WO2018088471A1 - Carbon fiber reinforced plastics extruded material and method for manufacturing same - Google Patents

Carbon fiber reinforced plastics extruded material and method for manufacturing same Download PDF

Info

Publication number
WO2018088471A1
WO2018088471A1 PCT/JP2017/040424 JP2017040424W WO2018088471A1 WO 2018088471 A1 WO2018088471 A1 WO 2018088471A1 JP 2017040424 W JP2017040424 W JP 2017040424W WO 2018088471 A1 WO2018088471 A1 WO 2018088471A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
carbon fiber
wire
extruded material
extruded
Prior art date
Application number
PCT/JP2017/040424
Other languages
French (fr)
Japanese (ja)
Inventor
歳博 伊原
福田 徳生
幸典 山本
Original Assignee
株式会社イハラ合成
愛知県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イハラ合成, 愛知県 filed Critical 株式会社イハラ合成
Priority to JP2018525805A priority Critical patent/JP6421300B2/en
Publication of WO2018088471A1 publication Critical patent/WO2018088471A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to an extruded material made of short (discontinuous) carbon fiber reinforced resin and a manufacturing method thereof.
  • Carbon fiber reinforced resin is a composite material in which carbon fiber is impregnated with a resin to improve the strength, and is used as a light weight and high strength material as a composite material with a material having a high elastic modulus.
  • CFRP Carbon fiber reinforced resin
  • carbon fiber has high strength but low toughness, it is difficult to mold carbon fiber reinforced resin.
  • various carbon fiber lengths have been cut to 0.05 mm to 3 mm.
  • a short carbon fiber reinforced resin is also provided.
  • industrial waste treatment such as incineration and embedding is still in use, because there is a low yield in the molding process, or there is no recycling method for molded products, and an effective recycling method is desired. ing.
  • Patent Document 1 a fiber reinforced plastic containing a discontinuous carbon fiber (A) and a thermoplastic resin (B), and the diameter of a cross section perpendicular to the fiber axis of a single fiber of the discontinuous carbon fiber (A) is 9 to There has been proposed a fiber reinforced plastic having a discontinuous carbon fiber (A) of 13% by mass and 35% by mass or more contained in the fiber reinforced plastic.
  • Patent Document 2 in the production of a web (nonwoven fabric deposit) and a stampable sheet, carbon fibers and a thermoplastic resin having an average diameter of 7 ⁇ m and an average length of 13 ⁇ m are put into a dispersion and dispersed by stirring. Then, when the obtained web was poured into a papermaking machine and observed with a microscope, a web in which reinforcing fibers and thermoplastic resin were dispersed was obtained, and a method for processing this into a stampable sheet has been proposed (Example 1). .
  • Patent Document 3 describes a method of obtaining a carbon fiber mat by a papermaking method in which a chopped carbon fiber is introduced into a dispersion, stirred, and then poured into a large square sheet machine in the production of a stampable sheet.
  • Example 1 describes a method of obtaining a carbon fiber mat by a papermaking method in which a chopped carbon fiber is introduced into a dispersion, stirred, and then poured into a large square sheet machine in the production of a stampable sheet.
  • Patent Document 4 discloses a method for producing a prepreg capable of continuously producing a prepreg having good linearity or a prepreg having excellent bending characteristics and capable of sufficiently orienting discontinuous fibers in a thermoplastic resin, and an extrusion treatment.
  • the manufacturing system of a tool and a prepreg is provided, and patent document 5 is the molded object using the prepreg of patent document 4, and its manufacturing method.
  • Patent Document 6 proposes a resin sheet in which carbon fibers having an average fiber length of 0.1 to 10 mm are oriented at a ratio of 65 to 95% in one direction, and the resin sheet is melted in a die.
  • the carbon fiber composite resin material is poured, and the discharged resin material is made to flow between two heated nip rolls.
  • Non-Patent Document 1 introduces a method for producing a thermoplastic stampable sheet by using a carbon fiber thread as a woven fabric and laminating a thermoplastic resin film.
  • Non-Patent Document 2 after a commercially available carbon fiber fabric is treated with a desizing agent, the carbon fiber is used by using a film molding extruder (manufactured by Plastic Engineering Laboratory Co., Ltd.) installed at the Ishikawa Next Generation Industry Creation Support Center.
  • a film molding extruder manufactured by Plastic Engineering Laboratory Co., Ltd.
  • a stampable sheet continuous production method in which a thermoplastic resin (polyamide 6) is impregnated on a woven fabric has been proposed.
  • Non-Patent Document 3 discloses a method for producing a short carbon fiber orientation sheet in which a short carbon fiber orientation mat is produced from a suspension of short carbon fibers using a hydrodynamic process and impregnated with a matrix resin. It is disclosed.
  • JP 2013-203772 Japanese Patent No. 4920909 Japanese Patent Laid-Open No. 2014-51023 Japanese Unexamined Patent Publication No. 2016-98271 JP 2016-141074 JP 2013-221114 A Survey on Supporting Small and Medium-sized Enterprises in FY 2012-Survey on the actual state of processing technology for carbon fiber composite materials-Survey report Ministry of Economy, Trade and Industry / (January 31, 2013) Mitsubishi Chemical Techno Research Co., Ltd. http: //www.meti.go .jp / meti_lib / report / 2013fy / E003042.pdf Development of low-cost continuous processing technology for thermoplastic carbon fiber resin sheets Ishikawa Prefectural Industrial Experiment Station research report No.
  • the extruded material of Patent Document 1 is a carbon fiber reinforced thermoplastic resin (plastic) having light weight and strength and having fluidity suitable for injection molding.
  • thermoplastic resin plastic
  • the fiber length is 6 mm, and so-called long fiber, chopped fiber length CF is used, so it is difficult to realize a wire containing short carbon fiber having a fiber length of 3 mm or less. is there.
  • Patent Documents 2 and 3 and Non-Patent Documents 1 and 2 relate to a method of manufacturing a stampable sheet which is a carbon fiber reinforced sheet, and both are sheets in which the direction of the fibers is dispersed in all directions or crosses within the sheet surface.
  • a thermoplastic sheet having short carbon fibers oriented in one direction on the inner surface of the sheet is difficult to realize.
  • Patent Documents 4 and 5 are prepregs and molded articles thereof, but there is a problem that a sufficient orientation rate cannot be obtained by the manufacturing methods described in Patent Documents 4 and 5.
  • Patent Document 6 is a method in which a thick resin discharged from a thick die is sandwiched between nip rolls to form a sheet, and there is a problem that even this method cannot obtain a sufficient orientation rate. Also, recycled products are not used.
  • Non-Patent Document 3 reports that as a method of reusing expensive carbon fiber reinforced resin, after removing the matrix resin, the recovered carbon fiber is cut and the discontinuous fiber is classified by the fiber length, or a new short fiber Hydrodynamic Process method in which short carbon fibers are suspended in water, and the suspension is pressurized and discharged from the discharge nozzle along the inner wall surface of the rotating drum, whereby the short carbon fibers are oriented and laminated in the rotational direction. And the sheet
  • the short carbon fiber suspension concentration used in the fluid molding method is less than 10 w / w% and is usually about 5 w / w%.
  • suspensions of 10 w / w% or more high pressure is applied to nozzle injection. In addition to this, there is a problem that stable laminar flow injection from the nozzle becomes difficult.
  • An object of the present invention is to efficiently provide a carbon fiber reinforced thermoplastic resin extruded material of short fibers or discontinuous fibers that secure unidirectional orientation at low cost, and to utilize a recycled product of carbon fiber reinforced resin. Is to realize.
  • the first invention of the present invention includes 10 to 50 w / w% carbon fiber, 50 to 90 w / w% resin, which is a short fiber for reinforcement having an average fiber length of 0.05 to 3 mm,
  • the carbon fiber reinforced resin extruded material has an orientation angle of 0 to 7 ° with respect to the extrusion direction.
  • the extruded material made of carbon fiber reinforced resin includes wire materials such as monofilaments and multifilaments, films, sheet materials, rod materials, plate materials and the like.
  • the product in order to ensure strength, the product is a bulk or sheet material in which carbon fibers are randomly oriented.
  • the carbon fiber reinforced resin extruded material of the present invention in the case of a wire material, the carbon fiber is a wire material. Basically, it is different in that it is within a specific small orientation angle range with respect to the major axis direction and with respect to one direction in the plane in the case of a sheet material.
  • the average fiber length of the carbon fiber is less than 0.05 mm, the tensile strength and impact strength of the extruded material made of carbon fiber reinforced resin are lowered, and when the average fiber length exceeds 3 mm, the melt viscosity is increased and the moldability is lowered. Not only that, the fiber breaks during the melt extrusion process, and the fiber length varies, so the quality of the extruded material decreases. Even if the fiber breakage in the melt extrusion process is suppressed, the long fiber reinforced resin is extruded, so that there is a problem that the moldability is low and the mechanical damage of the apparatus is large.
  • the diameter of the carbon fiber can be appropriately selected, but is preferably 5 ⁇ m to 18 ⁇ m.
  • the thickness of one carbon fiber may be 5 to 7 ⁇ m for a PAN system and 10 to 15 ⁇ m for a pitch system.
  • the resin is polyamide (PA) resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin, polypropylene (PP) resin, polyetherimide (PEI). ) Resin, polyethylene terephthalate (PET) resin, polyether ether ketone (PEEK) resin, and polyether ketone ketone (PEKK) resin.
  • the fiber reinforced resin may be new or recycled.
  • the recycled product as used herein refers to recovered products, unused mill ends, crushed materials thereof, and recycled products. Moreover, what pelletized these is called a reproduction
  • the polyamide-based resin is preferably at least one selected from nylon 6, nylon 66, nylon 610, and nylon 612.
  • the orientation of the carbon fiber is exemplified by cutting the fiber reinforced resin extruded material, observing the cut surface using a microscope, and calculating by calculation processing.
  • the carbon fiber may be PAN-based (polyacrylonitrile fiber is a raw material) or pitch-based (coal tar or other petroleum-based carbon fiber), or a composite fiber of carbon fiber and other fibers. You may contain the functional agent for improving the softness
  • the extruded material is a wire material such as a monofilament
  • a wire material whose cross section perpendicular to the wire material axis direction is round, polygonal, rectangular, elliptical or the like is included.
  • the present invention includes a sheet-shaped or long-shaped short carbon fiber-oriented molded body obtained by bundling and crimping a plurality of wires that are extruded materials.
  • the sheet material including the wire material that is an extruded material is pressed at a temperature at which the resin constituting the wire material is fused after a plurality of wire materials in which the reinforcing short carbon fibers according to the present invention are oriented in the long axis direction are bundled in one direction.
  • a short carbon fiber in-plane unidirectional sheet is included.
  • the sheet material including the wire material that is an extruded material is a resin constituting the wire material after the wire material in which the reinforced short carbon fibers according to the present invention are oriented in the major axis direction is used as a woven or knitted fabric for warp, weft, and diagonal yarns.
  • fuses are included.
  • the sheet material including the wire material that is an extruded material includes an example in which wire materials oriented in the extrusion direction are laminated at a combination angle of 0/90 °.
  • the combination angle of the wire rods to be laminated can be an angle corresponding to the strength direction required for the final product.
  • isotropic fiber alignment materials can be produced by combining wire rods in all directions.
  • the extruded material is a sheet material
  • carbon fiber reinforcement with short fiber orientation obtained by melt extrusion molding of regenerated pellets containing 10-50 w / w% short carbon fiber while maintaining the short carbon fiber content and fiber length almost It is also possible to use a plate material obtained by laminating resin sheet materials (Carbon Fiber Alignment Material Stampable Sheet) or a laminated molded product (Sheet Molding Material).
  • a matrix resin may be impregnated from the outside as necessary for the purpose of fusing a wire in which reinforced short carbon fibers are oriented in the major axis direction.
  • the matrix resin used in that case is basically the same as the thermoplastic resin constituting the wire, but a substance such as ABS rubber or high-density polyethylene may be added to improve strength and flexibility. .
  • thermosetting resin is an epoxy resin, a silicon resin, or the like, and a compatibilizing agent of a thermoplastic resin and a thermosetting resin can also be used.
  • a fiber reinforced resin pellet or a carbon fiber reinforced resin crushed material containing 10 to 50 w / w% carbon fiber, which is a short fiber for reinforcing, is randomly extruded.
  • the extruded short fiber for reinforcement containing 10 to 50 w / w% of carbon fiber with an average fiber length of 0.05 to 3 mm is extruded by melting and extruding the extruded material at a screw rotation speed of 10 to 100 rpm.
  • a melt extrusion process for extruding the extruded material oriented in the direction, and a cooling and solidifying process for cooling and solidifying the melt-extruded extruded material, and the cooled and solidified extruded material is a wire or a sheet material, and has an average fiber length 10 to 50 w / w% carbon fiber which is a reinforcing short fiber having a thickness of 0.05 to 3 mm, 50 to 90 w / w% resin, and the orientation angle of the carbon fiber with respect to the extrusion direction is 0 to 7 °.
  • Characterized by carbon A method for producing a fiber-reinforced resin extruded material.
  • the melt resin is melt extruded in a range of Reynolds number Re of 10 ⁇ 6 to 10, more preferably 10 ⁇ 5 to 1.
  • the Reynolds number Re is known as an index representing the flow of molten resin in the discharge nozzle. It is known that if the Reynolds number Re is less than a certain value, it becomes laminar flow, and if this exceeds a certain value, it becomes turbulent flow.
  • the Reynolds number when laminar flow transitions to turbulent flow is called the critical Reynolds number. As an example, it is known that the flow in a circular pipe is 2,300 to 4,000. It is said that if the Reynolds number Re is equal to or less than the limit Reynolds number, the flow becomes laminar, and if the Reynolds number Re is higher than that, the flow becomes turbulent.
  • V (m / s) is the average speed of the molten resin
  • a (m) is the tube inner diameter of the discharge nozzle
  • ⁇ (kg / m 3 ) is the density of the molten resin
  • ⁇ (kg / (M ⁇ s)) is expressed by the viscosity coefficient of the molten resin.
  • the cooled and solidified extruded material is preferably a wire material or a sheet material, and is preferably provided with a sheet material forming step in which the wire material or sheet material is spread on a press and formed into a sheet material by hot pressing.
  • the short carbon fibers are oriented in a specific direction by immersing the same resin as the wire component, for example, as a matrix material so as to fill the gaps of the wire bundle, and further hot pressing.
  • a production method for producing a fiber reinforced prepreg (sheet-like intermediate material) is possible.
  • the fiber-reinforced prepreg can be used as a molding material for stampable sheets and composites for press working.
  • the resin includes the polyamide (PA) resin, the acrylonitrile / butadiene / styrene copolymer (ABS) resin, the polycarbonate (PC) resin, the polyphenylene as well as the extruded material made of carbon fiber reinforced resin.
  • a thermoplastic resin include carbon fiber reinforced resin filled with carbon fiber and reinforced.
  • the short carbon fiber reinforced resin is melt-extruded without separating the reinforced short carbon fiber and the matrix resin from the carbon fiber reinforced thermoplastic resin containing 10 w / w% to 50 w / w% of short carbon fiber relative to the resin.
  • the short carbon fibers are contained in an amount of 10 w / w to 50 w / w% with respect to 50 w / w to 90 w / w% of the resin, and the short fibers are characterized by being oriented in the extrusion direction by the fibers.
  • a slit-type carbon fiber reinforced thermoplastic resin melt solution containing 10 w / w% to 50 w / w% of short carbon fibers is kept in a laminar flow state with respect to the resin.
  • the short carbon fiber is extruded from the discharge port and oriented in one direction in the plane.
  • This laminate can be used as a material along the mold surface of a structure having a curved surface or a bent surface.
  • the fiber orientation of each sheet is different, and the fiber as a whole of the laminate has high strength in all major directions because the fibers are oriented in all major directions.
  • the orientation of each sheet can be appropriately adjusted and laminated.
