WO2018088465A1 - Rotary electric device control device, and electric power steering device using same - Google Patents

Rotary electric device control device, and electric power steering device using same Download PDF

Info

Publication number
WO2018088465A1
WO2018088465A1 PCT/JP2017/040396 JP2017040396W WO2018088465A1 WO 2018088465 A1 WO2018088465 A1 WO 2018088465A1 JP 2017040396 W JP2017040396 W JP 2017040396W WO 2018088465 A1 WO2018088465 A1 WO 2018088465A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
control
abnormality
slave
command value
Prior art date
Application number
PCT/JP2017/040396
Other languages
French (fr)
Japanese (ja)
Inventor
修司 倉光
功一 中村
篤子 岡
雅也 滝
秀樹 株根
祐希 渡邉
利光 坂井
洋佑 大城
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017209905A external-priority patent/JP7027808B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780068832.9A priority Critical patent/CN110063021B/en
Publication of WO2018088465A1 publication Critical patent/WO2018088465A1/en
Priority to US16/405,049 priority patent/US10862417B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a rotating electrical machine control device and an electric power steering device using the same.
  • Patent Document 1 an electric power steering device that assists steering by a driving force of a motor is known.
  • the basic assist control amount is calculated independently by two microcomputers.
  • An object of the present disclosure is to provide a rotating electrical machine control device that controls driving of a rotating electrical machine by coordinating a plurality of systems, and an electric power steering device using the same.
  • the rotating electrical machine control device controls driving of the rotating electrical machine including a plurality of winding sets, and includes a plurality of drive circuits and a plurality of control units.
  • the control unit includes a signal output unit that outputs a control signal to a corresponding driving circuit, and can communicate with each other.
  • the control unit calculates a command value related to generation of a control signal in all the control units, and transmits one command value to another control unit, and a command value transmitted from the master control unit.
  • At least one slave controller that outputs a control signal based thereon is included. By transmitting the command value calculated by one master control unit to the slave control unit, it is possible to appropriately coordinate a plurality of systems, and to reduce mismatch between systems and the complexity of arbitration. .
  • the rotating electrical machine control device controls driving of the rotating electrical machine including a plurality of winding sets, and includes a plurality of drive circuits and a plurality of control units.
  • the control unit includes a signal output unit that outputs a control signal to a corresponding driving circuit, and can communicate with each other.
  • the control unit includes one master control unit and at least one slave control unit.
  • the control unit has a cooperative drive mode, an independent drive mode, and a one-system drive mode. In the cooperative drive mode, the master control unit calculates a command value related to the generation of the control signal, outputs a control signal based on the command value, and the slave control unit performs control based on the command value calculated by the master control unit. Output a signal.
  • the master control unit calculates a command value related to generation of the control signal of its own system, outputs a control signal based on the calculated command value, and the slave control unit generates a control signal of its own system.
  • the command value is calculated, and a control signal based on the calculated command value is output.
  • a part of the master control unit and the slave control unit stops the output of the control signal, and the other control unit calculates a command value related to generation of the control signal of the own system, and the command value A control signal based on is output.
  • FIG. 1 is a schematic configuration diagram of a steering system according to a first embodiment.
  • FIG. 2 is a schematic diagram showing the motor winding according to the first embodiment.
  • FIG. 3 is a time chart for explaining the energization phase difference according to the first embodiment.
  • FIG. 4 is an explanatory diagram for explaining torque improvement by phase difference energization in the first embodiment.
  • FIG. 5 is an explanatory diagram for explaining the torque ripple according to the first embodiment.
  • FIG. 8 is a block diagram showing the motor control device according to the first embodiment.
  • FIG. 9 is a block diagram showing a first control unit and a second control unit according to the first embodiment
  • FIG. 10 is a block diagram illustrating current feedback control according to the first embodiment.
  • FIG. 11 is a time chart for explaining the arithmetic processing according to the first embodiment.
  • FIG. 12 is a block diagram showing a first control unit and a second control unit according to the second embodiment
  • FIG. 13 is a time chart for explaining the arithmetic processing according to the second embodiment.
  • FIG. 14 is a block diagram illustrating a first controller and a second controller according to the third embodiment.
  • FIG. 15 is a block diagram illustrating current feedback control according to the third embodiment.
  • FIG. 16 is a time chart for explaining the arithmetic processing according to the third embodiment.
  • FIG. 17 is a block diagram illustrating a first controller and a second controller according to the fourth embodiment.
  • FIG. 18 is a time chart for explaining the arithmetic processing according to the fourth embodiment.
  • FIG. 19 is a block diagram showing a first controller and a second controller according to the fifth embodiment.
  • FIG. 20 is a time chart for explaining the arithmetic processing according to the fifth embodiment.
  • FIG. 21 is a time chart for explaining the arithmetic processing according to the sixth embodiment.
  • FIG. 22 is a block diagram showing a first control unit and a second control unit according to the seventh embodiment, FIG.
  • FIG. 23A is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment
  • FIG. 23B is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment.
  • FIG. 23C is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment.
  • FIG. 23D is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment;
  • FIG. 23E is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment.
  • FIG. 23F is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment.
  • FIG. 24 is a flowchart for explaining communication abnormality monitoring processing according to the seventh embodiment.
  • FIG. 25 is a flowchart for explaining the interruption determination process according to the seventh embodiment.
  • FIG. 26 is a flowchart for explaining consistency determination processing according to the seventh embodiment.
  • FIG. 27 is a block diagram illustrating independent drive control according to the seventh embodiment.
  • FIG. 28A is an explanatory diagram for explaining a communication frame of communication between microcomputers according to the eighth embodiment.
  • FIG. 28B is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment.
  • FIG. 28C is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment.
  • FIG. 28D is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment.
  • FIG. 28A is an explanatory diagram for explaining a communication frame of communication between microcomputers according to the eighth embodiment.
  • FIG. 28B is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment.
  • FIG. 28C is an explan
  • FIG. 28E is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment.
  • FIG. 28F is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment.
  • FIG. 29 is a flowchart for explaining a control mode switching process according to the eighth embodiment.
  • FIG. 30 is a flowchart for explaining the control mode switching process according to the eighth embodiment.
  • FIG. 31 is a flowchart for explaining command deviation determination processing according to the eighth embodiment.
  • FIG. 32 is a flowchart for explaining the return processing from the alternative control according to the eighth embodiment.
  • FIG. 33 is a flowchart for explaining a return process from the independent drive control control due to an abnormality in communication between microcomputers according to the eighth embodiment.
  • FIG. 29 is a flowchart for explaining a control mode switching process according to the eighth embodiment.
  • FIG. 30 is a flowchart for explaining the control mode switching process according to the eighth embodiment.
  • FIG. 31 is a flow
  • FIG. 34 is a flowchart for explaining a return process from the independent drive control control due to the command deviation abnormality according to the eighth embodiment.
  • FIG. 35 is a flowchart for explaining a return process from the independent drive control control due to the command deviation abnormality according to the eighth embodiment.
  • FIG. 36 is a flowchart for explaining return processing from single-system drive according to the eighth embodiment.
  • FIG. 37 is a flowchart for explaining return processing from single-system drive according to the eighth embodiment.
  • FIG. 38 is a transition diagram illustrating mode transition according to the eighth embodiment.
  • FIGS. A first embodiment is shown in FIGS.
  • an ECU 10 as a rotating electrical machine control device of the present embodiment is applied to, for example, an electric power steering device 8 for assisting a steering operation of a vehicle together with a motor 80 as a rotating electrical machine.
  • FIG. 1 shows an overall configuration of a steering system 90 including an electric power steering device 8.
  • FIG. 1 shows a configuration of a steering system 90 including an electric power steering device 8.
  • the steering system 90 includes a steering wheel 91, which is a steering member, a steering shaft 92, a pinion gear 96, a rack shaft 97, wheels 98, an electric power steering device 8, and the like.
  • the steering wheel 91 is connected to the steering shaft 92.
  • the steering shaft 92 is provided with a torque sensor 94 that detects the steering torque Ts.
  • a pinion gear 96 is provided at the tip of the steering shaft 92.
  • the pinion gear 96 is engaged with the rack shaft 97.
  • a pair of wheels 98 are connected to both ends of the rack shaft 97 via tie rods or the like.
  • the steering shaft 92 connected to the steering wheel 91 rotates.
  • the rotational movement of the steering shaft 92 is converted into a linear movement of the rack shaft 97 by the pinion gear 96.
  • the pair of wheels 98 are steered at an angle corresponding to the amount of displacement of the rack shaft 97.
  • the electric power steering device 8 includes a drive device 40 having a motor 80 and an ECU 10, a reduction gear 89 as a power transmission unit that reduces the rotation of the motor 80 and transmits the rotation to the steering shaft 92.
  • the electric power steering device 8 of the present embodiment is a so-called “column assist type”, but may be a so-called “rack assist type” that transmits the rotation of the motor 80 to the rack shaft 97.
  • the steering shaft 92 corresponds to the “drive target”.
  • the motor 80 outputs an auxiliary torque that assists the steering of the steering wheel 91 by the driver.
  • the motor 80 is driven by power supplied from the batteries 191 and 291 (see FIG. 8) as power sources, and the reduction gear. 89 is rotated forward and backward.
  • the motor 80 is a three-phase brushless motor and includes a rotor 860 and a stator 840 (see FIG. 6).
  • the motor 80 has a first motor winding 180 and a second motor winding 280 as a winding set.
  • the first motor winding 180 has a U1 coil 181, a V1 coil 182, and a W1 coil 183.
  • Second motor winding 280 has U2 coil 281, V2 coil 282, and W2 coil 283.
  • the first motor winding 180 is referred to as “motor winding 1”
  • the second motor winding 280 is referred to as “motor winding 2”.
  • “first” is described as a subscript “1”
  • second is described as a subscript “2” as appropriate in the figure.
  • the first motor winding 180 and the second motor winding 280 have the same electrical characteristics.
  • the common stator 840 has an electrical angle of 30 [deg]. ] It is shifted and canceled.
  • the motor windings 180 and 280 are controlled to be supplied with a phase current whose phase ⁇ is shifted by 30 [deg] (see FIG. 3).
  • FIG. 3 illustrates the U-phase voltage Vu1 of the first system and the U-phase voltage Vu2 of the second system.
  • the sixth-order torque ripple can be reduced by setting the energization phase difference to an electrical angle of 30 [deg] (see formula (i)).
  • the merit of canceling noise and vibration can be maximized.
  • heat generation is also averaged, temperature-dependent systematic errors such as detection values and torque of each sensor can be reduced, and the amount of current that can be energized can be averaged.
  • the first system L1 corresponds to the “master system” and the second system L2 corresponds to the “slave system”.
  • the configuration related to the first system L1 is numbered in the 100s, and the configuration related to the second system L2 is numbered in the 200s.
  • strain L2 it attaches
  • the configuration of the driving device 40 will be described with reference to FIGS.
  • the drive device 40 of the present embodiment is a so-called “mechanical and integrated type” in which the ECU 10 is integrally provided on one side of the motor 80 in the axial direction.
  • the ECU 10 is disposed coaxially with the axis Ax of the shaft 870 on the side opposite to the output shaft of the motor 80.
  • the ECU 10 may be provided on the output shaft side of the motor 80.
  • the motor 80 includes a stator 840, a rotor 860, a housing 830 that accommodates them, and the like.
  • the stator 840 is fixed to the housing 830, and the motor windings 180 and 280 are wound thereon.
  • the rotor 860 is provided inside the stator 840 in the radial direction, and is provided so as to be rotatable relative to the stator 840.
  • the shaft 870 is fitted into the rotor 860 and rotates integrally with the rotor 860.
  • the shaft 870 is rotatably supported by the housing 830 by bearings 835 and 836.
  • An end portion of the shaft 870 on the ECU 10 side protrudes from the housing 830 to the ECU 10 side.
  • a magnet 875 is provided at the end of the shaft 870 on the ECU 10 side.
  • the housing 830 has a bottomed cylindrical case 834 including a rear frame end 837 and a front frame end 838 provided on the opening side of the case 834. Case 834 and front frame end 838 are fastened to each other by bolts or the like.
  • a lead wire insertion hole 839 is formed in the rear frame end 837. Lead wires 185 and 285 connected to the phases of the motor windings 180 and 280 are inserted into the lead wire insertion holes 839. The lead wires 185 and 285 are taken out from the lead wire insertion hole 839 to the ECU 10 side and connected to the substrate 470.
  • the ECU 10 includes a cover 460, a heat sink 465 fixed to the cover 460, a substrate 470 fixed to the heat sink 465, various electronic components mounted on the substrate 470, and the like.
  • the cover 460 protects electronic components from external impacts and prevents intrusion of dust, water, etc. into the ECU 10.
  • the cover 460 is integrally formed with a cover main body 461 and a connector portion 462.
  • the connector portion 462 may be a separate body from the cover main body 461.
  • a terminal 463 of the connector portion 462 is connected to the substrate 470 via a wiring or the like (not shown).
  • the number of connectors and the number of terminals can be appropriately changed according to the number of signals and the like.
  • the connector portion 462 is provided at an end portion in the axial direction of the driving device 40 and opens to the opposite side to the motor 80.
  • the connector unit 462 includes connectors 111 to 113 and 211 to 231 described later.
  • the substrate 470 is a printed circuit board, for example, and is provided to face the rear frame end 837. On the board 470, electronic components for two systems are mounted independently for each system, and a completely redundant configuration is formed. In this embodiment, an electronic component is mounted on one substrate 470, but the electronic component may be mounted on a plurality of substrates.
  • the surface on the motor 80 side is a motor surface 471
  • the surface opposite to the motor 80 is a cover surface 472.
  • a switching element 121 that constitutes the inverter circuit 120 a switching element 221 that constitutes the inverter circuit 220, rotation angle sensors 126 and 226, custom ICs 159 and 259, and the like are mounted on the motor surface 471.
  • the rotation angle sensors 126 and 226 are mounted at locations facing the magnet 875 so that changes in the magnetic field accompanying rotation of the magnet 875 can be detected.
  • capacitors 128 and 228, inductors 129 and 229, and microcomputers constituting the control units 131 and 231 are mounted on the cover surface 472.
  • “131” and “231” are assigned to the microcomputers constituting the control units 131 and 231, respectively.
  • Capacitors 128 and 228 smooth the power input from batteries 191 and 291 (see FIG. 8). Further, the capacitors 128 and 228 assist the power supply to the motor 80 by accumulating electric charges.
  • Capacitors 128 and 228 and inductors 129 and 229 constitute a filter circuit, reduce noise transmitted from other devices sharing batteries 191, 291, and other devices sharing batteries 191, 291 from driving device 40. Reduces noise transmitted to the device.
  • the power supply circuits 116 and 216, the motor relay, the current sensors 125 and 225, etc. are also mounted on the motor surface 471 or the cover surface 472.
  • the ECU 10 includes inverter circuits 120 and 220 as drive circuits, control units 131 and 231, and the like.
  • the ECU 10 is provided with a first power connector 111, a first vehicle communication connector 112, a first torque connector 113, a second power connector 211, a second vehicle communication connector 212, and a second torque connector 213.
  • the first power connector 111 is connected to the first battery 191, and the second power connector 211 is connected to the second battery 291.
  • the connectors 111 and 211 may be connected to the same battery.
  • the first power connector 111 is connected to the first inverter circuit 120 via the first power circuit 116.
  • the second power connector 211 is connected to the second inverter circuit 220 via the second power circuit 216.
  • the power supply circuits 116 and 216 are, for example, power supply relays.
  • the first vehicle communication connector 112 is connected to the first vehicle communication network 195, and the second vehicle communication connector 212 is connected to the second vehicle communication network 295.
  • CAN Controller (Area Network) is illustrated as the vehicle communication networks 195 and 295, but any standard such as CAN-FD (CAN with Flexible Data) rate or FlexRay may be used.
  • the first vehicle communication connector 112 is connected to the first control unit 131 via the first vehicle communication circuit 117.
  • the first control unit 131 can exchange information with the vehicle communication network via the vehicle communication connector 112 and the vehicle communication circuit 117.
  • the second vehicle communication connector 212 is connected to the second control unit 231 via the second vehicle communication circuit 217.
  • the second control unit 231 can exchange information with the vehicle communication network via the vehicle communication connector 212 and the vehicle communication circuit 217.
  • the torque connectors 113 and 213 are connected to the torque sensor 94. Specifically, the first torque connector 113 is connected to the first sensor unit 194 of the torque sensor 94. The second torque connector 213 is connected to the torque sensor 94 with the second sensor unit 294. In FIG. 8, the first sensor unit 194 is described as “torque sensor 1”, and the second sensor unit 294 is described as “torque sensor 2”.
  • the first control unit 131 can acquire a torque signal related to the steering torque Ts from the first sensor unit 194 of the torque sensor 94 via the torque connector 113 and the torque sensor input circuit 118.
  • the second control unit 231 can acquire a torque signal related to the steering torque Ts from the second sensor unit 294 of the torque sensor 94 via the torque connector 213 and the torque sensor input circuit 218.
  • the control units 131 and 231 can calculate the steering torque Ts based on the torque signal.
  • the first inverter circuit 120 is a three-phase inverter having a switching element 121 and converts electric power supplied to the first motor winding 180.
  • the switching element 121 is controlled to be turned on / off based on the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * output from the first controller 131.
  • the second inverter circuit 220 is a three-phase inverter having a switching element 221 and converts electric power supplied to the second motor winding 280.
  • the switching element 221 is controlled to be turned on / off based on the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * output from the second control unit 231.
  • the PWM signals PWM_u1 * , PWM_v1 * , PWM_w1 * , PWM_u2 * , PWM_v2 * , and PWM_w2 * correspond to “control signals”.
  • the first current sensor 125 detects a first U-phase current Iu1, a first V-phase current Iv1, and a first W-phase current Iw1 that are passed through each phase of the first motor winding 180, and detects the detected value as a first control unit. It outputs to 131.
  • the second current sensor 225 detects the second U-phase current Iu2, the second V-phase current Iv2, and the second W-phase current Iw2 that are energized in each phase of the second motor winding 280, and the detected value is output to the second control unit. To 231.
  • the U-phase current, the V-phase current, and the W-phase current are collectively referred to as “phase current” or “three-phase current”.
  • the d-axis current and the q-axis current are collectively referred to as “dq-axis current”. The same applies to the voltage.
  • the first rotation angle sensor 126 detects the rotation angle of the motor 80 and outputs it to the first control unit 131.
  • the second rotation angle sensor 226 detects the rotation angle of the motor 80 and outputs it to the second control unit 231.
  • the electrical angle based on the detection value of the first rotation angle sensor 126 is defined as the first electrical angle EleAng1
  • the electrical angle based on the detection value of the second rotation angle sensor 226 is defined as the second electrical angle EleAng2.
  • the first temperature sensor 127 is disposed, for example, in a region where the first inverter circuit 120 is provided, and detects the temperature related to the first system L1.
  • the second temperature sensor 227 is disposed, for example, in a region where the second inverter circuit 220 is provided, and detects the temperature related to the second system L2.
  • the temperature sensors 127 and 227 may detect the temperature of the heat sink 465, may detect the temperature of the substrate 470, or detect the element temperature of the inverter circuits 120 and 220. Alternatively, the temperature of the motor windings 180 and 280 may be detected.
  • Power is supplied to the first controller 131 via the first power connector 111 and a regulator (not shown). Power is supplied to the second control unit 231 via the second power connector 211 and a regulator (not shown).
  • the first control unit 131 and the second control unit 231 are provided to be able to communicate with each other between the control units.
  • communication between the control units 131 and 231 is referred to as “inter-microcomputer communication” as appropriate.
  • any method such as serial communication such as SPI or SENT, CAN communication, or FlexRay communication may be used.
  • control units 131 and 231 are configured mainly with a microcomputer or the like, and are provided with a CPU, ROM, RAM, I / O (not shown) and a bus line for connecting these configurations.
  • Each process in the control units 131 and 231 may be a software process in which a CPU stores a program stored in advance in a substantial memory device such as a ROM (that is, a readable non-temporary tangible recording medium).
  • a ROM that is, a readable non-temporary tangible recording medium
  • hardware processing by a dedicated electronic circuit may be used.
  • the first control unit 131 that is a master control unit includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a first current feedback calculation unit 150, It has a first three-phase voltage command calculation unit 161, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170.
  • feedback is referred to as “FB” as appropriate.
  • the first dq-axis current calculation unit 140 converts the phase currents Iu1, Iv1, Iw1 acquired from the first current sensor 125 into the dq-axis using the first electrical angle EleAng1, and the first d-axis current detection value Id1 and the first q
  • the shaft current detection value Iq1 is calculated.
  • the assist torque command calculation unit 141 is based on the torque signal acquired from the torque sensor 94 via the torque sensor input circuit 118, the vehicle speed acquired from the vehicle communication network 195 via the vehicle communication circuit 117, and the like. An assist torque command value Trq * as a torque command value is calculated. The assist torque command value Trq * is output to the current command calculation unit 142. The assist torque command value Trq * is provided to devices other than the electric power steering device 8 via the vehicle communication circuit 117.
  • the q-axis current command calculation unit 142 calculates a q-axis current command value Iq * based on the assist torque command value Trq * .
  • the q-axis current command value Iq * of the present embodiment is a total q-axis current value of two systems required for outputting torque of the assist torque command value Trq * .
  • the q-axis current value is obtained by multiplying the assist torque command value Trq * by a motor torque constant.
  • the d-axis current command calculation unit 143 calculates a d-axis current command value Id * .
  • the q-axis current command value Iq * and the d-axis current command value Id * correspond to the “current sum command value”.
  • the first current feedback calculation unit 150 performs a current feedback calculation based on the dq-axis current command values Id * , Iq * and the dq-axis current detection values Id1, Iq1, Id2, Iq2, and the first d-axis voltage command value Vd1 *. And the first q-axis voltage command value Vq1 * is calculated. Details of the current feedback calculation will be described later.
  • the first dq-axis voltage command values Vd1 * and Vq1 * are calculated by “sum and difference control” using the dq-axis current command values Id * and Iq * as current sum command values. By controlling the sum and difference, it is possible to cancel the influence of mutual inductance.
  • the first three-phase voltage command calculation unit 161 performs inverse dq conversion on the first dq-axis voltage command values Vd1 * and Vq1 * using the first electrical angle EleAng1 to obtain the first U-phase voltage command value Vu1 * and the first V-phase.
  • the voltage command value Vv1 * and the first W-phase voltage command value Vw1 * are calculated.
  • the first PWM calculation unit 163 calculates the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * based on the three-phase voltage command values Vu1 * , Vv1 * , and Vw1 * .
  • the first signal output unit 165 outputs the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * to the first inverter circuit 120.
  • the first communication unit 170 includes a first transmission unit 171 and a first reception unit 172, and communicates with the second communication unit 270.
  • the first transmission unit 171 transmits the value calculated by the first control unit 131 to the second control unit 231.
  • the first transmission unit 171 sends the d-axis current command value Id * , the q-axis current command value Iq * , the first d-axis current detection value Id1, and the first q-axis current detection value Iq1 to the second control unit 231.
  • the first reception unit 172 receives a value transmitted from the second control unit 231.
  • the first receiving unit 172 receives the second d-axis current detection value Id2 and the second q-axis current detection value Iq2.
  • the current command value and the current detection value transmitted and received between the control units 131 and 231 may be three-phase values instead of the dq axis values. However, the amount of data is reduced when the dq axis values are transmitted and received. Can be suppressed. Further, transmission / reception of the d-axis current detection values Id1 and Id2 may not be performed.
  • the second control unit 231 that is a slave control unit includes a second dq-axis current calculation unit 240, a second current feedback calculation unit 250, a second three-phase voltage command value calculation unit 261, a second PWM calculation unit 263, and a second signal output.
  • Unit 265 and second communication unit 270 are included in The second control unit 231 that is a slave control unit.
  • the second dq-axis current calculation unit 240 converts the phase currents Iu2, Iv2, and Iw2 acquired from the second current sensor 225 into the dq-axis using the second electrical angle EleAng2, and outputs the second d-axis current detection value Id2 and the second q
  • the shaft current detection value Iq2 is calculated.
  • the second current feedback calculation unit 250 performs a current feedback calculation based on the dq-axis current command values Id * and Iq * and the dq-axis current detection values Id1, Iq1, Id2, and Iq2, and the second d-axis voltage command value Vd2 *. And the second q-axis voltage command value Vq2 * .
  • the second dq-axis voltage command values Vd2 * and Vq2 * are calculated by “sum and difference control” using the dq-axis current command values Id * and Iq * as current sum command values.
  • the second current feedback calculation unit 250 performs current feedback calculation using the dq-axis current command values Id * and Iq * transmitted from the first control unit 131.
  • the first control unit 131 and the second control unit 231 perform current feedback calculation using the same current command values Id * and Iq * .
  • the second three-phase voltage command calculation unit 261 performs inverse dq conversion on the second dq-axis voltage command values Vd2 * and Vq2 * using the second electrical angle EleAng2 to obtain the second U-phase voltage command value Vu2 * and the second V-phase.
  • the voltage command value Vv2 * and the second W-phase voltage command value Vw2 * are calculated.
  • the voltage command calculation units 161 and 261 calculate the voltage command values Vu1 * , Vv1 * , Vw1 * , Vu2 * , Vv2 * , and Vw2 * so that the energization phase difference becomes an electrical angle of 30 [deg].
  • the second PWM calculator 263 calculates the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * based on the three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * .
  • the second signal output unit 265 outputs the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * to the second inverter circuit 220.
  • the second communication unit 270 includes a second transmission unit 271 and a second reception unit 272.
  • the second transmission unit 271 transmits the value calculated by the second control unit 231 to the first control unit 131.
  • the second transmission unit 271 transmits the second d-axis current detection value Id2 and the second q-axis current detection value Iq2.
  • the second reception unit 272 receives a value transmitted from the first control unit 131.
  • the second receiving unit 272 receives the d-axis current command value Id * , the q-axis current command value Iq * , the first d-axis current detection value Id1, and the first q-axis current detection value Iq1.
  • FIG. 10 Details of the current feedback calculation units 150 and 250 will be described with reference to FIG. In FIG. 10, the blocks of the transmission units 171 and 271 are illustrated separately for convenience. In addition, the second three-phase voltage command calculation unit 261 and the second PWM calculation unit 263 are described in one block, and the signal output units 165 and 265, the inverter circuits 120 and 220, and the like are omitted. In FIG. 10, the explanation will focus on the current feedback calculation for the q axis. Since the current feedback calculation for the d-axis is the same as that for the q-axis, description thereof is omitted. The same applies to FIGS. 15 and 27 described later.
  • the first current feedback calculation unit 150 includes an adder 151, subtracters 152 to 154, controllers 155 and 156, and an adder 157.
  • the adder 151 adds the first q-axis current detection value Iq1 and the second q-axis current detection value Iq2, and calculates the first q-axis current sum Iq_a1.
  • the subtractor 152 subtracts the second q-axis current detection value Iq2 from the first q-axis current detection value Iq1, and calculates the first q-axis current difference Iq_d1.
  • the subtractor 153 subtracts the first q-axis current sum Iq_a1 from the q-axis current command value Iq * to calculate a first current sum deviation ⁇ Iq_a1.
  • the subtractor 154 subtracts the first q-axis current difference Iq_d1 from the current difference command value to calculate a first current difference deviation ⁇ Iq_d1.
  • the current difference command value is set to 0, and control is performed so as to eliminate the current difference between the systems.
  • the current difference command value may be set to a value other than 0, and control may be performed so that a desired current difference is generated between the systems. The same applies to the current difference command value input to the subtractor 254.
  • the controller 155 calculates the basic q-axis voltage command value Vq_b1 * by, for example, PI calculation so that the current sum deviation ⁇ Iq_a1 becomes zero.
  • the controller 156 calculates the q-axis voltage difference command value Vq_d1 * by, for example, PI calculation so that the current difference deviation ⁇ Iq_d1 becomes zero.
  • Adder 157 adds basic q-axis voltage command value Vq_b1 * and q-axis voltage difference command value Vq_d1 * to calculate first q-axis voltage command value Vq1 * .
  • the second current feedback calculation unit 250 includes an adder 251, subtracters 252 to 254, controllers 255 and 256, and a subtractor 257.
  • the adder 251 adds the first q-axis current detection value Iq1 and the second q-axis current detection value Iq2, and calculates the q-axis current sum Iq_a2.
  • the subtractor 252 subtracts the second q-axis current detection value Iq2 from the first q-axis current detection value Iq1, and calculates the q-axis current difference Iq_d2.
  • the adders 151 and 251 use the same value, so that the q-axis current sums Iq_a1 and Iq_a2 have the same value. Further, when different control cycle values are used as in the sixth embodiment described later, the q-axis current sums Iq_a1 and Iq_a2 have different values. The same applies to the q-axis current differences Iq_d1 and Iq_d2.
  • the subtractor 253 subtracts the second q-axis current sum Iq_a2 from the q-axis current command value Iq * to calculate a second current sum deviation ⁇ Iq_a2.
  • the subtractor 254 subtracts the second q-axis current difference Iq_d2 from the current difference command value to calculate a second current difference deviation ⁇ Iq_d2.
  • the current difference command value input to the subtractor 254 may be a value transmitted from the first control unit 131 or a value set internally by the second control unit 231.
  • the controller 255 calculates the basic q-axis voltage command value Vq_b2 * by, for example, PI calculation so that the current sum deviation ⁇ Iq_a2 becomes zero.
  • the controller 256 calculates the q-axis voltage difference command value Vq_d2 * by, for example, PI calculation so that the current difference deviation ⁇ Iq_d2 becomes zero.
  • Subtractor 257 subtracts the q-axis voltage difference command value Vq_d2 * from the basic q axis voltage command value Vq_b2 *, calculates the first 2q-axis voltage command value Vq2 *.
  • FIG. 11 shows, from the top, the common time axis as the horizontal axis, the current acquisition timing of the first control unit, the arithmetic processing in the first control unit, the communication between microcomputers, the current acquisition timing of the second control unit, in the second control unit An arithmetic processing is shown.
  • the current control cycle is P (n)
  • P (n) is described as the start timing.
  • the next control cycle is P (n + 1).
  • values related to current control transmitted / received by communication between microcomputers are mainly described, and descriptions of values used in the own system are omitted as appropriate. The same applies to time charts according to embodiments described later.
  • the assist torque command calculation unit 141 calculates the assist torque command value Trq * from time x1 to time x2, and the current command calculation from time x3 to time x4.
  • the units 142 and 143 calculate current command values Id * and Iq * .
  • the first control unit 131 acquires the phase currents Iu1, Iv1, and Iw1 from the current sensor 125 from time x5 to time x6, and calculates the dq-axis current detection values Id1 and Iq1 from time x7 to time x8. .
  • the second control unit 231 acquires the phase currents Iu2, Iv2, and Iw2 from the current sensor 125 from time x5 to time x6, and calculates the current detection values Id2 and Iq2 from time x7 to time x8.
  • the current acquisition and the dq conversion timing in the control units 131 and 231 are simultaneous, but a deviation within a range in time for the time x9 when the communication between the microcomputers starts is allowed. Also, the processing after the communication between the microcomputers is allowed to deviate to the extent that it is within the control cycle. The same applies to later-described embodiments.
  • control units 131 and 231 From time x9 to time x10, communication between the control units 131 and 231 is performed between the control units 131 and 231 to transmit and receive dq axis current detection values Id1, Iq1, Id2, and Iq2. Also, the dq-axis current command values Id * and Iq * are transmitted from the first control unit 131 to the second control unit 231.
  • the control units 131 and 231 perform the current FB calculation, the three-phase voltage command calculation, and the PWM command calculation from the time x11 after the end of the communication between the microcomputers. At the time x15 after the PWM command calculation, the PWM signal Is output and reflected to each inverter circuit 120 and 220.
  • control units 131 and 231 can perform current feedback calculation using the same value.
  • information provided to in-vehicle devices other than the electric power steering device 8 can be unified by commonly using the assist torque command value Trq * calculated by the first control unit 131.
  • assist torque command value Trq * calculated by the first control unit 131.
  • the current feedback calculation units 150 and 250 control the current sum and current difference between the two systems. By controlling the current sum, the deviation between the assist torque command value Trq * and the output torque can be reduced, and a desired torque can be output from the motor 80. Further, since the current difference between the systems is controlled to be 0, the heat generation in each system can be made uniform. In addition, the control complexity is reduced when voltage limiting, heat limiting, and other current limiting processes are performed, or when an abnormality occurs in one system and backup control is performed using the other system. Can do.
  • the ECU 10 controls the driving of the motor 80 including the motor windings 180 and 280 which are a plurality of winding sets, and includes a plurality of inverter circuits 120 and 220, and a plurality of inverter circuits 120 and 220.
  • the control units 131 and 231 are provided.
  • the control units 131 and 231 have signal output units 165 and 265 that output control signals to the inverter circuits 120 and 220 provided correspondingly, and can communicate with each other.
  • the first control unit 131 is a control signal to the first inverter circuit 120 provided corresponding first 1PWM signal PWM_u1 *, PWM_v1 *, and outputs the PWM_w1 *.
  • the second control unit 231, the 2PWM signal to the second inverter circuit 220 provided corresponding to a control signal PWM_u2 *, PWM_v2 *, and outputs the PWM_w2 *.
  • the first control unit 131 that is one master control unit calculates a command value related to the generation of control signals in all the control units 131 and 231 and transmits the command value to the second control unit 231 that is another control unit. To do.
  • the second control unit 231 that is a slave control unit outputs a control signal based on the command value transmitted from the first control unit 131.
  • the first system L1 and the second system L2 can be appropriately coordinated by transmitting a command value calculated by one master control unit to the slave control unit.
  • “cooperation” means that the energization of the master system and the slave system is controlled based on the “command value” calculated by the master control unit.
  • the first control unit 131 transmits dq-axis current command values Id * and Iq * to the second control unit 231 as command values.
  • the current feedback control can be appropriately performed by coordinating the systems L1 and L2.
  • the first control unit 131 transmits the first dq-axis current detection values Id1 and Iq1, which are current detection values of the first system L1, to the second control unit 231.
  • the second control unit 231 transmits the second dq-axis current detection values Id2 and Iq2 that are current detection values of the second system L2 to the first control unit 131.
  • the first dq-axis current detection values Id1 and Iq1 correspond to the “master current detection value”
  • the second dq-axis current detection values Id2 and Iq2 correspond to the “slave current detection value”.
  • the master current detection value and the slave current detection value may be, for example, a three-phase current detection value, and are not limited to the dq axis current.
  • the current sum of the first system L 1 that is the master system and the second system L 2 that is the slave system becomes the current command values Id * and Iq * , and the current difference is Control so that the current difference command value is obtained.
  • the assist torque can be output from the motor 80 in accordance with the assist torque command value Trq * .
  • the current difference between systems can be appropriately controlled by controlling the current difference.
  • the current difference command value to 0, the current difference between the systems can be eliminated, so that the heat generation of each system can be made uniform.
  • the first control unit 131 and the second control unit 231 transmit and receive information necessary for the current feedback control after the calculation of the current detection values Id1, Iq1, Id2, and Iq2 until the current feedback control starts. I do. Specifically, the first dq-axis current detection values Id1 and Iq1 and the second dq-axis current detection values Id2 and Iq2 are mutually transmitted and received, and the dq-axis current command values Id * and Iq * are second controlled from the first control unit 131. To the unit 231.
  • control units 131 and 231 can perform current feedback control using the current command values Id * and Iq * and the current detection values Id1, Iq1, Id2, and Iq2 in the current control cycle.
  • the ECU 10 of this embodiment is applied to the electric power steering device 8.
  • the electric power steering device 8 includes an ECU 10, a motor 80, and a reduction gear 89.
  • the motor 80 outputs assist torque that assists the steering of the steering wheel 91 by the driver.
  • the reduction gear 89 transmits the driving force of the motor 80 to the steering shaft 92.
  • Trq * calculated by the first control unit 131 that is the master control unit
  • the first control unit 132 which is a master control unit, includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, and a d-axis, as in the first embodiment. It has a current command calculation unit 143, a first current feedback calculation unit 150, a first three-phase voltage command calculation unit 161, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170.
  • the second control unit 232 which is a slave control unit, includes a second dq-axis current calculation unit 240, a second current feedback calculation unit 250, a second three-phase voltage command value calculation unit 261, a second PWM calculation unit 263, and a second signal output.
  • a q-axis current command calculation unit 242 and a d-axis current command calculation unit 243 are provided.
  • current command values Id * and Iq * are transmitted from the first control unit 131 to the second control unit 231 as “command values”.
  • the assist torque command value Trq * is transmitted from the first control unit 132 to the second control unit 232 as the “command value” instead of the current command values Id * and Iq * . That is, in the present embodiment, the first communication unit 170 transmits the torque command value Trq * and the current detection values Id1, Iq1 to the second communication unit 270, and the second communication unit 270 transmits the current detection values Id2, Iq2 to the first 1 to the communication unit 170.
  • the q-axis current command calculation unit 242 calculates a q-axis current command value Iq * based on the assist torque command value Trq * transmitted from the first control unit 132.
  • the d-axis current command calculation unit 243 calculates the d-axis current command value Id * .
  • the second current feedback calculation unit 250 calculates a current feedback based on the current command values Id * and Iq * calculated by the current command calculation units 242 and 243 and the detected current values Id1, Iq1, Id2, and Iq2. To calculate the second d-axis voltage command value Vd2 * and the second q-axis voltage command value Vq2 * .
  • the second control unit 232 determines that the current command calculation units 242 and 243 have the current command value Id based on the assist torque command value Trq * transmitted from the first control unit 132. * And Iq * are calculated. Then, after time x22, current feedback control and subsequent processes are performed as in time x11 and subsequent times in FIG. 11, and at time x25, the PWM signal is output and reflected to each of the inverter circuits 120 and 220.
  • the assist torque command value Trq * calculated by the first control unit 132 is shared by the control units 132 and 232, the same effects as those of the above embodiment can be obtained. Further, the amount of data in communication between microcomputers can be reduced as compared with the case where the current command values Id * and Iq * are transmitted and received.
  • the first control unit 132 transmits an assist torque command value Trq * , which is a torque command value, to the second control unit 232 as a command value. Even if it does in this way, there exists an effect similar to the said embodiment.
  • the first control unit 133 serving as a master control unit includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a current It has a feedback calculation unit 175, a first three-phase voltage command calculation unit 161, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170.
  • the current feedback calculation unit 175 performs a current feedback calculation based on the dq-axis current command values Id * , Iq * and the dq-axis current detection values Id1, Iq1, Id2, Iq2, and dq-axis voltage command values Vd1 * , Vq1 *. , Vd2 * , Vq2 * are calculated.
  • the second control unit 233 which is a slave control unit, includes a dq-axis current calculation unit 240, a second three-phase voltage command value calculation unit 261, a second PWM calculation unit 263, a second signal output unit 265, and a second communication unit. 270.
  • the current feedback calculation unit 175 of the first control unit 133 includes a first current feedback calculation unit 150 and a second current feedback calculation unit 350.
  • the processing in the first current feedback calculation unit 150 is the same as that in the first embodiment, and calculates the first dq-axis voltage command values Vd1 * and Vq1 * .
  • Second current feedback calculation section 350 first 2dq axis voltage command value Vd2 *, be one that calculates the Vq2 *, an adder 351, subtractors 352 to 354, controller 355, and the subtracter 357 Have.
  • the second current feedback calculation unit 350 is the same as the second current feedback calculation unit 250 of the second control unit 231 of the above embodiment, and includes an adder 351, subtracters 352 to 353, controllers 355 and 356, and a subtractor.
  • Each processing in 357 is the same as the processing of the adder 251, subtracters 252 to 254, controllers 255, 256, and subtractor 257 corresponding to the last two digits.
  • the second current feedback calculation unit 350 is provided in the first control unit 133, internally acquired values are used as the first dq-axis current detection values Id1 and Iq1. . Moreover, the value transmitted from the 2nd control part 233 by the communication between microcomputers is used for 2nd dq axis current detection value Id2 and Iq2.
  • the second dq-axis voltage command values Vd2 * and Vq2 * calculated by the current feedback calculation unit 175 of the first control unit 133 are transmitted from the transmission unit 171 to the second control unit 233. That is, in this embodiment, the second dq-axis voltage command values Vd2 * and Vq2 * are transmitted as the “command value” from the first control unit 133 to the second control unit 233.
  • the second three-phase voltage command calculation unit 261 performs inverse dq conversion on the second dq-axis voltage command values Vd2 * and Vq2 * transmitted from the first control unit 133, and the second three-phase voltage command values Vu2 * and Vv2 * , Vw2 * is calculated.
  • the first communication unit 170 transmits the second dq-axis voltage command values Vd2 * and Vq2 * to the second control unit 233, and the second communication unit 270 outputs the second dq-axis current detection values Id2 and Iq2. It transmits to the 1st control part 133.
  • the calculation processing of this embodiment will be described based on the time chart of FIG.
  • the processing from time x41 to x48 is the same as the processing from time x1 to x8 in FIG.
  • the first inter-microcomputer communication in the control cycle is performed between the control units 133 and 233.
  • the second dq-axis current detection values Id2 and Iq2 are transmitted from the second control unit 233 to the first control unit 133 in the first inter-microcomputer communication.
  • the first control unit 133 From the time x51 after the end of the first communication between the microcomputers, the first control unit 133 performs the current FB calculation. In addition, the second communication between the microcomputers is performed at times x52 to x53 after the end of the current FB calculation. In the second communication between the microcomputers, the second dq-axis voltage command values Vd2 * and Vq2 * are transmitted from the first control unit 133 to the second control unit 233.
  • control units 133 and 233 After x54 after the second communication between the microcomputers, the control units 133 and 233 perform a three-phase voltage command calculation and a PWM command calculation, and at time x55 after the PWM command calculation, the PWM signal is transmitted to each inverter circuit. 120 and 220 are output and reflected.
  • the first control unit 133 obtains the first dq-axis voltage command values Vd1 * and Vq2 * related to the first system L1 and the second dq-axis voltage command values Vd2 * and Vq2 * related to the second system L2. Calculate.
  • the first control unit 133 transmits the second dq-axis voltage command values Vd2 * and Vq2 * as command values to the second control unit 233.
  • the second dq-axis voltage command values Vd2 * and Vq2 * correspond to the “slave voltage command value”. Thereby, the current feedback calculation in the second control unit 233 can be omitted.
  • the second control unit 233 transmits the second dq-axis current detection values Id2 and Iq2 that are slave current detection values to the first control unit 133.
  • the first control unit 133 calculates the current sum of the first system L1 and the second system L2 based on the first dq-axis current detection values Id1 and Iq1, which are master current detection values, and the second dq-axis current detection values Id2 and Iq2.
  • the first dq-axis voltage command values Vd1 * and Vq1 * which are voltage command values of the first system L1, and the second system L2 so that the current command values Id * and Iq * become the current difference command values.
  • the second dq-axis voltage command values Vd2 * and Vq2 * which are the voltage command values are calculated.
  • the assist torque can be output from the motor 80 in accordance with the assist torque command value Trq * .
  • the current difference between the systems can be controlled to a predetermined value.
  • the current difference between the systems can be eliminated, so that the heat generation of each system can be made uniform.
  • the same effects as those of the above embodiment can be obtained.
  • the first control unit 134 as a master control unit includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a current It has a feedback calculation unit 175, a three-phase voltage command calculation unit 162, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170.
  • the dq-axis voltage command values Vd1 * , Vq1 * , Vd2 * , Vq2 * calculated by the current feedback calculation unit 175 are output to the three-phase voltage command calculation unit 162.
  • the three-phase voltage command calculation unit 162 performs inverse dq conversion on the first dq-axis voltage command values Vd1 * and Vq1 * using the first electrical angle EleAng1 to obtain the first U-phase voltage command value Vu1 * and the first V-phase voltage command value.
  • Vv1 * and the first W-phase voltage command value Vw1 * are calculated.
  • the first three-phase voltage command values Vu1 * , Vv1 * , Vw1 * are output to the first PWM calculation unit 163 and used for the calculation of the first PWM signals PWM_u1 * , PWM_v1 * , PWM_w1 * .
  • the three-phase voltage command calculation unit 162 performs inverse dq conversion on the second dq-axis voltage command values Vd2 * and Vq2 * using the second electrical angle EleAng2 to obtain the second U-phase voltage command value Vu2 * and the second V-phase voltage.
  • the command value Vv2 * and the second W-phase voltage command value Vw2 * are calculated.
  • the second electrical angle EleAng2 transmitted from the second control unit 234 is used for the inverse dq conversion.
  • the second electrical angle EleAng2 is not acquired from the second control unit 234, and is contained in the first control unit 134.
  • the second electrical angle EleAng2 may be obtained from the first electrical angle EleAng1 and used for the inverse dq conversion.
  • the fifth embodiment the fifth embodiment.
  • the second three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the transmission unit 171 to the second control unit 234. That is, in the present embodiment, the second three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the first control unit 134 to the second control unit 234 as the “command value”.
  • the second control unit 234 that is a slave control unit includes a dq-axis current calculation unit 240, a second PWM calculation unit 263, a second signal output unit 265, and a second communication unit 270.
  • the second PWM calculation unit 263 calculates the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * using the three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * transmitted from the first control unit 134.
