WO2018088328A1 - Steel material for soft magnetic components and method for producing soft magnetic component using same - Google Patents

Steel material for soft magnetic components and method for producing soft magnetic component using same Download PDF

Info

Publication number
WO2018088328A1
WO2018088328A1 PCT/JP2017/039760 JP2017039760W WO2018088328A1 WO 2018088328 A1 WO2018088328 A1 WO 2018088328A1 JP 2017039760 W JP2017039760 W JP 2017039760W WO 2018088328 A1 WO2018088328 A1 WO 2018088328A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel material
soft magnetic
less
annealing
Prior art date
Application number
PCT/JP2017/039760
Other languages
French (fr)
Japanese (ja)
Inventor
昌之 坂田
千葉 政道
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2018088328A1 publication Critical patent/WO2018088328A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present disclosure relates to a steel material for soft magnetic parts and a method for producing a soft magnetic part using the steel material.
  • the present disclosure relates to iron core materials or cover materials (so-called soft magnetic materials) used for solenoids, relays, solenoid valves, etc. used for various electrical components in automobiles, trains, ships, construction machinery, industrial machinery, home appliances, etc.
  • the present invention relates to a soft magnetic steel material suitable for manufacturing a component) and a method of manufacturing a soft magnetic component using the soft magnetic steel material.
  • the soft magnetic parts that constitute the magnetic circuit in automobile electrical parts and the like are required to have excellent soft magnetic characteristics in order to save power and improve responsiveness. For this reason, a soft magnetic material in which the magnetic flux density inside the soft magnetic component easily responds to an external magnetic field is used.
  • Ultra-low carbon steel is used as a steel material for soft magnetic parts with excellent soft magnetic properties.
  • a wire material or a plate-shaped steel material for soft magnetic parts is formed from ultra-low carbon steel, and a soft magnetic part having a desired shape can be manufactured by a processing technique such as cold forging, pressing, and cutting. In order to facilitate such processing, it has been studied to improve the cold forgeability, press workability or cutting workability of the steel for soft magnetic parts.
  • Patent Document 1 discloses a technique for increasing the local component strength after cold forging while improving the cold forgeability (particularly, deformation resistance) of the entire steel material for a steel material of extremely low carbon steel. .
  • the amount of solid solution N (the amount of solid solution nitrogen) in the portion of the steel material whose strength is to be improved is increased to suppress the amount of solid solution N in the other portions.
  • the portion having a large amount of solute N can increase the mechanical component strength more than the normal deformation resistance.
  • the amount of solute N is relatively low in the other portions, only the ordinary deformation resistance allowance increases as a whole, and cold forgeability can be ensured.
  • Patent Document 2 discloses a soft magnetic steel sheet that can accurately process a steel material by cold forging and stably obtain excellent magnetic properties.
  • the deformation resistance can be effectively reduced by controlling the ratio of the B amount to the N amount in the steel, fixing the solid solution N as BN, and reducing the solid solution N in the steel. This achieves excellent magnetic property stability and cold forgeability.
  • Patent Document 3 discloses a soft magnetic steel material having excellent cold forgeability, cutting workability, and magnetic properties. By finely dispersing MnS in the ferrite crystal grains in the steel material, machinability, in particular, burr resistance (an effect of suppressing burr formation on the cut surface) is improved. Moreover, the magnetic characteristics are improved by adding B to the steel material and changing N in the steel material to BN.
  • Patent Document 4 the quality judgment of chip disposal is shown in Table 3, but the determination criteria are not described, and a specific explanation is given as to how the chip disposal can be improved. Absent. Further, from Table 3, if the cutting tool life is good, it can be seen that the chip disposal is good, but there are steel materials that have good chip disposal even if the cutting tool life is poor. Therefore, it is impossible to grasp how the chip disposal can be improved.
  • Embodiments of the present invention have been made in view of such circumstances, and the purpose thereof is a steel material for soft magnetic parts that has excellent machinability while exhibiting excellent magnetic properties after magnetic annealing.
  • Another object of the present invention is to provide a method for producing a soft magnetic component using the steel material.