  • the pellets may be polyamide (PA) resin, acrylonitrile / butadiene / styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS).
  • PA polyamide
  • ABS acrylonitrile / butadiene / styrene copolymer
  • PC polycarbonate
  • PPS polyphenylene sulfide
  • Carbon fiber Polypropylene resin (PP) resin, polyetherimide (PEI) resin, polyethylene terephthalate (PET) resin, polyether ether ketone (PEEK) resin, polyether ketone ketone (PEKK) resin
  • PP polypropylene resin
  • PEI polyetherimide
  • PET polyethylene terephthalate
  • PEEK polyether ether ketone
  • PEKK polyether ketone ketone
  • waste products of carbon fiber reinforced resin products are crushed, regenerated pellets are obtained by melt extrusion, and the regenerated pellets are melt extruded to orient the short fibers in the extrusion direction.
  • waste products include resin parts such as OA parts, automobile parts, and electric parts.
  • the present invention also includes a method in which waste crushed material is sufficiently kneaded in a molten state and directly melt extruded without producing recycled pellets. This method is also preferable because the short fibers are oriented in the extrusion direction.
  • the present invention is a composite base material in which short carbon fibers are oriented in the fiber major axis direction, and can be used as a raw material for molding into woven fabrics, knitted fabrics, sheet materials, plate materials, bar materials and the like.
  • the present invention it is possible to efficiently provide an extruded material made of carbon fiber reinforced resin in which reinforced carbon fibers are oriented in the extrusion direction and high in strength in a specific direction at low cost.
  • an extruded material made of carbon fiber reinforced resin in which reinforced carbon fibers are oriented in the extrusion direction and high in strength in a specific direction at low cost.
  • stacking or combining the extruded materials in which the fibers are oriented at an angle it is possible to obtain a final product that is isotropically high in the required direction or in all major directions.
  • the extruded material can be provided at a lower cost.
  • a wire F obtained by orienting carbon fibers according to an embodiment of the present invention in the longitudinal direction of the wire, a manufacturing method thereof, a sheet material using the wire F and the like will be described with reference to the drawings.
  • the wire F of the present embodiment is a wire that is an example of an extruded material of CFRTP that is a carbon fiber-reinforced thermoplastic resin, and 20% by weight of carbon fiber C having an average fiber length of 0.05 to 3 mm and a diameter of 5 to 18 ⁇ m,
  • the resin P is contained at 80% by weight, and the orientation angle of the carbon fiber C with respect to the long axis direction X of the wire is 0 to 7 °, preferably 0 to 4 °.
  • the carbon fiber C is characterized by being oriented in one direction in the wire major axis direction X.
  • the cross-sectional shape of the wire F of the present embodiment includes not only a substantially circular shape, but also an elliptical shape, a triangular shape, a quadrangular shape such as a quadrangular shape, a pentagonal shape, a rectangular shape, and other irregular shapes.
  • the diameter of the wire F is preferably 0.2 to 1.5 mm, particularly preferably 0.4 to 1.0 mm.
  • the wire material F When the wire material F is used as a processing wire material such as a sheet material or a rod material, it can be formed into a strand (string) having a thickness suitable for the application, for example, 1.5 to 10.0 mm.
  • prepreg sheet-like intermediate material
  • a prepreg sheet-like intermediate material that is obtained by bundling the wire F and laminating or weaving and knitting it into a sheet shape, or by dipping a matrix resin and hot-pressing it.
  • the wire F oriented in the extrusion direction is laminated at a combination angle of 0/90 °, spread on a press, and hot pressed to form a sheet-like or plate-like prepreg.
  • the combination angle of the laminated wires is not limited to 0/90 °, and can be set to an angle according to the strength direction required for the final product.
  • isotropic fiber alignment materials can be produced by combining wire rods in all major directions.
  • the manufacturing method of the wire F melts carbon fiber reinforced resin (CFRP, for example, PA66CF20, etc.) pellets containing 10-50 w / w% of carbon fibers, which are reinforcing short fibers, in which the carbon fibers are randomly oriented. It was put into an extruder and melted at a temperature of 200 to 320 ° C. p. By melting and extruding the wire at m, a reinforcing material short fiber for reinforcing containing 10 to 50 w / w% of carbon fiber having an average fiber length of 0.05 to 3 mm and a diameter of 5 to 18 ⁇ m is oriented in the longitudinal direction of the wire.
  • CFRP carbon fiber reinforced resin
  • a melt extrusion step of extruding, and a step of cooling and solidifying the melt-extruded wire The extruded molten mixture is cooled and solidified in a cooling bath, and then wound by a winder. Although it can be molded and used as it is from the state as it is, it may be subjected to stretching treatment, heat stretching treatment, and heat treatment as necessary. It is not limited to melting at a temperature of 200 to 320 ° C. This is because the melting temperature of the resin varies depending on the type of resin. In some cases, the upper limit temperature may be 60 ° C. above the melting point of the resin. Further, if the temperature is too high, the resin is thermally deteriorated, which is not preferable.
  • the speed V of the molten resin is at most within a range of 0.1 to 10 m / s.
  • the viscosity coefficient of the molten resin for example, nylon is within the range of 50 to 1000 kg / (m ⁇ s), for example, at 250 to 300 ° C., even if the nylon grade and shear rate are changed. Therefore, the resin flowing inside the discharge nozzle having a tube inner diameter of 0.25 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 3 m has a Reynolds number Re value of 2.7 ⁇ 10 ⁇ 5 to 1 in Equation 1 above. a .1 ⁇ 10 0. Therefore, the range will be further described.
  • melt extrusion when melt extrusion is performed with a large Reynolds number Re, there are options to melt extrusion at a high pressure to increase the discharge rate of the molten resin, or to lower the viscosity by increasing the melting temperature. However, it is not preferable because it causes breakage of reinforcing fibers, pressure-resistant reinforcement of equipment, wear damage, thermal deterioration of resin, and the like.
  • the velocity V of the molten resin is at most within a range of 0.1 to 1 m / s, and the viscosity coefficient also changes, for example, at 250 to 300 ° C., in the case of nylon, the grade and the shear rate. Even within the range of 50 to 2000 kg / (m ⁇ s). For this reason, in a molten resin flowing inside a discharge nozzle having a tube inner diameter of 0.25 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 3 m, the value of Re in the above equation 1 is 10 ⁇ 6 to 10, more preferably , In the range of 10 -5 to 1.
  • the shape of the discharge port section of the discharge nozzle of the melt extrusion molding machine can be implemented in various modes depending on the application.
  • a circular monofilament is extruded through the circular hole 1a
  • the discharge nozzle 2 of (b) two monofilaments having a circular cross section are extruded through the two circular holes 2a.
  • the discharge nozzle 3 of c) a plurality of resins extruded through the plurality of linear holes 3a are combined, and as a result, a thin sheet material having a square cross section is extruded.
  • the resin that has entered from the circular hole 4a of the nozzle is extruded from a slit-type discharge port 4b (for example, 1 mm thick, 10 mm wide) on the discharge side of the nozzle through an inclined surface, thereby forming a sheet material. Is pushed out.
  • a slit-type discharge port 4b for example, 1 mm thick, 10 mm wide
  • a carbon fiber reinforced resin waste product is crushed and melt-extruded to form a recycle pellet, and the recycle pellet is fed into the melt extruder in the melt extrusion step.
  • the resin P is cut and crushed from waste products such as OA resin parts made of carbon fiber reinforced resin CFRP, which is a kind of polyamide resin, and melted with a semiflight type or full flight type screw. Extrusion by an extruder is performed to obtain recycled pellets. When the regenerated pellet and the new pellet were cut and the cut surface was observed with a micrograph, there was no significant difference in the fiber length of the carbon fiber C, and there was almost no breakage of the carbon fiber during the melt extrusion process.
  • the long axis of the carbon fiber C is in the process of discharging from the discharge nozzle. It was confirmed that not only on the surface but also inside, it was strongly oriented in the wire major axis direction X and the orientation angle was 0 to 7 °.
  • polyamide-based resin examples include nylon 6, nylon 66, nylon 610, nylon 612, nylon 12, and nylon 6/66 copolymer, which are appropriately selected.
  • the wire F of the present embodiment has a high tensile strength, and by bundling a plurality of wires, it can be expected to improve the strength of the tensile force substantially proportional to the number of the wires, so that it is highly useful as a base material for a composite molded material for structural members. .
  • Method A For raw material pellets and wire rods obtained using them, observe the raw material pellet fracture surface, wire F surface, wire F fracture surface with Hilox Digital Microscope Model HI-SCOPE Advanced KH-3000, It was confirmed that the orientation of the carbon fibers in the wire F was one direction and the angle was 0 to 7 °. It was also confirmed that the reinforcing carbon fibers in the raw material pellets were randomly oriented.
  • B Method By analyzing the X-ray diffraction image of the wire F, the approximate orientation of the reinforced short carbon fiber was confirmed.
  • JISK7111-1 2012 Test piece: JISK7111-1 / 1eA Distance between supports: 62 mm Nominal pendulum energy (capacity): 100J Room temperature: 23 ° C
  • Test piece Cut into a width of 25 mm from a sheet of length 80 mm ⁇ width 100 mm ⁇ thickness 3 mm to obtain a test piece.
  • the test piece was measured for bending strength and bending elastic modulus using a universal testing machine equipped with a three-point bending jig under the conditions of a distance between fulcrums of 48 mm and a crosshead speed of 2 mm / min.
  • Example 1 is an example of forming a wire using recycled pellets.
  • One type of CFRTP, short fiber CF reinforced 66 nylon PA66CF20 (Nylon 66 mixed with 20% by weight of carbon fiber) made of short fibers containing random fibers in different directions. Separately collected without mixing, crushed and used as the first crushed material.
  • the test piece produced by injection molding this first crushed material has a tensile strength of 162 MPa (sample number 3), a Charpy impact test result of 6.5 KJ / m 2 (sample number 5), and an average carbon of carbon fiber C.
  • the fiber length is about 300 ⁇ m.
  • the resin was melt-extruded from the spinning discharge nozzle at a melting temperature of 270 ° C. and a screw rotation speed of 160 rpm to obtain a strand.
  • the obtained strand is cooled and solidified, cut and formed into a recycled pellet.
  • the second crushed material is dried with a hot air dryer at 120 ° C. for 6 to 8 hours to lower the moisture content, and then charged into the extruder.
  • the moisture content of the recycled pellets is, for example, 0.2%, preferably 0.1% or less.
  • the tensile strength of the test piece produced by injection molding the recycled pellets is 170 MPa (sample number 3), and the Charpy impact test result is 6.1 KJ / m 2 (sample number 5). It was the same. Further, it was confirmed that the carbon fiber C was not severely broken and maintained a substantially uniform length. This is considered to be because melt extrusion with less voiding and less voiding was possible.
  • the temperature near the inlet was set at 290 ° C
  • the temperature at the middle of the barrel was set at 300 ° C
  • the temperature at the bottom of the barrel was set at 310 ° C
  • the screw rotation speed was set at 20 rpm
  • the recycled pellets were completely melted
  • the discharge nozzle hole diameter was 0.75 mm. It discharges from one discharge nozzle.
  • the wire F was wound up (winding speed: 12 m / min) to produce a wire F having an average diameter of 0.5 ⁇ 0.1 mm ⁇ .
  • the orientation state of the short carbon fiber was investigated with a digital microscope.
  • the carbon fibers C were oriented at an orientation angle of 0 to 7 ° with respect to the major axis direction of the wire.
  • Example 2 is an example of forming a wire using virgin CFRTP pellets.
  • CFRTP pellets Toray Industries, Inc.
  • the temperature near the inlet is set at 290 ° C
  • the temperature in the middle of the barrel is set at 300 ° C
  • the temperature at the bottom of the barrel is set at 310 ° C
  • the screw speed is 20r .pm
  • the CFRTP pellet is completely melted and discharged from one discharge nozzle having a discharge nozzle hole diameter of 0.75 mm. Thereafter, it was allowed to fall naturally, and the wire F was wound up (winding speed 12 m / min) to produce a wire having an average diameter of 0.5 ⁇ 0.1 mm ⁇ .
  • the melt density ⁇ of nylon in CFRP is 1.3 ⁇ 10 3 kg / m 3 .
  • V of the molten resin is calculated from the length of the wire coming out from the discharge nozzle, a wire having a length of 22 m per minute is obtained, and is 0.37 m / s.
  • the discharge nozzle hole diameter of the kneader used in this example is 0.375 ⁇ 10 ⁇ 3 m
  • the Reynolds number Re of the molten resin in Example 2 is calculated from these values to be 2 ⁇ 10. -3 , which is found to be within the range of 10 ⁇ 6 to 10 under laminar flow conditions (Re ⁇ 2300).
  • the orientation state of the short carbon fibers was examined with a digital microscope.
  • the carbon fibers C were oriented in the random direction, whereas in the wire F, it was confirmed that the carbon fibers C were oriented in the longitudinal direction of the wires.
  • the obtained wire F was irradiated to the sample with CuK ⁇ rays generated at a voltage of 40 kV and a current of 20 mA for 1 minute. Then, an X-ray diffraction pattern was imaged, and a result of an imaging photograph of the X-ray diffraction pattern of the wire F in FIG. This result shows that the short carbon fibers are generally oriented in the long axis direction of the fiber wire. It was confirmed that the short carbon fibers were oriented at an orientation angle of 0 to 7 ° with respect to the major axis direction. Moreover, the tensile strength of the obtained wire F was 168 MPa.
  • Example 3 is an example of forming a wire using a commercially available recycled pellet of CFRTP.
  • the temperature near the inlet is controlled by the Netherlands Xplore Instruments BV 290 ° C, middle barrel temperature set to 300 ° C, lower barrel temperature set to 310 ° C, screw rotation set to 20 rpm, CFRTP recycled pellets completely melted, one discharge nozzle with a discharge nozzle hole diameter of 0.75 mm Discharge from.
  • the wire was wound up (winding speed 12 m / min) to produce a wire having an average diameter of 0.5 ⁇ 0.1 mm ⁇ .
  • the tensile strength of the obtained wire was 160 MPa.
  • the orientation state of the short carbon fiber was investigated with a digital microscope. In the wire F, it was confirmed that the carbon fibers C were oriented at an orientation angle of 0 to 7 ° with respect to the major axis direction of the wire.
  • Example 4 is an example of a sheet material using the virgin CFRTP utilization wire obtained in Example 2.
  • the wire manufactured from the virgin pellets obtained in Example 2 was dried at 80 ° C. for 8 hours, spread in one direction, and hot-pressed at 260 ° C. under a pressure of 5 MPa to obtain a length of 80 mm ⁇ width 100 mm ⁇ thickness.
  • a 3 mm sheet material was produced.
  • the obtained sheet material had a bending strength of 250 MPa and a bending elastic modulus of 12 GPa in a direction parallel to the spread wire, and had sufficient strength as an industrial material.
  • a sheet material having a thickness of 5 mm to 100 mm can be produced by appropriately adjusting the amount of spread when hot pressing.
  • Example 5 is an example in which a sheet material is directly molded from a recycled pellet of CFRTP by a melt extruder.
  • the temperature near the inlet is controlled by the Netherlands Xplore Instruments BV 290 ° C, middle barrel temperature set to 300 ° C, lower barrel temperature set to 310 ° C, screw rotation was set to 20 rpm
  • CFRTP recycled pellets were completely melted
  • discharge nozzle shape was 7-10 mm wide, thick
  • the sheet was discharged from a slit-type discharge port having a thickness of 0.7 to 1 mm to obtain a flat sheet material.
  • the carbon fibers C were oriented at an orientation angle of 0 to 7 ° with respect to a specific direction (extrusion direction) of the sheet material.
  • the sheet was spread in one direction and heat-pressed at 260 ° C. and a pressure of 5 MPa to prepare a sheet material having a length of 80 mm ⁇ width 100 mm ⁇ thickness 3 mm.
  • the obtained sheet material had a bending strength of 250 MPa and a bending elastic modulus of 12 GPa in a direction parallel to the spread wire, and had sufficient strength as an industrial material.
  • a sheet material having a thickness of 5 mm to 100 mm can be manufactured by appropriately adjusting the amount of spread when hot pressing.
  • Carbon fiber reinforced resin extruded wire has industrial uses as a composite material, molding material, etc., further bound rope, knitted fabric, sheet material, plate, rod, crimped extruded material, knitting this extruded material, It is possible to process a new carbon fiber reinforced resin by overlapping, combining with the same material, or another material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

