 to 500.)
  3.  前記一般式(1)で表される化合物が、前記保護アミノ基含有有機基として、下記一般式(3)、または下記一般式(4)で表される基を含有する請求項1または2に記載の変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000003
     (上記一般式(3)中、R13~R16は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、eは1~12の整数である。fは1~12の整数である。)
    Figure JPOXMLDOC01-appb-C000004
     (上記一般式(4)中、R17~R22は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、gは1~12の整数である。)
    The compound represented by the general formula (1) contains a group represented by the following general formula (3) or the following general formula (4) as the protected amino group-containing organic group. A method for producing the modified conjugated diene rubber.
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), R 13 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and e is an integer of 1 to 12) F is an integer from 1 to 12.)
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (4), R 17 to R 22 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and g is an integer of 1 to 12) .)
  4.  前記重合開始剤として有機アルカリ金属アミド化合物を用いる請求項1~3のいずれかに記載の共役ジエン系ゴムの製造方法。 The method for producing a conjugated diene rubber according to any one of claims 1 to 3, wherein an organic alkali metal amide compound is used as the polymerization initiator.
  5.  前記有機アルカリ金属アミド化合物が、下記一般式(5)で表される化合物である請求項4に記載の共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000005
     (上記一般式(5)中、Mはアルカリ金属原子を表し、R23、R24は、それぞれ独立して、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R23およびR24は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のヘテロ原子とともに環構造を形成していてもよい。)
    The method for producing a conjugated diene rubber according to claim 4, wherein the organic alkali metal amide compound is a compound represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000005
    (In the above general formula (5), M 1 represents an alkali metal atom, and R 23 and R 24 are each independently an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or Represents a group capable of hydrolyzing to form a hydroxyl group, and R 23 and R 24 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded; In addition to the nitrogen atom to which is bonded, a ring structure may be formed together with a heteroatom other than the nitrogen atom to which these are bonded.
  6.  請求項1~5のいずれかに記載の製造方法により得られる変性共役ジエン系ゴム。 A modified conjugated diene rubber obtained by the production method according to any one of claims 1 to 5.
  7.  請求項6に記載の変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物。 A rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber according to claim 6.
  8.  架橋剤をさらに含有してなる請求項7に記載のゴム組成物。 The rubber composition according to claim 7, further comprising a crosslinking agent.
  9.  請求項8に記載のゴム組成物を架橋してなるゴム架橋物。 A crosslinked rubber product obtained by crosslinking the rubber composition according to claim 8.
  10.  請求項9に記載のゴム架橋物を含んでなるタイヤ。 A tire comprising the rubber cross-linked product according to claim 9.
PCT/JP2017/040455 2016-11-14 2017-11-09 Method for producing modified conjugated diene rubber WO2018088484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018550259A JP7225802B2 (en) 2016-11-14 2017-11-09 Method for producing modified conjugated diene rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221408 2016-11-14
JP2016-221408 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088484A1 true WO2018088484A1 (en) 2018-05-17

Family

ID=62109885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040455 WO2018088484A1 (en) 2016-11-14 2017-11-09 Method for producing modified conjugated diene rubber

Country Status (2)

Country Link
JP (1) JP7225802B2 (en)
WO (1) WO2018088484A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179754A (en) * 2008-01-31 2009-08-13 Nippon Zeon Co Ltd Rubber composition for base tread
JP2009286822A (en) * 2008-05-27 2009-12-10 Yokohama Rubber Co Ltd:The Rubber composition for studless tire
JP2012193277A (en) * 2011-03-16 2012-10-11 Jsr Corp Method for producing modified conjugated diene rubber, modified conjugated diene rubber and rubber composition
JP2014129514A (en) * 2012-12-28 2014-07-10 Chi Mei Corp Polysiloxane compound, modified conjugated diene-vinyl aromatic hydrocarbon copolymer and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179754A (en) * 2008-01-31 2009-08-13 Nippon Zeon Co Ltd Rubber composition for base tread
JP2009286822A (en) * 2008-05-27 2009-12-10 Yokohama Rubber Co Ltd:The Rubber composition for studless tire
JP2012193277A (en) * 2011-03-16 2012-10-11 Jsr Corp Method for producing modified conjugated diene rubber, modified conjugated diene rubber and rubber composition
JP2014129514A (en) * 2012-12-28 2014-07-10 Chi Mei Corp Polysiloxane compound, modified conjugated diene-vinyl aromatic hydrocarbon copolymer and method for producing the same

Also Published As

Publication number Publication date
JP7225802B2 (en) 2023-02-21
JPWO2018088484A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
KR102602901B1 (en) Method for producing conjugated diene rubber
JP5716736B2 (en) Conjugated diene rubber, rubber composition, rubber cross-linked product, tire, and method for producing conjugated diene rubber
JP5845883B2 (en) Method for producing modified conjugated diene rubber composition, method for producing rubber composition, method for producing crosslinked rubber, and method for producing tire
WO2016208739A1 (en) Method for producing conjugated diene rubber
JP6468283B2 (en) Process for producing modified conjugated diene rubber
JP2016037543A (en) Method for producing conjugated diene-based rubber
JP2017082235A (en) Manufacturing method of conjugated diene rubber
JP2017082236A (en) Manufacturing method of polybutadiene rubber
JP6421521B2 (en) Conjugated diene polymer and rubber composition
WO2015199226A1 (en) Method for manufacturing conjugated diene rubber
JP6597600B2 (en) Method for producing conjugated diene rubber
JP6332279B2 (en) Method for producing conjugated diene rubber
JP6205788B2 (en) Process for producing modified conjugated diene rubber
JP2014208805A (en) Method for producing modified conjugated diene-based rubber
JP7244244B2 (en) Method for producing conjugated diene rubber
JPWO2016199842A1 (en) Conjugated diene polymer and method for producing conjugated diene polymer
JP7108460B2 (en) Method for producing conjugated diene rubber
JP7225802B2 (en) Method for producing modified conjugated diene rubber
JP7020423B2 (en) Method for manufacturing modified conjugated diene rubber
JP7370734B2 (en) Manufacturing method of polybutadiene rubber
JP2019172806A (en) Conjugated diene rubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870361

Country of ref document: EP

Kind code of ref document: A1