  • Aspect 1 of an embodiment of the present invention is: Steel material for soft magnetic parts with excellent magnetic properties after annealing, C: 0.0001 mass% to 0.05 mass% Si: more than 0% by mass to 0.5% by mass, Mn: 0.1% by mass to 0.5% by mass, P: more than 0% by mass to 0.02% by mass, S: more than 0% by mass to 0.1% by mass, Al: more than 0% by mass to 0.05% by mass, and N: more than 0.01% by mass to 0.1% by mass,
  • the balance consists of Fe and inevitable impurities
  • a steel material for soft magnetic parts, wherein the ferrite structure has an area ratio of 95.0% or more and satisfies the following formula (1). [N]-(1/2 [Al])> 0.01 (1) However, [N] and [Al] indicate the content (mass%) of N and Al, respectively.
  • Aspect 2 of the embodiment of the present invention is: The steel material for soft magnetic parts according to aspect 1, further comprising any one or more of the following (a) to (c): (A) One or more of Cu: more than 0% by mass to 0.10% by mass, Ni: more than 0% by mass to 0.10% by mass, and Cr: more than 0% by mass to 0.10% by mass (B) Ti: more than 0% by mass to 0.10% by mass, and Nb: more than 0% by mass to 0.10% by mass, and satisfying the following formula (2) (c) B: Over 0% by mass to 0.0300% by mass and satisfies the following formula (3) [N] ⁇ (1/2 [Al] +1/4 [Ti] +1/7 [Nb])> 0.01 (2) [N] ⁇ (1/2 [Al] +1/4 [Ti] +1/7 [Nb] + [B])> 0.01 (3)
  • [Ti], [Nb] and [B] represent the contents (mass%) of Ti, Nb and B,
  • Aspect 3 of the embodiment of the present invention is: Forming the steel material for soft magnetic parts according to aspect 1 or 2 into a part shape; An annealing process of annealing the formed steel material for soft magnetic parts so that the amount of solute N in the steel is 90 ppm or less.
  • the annealing process is the manufacturing method according to the aspect 3, wherein the annealing step is performed under a hydrogen atmosphere, an inert gas atmosphere, or a reduced pressure of 10 ⁇ 2 Torr or less.
  • the amount of alloying elements added to steel materials for soft magnetic parts (hereinafter sometimes simply referred to as “steel materials”) is made small. Since the grain growth of the ferrite crystal is not inhibited by the alloy element during the annealing process, the number of crystal grain boundaries is reduced. Since the crystal grain boundary becomes an obstacle to domain wall movement, it can be said that the steel material with few crystal grain boundaries is excellent in magnetic properties. However, if the added amount of alloying elements in the steel material is small, the toughness of the steel material increases, and the machinability of the steel material, particularly the chip disposal, deteriorates.
  • the present inventor has conducted intensive research. As a result, by increasing the amount of solute N in the steel material, the magnetic properties are low but the chip treatment is high before magnetic annealing. Later, it was found that a steel material for soft magnetic parts with improved magnetic properties could be obtained. When the amount of solute N in the steel material is large, the magnetic properties are greatly deteriorated. Therefore, before the magnetic annealing, the magnetic properties of the steel material for soft magnetic parts are poor. However, by controlling the annealing conditions, particularly the atmosphere during annealing, at least a part of the solid solution N can be released out of the steel during the magnetic annealing. Thereby, in the final product after magnetic annealing, the amount of solute N is reduced, and a final product having good magnetic properties can be obtained.
  • C is an element that governs the balance between the strength and ductility of the steel material, and the strength decreases and the ductility improves as the amount added is reduced. From the viewpoint of efficiently producing a steel material, the lower limit of the C content is set to 0.0001%.
  • the amount of C is preferably 0.001% or more, and more preferably 0.002% or more.
  • the magnetic properties are better as the volume fraction of ferrite, which is a ferromagnetic material, increases.
  • the upper limit of the C amount is set to 0.05%.
  • the amount of C is preferably 0.03% or less, and more preferably 0.015% or less.
  • Mn acts effectively as a deoxidizer. Further, Mn combines with S contained in the steel material and finely disperses as MnS precipitates, thereby forming a chip breaker for chips generated during the cutting process and contributing to improvement of machinability. In order to exhibit such an action effectively, the amount of Mn was determined to be 0.1% or more.