The present invention makes it possible to manufacture short carbon fiber reinforced extruded material at low cost and use a recycled product. A wire rod according to the present embodiment is a wire rod of CFRTP representing carbon fiber reinforced plastics with long axes of carbon fibers oriented in a long axis direction of the wire rod, wherein 10 to 50 W/W% of short carbon fibers are contained, and an orientation angle thereof is 0 to 7° and preferably 0 to 4° with respect to the long axis direction of the wire rod. The wire rod is extruded from a melting extrusion machine and caused to pass through a cooling water bath, and a wire rod F not completely solidified is wound by a manual wire winding machine with an extending degree thereof adjusted to be obtained. When extruded, melted resin has a Reynolds number Re of 10-6 to 10 and more preferably 10-5 to 1. The wire rod is laid on a pressing machine and formed in sheet material by thermal pressing.

Description

炭素繊維強化樹脂押出材及びその製造方法Carbon fiber reinforced resin extruded material and method for producing the same
 本発明は、短(不連続)炭素繊維強化樹脂製押出材とその製造方法に関するものである。 The present invention relates to an extruded material made of short (discontinuous) carbon fiber reinforced resin and a manufacturing method thereof.
 炭素繊維強化樹脂(CFRP、CFRTP)は、炭素繊維に樹脂を含浸して強度を向上させた複合材料であり、弾性率の高い材料との複合材料として、軽量で強度の高い材料として用いられる。しかしながら、炭素繊維は高強度ではあるが低靭性のために、炭素繊維強化樹脂は成形加工が困難であり、これを改善するために炭素繊維の繊維長を0.05mm~3mmにカットした、様々な短炭素繊維強化樹脂も提供されている。しかし、それでもなお、成形工程での歩留まりが低いため未利用のまま、あるいは成形加工品の再利用法が無いまま、焼却・埋設など産業廃棄物処理されており、有効な再利用法が望まれている。 Carbon fiber reinforced resin (CFRP, CFRTP) is a composite material in which carbon fiber is impregnated with a resin to improve the strength, and is used as a light weight and high strength material as a composite material with a material having a high elastic modulus. However, because carbon fiber has high strength but low toughness, it is difficult to mold carbon fiber reinforced resin. To improve this, various carbon fiber lengths have been cut to 0.05 mm to 3 mm. A short carbon fiber reinforced resin is also provided. However, industrial waste treatment such as incineration and embedding is still in use, because there is a low yield in the molding process, or there is no recycling method for molded products, and an effective recycling method is desired. ing.
 特許文献1では、非連続炭素繊維(A)と熱可塑性樹脂(B)を含む繊維強化プラスチックであって、非連続炭素繊維(A)の単繊維の繊維軸に垂直な断面の直径が9~13μm、繊維強化プラスチックに含まれる非連続炭素繊維(A)が35質量%以上である繊維強化プラスチックが提案されている。 In Patent Document 1, a fiber reinforced plastic containing a discontinuous carbon fiber (A) and a thermoplastic resin (B), and the diameter of a cross section perpendicular to the fiber axis of a single fiber of the discontinuous carbon fiber (A) is 9 to There has been proposed a fiber reinforced plastic having a discontinuous carbon fiber (A) of 13% by mass and 35% by mass or more contained in the fiber reinforced plastic.
 特許文献2では、ウェブ(不織布状の堆積物)、スタンパブルシートの作製において、分散液に平均直径7μm、平均長さ13μmの炭素繊維および熱可塑性樹脂を投入し、撹拌して分散させた後、抄造器に注ぎ、得られたウェブを顕微鏡観察したところ強化繊維と熱可塑性樹脂が分散しているウェブが得られ、これをスタンパブルシートに加工する方法が提案されている(実施例1)。 In Patent Document 2, in the production of a web (nonwoven fabric deposit) and a stampable sheet, carbon fibers and a thermoplastic resin having an average diameter of 7 μm and an average length of 13 μm are put into a dispersion and dispersed by stirring. Then, when the obtained web was poured into a papermaking machine and observed with a microscope, a web in which reinforcing fibers and thermoplastic resin were dispersed was obtained, and a method for processing this into a stampable sheet has been proposed (Example 1). .
 特許文献3には、スタンパブルシートの製造において、分散液にチョップド炭素繊維を投入し、撹拌した後、大型角型シートマシンに流し込む抄紙法により炭素繊維マットを得る方法が記載されている(実施例1)。 Patent Document 3 describes a method of obtaining a carbon fiber mat by a papermaking method in which a chopped carbon fiber is introduced into a dispersion, stirred, and then poured into a large square sheet machine in the production of a stampable sheet. Example 1).
 特許文献4は、直線性が良好なプリプレグ、或いは曲げ特性に優れるプリプレグを連続的に製造すると共に、不連続繊維を熱可塑性樹脂中に十分に配向させることが可能なプリプレグの製造方法、押出治具及びプリプレグの製造システムを提供するものであり、特許文献5は、特許文献4のプリプレグを用いた成形体及びその製造方法である。 Patent Document 4 discloses a method for producing a prepreg capable of continuously producing a prepreg having good linearity or a prepreg having excellent bending characteristics and capable of sufficiently orienting discontinuous fibers in a thermoplastic resin, and an extrusion treatment. The manufacturing system of a tool and a prepreg is provided, and patent document 5 is the molded object using the prepreg of patent document 4, and its manufacturing method.
 特許文献6には、平均繊維長0.1~10mmの炭素繊維が1つの方向に65~95%の割合で配向している樹脂シートが提案されており、該樹脂シートは、ダイスに溶融された炭素繊維複合樹脂材料を流し込み、吐出された樹脂材料を加熱された2つのニップロール間に流すことによって製造されることが記載されている。 Patent Document 6 proposes a resin sheet in which carbon fibers having an average fiber length of 0.1 to 10 mm are oriented at a ratio of 65 to 95% in one direction, and the resin sheet is melted in a die. The carbon fiber composite resin material is poured, and the discharged resin material is made to flow between two heated nip rolls.
 非特許文献1では、炭素繊維の糸を織物にして、熱可塑性 のフィルム状樹脂を重ね合わせ熱可塑性スタンパブルシートの製法が紹介されている。 Non-Patent Document 1 introduces a method for producing a thermoplastic stampable sheet by using a carbon fiber thread as a woven fabric and laminating a thermoplastic resin film.
 非特許文献2では、市販の炭素繊維織物を脱サイジング剤処理後、いしかわ次世代産業創造支援センターに設置されたフィルム成形押出機((株)プラスチック工学研究所製)を用いて、該炭素繊維織物上に熱可塑性樹脂(ポリアミド6)を含浸させるスタンパブルシート連続製造法が提案されている。 In Non-Patent Document 2, after a commercially available carbon fiber fabric is treated with a desizing agent, the carbon fiber is used by using a film molding extruder (manufactured by Plastic Engineering Laboratory Co., Ltd.) installed at the Ishikawa Next Generation Industry Creation Support Center. A stampable sheet continuous production method in which a thermoplastic resin (polyamide 6) is impregnated on a woven fabric has been proposed.
 非特許文献3は、流体力学的プロセス(Hydrodynamic Process)を利用する短炭素繊維の懸濁液からの短炭素繊維配向マットを作製し、それにマトリックス樹脂を含浸させる短炭素繊維配向性シートの製法が開示されている。 Non-Patent Document 3 discloses a method for producing a short carbon fiber orientation sheet in which a short carbon fiber orientation mat is produced from a suspension of short carbon fibers using a hydrodynamic process and impregnated with a matrix resin. It is disclosed.
特開2013-203772号公報JP 2013-203772 特許第4920909号公報Japanese Patent No. 4920909 特開2014-51023号公報Japanese Patent Laid-Open No. 2014-51023 特開2016-98271号公報Japanese Unexamined Patent Publication No. 2016-98271 特開2016-141074号公報JP 2016-141074 特開2013-221114号公報JP 2013-221114 A
 しかしながら、特許文献1の押出材は、軽量化と強度を有し、射出成形に適した流動性を有する炭素繊維強化熱可塑性樹脂(プラスチック)であり、強度、流動性を重視する理由には、不連続炭素繊維を全方向配向させる意図があり、一方向性炭素繊維配向線材を前提とするものではない。また、すべての実施例において、繊維長6mmで実施されており、いわゆる長繊維、チョップド繊維長のCFを用いているので、3mm以下の繊維長の短炭素繊維を含有する線材の実現は困難である。 However, the extruded material of Patent Document 1 is a carbon fiber reinforced thermoplastic resin (plastic) having light weight and strength and having fluidity suitable for injection molding. There is an intention to orient the discontinuous carbon fibers in all directions, and it does not assume a unidirectional carbon fiber oriented wire. Further, in all the examples, the fiber length is 6 mm, and so-called long fiber, chopped fiber length CF is used, so it is difficult to realize a wire containing short carbon fiber having a fiber length of 3 mm or less. is there.
 特許文献2、3および非特許文献1~2は、炭素繊維強化シートであるスタンパブルシートの製法に関するが、いずれも繊維の方向はシート面内であらゆる方向ないし交差状に分散したシートであって、シート内面の一方向に短炭素繊維が配向した熱可塑性シートは実現が困難である。特許文献4、5はプリプレグおよびその成形品であるが、特許文献4、5に記載された製造方法では十分な配向率が得られないという問題がある。特許文献6は、太目のダイスから吐出された太めの樹脂をニップロールで挟んで、しごくようにしてシート化する方法であり、この方法でも、十分な配向率が得られないという問題がある。また、リサイクル品を利用するものではない。 Patent Documents 2 and 3 and Non-Patent Documents 1 and 2 relate to a method of manufacturing a stampable sheet which is a carbon fiber reinforced sheet, and both are sheets in which the direction of the fibers is dispersed in all directions or crosses within the sheet surface. A thermoplastic sheet having short carbon fibers oriented in one direction on the inner surface of the sheet is difficult to realize. Patent Documents 4 and 5 are prepregs and molded articles thereof, but there is a problem that a sufficient orientation rate cannot be obtained by the manufacturing methods described in Patent Documents 4 and 5. Patent Document 6 is a method in which a thick resin discharged from a thick die is sandwiched between nip rolls to form a sheet, and there is a problem that even this method cannot obtain a sufficient orientation rate. Also, recycled products are not used.
 非特許文献3の報告は、高価な炭素繊維強化樹脂を再利用する方法として、マトリックス樹脂を除去後、回収される炭素繊維をカットし不連続繊維を繊維長で分級した短繊維、あるいは新品の炭素短繊維を、水に懸濁し、懸濁液を加圧し吐出ノズルから回転ドラムの内壁面に沿うように放出させることにより、短炭素繊維を回転方向に配向積層する流動成形(Hydrodynamic Process)方法と、該方法で得られる短炭素繊維配向性マットをさらにマトリックス樹脂で固めたシートが開示されている。 Non-Patent Document 3 reports that as a method of reusing expensive carbon fiber reinforced resin, after removing the matrix resin, the recovered carbon fiber is cut and the discontinuous fiber is classified by the fiber length, or a new short fiber Hydrodynamic Process method in which short carbon fibers are suspended in water, and the suspension is pressurized and discharged from the discharge nozzle along the inner wall surface of the rotating drum, whereby the short carbon fibers are oriented and laminated in the rotational direction. And the sheet | seat which further solidified the short carbon fiber orientation mat | matte obtained by this method with matrix resin is disclosed.
 しかし、リサイクル炭素繊維強化樹脂部材を用いる場合には、樹脂から一旦、炭素繊維を分離回収し、回収繊維が長繊維の場合は繊維をカットし、繊維長を分級する工程や、短炭素繊維強化樹脂部材の場合でも樹脂から繊維の分離回収する前処理工程が必要になるという問題がある。 However, when using recycled carbon fiber reinforced resin members, once the carbon fiber is separated and recovered from the resin, if the recovered fiber is long fiber, the fiber is cut and the fiber length is classified, or the short carbon fiber reinforced Even in the case of a resin member, there is a problem that a pretreatment process for separating and collecting fibers from the resin is required.
 さらに、流動成形方法で用いる短炭素繊維懸濁液の短炭素繊維含有濃度は10w/w%未満で通常約5w/w%とされ、10w/w%以上の懸濁液ではノズル噴射に高圧を要するだけでなく、ノズルからの安定な層流噴射が困難となる問題がある。 In addition, the short carbon fiber suspension concentration used in the fluid molding method is less than 10 w / w% and is usually about 5 w / w%. With suspensions of 10 w / w% or more, high pressure is applied to nozzle injection. In addition to this, there is a problem that stable laminar flow injection from the nozzle becomes difficult.
 しかも、短炭素繊維だけを配向させるためのみに用いる流動成形工程と、得られた短炭素繊維配向性マットに樹脂を含浸固定する繊維強化樹脂成形工程が必要で、短炭素繊維含有樹脂を直接溶融押出配向させる方法に比べると工程数が多くなるという本質的な問題がある。 Moreover, it requires a flow molding process that is used only to orient the short carbon fibers and a fiber reinforced resin molding process that impregnates and fixes the resin to the resulting short carbon fiber orientation mat. There is an essential problem that the number of steps is increased as compared with the extrusion orientation method.
 本発明の課題は、一方向性の配向性を確保する短繊維又は非連続繊維の炭素繊維強化熱可塑性樹脂押出材を低コストで効率的に提供し、炭素繊維強化樹脂のリサイクル品の活用を実現することである。 An object of the present invention is to efficiently provide a carbon fiber reinforced thermoplastic resin extruded material of short fibers or discontinuous fibers that secure unidirectional orientation at low cost, and to utilize a recycled product of carbon fiber reinforced resin. Is to realize.
 上記課題に鑑み、本発明の第1の発明は、平均繊維長が0.05~3mmの強化用短繊維である炭素繊維を10~50w/w%、樹脂を50~90w/w%含み、押出方向に対する前記炭素繊維の配向角を0~7°とする炭素繊維強化樹脂製押出材である。 In view of the above problems, the first invention of the present invention includes 10 to 50 w / w% carbon fiber, 50 to 90 w / w% resin, which is a short fiber for reinforcement having an average fiber length of 0.05 to 3 mm, The carbon fiber reinforced resin extruded material has an orientation angle of 0 to 7 ° with respect to the extrusion direction.
 前記炭素繊維強化樹脂製押出材は、モノフィラメントやマルチフィラメント等の線材、フィルム、シート材、棒材、板材等を含む。一般の炭素繊維強化樹脂では強度を確保するため炭素繊維がランダムに配向するバルク又はシート材の製品とするが、本願発明の炭素繊維強化樹脂製押出材では、線材の場合には炭素繊維が線材長軸方向に対して、またシート材の場合には平面内の一方向に対して、特定の小さな配向角の範囲に収まっている点で基本的に相違する。 The extruded material made of carbon fiber reinforced resin includes wire materials such as monofilaments and multifilaments, films, sheet materials, rod materials, plate materials and the like. In general carbon fiber reinforced resin, in order to ensure strength, the product is a bulk or sheet material in which carbon fibers are randomly oriented. In the carbon fiber reinforced resin extruded material of the present invention, in the case of a wire material, the carbon fiber is a wire material. Basically, it is different in that it is within a specific small orientation angle range with respect to the major axis direction and with respect to one direction in the plane in the case of a sheet material.
 炭素繊維の平均繊維長が0.05mmを下回ると炭素繊維強化樹脂製押出材の引張強度や衝撃強度が低下し、平均繊維長が3mmを超えると、溶融粘度が上昇し、成形性が低くなるだけでなく、溶融押出過程で繊維が折損し、繊維長にばらつきが生じるため押出材の品質が低下する。仮に溶融押出過程における繊維の折損を抑えられたとしても、長繊維強化樹脂を押し出すことになるため、成形性が低く、装置の機械的損傷も大きいという問題がある。炭素繊維の直径は適宜採択が可能であるが、5μm~18μmが好ましい。例えば、一本の炭素繊維の太さはPAN系で5~7μm、ピッチ系で10~15μmが例示される。 When the average fiber length of the carbon fiber is less than 0.05 mm, the tensile strength and impact strength of the extruded material made of carbon fiber reinforced resin are lowered, and when the average fiber length exceeds 3 mm, the melt viscosity is increased and the moldability is lowered. Not only that, the fiber breaks during the melt extrusion process, and the fiber length varies, so the quality of the extruded material decreases. Even if the fiber breakage in the melt extrusion process is suppressed, the long fiber reinforced resin is extruded, so that there is a problem that the moldability is low and the mechanical damage of the apparatus is large. The diameter of the carbon fiber can be appropriately selected, but is preferably 5 μm to 18 μm. For example, the thickness of one carbon fiber may be 5 to 7 μm for a PAN system and 10 to 15 μm for a pitch system.
 炭素繊維が10w/w%を下回る押出材は強度が十分ではなく、一方、炭素繊維含量が50w/w%を超えると溶融押出機のスクリューの損傷や押出圧力の上昇を招くなど成形が難しいほか、得られる押出材の靭性が低下して折れ易くなり、2次加工時の支障になるおそれがある。押出方向に対する前記炭素繊維の配向角が7°を超えると、配向性のばらつきによる押出材の内部応力の不均化により、押出材のサイズのばらつきや、成形歪を生じる原因となる。 Extruded materials with carbon fibers below 10 w / w% are not strong enough. On the other hand, if the carbon fiber content exceeds 50 w / w%, molding is difficult due to damage to the screw of the melt extruder and increased extrusion pressure. The toughness of the extruded material thus obtained is likely to be broken and may become a hindrance during secondary processing. When the orientation angle of the carbon fiber with respect to the extrusion direction exceeds 7 °, it causes unevenness in the size of the extruded material and molding distortion due to disproportionation of the internal stress of the extruded material due to variation in orientation.
 前記樹脂がポリアミド(PA)系樹脂、アクリロニトリル・ブタジエン・スチレン共重合(ABS)系樹脂、ポリカーボネート(PC)系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、ポリプロピレン(PP)系樹脂、ポリエーテルイミド(PEI)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリエーテルケトンケトン(PEKK)系樹脂であることが好ましい。繊維強化樹脂は新品でもリサイクル品でもいずれでもよい。ここで言うリサイクル品とは、回収品、未利用端材、およびそれらの破砕材、さらに再生品をいう。また、これらをペレット化したものを再生ペレットと称する。材質としては、例えば、CFRTP、例えばPA66CF20、PA66CF30が挙げられる。 The resin is polyamide (PA) resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin, polypropylene (PP) resin, polyetherimide (PEI). ) Resin, polyethylene terephthalate (PET) resin, polyether ether ketone (PEEK) resin, and polyether ketone ketone (PEKK) resin. The fiber reinforced resin may be new or recycled. The recycled product as used herein refers to recovered products, unused mill ends, crushed materials thereof, and recycled products. Moreover, what pelletized these is called a reproduction | regeneration pellet. Examples of the material include CFRTP, such as PA66CF20 and PA66CF30.