  • the first communication unit 170 transmits the second three-phase voltage command values Vu2 * , Vv2 * , Vw2 * to the second control unit 234, and the second communication unit 270 performs the second dq-axis current detection.
  • the values Id2, Iq2 and the second electrical angle EleAng2 are transmitted to the first control unit 134.
  • the first control unit 134 From time x61 after the end of the first communication between the microcomputers, the first control unit 134 performs a current FB calculation, and then performs a three-phase voltage command calculation.
  • the second inter-microcomputer communication is performed at times x62 to x63 after the completion of the three-phase voltage command calculation.
  • the second three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * are transmitted from the first control unit 134 to the second control unit 234.
  • control units 134 and 234 After time x64 after the second communication between the microcomputers, the control units 134 and 234 perform the PWM command calculation, and output and reflect the PWM signal to the inverter circuits 120 and 220 at time x65 after the PWM command calculation. To do.
  • the three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the first control unit 134 to the second control unit 234 instead of the dq-axis voltage command values Vd2 * , Vq2 *.
  • the three-phase voltage command values Vu2 * , Vv2 * , Vw2 * correspond to “slave voltage command values”.
  • the same effects as those of the above embodiment can be obtained.
  • the first control unit 135 which is a master control unit, includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a current A feedback calculation unit 175, a three-phase voltage command calculation unit 162, a PWM calculation unit 164, a first signal output unit 165, and a first communication unit 170 are included.
  • the current feedback calculation unit 175 and the three-phase voltage command calculation unit 162 are the same as those in the fourth embodiment.
  • the three-phase voltage command values Vu1 * , Vv1 * , Vw1 * , Vu2 * , Vv2 * , and Vw2 * calculated by the three-phase voltage command calculation unit 162 are output to the PWM calculation unit 164.
  • the PWM calculation unit 164 calculates the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * based on the first three-phase voltage command values Vu1 * , Vv1 * , and Vw1 * .
  • the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * are output from the signal output unit 165 to the first inverter circuit 120.
  • the PWM calculation unit 164 calculates the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * based on the second three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * .
  • the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the transmission unit 171 to the second control unit 235.
  • the second control unit 235 that is a slave control unit includes a dq-axis current calculation unit 240, a second signal output unit 265, and a second communication unit 270.
  • the second signal output unit 265 outputs the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * transmitted from the first control unit 135 to the second inverter circuit 220. That is, in the present embodiment, the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the first control unit 135 to the second control unit 235 as “command values”.
  • the first communication unit 170 transmits the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * to the second control unit 235, and the second communication unit 270 includes the second dq-axis current detection values Id2, Iq2, and The second electrical angle EleAng2 is transmitted to the first controller 135.
  • the current FB calculation is performed, and then the three-phase voltage command calculation and the PWM command calculation are performed.
  • the second inter-microcomputer communication is performed at times x72 to x73 after the completion of the PWM command calculation.
  • the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the first control unit 135 to the second control unit 235.
  • the PWM signal is output and reflected on each inverter circuit 120, 220.
  • the first control unit 135 receives the first PWM signal PWM_u1 * , PWM_v1 * , PWM_w1 * related to the first system L1, and the second PWM signal PWM_u2 * , PWM_v2 * , PWM_w2 * related to the second system L2. Calculate. In addition, the first control unit 135 transmits the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * as command values to the second control unit 235. In the present embodiment, the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * correspond to “slave control signals”. Thereby, the calculation of the voltage command value in the second control unit 235 can be omitted. In addition, the same effects as those of the above embodiment can be obtained.
  • FIG. 1 A sixth embodiment is shown in FIG.
  • dq-axis current command values Id * and Iq * are transmitted as command values from the first control unit 131 to the second control unit 231, and the control units 131 and 231 each transmit the command value.
  • the current FB calculation is performed will be described as an example.
  • the value calculated in the previous control cycle P (n-1) is appended with a subscript (n-1)
  • the value calculated in the current control cycle P (n) is appropriately subscripted. Add (n) .
  • the processing at times x83 to x86 of the previous control cycle P (n ⁇ 1) is the same as the processing at times x93 to x96 of the current control cycle P (n), and thus the description thereof is omitted.
  • control cycle P (n) communication between microcomputers 131 and 231 is performed from time x91 to time x92, and dq-axis current detection calculated in the previous control cycle P (n-1) Values Id1 (n-1) , Iq1 (n-1) , Id2 (n-1) , and Iq2 (n-1) are transmitted / received to / from each other. Further, the dq-axis current command values Id * (n ⁇ 1) and Iq * (n ⁇ 1) are transmitted from the first control unit 131 to the second control unit 231.
  • the first control unit 131 calculates the assist torque command value Trq * and the dq-axis current command values Id * and Iq * .
  • the first control unit 131 acquires the phase currents Iu1, Iv1, and Iw1, and calculates the dq-axis current detection values Id1 (n) and Iq1 (n) .
  • the second control unit 231 acquires the phase currents Iu2, Iv2, and Iw2, and calculates the dq-axis current detection values Id2 (n) and Iq2 (n) .
  • the first control unit 131 determines the dq-axis current command values Id * (n) and Iq * (n) of the current control cycle P (n) and the dq-axis current detection value of the own system in the current FB calculation.
  • Id1 (n) , Iq1 (n) , and dq-axis current detection values Id2 (n-1) and Iq2 (n-1) of other systems of the previous control cycle P (n-1) are used.
  • the second control unit 231 calculates the dq-axis current command values Id * (n ⁇ 1) and Iq * (n ⁇ 1) of the previous control cycle P (n ⁇ 1) and the dq-axis of another system in the current FB calculation.
  • the current detection values Id1 (n-1) and Iq1 (n-1) and the dq-axis current detection values Id2 (n) and Iq2 (n) of the own system in the current control period P (n) are used.
  • the value of the current control cycle P (n) is used for the value calculated in the own system, and the value acquired from the other system is used for the previous control cycle P (n ⁇ 1). Calculation is performed using the value.
  • the “cooperative operation” for controlling energization of each system using the values related to each system in common is included in the concept of
  • the control units 131 and 231 of the first embodiment have been described as examples. However, in the second to fifth embodiments, the value of the previous control cycle is used as the current detection value of the other system. May be.
  • information acquired from another control unit among information necessary for calculation of the control signal uses a value in the previous control cycle.
  • “information necessary for control signal calculation” is the dq-axis current detection values Id1, Iq1, Id2, Iq2, and the dq-axis current command values Id * and Iq * .
  • FIGS. A seventh embodiment is shown in FIGS.
  • the first control unit 136 serving as a master control unit includes an abnormality monitoring unit 190 in addition to the components of the first control unit 131 of the first embodiment.
  • the second control unit 236 that is a slave control unit includes, in addition to the components of the second control unit 231 of the first embodiment, an assist torque calculation unit 241, a q-axis current command calculation unit 242, a d-axis current command calculation unit 243, And it has the abnormality monitoring part 290.
  • the d-axis current command calculation unit and the q-axis current command calculation unit are described in one block.
  • FIG. 22 shows an example in which the abnormality monitoring units 190 and 290 are provided in the control units 131 and 231 of the first embodiment, but the control units 132 to 135 and 232 of the second to fifth embodiments. ⁇ 235 may be provided with the abnormality monitoring units 190 and 290, blocks required for the calculation of the PWM signal, and the like.
  • the assist torque calculation unit 241 of the second control unit 236 includes a torque signal acquired from the torque sensor 94 via the torque sensor input circuit 218 and a vehicle speed acquired from the vehicle communication network via the vehicle communication circuit 217. Based on the above, an assist torque command value Trq2 * as a torque command value is calculated.
  • the q-axis current command calculation unit 242 calculates a q-axis current command value Iq2 * based on the assist torque command value Trq2 * .
  • the d-axis current command calculation unit 243 calculates a d-axis current command value Id2 * .
  • the command values Trq2 * , Iq2 * , Id2 * calculated by the second control unit 236 are used when an abnormality occurs in the first control unit 136 that is the master control unit, or when a communication abnormality occurs. Thus, even when an abnormality occurs in the first control unit 136 or when a communication abnormality occurs, the control can be continued by the second control unit 236 alone.
  • the second controller 236 may not calculate the command values Trq2 * , Iq2 * , and Id2 * when the dq-axis current command values Id * and Iq * can be acquired from the first controller 136.
  • the second control unit 236 calculates the command values Trq2 * , Iq2 * , and Id2 * even when the dq-axis current command values Id * and Iq * can be acquired from the first control unit 136. Also good. Thereby, when it becomes impossible to acquire a command value from the 1st control part 136, it can change to control by the 2nd control part 236 alone promptly. In particular, even in the case of including a logic whose control output changes depending on the calculation intermediate value such as filter processing, the calculation error of the command value accompanying the calculation start delay can be reduced.
  • the abnormality monitoring units 190 and 290 monitor the abnormality of the own system and the abnormality of communication between the microcomputers between the control units 136 and 236.
  • the abnormality information related to the own system is transmitted to the control unit of the other system through communication between microcomputers.
  • the abnormality information which concerns on another system is acquired by communication between microcomputers. Thereby, the abnormal state is shared.
  • the current feedback calculation units 150 and 250 perform control according to the determination results of the abnormality monitoring units 190 and 290.
  • the communication abnormality includes an abnormality in communication with the vehicle communication networks 195 and 295 in addition to an abnormality in communication between microcomputers corresponding to the “communication abnormality between control units”.
  • communication abnormality means an abnormality in communication between microcomputers.
  • the command value calculated by the first control unit 136 is transmitted to the second control unit 236 through inter-microcomputer communication, and the master system and the slave system are used using the common command value.
  • each system is operated in a coordinated manner.
  • the abnormality monitoring units 190 and 290 monitor the abnormality of the communication between the microcomputers, and perform backup processing when the abnormality is detected.
  • FIG. 23 shows details of a communication frame for communication between microcomputers.
  • FIG. 23A shows a communication frame of a signal transmitted from the first control unit 136 to the second control unit 236.
  • the communication frame includes a signal indicating the q-axis current command value Iq * , d-axis A signal indicating the current command value Id * , a signal indicating the q-axis current detection value Iq1, a signal indicating the d-axis current detection value Id1, a run counter signal, and a CRC (Cyclic Redundancy Check) signal are included.
  • CRC Cyclic Redundancy Check
  • FIG. 23B shows a signal transmitted from the second control unit 236 to the first control unit 136.
  • the communication frame includes a q-axis current detection value Iq2, a d-axis current detection value Id2, a run counter signal, and a CRC signal. Is included. The same applies to signals transmitted from the second control units 231 to 235 to the first control units 131 to 135.
  • FIG. 23C shows a signal transmitted from the first control unit 132 of the second embodiment.
  • the communication frame includes a signal indicating the assist torque command value Trq * , q-axis current detection A signal indicating the value Iq1, a signal indicating the d-axis current detection value Id1, a run counter signal, and a CRC signal are included.
  • FIG. 23D shows a signal transmitted from the first control unit 133 of the third embodiment.
  • a signal indicating the q-axis voltage command value Vq2 * is transmitted in the communication frame.
  • a signal indicating a d-axis voltage command value Vd2 * a run counter signal, and a CRC signal.
  • FIG. 23E shows a signal transmitted from the first control unit 134 of the fourth embodiment.
  • the U-phase voltage command value Vu2 * is included in the communication frame .
  • a signal indicating a V-phase voltage command value Vv2 * a signal indicating a W-phase voltage command value Vw2 * , a run counter signal, and a CRC signal.
  • FIG. 23F illustrates a signal transmitted from the first control unit 135 to the second control unit 235 according to the fifth embodiment.
  • the communication signals include the PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 *.
  • a run counter signal and a CRC signal.
  • Any number of signals related to the q-axis current command value, the d-axis current command value, the q-axis current detection value, and the d-axis current detection value can be used as long as each physical quantity can be expressed with a desired accuracy. Good. The same applies to the torque command value, voltage command value, and PWM signal.
  • the run counter signal may be any number of bits that can detect communication interruption. For example, the count number is 0 to 3 for 2 bits, and the count number is 0 to 15 for 4 bits. It is.
  • the CRC signal that is an error detection signal may be a CRC polynomial and the number of bits that can ensure communication reliability. Further, the error detection signal may be a signal other than CRC, such as a checksum, as long as the reliability of communication can be detected. Further, the signal order may be changed, or another signal may be added. The same applies to the eighth embodiment.
  • step S101 is omitted, and is simply referred to as “S”.
  • S The other steps are the same.
  • the second control unit 236 receives a communication frame from the first control unit 136.
  • the abnormality monitoring unit 290 performs a disruption determination process.
  • the abnormality monitoring unit 290 performs consistency determination processing. The disruption determination process and the consistency determination process may be performed in a different order, or may be performed separately from the present process to acquire a determination result.
  • FIG. 25 shows a flowchart for explaining the interruption determination process.
  • the abnormality monitoring unit 290 acquires the count value RC from the run counter signal in the acquired communication frame. Let RC (n) be the current value of the count value RC.
  • the abnormality monitoring unit 290 determines whether or not the current count value RC (n) matches the value obtained by adding 1 to the previous count value RC (n ⁇ 1), which is the previous count value RC. . That is, it is determined whether or not the formula (ii) is established. When it is determined that the formula (ii) is not established (S122: NO), the process proceeds to S123. When it is determined that the formula (ii) is established (S122: YES), the process proceeds to S124.
  • the abnormality monitoring unit 290 determines that communication interruption has occurred, and sets a communication interruption flag. In the figure, a state where each flag is set is “1”, and a state where each flag is not set is “0”.
  • the abnormality monitoring unit 290 determines that no communication interruption has occurred, and resets the communication interruption flag. Further, the current count value RC (n) is stored in a memory or the like (not shown). The stored current count value is used as the previous value in the next calculation. Here, at least the latest count value RC only needs to be held.
  • FIG. 26 shows a flowchart for explaining consistency determination processing.
  • the abnormality monitoring unit 290 acquires a value based on the CRC signal from the communication frame.
  • the CRC value acquired here is a value obtained by CRC calculation by the first control unit 136 which is another system, and is hereinafter referred to as another system CRC value.
  • the abnormality monitoring unit 290 calculates a CRC value by a CRC calculation that is an error detection calculation based on the communication frame.
  • the value calculated here is a value calculated internally by the second control unit 236, and is hereinafter referred to as the own system CRC value.
  • the abnormality monitoring unit 290 determines whether or not the own system CRC value matches the other system CRC value. When it is determined that the own system CRC value and the other system CRC value do not match (S133: NO), the process proceeds to S134. When it is determined that the own system CRC value matches the other system CRC value (S133: YES), the process proceeds to S135.
  • the abnormality monitoring unit 290 determines that a communication consistency abnormality such as garbled bits has occurred, and sets a communication consistency abnormality flag. In S135, the abnormality monitoring unit 290 determines that no communication integrity abnormality such as bit corruption has occurred, and resets the communication consistency abnormality flag.
  • the abnormality monitoring unit 290 determines whether the communication interruption flag or the communication consistency abnormality flag is set. When it is determined that the communication interruption flag and the communication consistency abnormality flag are not set (S104: NO), the process proceeds to S109. When it is determined that the communication interruption flag or the communication consistency abnormality flag is set (S104: YES), the process proceeds to S105.
  • the abnormality monitoring unit 290 sets a communication abnormality detection flag.
  • the abnormality monitoring unit 290 increments the abnormality detection counter and the time counter.
  • the abnormality detection counter is a counter for counting the number of times of abnormality detection
  • the time counter is a counter for measuring the time after the abnormality is detected.
  • the abnormality monitoring unit 290 determines whether or not the count value of the abnormality detection counter is larger than the determination determination threshold value THf. When it is determined that the count value of the abnormality determination counter is equal to or smaller than the determination determination threshold THf (S107: NO), the process proceeds to S113. When it is determined that the count value of the abnormality determination counter is larger than the determination determination threshold THf (S107: YES), the process proceeds to S108.
  • the abnormality monitoring unit 290 sets a communication abnormality confirmation flag. Further, the second control unit 236 shifts to an abnormality determination procedure.
  • the abnormality determination procedure of this embodiment is independent drive control that does not use a value acquired from the first system L1 which is another system.
  • the first control unit 136 performs current feedback control without using the value acquired from the second control unit 236. Specifically, the current detection values Id2 and Iq2 related to the second system L2 are set to 0, and the PI calculation of the difference is stopped.
  • the second control unit 236 performs current feedback control without using the value acquired from the first control unit 136.
  • the second control unit 236 performs current control using the dq-axis current command values Id * and Iq * acquired from the first control unit 136 at the normal time.
  • the second control unit 236 replaces the dq axis current command values Id * and Iq * acquired from the first control unit 136 with each other in the second control unit 236.
  • Current feedback calculation is performed using the dq-axis current command values Id2 * and Iq2 * calculated by the dq-axis current command calculation units 242 and 243. Further, the current detection values Id1 and Iq1 relating to the first system L1 are set to 0, and the PI calculation of the difference is stopped.
  • the abnormality monitoring unit 290 determines whether the communication abnormality detection flag is set. Judge whether or not. When it is determined that the communication abnormality detection flag is not set (S109: NO), the process proceeds to S110. When it is determined that the communication abnormality detection flag is set (S109: YES), the process proceeds to S111.
  • the 2nd control part 236 continues normal control using the value acquired by communication between microcomputers. Also, each value acquired in the current communication is held as a hold value in a storage unit (not shown) or the like. Here, it is sufficient that at least the latest value is held.
  • the second control unit 236 holds the dq axis current command values Id * and Iq * and the dq axis current detection values Id1 and Iq1.
  • the abnormality monitoring unit 290 increments the time counter.
  • the abnormality monitoring unit 290 determines whether or not the count value of the time counter is larger than the elapsed determination threshold value THt. When it is determined that the count value of the time counter is equal to or less than the elapsed determination threshold value THt (S112: NO), the process proceeds to S113. When it is determined that the count value of the time counter is larger than the elapsed determination threshold value THt (S112: YES), the process proceeds to S114.
  • the abnormality monitoring unit 290 resets the communication abnormality detection flag. Further, the detected communication error between the microcomputers is considered to be temporary, and the normal control using the value acquired from the first control unit 136 through the communication between microcomputers is restored.
  • the value held in S110 is different. That is, since the first control unit 136 has not acquired the dq-axis current command values Id2 * and Iq2 * from the second control unit 236, the first control unit 136 holds the dq-axis current detection values Id1 and Id2 as hold values.
  • the other points are substantially the same as the abnormality monitoring process in the second control unit 236.
  • the first control unit 136 includes an abnormality monitoring unit 190 that monitors the abnormality of the own system and the communication abnormality.
  • the second control unit 236 includes an abnormality monitoring unit 290 that monitors an abnormality of the own system and a communication abnormality. Thereby, abnormality of EUU10 can be detected appropriately.
  • the output signal transmitted from one of the control units 136 and 236 to the other includes a run counter signal.
  • the abnormality monitoring units 190 and 290 determine that communication interruption has occurred as a communication abnormality between the control units. Thereby, communication interruption can be detected appropriately.
  • the output signal transmitted from one of the control units 136 and 236 to the other includes a CRC signal that is an error detection signal.
  • the abnormality monitoring units 190 and 290 are based on the other system CRC value which is a value based on the CRC signal included in the output signal and the own system CRC value which is a value calculated by the error detection calculation based on the output signal, Monitors communication consistency errors, which are communication errors between control units. Thereby, it is possible to appropriately detect a communication integrity abnormality such as bit corruption.
  • the abnormality monitoring units 190 and 290 determine the abnormality when a predetermined abnormality continuation condition is satisfied after the abnormality is detected.
  • the count value of the abnormality counter becomes larger than the determination determination threshold value THf within a predetermined period after the abnormality is detected, it is considered that the predetermined abnormality continuation condition is satisfied, and the abnormality is confirmed.
  • the predetermined abnormality continuation condition is satisfied, and the abnormality is confirmed.
  • the control units 136 and 236 hold values acquired by communication from other control units as hold values when no abnormality is detected. Further, the control is performed using the hold value from when the abnormality is detected until it is determined. Thereby, it is possible to prevent control using incorrect information.
  • the second control unit 236 can calculate current command values Id2 * and Iq2 * that are used to generate a control signal related to the own system.
  • the current command values Id2 * and Iq2 * correspond to “slave command values”.
  • the control units 136 and 236 do not use the values acquired from other control units until the determination is made after the abnormality is detected, but the control units 136 and 236 are controlled using the command calculated by itself and the detection value of the own system. You may make it perform the independent drive control mode which produces
  • the control units 136 and 236 are driven in cooperation, when the current sum and current difference of a plurality of systems (two systems in the present embodiment) are controlled, the control units 136 and 236 are in the independent drive control mode.
  • the current detection value acquired from the other control unit is set to 0, and the current difference control is stopped.
  • “at the time of abnormality” is a concept including both the time from when an abnormality is detected until it is determined, and the time when the abnormality is determined.
  • the control units 136 and 236 return to the normal control mode when the abnormality is not confirmed within a predetermined period after the abnormality is detected. Thereby, when abnormality is not decided, it can return from normal time control mode to normal control mode appropriately.
  • the ECU 10 is applied to the electric power steering device 8.
  • the process shifts to an abnormality detection procedure before the abnormality is confirmed, and when an abnormality is confirmed, the process shifts to the independent drive control mode.
  • the current FB calculation units 150 and 250 of the control units 136 and 236 switch the control mode according to the type of abnormality that has occurred.
  • the types of abnormality are (1) communication error between microcomputers, (2) abnormality that makes motor control impossible, (3) abnormality that indirectly affects motor control, (4) command value divergence between systems Classify into:
  • the abnormalities (1) to (4) are appropriately referred to as “abnormal (1) to (4)”.
  • Uncontrollable abnormalities include abnormalities in the drive system from the batteries 191 and 291 via the inverter circuits 120 and 220 to the motor windings 180 and 280, abnormalities in the sensor used to generate command values necessary for motor control, and the control unit 131 and 231 abnormalities.
  • sensors used for generating command values necessary for motor control include a torque sensor 94, current sensors 125 and 225, and rotation angle sensors 126 and 226.
  • the current detection value acquired from the other control unit is set to 0 and the current difference control is stopped.
  • the output of the current FB control and the control signal is stopped.
  • the output torque from the normal system may be equivalent to that in the two-system drive. Further, in the single-system drive control, the output torque may be increased as compared with the two-system drive in order to compensate for the torque shortage.
  • An abnormality that indirectly affects motor control refers to a state in which motor control is possible but motor control cannot be performed as intended by the user or under preset conditions.
  • Abnormalities that indirectly affect motor control include abnormalities in communication with the vehicle communication networks 195 and 295, abnormalities in the temperature sensors 127 and 227, and the like.
  • the substitute control is a control that uses substitute information instead of an abnormal signal. For example, when vehicle communication abnormality occurs and information related to the vehicle speed cannot be acquired, a fixed value of a predetermined hourly speed (for example, 100 km / h) is used as alternative information related to the vehicle speed. Further, for example, when an abnormality occurs in the temperature sensors 127 and 227, a fixed value of a predetermined temperature is used as alternative information relating to the temperature.
  • the predetermined temperature is set according to the temperature that requires overheat protection.
  • FIG. 28 shows details of a communication frame for communication between microcomputers.
  • 28A, 28B, 28C, 28D, 28E, and 28F correspond to FIGS. 23A, 23B, 23C, 23D, 23E, and 23F, respectively, before the run counter signal.
  • a status signal related to the own system has been added.
  • the master-side status signal is a signal corresponding to the abnormality monitoring result of the first system L1 in the abnormality monitoring unit 190.
  • the slave-side status signal is a signal according to the abnormality monitoring result of the second system L2 in the abnormality monitoring unit 290.
  • the number of bits of the master-side status signal and the slave-side status signal may be any number, and it is desirable to set the number of bits that can represent the state of each abnormal item according to the abnormal item notified to other systems.
  • the control units 136 and 236 share the abnormal state using the status signal.
  • the abnormal state is caused by any information such as the abnormal signal itself or the state transition code. You may share state.
  • Control mode switching processing will be described based on the flowcharts of FIGS.
  • the processing in FIG. 29 is performed at a predetermined cycle by the first control unit 136 on the master side.
  • the description is omitted in FIGS. 29 and 30, as in the above embodiment, when an abnormality is detected, the abnormality counter is incremented, and the abnormality is confirmed when the counter value becomes larger than the decision determination threshold value THf.
  • the determination threshold value THf may be different for each type of abnormality. In the period from abnormality detection to abnormality confirmation, control using a hold value internally held is performed as in the above embodiment.
  • the abnormality monitoring unit 190 determines whether an abnormality (1) that is a communication abnormality between microcomputers has occurred.
  • communication abnormality determination is performed as in the seventh embodiment, but the abnormality determination method may be different.
  • the process proceeds to S202, and the control mode is set to independent drive control.
  • the process proceeds to S203.
  • the abnormality monitoring unit 190 determines whether or not an abnormality (2) that is an abnormality that cannot control the motor 80 in its own system has occurred. When it is determined that the abnormality (2) has not occurred (S203: NO), the process proceeds to S206. When it is determined that the abnormality (2) has occurred (S203: YES), the process proceeds to S204.
  • the first control unit 136 includes information indicating that the abnormality (2) has occurred in the status signal of the own system, and transmits the information to the second control unit 236.
  • a signal is transmitted at this step, but the signal may be transmitted from the transmission unit 171 at a predetermined communication timing. The same applies to the steps related to other signal transmission / reception.
  • the first control unit 136 sets the control mode of the own system to drive stop. In this case, if the other system is normal, the motor 80 is driven by one-system drive on the other system side.
  • the abnormality monitoring unit 190 determines whether or not an abnormality (3) that is an abnormality that indirectly affects motor control has occurred. When it is determined that the abnormality (3) has not occurred (S206: NO), the process proceeds to S209. When it is determined that the abnormality (3) has occurred (S206: YES), the process proceeds to S207.
  • control unit 136 sets the control mode to alternative control.
  • the abnormality monitoring unit 190 acquires status information of another system.
  • the abnormality monitoring unit 190 determines whether an abnormality (2) has occurred in the other system based on the status information of the other system. When it is determined that no abnormality (2) has occurred in the other system (S210: NO), the process proceeds to S212. If it is determined that an abnormality (2) has occurred in the other system (S210: YES), the process proceeds to S211 and the control mode is set to one-system drive control.
  • the abnormality monitoring unit 190 determines whether or not an abnormality (4) that is a command divergence between systems has occurred.
  • the abnormality (4) is determined on the slave side, and the abnormality monitoring unit 190 on the master side determines based on the status information acquired from the second control unit 236 on the slave side.
  • the process proceeds to S213, and the control mode is set to independent drive control.
  • the control mode is set to normal control.
  • the normal control of this embodiment is coordinated drive control that controls the master system and the slave system using the master-side command value.
  • the details of the cooperative drive control may be those of any of the above embodiments.
  • S301 to S310 is the same as the processing of S201 to S210.
  • the corresponding control block and value are set such that the own system is the second system L2, the other system is the first system L1, and the abnormality monitoring unit 190 is changed to the abnormality monitoring unit 290, for example. May be read as appropriate.
  • step S321 the abnormality monitoring unit 290 calculates a command deviation that is a deviation between the command value of the master system acquired by communication between microcomputers and the command value calculated by the own system. In the present embodiment, it calculates the difference ⁇ I between the current command value I2 * of the current command value I1 * and the second line of the first system.
  • the current command values I1 * and I2 * may be any value such as a command value related to the dq-axis current, a command value related to the three-phase current, or a square sum of the command values related to the three-phase current.
  • the command deviation is not limited to the current command value deviation, and may be a torque command value or voltage command value deviation.
  • abnormality monitoring unit 290 determines whether or not command deviation ⁇ I is greater than or equal to command deviation determination threshold THi1.
  • the command deviation determination threshold is set to such a value that the current command values I1 * and I2 * can be regarded as matching. If it is determined that the command deviation ⁇ I * is smaller than the command deviation determination threshold THi1 (S322: NO), it is determined that no command deviation abnormality has occurred, the present routine is terminated, and the routine proceeds to S313 in FIG. When it is determined that the command deviation ⁇ I * is greater than or equal to the command deviation determination threshold THi1 (S322: YES), the process proceeds to S323, and the command deviation counter is incremented.
  • the abnormality monitoring unit 290 determines whether or not the count value of the command divergence counter is greater than or equal to the divergence determination threshold value THd. When it is determined that the count value of the command divergence counter is smaller than the divergence determination threshold THd (S324: NO), the command divergence abnormality is not confirmed and this routine is terminated, and the process proceeds to S313 in FIG. When it is determined that the count value of the command deviation counter is equal to or greater than the deviation determination threshold THd (S324: YES), the process proceeds to S325.
  • the second control unit 236 includes information indicating that the abnormality (4) has occurred in the status signal of its own system and transmits the information to the first control unit 136.
  • the second control unit 236 determines whether or not an abnormality (4) has occurred. If it is determined that the abnormality (4) has occurred (S313: YES), the process proceeds to S314, and the control mode is set to independent drive control. When it is determined that the abnormality (4) has not occurred (S313: NO), the process proceeds to S315 and the control mode is set to normal control.
  • FIG. 32 is a flowchart for explaining return processing when the control mode is alternative control. This process is performed at a predetermined cycle when the control units 136 and 236 shift to alternative control. Since the return processing from the alternative control is the same in the control units 136 and 236, the processing of the first control unit 136 will be described, and the description related to the second control unit 236 will be omitted. The same applies to FIG.
  • the abnormality monitoring unit 190 determines whether or not the abnormality (3) has been resolved. If it is determined that the abnormality (3) has not been resolved (S401: NO), the process proceeds to S404 and the alternative control is continued. When it is determined that the abnormality (3) has been resolved (S401: YES), the process proceeds to S402.
  • the abnormality monitoring unit 190 increments the return counter.
  • the abnormality monitoring unit 190 determines whether or not the count value of the return counter is greater than or equal to the return determination threshold value THr.
  • the return determination threshold THr may be the same as or different from the value in the return processing from another abnormality.
  • the process proceeds to S404 and the alternative control is continued.
  • the process proceeds to S405.
  • the first control unit 136 includes information indicating that the abnormality (3) is normal in the status signal of the own system and transmits the information to the second control unit 236.
  • the abnormality monitoring unit 190 acquires status information of another system.
  • the abnormality monitoring unit 190 determines whether or not the own system and the other system are normal. When it is determined that the own system and the other system are normal (S407: YES), the process proceeds to S408 and the control mode is set to normal control. When it is determined that the own system or another system is not normal (S407: NO), the process proceeds to S409, and the process proceeds to the control mode corresponding to the abnormal state. Specifically, the control mode is determined by the control mode switching process described with reference to FIGS.
  • FIG. 33 is a flowchart for explaining return processing when the control mode is independent drive control due to an abnormality in communication between microcomputers. This process is performed at a predetermined cycle when the control units 136 and 236 shift to independent drive control due to communication abnormality.
  • the abnormality monitoring unit 190 determines whether the abnormality (1) has been resolved.
  • the CRC signal and the run counter are normal, it is determined that the abnormality (1) has been resolved.
  • the process proceeds to S424.
  • the process proceeds to S422.
  • S422 and S423 are the same as the processes of S402 and S403 in FIG. If it is determined in S423 that the count value of the return counter is smaller than the return determination threshold THr (S423: NO), the process proceeds to S424. When it is determined that the count value of the return counter is equal to or greater than the return determination threshold THr (S423: YES), the process proceeds to S426.
  • the abnormality monitoring unit 190 determines whether or not the own system is normal other than communication between microcomputers. In this step, if the own system is normal except for communication between microcomputers, it is determined that the own system is normal. The same applies to S465 and S525 described later. When it is determined that the own system is not normal (S424: NO), the process proceeds to S430. When it is determined that the own system is normal (S242: YES), the process proceeds to S425 and the independent drive control is continued.
  • the first control unit 136 transmits a signal including status information related to the abnormality information of the own system to the second control unit 236.
  • the first control unit 136 acquires status information of another system.
  • the processing of S428 to S430 is the same as the processing of S407 to S409 in FIG.
  • FIG. 34 and FIG. 35 are flowcharts for explaining return processing when the command value deviation is abnormal.
  • FIG. 34 shows processing of the second control unit 236 on the slave side
  • FIG. 35 shows processing of the first control unit 136 on the master side.
  • the abnormality monitoring unit 290 determines whether or not the communication between microcomputers is normal. When it is determined that the communication between the microcomputers is not normal (S441: NO), the process proceeds to S446 and the independent drive control is continued. When it is determined that the communication between the microcomputers is normal (S441: YES), the process proceeds to S442, and the command deviation ⁇ I * is calculated. As explained in FIG. 31, the command deviation may be other than the current deviation.
  • the abnormality monitoring unit 290 determines whether or not the command deviation ⁇ I * is equal to or less than the command deviation determination threshold THi2.
  • the command deviation determination threshold THi2 is set to a value that allows the current command values I1 * and I2 * of the first system L1 to be regarded as matching. Note that the command deviation determination threshold THi2 used here may be the same value as or different from the command deviation determination threshold THi1 used in S322.
  • the process proceeds to S446 and the independent drive control is continued.
  • the command deviations ⁇ Id * and ⁇ Iq * are equal to or less than the command deviation determination threshold THi2 (S443: YES)
  • the process proceeds to S444.
  • S444 and S445 are the same as the processing of S402 and S403 in FIG.
  • S445: NO when it is determined that the count value of the return counter is smaller than the return determination threshold THr (S445: NO), the process proceeds to S446 and the independent drive control is continued.
  • the process proceeds to S447.
  • the second control unit 236 includes information indicating that the abnormality (4) is normal in the status signal of the own system, and transmits the information to the first control unit 136.
  • the second control unit 236 acquires status information of another system.
  • the processing of S449 to S451 is the same as the processing of S407 to S409 in FIG.
  • the abnormality monitoring unit 190 determines whether or not the communication between microcomputers is normal. If it is determined that the communication between the microcomputers is not normal (S461: NO), the process proceeds to S465. When it is determined that the communication between the microcomputers is normal (S461: YES), the process proceeds to S462.
  • S462 and S463 The processing of S462 and S463 is the same as the processing of S426 and S427 in FIG.
  • the abnormality monitoring unit 190 determines whether the abnormality (4) has been resolved based on the status information acquired from the slave side. When it is determined that the abnormality (4) has been resolved (S464: YES), the process proceeds to S467. When it is determined that the abnormality (4) has not been resolved (S464: NO), the process proceeds to S465.
  • S465 and S466 is the same as S424 and S425 in FIG. 33, and the processing of S467 to S469 is the same as the processing of S428 to S430.
  • FIG. 36 and FIG. 37 are flowcharts for explaining return processing from single-system drive.
  • FIG. 36 shows the processing of the abnormal system that has stopped driving due to the abnormality (2)
  • FIG. 37 shows the processing of the system that continues the one-system driving.
  • the description will be made assuming that the first system L1 is an abnormal system and the second system L2 continues the single system drive.
  • the abnormality monitoring unit 190 determines whether or not the abnormality (2) has been resolved. When it is determined that the abnormality (2) has not been resolved (S501: YES), the process proceeds to S505, and the drive stop state is continued. If it is determined that the abnormality (2) has been resolved (S501: YES), the process proceeds to S502.
  • S502 and S503 are the same as the processes of S402 and S403 in FIG. If it is determined in S503 that the count value of the return counter is smaller than the return determination threshold THr (S503: NO), the process proceeds to S505, and the drive stop state is continued. If it is determined that the count value of the return counter is equal to or greater than the return determination threshold THr (S503: YES), the process proceeds to S505.
  • the abnormality monitoring unit 190 determines whether or not communication between microcomputers is normal. If it is determined that the communication between the microcomputers is not normal (S504: NO), the process proceeds to S505, and the drive stop state is continued. When it is determined that the communication between the microcomputers is normal (S504: YES), the process proceeds to S506.
  • the processing of S506 to S510 is the same as the processing of S426 to S430 in FIG.
  • the abnormality monitoring unit 290 determines whether or not the communication between microcomputers is normal. If it is determined that the communication between the microcomputers is not normal (S521: NO), the process proceeds to S525. If it is determined that the communication between the microcomputers is normal (S521: YES), the process proceeds to S522.
  • the processing of S522 and S523 is the same as the processing of S426 and S427.
  • the abnormality monitoring unit 290 determines whether or not the abnormality (2) in the first system L1 that has stopped driving has been resolved based on the acquired status signal. When it is determined that the abnormality (2) has been resolved (S524: YES), the process proceeds to S527. When it is determined that the abnormality (2) has not been resolved (S524: NO), the process proceeds to S525.
  • the abnormality monitoring unit 290 determines whether or not the own system is normal other than communication between microcomputers. When it is determined that the own system is not normal (S525: NO), the process proceeds to S529. When it is determined that the own system is normal (S525: YES), the process proceeds to S526 and the one-system drive is continued.
  • the processing of S527 to S529 is the same as the processing of S407 to S409 in FIG.
  • control units 136 and 236 share the own system abnormality information related to the abnormality of the own system and the other system abnormality information related to the abnormality of the other system. Specifically, the control units 136 and 236 transmit the own system abnormality information that is the abnormality information of the own system to the control units 236 and 136 of the other system, and the other system abnormality information that is the abnormality information of the other system is transmitted to the other system. Obtained from the control units 236 and 136. In the present embodiment, the abnormality information is included in the status signal and shared by communication between microcomputers.
  • the first control unit 136 transmits a master-side status signal including own system abnormality information to the second control unit 236, and acquires a slave-side status signal including other system abnormality information from the second control unit 236.
  • the second control unit 236 transmits a slave-side status signal including own system abnormality information to the first control unit 136 and acquires a master-side status signal including other system abnormality information from the first control unit 136.
  • the control units 136 and 236 can switch between the normal control mode and the abnormal time control mode as the control mode based on the own system abnormality information and the other system abnormality information. In the normal control mode, the control units 136 and 236 are driven in cooperation.
  • the abnormal time control mode includes at least one of an alternative control mode, a single system drive control mode, and an independent drive control mode. The control units 136 and 236 return to the normal control mode when the abnormality is resolved during the alternative control mode, the independent drive control mode, or the single-system drive control mode.
  • the alternative control mode uses alternative information in place of the abnormal signal among the signals used in the normal control mode.
  • driving of some systems is stopped, and control of the motor 80 is continued using the remaining systems.
  • control units 136 and 236 are not coordinated, and the control of the motor 80 is continued for each system. Thereby, control of the motor 80 can be appropriately continued according to the abnormal state.
  • the control units 136 and 236 switch to the independent drive control mode when a communication abnormality between the control units that cannot use the other system abnormality information occurs. Thereby, it is possible to prevent control using incorrect information.
  • Uncontrollable abnormalities are abnormalities in the drive system from the batteries 191 and 291 via the inverter circuits 120 and 220 to the motor windings 180 and 280, abnormalities in the torque sensor 94, current sensors 125 and 225, or rotation angle sensors 126 and 226 Or, it is an abnormality of the control units 136 and 236.
  • the motor 80 can be properly driven using the normal system by switching to the single system drive mode.
  • the control units 136 and 236 switch to the alternative control mode when an abnormality that indirectly affects the driving of the motor 80 occurs. In the present embodiment, this makes it possible to appropriately continue drive control of the motor 80.
  • the control units 136 and 236 have a cooperative drive mode, an independent drive mode, and a single-system drive mode.
  • the motor control device having the cooperative drive mode, the independent drive mode, and the single-system drive mode is considered to correspond to the ECU of the present embodiment.
  • the drive mode is switched according to the abnormal state, but the drive mode may be switched under a transition condition other than the abnormal state.
  • the alternative control mode may be combined with another control mode, for example, the alternative control is performed in one system.
  • the first control unit 136 that is a master control unit calculates a command value related to generation of a control signal, outputs a control signal based on the command value, and the second control unit 236 that is a slave control unit. Outputs a control signal based on the command value calculated by the first control unit 136.
  • the first control unit 136 calculates a command value related to generation of a control signal of the own system, outputs a control signal based on the calculated command value, and the second control unit 236 controls the own system.
  • a command value related to signal generation is calculated, and a control signal based on the calculated command value is output.
  • control units there are two control units, one is a master control unit, and the other is a slave control unit. In other embodiments, there may be three or more control units. That is, the number of systems may be 3 or more. In this case, there is one master control unit and a plurality of slave control units. In the case of three or more systems, the drive of any one system is stopped and the drive is continued in the remaining multiple systems. The drive of the plurality of systems is stopped and the drive is performed in the remaining one system. The case of continuing is also included in the concept of “single system drive”.
  • the master control unit may be replaced such that one of the slave control units is switched to the master control unit and the cooperative control is continued.
  • a plurality of drive circuits and winding sets may be provided for one control unit.
  • control unit controls the driving of the rotating electrical machine by current feedback control.
  • driving of the rotating electrical machine may be controlled by a method other than the current feedback control.
  • master control unit transmits a torque command value, a current command value, a voltage command value, or a value other than the PWM signal as a command value to the slave control unit according to the control method. Also good.
  • the rotating electrical machine is a three-phase brushless motor. In other embodiments, the rotating electrical machine is not limited to a brushless motor, and may be any motor.
  • the rotating electrical machine is not limited to a motor, and may be a generator, or a so-called motor generator having both functions of an electric motor and a generator.
  • the drive device is an electromechanical integrated type in which an ECU and a motor are integrally provided. In another embodiment, the ECU may be a separate electromechanical body provided separately from the motor.
  • the rotating electrical machine control device is applied to an electric power steering device.
  • the rotating electrical machine control device may be applied to devices other than the electric power steering device.
  • this indication is not limited to the said embodiment at all, and can be implemented with a various form in the range which does not deviate from the meaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This rotary electric device control device (10) controls driving of a rotary electric device (80) having multiple coil sets (180, 280), and is provided with multiple drive circuits (120, 220) and multiple control units (131-136, 231-236). The control units (131-136, 231-236) have a signal output unit (165, 265) for outputting a control signal to the correspondingly provided drive circuit (120, 220), and can communicate with one another. The control units include one master control unit (131-136) and at least one slave control unit (231-236). The master control unit (131-136) calculates a command value relating to the generation of a control signal in all control units (131-136, 231-236), and transmits the command value to the other control unit (231-236). The slave control unit (231-236) outputs a control signal based on the command value transmitted from the master control unit (131-136).