  • the amount of Mn is preferably 0.15% or more, more preferably 0.20% or more. If the amount of Mn is too large, the magnetic properties are deteriorated.
  • the amount of Mn is preferably 0.45% or less, more preferably 0.4% or less, and still more preferably 0.38% or less.
  • P phosphorus
  • the amount of P is preferably 0.015% or less, more preferably 0.010% or less. The smaller the amount of P, the better. However, it is usually contained by about 0.001%.
  • S forms MnS in steel as described above, and has a function of improving the machinability by becoming a stress concentration spot when stress is applied by cutting.
  • S may be contained in an amount of 0.003% or more, and more preferably 0.010% or more.
  • the amount of S is determined to be 0.1% or less.
  • the amount of S is preferably 0.05% or less, more preferably 0.030% or less.
  • Al more than 0 to 0.05%
  • Al is an element added as a deoxidizing material, and has an effect of reducing impurities and improving magnetic properties with deoxidation.
  • the Al content is preferably 0.001% or more, more preferably 0.002% or more.
  • Al can combine with N in the steel material to form AlN.
  • the formed AlN acts as a pinning particle that suppresses crystal grain growth in an annealing process to be described later, and therefore increases the crystal grain boundary that hinders domain wall movement, thereby degrading the magnetic properties. Therefore, the Al content is determined to be 0.05% or less.
  • the Al content is preferably 0.04% or less, more preferably 0.03% or less.
  • N is an element particularly important in the present invention.
  • the toughness of the steel material is lowered and the chips are easily cut off during the cutting process.
  • the N content is set to more than 0.01%.
  • the solid solution N amount is preferably 0.015% or more, and more preferably 0.018% or more.
  • solid solution N reduces a magnetic characteristic, it can be made harmless by passing through the manufacturing method of the soft-magnetic component mentioned later.
  • the upper limit of the amount of N is 0 from the viewpoint of the productivity of the steel material. Set to 1%.
  • the balance is iron and inevitable impurities.
  • inevitable impurities mixing of trace elements (for example, As, Sb, Sn, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed.
  • trace elements for example, As, Sb, Sn, etc.
  • P and S it is usually preferable that the content is small. Therefore, although it is an unavoidable impurity, there is an element that separately defines the composition range as described above. For this reason, in this specification, the term “inevitable impurities” constituting the balance is a concept that excludes elements whose composition ranges are separately defined.
  • Cu increases the electrical resistance of the ferrite phase and is effective in reducing the decay time constant of the eddy current.
  • the upper limit is set to 0.1%. Preferably it is 0.05% or less.
  • Ni like Cu, increases the electrical resistance of the ferrite phase and is effective in reducing the decay time constant of eddy currents. However, if Ni is contained excessively, the magnetic moment is lowered and the magnetic properties of the soft magnetic component are deteriorated. Therefore, when Ni is contained, the upper limit is set to 0.10%. Preferably it is 0.05% or less.
  • Cr like Cu and Ni, increases the electrical resistance of the ferrite phase and is effective in reducing the decay time constant of eddy current. Further, since Cr is a strong carbide-forming element, it is effective in forming carbides and reducing solute C. However, if Cr is excessively contained, the magnetic moment is lowered and the magnetic properties of the soft magnetic component are deteriorated. Therefore, when Cr is contained, the upper limit is set to 0.10%. Preferably it is 0.05% or less.
  • Ti more than 0 to 0.10% and Nb: more than 0 to 0.10%, one or two] Ti forms TiS and may be added because it is effective in improving chip disposal.
  • the upper limit of Ti is set to 0.10%. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.
  • Nb may be added because it forms NbC and is effective in reducing the amount of dissolved C and improving magnetic properties.
  • the upper limit of Nb is set to 0.10%. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.
  • solute N is present in the steel material in an amount exceeding 0.01%.
  • solid solution N can exist in an amount exceeding 0.01%.
  • the right side of the formula (2) is 0.01, but the right side is preferably 0.015 (that is, the solid solution N exceeds 0.015%), more preferably 0.018 (that is, the solid solution). N is more than 0.018%).