 前記ポリアミド系樹脂がナイロン6、ナイロン66、ナイロン610、ナイロン612から選ばれる少なくとも1種であることが好ましい。 The polyamide-based resin is preferably at least one selected from nylon 6, nylon 66, nylon 610, and nylon 612.
 炭素繊維の配向は繊維強化樹脂押出材を切断し、その切断面について顕微鏡を利用して観察し、演算処理により算出することが例示される。 The orientation of the carbon fiber is exemplified by cutting the fiber reinforced resin extruded material, observing the cut surface using a microscope, and calculating by calculation processing.
 前記炭素繊維はPAN系(ポリアクリルニトリル繊維が原料)、ピッチ系(コールタールなど石油系が原料)のいずれの炭素繊維でもよく、また炭素繊維と他の繊維との複合繊維でもよい。押出材の柔軟性を高めるための機能剤を含有させてもよい。 The carbon fiber may be PAN-based (polyacrylonitrile fiber is a raw material) or pitch-based (coal tar or other petroleum-based carbon fiber), or a composite fiber of carbon fiber and other fibers. You may contain the functional agent for improving the softness | flexibility of an extrusion material.
 押出材がモノフィラメント等の線材の場合、線材軸方向に対して垂直な断面が丸形、多角形、矩形、楕円形等である線材が含まれる。 When the extruded material is a wire material such as a monofilament, a wire material whose cross section perpendicular to the wire material axis direction is round, polygonal, rectangular, elliptical or the like is included.
 本発明は、押出材である線材を複数本束ねて圧着し、成形したシート状、または長尺状の短炭素繊維配向性成形体を含むものである。 The present invention includes a sheet-shaped or long-shaped short carbon fiber-oriented molded body obtained by bundling and crimping a plurality of wires that are extruded materials.
 押出材である線材を含むシート材には、本発明による強化短炭素繊維が長軸方向に配向した線材の複数本を一方向に束ねた後、線材を構成する樹脂が融着する温度で圧接する短炭素繊維面内一方向シートが含まれる。 The sheet material including the wire material that is an extruded material is pressed at a temperature at which the resin constituting the wire material is fused after a plurality of wire materials in which the reinforcing short carbon fibers according to the present invention are oriented in the long axis direction are bundled in one direction. A short carbon fiber in-plane unidirectional sheet is included.
 押出材である線材を含むシート材には、本発明による強化短炭素繊維が長軸方向に配向した線材を縦糸、横糸、斜糸に用いた織物や、編物にした後、線材を構成する樹脂が融着する温度で圧接するシート等が含まれる。 The sheet material including the wire material that is an extruded material is a resin constituting the wire material after the wire material in which the reinforced short carbon fibers according to the present invention are oriented in the major axis direction is used as a woven or knitted fabric for warp, weft, and diagonal yarns. The sheet | seat etc. which press-contact at the temperature which melt | fuses are included.
 押出材である線材を含むシート材には、図2のように、押出方向に配向した線材を0/90°の組合せ角度で積層した例も含まれる。積層する線材の組合せ角度は、最終製品に必要な強度方向に応じた角度にすることが可能である。また、全方位に亘って、線材を組み合わせれば、等方的繊維配向材料を製造することも可能である。 As shown in FIG. 2, the sheet material including the wire material that is an extruded material includes an example in which wire materials oriented in the extrusion direction are laminated at a combination angle of 0/90 °. The combination angle of the wire rods to be laminated can be an angle corresponding to the strength direction required for the final product. Also, isotropic fiber alignment materials can be produced by combining wire rods in all directions.
 図2において、積層数を少なくすることによってシート材に、積層数を多くすることによって板、または棒材を成形することができる。 In FIG. 2, it is possible to form a sheet or a bar by increasing the number of layers to a sheet material by decreasing the number of layers.
 押出材がシート材の場合、短炭素繊維を10~50w/w%含有する再生ペレットを短炭素繊維含量、繊維長をほぼ維持したまま溶融押出成形して得られる短繊維配向性の炭素繊維強化樹脂シート材(Carbon Fiber Alignment Stampable Sheet)を積層させた板材、あるいは積層成形体(Sheet Molding Compound)とすることも可能である。 When the extruded material is a sheet material, carbon fiber reinforcement with short fiber orientation obtained by melt extrusion molding of regenerated pellets containing 10-50 w / w% short carbon fiber while maintaining the short carbon fiber content and fiber length almost It is also possible to use a plate material obtained by laminating resin sheet materials (Carbon Fiber Alignment Material Stampable Sheet) or a laminated molded product (Sheet Molding Material).
 本発明において強化短炭素繊維が長軸方向に配向した線材を融着させる目的で、必要に応じて外部からマトリックス樹脂を含浸させても良い。その場合に用いるマトリックス樹脂は基本的には線材を構成する熱可塑性樹脂と同じものであるが、強度や柔軟性を改善するために、例えばABSゴム、高密度ポリエチレン等の物質を加えても良い。 In the present invention, a matrix resin may be impregnated from the outside as necessary for the purpose of fusing a wire in which reinforced short carbon fibers are oriented in the major axis direction. The matrix resin used in that case is basically the same as the thermoplastic resin constituting the wire, but a substance such as ABS rubber or high-density polyethylene may be added to improve strength and flexibility. .
 本発明による強化短炭素繊維が長軸方向に配向した線材は、熱硬化性のマトリックス樹脂を含浸させ、繊維強化プラスチックとすることも可能である。その場合の熱硬化性樹脂としては、エポキシ樹脂、シリコン樹脂等であり、熱可塑性樹脂と熱硬化性樹脂との相溶化剤を用いることもできる。 The wire material in which the reinforced short carbon fibers according to the present invention are oriented in the major axis direction can be impregnated with a thermosetting matrix resin to form a fiber reinforced plastic. In this case, the thermosetting resin is an epoxy resin, a silicon resin, or the like, and a compatibilizing agent of a thermoplastic resin and a thermosetting resin can also be used.
 本発明の第2の発明は、強化用短繊維である炭素繊維を10~50w/w%含み、該炭素繊維がランダムに配向した繊維強化樹脂のペレットまたは炭素繊維強化樹脂の破砕材を溶融押出機に投入し、スクリュー回転数10~100r.p.m.で押出材を溶融押し出しすることにより、平均繊維長が0.05~3mmの炭素繊維を、10~50w/w%含む強化用短繊維が押出方向に配向する押出材を押し出す溶融押出工程と、前記溶融押出した押出材を冷却固化する冷却固化工程と、を備え、前記冷却固化された押出材が、線材またはシート材であり、平均繊維長が0.05~3mmの強化用短繊維である炭素繊維を10~50w/w%、樹脂を50~90w/w%含み、押出方向に対する前記炭素繊維の配向角を0~7°とすることを特徴とする炭素繊維強化樹脂製押出材の製造方法である。 According to a second aspect of the present invention, a fiber reinforced resin pellet or a carbon fiber reinforced resin crushed material containing 10 to 50 w / w% carbon fiber, which is a short fiber for reinforcing, is randomly extruded. The extruded short fiber for reinforcement containing 10 to 50 w / w% of carbon fiber with an average fiber length of 0.05 to 3 mm is extruded by melting and extruding the extruded material at a screw rotation speed of 10 to 100 rpm. A melt extrusion process for extruding the extruded material oriented in the direction, and a cooling and solidifying process for cooling and solidifying the melt-extruded extruded material, and the cooled and solidified extruded material is a wire or a sheet material, and has an average fiber length 10 to 50 w / w% carbon fiber which is a reinforcing short fiber having a thickness of 0.05 to 3 mm, 50 to 90 w / w% resin, and the orientation angle of the carbon fiber with respect to the extrusion direction is 0 to 7 °. Characterized by carbon A method for producing a fiber-reinforced resin extruded material.
 前記溶融押出工程において、強化繊維の折損を抑えるためには、溶融樹脂のレイノルズ数Reが10-6~10、さらに好ましくは10-5~1の範囲内で溶融押出しすることが好ましい。 In the melt extrusion step, in order to suppress breakage of the reinforcing fibers, it is preferable that the melt resin is melt extruded in a range of Reynolds number Re of 10 −6 to 10, more preferably 10 −5 to 1.
 樹脂マトリックス中で炭素繊維が配向するためには、溶融樹脂が層流で吐出ノズルを通過することが重要である。吐出ノズル内の溶融樹脂の流れを表す指標として、レイノルズ数Reが知られている。レイノルズ数Reがある値以下であれば層流となり、これがある値を超えれば乱流となることが知られている。層流が乱流に遷移するときのレイノルズ数を限界レイノルズ数という。例として、円管内の流れでは2,300~4,000であることが知られている。レイノルズ数Reが限界レイノルズ数以下であれば層流になり、それ以上であると乱流になるといわれている。レイノルズ数Reは、次式で示される。
(数1)
 Re=(V*a*ρ)/μ
In order for the carbon fibers to be oriented in the resin matrix, it is important that the molten resin passes through the discharge nozzle in a laminar flow. The Reynolds number Re is known as an index representing the flow of molten resin in the discharge nozzle. It is known that if the Reynolds number Re is less than a certain value, it becomes laminar flow, and if this exceeds a certain value, it becomes turbulent flow. The Reynolds number when laminar flow transitions to turbulent flow is called the critical Reynolds number. As an example, it is known that the flow in a circular pipe is 2,300 to 4,000. It is said that if the Reynolds number Re is equal to or less than the limit Reynolds number, the flow becomes laminar, and if the Reynolds number Re is higher than that, the flow becomes turbulent. The Reynolds number Re is expressed by the following equation.
(Equation 1)
Re = (V * a * ρ) / μ
 ここで、*は掛算を示す記号、V(m/s)は溶融樹脂の平均速度、a(m)は吐出ノズルの管内径、ρ(kg/m3)は溶融樹脂の密度、μ(kg/(m・s))は溶融樹脂の粘性係数で表される。 Here, * is a symbol indicating multiplication, V (m / s) is the average speed of the molten resin, a (m) is the tube inner diameter of the discharge nozzle, ρ (kg / m 3 ) is the density of the molten resin, μ (kg / (M · s)) is expressed by the viscosity coefficient of the molten resin.
 前記冷却固化された押出材が線材またはシート材であり、当該線材またはシート材をプレス機に敷き詰め、熱プレスにより、シート材に形成するシート材成形工程を備えることが好ましい。 The cooled and solidified extruded material is preferably a wire material or a sheet material, and is preferably provided with a sheet material forming step in which the wire material or sheet material is spread on a press and formed into a sheet material by hot pressing.
 例えば、図2のように線材を積層後、マトリックス材として例えば線材成分と同じ樹脂を線材束の隙間を埋めるように浸漬し、さらにホットプレス成形することによって、短炭素繊維が特定方向に配向した繊維強化プリプレグ(シート状の中間素材)を作製する製法が可能である。 For example, after laminating the wires as shown in FIG. 2, the short carbon fibers are oriented in a specific direction by immersing the same resin as the wire component, for example, as a matrix material so as to fill the gaps of the wire bundle, and further hot pressing. A production method for producing a fiber reinforced prepreg (sheet-like intermediate material) is possible.
 前記繊維強化プリプレグは、スタンパブルシート、プレス加工用コンポジットの成形用材料として利用することができる。 The fiber-reinforced prepreg can be used as a molding material for stampable sheets and composites for press working.
 前記樹脂には、炭素繊維強化樹脂製押出材と同様に、前記製造方法においても、ポリアミド(PA)系樹脂、アクリロニトリル・ブタジエン・スチレン共重合(ABS)系樹脂、ポリカーボネート(PC)系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、ポリプロピレン(PP)系樹脂、ポリエーテルイミド(PEI)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリエーテルケトンケトン(PEKK)系樹脂等の熱可塑性樹脂が例示され、該樹脂を炭素繊維で充填し強化した炭素繊維強化樹脂を採用できる。 The resin includes the polyamide (PA) resin, the acrylonitrile / butadiene / styrene copolymer (ABS) resin, the polycarbonate (PC) resin, the polyphenylene as well as the extruded material made of carbon fiber reinforced resin. Sulfide (PPS) resin, polypropylene (PP) resin, polyetherimide (PEI) resin, polyethylene terephthalate (PET) resin, polyether ether ketone (PEEK) resin, polyether ketone ketone (PEKK) resin Examples of such a thermoplastic resin include carbon fiber reinforced resin filled with carbon fiber and reinforced.
 樹脂に対して短炭素繊維を10w/w%~50w/w%含有する炭素繊維強化熱可塑性樹脂から強化短炭素繊維とマトリクス樹脂とを分離することなく、該短炭素繊維強化樹脂を溶融押出成形することにより、樹脂50w/w~90w/w%に対して短炭素繊維を10w/w~50w/w%含有し、該短繊維が繊維により、押出方向に配向することが特徴である。 The short carbon fiber reinforced resin is melt-extruded without separating the reinforced short carbon fiber and the matrix resin from the carbon fiber reinforced thermoplastic resin containing 10 w / w% to 50 w / w% of short carbon fiber relative to the resin. Thus, the short carbon fibers are contained in an amount of 10 w / w to 50 w / w% with respect to 50 w / w to 90 w / w% of the resin, and the short fibers are characterized by being oriented in the extrusion direction by the fibers.
 前記冷却固化された押出材がシート材の場合、樹脂に対して短炭素繊維を10w/w%~50w/w%含有する炭素繊維強化熱可塑性樹脂溶融溶液を、層流状態を保ちながらスリット型吐出口から押出し、該短炭素繊維を平面内の一方向に配向させる。 When the cooled and solidified extruded material is a sheet material, a slit-type carbon fiber reinforced thermoplastic resin melt solution containing 10 w / w% to 50 w / w% of short carbon fibers is kept in a laminar flow state with respect to the resin. The short carbon fiber is extruded from the discharge port and oriented in one direction in the plane.
 この方法で成形された、短炭素繊維配向性の炭素繊維強化シート材をそのまま、あるいは、適当な大きさにカットし、各シートの繊維配向性を適宜ランダムになるように積層させた積層体を製造できる。この積層体は、曲面や屈曲面を有する構造体の型面上に沿わせた素材として利用できる。各シートの繊維配向性が異なり、積層体全体としては、繊維は主要な全方位に配向しているため、主要な全方位において高い強度を有する。また、最終製品が特定の方向に強度が必要な場合は、各シートの配向性を適宜調整して積層することができる。 A laminate in which the carbon fiber reinforced sheet material with short carbon fiber orientation formed by this method is directly or cut into an appropriate size and laminated so that the fiber orientation of each sheet is appropriately random. Can be manufactured. This laminate can be used as a material along the mold surface of a structure having a curved surface or a bent surface. The fiber orientation of each sheet is different, and the fiber as a whole of the laminate has high strength in all major directions because the fibers are oriented in all major directions. In addition, when the final product needs strength in a specific direction, the orientation of each sheet can be appropriately adjusted and laminated.
 炭素繊維強化樹脂製押出材の製造方法は、更に、前記ペレットが、ポリアミド(PA)系樹脂、アクリロニトリル・ブタジエン・スチレン共重合(ABS)系樹脂、ポリカーボネート(PC)系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、ポリプロピレン(PP)系樹脂、ポリエーテルイミド(PEI)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリエーテルケトンケトン(PEKK)系樹脂を炭素繊維で充填し強化した炭素繊維強化樹脂を破砕し、溶融温度200~320℃で、セミフライト型又はフルフライト型スクリューを有する溶融押出機に投入し押出材を押し出し、該押出材を切断することにより製造されるぺレット成形工程を備えることが好ましい。 In the method for producing the extruded material made of carbon fiber reinforced resin, the pellets may be polyamide (PA) resin, acrylonitrile / butadiene / styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS). Carbon fiber, polypropylene resin (PP) resin, polyetherimide (PEI) resin, polyethylene terephthalate (PET) resin, polyether ether ketone (PEEK) resin, polyether ketone ketone (PEKK) resin Manufactured by crushing the filled and reinforced carbon fiber reinforced resin, putting it into a melt extruder having a semiflight type or full flight type screw at a melting temperature of 200 to 320 ° C, extruding the extruded material, and cutting the extruded material It is preferable to have a pellet forming step
 このペレット成形工程により、炭素繊維強化樹脂製品の廃品を破砕し、溶融押出により再生ペレットを得て、該再生ペレットを溶融押出成形することにより、該短繊維が押出方向に配向する。廃品例としてはOA部品、自動車部品、電機部品等の樹脂部品が例示される。 In this pellet forming step, waste products of carbon fiber reinforced resin products are crushed, regenerated pellets are obtained by melt extrusion, and the regenerated pellets are melt extruded to orient the short fibers in the extrusion direction. Examples of waste products include resin parts such as OA parts, automobile parts, and electric parts.
 本発明は、廃品の破砕材を溶融状態で十分に混練し、再生ペレットの作製を経ず直接溶融押出成形する方法も含む。この方法によっても、該短繊維が押出方向に配向するので好適である。 The present invention also includes a method in which waste crushed material is sufficiently kneaded in a molten state and directly melt extruded without producing recycled pellets. This method is also preferable because the short fibers are oriented in the extrusion direction.
 本発明は短炭素繊維が繊維長軸方向に配向した複合基材であり、織物、編物、シート材、板材、棒材などへの成形加工用原材料として利用できる。 The present invention is a composite base material in which short carbon fibers are oriented in the fiber major axis direction, and can be used as a raw material for molding into woven fabrics, knitted fabrics, sheet materials, plate materials, bar materials and the like.
 本発明により、押出方向に強化炭素繊維が配向し、特定方向に強度の高い炭素繊維強化樹脂製押出材を、低コストで、かつ効率的に提供できる。また、繊維が配向した押出材を、角度を調整して積層または組み合わせることにより、必要な方向、または主要な全方位に等方的に強度の高い最終製品を得ることができる。また、炭素繊維強化樹脂製の廃品を再利用することにより、更に安価に押出材を提供できる。 According to the present invention, it is possible to efficiently provide an extruded material made of carbon fiber reinforced resin in which reinforced carbon fibers are oriented in the extrusion direction and high in strength in a specific direction at low cost. In addition, by stacking or combining the extruded materials in which the fibers are oriented at an angle, it is possible to obtain a final product that is isotropically high in the required direction or in all major directions. Further, by reusing the waste product made of carbon fiber reinforced resin, the extruded material can be provided at a lower cost.