Description

回転電機制御装置、および、これを用いた電動パワーステアリング装置Rotating electrical machine control device and electric power steering device using the same 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年11月11日に出願された特許出願番号2016-220474号、2017年2月10日に出願された特許出願番号2017-23443号、および、2017年10月31日に出願された特許出願番号2017-209905号に基づくものであり、ここにその記載内容を援用する。 This application is a patent application number 2016-220474 filed on November 11, 2016, a patent application number 2017-23443 filed on February 10, 2017, and an application filed on October 31, 2017. Patent application No. 2017-209905, which is incorporated herein by reference.
 本開示は、回転電機制御装置、および、これを用いた電動パワーステアリング装置に関する。 The present disclosure relates to a rotating electrical machine control device and an electric power steering device using the same.
 従来、モータの駆動力にて操舵を補助する電動パワーステアリング装置が知られている。例えば特許文献1では、2つのマイコンにて、それぞれ独立に基本アシスト制御量を演算している。 Conventionally, an electric power steering device that assists steering by a driving force of a motor is known. For example, in Patent Document 1, the basic assist control amount is calculated independently by two microcomputers.
特開2011-195089号公報JP 2011-195089 A
 しかしながら特許文献1のように、各系統で独立にアシスト制御量を演算し、独立に電流制御を行う場合、系統間にて不整合が生じる虞がある。 However, as in Patent Document 1, when the assist control amount is independently calculated in each system and the current control is performed independently, there is a possibility that inconsistency occurs between the systems.
 本開示の目的は、複数の系統を協調させて回転電機の駆動を制御する回転電機制御装置、および、これを用いた電動パワーステアリング装置を提供することにある。 An object of the present disclosure is to provide a rotating electrical machine control device that controls driving of a rotating electrical machine by coordinating a plurality of systems, and an electric power steering device using the same.
 本開示の第1態様では、回転電機制御装置は、複数の巻線組を備える回転電機の駆動を制御するものであって、複数の駆動回路と、複数の制御部を備える。制御部は、対応して設けられる駆動回路に制御信号を出力する信号出力部を有し、相互に通信可能である。制御部には、全ての制御部における制御信号の生成に係る指令値を演算し、他の制御部に指令値を送信する1つのマスター制御部、および、マスター制御部から送信される指令値に基づく制御信号を出力する少なくとも1つのスレーブ制御部が含まれる。1つのマスター制御部にて演算される指令値をスレーブ制御部に送信することで、複数の系統を適切に協調させることができ、系統間の不整合や調停の複雑さを低減することができる。 In the first aspect of the present disclosure, the rotating electrical machine control device controls driving of the rotating electrical machine including a plurality of winding sets, and includes a plurality of drive circuits and a plurality of control units. The control unit includes a signal output unit that outputs a control signal to a corresponding driving circuit, and can communicate with each other. The control unit calculates a command value related to generation of a control signal in all the control units, and transmits one command value to another control unit, and a command value transmitted from the master control unit. At least one slave controller that outputs a control signal based thereon is included. By transmitting the command value calculated by one master control unit to the slave control unit, it is possible to appropriately coordinate a plurality of systems, and to reduce mismatch between systems and the complexity of arbitration. .
 本開示の第2態様では、回転電機制御装置は、複数の巻線組を備える回転電機の駆動を制御するものであって、複数の駆動回路と、複数の制御部と、を備える。制御部は、対応して設けられる駆動回路に制御信号を出力する信号出力部を有し、相互に通信可能である。制御部には、1つのマスター制御部、および、少なくとも1つのスレーブ制御部が含まれる。制御部は、協調駆動モードと、独立駆動モードと、片系統駆動モードと、を有する。協調駆動モードは、マスター制御部が制御信号の生成に係る指令値を演算し、当該指令値に基づく制御信号を出力するとともに、スレーブ制御部がマスター制御部にて演算された指令値に基づく制御信号を出力する。独立駆動モードは、マスター制御部が自系統の制御信号の生成に係る指令値を演算し、その演算した指令値に基づく制御信号を出力するとともに、スレーブ制御部が自系統の制御信号の生成に係る指令値を演算し、その演算した指令値に基づく制御信号を出力する。片系統駆動モードは、マスター制御部およびスレーブ制御部のうちの一部が制御信号の出力を停止し、他の制御部が自系統の制御信号の生成に係る指令値を演算し、その指令値に基づく制御信号を出力する。 In the second aspect of the present disclosure, the rotating electrical machine control device controls driving of the rotating electrical machine including a plurality of winding sets, and includes a plurality of drive circuits and a plurality of control units. The control unit includes a signal output unit that outputs a control signal to a corresponding driving circuit, and can communicate with each other. The control unit includes one master control unit and at least one slave control unit. The control unit has a cooperative drive mode, an independent drive mode, and a one-system drive mode. In the cooperative drive mode, the master control unit calculates a command value related to the generation of the control signal, outputs a control signal based on the command value, and the slave control unit performs control based on the command value calculated by the master control unit. Output a signal. In the independent drive mode, the master control unit calculates a command value related to generation of the control signal of its own system, outputs a control signal based on the calculated command value, and the slave control unit generates a control signal of its own system. The command value is calculated, and a control signal based on the calculated command value is output. In the one-system drive mode, a part of the master control unit and the slave control unit stops the output of the control signal, and the other control unit calculates a command value related to generation of the control signal of the own system, and the command value A control signal based on is output.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるステアリングシステムの概略構成図であり、 図2は、第1実施形態によるモータ巻線を示す模式図であり、 図3は、第1実施形態による通電位相差を説明するタイムチャートであり、 図4は、第1実施形態において、位相差通電によるトルク向上を説明する説明図であり、 図5は、第1実施形態よるトルクリプルを説明する説明図であり、 図6は、第1実施形態による駆動装置の断面図であり、 図7は、図6のVII-VII線断面図であり、 図8は、第1実施形態によるモータ制御装置を示すブロック図であり、 図9は、第1実施形態による第1制御部および第2制御部を示すブロック図であり、 図10は、第1実施形態による電流フィードバック制御を説明するブロック図であり、 図11は、第1実施形態による演算処理を説明するタイムチャートであり、 図12は、第2実施形態による第1制御部および第2制御部を示すブロック図であり、 図13は、第2実施形態による演算処理を説明するタイムチャートであり、 図14は、第3実施形態による第1制御部および第2制御部を示すブロック図であり、 図15は、第3実施形態による電流フィードバック制御を説明するブロック図であり、 図16は、第3実施形態による演算処理を説明するタイムチャートであり、 図17は、第4実施形態による第1制御部および第2制御部を示すブロック図であり、 図18は、第4実施形態による演算処理を説明するタイムチャートであり、 図19は、第5実施形態による第1制御部および第2制御部を示すブロック図であり、 図20は、第5実施形態による演算処理を説明するタイムチャートであり、 図21は、第6実施形態による演算処理を説明するタイムチャートであり、 図22は、第7実施形態による第1制御部および第2制御部を示すブロック図であり、 図23Aは、第7実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図23Bは、第7実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図23Cは、第7実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図23Dは、第7実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図23Eは、第7実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図23Fは、第7実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図24は、第7実施形態による通信異常監視処理を説明するフローチャートであり、 図25は、第7実施形態による途絶判定処理を説明するフローチャートであり、 図26は、第7実施形態による整合性判定処理を説明するフローチャートであり、 図27は、第7実施形態による独立駆動制御を説明するブロック図であり、 図28Aは、第8実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図28Bは、第8実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図28Cは、第8実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図28Dは、第8実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図28Eは、第8実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図28Fは、第8実施形態によるマイコン間通信の通信フレームを説明する説明図であり、 図29は、第8実施形態による制御モード切替処理を説明するフローチャートであり、 図30は、第8実施形態による制御モード切替処理を説明するフローチャートであり、 図31は、第8実施形態による指令乖離判定処理を説明するフローチャートであり、 図32は、第8実施形態による代替制御からの復帰処理を説明するフローチャートであり、 図33は、第8実施形態によるマイコン間通信異常による独立駆動制御制御からの復帰処理を説明するフローチャートであり、 図34は、第8実施形態による指令乖離異常による独立駆動制御制御からの復帰処理を説明するフローチャートであり、 図35は、第8実施形態による指令乖離異常による独立駆動制御制御からの復帰処理を説明するフローチャートであり、 図36は、第8実施形態による片系統駆動からの復帰処理を説明するフローチャートであり、 図37は、第8実施形態による片系統駆動からの復帰処理を説明するフローチャートであり、 図38は、第8実施形態によるモード遷移を説明する遷移図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic configuration diagram of a steering system according to a first embodiment. FIG. 2 is a schematic diagram showing the motor winding according to the first embodiment. FIG. 3 is a time chart for explaining the energization phase difference according to the first embodiment. FIG. 4 is an explanatory diagram for explaining torque improvement by phase difference energization in the first embodiment. FIG. 5 is an explanatory diagram for explaining the torque ripple according to the first embodiment. FIG. 6 is a cross-sectional view of the drive device according to the first embodiment. 7 is a cross-sectional view taken along line VII-VII in FIG. FIG. 8 is a block diagram showing the motor control device according to the first embodiment. FIG. 9 is a block diagram showing a first control unit and a second control unit according to the first embodiment, FIG. 10 is a block diagram illustrating current feedback control according to the first embodiment. FIG. 11 is a time chart for explaining the arithmetic processing according to the first embodiment. FIG. 12 is a block diagram showing a first control unit and a second control unit according to the second embodiment, FIG. 13 is a time chart for explaining the arithmetic processing according to the second embodiment. FIG. 14 is a block diagram illustrating a first controller and a second controller according to the third embodiment. FIG. 15 is a block diagram illustrating current feedback control according to the third embodiment. FIG. 16 is a time chart for explaining the arithmetic processing according to the third embodiment. FIG. 17 is a block diagram illustrating a first controller and a second controller according to the fourth embodiment. FIG. 18 is a time chart for explaining the arithmetic processing according to the fourth embodiment. FIG. 19 is a block diagram showing a first controller and a second controller according to the fifth embodiment. FIG. 20 is a time chart for explaining the arithmetic processing according to the fifth embodiment. FIG. 21 is a time chart for explaining the arithmetic processing according to the sixth embodiment. FIG. 22 is a block diagram showing a first control unit and a second control unit according to the seventh embodiment, FIG. 23A is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment; FIG. 23B is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment. FIG. 23C is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment. FIG. 23D is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment; FIG. 23E is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment. FIG. 23F is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the seventh embodiment. FIG. 24 is a flowchart for explaining communication abnormality monitoring processing according to the seventh embodiment. FIG. 25 is a flowchart for explaining the interruption determination process according to the seventh embodiment. FIG. 26 is a flowchart for explaining consistency determination processing according to the seventh embodiment. FIG. 27 is a block diagram illustrating independent drive control according to the seventh embodiment. FIG. 28A is an explanatory diagram for explaining a communication frame of communication between microcomputers according to the eighth embodiment. FIG. 28B is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment. FIG. 28C is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment. FIG. 28D is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment. FIG. 28E is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment. FIG. 28F is an explanatory diagram illustrating a communication frame for communication between microcomputers according to the eighth embodiment. FIG. 29 is a flowchart for explaining a control mode switching process according to the eighth embodiment. FIG. 30 is a flowchart for explaining the control mode switching process according to the eighth embodiment. FIG. 31 is a flowchart for explaining command deviation determination processing according to the eighth embodiment. FIG. 32 is a flowchart for explaining the return processing from the alternative control according to the eighth embodiment. FIG. 33 is a flowchart for explaining a return process from the independent drive control control due to an abnormality in communication between microcomputers according to the eighth embodiment. FIG. 34 is a flowchart for explaining a return process from the independent drive control control due to the command deviation abnormality according to the eighth embodiment. FIG. 35 is a flowchart for explaining a return process from the independent drive control control due to the command deviation abnormality according to the eighth embodiment. FIG. 36 is a flowchart for explaining return processing from single-system drive according to the eighth embodiment. FIG. 37 is a flowchart for explaining return processing from single-system drive according to the eighth embodiment. FIG. 38 is a transition diagram illustrating mode transition according to the eighth embodiment.
 以下、本開示による回転電機制御装置、および、電動パワーステアリング装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, a rotating electrical machine control device and an electric power steering device according to the present disclosure will be described with reference to the drawings. Hereinafter, in a plurality of embodiments, the same numerals are given to the substantially same composition, and explanation is omitted.
   (第1実施形態)
 第1実施形態を図1~図11に示す。図1に示すように、本実施形態の回転電機制御装置としてのECU10は、回転電機としてのモータ80とともに、例えば車両のステアリング操作を補助するための電動パワーステアリング装置8に適用される。図1は、電動パワーステアリング装置8を備えるステアリングシステム90の全体構成を示すものである。
(First embodiment)
A first embodiment is shown in FIGS. As shown in FIG. 1, an ECU 10 as a rotating electrical machine control device of the present embodiment is applied to, for example, an electric power steering device 8 for assisting a steering operation of a vehicle together with a motor 80 as a rotating electrical machine. FIG. 1 shows an overall configuration of a steering system 90 including an electric power steering device 8.
 図1は、電動パワーステアリング装置8を備えるステアリングシステム90の構成を示す。ステアリングシステム90は、操舵部材であるステアリングホイール91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、および、電動パワーステアリング装置8等を備える。ステアリングホイール91は、ステアリングシャフト92と接続される。ステアリングシャフト92には、操舵トルクTsを検出するトルクセンサ94が設けられる。ステアリングシャフト92の先端には、ピニオンギア96が設けられる。ピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が連結される。 FIG. 1 shows a configuration of a steering system 90 including an electric power steering device 8. The steering system 90 includes a steering wheel 91, which is a steering member, a steering shaft 92, a pinion gear 96, a rack shaft 97, wheels 98, an electric power steering device 8, and the like. The steering wheel 91 is connected to the steering shaft 92. The steering shaft 92 is provided with a torque sensor 94 that detects the steering torque Ts. A pinion gear 96 is provided at the tip of the steering shaft 92. The pinion gear 96 is engaged with the rack shaft 97. A pair of wheels 98 are connected to both ends of the rack shaft 97 via tie rods or the like.
 運転者がステアリングホイール91を回転させると、ステアリングホイール91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ピニオンギア96によってラック軸97の直線運動に変換される。一対の車輪98は、ラック軸97の変位量に応じた角度に操舵される。 When the driver rotates the steering wheel 91, the steering shaft 92 connected to the steering wheel 91 rotates. The rotational movement of the steering shaft 92 is converted into a linear movement of the rack shaft 97 by the pinion gear 96. The pair of wheels 98 are steered at an angle corresponding to the amount of displacement of the rack shaft 97.
 電動パワーステアリング装置8は、モータ80およびECU10を有する駆動装置40、ならびに、モータ80の回転を減速してステアリングシャフト92に伝える動力伝達部としての減速ギア89等を備える。本実施形態の電動パワーステアリング装置8は、所謂「コラムアシストタイプ」であるが、モータ80の回転をラック軸97に伝える所謂「ラックアシストタイプ」等としてもよい。本実施形態では、ステアリングシャフト92が「駆動対象」に対応する。 The electric power steering device 8 includes a drive device 40 having a motor 80 and an ECU 10, a reduction gear 89 as a power transmission unit that reduces the rotation of the motor 80 and transmits the rotation to the steering shaft 92. The electric power steering device 8 of the present embodiment is a so-called “column assist type”, but may be a so-called “rack assist type” that transmits the rotation of the motor 80 to the rack shaft 97. In the present embodiment, the steering shaft 92 corresponds to the “drive target”.
 モータ80は、運転者によるステアリングホイール91の操舵を補助する補助トルクを出力するものであって、電源であるバッテリ191、291(図8参照)から電力が供給されることにより駆動され、減速ギア89を正逆回転させる。モータ80は、3相ブラシレスモータであって、ロータ860およびステータ840を有する(図6参照)。 The motor 80 outputs an auxiliary torque that assists the steering of the steering wheel 91 by the driver. The motor 80 is driven by power supplied from the batteries 191 and 291 (see FIG. 8) as power sources, and the reduction gear. 89 is rotated forward and backward. The motor 80 is a three-phase brushless motor and includes a rotor 860 and a stator 840 (see FIG. 6).
 図2に示すように、モータ80は、巻線組としての第1モータ巻線180および第2モータ巻線280を有する。図2に示すように、第1モータ巻線180は、U1コイル181、V1コイル182およびW1コイル183を有する。第2モータ巻線280は、U2コイル281、V2コイル282およびW2コイル283を有する。図中、第1モータ巻線180を「モータ巻線1」、第2モータ巻線280を「モータ巻線2」とする。後述の他の構成についても、図中適宜、「第1」を添え字の「1」、「第2」を添え字の「2」として記載する。 As shown in FIG. 2, the motor 80 has a first motor winding 180 and a second motor winding 280 as a winding set. As shown in FIG. 2, the first motor winding 180 has a U1 coil 181, a V1 coil 182, and a W1 coil 183. Second motor winding 280 has U2 coil 281, V2 coil 282, and W2 coil 283. In the figure, the first motor winding 180 is referred to as “motor winding 1”, and the second motor winding 280 is referred to as “motor winding 2”. For other configurations described later, “first” is described as a subscript “1” and “second” is described as a subscript “2” as appropriate in the figure.
 第1モータ巻線180および第2モータ巻線280は、電気的特性が同等であり、例えば特許第5672278号公報の図3に参照されるように、共通のステータ840に互いに電気角30[deg]ずらして、キャンセル巻きされる。これに応じて、モータ巻線180、280には、位相φが30[deg]ずれた相電流が通電されるように制御される(図3参照)。図3では、第1系統のU相電圧Vu1および第2系統のU相電圧Vu2を例示した。図4に示すように、通電位相差を最適化することで、位相差通電を行わない場合と比較し、出力トルクが向上する。また、図5に示すように、通電位相差を電気角30[deg]とすることで、6次のトルクリプルを低減することができる(式(i)参照)。 The first motor winding 180 and the second motor winding 280 have the same electrical characteristics. For example, as shown in FIG. 3 of Japanese Patent No. 5672278, the common stator 840 has an electrical angle of 30 [deg]. ] It is shifted and canceled. In response to this, the motor windings 180 and 280 are controlled to be supplied with a phase current whose phase φ is shifted by 30 [deg] (see FIG. 3). FIG. 3 illustrates the U-phase voltage Vu1 of the first system and the U-phase voltage Vu2 of the second system. As shown in FIG. 4, by optimizing the energization phase difference, the output torque is improved as compared with the case where no phase difference energization is performed. Further, as shown in FIG. 5, the sixth-order torque ripple can be reduced by setting the energization phase difference to an electrical angle of 30 [deg] (see formula (i)).
  sin6(ωt)+sin6(ωt+30)=0  ・・・(i) Sin6 (ωt) + sin6 (ωt + 30) = 0 (i)
 さらにまた、位相差通電により、電流が平均化されるため、騒音、振動のキャンセルメリットを最大化することができる。また、発熱についても平均化されるため、各センサの検出値やトルク等、温度依存の系統間誤差を低減可能であるとともに、通電可能な電流量を平均化できる。 Furthermore, since the current is averaged by phase difference energization, the merit of canceling noise and vibration can be maximized. Moreover, since heat generation is also averaged, temperature-dependent systematic errors such as detection values and torque of each sensor can be reduced, and the amount of current that can be energized can be averaged.
 以下、第1モータ巻線180の駆動制御に係る第1インバータ回路120および第1制御部131等の組み合わせを第1系統L1、第2モータ巻線280の駆動制御に係る第2インバータ回路220および第2制御部231等の組み合わせを第2系統L2とする。本実施形態では、第1系統L1が「マスター系統」、第2系統L2が「スレーブ系統」に対応する。また、第1系統L1に係る構成を100番台で付番し、第2系統L2に係る構成を200番台で付番する。また、第1系統L1および第2系統L2において、同様の構成には、下2桁が同じとなるように付番する。 Hereinafter, a combination of the first inverter circuit 120 and the first control unit 131 related to the drive control of the first motor winding 180 is referred to as the first system L1, the second inverter circuit 220 related to the drive control of the second motor winding 280, and A combination of the second control unit 231 and the like is a second system L2. In the present embodiment, the first system L1 corresponds to the “master system” and the second system L2 corresponds to the “slave system”. Further, the configuration related to the first system L1 is numbered in the 100s, and the configuration related to the second system L2 is numbered in the 200s. Moreover, in the 1st system | strain L1 and the 2nd system | strain L2, it attaches | subjects to the same structure so that the last 2 digits may become the same.
 駆動装置40の構成を図6および図7に基づいて説明する。本実施形態の駆動装置40は、モータ80の軸方向の一方側にECU10が一体的に設けられており、いわゆる「機電一体型」である。ECU10は、モータ80の出力軸とは反対側において、シャフト870の軸Axに対して同軸に配置されている。ECU10は、モータ80の出力軸側に設けられていてもよい。機電一体型とすることで、搭載スペースに制約のある車両において、ECU10とモータ80とを効率的に配置することができる。 The configuration of the driving device 40 will be described with reference to FIGS. The drive device 40 of the present embodiment is a so-called “mechanical and integrated type” in which the ECU 10 is integrally provided on one side of the motor 80 in the axial direction. The ECU 10 is disposed coaxially with the axis Ax of the shaft 870 on the side opposite to the output shaft of the motor 80. The ECU 10 may be provided on the output shaft side of the motor 80. By adopting the electromechanical integrated type, the ECU 10 and the motor 80 can be efficiently arranged in a vehicle having a limited mounting space.
 モータ80は、ステータ840、ロータ860、および、これらを収容するハウジング830等を備える。ステータ840は、ハウジング830に固定されており、モータ巻線180、280が巻回される。ロータ860は、ステータ840の径方向内側に設けられ、ステータ840に対して相対回転可能に設けられる。 The motor 80 includes a stator 840, a rotor 860, a housing 830 that accommodates them, and the like. The stator 840 is fixed to the housing 830, and the motor windings 180 and 280 are wound thereon. The rotor 860 is provided inside the stator 840 in the radial direction, and is provided so as to be rotatable relative to the stator 840.
 シャフト870は、ロータ860に嵌入され、ロータ860と一体に回転する。シャフト870は、軸受835、836により、ハウジング830に回転可能に支持される。シャフト870のECU10側の端部は、ハウジング830からECU10側に突出する。シャフト870のECU10側の端部には、マグネット875が設けられる。 The shaft 870 is fitted into the rotor 860 and rotates integrally with the rotor 860. The shaft 870 is rotatably supported by the housing 830 by bearings 835 and 836. An end portion of the shaft 870 on the ECU 10 side protrudes from the housing 830 to the ECU 10 side. A magnet 875 is provided at the end of the shaft 870 on the ECU 10 side.
 ハウジング830は、リアフレームエンド837を含む有底筒状のケース834、および、ケース834の開口側に設けられるフロントフレームエンド838を有する。ケース834とフロントフレームエンド838とは、ボルト等により互いに締結されている。リアフレームエンド837には、リード線挿通孔839が形成される。リード線挿通孔839には、モータ巻線180、280の各相と接続されるリード線185、285が挿通される。リード線185、285は、リード線挿通孔839からECU10側に取り出され、基板470に接続される。 The housing 830 has a bottomed cylindrical case 834 including a rear frame end 837 and a front frame end 838 provided on the opening side of the case 834. Case 834 and front frame end 838 are fastened to each other by bolts or the like. A lead wire insertion hole 839 is formed in the rear frame end 837. Lead wires 185 and 285 connected to the phases of the motor windings 180 and 280 are inserted into the lead wire insertion holes 839. The lead wires 185 and 285 are taken out from the lead wire insertion hole 839 to the ECU 10 side and connected to the substrate 470.
 ECU10は、カバー460、カバー460に固定されているヒートシンク465、ヒートシンク465に固定されている基板470、および、基板470に実装される各種の電子部品等を備える。 The ECU 10 includes a cover 460, a heat sink 465 fixed to the cover 460, a substrate 470 fixed to the heat sink 465, various electronic components mounted on the substrate 470, and the like.
 カバー460は、外部の衝撃から電子部品を保護したり、ECU10の内部への埃や水等の浸入を防止したりする。カバー460は、カバー本体461、および、コネクタ部462が一体に形成される。なお、コネクタ部462は、カバー本体461と別体であってもよい。コネクタ部462の端子463は、図示しない配線等を経由して基板470と接続される。コネクタ数および端子数は、信号数等に応じて適宜変更可能である。コネクタ部462は、駆動装置40の軸方向の端部に設けられ、モータ80と反対側に開口する。コネクタ部462は、後述する各コネクタ111~113、211~231を含む。 The cover 460 protects electronic components from external impacts and prevents intrusion of dust, water, etc. into the ECU 10. The cover 460 is integrally formed with a cover main body 461 and a connector portion 462. The connector portion 462 may be a separate body from the cover main body 461. A terminal 463 of the connector portion 462 is connected to the substrate 470 via a wiring or the like (not shown). The number of connectors and the number of terminals can be appropriately changed according to the number of signals and the like. The connector portion 462 is provided at an end portion in the axial direction of the driving device 40 and opens to the opposite side to the motor 80. The connector unit 462 includes connectors 111 to 113 and 211 to 231 described later.
 基板470は、例えばプリント基板であり、リアフレームエンド837と対向して設けられる。基板470には、2系統分の電子部品が系統ごとに独立して実装されており、完全冗長構成をなしている。本実施形態では、1枚の基板470に電子部品が実装されているが、複数枚の基板に電子部品を実装するようにしてもよい。 The substrate 470 is a printed circuit board, for example, and is provided to face the rear frame end 837. On the board 470, electronic components for two systems are mounted independently for each system, and a completely redundant configuration is formed. In this embodiment, an electronic component is mounted on one substrate 470, but the electronic component may be mounted on a plurality of substrates.
 基板470の2つの主面のうち、モータ80側の面をモータ面471、モータ80と反対側の面をカバー面472とする。図7に示すように、モータ面471には、インバータ回路120を構成するスイッチング素子121、インバータ回路220を構成するスイッチング素子221、回転角センサ126、226、カスタムIC159、259等が実装される。回転角センサ126、226は、マグネット875の回転に伴う磁界の変化を検出可能なように、マグネット875と対向する箇所に実装される。 Of the two main surfaces of the substrate 470, the surface on the motor 80 side is a motor surface 471, and the surface opposite to the motor 80 is a cover surface 472. As shown in FIG. 7, on the motor surface 471, a switching element 121 that constitutes the inverter circuit 120, a switching element 221 that constitutes the inverter circuit 220, rotation angle sensors 126 and 226, custom ICs 159 and 259, and the like are mounted. The rotation angle sensors 126 and 226 are mounted at locations facing the magnet 875 so that changes in the magnetic field accompanying rotation of the magnet 875 can be detected.
 カバー面472には、コンデンサ128、228、インダクタ129、229、および、制御部131、231を構成するマイコン等が実装される。図7では、制御部131、231を構成するマイコンについて、それぞれ「131」、「231」を付番した。コンデンサ128、228は、バッテリ191、291(図8参照)から入力された電力を平滑化する。また、コンデンサ128、228は、電荷を蓄えることで、モータ80への電力供給を補助する。コンデンサ128、228、および、インダクタ129、229は、フィルタ回路を構成し、バッテリ191、291を共用する他の装置から伝わるノイズを低減するとともに、駆動装置40からバッテリ191、291を共用する他の装置に伝わるノイズを低減する。なお、図7中には図示を省略しているが、電源回路116、216、モータリレー、および、電流センサ125、225等についても、モータ面471またはカバー面472に実装される。 On the cover surface 472, capacitors 128 and 228, inductors 129 and 229, and microcomputers constituting the control units 131 and 231 are mounted. In FIG. 7, “131” and “231” are assigned to the microcomputers constituting the control units 131 and 231, respectively. Capacitors 128 and 228 smooth the power input from batteries 191 and 291 (see FIG. 8). Further, the capacitors 128 and 228 assist the power supply to the motor 80 by accumulating electric charges. Capacitors 128 and 228 and inductors 129 and 229 constitute a filter circuit, reduce noise transmitted from other devices sharing batteries 191, 291, and other devices sharing batteries 191, 291 from driving device 40. Reduces noise transmitted to the device. Although not shown in FIG. 7, the power supply circuits 116 and 216, the motor relay, the current sensors 125 and 225, etc. are also mounted on the motor surface 471 or the cover surface 472.
 図8に示すように、ECU10は、駆動回路としてのインバータ回路120、220、および、制御部131、231等を備える。ECU10には、第1電源コネクタ111、第1車両通信コネクタ112、第1トルクコネクタ113、第2電源コネクタ211、第2車両通信コネクタ212、および、第2トルクコネクタ213が設けられる。 As shown in FIG. 8, the ECU 10 includes inverter circuits 120 and 220 as drive circuits, control units 131 and 231, and the like. The ECU 10 is provided with a first power connector 111, a first vehicle communication connector 112, a first torque connector 113, a second power connector 211, a second vehicle communication connector 212, and a second torque connector 213.
 第1電源コネクタ111は、第1バッテリ191に接続され、第2電源コネクタ211は、第2バッテリ291に接続される。コネクタ111、211は、同一のバッテリに接続されていてもよい。第1電源コネクタ111は、第1電源回路116を経由して、第1インバータ回路120と接続される。第2電源コネクタ211は、第2電源回路216を経由して、第2インバータ回路220と接続される。電源回路116、216は、例えば電源リレーである。 The first power connector 111 is connected to the first battery 191, and the second power connector 211 is connected to the second battery 291. The connectors 111 and 211 may be connected to the same battery. The first power connector 111 is connected to the first inverter circuit 120 via the first power circuit 116. The second power connector 211 is connected to the second inverter circuit 220 via the second power circuit 216. The power supply circuits 116 and 216 are, for example, power supply relays.
 第1車両通信コネクタ112は第1車両通信網195に接続され、第2車両通信コネクタ212は第2車両通信網295に接続される。図8では、車両通信網195、295として、CAN(Controller Area Network)を例示しているが、CAN-FD(CAN with Flexible Data rate)やFlexRay等、どのような規格のものでもよい。 The first vehicle communication connector 112 is connected to the first vehicle communication network 195, and the second vehicle communication connector 212 is connected to the second vehicle communication network 295. In FIG. 8, CAN (Controller (Area Network) is illustrated as the vehicle communication networks 195 and 295, but any standard such as CAN-FD (CAN with Flexible Data) rate or FlexRay may be used.
 第1車両通信コネクタ112は、第1車両通信回路117を経由して、第1制御部131と接続される。第1制御部131は、車両通信コネクタ112および車両通信回路117を経由して、車両通信網と情報を授受可能である。第2車両通信コネクタ212は、第2車両通信回路217を経由して、第2制御部231と接続される。第2制御部231は、車両通信コネクタ212および車両通信回路217を経由して、車両通信網と情報を授受可能である。 The first vehicle communication connector 112 is connected to the first control unit 131 via the first vehicle communication circuit 117. The first control unit 131 can exchange information with the vehicle communication network via the vehicle communication connector 112 and the vehicle communication circuit 117. The second vehicle communication connector 212 is connected to the second control unit 231 via the second vehicle communication circuit 217. The second control unit 231 can exchange information with the vehicle communication network via the vehicle communication connector 212 and the vehicle communication circuit 217.
 トルクコネクタ113、213は、トルクセンサ94と接続される。詳細には、第1トルクコネクタ113は、トルクセンサ94の第1センサ部194と接続される。第2トルクコネクタ213は、トルクセンサ94に第2センサ部294と接続される。図8では、第1センサ部194を「トルクセンサ1」、第2センサ部294を「トルクセンサ2」と記載した。 The torque connectors 113 and 213 are connected to the torque sensor 94. Specifically, the first torque connector 113 is connected to the first sensor unit 194 of the torque sensor 94. The second torque connector 213 is connected to the torque sensor 94 with the second sensor unit 294. In FIG. 8, the first sensor unit 194 is described as “torque sensor 1”, and the second sensor unit 294 is described as “torque sensor 2”.
 第1制御部131は、トルクコネクタ113およびトルクセンサ入力回路118を経由して、トルクセンサ94の第1センサ部194から操舵トルクTsに係るトルク信号を取得可能である。第2制御部231は、トルクコネクタ213およびトルクセンサ入力回路218を経由して、トルクセンサ94の第2センサ部294から操舵トルクTsに係るトルク信号を取得可能である。これにより、制御部131、231は、トルク信号に基づき、操舵トルクTsを演算可能である。 The first control unit 131 can acquire a torque signal related to the steering torque Ts from the first sensor unit 194 of the torque sensor 94 via the torque connector 113 and the torque sensor input circuit 118. The second control unit 231 can acquire a torque signal related to the steering torque Ts from the second sensor unit 294 of the torque sensor 94 via the torque connector 213 and the torque sensor input circuit 218. Thus, the control units 131 and 231 can calculate the steering torque Ts based on the torque signal.
 第1インバータ回路120は、スイッチング素子121を有する3相インバータであって、第1モータ巻線180へ供給される電力を変換する。スイッチング素子121は、第1制御部131から出力される第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*に基づいてオンオフ作動が制御される。 The first inverter circuit 120 is a three-phase inverter having a switching element 121 and converts electric power supplied to the first motor winding 180. The switching element 121 is controlled to be turned on / off based on the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * output from the first controller 131.
 第2インバータ回路220は、スイッチング素子221を有する3相インバータであって、第2モータ巻線280へ供給される電力を変換する。スイッチング素子221は、第2制御部231から出力される第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*に基づいてオンオフ作動が制御される。本実施形態では、PWM信号PWM_u1*、PWM_v1*、PWM_w1*、PWM_u2*、PWM_v2*、PWM_w2*が「制御信号」に対応する。 The second inverter circuit 220 is a three-phase inverter having a switching element 221 and converts electric power supplied to the second motor winding 280. The switching element 221 is controlled to be turned on / off based on the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * output from the second control unit 231. In the present embodiment, the PWM signals PWM_u1 * , PWM_v1 * , PWM_w1 * , PWM_u2 * , PWM_v2 * , and PWM_w2 * correspond to “control signals”.
 第1電流センサ125は、第1モータ巻線180の各相に通電される第1U相電流Iu1、第1V相電流Iv1、および、第1W相電流Iw1を検出し、検出値を第1制御部131に出力する。第2電流センサ225は、第2モータ巻線280の各相に通電される第2U相電流Iu2、第2V相電流Iv2、および、第2W相電流Iw2を検出し、検出値を第2制御部231に出力する。以下、U相電流、V相電流およびW相電流を、適宜まとめて「相電流」または「3相電流」とする。また、d軸電流およびq軸電流を、適宜まとめて「dq軸電流」とする。電圧についても同様とする。 The first current sensor 125 detects a first U-phase current Iu1, a first V-phase current Iv1, and a first W-phase current Iw1 that are passed through each phase of the first motor winding 180, and detects the detected value as a first control unit. It outputs to 131. The second current sensor 225 detects the second U-phase current Iu2, the second V-phase current Iv2, and the second W-phase current Iw2 that are energized in each phase of the second motor winding 280, and the detected value is output to the second control unit. To 231. Hereinafter, the U-phase current, the V-phase current, and the W-phase current are collectively referred to as “phase current” or “three-phase current”. Further, the d-axis current and the q-axis current are collectively referred to as “dq-axis current”. The same applies to the voltage.
 第1回転角センサ126は、モータ80の回転角を検出し、第1制御部131に出力する。第2回転角センサ226は、モータ80の回転角を検出し、第2制御部231に出力する。本実施形態では、第1回転角センサ126の検出値に基づく電気角を第1電気角EleAng1、第2回転角センサ226の検出値に基づく電気角を第2電気角EleAng2とする。 The first rotation angle sensor 126 detects the rotation angle of the motor 80 and outputs it to the first control unit 131. The second rotation angle sensor 226 detects the rotation angle of the motor 80 and outputs it to the second control unit 231. In the present embodiment, the electrical angle based on the detection value of the first rotation angle sensor 126 is defined as the first electrical angle EleAng1, and the electrical angle based on the detection value of the second rotation angle sensor 226 is defined as the second electrical angle EleAng2.
 第1温度センサ127は、例えば第1インバータ回路120が設けられる領域に配置され、第1系統L1に係る温度を検出する。第2温度センサ227は、例えば第2インバータ回路220が設けられる領域に配置され、第2系統L2に係る温度を検出する。温度センサ127、227は、ヒートシンク465の温度を検出するものであってもよいし、基板470の温度を検出するものであってもよいし、インバータ回路120、220の素子温度を検出するものであってもよいし、モータ巻線180、280の温度を検出するものであってもよい。 The first temperature sensor 127 is disposed, for example, in a region where the first inverter circuit 120 is provided, and detects the temperature related to the first system L1. The second temperature sensor 227 is disposed, for example, in a region where the second inverter circuit 220 is provided, and detects the temperature related to the second system L2. The temperature sensors 127 and 227 may detect the temperature of the heat sink 465, may detect the temperature of the substrate 470, or detect the element temperature of the inverter circuits 120 and 220. Alternatively, the temperature of the motor windings 180 and 280 may be detected.
 第1制御部131には、第1電源コネクタ111および図示しないレギュレータ等を経由して給電される。第2制御部231には、第2電源コネクタ211および図示しないレギュレータ等を経由して給電される。第1制御部131および第2制御部231は、制御部間にて相互に通信可能に設けられる。以下適宜、制御部131、231間の通信を、「マイコン間通信」という。制御部131、231間の通信方法は、SPIやSENT等のシリアル通信や、CAN通信、FlexRay通信等、どのような方法を用いてもよい。 Power is supplied to the first controller 131 via the first power connector 111 and a regulator (not shown). Power is supplied to the second control unit 231 via the second power connector 211 and a regulator (not shown). The first control unit 131 and the second control unit 231 are provided to be able to communicate with each other between the control units. Hereinafter, communication between the control units 131 and 231 is referred to as “inter-microcomputer communication” as appropriate. As a communication method between the control units 131 and 231, any method such as serial communication such as SPI or SENT, CAN communication, or FlexRay communication may be used.
 制御部131、231の詳細を図9に示す。制御部131、231は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部131、231における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。 Details of the control units 131 and 231 are shown in FIG. The control units 131 and 231 are configured mainly with a microcomputer or the like, and are provided with a CPU, ROM, RAM, I / O (not shown) and a bus line for connecting these configurations. Each process in the control units 131 and 231 may be a software process in which a CPU stores a program stored in advance in a substantial memory device such as a ROM (that is, a readable non-temporary tangible recording medium). However, hardware processing by a dedicated electronic circuit may be used.
 マスター制御部である第1制御部131は、dq軸電流演算部140、アシストトルク指令演算部141、q軸電流指令演算部142、d軸電流指令演算部143、第1電流フィードバック演算部150、第1の3相電圧指令演算部161、第1PWM演算部163、第1信号出力部165、および、第1通信部170を有する。以下適宜、フィードバックを「FB」と記載する。 The first control unit 131 that is a master control unit includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a first current feedback calculation unit 150, It has a first three-phase voltage command calculation unit 161, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170. Hereinafter, feedback is referred to as “FB” as appropriate.
 第1dq軸電流演算部140は、第1電流センサ125から取得される相電流Iu1、Iv1、Iw1を、第1電気角EleAng1を用いてdq軸変換し、第1d軸電流検出値Id1および第1q軸電流検出値Iq1を演算する。 The first dq-axis current calculation unit 140 converts the phase currents Iu1, Iv1, Iw1 acquired from the first current sensor 125 into the dq-axis using the first electrical angle EleAng1, and the first d-axis current detection value Id1 and the first q The shaft current detection value Iq1 is calculated.
 アシストトルク指令演算部141は、トルクセンサ入力回路118を経由してトルクセンサ94から取得されるトルク信号、および、車両通信回路117を経由して車両通信網195から取得される車速等に基づき、トルク指令値としてのアシストトルク指令値Trq*を演算する。アシストトルク指令値Trq*は、電流指令演算部142に出力される。また、アシストトルク指令値Trq*は、車両通信回路117を経由して、電動パワーステアリング装置8以外の装置に提供される。 The assist torque command calculation unit 141 is based on the torque signal acquired from the torque sensor 94 via the torque sensor input circuit 118, the vehicle speed acquired from the vehicle communication network 195 via the vehicle communication circuit 117, and the like. An assist torque command value Trq * as a torque command value is calculated. The assist torque command value Trq * is output to the current command calculation unit 142. The assist torque command value Trq * is provided to devices other than the electric power steering device 8 via the vehicle communication circuit 117.
 q軸電流指令演算部142は、アシストトルク指令値Trq*に基づき、q軸電流指令値Iq*を演算する。本実施形態のq軸電流指令値Iq*は、アシストトルク指令値Trq*のトルクの出力に要する2系統合計のq軸電流値とする。当該q軸電流値は、アシストトルク指令値Trq*にモータトルク定数を乗じることで求められる。 The q-axis current command calculation unit 142 calculates a q-axis current command value Iq * based on the assist torque command value Trq * . The q-axis current command value Iq * of the present embodiment is a total q-axis current value of two systems required for outputting torque of the assist torque command value Trq * . The q-axis current value is obtained by multiplying the assist torque command value Trq * by a motor torque constant.
 d軸電流指令演算部143は、d軸電流指令値Id*を演算する。本実施形態では、q軸電流指令値Iq*、および、d軸電流指令値Id*が、「電流和指令値」に対応する。 The d-axis current command calculation unit 143 calculates a d-axis current command value Id * . In the present embodiment, the q-axis current command value Iq * and the d-axis current command value Id * correspond to the “current sum command value”.
 第1電流フィードバック演算部150は、dq軸電流指令値Id*、Iq*、および、dq軸電流検出値Id1、Iq1、Id2、Iq2に基づく電流フィードバック演算を行い、第1d軸電圧指令値Vd1*、および、第1q軸電圧指令値Vq1*を演算する。電流フィードバック演算の詳細は後述する。本実施形態では、dq軸電流指令値Id*、Iq*を電流和指令値とする「和と差の制御」により、第1dq軸電圧指令値Vd1*、Vq1*を演算する。和と差の制御を行うことで、相互インダクタンスの影響を打ち消すことができる。 The first current feedback calculation unit 150 performs a current feedback calculation based on the dq-axis current command values Id * , Iq * and the dq-axis current detection values Id1, Iq1, Id2, Iq2, and the first d-axis voltage command value Vd1 *. And the first q-axis voltage command value Vq1 * is calculated. Details of the current feedback calculation will be described later. In the present embodiment, the first dq-axis voltage command values Vd1 * and Vq1 * are calculated by “sum and difference control” using the dq-axis current command values Id * and Iq * as current sum command values. By controlling the sum and difference, it is possible to cancel the influence of mutual inductance.
 第1の3相電圧指令演算部161は、第1dq軸電圧指令値Vd1*、Vq1*を、第1電気角EleAng1を用いて逆dq変換し、第1U相電圧指令値Vu1*、第1V相電圧指令値Vv1*、および、第1W相電圧指令値Vw1*を演算する。 The first three-phase voltage command calculation unit 161 performs inverse dq conversion on the first dq-axis voltage command values Vd1 * and Vq1 * using the first electrical angle EleAng1 to obtain the first U-phase voltage command value Vu1 * and the first V-phase. The voltage command value Vv1 * and the first W-phase voltage command value Vw1 * are calculated.
 第1PWM演算部163は、3相電圧指令値Vu1*、Vv1*、Vw1*に基づき、第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*を演算する。
 第1信号出力部165は、第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*を第1インバータ回路120に出力する。
The first PWM calculation unit 163 calculates the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * based on the three-phase voltage command values Vu1 * , Vv1 * , and Vw1 * .
The first signal output unit 165 outputs the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * to the first inverter circuit 120.
 第1通信部170は、第1送信部171および第1受信部172を有し、第2通信部270と通信を行う。第1送信部171は、第1制御部131にて演算された値を、第2制御部231に送信する。本実施形態では、第1送信部171は、d軸電流指令値Id*、q軸電流指令値Iq*、第1d軸電流検出値Id1および第1q軸電流検出値Iq1を第2制御部231に送信する。第1受信部172は、第2制御部231から送信される値を受信する。本実施形態では、第1受信部172は、第2d軸電流検出値Id2および第2q軸電流検出値Iq2を受信する。 The first communication unit 170 includes a first transmission unit 171 and a first reception unit 172, and communicates with the second communication unit 270. The first transmission unit 171 transmits the value calculated by the first control unit 131 to the second control unit 231. In the present embodiment, the first transmission unit 171 sends the d-axis current command value Id * , the q-axis current command value Iq * , the first d-axis current detection value Id1, and the first q-axis current detection value Iq1 to the second control unit 231. Send. The first reception unit 172 receives a value transmitted from the second control unit 231. In the present embodiment, the first receiving unit 172 receives the second d-axis current detection value Id2 and the second q-axis current detection value Iq2.
 制御部131、231間で送受信される電流指令値および電流検出値は、dq軸の値に替えて3相の値であってもよいが、dq軸の値を送受信した方が、データ量を抑えることができる。また、d軸電流検出値Id1、Id2の送受信は行わなくてもよい。 The current command value and the current detection value transmitted and received between the control units 131 and 231 may be three-phase values instead of the dq axis values. However, the amount of data is reduced when the dq axis values are transmitted and received. Can be suppressed. Further, transmission / reception of the d-axis current detection values Id1 and Id2 may not be performed.
 スレーブ制御部である第2制御部231は、第2dq軸電流演算部240、第2電流フィードバック演算部250、第2の3相電圧指令値演算部261、第2PWM演算部263、第2信号出力部265、および、第2通信部270を有する。 The second control unit 231 that is a slave control unit includes a second dq-axis current calculation unit 240, a second current feedback calculation unit 250, a second three-phase voltage command value calculation unit 261, a second PWM calculation unit 263, and a second signal output. Unit 265 and second communication unit 270.
 第2dq軸電流演算部240は、第2電流センサ225から取得される相電流Iu2、Iv2、Iw2を、第2電気角EleAng2を用いてdq軸変換し、第2d軸電流検出値Id2および第2q軸電流検出値Iq2を演算する。 The second dq-axis current calculation unit 240 converts the phase currents Iu2, Iv2, and Iw2 acquired from the second current sensor 225 into the dq-axis using the second electrical angle EleAng2, and outputs the second d-axis current detection value Id2 and the second q The shaft current detection value Iq2 is calculated.
 第2電流フィードバック演算部250は、dq軸電流指令値Id*、Iq*、および、dq軸電流検出値Id1、Iq1、Id2、Iq2に基づく電流フィードバック演算を行い、第2d軸電圧指令値Vd2*、および、第2q軸電圧指令値Vq2*を演算する。本実施形態では、dq軸電流指令値Id*、Iq*を電流和指令値とする「和と差の制御」により、第2dq軸電圧指令値Vd2*、Vq2*を演算する。 The second current feedback calculation unit 250 performs a current feedback calculation based on the dq-axis current command values Id * and Iq * and the dq-axis current detection values Id1, Iq1, Id2, and Iq2, and the second d-axis voltage command value Vd2 *. And the second q-axis voltage command value Vq2 * . In the present embodiment, the second dq-axis voltage command values Vd2 * and Vq2 * are calculated by “sum and difference control” using the dq-axis current command values Id * and Iq * as current sum command values.
 第2電流フィードバック演算部250は、第1制御部131から送信されたdq軸電流指令値Id*、Iq*を用いて電流フィードバック演算を行う。換言すると、第1制御部131および第2制御部231は、同一の電流指令値Id*、Iq*を用いて電流フィードバック演算を行っている、ということである。 The second current feedback calculation unit 250 performs current feedback calculation using the dq-axis current command values Id * and Iq * transmitted from the first control unit 131. In other words, the first control unit 131 and the second control unit 231 perform current feedback calculation using the same current command values Id * and Iq * .