  • B is an element that forms BN, which is a compound with N, contributes to lubrication during cutting, and is effective in improving cutting workability (such as burr resistance).
  • the upper limit of B is set to 0.0300%.
  • it is 0.0200% or less, More preferably, it is 0.0150% or less.
  • solute N is present in the steel material in an amount exceeding 0.01%.
  • formula (3) even if all of Al, Ti, Nb and B in the steel material react with N to form nitrides, solid solution N can be present in excess of 0.01%.
  • the right side of the formula (3) is 0.01, the right side is preferably 0.015 (that is, solid solution N exceeds 0.015%), more preferably 0.018 (that is, solid solution). N is more than 0.018%).
  • the metal structure of the soft magnetic component preferably contains a large amount of ferrite structure as a ferromagnetic material in order to increase the magnetic moment. For this reason, it is preferable that the steel material for manufacturing the soft magnetic component also contains a large amount of ferrite structure.
  • the ratio of the ferrite structure in the steel material was set to 95.0% or more. Preferably it is 97.0% or more, more preferably 99.0% or more.
  • a method for producing a steel material for soft magnetic parts according to the present embodiment is a method for producing a steel material for soft magnetic parts according to the conventional method. Rolling or hot forging.
  • Method for Manufacturing Soft Magnetic Component A method for manufacturing a soft magnetic component using steel will be described.
  • the steel material for soft magnetic parts according to the embodiment of the present invention is formed into a desired part shape.
  • conventional methods such as cold forging, hot forging, pressing and cutting can be adopted.
  • soft magnetic parts may be manufactured by other processing methods without performing the cutting processing. For example, cutting and forging may be combined, or molding may be performed only by forging.
  • the magnetic annealing is performed on the steel material (molded product) formed into a part shape so that the amount of solute N in the steel material is 90 ppm or less.
  • a soft magnetic component is manufactured.
  • solid solution N is contained in the steel material in an amount of more than 0.01% (more than 100 ppm).
  • the magnetic properties of the soft magnetic parts after annealing can be improved by releasing a part of the solute N in the steel out of the steel by magnetic annealing and reducing the amount of solute N in the steel to 90 ppm or less.
  • the amount of solute N in the steel after annealing is preferably 80 ppm or less, more preferably 70 ppm or less, and even more preferably reduced to 60 ppm or less.
  • Magnetic annealing can also remove strains that degrade magnetic properties.
  • the area ratio of the crystal grain boundary that makes the crystal grains coarse and deteriorates the magnetic characteristics can be reduced.
  • Annealing conditions include control of annealing temperature, annealing time, and annealing atmosphere, but it is important to control the annealing atmosphere from the viewpoint of releasing solid solution N sufficiently outside the steel. Below, each annealing condition is demonstrated.
  • the annealing temperature is preferably 500 ° C. to 1200 ° C., more preferably 600 ° C. to 1100 ° C., and still more preferably in order to remove strain in the steel material and reduce the area ratio of the grain boundaries. 700 ° C. to 1000 ° C.
  • the annealing time is preferably 0.5 hours to 10 hours, more preferably 1 hour to 8 hours, and even more preferably, in order to remove strain in the steel material and reduce the area ratio of the grain boundaries. Preferably, it is 2 hours to 5 hours.
  • the annealing atmosphere is selected such that the solute N in the steel material is easily released out of the steel so that the amount of solute N in the steel is 90 ppm or less.
  • a hydrogen atmosphere, an inert gas atmosphere, or a reduced pressure of 10 ⁇ 2 Torr or less is preferable.
  • the “inert gas” is a gas having low reactivity, and examples thereof include nitrogen and argon.
  • the moisture content in the atmosphere is preferably 0.5% or less because the effect of releasing solid solution N is improved.
  • the amount of water is more preferably 0.05% or less, and even more preferably 0.005% or less.
  • the upper limit of the degree of vacuum is set to 10 ⁇ 2 Torr from the viewpoint of reducing the amount of residual oxygen. It is preferably 10 ⁇ 3 Torr or less, more preferably 10 ⁇ 4 Torr or less.