本発明実施形態の短炭繊維一方向配向樹脂強化線材Fの概念図と写真図である。It is the conceptual diagram and photograph of the short-carbon fiber unidirectionally oriented resin reinforced wire F of this invention embodiment. 本発明実施形態の線材を利用するプリプレグ(シート状中間素材)の説明図である。It is explanatory drawing of the prepreg (sheet-like intermediate material) using the wire of embodiment of this invention. (a)~(d)は、溶融押出機の口金の断面形状を示す断面図である。(A)-(d) is sectional drawing which shows the cross-sectional shape of the nozzle | cap | die of a melt extruder. 本発明実施形態の線材FのX線回折パターンの撮像図である。It is an imaging figure of the X-ray diffraction pattern of the wire F of embodiment of this invention. 同じくペレット中の炭素繊維の繊維長分布図である。It is the fiber length distribution map of the carbon fiber in a pellet similarly. 同じく線材F中の炭素繊維の繊維長分布図である。It is the fiber length distribution map of the carbon fiber in the wire F similarly.
 本発明の実施形態の炭素繊維を線材長軸方向に配向した線材Fとその製造方法、およびその線材Fを利用したシート材等について図面を参照し説明する。 DETAILED DESCRIPTION OF THE INVENTION A wire F obtained by orienting carbon fibers according to an embodiment of the present invention in the longitudinal direction of the wire, a manufacturing method thereof, a sheet material using the wire F and the like will be described with reference to the drawings.
 本実施形態の線材Fは、炭素繊維強化熱可塑性樹脂であるCFRTPの押出材の一例である線材であり、平均繊維長0.05~3mm、直径5~18μmの炭素繊維Cを20重量%、樹脂Pを80重量%で含有し、線材長軸方向Xに対する炭素繊維Cの配向角を0~7°、好ましくは、0~4°とするものである。図1に示すとおり、炭素繊維Cが線材長軸方向Xに一方向に配向することが特徴である。 The wire F of the present embodiment is a wire that is an example of an extruded material of CFRTP that is a carbon fiber-reinforced thermoplastic resin, and 20% by weight of carbon fiber C having an average fiber length of 0.05 to 3 mm and a diameter of 5 to 18 μm, The resin P is contained at 80% by weight, and the orientation angle of the carbon fiber C with respect to the long axis direction X of the wire is 0 to 7 °, preferably 0 to 4 °. As shown in FIG. 1, the carbon fiber C is characterized by being oriented in one direction in the wire major axis direction X.
 炭素繊維強化樹脂は新品でもリサイクル品でもよい。また、本実施形態の線材Fの断面形状は、略円形のほか、楕円形、三角形、四角形、五角形などの多角形、矩形、その他異形などが挙げられ、特に限定されない。しかし、線材Fの直径が細すぎると工業用ブラシ用毛材として用いる場合には毛腰が弱すぎて研磨性や強度が低下し、太すぎると毛腰が強すぎるためにブラシ植毛が困難となり、また均一性が低下する。したがって、線材Fの直径は0.2~1.5mm、特に0.4~1.0mmが好ましい。 Carbon fiber reinforced resin may be new or recycled. In addition, the cross-sectional shape of the wire F of the present embodiment includes not only a substantially circular shape, but also an elliptical shape, a triangular shape, a quadrangular shape such as a quadrangular shape, a pentagonal shape, a rectangular shape, and other irregular shapes. However, when the diameter of the wire F is too thin, when used as a hair material for industrial brushes, the hair and hips are too weak and the polishing and strength are lowered. In addition, the uniformity is reduced. Therefore, the diameter of the wire F is preferably 0.2 to 1.5 mm, particularly preferably 0.4 to 1.0 mm.
 線材Fをシート材、棒材などの加工用線材として用いる場合は、用途に合わせた太さ、例えば1.5~10.0mmのストランド(紐)にすることもできる。 When the wire material F is used as a processing wire material such as a sheet material or a rod material, it can be formed into a strand (string) having a thickness suitable for the application, for example, 1.5 to 10.0 mm.
 線材Fを束ねて積層または織編してシート状に組んだものをそのまま、若しくはマトリックス樹脂を浸漬し、熱プレス加工したプリプレグ(シート状の中間素材)とすることもできる。 It is also possible to use a prepreg (sheet-like intermediate material) that is obtained by bundling the wire F and laminating or weaving and knitting it into a sheet shape, or by dipping a matrix resin and hot-pressing it.
 また、例えば、図2のように、押出方向に配向した線材Fを0/90°の組合せ角度で積層してプレス機に敷き詰め、熱プレスすることにより、シート状、板状のプリプレグとすることも可能である。積層する線材の組合せ角度は、0/90°に限定されず、最終製品に必要な強度方向に応じた角度にすることが可能である。また、主要な全方位に亘って、線材を組み合わせれば、等方的繊維配向材料を製造することも可能である。 Also, for example, as shown in FIG. 2, the wire F oriented in the extrusion direction is laminated at a combination angle of 0/90 °, spread on a press, and hot pressed to form a sheet-like or plate-like prepreg. Is also possible. The combination angle of the laminated wires is not limited to 0/90 °, and can be set to an angle according to the strength direction required for the final product. In addition, isotropic fiber alignment materials can be produced by combining wire rods in all major directions.
 本実施形態の線材Fの製造方法は、強化用短繊維である炭素繊維を10~50w/w%含み、該炭素繊維がランダムに配向した炭素繊維強化樹脂(CFRP、例えばPA66CF20等)ペレットを溶融押出機に投入し、温度200~320℃で溶融し、スクリュー回転数10~200r.p.mで線材を溶融押し出しすることにより、平均繊維長が0.05~3mm、直径5~18μmの炭素繊維を、10~50w/w%含む強化用短繊維が線材長軸方向に配向する線材を押し出す溶融押出工程と、前記溶融押出した線材を冷却固化する工程と、を備える。押出された溶融混合物は冷却浴で冷却固化された後、巻取り機による巻取りが行われる。そのままの状態から成形品に成形し、利用も可能であるが、必要に応じて、延伸処理、加熱延伸処理、熱処理がされてもよい。温度200~320℃で溶融することには限定されない。樹脂の溶融温度は樹脂の種類によって様々だからである。樹脂の融点から60℃上を上限温度とする場合がある。また、温度を高温にし過ぎると樹脂の熱劣化を招くので好ましくない。 The manufacturing method of the wire F according to the present embodiment melts carbon fiber reinforced resin (CFRP, for example, PA66CF20, etc.) pellets containing 10-50 w / w% of carbon fibers, which are reinforcing short fibers, in which the carbon fibers are randomly oriented. It was put into an extruder and melted at a temperature of 200 to 320 ° C. p. By melting and extruding the wire at m, a reinforcing material short fiber for reinforcing containing 10 to 50 w / w% of carbon fiber having an average fiber length of 0.05 to 3 mm and a diameter of 5 to 18 μm is oriented in the longitudinal direction of the wire. A melt extrusion step of extruding, and a step of cooling and solidifying the melt-extruded wire. The extruded molten mixture is cooled and solidified in a cooling bath, and then wound by a winder. Although it can be molded and used as it is from the state as it is, it may be subjected to stretching treatment, heat stretching treatment, and heat treatment as necessary. It is not limited to melting at a temperature of 200 to 320 ° C. This is because the melting temperature of the resin varies depending on the type of resin. In some cases, the upper limit temperature may be 60 ° C. above the melting point of the resin. Further, if the temperature is too high, the resin is thermally deteriorated, which is not preferable.
 前記溶融押出工程において、溶融樹脂の速度Vはせいぜい0.1~10m/sの範囲内である。溶融樹脂、例えば、ナイロンの粘性係数は、例えば、250~300℃において、ナイロンのグレードおよびせん断速度を変更しても、50~1000kg/(m・s)の範囲内である。このため、管内径が0.25×10-3~5×10-3mである吐出ノズルの内部を流れる樹脂は、上記数式1のレイノルズ数Reの値が2.7×10-5~1.1×10となる。そこで、その範囲について、さらに説明する。 In the melt extrusion process, the speed V of the molten resin is at most within a range of 0.1 to 10 m / s. The viscosity coefficient of the molten resin, for example, nylon is within the range of 50 to 1000 kg / (m · s), for example, at 250 to 300 ° C., even if the nylon grade and shear rate are changed. Therefore, the resin flowing inside the discharge nozzle having a tube inner diameter of 0.25 × 10 −3 to 5 × 10 −3 m has a Reynolds number Re value of 2.7 × 10 −5 to 1 in Equation 1 above. a .1 × 10 0. Therefore, the range will be further described.
 レイノルズ数Reを小さくするためには、吐出ノズルからの溶融樹脂の吐出速度を下げるか、高粘度化するために溶融樹脂の温度を下げるかの選択肢があるが、たとえ、レイノルズ数Reが層流条件を満たしていても、押出材の生産性が低下するだけでなく、樹脂の溶融状態が不均一になるため、押出材の吐出ノズルからの吐出が不安定となり品質の不均質化を招くことになる。 In order to reduce the Reynolds number Re, there are options of lowering the discharge speed of the molten resin from the discharge nozzle or lowering the temperature of the molten resin in order to increase the viscosity. Even if the conditions are met, not only the productivity of the extruded material is reduced, but also the molten state of the resin becomes non-uniform, so the discharge from the discharge nozzle of the extruded material becomes unstable, leading to inhomogeneous quality. become.
 一方、レイノルズ数Reを大きくして溶融押出すると、溶融樹脂の吐出速度を上げるために高圧で溶融押出しするか、溶融温度を高温にして粘度を下げる選択肢があるが、たとえ、層流条件を満たしていても、強化繊維の折損、設備の耐圧強化、摩耗損傷、樹脂の熱劣化等を招くので好ましくない。 On the other hand, when melt extrusion is performed with a large Reynolds number Re, there are options to melt extrusion at a high pressure to increase the discharge rate of the molten resin, or to lower the viscosity by increasing the melting temperature. However, it is not preferable because it causes breakage of reinforcing fibers, pressure-resistant reinforcement of equipment, wear damage, thermal deterioration of resin, and the like.
 そこで、かかる事情を考慮すると、溶融樹脂の速度Vはせいぜい0.1~1m/sの範囲内であり、粘性係数も、例えば、250~300℃において、ナイロンの場合、グレードおよびせん断速度を変更しても、50~2000kg/(m・s)の範囲内である。このため、管内径が0.25×10-3~5×10-3mである吐出ノズルの内部を流れる溶融樹脂では、上記数式1のReの値は、10-6~10、さらに好ましくは、10-5~1の範囲内となる。 Therefore, in consideration of such circumstances, the velocity V of the molten resin is at most within a range of 0.1 to 1 m / s, and the viscosity coefficient also changes, for example, at 250 to 300 ° C., in the case of nylon, the grade and the shear rate. Even within the range of 50 to 2000 kg / (m · s). For this reason, in a molten resin flowing inside a discharge nozzle having a tube inner diameter of 0.25 × 10 −3 to 5 × 10 −3 m, the value of Re in the above equation 1 is 10 −6 to 10, more preferably , In the range of 10 -5 to 1.
 図3(a)~(d)に示すとおり、溶融押出成形機の吐出ノズルの吐出口断面の形状は、用途に応じて、種々なる態様で実施可能である。例えば、(a)の吐出ノズル1では円形孔1aで断面丸形のモノフィラメントが押し出され、(b)の吐出ノズル2では2孔の円形孔2aで断面丸形のモノフィラメントが2本押し出され、(c)の吐出ノズル3では複数の線形孔3aにより押し出された複数本の樹脂が結合し、結果として、断面四角形の薄型シート材が押し出される。(d)の吐出ノズル4では、ノズルの円形孔4aから侵入した樹脂が、傾斜面を経てノズルの吐出側のスリット型吐出口4b(例えば厚み1mm、幅10mm)から押し出されることによって、シート材が押し出される。 As shown in FIGS. 3A to 3D, the shape of the discharge port section of the discharge nozzle of the melt extrusion molding machine can be implemented in various modes depending on the application. For example, in the discharge nozzle 1 of (a), a circular monofilament is extruded through the circular hole 1a, and in the discharge nozzle 2 of (b), two monofilaments having a circular cross section are extruded through the two circular holes 2a. In the discharge nozzle 3 of c), a plurality of resins extruded through the plurality of linear holes 3a are combined, and as a result, a thin sheet material having a square cross section is extruded. In the discharge nozzle 4 of (d), the resin that has entered from the circular hole 4a of the nozzle is extruded from a slit-type discharge port 4b (for example, 1 mm thick, 10 mm wide) on the discharge side of the nozzle through an inclined surface, thereby forming a sheet material. Is pushed out.
 再生ペレットを利用する場合、炭素繊維強化樹脂の廃品を破砕し、溶融押出により、再生ペレットに加工するペレット成形工程を含み、前記再生ペレットを前記溶融押出工程で前記の溶融押出機に投入する。 When using regenerated pellets, a carbon fiber reinforced resin waste product is crushed and melt-extruded to form a recycle pellet, and the recycle pellet is fed into the melt extruder in the melt extrusion step.
 前記ペレット成形工程においては、樹脂Pがポリアミド系樹脂の一種である炭素繊維強化樹脂のCFRPからなるOA樹脂部品等の廃品から部位を切削・破砕し、セミフライト型又はフルフライト型スクリューを有する溶融押出機による押出を行い、再生ペレットとする。再生ペレットと新品ペレットを切断し、切断面を顕微鏡写真で観察すると、炭素繊維Cの繊維長に著しい相違は見られず、溶融押出過程での炭素繊維の折損はほとんど見られなかった。 In the pellet molding step, the resin P is cut and crushed from waste products such as OA resin parts made of carbon fiber reinforced resin CFRP, which is a kind of polyamide resin, and melted with a semiflight type or full flight type screw. Extrusion by an extruder is performed to obtain recycled pellets. When the regenerated pellet and the new pellet were cut and the cut surface was observed with a micrograph, there was no significant difference in the fiber length of the carbon fiber C, and there was almost no breakage of the carbon fiber during the melt extrusion process.
 また、再生ペレットを利用せず、すなわち、廃品の破砕材をペレット成形工程を経ずにそのまま前記溶融押出機に投入し溶融押出することも可能である。この場合、前記溶融押出工程で十分に混練する必要がある。ペレット成形工程を経ずに、溶融押出すれば、成形工程が簡素化でき、好適である。 It is also possible to use recycled pellets without using recycled pellets, that is, throw the waste crushing material into the melt extruder as it is without going through the pellet forming step. In this case, it is necessary to sufficiently knead in the melt extrusion step. If melt extrusion is performed without going through the pellet forming step, the forming step can be simplified, which is preferable.
 再生ペレットを用いて押出成形した線材Fの場合も、廃品の破砕材をペレット化せずにそのまま押出成形した線材Fの場合も、炭素繊維Cの長軸が吐出ノズルからの吐出過程で線材の表面のみならず内部においても線材長軸方向Xに強く配向し、配向角が0~7°であることが確認された。 In the case of the wire F extruded using recycled pellets and the wire F obtained by extruding the waste crushing material as it is without being pelletized, the long axis of the carbon fiber C is in the process of discharging from the discharge nozzle. It was confirmed that not only on the surface but also inside, it was strongly oriented in the wire major axis direction X and the orientation angle was 0 to 7 °.
 ポリアミド系樹脂として、ナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン12、ナイロン6/66共重合体が挙げられるので、適宜、選択する。 Examples of the polyamide-based resin include nylon 6, nylon 66, nylon 610, nylon 612, nylon 12, and nylon 6/66 copolymer, which are appropriately selected.
 本実施形態の線材Fは、引張強さが高く、複数本束ねることにより、その数にほぼ比例した引張力の強度向上が期待できるので、構造部材用複合成形材の基材として有用性が高い。 The wire F of the present embodiment has a high tensile strength, and by bundling a plurality of wires, it can be expected to improve the strength of the tensile force substantially proportional to the number of the wires, so that it is highly useful as a base material for a composite molded material for structural members. .
 以下に、実施例及び比較例を挙げて、本発明の線材Fの構成及び効果をさらに詳しく説明する。なお、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。上記及び以下の実施例における線材Fの特性の評価は次の方法により行った。 Hereinafter, the configuration and effects of the wire rod F of the present invention will be described in more detail with reference to examples and comparative examples. It should be noted that the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Evaluation of the characteristics of the wire F in the above and following examples was performed by the following method.
 [ペレット、線材中の炭素繊維平均繊維長の測定]
 ペレットまたは線材をサンプルとして約5gを切り出し、エアパージしながら酸化減量しない温度である500℃に加熱することにより、マトリックス樹脂を熱分解し、炭素繊維を分別した。デジタルマイクロスコープにより無作為に各200本選び出し、その長さを1μm単位まで測定し、繊維長分布曲線を作成し、平均繊維長を求めた。
[Measurement of average fiber length of carbon fiber in pellets and wire]
About 5 g was cut out using pellets or wire as a sample, and heated to 500 ° C., which is a temperature at which no oxidization is reduced while purging with air, thereby thermally decomposing the matrix resin and fractionating the carbon fibers. Each sample was selected at random by a digital microscope, the length was measured to the 1 μm unit, a fiber length distribution curve was created, and the average fiber length was determined.
 [線材中の炭素繊維の平均配向度の測定] 
 A法)原料ペレット、およびそれを用いて得られた線材について、原料ペレット破断面、線材F表面、線材F破断面をハイロックス社製デジタルマイクロスコープ 形式HI-SCOPE Advanced KH-3000により観察し、線材F中の炭素繊維の配向が一方向で角度が0~7°であることを確認した。また、原料ペレット中の強化炭素繊維がランダムに配向している事を確認した。
 B法)線材FのX線回折像を解析する方法で、強化短炭素繊維のおおよその配向性を確認した。
[Measurement of average degree of orientation of carbon fibers in wire]
Method A) For raw material pellets and wire rods obtained using them, observe the raw material pellet fracture surface, wire F surface, wire F fracture surface with Hilox Digital Microscope Model HI-SCOPE Advanced KH-3000, It was confirmed that the orientation of the carbon fibers in the wire F was one direction and the angle was 0 to 7 °. It was also confirmed that the reinforcing carbon fibers in the raw material pellets were randomly oriented.
B Method) By analyzing the X-ray diffraction image of the wire F, the approximate orientation of the reinforced short carbon fiber was confirmed.
 [破砕材、再生ペレットの引張強さ試験] 
 JISK7162:1994
 試験片:JISK71621B形
 試験速度:5mm/min
 室温:23℃
[Tensile strength test of crushed material and recycled pellets]
JISK7162: 1994
Test piece: JISK71621B type Test speed: 5 mm / min
Room temperature: 23 ° C
 [破砕材、再生ペレットのシャルピー衝撃試験]
 JISK7111-1:2012
 試験片:JISK7111-1/1eA
 支持台間距離:62mm
 公称振り子エネルギー(ひょう量):100J
 室温:23℃
[Charpy impact test of crushed material and recycled pellets]
JISK7111-1: 2012
Test piece: JISK7111-1 / 1eA
Distance between supports: 62 mm