 第2の3相電圧指令演算部261は、第2dq軸電圧指令値Vd2*、Vq2*を、第2電気角EleAng2を用いて逆dq変換し、第2U相電圧指令値Vu2*、第2V相電圧指令値Vv2*、および、第2W相電圧指令値Vw2*を演算する。電圧指令演算部161、261は、通電位相差が電気角30[deg]となるように、電圧指令値Vu1*、Vv1*、Vw1*、Vu2*、Vv2*、Vw2*を演算する。 The second three-phase voltage command calculation unit 261 performs inverse dq conversion on the second dq-axis voltage command values Vd2 * and Vq2 * using the second electrical angle EleAng2 to obtain the second U-phase voltage command value Vu2 * and the second V-phase. The voltage command value Vv2 * and the second W-phase voltage command value Vw2 * are calculated. The voltage command calculation units 161 and 261 calculate the voltage command values Vu1 * , Vv1 * , Vw1 * , Vu2 * , Vv2 * , and Vw2 * so that the energization phase difference becomes an electrical angle of 30 [deg].
 第2PWM演算部263は、3相電圧指令値Vu2*、Vv2*、Vw2*に基づき、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を演算する。第2信号出力部265は、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を第2インバータ回路220に出力する。 The second PWM calculator 263 calculates the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * based on the three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * . The second signal output unit 265 outputs the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * to the second inverter circuit 220.
 第2通信部270は、第2送信部271および第2受信部272を有する。第2送信部271は、第2制御部231にて演算された値を、第1制御部131に送信する。本実施形態では、第2送信部271は、第2d軸電流検出値Id2および第2q軸電流検出値Iq2を送信する。第2受信部272は、第1制御部131から送信される値を受信する。本実施形態では、第2受信部272は、d軸電流指令値Id*、q軸電流指令値Iq*、第1d軸電流検出値Id1および第1q軸電流検出値Iq1を受信する。 The second communication unit 270 includes a second transmission unit 271 and a second reception unit 272. The second transmission unit 271 transmits the value calculated by the second control unit 231 to the first control unit 131. In the present embodiment, the second transmission unit 271 transmits the second d-axis current detection value Id2 and the second q-axis current detection value Iq2. The second reception unit 272 receives a value transmitted from the first control unit 131. In the present embodiment, the second receiving unit 272 receives the d-axis current command value Id * , the q-axis current command value Iq * , the first d-axis current detection value Id1, and the first q-axis current detection value Iq1.
 電流フィードバック演算部150、250の詳細を図10に基づいて説明する。図10では、便宜上、送信部171、271のブロックを分けて記載した。また、第2の3相電圧指令演算部261および第2PWM演算部263を1つのブロックにまとめて記載し、信号出力部165、265およびインバータ回路120、220等を省略した。図10では、q軸に係る電流フィードバック演算を中心に説明する。d軸に係る電流フィードバック演算は、q軸と同様であるので説明を省略する。後述の図15および図27についても同様である。 Details of the current feedback calculation units 150 and 250 will be described with reference to FIG. In FIG. 10, the blocks of the transmission units 171 and 271 are illustrated separately for convenience. In addition, the second three-phase voltage command calculation unit 261 and the second PWM calculation unit 263 are described in one block, and the signal output units 165 and 265, the inverter circuits 120 and 220, and the like are omitted. In FIG. 10, the explanation will focus on the current feedback calculation for the q axis. Since the current feedback calculation for the d-axis is the same as that for the q-axis, description thereof is omitted. The same applies to FIGS. 15 and 27 described later.
 第1電流フィードバック演算部150は、加算器151、減算器152~154、制御器155、156、および、加算器157を有する。加算器151は、第1q軸電流検出値Iq1と第2q軸電流検出値Iq2とを加算し、第1q軸電流和Iq_a1を演算する。減算器152は、第1q軸電流検出値Iq1から第2q軸電流検出値Iq2を減算し、第1q軸電流差Iq_d1を演算する。 The first current feedback calculation unit 150 includes an adder 151, subtracters 152 to 154, controllers 155 and 156, and an adder 157. The adder 151 adds the first q-axis current detection value Iq1 and the second q-axis current detection value Iq2, and calculates the first q-axis current sum Iq_a1. The subtractor 152 subtracts the second q-axis current detection value Iq2 from the first q-axis current detection value Iq1, and calculates the first q-axis current difference Iq_d1.
 減算器153は、q軸電流指令値Iq*から第1q軸電流和Iq_a1を減算し、第1電流和偏差ΔIq_a1を演算する。減算器154は、電流差指令値から第1q軸電流差Iq_d1を減算し、第1電流差偏差ΔIq_d1を演算する。本実施形態では、電流差指令値を0とし、系統間の電流差をなくすように制御する。電流差指令値を0以外の値とし、所望の電流差が系統間で生じるように制御してもよい。減算器254に入力される電流差指令値についても同様である。 The subtractor 153 subtracts the first q-axis current sum Iq_a1 from the q-axis current command value Iq * to calculate a first current sum deviation ΔIq_a1. The subtractor 154 subtracts the first q-axis current difference Iq_d1 from the current difference command value to calculate a first current difference deviation ΔIq_d1. In the present embodiment, the current difference command value is set to 0, and control is performed so as to eliminate the current difference between the systems. The current difference command value may be set to a value other than 0, and control may be performed so that a desired current difference is generated between the systems. The same applies to the current difference command value input to the subtractor 254.
 制御器155は、電流和偏差ΔIq_a1が0となるように、例えばPI演算等により、基本q軸電圧指令値Vq_b1*を演算する。制御器156は、電流差偏差ΔIq_d1が0となるように、例えばPI演算等により、q軸電圧差分指令値Vq_d1*を演算する。加算器157は、基本q軸電圧指令値Vq_b1*とq軸電圧差分指令値Vq_d1*とを加算し、第1q軸電圧指令値Vq1*を演算する。 The controller 155 calculates the basic q-axis voltage command value Vq_b1 * by, for example, PI calculation so that the current sum deviation ΔIq_a1 becomes zero. The controller 156 calculates the q-axis voltage difference command value Vq_d1 * by, for example, PI calculation so that the current difference deviation ΔIq_d1 becomes zero. Adder 157 adds basic q-axis voltage command value Vq_b1 * and q-axis voltage difference command value Vq_d1 * to calculate first q-axis voltage command value Vq1 * .
 第2電流フィードバック演算部250は、加算器251、減算器252~254、制御器255、256、および、減算器257を有する。加算器251は、第1q軸電流検出値Iq1と第2q軸電流検出値Iq2とを加算し、q軸電流和Iq_a2を演算する。減算器252は、第1q軸電流検出値Iq1から第2q軸電流検出値Iq2を減算し、q軸電流差Iq_d2を演算する。 The second current feedback calculation unit 250 includes an adder 251, subtracters 252 to 254, controllers 255 and 256, and a subtractor 257. The adder 251 adds the first q-axis current detection value Iq1 and the second q-axis current detection value Iq2, and calculates the q-axis current sum Iq_a2. The subtractor 252 subtracts the second q-axis current detection value Iq2 from the first q-axis current detection value Iq1, and calculates the q-axis current difference Iq_d2.
 本実施形態では、加算器151、251では、同一の値を用いるので、q軸電流和Iq_a1、Iq_a2は同一の値となる。また、後述の第6実施形態のように、異なる制御周期の値を用いる場合、q軸電流和Iq_a1、Iq_a2は異なる値となる。q軸電流差Iq_d1、Iq_d2も同様である。 In the present embodiment, the adders 151 and 251 use the same value, so that the q-axis current sums Iq_a1 and Iq_a2 have the same value. Further, when different control cycle values are used as in the sixth embodiment described later, the q-axis current sums Iq_a1 and Iq_a2 have different values. The same applies to the q-axis current differences Iq_d1 and Iq_d2.
 減算器253は、q軸電流指令値Iq*から第2q軸電流和Iq_a2を減算し、第2電流和偏差ΔIq_a2を演算する。減算器254は、電流差指令値から第2q軸電流差Iq_d2を減算し、第2電流差偏差ΔIq_d2を演算する。減算器254に入力される電流差指令値は、第1制御部131から送信される値であってもよいし、第2制御部231にて内部的に設定される値であってもよい。 The subtractor 253 subtracts the second q-axis current sum Iq_a2 from the q-axis current command value Iq * to calculate a second current sum deviation ΔIq_a2. The subtractor 254 subtracts the second q-axis current difference Iq_d2 from the current difference command value to calculate a second current difference deviation ΔIq_d2. The current difference command value input to the subtractor 254 may be a value transmitted from the first control unit 131 or a value set internally by the second control unit 231.
 制御器255は、電流和偏差ΔIq_a2が0となるように、例えばPI演算等により、基本q軸電圧指令値Vq_b2*を演算する。制御器256は、電流差偏差ΔIq_d2が0となるように、例えばPI演算等により、q軸電圧差分指令値Vq_d2*を演算する。減算器257は、基本q軸電圧指令値Vq_b2*からq軸電圧差分指令値Vq_d2*を減算し、第2q軸電圧指令値Vq2*を演算する。 The controller 255 calculates the basic q-axis voltage command value Vq_b2 * by, for example, PI calculation so that the current sum deviation ΔIq_a2 becomes zero. The controller 256 calculates the q-axis voltage difference command value Vq_d2 * by, for example, PI calculation so that the current difference deviation ΔIq_d2 becomes zero. Subtractor 257 subtracts the q-axis voltage difference command value Vq_d2 * from the basic q axis voltage command value Vq_b2 *, calculates the first 2q-axis voltage command value Vq2 *.
 本実施形態の演算処理を図11のタイムチャートに基づいて説明する。図11は、共通時間軸を横軸として、上段から、第1制御部の電流取得タイミング、第1制御部における演算処理、マイコン間通信、第2制御部の電流取得タイミング、第2制御部における演算処理を示す。図10では、今回の制御周期をP(n)とし、開始タイミングに「P(n)」と記載した。また、次回の制御周期をP(n+1)とした。図11では、主に、マイコン間通信にて送受信される電流制御に係る値を中心に記載し、自系統内にて用いられる値等の記載は適宜省略した。後述の実施形態に係るタイムチャートも同様である。 The calculation processing of this embodiment will be described based on the time chart of FIG. FIG. 11 shows, from the top, the common time axis as the horizontal axis, the current acquisition timing of the first control unit, the arithmetic processing in the first control unit, the communication between microcomputers, the current acquisition timing of the second control unit, in the second control unit An arithmetic processing is shown. In FIG. 10, the current control cycle is P (n), and “P (n)” is described as the start timing. The next control cycle is P (n + 1). In FIG. 11, values related to current control transmitted / received by communication between microcomputers are mainly described, and descriptions of values used in the own system are omitted as appropriate. The same applies to time charts according to embodiments described later.
 図11に示すように、第1制御部131では、時刻x1から時刻x2において、アシストトルク指令演算部141がアシストトルク指令値Trq*を演算し、続く時刻x3から時刻x4にて、電流指令演算部142、143が電流指令値Id*、Iq*を演算する。 As shown in FIG. 11, in the first control unit 131, the assist torque command calculation unit 141 calculates the assist torque command value Trq * from time x1 to time x2, and the current command calculation from time x3 to time x4. The units 142 and 143 calculate current command values Id * and Iq * .
 また、第1制御部131は、時刻x5から時刻x6にて、電流センサ125から相電流Iu1、Iv1、Iw1を取得し、時刻x7から時刻x8にてdq軸電流検出値Id1、Iq1を演算する。同様に、第2制御部231は、時刻x5から時刻x6にて、電流センサ125から相電流Iu2、Iv2、Iw2を取得し、時刻x7から時刻x8にて電流検出値Id2、Iq2を演算する。なお、ここでは、制御部131、231における電流取得およびdq変換タイミングが同時であるが、マイコン間通信が開始する時刻x9に間に合う範囲内でのずれは、許容される。また、マイコン間通信後の処理についても、制御周期内に収まる程度のずれは許容される。後述の実施形態についても同様である。 Further, the first control unit 131 acquires the phase currents Iu1, Iv1, and Iw1 from the current sensor 125 from time x5 to time x6, and calculates the dq-axis current detection values Id1 and Iq1 from time x7 to time x8. . Similarly, the second control unit 231 acquires the phase currents Iu2, Iv2, and Iw2 from the current sensor 125 from time x5 to time x6, and calculates the current detection values Id2 and Iq2 from time x7 to time x8. Here, the current acquisition and the dq conversion timing in the control units 131 and 231 are simultaneous, but a deviation within a range in time for the time x9 when the communication between the microcomputers starts is allowed. Also, the processing after the communication between the microcomputers is allowed to deviate to the extent that it is within the control cycle. The same applies to later-described embodiments.
 時刻x9から時刻x10において、制御部131、231間でマイコン間通信を行い、dq軸電流検出値Id1、Iq1、Id2、Iq2を相互に送受信する。また、第1制御部131から第2制御部231に、dq軸電流指令値Id*、Iq*を送信する。そして、各制御部131、231において、マイコン間通信終了後の時刻x11から、電流FB演算、3相電圧指令演算、および、PWM指令演算を行い、PWM指令演算後の時刻x15にて、PWM信号を各インバータ回路120、220に出力、反映する。 From time x9 to time x10, communication between the control units 131 and 231 is performed between the control units 131 and 231 to transmit and receive dq axis current detection values Id1, Iq1, Id2, and Iq2. Also, the dq-axis current command values Id * and Iq * are transmitted from the first control unit 131 to the second control unit 231. The control units 131 and 231 perform the current FB calculation, the three-phase voltage command calculation, and the PWM command calculation from the time x11 after the end of the communication between the microcomputers. At the time x15 after the PWM command calculation, the PWM signal Is output and reflected to each inverter circuit 120 and 220.
 本実施形態では、電流フィードバック演算の開始前にマイコン間通信を行い、電流フィードバック演算に必要な情報を授受している。これにより、制御部131、231にて、同一の値を用いて電流フィードバック演算を行うことができる。 In this embodiment, communication between microcomputers is performed before starting current feedback calculation, and information necessary for current feedback calculation is exchanged. As a result, the control units 131 and 231 can perform current feedback calculation using the same value.
 本実施形態では、第1制御部131にて演算されるアシストトルク指令値Trq*を共通に用いることで、電動パワーステアリング装置8以外の車載装置に提供される情報を統一することができる。また、両系統で統一のアシストトルク指令値Trq*を用いて制御信号を生成することで、各系統で異なるアシストトルク指令値が算出された場合の不整合に対する調停の複雑さをなくすことができる。 In the present embodiment, information provided to in-vehicle devices other than the electric power steering device 8 can be unified by commonly using the assist torque command value Trq * calculated by the first control unit 131. In addition, by generating a control signal using a unified assist torque command value Trq * in both systems, it is possible to eliminate the complexity of mediation for mismatch when different assist torque command values are calculated in each system. .
 また、電流フィードバック演算部150、250は、2系統の電流和および電流差を制御している。電流和を制御することで、アシストトルク指令値Trq*と出力トルクとのずれを低減可能であり、所望のトルクをモータ80から出力することができる。また、系統間の電流差が0となるように制御しているので、各系統での発熱を均等にすることができる。また、電圧変動時や発熱により電流制限等の制限処理が行われる場合や、一方の系統に異常が発生し、他方の系統を用いて駆動するバックアップ制御時等における制御の複雑さを低減することができる。 The current feedback calculation units 150 and 250 control the current sum and current difference between the two systems. By controlling the current sum, the deviation between the assist torque command value Trq * and the output torque can be reduced, and a desired torque can be output from the motor 80. Further, since the current difference between the systems is controlled to be 0, the heat generation in each system can be made uniform. In addition, the control complexity is reduced when voltage limiting, heat limiting, and other current limiting processes are performed, or when an abnormality occurs in one system and backup control is performed using the other system. Can do.
 以上説明したように、本実施形態のECU10は、複数の巻線組であるモータ巻線180、280を備えるモータ80の駆動を制御するものであって、複数のインバータ回路120、220と、複数の制御部131、231を備える。 As described above, the ECU 10 according to the present embodiment controls the driving of the motor 80 including the motor windings 180 and 280 which are a plurality of winding sets, and includes a plurality of inverter circuits 120 and 220, and a plurality of inverter circuits 120 and 220. The control units 131 and 231 are provided.
 制御部131、231は、対応して設けられるインバータ回路120、220に制御信号を出力する信号出力部165、265を有し、相互に通信可能である。詳細には、第1制御部131は、対応して設けられる第1インバータ回路120に制御信号である第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*を出力する。第2制御部231は、対応して設けられる第2インバータ回路220に制御信号である第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を出力する。 The control units 131 and 231 have signal output units 165 and 265 that output control signals to the inverter circuits 120 and 220 provided correspondingly, and can communicate with each other. Specifically, the first control unit 131 is a control signal to the first inverter circuit 120 provided corresponding first 1PWM signal PWM_u1 *, PWM_v1 *, and outputs the PWM_w1 *. The second control unit 231, the 2PWM signal to the second inverter circuit 220 provided corresponding to a control signal PWM_u2 *, PWM_v2 *, and outputs the PWM_w2 *.
 1つのマスター制御部である第1制御部131は、全ての制御部131、231における制御信号の生成に係る指令値を演算し、他の制御部である第2制御部231に指令値を送信する。スレーブ制御部である第2制御部231は、第1制御部131から送信される指令値に基づく制御信号を出力する。 The first control unit 131 that is one master control unit calculates a command value related to the generation of control signals in all the control units 131 and 231 and transmits the command value to the second control unit 231 that is another control unit. To do. The second control unit 231 that is a slave control unit outputs a control signal based on the command value transmitted from the first control unit 131.
 本実施形態では、1つのマスター制御部にて演算される指令値を、スレーブ制御部に送信することで、第1系統L1と第2系統L2とを適切に協調動作させることができる。ここで、「協調」とは、マスター制御部にて演算された「指令値」に基づき、マスター系統およびスレーブ系統の通電を制御することを意味する。特に、各系統の検出値を共通に用いて各系統の通電を制御することで、各系統を協調させることが望ましい。 In the present embodiment, the first system L1 and the second system L2 can be appropriately coordinated by transmitting a command value calculated by one master control unit to the slave control unit. Here, “cooperation” means that the energization of the master system and the slave system is controlled based on the “command value” calculated by the master control unit. In particular, it is desirable to coordinate each system by controlling the energization of each system using the detection value of each system in common.
 第1制御部131は、指令値として、dq軸電流指令値Id*、Iq*を第2制御部231に送信する。こにれより、系統L1、L2を協調させて、適切に電流フィードバック制御を行うことができる。 The first control unit 131 transmits dq-axis current command values Id * and Iq * to the second control unit 231 as command values. Thus, the current feedback control can be appropriately performed by coordinating the systems L1 and L2.
 第1制御部131は、第1系統L1の電流検出値である第1dq軸電流検出値Id1、Iq1を第2制御部231に送信する。第2制御部231は、第2系統L2の電流検出値である第2dq軸電流検出値Id2、Iq2を第1制御部131に送信する。本実施形態では、第1dq軸電流検出値Id1、Iq1が「マスター電流検出値」、第2dq軸電流検出値Id2、Iq2が「スレーブ電流検出値」に対応する。マスター電流検出値およびスレーブ電流検出値は、例えば3相電流検出値であってもよく、dq軸電流に限らない。 The first control unit 131 transmits the first dq-axis current detection values Id1 and Iq1, which are current detection values of the first system L1, to the second control unit 231. The second control unit 231 transmits the second dq-axis current detection values Id2 and Iq2 that are current detection values of the second system L2 to the first control unit 131. In the present embodiment, the first dq-axis current detection values Id1 and Iq1 correspond to the “master current detection value”, and the second dq-axis current detection values Id2 and Iq2 correspond to the “slave current detection value”. The master current detection value and the slave current detection value may be, for example, a three-phase current detection value, and are not limited to the dq axis current.
 第1制御部131および第2制御部231は、それぞれにおいて、マスター系統である第1系統L1およびスレーブ系統である第2系統L2の電流和が電流指令値Id*、Iq*となり、電流差が電流差指令値となるように制御する。 In each of the first control unit 131 and the second control unit 231, the current sum of the first system L 1 that is the master system and the second system L 2 that is the slave system becomes the current command values Id * and Iq * , and the current difference is Control so that the current difference command value is obtained.
 電流和を制御することで、アシストトルク指令値Trq*通りにモータ80からアシストトルクを出力させることができる。また、電流差を制御することで、系統間の電流差を適切に制御することができる。特に、電流差指令値を0とすることで、系統間の電流差をなくすことができるので、各系統の発熱を均等にすることができる。また、電源電圧の変動や発熱により電流制限時、または、故障発生によるバックアップ制御や片系統駆動に移行する際の制御の複雑さを低減することができる。 By controlling the current sum, the assist torque can be output from the motor 80 in accordance with the assist torque command value Trq * . Moreover, the current difference between systems can be appropriately controlled by controlling the current difference. In particular, by setting the current difference command value to 0, the current difference between the systems can be eliminated, so that the heat generation of each system can be made uniform. Further, it is possible to reduce the complexity of the control when the current is limited due to the fluctuation of the power supply voltage and the heat generation, or when the backup control due to the occurrence of the failure or the shift to the single system drive is performed.
 第1制御部131および第2制御部231は、電流検出値Id1、Iq1、Id2、Iq2の演算後であって、電流フィードバック制御が開始するまでの期間に、電流フィードバック制御に必要な情報の送受信を行う。具体的には、第1dq軸電流検出値Id1、Iq1および第2dq軸電流検出値Id2、Iq2を相互に送受信し、dq軸電流指令値Id*、Iq*を第1制御部131から第2制御部231に送信する。 The first control unit 131 and the second control unit 231 transmit and receive information necessary for the current feedback control after the calculation of the current detection values Id1, Iq1, Id2, and Iq2 until the current feedback control starts. I do. Specifically, the first dq-axis current detection values Id1 and Iq1 and the second dq-axis current detection values Id2 and Iq2 are mutually transmitted and received, and the dq-axis current command values Id * and Iq * are second controlled from the first control unit 131. To the unit 231.
 これにより、制御部131、231は、今回の制御周期における電流指令値Id*、Iq*および電流検出値Id1、Iq1、Id2、Iq2を用いて電流フィードバック制御を行うことができる。 Thereby, the control units 131 and 231 can perform current feedback control using the current command values Id * and Iq * and the current detection values Id1, Iq1, Id2, and Iq2 in the current control cycle.
 本実施形態のECU10は、電動パワーステアリング装置8に適用される。電動パワーステアリング装置8は、ECU10と、モータ80と、減速ギア89と、を備える。モータ80は、運転者によるステアリングホイール91の操舵を補助するアシストトルクを出力する。減速ギア89は、モータ80の駆動力を、ステアリングシャフト92に伝達する。本実施形態では、マスター制御部である第1制御部131にて演算されるアシストトルク指令値Trq*に基づいて、2系統を協調動作させているので、アシストトルクを適切に出力することができる。 The ECU 10 of this embodiment is applied to the electric power steering device 8. The electric power steering device 8 includes an ECU 10, a motor 80, and a reduction gear 89. The motor 80 outputs assist torque that assists the steering of the steering wheel 91 by the driver. The reduction gear 89 transmits the driving force of the motor 80 to the steering shaft 92. In the present embodiment, since the two systems are operated cooperatively based on the assist torque command value Trq * calculated by the first control unit 131 that is the master control unit, it is possible to appropriately output the assist torque. .
   (第2実施形態)
 第2実施形態を図12および図13に示す。第2実施形態~第5実施形態、および、第7実施形態では、制御部が異なっているので、この点を中心に説明する。図12に示すように、マスター制御部である第1制御部132は、第1実施形態と同様、dq軸電流演算部140、アシストトルク指令演算部141、q軸電流指令演算部142、d軸電流指令演算部143、第1電流フィードバック演算部150、第1の3相電圧指令演算部161、第1PWM演算部163、第1信号出力部165、および、第1通信部170を有する。
(Second Embodiment)
A second embodiment is shown in FIGS. In the second to fifth embodiments and the seventh embodiment, the control unit is different, and this point will be mainly described. As shown in FIG. 12, the first control unit 132, which is a master control unit, includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, and a d-axis, as in the first embodiment. It has a current command calculation unit 143, a first current feedback calculation unit 150, a first three-phase voltage command calculation unit 161, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170.
 スレーブ制御部である第2制御部232は、第2dq軸電流演算部240、第2電流フィードバック演算部250、第2の3相電圧指令値演算部261、第2PWM演算部263、第2信号出力部265、および、第2通信部270に加え、q軸電流指令演算部242およびd軸電流指令演算部243を有する。 The second control unit 232, which is a slave control unit, includes a second dq-axis current calculation unit 240, a second current feedback calculation unit 250, a second three-phase voltage command value calculation unit 261, a second PWM calculation unit 263, and a second signal output. In addition to the unit 265 and the second communication unit 270, a q-axis current command calculation unit 242 and a d-axis current command calculation unit 243 are provided.
 第1実施形態では、「指令値」として電流指令値Id*、Iq*が第1制御部131から第2制御部231に送信される。本実施形態では、電流指令値Id*、Iq*に替えて、アシストトルク指令値Trq*が「指令値」として、第1制御部132から第2制御部232に送信される。すなわち本実施形態では、第1通信部170は、トルク指令値Trq*および電流検出値Id1、Iq1を第2通信部270に送信し、第2通信部270は、電流検出値Id2、Iq2を第1通信部170に送信する。 In the first embodiment, current command values Id * and Iq * are transmitted from the first control unit 131 to the second control unit 231 as “command values”. In the present embodiment, the assist torque command value Trq * is transmitted from the first control unit 132 to the second control unit 232 as the “command value” instead of the current command values Id * and Iq * . That is, in the present embodiment, the first communication unit 170 transmits the torque command value Trq * and the current detection values Id1, Iq1 to the second communication unit 270, and the second communication unit 270 transmits the current detection values Id2, Iq2 to the first 1 to the communication unit 170.
 q軸電流指令演算部242は、第1制御部132から送信されたアシストトルク指令値Trq*に基づき、q軸電流指令値Iq*を演算する。d軸電流指令演算部243は、d軸電流指令値Id*を演算する。そして、第2電流フィードバック演算部250は、電流指令演算部242、243にて演算された電流指令値Id*、Iq*、および、電流検出値Id1、Iq1、Id2、Iq2に基づいて電流フィードバック演算を行い、第2d軸電圧指令値Vd2*、および、第2q軸電圧指令値Vq2*を演算する。 The q-axis current command calculation unit 242 calculates a q-axis current command value Iq * based on the assist torque command value Trq * transmitted from the first control unit 132. The d-axis current command calculation unit 243 calculates the d-axis current command value Id * . Then, the second current feedback calculation unit 250 calculates a current feedback based on the current command values Id * and Iq * calculated by the current command calculation units 242 and 243 and the detected current values Id1, Iq1, Id2, and Iq2. To calculate the second d-axis voltage command value Vd2 * and the second q-axis voltage command value Vq2 * .
 本実施形態の演算処理を図13のタイムチャートに基づいて説明する。時刻x1~x8までの処理は、図11と同様である。時刻x9から時刻x10において、制御部132、232間でマイコン間通信を行い、電流検出値Id1、Iq1、Id2、Iq2を相互に送受信する。また、第1制御部132から第2制御部232に、アシストトルク指令値Trq*を送信する。 The arithmetic processing of this embodiment is demonstrated based on the time chart of FIG. Processing from time x1 to time x8 is the same as in FIG. From time x9 to time x10, communication between microcomputers is performed between the control units 132 and 232, and the current detection values Id1, Iq1, Id2, and Iq2 are transmitted and received mutually. Further, the assist torque command value Trq * is transmitted from the first control unit 132 to the second control unit 232.
 マイコン間通信終了後の時刻x21から時刻x22において、第2制御部232では、第1制御部132から送信されたアシストトルク指令値Trq*に基づき、電流指令演算部242、243が電流指令値Id*、Iq*を演算する。そして、時刻x22以降において、図11の時刻x11以降と同様、電流フィードバック制御およびこれに続く各処理が行われ、時刻x25にて、PWM信号を各インバータ回路120、220に出力、反映する。 From time x21 to time x22 after the end of the communication between the microcomputers, the second control unit 232 determines that the current command calculation units 242 and 243 have the current command value Id based on the assist torque command value Trq * transmitted from the first control unit 132. * And Iq * are calculated. Then, after time x22, current feedback control and subsequent processes are performed as in time x11 and subsequent times in FIG. 11, and at time x25, the PWM signal is output and reflected to each of the inverter circuits 120 and 220.
 本実施形態では、第1制御部132で演算されたアシストトルク指令値Trq*を制御部132、232にて共用しているので、上記実施形態と同様の効果を奏する。また、電流指令値Id*、Iq*を送受信する場合と比較し、マイコン間通信におけるデータ量を低減することができる。 In the present embodiment, since the assist torque command value Trq * calculated by the first control unit 132 is shared by the control units 132 and 232, the same effects as those of the above embodiment can be obtained. Further, the amount of data in communication between microcomputers can be reduced as compared with the case where the current command values Id * and Iq * are transmitted and received.
 本実施形態では、第1制御部132は、指令値として、トルク指令値であるアシストトルク指令値Trq*を第2制御部232に送信する。このようにしても、上記実施形態と同様の効果を奏する。 In the present embodiment, the first control unit 132 transmits an assist torque command value Trq * , which is a torque command value, to the second control unit 232 as a command value. Even if it does in this way, there exists an effect similar to the said embodiment.
   (第3実施形態)
 第3実施形態を図14~図16に示す。図14に示すように、マスター制御部である第1制御部133は、dq軸電流演算部140、アシストトルク指令演算部141、q軸電流指令演算部142、d軸電流指令演算部143、電流フィードバック演算部175、第1の3相電圧指令演算部161、第1PWM演算部163、第1信号出力部165、および、第1通信部170を有する。
(Third embodiment)
A third embodiment is shown in FIGS. As shown in FIG. 14, the first control unit 133 serving as a master control unit includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a current It has a feedback calculation unit 175, a first three-phase voltage command calculation unit 161, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170.
 電流フィードバック演算部175は、dq軸電流指令値Id*、Iq*、および、dq軸電流検出値Id1、Iq1、Id2、Iq2に基づく電流フィードバック演算を行い、dq軸電圧指令値Vd1*、Vq1*、Vd2*、Vq2*を演算する。 The current feedback calculation unit 175 performs a current feedback calculation based on the dq-axis current command values Id * , Iq * and the dq-axis current detection values Id1, Iq1, Id2, Iq2, and dq-axis voltage command values Vd1 * , Vq1 *. , Vd2 * , Vq2 * are calculated.
 スレーブ制御部である第2制御部233は、dq軸電流演算部240、第2の3相電圧指令値演算部261、第2PWM演算部263、第2信号出力部265、および、第2通信部270を有する。 The second control unit 233, which is a slave control unit, includes a dq-axis current calculation unit 240, a second three-phase voltage command value calculation unit 261, a second PWM calculation unit 263, a second signal output unit 265, and a second communication unit. 270.
 図15に示すように、第1制御部133の電流フィードバック演算部175は、第1電流フィードバック演算部150および第2電流フィードバック演算部350を有する。第1電流フィードバック演算部150における処理は、第1実施形態と同様であって、第1dq軸電圧指令値Vd1*、Vq1*を演算する。 As illustrated in FIG. 15, the current feedback calculation unit 175 of the first control unit 133 includes a first current feedback calculation unit 150 and a second current feedback calculation unit 350. The processing in the first current feedback calculation unit 150 is the same as that in the first embodiment, and calculates the first dq-axis voltage command values Vd1 * and Vq1 * .
 第2電流フィードバック演算部350は、第2dq軸電圧指令値Vd2*、Vq2*を演算するものであって、加算器351、減算器352~354、制御器355、356、および、減算器357を有する。第2電流フィードバック演算部350は、上記実施形態の第2制御部231の第2電流フィードバック演算部250と同様であって、加算器351、減算器352~353、制御器355、356および減算器357における各処理は、下2桁が対応する加算器251、減算器252~254、制御器255、256、および、減算器257の処理と同様である。なお、本実施形態では、第2電流フィードバック演算部350が第1制御部133内に設けられているので、第1dq軸電流検出値Id1、Iq1は、内部的に取得された値が用いらる。また、第2dq軸電流検出値Id2、Iq2は、マイコン間通信にて第2制御部233から送信された値が用いられる。 Second current feedback calculation section 350, first 2dq axis voltage command value Vd2 *, be one that calculates the Vq2 *, an adder 351, subtractors 352 to 354, controller 355, and the subtracter 357 Have. The second current feedback calculation unit 350 is the same as the second current feedback calculation unit 250 of the second control unit 231 of the above embodiment, and includes an adder 351, subtracters 352 to 353, controllers 355 and 356, and a subtractor. Each processing in 357 is the same as the processing of the adder 251, subtracters 252 to 254, controllers 255, 256, and subtractor 257 corresponding to the last two digits. In the present embodiment, since the second current feedback calculation unit 350 is provided in the first control unit 133, internally acquired values are used as the first dq-axis current detection values Id1 and Iq1. . Moreover, the value transmitted from the 2nd control part 233 by the communication between microcomputers is used for 2nd dq axis current detection value Id2 and Iq2.
 第1制御部133の電流フィードバック演算部175にて演算された第2dq軸電圧指令値Vd2*、Vq2*は、送信部171から第2制御部233に送信される。すなわち本実施形態では、「指令値」として第2dq軸電圧指令値Vd2*、Vq2*、第1制御部133から第2制御部233に送信される。第2の3相電圧指令演算部261は、第1制御部133から送信された第2dq軸電圧指令値Vd2*、Vq2*を逆dq変換し、第2の3相電圧指令値Vu2*、Vv2*、Vw2*を演算する。 The second dq-axis voltage command values Vd2 * and Vq2 * calculated by the current feedback calculation unit 175 of the first control unit 133 are transmitted from the transmission unit 171 to the second control unit 233. That is, in this embodiment, the second dq-axis voltage command values Vd2 * and Vq2 * are transmitted as the “command value” from the first control unit 133 to the second control unit 233. The second three-phase voltage command calculation unit 261 performs inverse dq conversion on the second dq-axis voltage command values Vd2 * and Vq2 * transmitted from the first control unit 133, and the second three-phase voltage command values Vu2 * and Vv2 * , Vw2 * is calculated.
 本実施形態では、第1通信部170は、第2dq軸電圧指令値Vd2*、Vq2*を第2制御部233に送信し、第2通信部270は、第2dq軸電流検出値Id2、Iq2を第1制御部133に送信する。 In the present embodiment, the first communication unit 170 transmits the second dq-axis voltage command values Vd2 * and Vq2 * to the second control unit 233, and the second communication unit 270 outputs the second dq-axis current detection values Id2 and Iq2. It transmits to the 1st control part 133.
 本実施形態では、電流FB演算が第1制御部133にて行われているので、第1制御部133から第2制御部233に対して、第1dq軸電流検出値Id1、Iq1を送信する必要がない。したがって、第1制御部133から第2制御部233への第1dq軸電流検出値Id1、Iq1の送信を省略可能である。後述の第4実施形態および第5実施形態も同様である。 In the present embodiment, since the current FB calculation is performed by the first control unit 133, it is necessary to transmit the first dq-axis current detection values Id1 and Iq1 from the first control unit 133 to the second control unit 233. There is no. Therefore, transmission of the first dq-axis current detection values Id1 and Iq1 from the first control unit 133 to the second control unit 233 can be omitted. The same applies to fourth and fifth embodiments described later.
 本実施形態の演算処理を図16のタイムチャートに基づいて説明する。時刻x41~x48までの処理は、図11の時刻x1~x8までの処理と同様である。時刻x49~x50において、制御部133、233間で当該制御周期における1回目のマイコン間通信が行われる。本実施形態では、1回目のマイコン間通信にて、第2dq軸電流検出値Id2、Iq2が第2制御部233から第1制御部133に送信される。 The calculation processing of this embodiment will be described based on the time chart of FIG. The processing from time x41 to x48 is the same as the processing from time x1 to x8 in FIG. At times x49 to x50, the first inter-microcomputer communication in the control cycle is performed between the control units 133 and 233. In the present embodiment, the second dq-axis current detection values Id2 and Iq2 are transmitted from the second control unit 233 to the first control unit 133 in the first inter-microcomputer communication.
 1回目のマイコン間通信終了後の時刻x51から、第1制御部133にて、電流FB演算が行われる。また、電流FB演算終了後の時刻x52~x53にて、2回目のマイコン間通信が行われる。2回目のマイコン間通信では、第2dq軸電圧指令値Vd2*、Vq2*が、第1制御部133から第2制御部233に送信される。 From the time x51 after the end of the first communication between the microcomputers, the first control unit 133 performs the current FB calculation. In addition, the second communication between the microcomputers is performed at times x52 to x53 after the end of the current FB calculation. In the second communication between the microcomputers, the second dq-axis voltage command values Vd2 * and Vq2 * are transmitted from the first control unit 133 to the second control unit 233.
 2回目のマイコン間通信後のx54以降にて、制御部133、233は、3相電圧指令演算、および、PWM指令演算を行い、PWM指令演算後の時刻x55にて、PWM信号を各インバータ回路120、220に出力、反映する。 After x54 after the second communication between the microcomputers, the control units 133 and 233 perform a three-phase voltage command calculation and a PWM command calculation, and at time x55 after the PWM command calculation, the PWM signal is transmitted to each inverter circuit. 120 and 220 are output and reflected.
 本実施形態では、第1制御部133は、第1系統L1に係る第1dq軸電圧指令値Vd1*、Vq2*、および、第2系統L2に係る第2dq軸電圧指令値Vd2*、Vq2*を演算する。第1制御部133は、第2dq軸電圧指令値Vd2*、Vq2*を指令値として第2制御部233に送信する。本実施形態では、第2dq軸電圧指令値Vd2*、Vq2*が「スレーブ電圧指令値」に対応する。これにより、第2制御部233における電流フィードバック演算を省略することができる。 In the present embodiment, the first control unit 133 obtains the first dq-axis voltage command values Vd1 * and Vq2 * related to the first system L1 and the second dq-axis voltage command values Vd2 * and Vq2 * related to the second system L2. Calculate. The first control unit 133 transmits the second dq-axis voltage command values Vd2 * and Vq2 * as command values to the second control unit 233. In the present embodiment, the second dq-axis voltage command values Vd2 * and Vq2 * correspond to the “slave voltage command value”. Thereby, the current feedback calculation in the second control unit 233 can be omitted.
 第2制御部233は、スレーブ電流検出値である第2dq軸電流検出値Id2、Iq2を第1制御部133に送信する。第1制御部133は、マスター電流検出値である第1dq軸電流検出値Id1、Iq1、および、第2dq軸電流検出値Id2、Iq2に基づき、第1系統L1および第2系統L2の電流和が電流指令値Id*、Iq*となり、電流差が電流差指令値となるように、第1系統L1の電圧指令値である第1dq軸電圧指令値Vd1*、Vq1*、および、第2系統L2の電圧指令値である第2dq軸電圧指令値Vd2*、Vq2*を演算する。 The second control unit 233 transmits the second dq-axis current detection values Id2 and Iq2 that are slave current detection values to the first control unit 133. The first control unit 133 calculates the current sum of the first system L1 and the second system L2 based on the first dq-axis current detection values Id1 and Iq1, which are master current detection values, and the second dq-axis current detection values Id2 and Iq2. The first dq-axis voltage command values Vd1 * and Vq1 * , which are voltage command values of the first system L1, and the second system L2 so that the current command values Id * and Iq * become the current difference command values. The second dq-axis voltage command values Vd2 * and Vq2 * which are the voltage command values are calculated.
 電流和を制御することで、アシストトルク指令値Trq*通りにモータ80からアシストトルクを出力させることができる。また、系統間の電流差を所定値に制御することができる。特に、電流差指令値を0とすることで、系統間の電流差をなくすことができるので、各系統の発熱を均等にすることができる。また、電源電圧の変動や発熱により電流制限時、または、故障発生によるバックアップ制御や片系統駆動に移行する際の制御の複雑さを低減することができる。また、上記実施形態と同様の効果を奏する。 By controlling the current sum, the assist torque can be output from the motor 80 in accordance with the assist torque command value Trq * . Further, the current difference between the systems can be controlled to a predetermined value. In particular, by setting the current difference command value to 0, the current difference between the systems can be eliminated, so that the heat generation of each system can be made uniform. Further, it is possible to reduce the complexity of the control when the current is limited due to the fluctuation of the power supply voltage and the heat generation, or when the backup control due to the occurrence of the failure or the shift to the single system drive is performed. In addition, the same effects as those of the above embodiment can be obtained.
   (第4実施形態)
 第4実施形態を図17および図18に示す。図17に示すように、マスター制御部である第1制御部134は、dq軸電流演算部140、アシストトルク指令演算部141、q軸電流指令演算部142、d軸電流指令演算部143、電流フィードバック演算部175、3相電圧指令演算部162、第1PWM演算部163、第1信号出力部165、および、第1通信部170を有する。電流フィードバック演算部175にて演算されたdq軸電圧指令値Vd1*、Vq1*、Vd2*、Vq2*は、3相電圧指令演算部162に出力される。
(Fourth embodiment)
A fourth embodiment is shown in FIGS. 17 and 18. As shown in FIG. 17, the first control unit 134 as a master control unit includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a current It has a feedback calculation unit 175, a three-phase voltage command calculation unit 162, a first PWM calculation unit 163, a first signal output unit 165, and a first communication unit 170. The dq-axis voltage command values Vd1 * , Vq1 * , Vd2 * , Vq2 * calculated by the current feedback calculation unit 175 are output to the three-phase voltage command calculation unit 162.
 3相電圧指令演算部162は、第1dq軸電圧指令値Vd1*、Vq1*を、第1電気角EleAng1を用いて逆dq変換し、第1U相電圧指令値Vu1*、第1V相電圧指令値Vv1*、および、第1W相電圧指令値Vw1*を演算する。第1の3相電圧指令値Vu1*、Vv1*、Vw1*は、第1PWM演算部163に出力され、第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*の演算に用いられる。 The three-phase voltage command calculation unit 162 performs inverse dq conversion on the first dq-axis voltage command values Vd1 * and Vq1 * using the first electrical angle EleAng1 to obtain the first U-phase voltage command value Vu1 * and the first V-phase voltage command value. Vv1 * and the first W-phase voltage command value Vw1 * are calculated. The first three-phase voltage command values Vu1 * , Vv1 * , Vw1 * are output to the first PWM calculation unit 163 and used for the calculation of the first PWM signals PWM_u1 * , PWM_v1 * , PWM_w1 * .
 また、3相電圧指令演算部162は、第2dq軸電圧指令値Vd2*、Vq2*を、第2電気角EleAng2を用いて逆dq変換し、第2U相電圧指令値Vu2*、第2V相電圧指令値Vv2*、および、第2W相電圧指令値Vw2*を演算する。本実施形態では、第2制御部234から送信される第2電気角EleAng2を逆dq変換に用いるが、第2電気角EleAng2を第2制御部234から取得せず、第1制御部134内部にて、第1電気角EleAng1から第2電気角EleAng2を求めて、逆dq変換に用いてもよい。第5実施形態についても同様である。 Further, the three-phase voltage command calculation unit 162 performs inverse dq conversion on the second dq-axis voltage command values Vd2 * and Vq2 * using the second electrical angle EleAng2 to obtain the second U-phase voltage command value Vu2 * and the second V-phase voltage. The command value Vv2 * and the second W-phase voltage command value Vw2 * are calculated. In the present embodiment, the second electrical angle EleAng2 transmitted from the second control unit 234 is used for the inverse dq conversion. However, the second electrical angle EleAng2 is not acquired from the second control unit 234, and is contained in the first control unit 134. Thus, the second electrical angle EleAng2 may be obtained from the first electrical angle EleAng1 and used for the inverse dq conversion. The same applies to the fifth embodiment.
 第2の3相電圧指令値Vu2*、Vv2*、Vw2*は、送信部171から第2制御部234に送信される。すなわち本実施形態では、「指令値」として、第2の3相電圧指令値Vu2*、Vv2*、Vw2*が第1制御部134から第2制御部234へ送信される。 The second three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the transmission unit 171 to the second control unit 234. That is, in the present embodiment, the second three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the first control unit 134 to the second control unit 234 as the “command value”.
 スレーブ制御部である第2制御部234は、dq軸電流演算部240、第2PWM演算部263、第2信号出力部265、および、第2通信部270を有する。第2PWM演算部263は、第1制御部134から送信される3相電圧指令値Vu2*、Vv2*、Vw2*を用いて第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を演算する。 The second control unit 234 that is a slave control unit includes a dq-axis current calculation unit 240, a second PWM calculation unit 263, a second signal output unit 265, and a second communication unit 270. The second PWM calculation unit 263 calculates the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * using the three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * transmitted from the first control unit 134.
 本実施形態では、第1通信部170は、第2の3相電圧指令値Vu2*、Vv2*、Vw2*を第2制御部234に送信し、第2通信部270は、第2dq軸電流検出値Id2、Iq2および第2電気角EleAng2を第1制御部134に送信する。 In the present embodiment, the first communication unit 170 transmits the second three-phase voltage command values Vu2 * , Vv2 * , Vw2 * to the second control unit 234, and the second communication unit 270 performs the second dq-axis current detection. The values Id2, Iq2 and the second electrical angle EleAng2 are transmitted to the first control unit 134.
 本実施形態の演算処理を図18のタイムチャートに基づいて説明する。本実施形態では、第3実施形態と同様、1回の制御周期において、2回のマイコン間通信が行われる。1回目のマイコン間通信までの処理は、第3実施形態と同様である。本実施形態では、1回目のマイコン間通信において、dq軸電流検出値Id2、Iq2、および、第2電気角EleAng2が、第2制御部234から第1制御部134に送信される。第5実施形態も同様である。 The calculation processing of this embodiment will be described based on the time chart of FIG. In the present embodiment, as in the third embodiment, two inter-microcomputer communications are performed in one control cycle. Processing up to the first communication between microcomputers is the same as that in the third embodiment. In the present embodiment, the dq-axis current detection values Id2 and Iq2 and the second electrical angle EleAng2 are transmitted from the second control unit 234 to the first control unit 134 in the first inter-microcomputer communication. The same applies to the fifth embodiment.
 1回目のマイコン間通信終了後の時刻x61から、第1制御部134にて電流FB演算が行われ、続いて3相電圧指令演算が行われる。また、3相電圧指令演算終了後の時刻x62~x63にて、2回目のマイコン間通信が行われる。2回目のマイコン間通信では、第2の3相電圧指令値Vu2*、Vv2*、Vw2*が、第1制御部134から第2制御部234に送信される。 From time x61 after the end of the first communication between the microcomputers, the first control unit 134 performs a current FB calculation, and then performs a three-phase voltage command calculation. In addition, the second inter-microcomputer communication is performed at times x62 to x63 after the completion of the three-phase voltage command calculation. In the second inter-microcomputer communication, the second three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * are transmitted from the first control unit 134 to the second control unit 234.
 2回目のマイコン間通信後の時刻x64以降にて、制御部134、234は、PWM指令演算を行い、PWM指令演算後の時刻x65にて、PWM信号を各インバータ回路120、220に出力、反映する。 After time x64 after the second communication between the microcomputers, the control units 134 and 234 perform the PWM command calculation, and output and reflect the PWM signal to the inverter circuits 120 and 220 at time x65 after the PWM command calculation. To do.
 本実施形態では、dq軸電圧指令値Vd2*、Vq2*に替えて、3相電圧指令値Vu2*、Vv2*、Vw2*を第1制御部134から第2制御部234に送信する点を除き、概ね第3実施形態と同様である。本実施形態では、3相電圧指令値Vu2*、Vv2*、Vw2*が「スレーブ電圧指令値」に対応する。また、上記実施形態と同様の効果を奏する。 In the present embodiment, except that the three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the first control unit 134 to the second control unit 234 instead of the dq-axis voltage command values Vd2 * , Vq2 *. This is generally the same as in the third embodiment. In the present embodiment, the three-phase voltage command values Vu2 * , Vv2 * , Vw2 * correspond to “slave voltage command values”. In addition, the same effects as those of the above embodiment can be obtained.
   (第5実施形態)
 第5実施形態を図19および図20に示す。図19に示すように、マスター制御部である第1制御部135は、dq軸電流演算部140、アシストトルク指令演算部141、q軸電流指令演算部142、d軸電流指令演算部143、電流フィードバック演算部175、3相電圧指令演算部162、PWM演算部164、第1信号出力部165、および、第1通信部170を有する。
(Fifth embodiment)
A fifth embodiment is shown in FIGS. 19 and 20. As shown in FIG. 19, the first control unit 135, which is a master control unit, includes a dq-axis current calculation unit 140, an assist torque command calculation unit 141, a q-axis current command calculation unit 142, a d-axis current command calculation unit 143, a current A feedback calculation unit 175, a three-phase voltage command calculation unit 162, a PWM calculation unit 164, a first signal output unit 165, and a first communication unit 170 are included.
 本実施形態では、電流フィードバック演算部175および3相電圧指令演算部162は、第4実施形態と同様である。3相電圧指令演算部162にて演算された3相電圧指令値Vu1*、Vv1*、Vw1*、Vu2*、Vv2*、Vw2*は、PWM演算部164に出力される。 In the present embodiment, the current feedback calculation unit 175 and the three-phase voltage command calculation unit 162 are the same as those in the fourth embodiment. The three-phase voltage command values Vu1 * , Vv1 * , Vw1 * , Vu2 * , Vv2 * , and Vw2 * calculated by the three-phase voltage command calculation unit 162 are output to the PWM calculation unit 164.