  • a soft magnetic component having excellent magnetic characteristics can be manufactured even when a steel material having a high solid solution N amount (that is, poor magnetic characteristics) is used.
  • Cutting test Specimens with the composition shown in Table 1 were melted. Cast pieces of steel types D and E were hot-rolled at 1100 ° C, and cast pieces of steel types A to C and F to O were heated at 1100 ° C. Inter-forging was performed to obtain a bar with a diameter of 42 mm. Thereafter, a wire piece having a length of 1000 mm was cut out from the bar and subjected to a normalizing treatment at 1200 ° C. for 1 hour. The atmosphere of the normalizing treatment was in the air. In addition, since the oxide scale is formed in the surface of the wire piece before the normalization process, it is suppressed by the normalization process that the solid solution N in the wire piece is released into the atmosphere.
  • a sample for cutting test having a length of 400 mm was cut out from the wire piece after the normalizing treatment.
  • the cutting test was carried out using an LS-N type NC lathe manufactured by Otsuchi Corporation (currently Okuma Corporation).
  • the cutting conditions were a feed rate of 0.04 mm / rev, a cutting depth of 0.2 mm, and a cutting rate of 50 m / min, 75 m / min, 100 m / min, and 150 m / min.
  • tip (model number: SNMA12404 T9005) by Tangaloy Co., Ltd. was used for the cutting tool.
  • Chip disposal index (Number of chips of D) ⁇ 10 + (Number of chips of C) ⁇ 20/3 + (Number of chips of B) ⁇ 10/3 (4)
  • Table 2 shows the chip disposal index at each cutting speed for each sample.
  • chip treatment index exceeding 50 at all cutting speeds
  • chip treatment index at two cutting speeds was 50 or less was rejected ( ⁇ ). did. From this result, it can be considered as follows.
  • Steel type C has a small amount of N and a small amount of solid solution N (does not satisfy equation (1)). Therefore, when the cutting speed is high (75 m / min, 100 m / min, and 150 m / min), the chip treatment index is low, and the chip disposability is not sufficient.
  • Steel type M has a small amount of solute N (does not satisfy formula (2)). Therefore, when the cutting speed is high (100 m / min and 150 m / min), the chip treatment index is low, and the chip disposability is not sufficient.
  • Steel type O has a small amount of solute N (does not satisfy formula (3)). Therefore, when the cutting speed is high (75 m / min, 100 m / min, and 150 m / min), the chip treatment index is low, and the chip disposability is not sufficient.
  • the steel type having inferior chip disposal has a lower chip disposal index as the cutting speed increases, and the chip disposal has deteriorated.
  • the chip treatment index satisfied the acceptance criteria even at a high cutting speed, and the chip disposal was good.
  • the measurement of magnetic properties was performed on steel materials (steel types A, B, D to L, and N) that passed the chip disposal evaluation in the cutting test.
  • the specimens having the composition shown in Table 1 were melted.
  • the cast pieces of steel types D and E were hot-rolled at 1100 ° C., and the cast pieces of steel types A, B, F to L and N were heated at 1100 ° C.
  • Inter-forging was performed to obtain a bar with a diameter of 38 mm.
  • the normalizing process for 1 hour was performed at 1200 degreeC. Thereafter, the rod was cut to prepare a ring-shaped sample having an outer diameter of 38 mm, an inner diameter of 30 mm, and a thickness of 4 mm.
  • the ring-shaped sample was magnetically annealed at an annealing temperature of 850 ° C. and an annealing time of 3 hours.
  • the annealing atmosphere is listed in Table 3.
  • hydrogen gas of 99.99% hydrogen is filled in the annealing furnace, the moisture content in the annealing furnace is controlled to 0.001% or less, and in the nitrogen atmosphere, liquid nitrogen is vaporized and nitrogen is 99.99.
  • % Of nitrogen gas in the annealing furnace the moisture content in the annealing furnace is controlled to 0.09% or less, and in the argon atmosphere, 99.9% of argon gas is filled in the annealing furnace, and the moisture in the annealing furnace is filled.
  • the amount was controlled to 0.28% or less, and 10 ⁇ 3 Torr or less under reduced pressure.