Nominal pendulum energy (capacity): 100J
Room temperature: 23 ° C
[線材の引張強さ]
 (株)島津製作所製万能引張試験機(型式:AG-20kNXDplus)を用いて、試験速度:10mm/min、 チャック間距離:70mm、室温:23℃で、線材の引張荷重を測定し、線径から推定される断面積当たりの線材試料の引張強さを算出した。
[Tensile strength of wire]
Using a universal tensile tester manufactured by Shimadzu Corporation (model: AG-20kNXDplus), the tensile load of the wire was measured at a test speed of 10 mm / min, a distance between chucks: 70 mm, and room temperature: 23 ° C. The tensile strength of the wire sample per cross-sectional area estimated from the above was calculated.
 [シート材の曲げ試験]
 JIS K 7171:2008
 試験片:縦80mmx横100mmx厚さ3mmのシートから幅25mmに切り出し、試験片とした。該試験片について、3点曲げ治具を設置した万能試験機を用い、支点間距離48mm、クロスヘッドスピード 2mm/分の条件で、曲げ強度、曲げ弾性率を測定した。
[Bending test of sheet material]
JIS K 7171: 2008
Test piece: Cut into a width of 25 mm from a sheet of length 80 mm × width 100 mm × thickness 3 mm to obtain a test piece. The test piece was measured for bending strength and bending elastic modulus using a universal testing machine equipped with a three-point bending jig under the conditions of a distance between fulcrums of 48 mm and a crosshead speed of 2 mm / min.
 実施例1は、再生ペレットを使用した線材化の実施例である。CFRTPの一種で短繊維がランダム方向に含有されている短繊維CF強化66ナイロンPA66CF20(炭素繊維を重量割合で20%混入したナイロン66)を原料に射出成形されたOA機器用樹脂部品を異品種混入なしで分別回収し、破砕し第一破砕材とする。この第一破砕材を射出成形して作製された試験片は、引張強さが162MPa(サンプル数3)、シャルピー衝撃試験結果が6.5KJ/m2(サンプル数5)、炭素繊維Cの平均炭素繊維長が約300μmである。この第一破砕材を切削し、さらに破砕した第二破砕材を株式会社プラエンジのフルフライト型スクリューを備えたPSV75mmベント式押出機(L/D=32)に投入し、孔径4mmΦの11本の紡糸吐出ノズルから溶融温度270℃、スクリュー回転数160rpmで樹脂を溶融押出し、ストランドを得た。得られたストランドを冷却固化、切断し再生ペレットに成形する。ここで、第二破砕材を熱風乾燥機で、120℃で6~8時間、乾燥させて、水分率を低くしてから、前記押出機に投入する。これにより、再生ペレットの水分含有率が例えば0.2%、好ましくは、0.1%以下となる。再生ペレットを射出成形して作製された試験片の引張強さは170MPa(サンプル数3)であり、シャルピー衝撃試験結果は6.1KJ/m2(サンプル数5)であり、第一破砕材とほぼ同様であった。また、炭素繊維Cが著しく破断されず、ほぼ均一な長さを保持することが確認された。樹脂の劣化が少なく、ボイドの少ない溶融押出ができたためと考察される。 Example 1 is an example of forming a wire using recycled pellets. One type of CFRTP, short fiber CF reinforced 66 nylon PA66CF20 (Nylon 66 mixed with 20% by weight of carbon fiber) made of short fibers containing random fibers in different directions. Separately collected without mixing, crushed and used as the first crushed material. The test piece produced by injection molding this first crushed material has a tensile strength of 162 MPa (sample number 3), a Charpy impact test result of 6.5 KJ / m 2 (sample number 5), and an average carbon of carbon fiber C. The fiber length is about 300 μm. The first crushed material was cut, and the crushed second crushed material was put into a PSV 75 mm vented extruder (L / D = 32) equipped with a full flight type screw of Plaenji Co., Ltd. The resin was melt-extruded from the spinning discharge nozzle at a melting temperature of 270 ° C. and a screw rotation speed of 160 rpm to obtain a strand. The obtained strand is cooled and solidified, cut and formed into a recycled pellet. Here, the second crushed material is dried with a hot air dryer at 120 ° C. for 6 to 8 hours to lower the moisture content, and then charged into the extruder. As a result, the moisture content of the recycled pellets is, for example, 0.2%, preferably 0.1% or less. The tensile strength of the test piece produced by injection molding the recycled pellets is 170 MPa (sample number 3), and the Charpy impact test result is 6.1 KJ / m 2 (sample number 5). It was the same. Further, it was confirmed that the carbon fiber C was not severely broken and maintained a substantially uniform length. This is considered to be because melt extrusion with less voiding and less voiding was possible.
 同方向2軸コニカルスクリュー(L/D=7.8~19.1、スクリュー内径12~9mmΦ、スクリュー長さ172cm)を備えた卓上型混練機MC15(オランダXplore Instruments BV製)に、上記再生ペレットを投入し、投入口付近温度を290℃、バレル中部の温度を300℃、バレル下部の温度を310℃に設定し、スクリュー回転数を20r.p.mとして、該再生ペレットを完全溶融させ、吐出ノズル孔径0.75mmの1本の吐出ノズルから吐出させる。その後、自然落下させ、線材を巻取り(巻取速度12m/min)、平均直径が0.5±0.1mmφの線材Fを製造した。得られた線材Fについて、デジタルマイクロスコープにより短炭素繊維の配向状態を調べた。線材Fでは、炭素繊維Cが線材の長軸方向に対して配向角0~7°で配向していることを確認した。 The regenerated pellets were put into a desktop kneader MC15 (made by Netherlands Xplore Instruments BV) equipped with a biaxial conical screw (L / D = 7.8 to 19.1, screw inner diameter 12 to 9 mmΦ, screw length 172 cm) in the same direction, The temperature near the inlet was set at 290 ° C, the temperature at the middle of the barrel was set at 300 ° C, the temperature at the bottom of the barrel was set at 310 ° C, the screw rotation speed was set at 20 rpm, the recycled pellets were completely melted, and the discharge nozzle hole diameter was 0.75 mm. It discharges from one discharge nozzle. Then, it was naturally dropped, and the wire was wound up (winding speed: 12 m / min) to produce a wire F having an average diameter of 0.5 ± 0.1 mmφ. About the obtained wire F, the orientation state of the short carbon fiber was investigated with a digital microscope. In the wire F, it was confirmed that the carbon fibers C were oriented at an orientation angle of 0 to 7 ° with respect to the major axis direction of the wire.
 実施例2は、バージンCFRTPペレットを使用した線材化の実施例である。同方向2軸コニカルスクリュー(L/D=7.8~19.1、スクリュー内径12~9mmΦ、スクリュー長さ172cm)を備えた卓上型混練機MC15(オランダXplore Instruments BV製)に、CFRTPペレット(東レ(株)製 短繊維CF強化66ナイロン グレード名:3101T-20V)を投入し、投入口付近温度を290℃、バレル中部の温度を300℃、バレル下部の温度を310℃に設定し、スクリュー回転数を20r.p.mとして、該CFRTPペレットを完全溶融させ、吐出ノズル孔径0.75mmの1本の吐出ノズルから吐出させる。その後、自然落下させ、線材Fを巻取り(巻取速度12m/min)、平均直径が0.5±0.1mmφの線材を製造した。 Example 2 is an example of forming a wire using virgin CFRTP pellets. CFRTP pellets (Toray Industries, Inc.) were added to a desktop kneader MC15 (Xplore Instruments BV, the Netherlands) equipped with a biaxial conical screw in the same direction (L / D = 7.8 to 19.1, screw inner diameter 12 to 9 mmΦ, screw length 172 cm). Made of short fiber CF reinforced 66 nylon grade name: 3101T-20V), the temperature near the inlet is set at 290 ° C, the temperature in the middle of the barrel is set at 300 ° C, the temperature at the bottom of the barrel is set at 310 ° C, and the screw speed is 20r .pm, the CFRTP pellet is completely melted and discharged from one discharge nozzle having a discharge nozzle hole diameter of 0.75 mm. Thereafter, it was allowed to fall naturally, and the wire F was wound up (winding speed 12 m / min) to produce a wire having an average diameter of 0.5 ± 0.1 mmφ.
 溶融樹脂のナイロンの粘性係数μは、290℃で約80Pa・s(=80kg/(m・s))である。CFRP中のナイロンの溶融密度ρは、1.3×103kg/m3である。また吐出ノズルから出てくる線材の長さから溶融樹脂の平均速度Vを算出すると、1分間当たり22mの長さの線材が得られたので、0.37m/sとなる。また本実施例で使用している混練機の吐出ノズル孔径が0.375×10-3mであるので、これらの値から、実施例2における溶融樹脂のレイノルズ数Reを計算すると、2×10-3となり、層流の条件(Re<2300)下で、かつ、10-6~10の範囲内であることが分かるので、層流の条件を満たし好適である。 The viscosity coefficient μ of nylon of the molten resin is about 80 Pa · s (= 80 kg / (m · s)) at 290 ° C. The melt density ρ of nylon in CFRP is 1.3 × 10 3 kg / m 3 . Further, when the average velocity V of the molten resin is calculated from the length of the wire coming out from the discharge nozzle, a wire having a length of 22 m per minute is obtained, and is 0.37 m / s. In addition, since the discharge nozzle hole diameter of the kneader used in this example is 0.375 × 10 −3 m, the Reynolds number Re of the molten resin in Example 2 is calculated from these values to be 2 × 10. -3 , which is found to be within the range of 10 −6 to 10 under laminar flow conditions (Re <2300).
 原料ペレット(短繊維CF強化66ナイロン)および得られた線材Fについて、デジタルマイクロスコープにより短炭素繊維の配向状態を調べた。原料ペレットの破断面では炭素繊維Cがランダム方向を向いているのに対して、線材Fでは炭素繊維Cが線材の長尺方向に配向していることを確認した。 For the raw material pellets (short fiber CF reinforced 66 nylon) and the obtained wire F, the orientation state of the short carbon fibers was examined with a digital microscope. In the fracture surface of the raw material pellets, the carbon fibers C were oriented in the random direction, whereas in the wire F, it was confirmed that the carbon fibers C were oriented in the longitudinal direction of the wires.
 得られた線材Fについてリガク株式会社製 RA-micro7 X線装置を用いて、長さ2センチの線材F一本に対して、電圧40kV、電流20mAで発生させたCuKα線を1分間サンプルに照射してX線回折パターンを撮像し、図4の線材FのX線回折パターンの撮像写真の結果を得た。この結果は、短炭素繊維が繊線材の長軸方向に概ね配向していることが分かる。短炭素繊維は長軸方向に対して配向角0~7°に配向していることを確認した。また、得られた線材Fの引張強さは168MPaであった。 Using the RA-micro7 X-ray device manufactured by Rigaku Corporation, the obtained wire F was irradiated to the sample with CuKα rays generated at a voltage of 40 kV and a current of 20 mA for 1 minute. Then, an X-ray diffraction pattern was imaged, and a result of an imaging photograph of the X-ray diffraction pattern of the wire F in FIG. This result shows that the short carbon fibers are generally oriented in the long axis direction of the fiber wire. It was confirmed that the short carbon fibers were oriented at an orientation angle of 0 to 7 ° with respect to the major axis direction. Moreover, the tensile strength of the obtained wire F was 168 MPa.
 実施例3は、市販品のCFRTPの再生ペレットを利用した線材化の実施例である。同方向2軸コニカルスクリュー(L/D=7.8~19.1、スクリュー内径12~9mmΦ、スクリュー長さ172cm)を備えた卓上型混練機MC15(オランダXplore Instruments BV製)を用いて、投入口付近温度を290℃、バレル中部の温度を300℃、バレル下部の温度を310℃に設定し、スクリュー回転を20r.p.mとして、CFRTPの再生ペレットを完全溶融させ、吐出ノズル孔径0.75mmの1本の吐出ノズルから吐出させる。その後、自然落下させ、線材を巻取り(巻取速度12m/min)、平均直径が0.5±0.1mmφの線材を製造した。得られた線材の引張強さは160MPaであった。得られた線材Fについて、デジタルマイクロスコープにより短炭素繊維の配向状態を調べた。線材Fでは、炭素繊維Cが線材の長軸方向に対して配向角0~7°で配向していることを確認した。 Example 3 is an example of forming a wire using a commercially available recycled pellet of CFRTP. Using a desktop kneader MC15 equipped with a biaxial conical screw in the same direction (L / D = 7.8 to 19.1, screw inner diameter 12 to 9 mmΦ, screw length 172 cm), the temperature near the inlet is controlled by the Netherlands Xplore Instruments BV 290 ° C, middle barrel temperature set to 300 ° C, lower barrel temperature set to 310 ° C, screw rotation set to 20 rpm, CFRTP recycled pellets completely melted, one discharge nozzle with a discharge nozzle hole diameter of 0.75 mm Discharge from. Thereafter, it was allowed to fall naturally, and the wire was wound up (winding speed 12 m / min) to produce a wire having an average diameter of 0.5 ± 0.1 mmφ. The tensile strength of the obtained wire was 160 MPa. About the obtained wire F, the orientation state of the short carbon fiber was investigated with a digital microscope. In the wire F, it was confirmed that the carbon fibers C were oriented at an orientation angle of 0 to 7 ° with respect to the major axis direction of the wire.
 再生ペレット、線材中の繊維長さの測定結果を図5、図6に示した。この結果から再生ペレット、線材中の平均繊維長さは、それぞれ313μm、279μmと算出された。  The measurement results of the fiber length in the regenerated pellets and the wire are shown in FIGS. From these results, the average fiber lengths in the recycled pellets and the wire were calculated to be 313 μm and 279 μm, respectively. *
 上記実施例2及び3で得られた線材のワーク表面の仕上がり性、耐溶着性に関して評価を行った。ワークの表面には傷跡はつかずにマイルドに錆を落とすことができた。また、CFRPの線材が折れる等の破損がないことは確認できた。溶着物の付着はないことも確認した。線材の毛先がひろがるといった症状も認められなかった。上記ワーク表面の仕上がり性、耐溶着性の性質は、例えば工業用ブラシとして有用である。 Evaluation was made regarding the workability and welding resistance of the workpiece surface of the wire obtained in Examples 2 and 3 above. The surface of the workpiece was mildly rusted without any scars. It was also confirmed that there was no breakage such as breakage of the CFRP wire. It was also confirmed that there was no adhesion of welds. There was no symptom that the hair ends of the wire spread. The work surface finish and welding resistance properties are useful, for example, as industrial brushes.
 実施例4は、実施例2で得られたバージンCFRTP利用線材を用いたシート材の実施例である。実施例2で得られたバージンのペレットから製造された線材を80℃にて8時間乾燥後、一方向に敷き詰め、260℃、5MPaの圧力にて熱プレスすることにより、縦80mmx横100mmx厚さ3mmのシート材を作製した。得られたシート材は、敷き詰めた線材に平行な方向に対する曲げ強さが250MPa、曲げ弾性率が12GPaであり、産業用素材として十分な強度を有していた。また熱プレスする際には敷き詰める量を適宜調整することにより、厚みが5mm~100mm(例示であり、限定されない。)のシート材を作製することができる。 Example 4 is an example of a sheet material using the virgin CFRTP utilization wire obtained in Example 2. The wire manufactured from the virgin pellets obtained in Example 2 was dried at 80 ° C. for 8 hours, spread in one direction, and hot-pressed at 260 ° C. under a pressure of 5 MPa to obtain a length of 80 mm × width 100 mm × thickness. A 3 mm sheet material was produced. The obtained sheet material had a bending strength of 250 MPa and a bending elastic modulus of 12 GPa in a direction parallel to the spread wire, and had sufficient strength as an industrial material. In addition, a sheet material having a thickness of 5 mm to 100 mm (illustrated and not limited) can be produced by appropriately adjusting the amount of spread when hot pressing.
 実施例5は、CFRTPの再生ペレットから、溶融押出機で直接シート材を成形する実施例である。同方向2軸コニカルスクリュー(L/D=7.8~19.1、スクリュー内径12~9mmΦ、スクリュー長さ172cm)を備えた卓上型混練機MC15(オランダXplore Instruments BV製)を用いて、投入口付近温度を290℃、バレル中部の温度を300℃、バレル下部の温度を310℃に設定し、スクリュー回転を20r.p.mとして、CFRTPの再生ペレットを完全溶融させ、吐出ノズルの形状が幅7~10mm、厚さ0.7~1mmのスリット型吐出口から吐出させ、平形状(きしめん状)のシート材を得た。得られたシート材では、炭素繊維Cがシート材の特定方向(押出方向)に対して配向角0~7°で配向していることを確認した。80℃にて8時間乾燥後、一方向に敷き詰め、260℃、5MPaの圧力にて熱プレスすることにより、縦80mmx横100mmx厚さ3mmのシート材を作製した。得られたシート材は、敷き詰めた線材に平行な方向に対する曲げ強さが250MPa、曲げ弾性率が12GPaであり、産業用素材として十分な強度を有していた。また熱プレスする際には敷き詰める量を適宜調整することにより、厚みが5mm~100mm(例示であり、限定されない。)のシート材を作製することができる。 Example 5 is an example in which a sheet material is directly molded from a recycled pellet of CFRTP by a melt extruder. Using a desktop kneader MC15 equipped with a biaxial conical screw in the same direction (L / D = 7.8 to 19.1, screw inner diameter 12 to 9 mmΦ, screw length 172 cm), the temperature near the inlet is controlled by the Netherlands Xplore Instruments BV 290 ° C, middle barrel temperature set to 300 ° C, lower barrel temperature set to 310 ° C, screw rotation was set to 20 rpm, CFRTP recycled pellets were completely melted, discharge nozzle shape was 7-10 mm wide, thick The sheet was discharged from a slit-type discharge port having a thickness of 0.7 to 1 mm to obtain a flat sheet material. In the obtained sheet material, it was confirmed that the carbon fibers C were oriented at an orientation angle of 0 to 7 ° with respect to a specific direction (extrusion direction) of the sheet material. After drying at 80 ° C. for 8 hours, the sheet was spread in one direction and heat-pressed at 260 ° C. and a pressure of 5 MPa to prepare a sheet material having a length of 80 mm × width 100 mm × thickness 3 mm. The obtained sheet material had a bending strength of 250 MPa and a bending elastic modulus of 12 GPa in a direction parallel to the spread wire, and had sufficient strength as an industrial material. In addition, a sheet material having a thickness of 5 mm to 100 mm (illustrated and not limited) can be manufactured by appropriately adjusting the amount of spread when hot pressing.
 以上の実施形態は、本発明の実施のための好ましい実施形態の例示である。また、当業者は、本発明の開示に鑑みて、本発明の要旨から離れることなく多数の改良、変更、置換、欠失、追加等が可能である。 The above embodiments are examples of preferred embodiments for carrying out the present invention. Further, in view of the disclosure of the present invention, those skilled in the art can make many improvements, changes, substitutions, deletions, additions and the like without departing from the gist of the present invention.
 炭素繊維強化樹脂製押し出し線材は、複合材料、成形用素材等として、さらに結束したロープ、編物、シート材、板、棒、圧着した押出材として産業上の用途があり、この押出材を編み、重ね合わせ、同素材又は他の素材と組み合わせをするなどにより、新たな炭素繊維強化樹脂の加工を可能にすることができる。 Carbon fiber reinforced resin extruded wire has industrial uses as a composite material, molding material, etc., further bound rope, knitted fabric, sheet material, plate, rod, crimped extruded material, knitting this extruded material, It is possible to process a new carbon fiber reinforced resin by overlapping, combining with the same material, or another material.
 F・・・線材
 C・・・炭素繊維
 P・・・樹脂
 X・・・線材長軸方向
 1~4・・・吐出ノズル
 1a、2a・・・円形孔
 3a・・・線形孔
 4a・・・円形孔
 4b・・・スリット型吐出口
F ... Wire rod C ... Carbon fiber P ... Resin X ... Wire rod long axis direction 1-4 ... Discharge nozzle 1a, 2a ... Circular hole 3a ... Linear hole 4a ... Circular hole 4b ・ ・ ・ Slit type discharge port