 PWM演算部164は、第1の3相電圧指令値Vu1*、Vv1*、Vw1*に基づき、第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*を演算する。第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*は、信号出力部165から第1インバータ回路120に出力される。また、PWM演算部164は、第2の3相電圧指令値Vu2*、Vv2*、Vw2*に基づき、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を演算する。第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*は、送信部171から第2制御部235に送信される。 The PWM calculation unit 164 calculates the first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * based on the first three-phase voltage command values Vu1 * , Vv1 * , and Vw1 * . The first PWM signals PWM_u1 * , PWM_v1 * , and PWM_w1 * are output from the signal output unit 165 to the first inverter circuit 120. The PWM calculation unit 164 calculates the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * based on the second three-phase voltage command values Vu2 * , Vv2 * , and Vw2 * . The second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the transmission unit 171 to the second control unit 235.
 スレーブ制御部である第2制御部235は、dq軸電流演算部240、第2信号出力部265、および、第2通信部270を有する。第2信号出力部265は、第1制御部135から送信される第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を、第2インバータ回路220に出力する。すなわち本実施形態では、「指令値」として、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*が、第1制御部135から第2制御部235に送信される。 The second control unit 235 that is a slave control unit includes a dq-axis current calculation unit 240, a second signal output unit 265, and a second communication unit 270. The second signal output unit 265 outputs the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * transmitted from the first control unit 135 to the second inverter circuit 220. That is, in the present embodiment, the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the first control unit 135 to the second control unit 235 as “command values”.
 本実施形態では、第1通信部170は、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を第2制御部235に送信し、第2通信部270は、第2dq軸電流検出値Id2、Iq2および第2電気角EleAng2を第1制御部135に送信する。 In the present embodiment, the first communication unit 170 transmits the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * to the second control unit 235, and the second communication unit 270 includes the second dq-axis current detection values Id2, Iq2, and The second electrical angle EleAng2 is transmitted to the first controller 135.
 本実施形態の演算処理を図20のタイムチャートに基づいて説明する。本実施形態では、第3実施形態および第4実施形態と同様、1回の制御周期において、2回のマイコン間通信が行われる。1回目のマイコン間通信までの処理は、第3実施形態および第4実施形態と同様である。 The calculation processing of this embodiment will be described based on the time chart of FIG. In this embodiment, similarly to the third embodiment and the fourth embodiment, communication between microcomputers is performed twice in one control cycle. The processing up to the first communication between microcomputers is the same as that in the third and fourth embodiments.
 1回目のマイコン間通信終了後の時刻x71から、電流FB演算が行われ、続いて3相電圧指令演算およびPWM指令演算が行われる。PWM指令演算終了後の時刻x72~x73にて、2回目のマイコン間通信が行われる。2回目のマイコン間通信では、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*が、第1制御部135から第2制御部235に送信される。2回目のマイコン間通信後の時刻x75にて、PWM信号が各インバータ回路120、220に出力、反映される。 From time x71 after the end of the first communication between the microcomputers, the current FB calculation is performed, and then the three-phase voltage command calculation and the PWM command calculation are performed. The second inter-microcomputer communication is performed at times x72 to x73 after the completion of the PWM command calculation. In the second inter-microcomputer communication, the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the first control unit 135 to the second control unit 235. At time x75 after the second communication between the microcomputers, the PWM signal is output and reflected on each inverter circuit 120, 220.
 本実施形態では、第1制御部135は、第1系統L1に係る第1PWM信号PWM_u1*、PWM_v1*、PWM_w1*、および、第2系統L2に係る第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を演算する。また、第1制御部135は、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*を指令値として第2制御部235に送信する。本実施形態では、第2PWM信号PWM_u2*、PWM_v2*、PWM_w2*が「スレーブ制御信号」に対応する。これにより、第2制御部235における電圧指令値の演算を省略することができる。また、上記実施形態と同様の効果を奏する。 In the present embodiment, the first control unit 135 receives the first PWM signal PWM_u1 * , PWM_v1 * , PWM_w1 * related to the first system L1, and the second PWM signal PWM_u2 * , PWM_v2 * , PWM_w2 * related to the second system L2. Calculate. In addition, the first control unit 135 transmits the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * as command values to the second control unit 235. In the present embodiment, the second PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * correspond to “slave control signals”. Thereby, the calculation of the voltage command value in the second control unit 235 can be omitted. In addition, the same effects as those of the above embodiment can be obtained.
   (第6実施形態)
 第6実施形態を図21に示す。本実施形態では、第1実施形態と同様、指令値としてdq軸電流指令値Id*、Iq*を、第1制御部131から第2制御部231へ送信し、各制御部131、231にて電流FB演算を行う場合を例に説明する。以下適宜、前回の制御周期P(n-1)にて演算された値には添え字(n-1)を付し、今回の制御周期P(n)にて演算された値には添え字(n)を付す。なお、前回の制御周期P(n-1)の時刻x83~x86における処理は、今回の制御周期P(n)の時刻x93~x96における処理と同様であるので、説明を省略する。
(Sixth embodiment)
A sixth embodiment is shown in FIG. In the present embodiment, as in the first embodiment, dq-axis current command values Id * and Iq * are transmitted as command values from the first control unit 131 to the second control unit 231, and the control units 131 and 231 each transmit the command value. A case where the current FB calculation is performed will be described as an example. Hereinafter, the value calculated in the previous control cycle P (n-1) is appended with a subscript (n-1) , and the value calculated in the current control cycle P (n) is appropriately subscripted. Add (n) . Note that the processing at times x83 to x86 of the previous control cycle P (n−1) is the same as the processing at times x93 to x96 of the current control cycle P (n), and thus the description thereof is omitted.
 今回の制御周期P(n)において、時刻x91から時刻x92にて、制御部131、231間でマイコン間通信を行い、前回の制御周期P(n-1)にて演算されたdq軸電流検出値Id1(n-1)、Iq1(n-1)、Id2(n-1)、Iq2(n-1)を相互に送受信する。また、第1制御部131から第2制御部231に、dq軸電流指令値Id* (n-1)、Iq* (n-1)を送信する。 In this control cycle P (n), communication between microcomputers 131 and 231 is performed from time x91 to time x92, and dq-axis current detection calculated in the previous control cycle P (n-1) Values Id1 (n-1) , Iq1 (n-1) , Id2 (n-1) , and Iq2 (n-1) are transmitted / received to / from each other. Further, the dq-axis current command values Id * (n−1) and Iq * (n−1) are transmitted from the first control unit 131 to the second control unit 231.
 時刻x93にて、第1制御部131は、アシストトルク指令値Trq*およびdq軸電流指令値Id*、Iq*を演算する。時刻x94、x95では、第1制御部131は、相電流Iu1、Iv1、Iw1を取得し、dq軸電流検出値Id1(n)、Iq1(n)を演算する。また、第2制御部231は、相電流Iu2、Iv2、Iw2を取得し、dq軸電流検出値Id2(n)、Iq2(n)を演算する。 At time x93, the first control unit 131 calculates the assist torque command value Trq * and the dq-axis current command values Id * and Iq * . At times x94 and x95, the first control unit 131 acquires the phase currents Iu1, Iv1, and Iw1, and calculates the dq-axis current detection values Id1 (n) and Iq1 (n) . Further, the second control unit 231 acquires the phase currents Iu2, Iv2, and Iw2, and calculates the dq-axis current detection values Id2 (n) and Iq2 (n) .
 時刻x96にて、電流FB演算からPWM信号の出力、反映に至る一連の演算を行う。
 本実施形態では、第1制御部131は、電流FB演算において、今回制御周期P(n)のdq軸電流指令値Id* (n)、Iq* (n)および自系統のdq軸電流検出値Id1(n)、Iq1(n)、ならびに、前回制御周期P(n-1)の他系統のdq軸電流検出値Id2(n-1)、Iq2(n-1)を用いる。
At time x96, a series of calculations from current FB calculation to PWM signal output and reflection is performed.
In the present embodiment, the first control unit 131 determines the dq-axis current command values Id * (n) and Iq * (n) of the current control cycle P (n) and the dq-axis current detection value of the own system in the current FB calculation. Id1 (n) , Iq1 (n) , and dq-axis current detection values Id2 (n-1) and Iq2 (n-1) of other systems of the previous control cycle P (n-1) are used.
 また、第2制御部231は、電流FB演算において、前回制御周期P(n-1)のdq軸電流指令値Id* (n-1)、Iq* (n-1)および他系統のdq軸電流検出値Id1(n-1)、Iq1(n-1)、ならびに、今回制御周期P(n)の自系統のdq軸電流検出値Id2(n)、Iq2(n)を用いる。 In addition, the second control unit 231 calculates the dq-axis current command values Id * (n−1) and Iq * (n−1) of the previous control cycle P (n−1) and the dq-axis of another system in the current FB calculation. The current detection values Id1 (n-1) and Iq1 (n-1) and the dq-axis current detection values Id2 (n) and Iq2 (n) of the own system in the current control period P (n) are used.
 換言すると、本実施形態では、自系統にて演算される値については、今回制御周期P(n)の値を用い、他系統から取得する値については、前回制御周期P(n-1)の値を用いて、演算を行う。本実施形態のように、他系統から取得する値については、以前の制御周期に係る値を用いる場合についても、各系統に係る値を共通に用いて各系統の通電を制御する「協調動作」の概念に含まれるものとする。 In other words, in the present embodiment, the value of the current control cycle P (n) is used for the value calculated in the own system, and the value acquired from the other system is used for the previous control cycle P (n−1). Calculation is performed using the value. As in the present embodiment, for values acquired from other systems, even when using values related to the previous control cycle, the “cooperative operation” for controlling energization of each system using the values related to each system in common. It shall be included in the concept of
 これにより、dq軸電流検出値Id1、Iq1、Id2、Iq2の演算と、電流FB演算との間にマイコン間通信を行う必要がないので、dq軸電流検出値Id1、Iq1、Id2、Iq2の演算終了から電流FB演算開始までの期間を短くすることができる。したがって、電流FB演算の直前にマイコン間通信を行う場合と比較し、自系統に係る値については、より直近の電流検出値を電流FB演算に用いることができる。図21では、第1実施形態の制御部131、231を例に説明したが、第2実施形態~第5実施形態にて、他系統の電流検出値として、前回制御周期の値を用いるようにしてもよい。 Thereby, since it is not necessary to perform communication between microcomputers between the calculation of the dq axis current detection values Id1, Iq1, Id2, and Iq2, and the current FB calculation, the calculation of the dq axis current detection values Id1, Iq1, Id2, Iq2 The period from the end to the start of the current FB calculation can be shortened. Therefore, as compared with the case where communication between microcomputers is performed immediately before the current FB calculation, the latest detected current value can be used for the current FB calculation for the value related to the own system. In FIG. 21, the control units 131 and 231 of the first embodiment have been described as examples. However, in the second to fifth embodiments, the value of the previous control cycle is used as the current detection value of the other system. May be.
 本実施形態では、制御信号の演算に必要な情報のうち、他の制御部から取得するものは、前回の制御周期における値を用いる。本実施形態では、「制御信号の演算に必要な情報」は、dq軸電流検出値Id1、Iq1、Id2、Iq2、および、dq軸電流指令値Id*、Iq*である。他の制御部から取得する値として、前回の制御周期における値を用いることで、通信タイミングの自由度が高まる。本実施形態では、電流検出値Id1、Iq1、Id2、Iq2の演算後から電流フィードバック制御開始までの時間を短縮することができるので、自系統に係る値については、より直近の値を用いることができる。また、上記実施形態と同様の効果を奏する。 In the present embodiment, information acquired from another control unit among information necessary for calculation of the control signal uses a value in the previous control cycle. In the present embodiment, “information necessary for control signal calculation” is the dq-axis current detection values Id1, Iq1, Id2, Iq2, and the dq-axis current command values Id * and Iq * . By using the value in the previous control cycle as the value acquired from the other control unit, the degree of freedom of communication timing is increased. In the present embodiment, the time from the calculation of the current detection values Id1, Iq1, Id2, and Iq2 to the start of current feedback control can be shortened, so that the most recent value is used for the value related to the own system. it can. In addition, the same effects as those of the above embodiment can be obtained.
   (第7実施形態)
 第7実施形態を図22~図27に示す。図22に示すように、マスター制御部である第1制御部136は、第1実施形態の第1制御部131の各構成に加え、異常監視部190を有する。スレーブ制御部である第2制御部236は、第1実施形態の第2制御部231の各構成に加え、アシストトルク演算部241、q軸電流指令演算部242、d軸電流指令演算部243、および、異常監視部290を有する。図22では、各制御部136、236にて、d軸電流指令演算部およびq軸電流指令演算部を1つのブロックにまとめて記載した。
(Seventh embodiment)
A seventh embodiment is shown in FIGS. As illustrated in FIG. 22, the first control unit 136 serving as a master control unit includes an abnormality monitoring unit 190 in addition to the components of the first control unit 131 of the first embodiment. The second control unit 236 that is a slave control unit includes, in addition to the components of the second control unit 231 of the first embodiment, an assist torque calculation unit 241, a q-axis current command calculation unit 242, a d-axis current command calculation unit 243, And it has the abnormality monitoring part 290. In FIG. 22, in each of the control units 136 and 236, the d-axis current command calculation unit and the q-axis current command calculation unit are described in one block.
 図22では、第1実施形態の制御部131、231に、異常監視部190、290等を設ける例を示しているが、第2実施形態~第5実施形態の各制御部132~135、232~235に、異常監視部190、290、および、PWM信号の演算に要する各ブロック等を設けるようにしてもよい。 FIG. 22 shows an example in which the abnormality monitoring units 190 and 290 are provided in the control units 131 and 231 of the first embodiment, but the control units 132 to 135 and 232 of the second to fifth embodiments. ˜235 may be provided with the abnormality monitoring units 190 and 290, blocks required for the calculation of the PWM signal, and the like.
 第2制御部236のアシストトルク演算部241は、トルクセンサ入力回路218を経由してトルクセンサ94から取得されるトルク信号、および、車両通信回路217を経由して車両通信網から取得される車速等に基づき、トルク指令値としてのアシストトルク指令値Trq2*を演算する。q軸電流指令演算部242は、アシストトルク指令値Trq2*に基づき、q軸電流指令値Iq2*を演算する。d軸電流指令演算部243は、d軸電流指令値Id2*を演算する。 The assist torque calculation unit 241 of the second control unit 236 includes a torque signal acquired from the torque sensor 94 via the torque sensor input circuit 218 and a vehicle speed acquired from the vehicle communication network via the vehicle communication circuit 217. Based on the above, an assist torque command value Trq2 * as a torque command value is calculated. The q-axis current command calculation unit 242 calculates a q-axis current command value Iq2 * based on the assist torque command value Trq2 * . The d-axis current command calculation unit 243 calculates a d-axis current command value Id2 * .
 第2制御部236で演算される指令値Trq2*、Iq2*、Id2*は、マスター制御部である第1制御部136に異常が生じた場合や、通信異常が生じた場合等に用いられる。これにより、第1制御部136に異常が生じた場合や通信異常が生じた場合であっても、第2制御部236単独にて、制御を継続することができる。 The command values Trq2 * , Iq2 * , Id2 * calculated by the second control unit 236 are used when an abnormality occurs in the first control unit 136 that is the master control unit, or when a communication abnormality occurs. Thus, even when an abnormality occurs in the first control unit 136 or when a communication abnormality occurs, the control can be continued by the second control unit 236 alone.
 第2制御部236は、第1制御部136からdq軸電流指令値Id*、Iq*を取得可能な場合、指令値Trq2*、Iq2*、Id2*の演算を行わなくてもよい。また、第2制御部236は、第1制御部136からdq軸電流指令値Id*、Iq*を取得可能な場合においても、各指令値Trq2*、Iq2*、Id2*の演算を行っていてもよい。これにより、第1制御部136から指令値を取得できなくなった場合、速やかに第2制御部236単独での制御に切り替えることができる。特に、フィルタ処理などの演算中間値によって制御出力が変わるロジックを含む場合であっても、演算開始遅れに伴う指令値の演算誤差を低減することができる。 The second controller 236 may not calculate the command values Trq2 * , Iq2 * , and Id2 * when the dq-axis current command values Id * and Iq * can be acquired from the first controller 136. The second control unit 236 calculates the command values Trq2 * , Iq2 * , and Id2 * even when the dq-axis current command values Id * and Iq * can be acquired from the first control unit 136. Also good. Thereby, when it becomes impossible to acquire a command value from the 1st control part 136, it can change to control by the 2nd control part 236 alone promptly. In particular, even in the case of including a logic whose control output changes depending on the calculation intermediate value such as filter processing, the calculation error of the command value accompanying the calculation start delay can be reduced.
 異常監視部190、290は、自系統の異常、および、制御部136、236間におけるマイコン間通信の異常を監視する。自系統に係る異常情報は、マイコン間通信にて他系統の制御部に送信される。また、マイコン間通信にて、他系統に係る異常情報を取得する。これにより、異常状態が共有される。電流フィードバック演算部150、250では、異常監視部190、290の判定結果に応じた制御を行う。通信異常には、「制御部間通信異常」に対応するマイコン間通信異常の他、車両通信網195、295との通信異常がある。以下、単に「通信異常」という場合は、マイコン間通信異常を意味するものとする。 The abnormality monitoring units 190 and 290 monitor the abnormality of the own system and the abnormality of communication between the microcomputers between the control units 136 and 236. The abnormality information related to the own system is transmitted to the control unit of the other system through communication between microcomputers. Moreover, the abnormality information which concerns on another system is acquired by communication between microcomputers. Thereby, the abnormal state is shared. The current feedback calculation units 150 and 250 perform control according to the determination results of the abnormality monitoring units 190 and 290. The communication abnormality includes an abnormality in communication with the vehicle communication networks 195 and 295 in addition to an abnormality in communication between microcomputers corresponding to the “communication abnormality between control units”. Hereinafter, simply referring to “communication abnormality” means an abnormality in communication between microcomputers.
 本実施形態では、上記実施形態と同様、第1制御部136にて演算された指令値を第2制御部236にマイコン間通信にて送信し、共通の指令値を用いてマスター系統およびスレーブ系統の通電を制御することで、各系統を協調動作させている。 In the present embodiment, as in the above embodiment, the command value calculated by the first control unit 136 is transmitted to the second control unit 236 through inter-microcomputer communication, and the master system and the slave system are used using the common command value. By controlling the energization, each system is operated in a coordinated manner.
 ところで、制御部136、236間の通信線の断線や、ノイズ重畳による信号のビット化け等により、マイコン間通信に異常が生じる虞がある。そこで本実施形態では、異常監視部190、290にて、マイコン間通信の異常を監視するとともに、異常検出時にはバックアップ処置を行う。 By the way, there is a possibility that the communication between the microcomputers may be abnormal due to disconnection of the communication line between the control units 136 and 236 or garbled signal due to noise superimposition. Therefore, in the present embodiment, the abnormality monitoring units 190 and 290 monitor the abnormality of the communication between the microcomputers, and perform backup processing when the abnormality is detected.
 ここで、マイコン間通信の通信フレーム詳細を図23に示す。図23Aは、第1制御部136から第2制御部236に送信される信号の通信フレームを示している。第1制御部131から第2制御部231にd軸電流指令値Id*およびq軸電流指令値Iq*を送信する場合、通信フレームには、q軸電流指令値Iq*を示す信号、d軸電流指令値Id*を示す信号、q軸電流検出値Iq1を示す信号、d軸電流検出値Id1を示す信号、ランカウンタ信号およびCRC(Cyclic Redundancy Check)信号が含まれる。 Here, FIG. 23 shows details of a communication frame for communication between microcomputers. FIG. 23A shows a communication frame of a signal transmitted from the first control unit 136 to the second control unit 236. When the d-axis current command value Id * and the q-axis current command value Iq * are transmitted from the first controller 131 to the second controller 231, the communication frame includes a signal indicating the q-axis current command value Iq * , d-axis A signal indicating the current command value Id * , a signal indicating the q-axis current detection value Iq1, a signal indicating the d-axis current detection value Id1, a run counter signal, and a CRC (Cyclic Redundancy Check) signal are included.
 図23Bは、第2制御部236から第1制御部136に送信される信号を示しており、通信フレームには、q軸電流検出値Iq2、d軸電流検出値Id2、ランカウンタ信号およびCRC信号が含まれる。第2制御部231~235から第1制御部131~135に送信される信号も同様である。 FIG. 23B shows a signal transmitted from the second control unit 236 to the first control unit 136. The communication frame includes a q-axis current detection value Iq2, a d-axis current detection value Id2, a run counter signal, and a CRC signal. Is included. The same applies to signals transmitted from the second control units 231 to 235 to the first control units 131 to 135.
 図23Cは、第2実施形態の第1制御部132から送信される信号を示している。第2実施形態のように、第1制御部132から第2制御部232にアシストトルク指令値Trq*を送信する場合、通信フレームには、アシストトルク指令値Trq*を示す信号、q軸電流検出値Iq1を示す信号、d軸電流検出値Id1を示す信号、ランカウンタ信号およびCRC信号が含まれる。 FIG. 23C shows a signal transmitted from the first control unit 132 of the second embodiment. When the assist torque command value Trq * is transmitted from the first control unit 132 to the second control unit 232 as in the second embodiment, the communication frame includes a signal indicating the assist torque command value Trq * , q-axis current detection A signal indicating the value Iq1, a signal indicating the d-axis current detection value Id1, a run counter signal, and a CRC signal are included.
 図23Dは、第3実施形態の第1制御部133から送信される信号を示している。第3実施形態のように、第1制御部133から第2制御部233にdq軸電圧指令値Vd2*、Vq2*を送信する場合、通信フレームには、q軸電圧指令値Vq2*を示す信号、d軸電圧指令値Vd2*を示す信号、ランカウンタ信号およびCRC信号が含まれる。 FIG. 23D shows a signal transmitted from the first control unit 133 of the third embodiment. When the dq-axis voltage command values Vd2 * and Vq2 * are transmitted from the first control unit 133 to the second control unit 233 as in the third embodiment, a signal indicating the q-axis voltage command value Vq2 * is transmitted in the communication frame. , A signal indicating a d-axis voltage command value Vd2 * , a run counter signal, and a CRC signal.
 図23Eは、第4実施形態の第1制御部134から送信される信号を示している。第4実施形態のように、第1制御部134から第2制御部234に3相電圧指令値Vu2*、Vv2*、Vw2*を送信する場合、通信フレームには、U相電圧指令値Vu2*を示す信号、V相電圧指令値Vv2*を示す信号、W相電圧指令値Vw2*を示す信号、ランカウンタ信号およびCRC信号が含まれる。 FIG. 23E shows a signal transmitted from the first control unit 134 of the fourth embodiment. When the three-phase voltage command values Vu2 * , Vv2 * , Vw2 * are transmitted from the first control unit 134 to the second control unit 234 as in the fourth embodiment, the U-phase voltage command value Vu2 * is included in the communication frame . , A signal indicating a V-phase voltage command value Vv2 * , a signal indicating a W-phase voltage command value Vw2 * , a run counter signal, and a CRC signal.
 図23Fは、第5実施形態の第1制御部135から第2制御部235に送信される信号を示している。第5実施形態のように、第1制御部135から第2制御部235にPWM信号PWM_u2*、PWM_v2*、PWM_w2*を送信する場合、通信フレームには、PWM信号PWM_u2*、PWM_v2*、PWM_w2*を示す信号、ランカウンタ信号およびCRC信号が含まれる。 FIG. 23F illustrates a signal transmitted from the first control unit 135 to the second control unit 235 according to the fifth embodiment. As in the fifth embodiment, when the PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 * are transmitted from the first controller 135 to the second controller 235, the communication signals include the PWM signals PWM_u2 * , PWM_v2 * , and PWM_w2 *. , A run counter signal, and a CRC signal.
 q軸電流指令値、d軸電流指令値、q軸電流検出値およびd軸電流検出値に係る信号は、それぞれの物理量を所望の精度で表現可能なビット数であれば、いくつであってもよい。トルク指令値、電圧指令値およびPWM信号についても同様である。 Any number of signals related to the q-axis current command value, the d-axis current command value, the q-axis current detection value, and the d-axis current detection value can be used as long as each physical quantity can be expressed with a desired accuracy. Good. The same applies to the torque command value, voltage command value, and PWM signal.
 また、ランカウンタ信号は、通信途絶を検出可能なビット数であればよく、例えば2ビットであればカウンタ数が0~3となり、4ビットであればカウンタ数が0~15となる、といった具合である。さらにまた、誤り検出信号であるCRC信号は、通信の信頼性を確保できるCRC多項式およびビット数であればよい。また、誤り検出信号は、通信の信頼性を検出できるのであれば、例えばチェックサム等、CRC以外の信号であってもよい。また、信号順を入れ替えたり、他の信号を追加したりしてもよい。第8実施形態についても同様である。 The run counter signal may be any number of bits that can detect communication interruption. For example, the count number is 0 to 3 for 2 bits, and the count number is 0 to 15 for 4 bits. It is. Furthermore, the CRC signal that is an error detection signal may be a CRC polynomial and the number of bits that can ensure communication reliability. Further, the error detection signal may be a signal other than CRC, such as a checksum, as long as the reliability of communication can be detected. Further, the signal order may be changed, or another signal may be added. The same applies to the eighth embodiment.
 本実施形態の通信異常監視処理を図24のフローチャートに基づいて説明する。ここでは、スレーブ側である第2制御部236での処理について説明する。この処理は、第2制御部236にて所定の周期で行われる。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。 The communication abnormality monitoring process of this embodiment will be described based on the flowchart of FIG. Here, processing in the second control unit 236 on the slave side will be described. This process is performed at a predetermined cycle by the second control unit 236. Hereinafter, “step” in step S101 is omitted, and is simply referred to as “S”. The other steps are the same.
 最初のS101では、第2制御部236は、第1制御部136から通信フレームを受信する。S102では、異常監視部290は、途絶判定処理を行う。S103では、異常監視部290は、整合性判定処理を行う。途絶判定処理および整合性判定処理は、処理順を入れ替えてもよいし、本処理とは別途に行われ、判定結果を取得するようにしてもよい。 In the first S101, the second control unit 236 receives a communication frame from the first control unit 136. In S102, the abnormality monitoring unit 290 performs a disruption determination process. In S103, the abnormality monitoring unit 290 performs consistency determination processing. The disruption determination process and the consistency determination process may be performed in a different order, or may be performed separately from the present process to acquire a determination result.
 途絶判定処理を説明するフローチャートを図25に示す。S121では、異常監視部290は、取得した通信フレーム中のランカウンタ信号から、カウント値RCを取得する。カウント値RCの今回値をRC(n)とする。 FIG. 25 shows a flowchart for explaining the interruption determination process. In S121, the abnormality monitoring unit 290 acquires the count value RC from the run counter signal in the acquired communication frame. Let RC (n) be the current value of the count value RC.
 S122では、異常監視部290は、今回カウント値RC(n)と、前回のカウント値RCである前回カウント値RC(n-1)に1を加算した値とが一致するか否かを判断する。すなわち、式(ii)が成立するか否かを判断する。式(ii)が成立しないと判断された場合(S122:NO)、S123へ移行する。式(ii)が成立すると判断された場合(S122:YES)、S124へ移行する。 In S122, the abnormality monitoring unit 290 determines whether or not the current count value RC (n) matches the value obtained by adding 1 to the previous count value RC (n−1), which is the previous count value RC. . That is, it is determined whether or not the formula (ii) is established. When it is determined that the formula (ii) is not established (S122: NO), the process proceeds to S123. When it is determined that the formula (ii) is established (S122: YES), the process proceeds to S124.
  RC(n)=RC(n-1)+1  ・・・(ii) RC (n) = RC (n-1) +1 (ii)
 S123では、異常監視部290は、通信途絶が生じていると判定し、通信途絶フラグをセットする。図中、各フラグがセットされている状態を「1」、セットされていない状態を「0」とする。 In S123, the abnormality monitoring unit 290 determines that communication interruption has occurred, and sets a communication interruption flag. In the figure, a state where each flag is set is “1”, and a state where each flag is not set is “0”.
 S124では、異常監視部290は、通信途絶が生じていないと判定し、通信途絶フラグをリセットする。また、今回カウント値RC(n)を図示しないメモリ等に記憶しておく。記憶された今回のカウント値は、次回の演算にて前回値として用いられる。ここでは、少なくとも最新のカウント値RCが保持されていればよい。 In S124, the abnormality monitoring unit 290 determines that no communication interruption has occurred, and resets the communication interruption flag. Further, the current count value RC (n) is stored in a memory or the like (not shown). The stored current count value is used as the previous value in the next calculation. Here, at least the latest count value RC only needs to be held.
 整合性判定処理を説明するフローチャートを図26に示す。S131では、異常監視部290は、通信フレームから、CRC信号に基づく値を取得する。ここで取得されたCRC値は、他系統である第1制御部136でCRC演算された値であり、以下、他系統CRC値とする。 FIG. 26 shows a flowchart for explaining consistency determination processing. In S131, the abnormality monitoring unit 290 acquires a value based on the CRC signal from the communication frame. The CRC value acquired here is a value obtained by CRC calculation by the first control unit 136 which is another system, and is hereinafter referred to as another system CRC value.
 S132では、異常監視部290は、通信フレームに基づき、誤り検出演算であるCRC演算によりCRC値を演算する。ここで演算される値は、第2制御部236にて内部的に演算された値であり、以下、自系統CRC値とする。 In S132, the abnormality monitoring unit 290 calculates a CRC value by a CRC calculation that is an error detection calculation based on the communication frame. The value calculated here is a value calculated internally by the second control unit 236, and is hereinafter referred to as the own system CRC value.
 S133では、異常監視部290は、自系統CRC値と他系統CRC値とが一致するか否かを判断する。自系統CRC値と他系統CRC値とが一致しないと判断された場合(S133:NO)、S134へ移行する。自系統CRC値と他系統CRC値とが一致すると判断された場合(S133:YES)、S135へ移行する。 In S133, the abnormality monitoring unit 290 determines whether or not the own system CRC value matches the other system CRC value. When it is determined that the own system CRC value and the other system CRC value do not match (S133: NO), the process proceeds to S134. When it is determined that the own system CRC value matches the other system CRC value (S133: YES), the process proceeds to S135.
 S134では、異常監視部290は、ビット化け等の通信整合性異常が生じていると判定し、通信整合性異常フラグをセットする。S135では、異常監視部290は、ビット化け等の通信整合性異常が生じていないと判定し、通信整合性異常フラグをリセットする。 In S134, the abnormality monitoring unit 290 determines that a communication consistency abnormality such as garbled bits has occurred, and sets a communication consistency abnormality flag. In S135, the abnormality monitoring unit 290 determines that no communication integrity abnormality such as bit corruption has occurred, and resets the communication consistency abnormality flag.
 図24に戻り、途絶判定処理および整合性判定処理に続いて移行するS104では、異常監視部290は、通信途絶フラグまたは通信整合性異常フラグがセットされているか否かを判断する。通信途絶フラグおよび通信整合性異常フラグがセットされていないと判断された場合(S104:NO)、S109へ移行する。通信途絶フラグまたは通信整合性異常フラグがセットされていると判断された場合(S104:YES)、S105へ移行する。 Referring back to FIG. 24, in S104, which is shifted to the interruption determination process and the consistency determination process, the abnormality monitoring unit 290 determines whether the communication interruption flag or the communication consistency abnormality flag is set. When it is determined that the communication interruption flag and the communication consistency abnormality flag are not set (S104: NO), the process proceeds to S109. When it is determined that the communication interruption flag or the communication consistency abnormality flag is set (S104: YES), the process proceeds to S105.
 S105では、異常監視部290は、通信異常検出フラグをセットする。S106では、異常監視部290は、異常検出カウンタおよび計時カウンタをインクリメントする。異常検出カウンタは、異常検出回数をカウントするためのカウンタであり、計時カウンタは、異常が検出されてからの時間を計時するためのカウンタである。 In S105, the abnormality monitoring unit 290 sets a communication abnormality detection flag. In S106, the abnormality monitoring unit 290 increments the abnormality detection counter and the time counter. The abnormality detection counter is a counter for counting the number of times of abnormality detection, and the time counter is a counter for measuring the time after the abnormality is detected.
 S107では、異常監視部290は、異常検出カウンタのカウント値が確定判定閾値THfより大きいか否かを判断する。異常確定カウンタのカウント値が確定判定閾値THf以下であると判断された場合(S107:NO)、S113へ移行する。異常確定カウンタのカウント値が確定判定閾値THfより大きいと判断された場合(S107:YES)、S108へ移行する。 In S107, the abnormality monitoring unit 290 determines whether or not the count value of the abnormality detection counter is larger than the determination determination threshold value THf. When it is determined that the count value of the abnormality determination counter is equal to or smaller than the determination determination threshold THf (S107: NO), the process proceeds to S113. When it is determined that the count value of the abnormality determination counter is larger than the determination determination threshold THf (S107: YES), the process proceeds to S108.
 S108では、異常監視部290は、通信異常確定フラグをセットする。また、第2制御部236では、異常確定時処置に移行する。本実施形態の異常確定時処置は、他系統である第1系統L1から取得された値を使わない独立駆動制御である。 In S108, the abnormality monitoring unit 290 sets a communication abnormality confirmation flag. Further, the second control unit 236 shifts to an abnormality determination procedure. The abnormality determination procedure of this embodiment is independent drive control that does not use a value acquired from the first system L1 which is another system.
 独立駆動制御を図27に基づいて説明する。ここでは、系統L1、L2はそれぞれ正常であって、マイコン間通信が異常であるものとする。また、マイコン間通信が正常である場合の制御は、図10にて説明した通りである。図27では、処理を停止する制御器156、256等のブロックを破線で記載した。 Independent drive control will be described with reference to FIG. Here, it is assumed that the systems L1 and L2 are normal and the communication between microcomputers is abnormal. The control when the communication between microcomputers is normal is as described with reference to FIG. In FIG. 27, blocks such as the controllers 156 and 256 that stop processing are indicated by broken lines.
 マイコン間通信の異常が確定された場合、第1制御部136は、第2制御部236から取得される値を用いずに電流フィードバック制御を行う。詳細には、第2系統L2に係る電流検出値Id2、Iq2を0にするとともに、差のPI演算を停止する。 When the abnormality of communication between microcomputers is confirmed, the first control unit 136 performs current feedback control without using the value acquired from the second control unit 236. Specifically, the current detection values Id2 and Iq2 related to the second system L2 are set to 0, and the PI calculation of the difference is stopped.
 第2制御部236は、第1制御部136から取得される値を用いずに電流フィードバック制御を行う。第2制御部236は、正常時、第1制御部136から取得されたdq軸電流指令値Id*、Iq*を用いて電流制御を行っている。一方、マイコン間通信の異常が確定された場合、第2制御部236は、第1制御部136から取得されるdq軸電流指令値Id*、Iq*に替えて、第2制御部236内部のdq軸電流指令演算部242、243にて演算されたdq軸電流指令値Id2*、Iq2*を用いて電流フィードバック演算を行う。また、第1系統L1に係る電流検出値Id1、Iq1を0にするとともに、差のPI演算を停止する。 The second control unit 236 performs current feedback control without using the value acquired from the first control unit 136. The second control unit 236 performs current control using the dq-axis current command values Id * and Iq * acquired from the first control unit 136 at the normal time. On the other hand, when an abnormality in communication between microcomputers is confirmed, the second control unit 236 replaces the dq axis current command values Id * and Iq * acquired from the first control unit 136 with each other in the second control unit 236. Current feedback calculation is performed using the dq-axis current command values Id2 * and Iq2 * calculated by the dq-axis current command calculation units 242 and 243. Further, the current detection values Id1 and Iq1 relating to the first system L1 are set to 0, and the PI calculation of the difference is stopped.
 図24に戻り、通信途絶フラグおよび通信整合性異常フラグがセットされていないと判断された場合(S104:NO)に移行するS109では、異常監視部290は、通信異常検出フラグがセットされているか否かを判断する。通信異常検出フラグがセットされていないと判断された場合(S109:NO)、S110へ移行する。通信異常検出フラグがセットされていると判断された場合(S109:YES)、S111へ移行する。 Returning to FIG. 24, when it is determined that the communication interruption flag and the communication consistency abnormality flag are not set (S104: NO), the abnormality monitoring unit 290 determines whether the communication abnormality detection flag is set. Judge whether or not. When it is determined that the communication abnormality detection flag is not set (S109: NO), the process proceeds to S110. When it is determined that the communication abnormality detection flag is set (S109: YES), the process proceeds to S111.
 S110では、第2制御部236は、マイコン間通信により取得された値を用いた通常制御を継続する。また、今回の通信にて取得された各値をホールド値として、図示しない記憶部等に保持しておく。ここでは、少なくとも最新の値が保持されていればよい。第2制御部236では、dq軸電流指令値Id*、Iq*およびdq軸電流検出値Id1、Iq1を保持する。 In S110, the 2nd control part 236 continues normal control using the value acquired by communication between microcomputers. Also, each value acquired in the current communication is held as a hold value in a storage unit (not shown) or the like. Here, it is sufficient that at least the latest value is held. The second control unit 236 holds the dq axis current command values Id * and Iq * and the dq axis current detection values Id1 and Iq1.
 S111では、異常監視部290は、計時カウンタをインクリメントする。S112では、異常監視部290は、計時カウンタのカウント値が経過判定閾値THtより大きいか否かを判断する。計時カウンタのカウント値が経過判定閾値THt以下であると判断された場合(S112:NO)、S113へ移行する。計時カウンタのカウント値が経過判定閾値THtより大きいと判断された場合(S112:YES)、S114へ移行する。 In S111, the abnormality monitoring unit 290 increments the time counter. In S112, the abnormality monitoring unit 290 determines whether or not the count value of the time counter is larger than the elapsed determination threshold value THt. When it is determined that the count value of the time counter is equal to or less than the elapsed determination threshold value THt (S112: NO), the process proceeds to S113. When it is determined that the count value of the time counter is larger than the elapsed determination threshold value THt (S112: YES), the process proceeds to S114.
 異常検出カウンタのカウント値が確定判定閾値THf以下(S107:NO)、または、計時カウンタのカウント値が経過判定閾値THt以下(S112:NO)に移行するS113では、異常監視部290は、マイコン間通信異常を未確定とし、異常検出時処置を行う。異常検出時処置では、マイコン間通信の異常が検出されていないときに第1制御部136から取得され、内部的にホールドされているホールド値を用いて電流フィードバック制御を行う。また、異常検出時処置は、異常確定時処置と同様、他系統から取得した値を用いない独立駆動制御であってもよい。 In S113 in which the count value of the abnormality detection counter is equal to or less than the fixed determination threshold value THf (S107: NO) or the count value of the time counter is shifted to be equal to or less than the elapsed determination threshold value THt (S112: NO) A communication error is unconfirmed, and an error is detected. In the abnormality detection process, current feedback control is performed using a hold value acquired from the first control unit 136 and held internally when no abnormality in communication between microcomputers is detected. Further, the abnormality detection process may be independent drive control that does not use a value acquired from another system, similar to the abnormality determination process.
 計時カウンタのカウント値が経過判定閾値THtより大きいと判断された場合(S112:YES)に移行するS114では、異常監視部290は、通信異常検出フラグをリセットする。また、検出されたマイコン間通信異常は、一時的なものであったとみなし、第1制御部136からマイコン間通信にて取得される値を用いた通常制御に復帰する。 In S114, when the count value of the time counter is determined to be greater than the elapsed determination threshold THt (S112: YES), the abnormality monitoring unit 290 resets the communication abnormality detection flag. Further, the detected communication error between the microcomputers is considered to be temporary, and the normal control using the value acquired from the first control unit 136 through the communication between microcomputers is restored.
 第1制御部136における異常監視処理では、S110にて、ホールドされる値が異なる。すなわち、第1制御部136では、第2制御部236からdq軸電流指令値Id2*、Iq2*を取得していないので、dq軸電流検出値Id1、Id2をホールド値として保持する。その他の点については、第2制御部236での異常監視処理と略同様である。 In the abnormality monitoring process in the first control unit 136, the value held in S110 is different. That is, since the first control unit 136 has not acquired the dq-axis current command values Id2 * and Iq2 * from the second control unit 236, the first control unit 136 holds the dq-axis current detection values Id1 and Id2 as hold values. The other points are substantially the same as the abnormality monitoring process in the second control unit 236.
 本実施形態では、第1制御部136は、自系統の異常および通信異常を監視する異常監視部190を有する。また、第2制御部236は、自系統の異常および通信異常を監視する異常監視部290を有する。これにより、EUU10の異常を適切に検出することができる。 In the present embodiment, the first control unit 136 includes an abnormality monitoring unit 190 that monitors the abnormality of the own system and the communication abnormality. Further, the second control unit 236 includes an abnormality monitoring unit 290 that monitors an abnormality of the own system and a communication abnormality. Thereby, abnormality of EUU10 can be detected appropriately.
 制御部136、236の一方から他方に送信される出力信号には、ランカウンタ信号が含まれる。異常監視部190、290は、ランカウンタ信号が更新されていない場合、制御部間通信異常として通信途絶が生じていると判定する。これにより、通信途絶を適切に検出することができる。 The output signal transmitted from one of the control units 136 and 236 to the other includes a run counter signal. When the run counter signal is not updated, the abnormality monitoring units 190 and 290 determine that communication interruption has occurred as a communication abnormality between the control units. Thereby, communication interruption can be detected appropriately.
 制御部136、236の一方から他方に送信される出力信号には、誤り検出信号であるCRC信号が含まれる。異常監視部190、290は、出力信号に含まれるCRC信号に基づく値である他系統CRC値と、出力信号に基づく誤り検出演算にて自身で演算した値である自系統CRC値とに基づき、制御部間通信異常である通信整合性異常を監視する。これにより、ビット化け等の通信整合性異常を適切に検出することができる。 The output signal transmitted from one of the control units 136 and 236 to the other includes a CRC signal that is an error detection signal. The abnormality monitoring units 190 and 290 are based on the other system CRC value which is a value based on the CRC signal included in the output signal and the own system CRC value which is a value calculated by the error detection calculation based on the output signal, Monitors communication consistency errors, which are communication errors between control units. Thereby, it is possible to appropriately detect a communication integrity abnormality such as bit corruption.
 異常監視部190、290は、異常が検出されてから所定の異常継続条件を満たした場合、異常を確定する。本実施形態では、異常が検出されてから所定期間内に異常カウンタのカウント値が確定判定閾値THfより大きくなった場合、所定の異常継続条件を満たしたとみなし、異常を確定させる。これにより、例えばノイズ等による一時的な異常による異常の誤確定を防ぐことができる。 The abnormality monitoring units 190 and 290 determine the abnormality when a predetermined abnormality continuation condition is satisfied after the abnormality is detected. In this embodiment, when the count value of the abnormality counter becomes larger than the determination determination threshold value THf within a predetermined period after the abnormality is detected, it is considered that the predetermined abnormality continuation condition is satisfied, and the abnormality is confirmed. Thereby, for example, it is possible to prevent erroneous determination of abnormality due to temporary abnormality due to noise or the like.
 制御部136、236は、異常が検出されていないときに、他の制御部から通信にて取得される値をホールド値として保持しておく。また、異常が検出されてから確定されるまでの間、ホールド値を用いて制御する。これにより、誤った情報を用いた制御が行われるのを防ぐことができる。 The control units 136 and 236 hold values acquired by communication from other control units as hold values when no abnormality is detected. Further, the control is performed using the hold value from when the abnormality is detected until it is determined. Thereby, it is possible to prevent control using incorrect information.
 第2制御部236は、自系統に係る制御信号の生成に用いられる電流指令値Id2*、Iq2*を演算可能である。本実施形態では、電流指令値Id2*、Iq2*が「スレーブ指令値」に対応する。制御部136、236は、異常が検出されてから確定されるまでの間、他の制御部から取得される値を用いず、自身にて演算された指令および自系統の検出値を用いて制御信号を生成する独立駆動制御モードを行うようにしてもよい。また、制御部136、236は、異常が確定された場合、独立駆動制御モードを行う。これにより、誤った情報を用いた制御が行われるのを防ぐことができる。 The second control unit 236 can calculate current command values Id2 * and Iq2 * that are used to generate a control signal related to the own system. In the present embodiment, the current command values Id2 * and Iq2 * correspond to “slave command values”. The control units 136 and 236 do not use the values acquired from other control units until the determination is made after the abnormality is detected, but the control units 136 and 236 are controlled using the command calculated by itself and the detection value of the own system. You may make it perform the independent drive control mode which produces | generates a signal. In addition, the control units 136 and 236 perform the independent drive control mode when the abnormality is determined. Thereby, it is possible to prevent control using incorrect information.
 制御部136、236を協調させて駆動する通常制御モードにおいて、複数系統(本実施形態では2系統)の電流和および電流差を制御している場合制御部136、236は、独立駆動制御モードにおいて、他の制御部から取得される電流検出値を0に設定するとともに、電流差の制御を停止する。後述の片系統駆動モードのときも同様である。これにより、正常時に和と差の制御を行っている場合であっても、通信異常時に適切に独立駆動制御モードに移行することができる。なお、「異常時」とは、異常が検出されてから確定されるまでの間、および、異常が確定されたときのいずれもを含む概念とする。 In the normal control mode in which the control units 136 and 236 are driven in cooperation, when the current sum and current difference of a plurality of systems (two systems in the present embodiment) are controlled, the control units 136 and 236 are in the independent drive control mode. The current detection value acquired from the other control unit is set to 0, and the current difference control is stopped. The same applies to the single system drive mode described later. As a result, even when the sum and difference are controlled during normal operation, it is possible to appropriately shift to the independent drive control mode when communication is abnormal. Note that “at the time of abnormality” is a concept including both the time from when an abnormality is detected until it is determined, and the time when the abnormality is determined.
 制御部136、236は、異常が検出されてから所定期間内に異常が確定されなかった場合、通常制御モードに復帰する。これにより、異常が確定されなかった場合、異常時制御モードから通常制御モードに適切に復帰させることができる。 The control units 136 and 236 return to the normal control mode when the abnormality is not confirmed within a predetermined period after the abnormality is detected. Thereby, when abnormality is not decided, it can return from normal time control mode to normal control mode appropriately.
 本実施形態では、ECU10は、電動パワーステアリング装置8に適用される。本実施形態では、マイコン間通信の異常が検出された場合、異常確定前に異常検出時処置に移行しており、異常が確定された場合、独立駆動制御モードに移行している。これにより、マイコン間通信に異常検出された場合であっても、適切な処置が行われるので、車両としての安全性を確保可能である。 In the present embodiment, the ECU 10 is applied to the electric power steering device 8. In this embodiment, when an abnormality in communication between microcomputers is detected, the process shifts to an abnormality detection procedure before the abnormality is confirmed, and when an abnormality is confirmed, the process shifts to the independent drive control mode. Thereby, even if an abnormality is detected in the communication between microcomputers, an appropriate measure is taken, so that safety as a vehicle can be ensured.
   (第8実施形態)
 第8実施形態を図28~図37に示す。第7実施形態では、マイコン間通信異常が生じた際の処理について説明した。本実施形態では、制御部136、236の電流FB演算部150、250は、発生した異常の種類に応じて制御モードを切り替える。ここで、異常の種類を、(1)マイコン間通信異常、(2)モータ制御ができない状態となる異常、(3)間接的にモータ制御に影響する異常、(4)系統間の指令値乖離に分類する。以下適宜、(1)~(4)の異常を、「異常(1)~(4)」とする。
(Eighth embodiment)