  • the magnetic measurement was performed as follows. After winding the magnetization application coil and magnetic flux detection coil, the HB curve is measured according to JIS C2504 using an automatic magnetization measurement device (DC magnetic measurement device BHS-40CD manufactured by Riken Denshi Co., Ltd.) The relative permeability was determined. The maximum relative magnetic permeability was 4000 or more, and the magnetic properties were acceptable.
  • Sample No. Reference numerals 1, 7 and 11 to 16 are invention examples in which annealing was performed in a hydrogen atmosphere.
  • the amount of solute N was 90 ppm or less in all samples, and the maximum relative magnetic permeability exceeded 4000 in all cases.
  • Sample No. 2 and 3 are examples of the invention which were annealed in an inert gas atmosphere.
  • the amount of solute N was 90 ppm or less in all samples, and the maximum relative magnetic permeability exceeded 4000 in all cases.
  • Sample No. 4 is an example of the invention which was annealed under reduced pressure.
  • the amount of solute N was 90 ppm or less in all samples, and the maximum relative magnetic permeability exceeded 4000 in all cases.
  • Sample No. Although the component composition of steel 6 satisfy
  • Sample No. No. 8 is an example in which the amount of C is excessive, and since the ferrite area ratio of the used steel material was less than 95%, the maximum relative permeability of the sample after magnetic annealing was 4000 or less.
  • Sample No. No. 9 is an example in which Mn, P and S are excessive, and the maximum relative permeability was 4000 or less even after magnetic annealing.
  • Sample No. No. 10 is an example in which Si and Al are excessive, and the maximum relative permeability was 4000 or less even after magnetic annealing.

Abstract

A steel material for soft magnetic components, which exhibits excellent magnetic characteristics after annealing, and which is characterized by being composed of 0.0001 mass% to 0.05 mass% of C, more than 0 mass% but 0.5 mass% or less of Si, 0.1 mass% to 0.5 mass% of Mn, more than 0 mass% but 0.02 mass% or less of P, more than 0 mass% but 0.1 mass% or less of S, more than 0 mass% but 0.05 mass% or less of Al and more than 0.01 mass% but 0.1 mass% or less of N, with the balance made up of Fe and unavoidable impurities, while having an area ratio of the ferrite structure of 95.0% or more. This steel material for soft magnetic components is also characterized by satisfying formula (1). [N] - (1/2[Al]) > 0.01 (1) In the formula, [N] and [Al] represent the contents (mass%) of N and Al, respectively.

Description

軟磁性部品用鋼材及びそれを用いた軟磁性部品の製造方法Steel material for soft magnetic parts and method for producing soft magnetic parts using the same
 本開示は、軟磁性部品用鋼材と、それを用いて軟磁性部品を製造する方法に関する。特に、本開示は、自動車、電車、船舶、建機、産業機械又は家電製品等において、各種電装部品に使用されるソレノイド、リレー又は電磁弁等に使用される鉄心材又はカバー材(いわゆる軟磁性部品)を製造するのに好適な軟磁性鋼材と、該軟磁性鋼材を用いた軟磁性部品の製造方法に関する。 The present disclosure relates to a steel material for soft magnetic parts and a method for producing a soft magnetic part using the steel material. In particular, the present disclosure relates to iron core materials or cover materials (so-called soft magnetic materials) used for solenoids, relays, solenoid valves, etc. used for various electrical components in automobiles, trains, ships, construction machinery, industrial machinery, home appliances, etc. The present invention relates to a soft magnetic steel material suitable for manufacturing a component) and a method of manufacturing a soft magnetic component using the soft magnetic steel material.
 自動車の電装部品等において磁気回路を構成する軟磁性部品には、省電力化および応答性の向上を図るべく、優れた軟磁気特性が求められる。このため、軟磁性部品内部の磁束密度が外部磁界に応答し易い軟磁性材料が使用される。 The soft magnetic parts that constitute the magnetic circuit in automobile electrical parts and the like are required to have excellent soft magnetic characteristics in order to save power and improve responsiveness. For this reason, a soft magnetic material in which the magnetic flux density inside the soft magnetic component easily responds to an external magnetic field is used.