Claims (9)

  1.  平均繊維長が0.05~3mmの強化用短繊維である炭素繊維を10~50w/w%、樹脂を50~90w/w%含み、押出方向に対する前記炭素繊維の配向角を0~7°とする炭素繊維強化樹脂製押出材。 10 to 50 w / w% carbon fiber, which is a reinforcing short fiber having an average fiber length of 0.05 to 3 mm, and 50 to 90 w / w% resin, and the orientation angle of the carbon fiber with respect to the extrusion direction is 0 to 7 ° Extruded material made of carbon fiber reinforced resin.
  2.  前記樹脂がポリアミド(PA)系樹脂、アクリロニトリル・ブタジエン・スチレン共重合(ABS)系樹脂、ポリカーボネート(PC)系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、ポリプロピレン(PP)系樹脂、ポリエーテルイミド(PEI)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリエーテルケトンケトン(PEKK)系樹脂である請求項1に記載の炭素繊維強化樹脂製押出材。 The resin is polyamide (PA) resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin, polypropylene (PP) resin, polyetherimide (PEI). The extruded material made of carbon fiber reinforced resin according to claim 1, which is a resin), a polyethylene terephthalate (PET) resin, a polyether ether ketone (PEEK) resin, or a polyether ketone ketone (PEKK) resin.
  3.  前記ポリアミド系樹脂がナイロン6、ナイロン610、ナイロン612から選ばれる少なくとも1種であることを特徴とする請求項2に記載の炭素繊維強化樹脂製押出材。 3. The extruded material of carbon fiber reinforced resin according to claim 2, wherein the polyamide-based resin is at least one selected from nylon 6, nylon 610, and nylon 612.
  4.  前記押出材が線材である請求項1ないし3いずれかに記載の炭素繊維強化樹脂製押出材。 The extruded material made of carbon fiber reinforced resin according to any one of claims 1 to 3, wherein the extruded material is a wire.
  5.  請求項4に記載の炭素繊維強化樹脂製押出材である線材を含むシート材。 A sheet material comprising a wire material that is an extruded material made of carbon fiber reinforced resin according to claim 4.
  6.  強化用短繊維である炭素繊維を10~50w/w%含み、該炭素繊維がランダムに配向した繊維強化樹脂のペレットまたは炭素繊維強化樹脂の破砕材を溶融押出機に投入し、スクリュー回転数10~100r.p.m.で押出材を溶融押し出しすることにより、平均繊維長が0.05~3mmの炭素繊維を、10~50w/w%含む強化用短繊維が押出方向に配向する押出材を押し出す溶融押出工程と、
     前記溶融押出した押出材を冷却固化する冷却固化工程と、
     を備え、
     前記冷却固化された押出材が、線材またはシート材であり、平均繊維長が0.05~3mmの強化用短繊維である炭素繊維を10~50w/w%、樹脂を50~90w/w%含み、押出方向に対する前記炭素繊維の配向角を0~7°とすることを特徴とする炭素繊維強化樹脂製押出材の製造方法。
    A fiber reinforced resin pellet or carbon fiber reinforced resin crushed material containing 10 to 50 w / w% carbon fiber, which is a short fiber for reinforcement, in which the carbon fiber is randomly oriented is charged into a melt extruder, and the screw rotation speed is 10 Melting and extruding extruded material in which reinforcing short fibers containing 10 to 50 w / w% of carbon fiber having an average fiber length of 0.05 to 3 mm are oriented in the extrusion direction by melting and extruding the extruded material at ˜100 rpm An extrusion process;
    A cooling and solidifying step for cooling and solidifying the extruded material melt-extruded;
    With
    The cooled and solidified extruded material is a wire or sheet material, carbon fibers which are reinforcing short fibers having an average fiber length of 0.05 to 3 mm are 10 to 50 w / w%, and resin is 50 to 90 w / w%. And a carbon fiber-reinforced resin extruded material characterized in that an orientation angle of the carbon fiber with respect to the extrusion direction is 0 to 7 °.
  7.  前記溶融押出工程において、溶融樹脂のレイノルズ数Reが10-6~10、さらに好ましくは10-5~1の範囲内で溶融押出しする請求項6に記載の炭素繊維強化樹脂製押出材の製造方法。 7. The method for producing an extruded material of carbon fiber reinforced resin according to claim 6, wherein, in the melt extrusion step, the melt resin is melt extruded within a range of Reynolds number Re of 10 −6 to 10, more preferably 10 −5 to 1. .
  8.  前記冷却固化された押出材が線材またはシート材であり、当該線材またはシート材をプレス機に敷き詰め、熱プレスにより、シート材に形成するシート材成形工程を備える請求項6又は7に記載の炭素繊維強化樹脂製押出材の製造方法。 The carbon according to claim 6 or 7, further comprising a sheet material forming step in which the cooled and solidified extruded material is a wire material or a sheet material, the wire material or the sheet material is spread on a press machine, and formed into a sheet material by hot pressing. A method for producing a fiber-reinforced resin extruded material.
  9.  前記ペレットが、ポリアミド(PA)系樹脂、アクリロニトリル・ブタジエン・スチレン共重合(ABS)系樹脂、ポリカーボネート(PC)系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、ポリプロピレン(PP)系樹脂、ポリエーテルイミド(PEI)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、ポリエーテルエーテルケトン(PEEK)系樹脂、ポリエーテルケトンケトン(PEKK)系樹脂を炭素繊維で充填し強化した炭素繊維強化樹脂を破砕し、溶融温度200~320℃で、セミフライト型又はフルフライト型スクリューを有する溶融押出機に投入し押出材を押し出し、該押出材を切断することにより製造されるぺレット成形工程を備えた請求項6ないし8いずれかに記載の炭素繊維強化樹脂製押出材の製造方法。 The pellets are polyamide (PA) resin, acrylonitrile / butadiene / styrene copolymer (ABS) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin, polypropylene (PP) resin, polyetherimide ( PEI) resin, polyethylene terephthalate (PET) resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin filled with carbon fiber and reinforced to crush the carbon fiber reinforced resin, melting temperature 9. A pellet forming step produced by introducing the extruded material into a melt extruder having a semiflight type or full flight type screw at 200 to 320 ° C., extruding the extruded material, and cutting the extruded material. Of the carbon fiber reinforced resin extruded material according to any one of Production method.
PCT/JP2017/040424 2016-11-11 2017-11-09 Carbon fiber reinforced plastics extruded material and method for manufacturing same WO2018088471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525805A JP6421300B2 (en) 2016-11-11 2017-11-09 Carbon fiber reinforced resin extruded material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220145 2016-11-11
JP2016220145 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018088471A1 true WO2018088471A1 (en) 2018-05-17