An eighth embodiment is shown in FIGS. In the seventh embodiment, processing when a communication abnormality between microcomputers has occurred has been described. In the present embodiment, the current FB calculation units 150 and 250 of the control units 136 and 236 switch the control mode according to the type of abnormality that has occurred. Here, the types of abnormality are (1) communication error between microcomputers, (2) abnormality that makes motor control impossible, (3) abnormality that indirectly affects motor control, (4) command value divergence between systems Classify into: Hereinafter, the abnormalities (1) to (4) are appropriately referred to as “abnormal (1) to (4)”.
 (1)マイコン間通信異常が生じた場合、および、(4)系統間の指令値が乖離した場合、独立駆動制御に移行する。マイコン間通信異常の詳細は、第7実施形態にて説明した通りである。 (1) When communication error between microcomputers occurs, and (4) When the command value between systems is deviated, shift to independent drive control. Details of the communication abnormality between the microcomputers are as described in the seventh embodiment.
 (2)一方の系統にてモータ80の駆動を制御できない状態となる制御不能異常が生じた場合、他方の系統を用いてモータ80を駆動する片系統駆動制御に移行する。制御不能異常とは、バッテリ191、291からインバータ回路120、220を経由してモータ巻線180、280に至る駆動系の異常、モータ制御に必要な指令値の生成に用いられるセンサ異常、制御部131、231の異常等である。本実施形態では、モータ制御に必要な指令値の生成に用いられるセンサには、トルクセンサ94、電流センサ125、225、および、回転角センサ126、226が含まれる。片系統駆動制御では、正常系統では、独立駆動制御(図27参照)と同様、他の制御部から取得される電流検出値を0に設定するとともに、電流差の制御を停止する。異常系統では、電流FB制御および制御信号の出力を停止する。片系統駆動制御において、正常系統からの出力トルクは、2系統駆動時と同等であってもよい。また、片系統駆動制御において、トルク不足を補うべく、2系統駆動時よりも、出力トルクを高めるようにしてもよい。 (2) If an uncontrollable abnormality occurs in which the drive of the motor 80 cannot be controlled in one system, the system shifts to single-system drive control in which the motor 80 is driven using the other system. Uncontrollable abnormalities include abnormalities in the drive system from the batteries 191 and 291 via the inverter circuits 120 and 220 to the motor windings 180 and 280, abnormalities in the sensor used to generate command values necessary for motor control, and the control unit 131 and 231 abnormalities. In the present embodiment, sensors used for generating command values necessary for motor control include a torque sensor 94, current sensors 125 and 225, and rotation angle sensors 126 and 226. In the single system drive control, in the normal system, as in the independent drive control (see FIG. 27), the current detection value acquired from the other control unit is set to 0 and the current difference control is stopped. In the abnormal system, the output of the current FB control and the control signal is stopped. In the single system drive control, the output torque from the normal system may be equivalent to that in the two-system drive. Further, in the single-system drive control, the output torque may be increased as compared with the two-system drive in order to compensate for the torque shortage.
 (3)間接的にモータ制御に影響する異常が生じた場合、代替制御を行う。間接的にモータ制御に影響する異常とは、モータ制御は可能であるが、ユーザの意図通り、もしくは、予め設定された条件によるモータ制御ができない状態とする。間接的にモータ制御に影響する異常には、車両通信網195、295との通信異常、および、温度センサ127、227の異常等が含まれる。代替制御とは、異常である信号を用いず、代わりとなる代替情報を用いた制御である。例えば、車両通信異常が生じ、車速に係る情報を取得できない場合、車速に係る代替情報として、所定時速(例えば100km/h)の固定値を用いる。また例えば、温度センサ127、227に異常が生じた場合、温度に係る代替情報として、所定温度の固定値を用いる。所定温度は、過熱保護を要する温度に応じて設定される。 (3) If an abnormality that indirectly affects motor control occurs, substitute control is performed. An abnormality that indirectly affects motor control refers to a state in which motor control is possible but motor control cannot be performed as intended by the user or under preset conditions. Abnormalities that indirectly affect motor control include abnormalities in communication with the vehicle communication networks 195 and 295, abnormalities in the temperature sensors 127 and 227, and the like. The substitute control is a control that uses substitute information instead of an abnormal signal. For example, when vehicle communication abnormality occurs and information related to the vehicle speed cannot be acquired, a fixed value of a predetermined hourly speed (for example, 100 km / h) is used as alternative information related to the vehicle speed. Further, for example, when an abnormality occurs in the temperature sensors 127 and 227, a fixed value of a predetermined temperature is used as alternative information relating to the temperature. The predetermined temperature is set according to the temperature that requires overheat protection.
 ここで、マイコン間通信の通信フレーム詳細を図28に示す。図28A、図28B、図28C、図28D、図28Eおよび図28Fは、図23A、図23B、図23C、図23D、図23Eおよび図23Fに対応しており、それぞれ、ランカウンタ信号の前に、自系統に係るステータス信号が追加されている。マスター側ステータス信号は、異常監視部190における第1系統L1の異常監視結果に応じた信号である。スレーブ側ステータス信号は、異常監視部290における第2系統L2の異常監視結果に応じた信号である。マスター側ステータス信号およびスレーブ側ステータス信号のビット数は、いくつであってもよく、他の系統に通知する異常項目に応じ、各異常項目の状態を表現可能なビット数とすることが望ましい。本実施形態では、ステータス信号を用いて制御部136、236にて異常状態を共有しているが、ステータス信号に替えて、異常である信号そのものや、状態遷移コード等、どのような情報により異常状態を共有してもよい。 Here, FIG. 28 shows details of a communication frame for communication between microcomputers. 28A, 28B, 28C, 28D, 28E, and 28F correspond to FIGS. 23A, 23B, 23C, 23D, 23E, and 23F, respectively, before the run counter signal. A status signal related to the own system has been added. The master-side status signal is a signal corresponding to the abnormality monitoring result of the first system L1 in the abnormality monitoring unit 190. The slave-side status signal is a signal according to the abnormality monitoring result of the second system L2 in the abnormality monitoring unit 290. The number of bits of the master-side status signal and the slave-side status signal may be any number, and it is desirable to set the number of bits that can represent the state of each abnormal item according to the abnormal item notified to other systems. In this embodiment, the control units 136 and 236 share the abnormal state using the status signal. However, instead of the status signal, the abnormal state is caused by any information such as the abnormal signal itself or the state transition code. You may share state.
 制御モード切替処理を図29および図30のフローチャートに基づいて説明する。図29の処理は、マスター側である第1制御部136にて、所定の周期でされる。図29および図30中では説明を省略しているが、上記実施形態と同様、異常が検出されると、異常カウンタがインクリメントされ、カウンタ値が確定判定閾値THfより大きくなった場合に異常確定される。確定判定閾値THfは、異常の種類ごとに異なっていてもよい。異常検出から異常確定までの間は、上記実施形態と同様、内部的にホールドされているホールド値を用いた制御を行うものとする。 Control mode switching processing will be described based on the flowcharts of FIGS. The processing in FIG. 29 is performed at a predetermined cycle by the first control unit 136 on the master side. Although the description is omitted in FIGS. 29 and 30, as in the above embodiment, when an abnormality is detected, the abnormality counter is incremented, and the abnormality is confirmed when the counter value becomes larger than the decision determination threshold value THf. The The determination threshold value THf may be different for each type of abnormality. In the period from abnormality detection to abnormality confirmation, control using a hold value internally held is performed as in the above embodiment.
 S201では、異常監視部190は、マイコン間通信異常である異常(1)が生じているか否かを判断する。本実施形態では、第7実施形態と同様に通信異常判定を行うが、異常判定方法は異なっていてもよい。異常(1)が生じていると判断された場合(S201:YES)、S202へ移行し、制御モードを独立駆動制御とする。異常(1)が生じていないと判断された場合(S201:NO)、S203へ移行する。 In S201, the abnormality monitoring unit 190 determines whether an abnormality (1) that is a communication abnormality between microcomputers has occurred. In the present embodiment, communication abnormality determination is performed as in the seventh embodiment, but the abnormality determination method may be different. When it is determined that an abnormality (1) has occurred (S201: YES), the process proceeds to S202, and the control mode is set to independent drive control. When it is determined that the abnormality (1) has not occurred (S201: NO), the process proceeds to S203.
 S203では、異常監視部190は、自系統にてモータ80を制御できない異常である異常(2)が生じているか否かを判断する。異常(2)が生じていないと判断された場合(S203:NO)、S206へ移行する。異常(2)が生じていると判断された場合(S203:YES)、S204へ移行する。 In S203, the abnormality monitoring unit 190 determines whether or not an abnormality (2) that is an abnormality that cannot control the motor 80 in its own system has occurred. When it is determined that the abnormality (2) has not occurred (S203: NO), the process proceeds to S206. When it is determined that the abnormality (2) has occurred (S203: YES), the process proceeds to S204.
 S204では、第1制御部136は、異常(2)が生じている旨の情報を自系統のステータス信号に含め、第2制御部236へ送信する。なお、説明の都合上、当該ステップにて信号を送信するものとするが、所定の通信タイミングにて送信部171から信号送信を行ってもよい。他の信号送受信に係るステップについても同様である。 In S204, the first control unit 136 includes information indicating that the abnormality (2) has occurred in the status signal of the own system, and transmits the information to the second control unit 236. For convenience of explanation, a signal is transmitted at this step, but the signal may be transmitted from the transmission unit 171 at a predetermined communication timing. The same applies to the steps related to other signal transmission / reception.
 S205では、第1制御部136は、自系統の制御モードを駆動停止とする。この場合、他系統が正常であれば、他系統側での片系統駆動にてモータ80が駆動される。 In S205, the first control unit 136 sets the control mode of the own system to drive stop. In this case, if the other system is normal, the motor 80 is driven by one-system drive on the other system side.
 S206では、異常監視部190は、間接的にモータ制御に影響する異常である異常(3)が生じているか否かを判断する。異常(3)が生じていないと判断された場合(S206:NO)、S209へ移行する。異常(3)が生じていると判断された場合(S206:YES)、S207へ移行する。 In S206, the abnormality monitoring unit 190 determines whether or not an abnormality (3) that is an abnormality that indirectly affects motor control has occurred. When it is determined that the abnormality (3) has not occurred (S206: NO), the process proceeds to S209. When it is determined that the abnormality (3) has occurred (S206: YES), the process proceeds to S207.
 S207では、異常(3)が生じている旨の情報を自系統のステータス信号に含め、第2制御部236へ送信する。S208では、制御部136は、制御モードを代替制御とする。 In S207, information indicating that abnormality (3) has occurred is included in the status signal of the own system, and is transmitted to the second control unit 236. In S208, the control unit 136 sets the control mode to alternative control.
 S209では、異常監視部190は、他系統のステータス情報を取得する。S210では、異常監視部190は、他系統のステータス情報に基づき、他系統に異常(2)が生じているか否かを判断する。他系統に異常(2)が生じていないと判断された場合(S210:NO)、S212へ移行する。他系統に異常(2)が生じていると判断された場合(S210:YES)、S211へ移行し、制御モードを片系統駆動制御とする。 In S209, the abnormality monitoring unit 190 acquires status information of another system. In S210, the abnormality monitoring unit 190 determines whether an abnormality (2) has occurred in the other system based on the status information of the other system. When it is determined that no abnormality (2) has occurred in the other system (S210: NO), the process proceeds to S212. If it is determined that an abnormality (2) has occurred in the other system (S210: YES), the process proceeds to S211 and the control mode is set to one-system drive control.
 S212では、異常監視部190は、系統間の指令乖離である異常(4)が生じているか否かを判断する。本実施形態では、異常(4)はスレーブ側にて判定し、マスター側である異常監視部190では、スレーブ側である第2制御部236から取得されるステータス情報に基づいて判断する。異常(4)が生じていると判断された場合(S212:YES)、S213へ移行し、制御モードを独立駆動制御とする。異常(4)が生じていないと判断された場合(S212:NO)、すなわち、異常(1)~(4)がいずれも生じていない場合、S214へ移行し、制御モードを通常制御とする。本実施形態の通常制御は、マスター側の指令値を用いて、マスター系統およびスレーブ系統を制御する協調駆動制御である。協調駆動制御の詳細は、上記のいずれの実施形態のものであってもよい。 In S212, the abnormality monitoring unit 190 determines whether or not an abnormality (4) that is a command divergence between systems has occurred. In the present embodiment, the abnormality (4) is determined on the slave side, and the abnormality monitoring unit 190 on the master side determines based on the status information acquired from the second control unit 236 on the slave side. When it is determined that the abnormality (4) has occurred (S212: YES), the process proceeds to S213, and the control mode is set to independent drive control. If it is determined that the abnormality (4) has not occurred (S212: NO), that is, if none of the abnormalities (1) to (4) has occurred, the process proceeds to S214, and the control mode is set to normal control. The normal control of this embodiment is coordinated drive control that controls the master system and the slave system using the master-side command value. The details of the cooperative drive control may be those of any of the above embodiments.
 図30の処理は、スレーブ側である第2制御部236にて、所定の周期で実行される。S301~S310の処理は、S201~S210の処理と同様である。なお、図30の処理では、自系統が第2系統L2、他系統が第1系統L1であって、例えば異常監視部190を異常監視部290にする、といった具合に、対応する制御ブロックや値に適宜読み替えればよい。 30 is executed at a predetermined cycle by the second control unit 236 on the slave side. The processing of S301 to S310 is the same as the processing of S201 to S210. In the process of FIG. 30, the corresponding control block and value are set such that the own system is the second system L2, the other system is the first system L1, and the abnormality monitoring unit 190 is changed to the abnormality monitoring unit 290, for example. May be read as appropriate.
 S310にて否定判断された場合に移行するS312では、指令乖離判定処理を行う。指令乖離判定処理を図31に示す。S321では、異常監視部290は、マイコン間通信にて取得したマスター系統の指令値と、自系統にて演算した指令値との偏差である指令偏差を演算する。本実施形態では、第1系統の電流指令値I1*と第2系統の電流指令値I2*との偏差ΔIを演算する。電流指令値I1*、I2*は、dq軸電流に係る指令値、3相電流に係る指令値、または、3相電流に係る指令値の二乗和等、どのような値としてもよい。また、指令偏差は、電流指令値の偏差に限らず、トルク指令値や電圧指令値の偏差であってもよい。 In S312, which shifts when a negative determination is made in S310, a command deviation determination process is performed. The command deviation determination process is shown in FIG. In step S321, the abnormality monitoring unit 290 calculates a command deviation that is a deviation between the command value of the master system acquired by communication between microcomputers and the command value calculated by the own system. In the present embodiment, it calculates the difference ΔI between the current command value I2 * of the current command value I1 * and the second line of the first system. The current command values I1 * and I2 * may be any value such as a command value related to the dq-axis current, a command value related to the three-phase current, or a square sum of the command values related to the three-phase current. Further, the command deviation is not limited to the current command value deviation, and may be a torque command value or voltage command value deviation.
 S322では、異常監視部290は、指令偏差ΔIが指令偏差判定閾値THi1以上か否かを判断する。指令偏差判定閾値は、電流指令値I1*、I2*が一致しているとみなせる程度の値に設定される。指令偏差ΔI*が指令偏差判定閾値THi1より小さいと判断された場合(S322:NO)、指令乖離異常が生じていないと判定し、本ルーチンを終了し、図30中のS313へ移行する。指令偏差ΔI*が指令偏差判定閾値THi1以上であると判断された場合(S322:YES)、S323へ移行し、指令乖離カウンタをインクリメントする。 In S322, abnormality monitoring unit 290 determines whether or not command deviation ΔI is greater than or equal to command deviation determination threshold THi1. The command deviation determination threshold is set to such a value that the current command values I1 * and I2 * can be regarded as matching. If it is determined that the command deviation ΔI * is smaller than the command deviation determination threshold THi1 (S322: NO), it is determined that no command deviation abnormality has occurred, the present routine is terminated, and the routine proceeds to S313 in FIG. When it is determined that the command deviation ΔI * is greater than or equal to the command deviation determination threshold THi1 (S322: YES), the process proceeds to S323, and the command deviation counter is incremented.
 S324では、異常監視部290は、指令乖離カウンタのカウント値が乖離判定閾値THd以上か否かを判断する。指令乖離カウンタのカウント値が乖離判定閾値THdより小さいと判断された場合(S324:NO)、指令乖離異常を確定せず、本ルーチンを終了し、図30中のS313へ移行する。指令乖離カウンタのカウント値が乖離判定閾値THd以上であると判断された場合(S324:YES)、S325へ移行する。 In S324, the abnormality monitoring unit 290 determines whether or not the count value of the command divergence counter is greater than or equal to the divergence determination threshold value THd. When it is determined that the count value of the command divergence counter is smaller than the divergence determination threshold THd (S324: NO), the command divergence abnormality is not confirmed and this routine is terminated, and the process proceeds to S313 in FIG. When it is determined that the count value of the command deviation counter is equal to or greater than the deviation determination threshold THd (S324: YES), the process proceeds to S325.
 S325では、第2制御部236は、異常(4)が生じている旨の情報を自系統のステータス信号に含め、第1制御部136へ送信する。 In S325, the second control unit 236 includes information indicating that the abnormality (4) has occurred in the status signal of its own system and transmits the information to the first control unit 136.
 図30に戻り、S313では、第2制御部236は、異常(4)が生じているか否かを判断する。異常(4)が生じていると判断された場合(S313:YES)、S314へ移行し、制御モードを独立駆動制御とする。異常(4)が生じていないと判断された場合(S313:NO)、S315へ移行し、制御モードを通常制御とする。 Referring back to FIG. 30, in S313, the second control unit 236 determines whether or not an abnormality (4) has occurred. If it is determined that the abnormality (4) has occurred (S313: YES), the process proceeds to S314, and the control mode is set to independent drive control. When it is determined that the abnormality (4) has not occurred (S313: NO), the process proceeds to S315 and the control mode is set to normal control.
 図32は、制御モードが代替制御であるときの復帰処理を説明するフローチャートである。この処理は、制御部136、236にて、代替制御に移行した際に所定周期で実施される。代替制御からの復帰処理は、制御部136、236にて同様であるので、第1制御部136の処理を説明し、第2制御部236に係る説明を省略する。図33も同様である。 FIG. 32 is a flowchart for explaining return processing when the control mode is alternative control. This process is performed at a predetermined cycle when the control units 136 and 236 shift to alternative control. Since the return processing from the alternative control is the same in the control units 136 and 236, the processing of the first control unit 136 will be described, and the description related to the second control unit 236 will be omitted. The same applies to FIG.
 S401では、異常監視部190は、異常(3)が解消したか否かを判断する。異常(3)が解消していないと判断された場合(S401:NO)、S404へ移行し、代替制御を継続する。異常(3)が解消していると判断された場合(S401:YES)、S402へ移行する。 In S401, the abnormality monitoring unit 190 determines whether or not the abnormality (3) has been resolved. If it is determined that the abnormality (3) has not been resolved (S401: NO), the process proceeds to S404 and the alternative control is continued. When it is determined that the abnormality (3) has been resolved (S401: YES), the process proceeds to S402.
 S402では、異常監視部190は、復帰カウンタをインクリメントする。S403では、異常監視部190は、復帰カウンタのカウント値が復帰判定閾値THr以上か否かを判断する。復帰判定閾値THrは、他の異常からの復帰処理における値と同じであってもよいし、異なっていてもよい。復帰カウンタのカウント値が復帰判定閾値THrより小さいと判断された場合(S403:NO)、S404へ移行し、代替制御を継続する。復帰カウンタのカウント値が復帰判定閾値THr以上であると判断された場合(S403:YES)、S405へ移行する。 In S402, the abnormality monitoring unit 190 increments the return counter. In S403, the abnormality monitoring unit 190 determines whether or not the count value of the return counter is greater than or equal to the return determination threshold value THr. The return determination threshold THr may be the same as or different from the value in the return processing from another abnormality. When it is determined that the count value of the return counter is smaller than the return determination threshold value THr (S403: NO), the process proceeds to S404 and the alternative control is continued. When it is determined that the count value of the return counter is equal to or greater than the return determination threshold THr (S403: YES), the process proceeds to S405.
 S405では、第1制御部136は、異常(3)が正常である旨の情報を自系統のステータス信号に含め、第2制御部236へ送信する。S406では、異常監視部190は、他系統のステータス情報を取得する。 In S405, the first control unit 136 includes information indicating that the abnormality (3) is normal in the status signal of the own system and transmits the information to the second control unit 236. In S406, the abnormality monitoring unit 190 acquires status information of another system.
 S407では、異常監視部190は、自系統および他系統が正常か否かを判断する。自系統および他系統が正常であると判断された場合(S407:YES)、S408へ移行し、制御モードを通常制御とする。自系統または他系統が正常ではないと判断された場合(S407:NO)、S409へ移行し、異常状態に応じた制御モードに移行する。詳細には、図29および図30にて説明した制御モード切替処理により、制御モードを決定する。 In S407, the abnormality monitoring unit 190 determines whether or not the own system and the other system are normal. When it is determined that the own system and the other system are normal (S407: YES), the process proceeds to S408 and the control mode is set to normal control. When it is determined that the own system or another system is not normal (S407: NO), the process proceeds to S409, and the process proceeds to the control mode corresponding to the abnormal state. Specifically, the control mode is determined by the control mode switching process described with reference to FIGS.
 図33は、マイコン間通信異常により、制御モードが独立駆動制御であるときの復帰処理を説明するフローチャートである。この処理は、制御部136、236にて、通信異常により独立駆動制御に移行した際に所定周期で実施される。 FIG. 33 is a flowchart for explaining return processing when the control mode is independent drive control due to an abnormality in communication between microcomputers. This process is performed at a predetermined cycle when the control units 136 and 236 shift to independent drive control due to communication abnormality.
 S421では、異常監視部190は、異常(1)が解消したか否かを判断する。ここでは、CRC信号およびランカウンタが正常である場合、異常(1)が解消したと判定する。異常(1)が解消していないと判断された場合(S421:NO)、S424へ移行する。異常(1)が解消したと判断された場合(S421:YES)、S422へ移行する。 In S421, the abnormality monitoring unit 190 determines whether the abnormality (1) has been resolved. Here, when the CRC signal and the run counter are normal, it is determined that the abnormality (1) has been resolved. When it is determined that the abnormality (1) has not been resolved (S421: NO), the process proceeds to S424. When it is determined that the abnormality (1) has been resolved (S421: YES), the process proceeds to S422.
 S422、S423の処理は、図32中のS402、S403の処理と同様である。S423にて、復帰カウンタのカウント値が復帰判定閾値THrより小さいと判断された場合(S423:NO)、S424へ移行する。復帰カウンタのカウント値が復帰判定閾値THr以上であると判断された場合(S423:YES)、S426へ移行する。 The processes of S422 and S423 are the same as the processes of S402 and S403 in FIG. If it is determined in S423 that the count value of the return counter is smaller than the return determination threshold THr (S423: NO), the process proceeds to S424. When it is determined that the count value of the return counter is equal to or greater than the return determination threshold THr (S423: YES), the process proceeds to S426.
 S424では、異常監視部190は、マイコン間通信以外、自系統が正常か否かを判断する。本ステップでは、マイコン間通信以外について、自系統が正常であれば、自系統正常と判定する。後述のS465およびS525についても同様である。自系統が正常ではないと判断された場合(S424:NO)、S430へ移行する。自系統が正常であると判断された場合(S242:YES)、S425へ移行し、独立駆動制御を継続する。 In S424, the abnormality monitoring unit 190 determines whether or not the own system is normal other than communication between microcomputers. In this step, if the own system is normal except for communication between microcomputers, it is determined that the own system is normal. The same applies to S465 and S525 described later. When it is determined that the own system is not normal (S424: NO), the process proceeds to S430. When it is determined that the own system is normal (S242: YES), the process proceeds to S425 and the independent drive control is continued.
 S426では、第1制御部136は、自系統の異常情報に係るステータス情報を含む信号を、第2制御部236へ送信する。S427では、第1制御部136は、他系統のステータス情報を取得する。S428~S430の処理は、図32中のS407~S409の処理と同様である。 In S426, the first control unit 136 transmits a signal including status information related to the abnormality information of the own system to the second control unit 236. In S427, the first control unit 136 acquires status information of another system. The processing of S428 to S430 is the same as the processing of S407 to S409 in FIG.
 図34および図35は、指令値乖離異常時の復帰処理を説明するフローチャートである。図34はスレーブ側である第2制御部236の処理であり、図35はマスター側である第1制御部136の処理である。 FIG. 34 and FIG. 35 are flowcharts for explaining return processing when the command value deviation is abnormal. FIG. 34 shows processing of the second control unit 236 on the slave side, and FIG. 35 shows processing of the first control unit 136 on the master side.
 図34に示すように、S441では、異常監視部290は、マイコン間通信が正常か否かを判断する。マイコン間通信が正常ではないと判断された場合(S441:NO)、S446へ移行し、独立駆動制御を継続する。マイコン間通信が正常であると判断された場合(S441:YES)、S442へ移行し、指令偏差ΔI*を演算する。図31にて説明したように、指令偏差は電流偏差以外であってもよい。 As shown in FIG. 34, in S441, the abnormality monitoring unit 290 determines whether or not the communication between microcomputers is normal. When it is determined that the communication between the microcomputers is not normal (S441: NO), the process proceeds to S446 and the independent drive control is continued. When it is determined that the communication between the microcomputers is normal (S441: YES), the process proceeds to S442, and the command deviation ΔI * is calculated. As explained in FIG. 31, the command deviation may be other than the current deviation.
 S443では、異常監視部290は、指令偏差ΔI*が指令偏差判定閾値THi2以下か否かを判断する。指令偏差判定閾値THi2は、第1系統L1の電流指令値I1*、I2*が一致しているとみなせる程度の値に設定される。なお、ここで用いられる指令偏差判定閾値THi2は、S322にて用いられる指令偏差判定閾値THi1と同じ値であってもよいし、異なる値であってもよい。指令偏差ΔI*が指令偏差判定閾値THi2より大きいと判断された場合(S443:NO)、S446へ移行し、独立駆動制御を継続する。指令偏差ΔId*、ΔIq*が指令偏差判定閾値THi2以下であると判断された場合(S443:YES)、S444へ移行する。 In S443, the abnormality monitoring unit 290 determines whether or not the command deviation ΔI * is equal to or less than the command deviation determination threshold THi2. The command deviation determination threshold THi2 is set to a value that allows the current command values I1 * and I2 * of the first system L1 to be regarded as matching. Note that the command deviation determination threshold THi2 used here may be the same value as or different from the command deviation determination threshold THi1 used in S322. When it is determined that the command deviation ΔI * is larger than the command deviation determination threshold THi2 (S443: NO), the process proceeds to S446 and the independent drive control is continued. When it is determined that the command deviations ΔId * and ΔIq * are equal to or less than the command deviation determination threshold THi2 (S443: YES), the process proceeds to S444.
 S444、S445の処理は、図32中のS402、S403の処理と同様である。S445にて、復帰カウンタのカウント値が復帰判定閾値THrより小さいと判断された場合(S445:NO)、S446へ移行し、独立駆動制御を継続する。復帰カウンタのカウント値が復帰判定閾値THr以上であると判断された場合(S445:YES)、S447へ移行する。 The processing of S444 and S445 is the same as the processing of S402 and S403 in FIG. In S445, when it is determined that the count value of the return counter is smaller than the return determination threshold THr (S445: NO), the process proceeds to S446 and the independent drive control is continued. When it is determined that the count value of the return counter is equal to or greater than the return determination threshold THr (S445: YES), the process proceeds to S447.
 S447では、第2制御部236は、異常(4)が正常である旨の情報を自系統のステータス信号に含め、第1制御部136へ送信する。S448では、第2制御部236は、他系統のステータス情報を取得する。S449~S451の処理は、図32中のS407~S409の処理と同様である。 In S447, the second control unit 236 includes information indicating that the abnormality (4) is normal in the status signal of the own system, and transmits the information to the first control unit 136. In S448, the second control unit 236 acquires status information of another system. The processing of S449 to S451 is the same as the processing of S407 to S409 in FIG.
 図35に示すように、S461では、異常監視部190は、マイコン間通信が正常か否かを判断する。マイコン間通信が正常ではないと判断された場合(S461:NO)、S465へ移行する。マイコン間通信が正常であると判断された場合(S461:YES)、S462へ移行する。 As shown in FIG. 35, in S461, the abnormality monitoring unit 190 determines whether or not the communication between microcomputers is normal. If it is determined that the communication between the microcomputers is not normal (S461: NO), the process proceeds to S465. When it is determined that the communication between the microcomputers is normal (S461: YES), the process proceeds to S462.
 S462、S463の処理は、図33中のS426、S427の処理と同様である。S464では、異常監視部190は、スレーブ側から取得されるステータス情報に基づき、異常(4)が解消したか否かを判断する。異常(4)が解消したと判断された場合(S464:YES)、S467へ移行する。異常(4)が解消していないと判断された場合(S464:NO)、S465へ移行する。 The processing of S462 and S463 is the same as the processing of S426 and S427 in FIG. In S464, the abnormality monitoring unit 190 determines whether the abnormality (4) has been resolved based on the status information acquired from the slave side. When it is determined that the abnormality (4) has been resolved (S464: YES), the process proceeds to S467. When it is determined that the abnormality (4) has not been resolved (S464: NO), the process proceeds to S465.
 S465、S466の処理は、図33中のS424、S425と同様であり、S467~S469の処理は、S428~S430の処理と同様である。 The processing of S465 and S466 is the same as S424 and S425 in FIG. 33, and the processing of S467 to S469 is the same as the processing of S428 to S430.
 図36および図37は、片系統駆動からの復帰処理を説明するフローチャートである。図36は異常(2)により駆動を停止している異常系統の処理であり、図37は片系統駆動を継続している系統の処理である。ここでは、第1系統L1が異常系統であり、第2系統L2が片系統駆動を継続しているものとして説明する。 FIG. 36 and FIG. 37 are flowcharts for explaining return processing from single-system drive. FIG. 36 shows the processing of the abnormal system that has stopped driving due to the abnormality (2), and FIG. 37 shows the processing of the system that continues the one-system driving. Here, the description will be made assuming that the first system L1 is an abnormal system and the second system L2 continues the single system drive.
 図36に示すように、S501では、異常監視部190は、異常(2)が解消したか否かを判断する。異常(2)が解消していないと判断された場合(S501:YES)、S505へ移行し、駆動停止状態を継続する。異常(2)が解消したと判断された場合(S501:YES)、S502へ移行する。 As shown in FIG. 36, in S501, the abnormality monitoring unit 190 determines whether or not the abnormality (2) has been resolved. When it is determined that the abnormality (2) has not been resolved (S501: YES), the process proceeds to S505, and the drive stop state is continued. If it is determined that the abnormality (2) has been resolved (S501: YES), the process proceeds to S502.
 S502、S503の処理は、図32中のS402、S403の処理と同様である。S503にて、復帰カウンタのカウント値が復帰判定閾値THrより小さいと判断された場合(S503:NO)、S505へ移行し、駆動停止状態を継続する。復帰カウンタのカウント値が復帰判定閾値THr以上であると判断された場合(S503:YES)、S505へ移行する。 The processes of S502 and S503 are the same as the processes of S402 and S403 in FIG. If it is determined in S503 that the count value of the return counter is smaller than the return determination threshold THr (S503: NO), the process proceeds to S505, and the drive stop state is continued. If it is determined that the count value of the return counter is equal to or greater than the return determination threshold THr (S503: YES), the process proceeds to S505.
 S504では、異常監視部190は、マイコン間通信が正常か否かを判断する。マイコン間通信が正常ではないと判断された場合(S504:NO)、S505へ移行し、駆動停止状態を継続する。マイコン間通信が正常であると判断された場合(S504:YES)、S506へ移行する。S506~S510の処理は、図33中のS426~S430の処理と同様である。 In S504, the abnormality monitoring unit 190 determines whether or not communication between microcomputers is normal. If it is determined that the communication between the microcomputers is not normal (S504: NO), the process proceeds to S505, and the drive stop state is continued. When it is determined that the communication between the microcomputers is normal (S504: YES), the process proceeds to S506. The processing of S506 to S510 is the same as the processing of S426 to S430 in FIG.
 図37に示すように、S521では、異常監視部290は、マイコン間通信が正常か否かを判断する。マイコン間通信が正常ではないと判断された場合(S521:NO)、S525へ移行する。マイコン間通信が正常であると判断された場合(S521:YES)、S522へ移行する。S522、S523の処理は、S426、S427の処理と同様である。 As shown in FIG. 37, in S521, the abnormality monitoring unit 290 determines whether or not the communication between microcomputers is normal. If it is determined that the communication between the microcomputers is not normal (S521: NO), the process proceeds to S525. If it is determined that the communication between the microcomputers is normal (S521: YES), the process proceeds to S522. The processing of S522 and S523 is the same as the processing of S426 and S427.
 S524では、異常監視部290は、駆動を停止していた第1系統L1における異常(2)が解消したか否かを取得したステータス信号に基づいて判断する。異常(2)が解消したと判断された場合(S524:YES)、S527へ移行する。異常(2)が解消していないと判断された場合(S524:NO)、S525へ移行する。 In S524, the abnormality monitoring unit 290 determines whether or not the abnormality (2) in the first system L1 that has stopped driving has been resolved based on the acquired status signal. When it is determined that the abnormality (2) has been resolved (S524: YES), the process proceeds to S527. When it is determined that the abnormality (2) has not been resolved (S524: NO), the process proceeds to S525.
 S525では、異常監視部290は、マイコン間通信以外、自系統が正常か否かを判断する。自系統が正常ではないと判断された場合(S525:NO)、S529へ移行する。自系統が正常であると判断された場合(S525:YES)、S526へ移行し、片系統駆動を継続する。S527~S529の処理は、図32中のS407~S409の処理と同様である。 In S525, the abnormality monitoring unit 290 determines whether or not the own system is normal other than communication between microcomputers. When it is determined that the own system is not normal (S525: NO), the process proceeds to S529. When it is determined that the own system is normal (S525: YES), the process proceeds to S526 and the one-system drive is continued. The processing of S527 to S529 is the same as the processing of S407 to S409 in FIG.
 本実施形態では、制御部136、236は、自系統の異常に係る自系統異常情報、および、他系統の異常に係る他系統異常情報を共有する。詳細には、制御部136、236は、自系統の異常情報である自系統異常情報を他系統の制御部236、136に送信し、他系統の異常情報である他系統異常情報を他系統の制御部236、136から取得する。本実施形態では、異常情報をステータス信号に含めて、マイコン間通信にて共有する。第1制御部136は、自系統異常情報を含むマスター側ステータス信号を第2制御部236に送信し、他系統異常情報を含むスレーブ側ステータス信号を第2制御部236から取得する。また、第2制御部236は、自系統異常情報を含むスレーブ側ステータス信号を第1制御部136に送信し、他系統異常情報を含むマスター側ステータス信号を第1制御部136から取得する。これにより、各系統の異常状態を、系統間にて適切に共有することができる。 In the present embodiment, the control units 136 and 236 share the own system abnormality information related to the abnormality of the own system and the other system abnormality information related to the abnormality of the other system. Specifically, the control units 136 and 236 transmit the own system abnormality information that is the abnormality information of the own system to the control units 236 and 136 of the other system, and the other system abnormality information that is the abnormality information of the other system is transmitted to the other system. Obtained from the control units 236 and 136. In the present embodiment, the abnormality information is included in the status signal and shared by communication between microcomputers. The first control unit 136 transmits a master-side status signal including own system abnormality information to the second control unit 236, and acquires a slave-side status signal including other system abnormality information from the second control unit 236. In addition, the second control unit 236 transmits a slave-side status signal including own system abnormality information to the first control unit 136 and acquires a master-side status signal including other system abnormality information from the first control unit 136. Thereby, the abnormal state of each system can be appropriately shared between systems.
 制御部136、236は、自系統異常情報および他系統異常情報に基づき、制御モードとして、通常制御モードと異常時制御モードとを切り替え可能である。通常制御モードでは、制御部136、236を協調させて駆動する。異常時制御モードには、代替制御モード、片系統駆動制御モードおよび独立駆動制御モードの少なくとも1つを含む。また、制御部136、236は、代替制御モード、独立駆動制御モードまたは片系統駆動制御モード中に異常が解消された場合、通常制御モードに復帰する。 The control units 136 and 236 can switch between the normal control mode and the abnormal time control mode as the control mode based on the own system abnormality information and the other system abnormality information. In the normal control mode, the control units 136 and 236 are driven in cooperation. The abnormal time control mode includes at least one of an alternative control mode, a single system drive control mode, and an independent drive control mode. The control units 136 and 236 return to the normal control mode when the abnormality is resolved during the alternative control mode, the independent drive control mode, or the single-system drive control mode.
 代替制御モードは、通常制御モードに用いられる信号のうち異常となった信号に替えて、代替情報を用いる。片系統駆動制御モードは、一部の系統の駆動を停止し、残りの系統を用いてモータ80の制御を継続する。独立駆動制御モードは、制御部136、236を協調させず、系統毎にモータ80の制御を継続する。これにより、異常状態に応じて、モータ80の制御を適切に継続することができる。 The alternative control mode uses alternative information in place of the abnormal signal among the signals used in the normal control mode. In the one-system drive control mode, driving of some systems is stopped, and control of the motor 80 is continued using the remaining systems. In the independent drive control mode, the control units 136 and 236 are not coordinated, and the control of the motor 80 is continued for each system. Thereby, control of the motor 80 can be appropriately continued according to the abnormal state.
 制御部136、236は、他系統異常情報を利用不能である制御部間通信異常が生じている場合、独立駆動制御モードに切り替える。これにより、誤った情報を用いた制御が行われるのを防ぐことができる。 The control units 136 and 236 switch to the independent drive control mode when a communication abnormality between the control units that cannot use the other system abnormality information occurs. Thereby, it is possible to prevent control using incorrect information.
 制御部136、236は、自系統にて制御不能異常が生じた場合、制御不能異常が生じた旨の情報を他系統の制御部236、136に送信するとともに、自系統の駆動を停止し、他系統異常情報に制御不能異常が生じた旨の情報が含まれる場合、片系統駆動モードに切り替える。制御不能異常は、バッテリ191、291からインバータ回路120、220を経由してモータ巻線180、280に至る駆動系の異常、トルクセンサ94、電流センサ125、225または回転角センサ126、226の異常、もしくは、制御部136、236の異常である。制御不能異常時には、片系統駆動モードに切り替えることで、正常系系統を用いて適切にモータ80の駆動を継続することができる。 When an uncontrollable abnormality occurs in the own system, the control units 136 and 236 transmit information indicating that the uncontrollable abnormality has occurred to the control units 236 and 136 of other systems, and stop driving the own system. When other system abnormality information includes information indicating that an uncontrollable abnormality has occurred, the system is switched to the one-system driving mode. Uncontrollable abnormalities are abnormalities in the drive system from the batteries 191 and 291 via the inverter circuits 120 and 220 to the motor windings 180 and 280, abnormalities in the torque sensor 94, current sensors 125 and 225, or rotation angle sensors 126 and 226 Or, it is an abnormality of the control units 136 and 236. When the control is impossible, the motor 80 can be properly driven using the normal system by switching to the single system drive mode.
 制御部136、236は、間接的にモータ80の駆動に影響を与える異常が生じた場合、代替制御モードに切り替える。本実施形態では、これにより、モータ80の駆動制御を適切に継続することができる。 The control units 136 and 236 switch to the alternative control mode when an abnormality that indirectly affects the driving of the motor 80 occurs. In the present embodiment, this makes it possible to appropriately continue drive control of the motor 80.
 制御部136、236は、第1制御部136にて演算される指令値I*と、第2制御部236にて演算される指令値I*とが乖離した場合、独立駆動制御モードに切り替える。これにより、乖離した指令が用いられることによる制御の不整合を防ぐことができる。なお、例えば、第1制御部136から送信される指令値に基づいて第2制御部236にて演算された演算値を指令乖離判定に用いたとしても、当該演算値は、「マスター制御部にて演算される値」とみなす。スレーブ制御部にて演算される値についても同様である。 Control unit 136 and 236, a command value I * that is calculated by the first control unit 136, if the command value I * and that is calculated by the second control unit 236 deviates, switched independently drive control mode. As a result, it is possible to prevent control inconsistency due to the use of deviated commands. For example, even if the calculation value calculated by the second control unit 236 based on the command value transmitted from the first control unit 136 is used for command deviation determination, the calculation value is It is regarded as a value calculated by The same applies to values calculated by the slave control unit.
 図38に示すように、制御部136、236は、協調駆動モードと、独立駆動モードと、片系統駆動モードと、を有する。換言すると、協調駆動モード、独立駆動モード、および、片系統駆動モードを有するモータ制御装置は、本実施形態のECUに相当するとみなされる。本実施形態では、異常状態に応じて駆動モードを切り替えているが、異常状態以外の遷移条件にて駆動モードを切り替えてもよい。なお補足として、例えば独立駆動モードにおいて、一方の系統にて代替制御を行うといった具合に、代替制御モードを、他の制御モードと組み合わせてもよい。 38, the control units 136 and 236 have a cooperative drive mode, an independent drive mode, and a single-system drive mode. In other words, the motor control device having the cooperative drive mode, the independent drive mode, and the single-system drive mode is considered to correspond to the ECU of the present embodiment. In the present embodiment, the drive mode is switched according to the abnormal state, but the drive mode may be switched under a transition condition other than the abnormal state. As a supplement, for example, in the independent drive mode, the alternative control mode may be combined with another control mode, for example, the alternative control is performed in one system.
 協調駆動モードでは、マスター制御部である第1制御部136が制御信号の生成に係る指令値を演算し、当該指令値に基づく制御信号を出力するとともに、スレーブ制御部である第2制御部236が第1制御部136にて演算された指令値に基づく制御信号を出力する。 In the cooperative drive mode, the first control unit 136 that is a master control unit calculates a command value related to generation of a control signal, outputs a control signal based on the command value, and the second control unit 236 that is a slave control unit. Outputs a control signal based on the command value calculated by the first control unit 136.
 独立駆動モードでは、第1制御部136が自系統の制御信号の生成に係る指令値を演算し、その演算した指令値に基づく制御信号を出力するとともに、第2制御部236が自系統の制御信号の生成に係る指令値を演算し、その演算した指令値に基づく制御信号を出力する。 In the independent drive mode, the first control unit 136 calculates a command value related to generation of a control signal of the own system, outputs a control signal based on the calculated command value, and the second control unit 236 controls the own system. A command value related to signal generation is calculated, and a control signal based on the calculated command value is output.
 片系統駆動モードでは、マスター制御部およびスレーブ制御部のうちの一部が制御信号の出力を停止し、他の制御部が自系統の制御信号の生成に係る指令値を演算し、その指令値に基づく制御信号を出力する。これにより、複数系統からなるモータ80の駆動を適切に制御することができる。また上記実施形態と同様の効果を奏する。 In the single system drive mode, a part of the master control unit and the slave control unit stops the output of the control signal, and the other control unit calculates the command value related to the generation of the control signal of its own system, and the command value A control signal based on is output. Thereby, the drive of the motor 80 consisting of a plurality of systems can be appropriately controlled. In addition, the same effects as in the above embodiment can be obtained.
   (他の実施形態)
 上記実施形態では、制御部が2つであり、一方がマスター制御部であり、他方がスレーブ制御部である。他の実施形態では、制御部が3つ以上であってもよい。すなわち、系統数が3以上であってもよい。この場合、マスター制御部は1つであって、スレーブ制御部を複数とする。なお、3系統以上の場合、いずれか1つの系統の駆動を停止し、残りの複数系統にて駆動を継続する場合、および、複数の系統の駆動を停止し、残りの1系統にて駆動を継続する場合についても、「片系統駆動」の概念に含まれるものとする。また、例えば、マスター制御部に異常が生じた場合、スレーブ制御部のうちの1つをマスター制御部に切り替えて協調制御を継続する、といった具合に、マスター制御部を入れ替えてもよい。また、1つの制御部に対して、複数の駆動回路および巻線組を設けるようにしてもよい。
(Other embodiments)
In the above embodiment, there are two control units, one is a master control unit, and the other is a slave control unit. In other embodiments, there may be three or more control units. That is, the number of systems may be 3 or more. In this case, there is one master control unit and a plurality of slave control units. In the case of three or more systems, the drive of any one system is stopped and the drive is continued in the remaining multiple systems. The drive of the plurality of systems is stopped and the drive is performed in the remaining one system. The case of continuing is also included in the concept of “single system drive”. Further, for example, when an abnormality occurs in the master control unit, the master control unit may be replaced such that one of the slave control units is switched to the master control unit and the cooperative control is continued. A plurality of drive circuits and winding sets may be provided for one control unit.
 上記実施形態では、制御部は、電流フィードバック制御により、回転電機の駆動を制御する。他の実施形態では、電流フィードバック制御以外の方法にて、回転電機の駆動を制御してもよい。また、他の実施形態では、マスター制御部は、制御方法に応じ、トルク指令値、電流指令値、電圧指令値、または、PWM信号以外の値を指令値としてスレーブ制御部に送信するようにしてもよい。 In the above embodiment, the control unit controls the driving of the rotating electrical machine by current feedback control. In another embodiment, the driving of the rotating electrical machine may be controlled by a method other than the current feedback control. In another embodiment, the master control unit transmits a torque command value, a current command value, a voltage command value, or a value other than the PWM signal as a command value to the slave control unit according to the control method. Also good.
 上記実施形態では、回転電機は、3相のブラシレスモータである。他の実施形態では、回転電機は、ブラシレスモータに限らず、どのようなモータとしてもよい。また、回転電機は、モータに限らず、発電機であってもよいし、電動機と発電機の機能を併せ持つ、所謂モータジェネレータであってもよい。上記実施形態では、駆動装置は、ECUとモータとが一体に設けられる機電一体型である。他の実施形態では、ECUがモータとは別途に設けられる機電別体としてもよい。 In the above embodiment, the rotating electrical machine is a three-phase brushless motor. In other embodiments, the rotating electrical machine is not limited to a brushless motor, and may be any motor. The rotating electrical machine is not limited to a motor, and may be a generator, or a so-called motor generator having both functions of an electric motor and a generator. In the above embodiment, the drive device is an electromechanical integrated type in which an ECU and a motor are integrally provided. In another embodiment, the ECU may be a separate electromechanical body provided separately from the motor.
 上記実施形態では、回転電機制御装置は、電動パワーステアリング装置に適用される。他の実施形態では、回転電機制御装置を電動パワーステアリング装置以外の装置に適用してもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 In the above embodiment, the rotating electrical machine control device is applied to an electric power steering device. In other embodiments, the rotating electrical machine control device may be applied to devices other than the electric power steering device. As mentioned above, this indication is not limited to the said embodiment at all, and can be implemented with a various form in the range which does not deviate from the meaning.
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with the embodiment. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (26)