Family

ID=62110427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040424 WO2018088471A1 (en) 2016-11-11 2017-11-09 Carbon fiber reinforced plastics extruded material and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6421300B2 (en)
WO (1) WO2018088471A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158233A1 (en) 2019-01-29 2020-08-06 日信工業株式会社 Multilayer sheet and method for producing multilayer sheet
CN112492765A (en) * 2020-11-17 2021-03-12 中国电子科技集团公司第四十六研究所 Preparation method of novel composite medium substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221114A (en) * 2012-04-18 2013-10-28 Toyo Plastic Seiko Co Ltd Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP2014028511A (en) * 2012-06-26 2014-02-13 Toray Ind Inc Intermediate substrate for press molding, preform, and method for manufacturing a molding
WO2015159834A1 (en) * 2014-04-14 2015-10-22 ユニチカ株式会社 Semiaromatic polyamide resin composition and molded body obtained by molding same
JP2015220493A (en) * 2014-05-14 2015-12-07 ユニチカ株式会社 Speaker diaphragm
JP2016079337A (en) * 2014-10-21 2016-05-16 東レ株式会社 Carbon fiber-reinforced plastic and method for producing the same
JP2016098271A (en) * 2014-11-19 2016-05-30 国立研究開発法人産業技術総合研究所 Manufacturing method of prepreg
JP2016101127A (en) * 2014-11-28 2016-06-02 グローブライド株式会社 fishing rod

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221114A (en) * 2012-04-18 2013-10-28 Toyo Plastic Seiko Co Ltd Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP2014028511A (en) * 2012-06-26 2014-02-13 Toray Ind Inc Intermediate substrate for press molding, preform, and method for manufacturing a molding
WO2015159834A1 (en) * 2014-04-14 2015-10-22 ユニチカ株式会社 Semiaromatic polyamide resin composition and molded body obtained by molding same
JP2015220493A (en) * 2014-05-14 2015-12-07 ユニチカ株式会社 Speaker diaphragm
JP2016079337A (en) * 2014-10-21 2016-05-16 東レ株式会社 Carbon fiber-reinforced plastic and method for producing the same
JP2016098271A (en) * 2014-11-19 2016-05-30 国立研究開発法人産業技術総合研究所 Manufacturing method of prepreg
JP2016101127A (en) * 2014-11-28 2016-06-02 グローブライド株式会社 fishing rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158233A1 (en) 2019-01-29 2020-08-06 日信工業株式会社 Multilayer sheet and method for producing multilayer sheet
KR20210121040A (en) 2019-01-29 2021-10-07 히다치 아스테모 가부시키가이샤 Multilayer Sheets and Methods for Manufacturing Multilayer Sheets
CN112492765A (en) * 2020-11-17 2021-03-12 中国电子科技集团公司第四十六研究所 Preparation method of novel composite medium substrate
CN112492765B (en) * 2020-11-17 2022-08-16 中国电子科技集团公司第四十六研究所 Preparation method of microwave composite medium substrate

Also Published As

Publication number Publication date
JP6421300B2 (en) 2018-11-14
JPWO2018088471A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP7285287B2 (en) Opener element for making unidirectional fiber reinforced tapes
US11168186B2 (en) Random mat and fiber-reinforced composite material shaped product
Bettini et al. Fused deposition technique for continuous fiber reinforced thermoplastic
EP2810979B1 (en) Random mat and fibre-reinforced composite material
EP2878615B1 (en) Random mat and fiber-reinforced composite material shaped product
EP3015492A1 (en) Random mat, fiber-reinforced composite material molded article, and carbon fiber mat
US10208174B2 (en) Random mat and fiber-reinforced composite material shaped product
EP3098254B1 (en) Carbon-fiber-reinforced molding material for injection molding, extrusion molding, or pultrusion molding.
JPH0325340B2 (en)
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
JP6421300B2 (en) Carbon fiber reinforced resin extruded material and method for producing the same
Nayana et al. Advanced polymeric composites via commingling for critical engineering applications
Shen et al. Study on 3D printing process of continuous carbon fiber reinforced shape memory polymer composites
JP2023524432A (en) Bicomponent or multicomponent fibers for large composite parts
EP3686331B1 (en) Fixed carbon fiber bundle and method for producing fixed carbon fiber bundle
US9981447B2 (en) Fiber-reinforced resin joined body having caulked part and manufacturing method thereof
Kobykhno et al. Effect of introduction of fullerene soot on mechanical properties of unidirectional thermoplastic tape
Aburaia et al. A production method for standardized continuous fiber reinforced FFF filament
CN115023329A (en) Cold-pressed shaped body comprising carbon fibers and glass fibers and method for producing same
Weisenberger et al. Carbon nanotube polymer composites: recent developments in mechanical properties
JP2013203942A (en) Thermoplastic prepreg and method of manufacturing the same
Gonçalves IMPREGNATION'S MICROSTRUCTURAL ANALYSIS OF COMPOSITES MANUFACTURED BY HOT COMPRESSION MOULDING
Lamoriniere High Performance Polyetheretherketone Nanocomposites and Hierarchical Composites
Ducote Jr Characterization of composites fabricated from discontinuous random carbon fiber thermoplastic matrix sheets produced by a paper making process
Farah Interlaminar fracture toughness and fatigue delamination of carbon nanofibers modified polyester/glass fiber laminates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525805

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869908

Country of ref document: EP

Kind code of ref document: A1