  1.  複数の巻線組(180、280)を備える回転電機(80)の駆動を制御する回転電機制御装置であって、
     複数の駆動回路(120、220)と、
     対応して設けられる前記駆動回路に制御信号を出力する信号出力部(165、265)を有し、相互に通信可能である複数の制御部(131~136、231~236)と、
     を備え、
     前記制御部には、全ての前記制御部における前記制御信号の生成に係る指令値を演算し、他の前記制御部に前記指令値を送信する1つのマスター制御部(131~136)、および、前記マスター制御部から送信される前記指令値に基づく前記制御信号を出力する少なくとも1つのスレーブ制御部(231~236)が含まれる回転電機制御装置。
    A rotating electrical machine control device that controls driving of a rotating electrical machine (80) including a plurality of winding sets (180, 280),
    A plurality of drive circuits (120, 220);
    A plurality of control units (131 to 136, 231 to 236) having a signal output unit (165, 265) for outputting a control signal to the drive circuit provided correspondingly and capable of communicating with each other;
    With
    The control unit calculates a command value related to the generation of the control signal in all the control units, and transmits one command value to the other control units (131 to 136), and A rotating electrical machine control device including at least one slave control unit (231 to 236) that outputs the control signal based on the command value transmitted from the master control unit.
  2.  前記マスター制御部(131)は、前記指令値として電流指令値を前記スレーブ制御部(231)に送信する請求項1に記載の回転電機制御装置。 The rotating electrical machine control device according to claim 1, wherein the master control unit (131) transmits a current command value as the command value to the slave control unit (231).
  3.  前記マスター制御部(132)は、前記指令値としてトルク指令値を前記スレーブ制御部(232)に送信する請求項1に記載の回転電機制御装置。 The rotating electrical machine control device according to claim 1, wherein the master control unit (132) transmits a torque command value as the command value to the slave control unit (232).
  4.  前記マスター制御部、ならびに、前記マスター制御部に対応して設けられる前記駆動回路および前記巻線組の組み合わせをマスター系統、
     前記スレーブ制御部、ならびに、前記スレーブ制御部に対応して設けられる前記駆動回路および前記巻線組の組み合わせをスレーブ系統とすると、
     前記マスター制御部は、前記マスター系統の電流検出値であるマスター電流検出値を前記スレーブ制御部に送信し、
     前記スレーブ制御部は、前記スレーブ系統の電流検出値であるスレーブ電流検出値を前記マスター制御部に送信し、
     前記マスター制御部および前記スレーブ制御部は、それぞれにおいて、前記マスター系統および前記スレーブ系統の電流和が電流和指令値となり、電流差が電流差指令値となるように制御する請求項2または3に記載の回転電機制御装置。
    The master system, and a combination of the drive circuit and the winding set provided corresponding to the master control unit, a master system,
    When the slave control unit, and the combination of the drive circuit and the winding set provided corresponding to the slave control unit is a slave system,
    The master control unit transmits a master current detection value that is a current detection value of the master system to the slave control unit,
    The slave control unit transmits a slave current detection value that is a current detection value of the slave system to the master control unit,
    The master control unit and the slave control unit perform control so that the current sum of the master system and the slave system becomes a current sum command value and the current difference becomes a current difference command value, respectively. The rotating electrical machine control device described.
  5.  前記マスター制御部、ならびに、前記マスター制御部に対応して設けられる前記駆動回路および前記巻線組の組み合わせをマスター系統、
     前記スレーブ制御部、ならびに、前記スレーブ制御部に対応して設けられる前記駆動回路および前記巻線組の組み合わせをスレーブ系統とすると、
     前記マスター制御部(133、134)は、前記マスター系統に係る電圧指令値、および、前記スレーブ系統に係る電圧指令値であるスレーブ電圧指令値を演算し、当該スレーブ電圧指令値を前記指令値として前記スレーブ制御部(233、234)に送信する請求項1に記載の回転電機制御装置。
    The master system, and a combination of the drive circuit and the winding set provided corresponding to the master control unit, a master system,
    When the slave control unit, and the combination of the drive circuit and the winding set provided corresponding to the slave control unit is a slave system,
    The master control unit (133, 134) calculates a voltage command value related to the master system and a slave voltage command value which is a voltage command value related to the slave system, and uses the slave voltage command value as the command value. The rotating electrical machine control device according to claim 1, wherein the rotating electrical machine control device transmits the slave control unit (233, 234).
  6.  前記マスター制御部、ならびに、前記マスター制御部に対応して設けられる前記駆動回路および前記巻線組の組み合わせをマスター系統、
     前記スレーブ制御部、ならびに、前記スレーブ制御部に対応して設けられる前記駆動回路および前記巻線組の組み合わせをスレーブ系統とすると、
     前記マスター制御部(135)は、前記マスター系統に係る前記制御信号、および、前記スレーブ系統に係る前記制御信号であるスレーブ制御信号を演算し、当該スレーブ制御信号を前記指令値として前記スレーブ制御部(235)に送信する請求項1に記載の回転電機制御装置。
    The master system, and a combination of the drive circuit and the winding set provided corresponding to the master control unit, a master system,
    When the slave control unit, and the combination of the drive circuit and the winding set provided corresponding to the slave control unit is a slave system,
    The master control unit (135) calculates the control signal related to the master system and the slave control signal which is the control signal related to the slave system, and uses the slave control signal as the command value. The rotating electrical machine control device according to claim 1, which is transmitted to (235).
  7.  前記スレーブ制御部は、前記スレーブ系統の電流検出値であるスレーブ電流検出値を前記マスター制御部に送信し、
     前記マスター制御部は、前記マスター系統の電流検出値であるマスター電流検出値、および、前記スレーブ電流検出値に基づき、前記マスター系統および前記スレーブ系統の電流和が電流和指令値となり、電流差が電流差指令値となるように、前記マスター系統および前記スレーブ系統の電圧指令値を演算する請求項5または6に記載の回転電機制御装置。
    The slave control unit transmits a slave current detection value that is a current detection value of the slave system to the master control unit,
    The master control unit, based on a master current detection value that is a current detection value of the master system and a slave current detection value, a current sum of the master system and the slave system becomes a current sum command value, and a current difference is The rotating electrical machine control device according to claim 5 or 6, wherein the voltage command values of the master system and the slave system are calculated so as to be a current difference command value.
  8.  前記制御部は、電流検出値の演算後であって、電流フィードバック制御が開始するまでの期間に、前記電流フィードバック制御に必要な情報の送受信を行う請求項1~7のいずれか一項に記載の回転電機制御装置。 The control unit performs transmission / reception of information necessary for the current feedback control in a period after the calculation of the current detection value and before the current feedback control starts. Rotating electrical machine control device.
  9.  前記制御部は、前記制御信号の演算に必要な情報のうち、他の前記制御部から取得するものは、前回の制御周期における値を用いる請求項1~7のいずれか一項に記載の回転電機制御装置。 The rotation according to any one of claims 1 to 7, wherein the control unit uses a value in a previous control cycle as information acquired from another control unit among information necessary for calculation of the control signal. Electric control device.
  10.  前記制御部(136、236)は、自系統の異常および通信異常を監視する異常監視部(190、290)を備える請求項1~9のいずれか一項に記載の回転電機制御装置。 The rotating electrical machine control device according to any one of claims 1 to 9, wherein the control unit (136, 236) includes an abnormality monitoring unit (190, 290) for monitoring an abnormality of the own system and a communication abnormality.
  11.  前記制御部は、自系統の異常に係る自系統異常情報および他系統の異常に係る他系統異常情報を共有する請求項10に記載の回転電機制御装置。 The rotating electrical machine control device according to claim 10, wherein the control unit shares the own system abnormality information relating to the abnormality of the own system and the other system abnormality information relating to the abnormality of the other system.
  12.  前記制御部は、前記自系統異常情報および前記他系統異常情報に基づき、前記マスター制御部と前記スレーブ制御部とを協調させて駆動する通常制御モードと、代替制御モード、片系統駆動制御モードおよび独立駆動制御モードの少なくとも1つを含む異常時制御モードとを切り替え可能であって、
     前記スレーブ制御部は、自系統に係る前記制御信号の生成に用いられるスレーブ指令値を演算可能であって、
     前記代替制御モードでは、前記通常制御モードに用いられる信号のうち異常となった信号に替えて代替情報を用い、
     前記片系統駆動制御モードでは、一部の系統の駆動を停止し、残りの系統を用いて前記回転電機の制御を継続し、
     前記独立駆動制御モードは、前記マスター制御部と前記スレーブ制御部とを協調させず、系統毎に独立して前記回転電機の制御を継続する請求項11に記載の回転電機制御装置。
    The control unit, based on the own system abnormality information and the other system abnormality information, a normal control mode for driving the master control unit and the slave control unit in cooperation, an alternative control mode, a single system drive control mode, and It is possible to switch between an abnormal time control mode including at least one of the independent drive control modes,
    The slave control unit can calculate a slave command value used to generate the control signal related to its own system,
    In the alternative control mode, the alternative information is used instead of the abnormal signal among the signals used in the normal control mode.
    In the one-system drive control mode, driving of some systems is stopped, and control of the rotating electrical machine is continued using the remaining systems,
    The rotating electrical machine control device according to claim 11, wherein the independent drive control mode continues the control of the rotating electrical machine independently for each system without coordinating the master control unit and the slave control unit.
  13.  前記通常制御モードにおいて複数系統の電流和および電流差を制御している場合、
     前記制御部は、前記独立駆動制御モードおよび片系統駆動モードにおいて、他の前記制御部から取得される電流検出値を0に設定するとともに、電流差の制御を停止する請求項12に記載の回転電機制御装置。
    When controlling the current sum and current difference of multiple systems in the normal control mode,
    The rotation according to claim 12, wherein the control unit sets a current detection value acquired from another control unit to 0 and stops control of a current difference in the independent drive control mode and the single-system drive mode. Electric control device.
  14.  前記異常監視部は、異常が検出されてから所定の異常継続条件を満たした場合、異常を確定し、前記通常制御モードから前記異常時制御モードに切り替える請求項12または13に記載の回転電機制御装置。 The rotating electrical machine control according to claim 12 or 13, wherein the abnormality monitoring unit determines an abnormality and switches from the normal control mode to the abnormal time control mode when a predetermined abnormality continuation condition is satisfied after the abnormality is detected. apparatus.
  15.  前記制御部は、
     異常が検出されていないときに他の前記制御部から通信にて取得される値をホールド値として保持しておき、
     異常が検出されてから確定されるまでの間、前記ホールド値を用いて前記制御信号を生成する請求項14に記載の回転電機制御装置。
    The controller is
    A value acquired by communication from the other control unit when no abnormality is detected is held as a hold value,
    The rotating electrical machine control device according to claim 14, wherein the control signal is generated using the hold value from when an abnormality is detected until it is determined.
  16.  前記制御部は、異常が検出されてから確定されるまでの間、他の前記制御部から取得される値を用いず、前記独立駆動制御モードとする請求項14に記載の回転電機制御装置。 15. The rotating electrical machine control device according to claim 14, wherein the control unit is set to the independent drive control mode without using a value acquired from another control unit from when an abnormality is detected until it is determined.
  17.  前記制御部は、異常が検出されてから所定期間内に異常が確定されなかった場合、前記通常制御モードに復帰する請求項14~16のいずれか一項に記載の回転電機制御装置。 The rotating electrical machine control device according to any one of claims 14 to 16, wherein the control unit returns to the normal control mode when the abnormality is not determined within a predetermined period after the abnormality is detected.
  18.  前記制御部は、前記他系統異常情報を利用不能である制御部間通信異常が生じている場合、前記独立駆動制御モードに切り替える請求項12~17のいずれか一項に記載の回転電機制御装置。 The rotating electrical machine control device according to any one of claims 12 to 17, wherein the control unit switches to the independent drive control mode when a communication abnormality between the control units that cannot use the other-system abnormality information occurs. .
  19.  1つの前記制御部から他の前記制御部に送信される信号には、ランカウンタ信号が含まれ、
     前記異常監視部は、前記ランカウンタ信号が更新されていない場合、前記制御部間通信異常として通信途絶が生じていると判定する請求項18に記載の回転電機制御装置。
    The signal transmitted from one control unit to the other control unit includes a run counter signal,
    The rotating electrical machine control device according to claim 18, wherein the abnormality monitoring unit determines that a communication interruption has occurred as a communication abnormality between the control units when the run counter signal is not updated.
  20.  1つの前記制御部から他の前記制御部に送信される出力信号には、誤り検出信号が含まれ、
     前記異常監視部は、前記出力信号に含まれる前記誤り検出信号に基づく値と、前記出力信号に基づく誤り検出演算にて自身で演算した値とに基づき、前記制御部間通信異常である通信整合性異常を監視する請求項18または19に記載の回転電機制御装置。
    The output signal transmitted from one control unit to the other control unit includes an error detection signal,
    The abnormality monitoring unit is based on a value based on the error detection signal included in the output signal and a value calculated by an error detection calculation based on the output signal, and a communication matching that is a communication abnormality between the control units. The rotating electrical machine control device according to claim 18 or 19, which monitors sex abnormalities.
  21.  前記制御部は、
     自系統にて、電源(191、291)から前記駆動回路を経由して前記巻線組に至る駆動系の異常、トルクセンサ(94)、電流センサ(125、225)または回転角センサ(126、226)の異常、もしくは、前記制御部の異常である制御不能異常が生じた場合、前記制御不能異常が生じた旨の情報を他系統の前記制御部に送信するとともに、自系統の駆動を停止し、
     前記他系統異常情報に前記制御不能異常が生じた旨の情報が含まれる場合、前記片系統駆動制御モードに切り替える請求項12~20のいずれか一項に記載の回転電機制御装置。
    The controller is
    In the own system, an abnormality in the drive system from the power source (191, 291) to the winding set via the drive circuit, the torque sensor (94), the current sensors (125, 225) or the rotation angle sensor (126, 226) or an uncontrollable abnormality that is an abnormality of the control unit, information indicating that the uncontrollable abnormality has occurred is transmitted to the control unit of another system, and driving of the own system is stopped. And
    The rotating electrical machine control device according to any one of claims 12 to 20, wherein when the other system abnormality information includes information indicating that the uncontrollable abnormality has occurred, the single system drive control mode is switched.
  22.  前記制御部は、間接的に前記回転電機の駆動に影響を与える異常が生じた場合、前記代替制御モードに切り替える請求項12~21のいずれか一項に記載の回転電機制御装置。 The rotating electrical machine control device according to any one of claims 12 to 21, wherein the control unit switches to the alternative control mode when an abnormality that indirectly affects the driving of the rotating electrical machine occurs.
  23.  前記制御部は、前記マスター制御部にて演算される前記指令値と、前記スレーブ制御部にて演算される前記指令値とが乖離した場合、前記独立駆動制御モードに切り替える請求項12~22のいずれか一項に記載の回転電機制御装置。 The control unit according to any one of claims 12 to 22, wherein when the command value calculated by the master control unit and the command value calculated by the slave control unit deviate, the control unit switches to the independent drive control mode. The rotating electrical machine control device according to any one of the above.
  24.  前記制御部は、前記代替制御モード、前記独立駆動制御モードまたは前記片系統駆動制御モード中に異常が解消された場合、前記通常制御モードに復帰する請求項12~23のいずれか一項に記載の回転電機制御装置。 The control unit returns to the normal control mode when an abnormality is resolved during the alternative control mode, the independent drive control mode, or the one-system drive control mode. Rotating electrical machine control device.
  25.  複数の巻線組(180、280)を備える回転電機(80)の駆動を制御する回転電機制御
    装置であって、
     複数の駆動回路(120、220)と、
     対応して設けられる前記駆動回路に制御信号を出力する信号出力部(165、265)
    を有し、相互に通信可能である複数の制御部(131~136、231~236)と、
     を備え、
     前記制御部には、1つのマスター制御部(131~136)、および、少なくとも1つのスレーブ制御部(231~236)が含まれ、
     前記制御部は、
     前記マスター制御部が前記制御信号の生成に係る指令値を演算し、当該指令値に基づく前記制御信号を出力するとともに、前記スレーブ制御部が前記マスター制御部にて演算された前記指令値に基づく前記制御信号を出力する協調駆動モードと、
     前記マスター制御部が自系統の前記制御信号の生成に係る指令値を演算し、その演算した指令値に基づく前記制御信号を出力するとともに、前記スレーブ制御部が自系統の前記制御信号の生成に係る指令値を演算し、その演算した指令値に基づく前記制御信号を出力する独立駆動モードと、
     前記マスター制御部および前記スレーブ制御部のうちの一部が前記制御信号の出力を停止し、他の前記制御部が自系統の前記制御信号の生成に係る指令値を演算し、その指令値に基づく前記制御信号を出力する片系統駆動モードと、
     を有する回転電機制御装置。
    A rotating electrical machine control device that controls driving of a rotating electrical machine (80) including a plurality of winding sets (180, 280),
    A plurality of drive circuits (120, 220);
    A signal output unit (165, 265) for outputting a control signal to the corresponding drive circuit provided
    A plurality of control units (131 to 136, 231 to 236) capable of communicating with each other;
    With
    The control unit includes one master control unit (131 to 136) and at least one slave control unit (231 to 236),
    The controller is
    The master control unit calculates a command value related to the generation of the control signal, outputs the control signal based on the command value, and the slave control unit is based on the command value calculated by the master control unit A cooperative driving mode for outputting the control signal;
    The master control unit calculates a command value related to the generation of the control signal of the own system, outputs the control signal based on the calculated command value, and the slave control unit generates the control signal of the own system. An independent drive mode for calculating the command value and outputting the control signal based on the calculated command value;
    Some of the master control unit and the slave control unit stop the output of the control signal, the other control unit calculates a command value related to the generation of the control signal of its own system, to the command value A single-system drive mode for outputting the control signal based on,
    A rotating electrical machine control device comprising:
  26.  請求項1~25のいずれか一項に記載の回転電機制御装置(10)と、
     運転者による操舵部材(91)の操舵を補助するアシストトルクを出力する前記回転電機と、
     前記回転電機の駆動力を駆動対象(92)に伝達する動力伝達部(89)と、
     を備える電動パワーステアリング装置。
    The rotating electrical machine control device (10) according to any one of claims 1 to 25;
    The rotating electrical machine that outputs an assist torque that assists the steering of the steering member (91) by the driver;
    A power transmission unit (89) for transmitting a driving force of the rotating electrical machine to a drive target (92);
    An electric power steering apparatus comprising:
PCT/JP2017/040396 2016-11-11 2017-11-09 Rotary electric device control device, and electric power steering device using same WO2018088465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780068832.9A CN110063021B (en) 2016-11-11 2017-11-09 Rotating electric machine control device and electric power steering device using same
US16/405,049 US10862417B2 (en) 2016-11-11 2019-05-07 Rotary electric device control device and electric power steering device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-220474 2016-11-11
JP2016220474 2016-11-11
JP2017023443 2017-02-10
JP2017-023443 2017-02-10
JP2017-209905 2017-10-31
JP2017209905A JP7027808B2 (en) 2016-11-11 2017-10-31 Rotating electric machine control device and electric power steering device using this

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/405,049 Continuation US10862417B2 (en) 2016-11-11 2019-05-07 Rotary electric device control device and electric power steering device

Publications (1)

Publication Number Publication Date
WO2018088465A1 true WO2018088465A1 (en) 2018-05-17

Family

ID=62109403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040396 WO2018088465A1 (en) 2016-11-11 2017-11-09 Rotary electric device control device, and electric power steering device using same

Country Status (1)

Country Link
WO (1) WO2018088465A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538265B2 (en) * 2016-11-11 2020-01-21 Denso Corporation Rotary electric device control device, and electric power steering device using the same
EP3892522A1 (en) 2020-04-08 2021-10-13 Jtekt Corporation Motor control device
US20220297743A1 (en) * 2021-03-16 2022-09-22 Jtekt Corporation Steering control device
WO2022219794A1 (en) 2021-04-16 2022-10-20 三菱電機株式会社 Rotating machine control device and electric power steering device
WO2022219795A1 (en) 2021-04-16 2022-10-20 三菱電機株式会社 Rotary machine control device and electric power steering device
WO2023062907A1 (en) * 2021-10-12 2023-04-20 日産自動車株式会社 Steering control method and steering device
WO2023112133A1 (en) 2021-12-14 2023-06-22 三菱電機株式会社 Electric power steering device
US11750134B2 (en) 2019-09-26 2023-09-05 Mitsubishi Electric Corporation AC rotary machine apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204195A (en) * 2000-01-19 2001-07-27 Hitachi Ltd Driving system for ac motor
JP2002052592A (en) * 2000-08-11 2002-02-19 Sumitomo Heavy Ind Ltd Motor controller for injection molding machine
JP2011234517A (en) * 2010-04-28 2011-11-17 Renesas Electronics Corp Power drive controller and power unit
JP2014176215A (en) * 2013-03-08 2014-09-22 Nsk Ltd Motor control device, electrically-driven power steering apparatus employing the same and vehicle
JP2015126642A (en) * 2013-12-27 2015-07-06 日立オートモティブシステムズ株式会社 Motor control device
WO2016079839A1 (en) * 2014-11-20 2016-05-26 三菱電機株式会社 Drive control device for multiplex-winding motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204195A (en) * 2000-01-19 2001-07-27 Hitachi Ltd Driving system for ac motor
JP2002052592A (en) * 2000-08-11 2002-02-19 Sumitomo Heavy Ind Ltd Motor controller for injection molding machine
JP2011234517A (en) * 2010-04-28 2011-11-17 Renesas Electronics Corp Power drive controller and power unit
JP2014176215A (en) * 2013-03-08 2014-09-22 Nsk Ltd Motor control device, electrically-driven power steering apparatus employing the same and vehicle
JP2015126642A (en) * 2013-12-27 2015-07-06 日立オートモティブシステムズ株式会社 Motor control device
WO2016079839A1 (en) * 2014-11-20 2016-05-26 三菱電機株式会社 Drive control device for multiplex-winding motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538265B2 (en) * 2016-11-11 2020-01-21 Denso Corporation Rotary electric device control device, and electric power steering device using the same
US11750134B2 (en) 2019-09-26 2023-09-05 Mitsubishi Electric Corporation AC rotary machine apparatus
EP3892522A1 (en) 2020-04-08 2021-10-13 Jtekt Corporation Motor control device
US11404992B2 (en) 2020-04-08 2022-08-02 Jtekt Corporation Motor control device
US20220297743A1 (en) * 2021-03-16 2022-09-22 Jtekt Corporation Steering control device
WO2022219794A1 (en) 2021-04-16 2022-10-20 三菱電機株式会社 Rotating machine control device and electric power steering device
WO2022219795A1 (en) 2021-04-16 2022-10-20 三菱電機株式会社 Rotary machine control device and electric power steering device
WO2023062907A1 (en) * 2021-10-12 2023-04-20 日産自動車株式会社 Steering control method and steering device
WO2023112133A1 (en) 2021-12-14 2023-06-22 三菱電機株式会社 Electric power steering device

Similar Documents

Publication Publication Date Title
JP7027808B2 (en) Rotating electric machine control device and electric power steering device using this
WO2018088465A1 (en) Rotary electric device control device, and electric power steering device using same
WO2018147402A1 (en) Rotary electric machine control device and electric power steering device using same
WO2018088463A1 (en) Rotary electric machine control device and electric power steering device using same
WO2018147403A1 (en) Rotary electric machine control device and electric power steering device using same
US11214304B2 (en) Steering control apparatus
JP7205352B2 (en) Rotating electric machine control device and electric power steering device using the same
JP2018128429A (en) Rotation detector
JP7192649B2 (en) Rotating electric machine controller
US11639192B2 (en) Detection unit
WO2021029407A1 (en) Dynamo-electric machine control device
JP6988373B2 (en) Rotating electric machine control device and electric power steering device using this
CN118100732A (en) Rotating electric machine control device and electric power steering device using same
US11949360B2 (en) Control device
JP2020159993A (en) Detection unit
JP7106989B2 (en) SIGNAL CONTROL DEVICE AND ELECTRIC POWER STEERING DEVICE USING THE SAME
JP7156211B2 (en) Rotating electric machine controller
JP7172140B2 (en) Rotation detection device and electric power steering device using the same
JP7183730B2 (en) steering controller
JP7226687B2 (en) motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869727

Country of ref document: EP

Kind code of ref document: A1