 優れた軟磁気特性を有する軟磁性部品用鋼材としては、極低炭素鋼などが使用される。極低炭素鋼から線条または板状の軟磁性部品用鋼材を形成し、冷間鍛造、プレス加工および切削加工などの加工技術により、所望形状の軟磁性部品を製造することができる。それらの加工を容易にするために、軟磁性部品用鋼材の冷間鍛造性、プレス加工性または切削加工性を向上することが検討されている。 極 Ultra-low carbon steel is used as a steel material for soft magnetic parts with excellent soft magnetic properties. A wire material or a plate-shaped steel material for soft magnetic parts is formed from ultra-low carbon steel, and a soft magnetic part having a desired shape can be manufactured by a processing technique such as cold forging, pressing, and cutting. In order to facilitate such processing, it has been studied to improve the cold forgeability, press workability or cutting workability of the steel for soft magnetic parts.
 例えば特許文献1には、極低炭素鋼の鋼材について、鋼材全体の冷間鍛造性(特に変形抵抗)を向上しつつ、冷間鍛造後の局所的な部品強度を高める技術が開示されている。具体的には、鋼材のうち、強度を向上させたい部分の固溶N量(固溶窒素量)を増加させて、その他の部分の固溶N量を抑制している。固溶N量が多い部分は、通常の変形抵抗以上に機械部品強度を高めることができる。その一方で、その他の部分は固溶N量が相対的に低いので、全体として通常の変形抵抗代しか強度が増加せず、冷間鍛造性を確保できる。 For example, Patent Document 1 discloses a technique for increasing the local component strength after cold forging while improving the cold forgeability (particularly, deformation resistance) of the entire steel material for a steel material of extremely low carbon steel. . Specifically, the amount of solid solution N (the amount of solid solution nitrogen) in the portion of the steel material whose strength is to be improved is increased to suppress the amount of solid solution N in the other portions. The portion having a large amount of solute N can increase the mechanical component strength more than the normal deformation resistance. On the other hand, since the amount of solute N is relatively low in the other portions, only the ordinary deformation resistance allowance increases as a whole, and cold forgeability can be ensured.
 特許文献2には、鋼材を冷間鍛造で精度よく加工でき、優れた磁気特性を安定して得られる軟磁性鋼板が開示されている。軟磁性鋼材では、鋼中のN量に対するB量の割合を制御して固溶NをBNとして固定し、鋼中の固溶Nを低減することで、変形抵抗を有効に低減できる。これにより、優れた磁気特性の安定性と冷間鍛造性を実現している。 Patent Document 2 discloses a soft magnetic steel sheet that can accurately process a steel material by cold forging and stably obtain excellent magnetic properties. In the soft magnetic steel material, the deformation resistance can be effectively reduced by controlling the ratio of the B amount to the N amount in the steel, fixing the solid solution N as BN, and reducing the solid solution N in the steel. This achieves excellent magnetic property stability and cold forgeability.
 特許文献3では、優れた冷間鍛造性、切削加工性および磁気特性を備えた軟磁性鋼材が開示されている。鋼材中のフェライト結晶粒内にMnSを微細に分散させることにより、被削性、特に耐バリ性(切削面のバリ生成の抑制効果)を向上している。また、鋼材にBを添加して、鋼材中のNをBNとすることにより、磁気特性を向上している。 Patent Document 3 discloses a soft magnetic steel material having excellent cold forgeability, cutting workability, and magnetic properties. By finely dispersing MnS in the ferrite crystal grains in the steel material, machinability, in particular, burr resistance (an effect of suppressing burr formation on the cut surface) is improved. Moreover, the magnetic characteristics are improved by adding B to the steel material and changing N in the steel material to BN.
 特許文献4には、軟磁性に優れたBN系快削鋼が開示されている。鋼材にBとNを積極的に添加し、鋼材中に快削性介在物としてBNを形成して、切削加工性、特に工具寿命を向上している。なお、BNを形成しないBまたはNが存在すると軟磁性が低下するため、N/B比を0.8~2.5としている。 Patent Document 4 discloses a BN free-cutting steel excellent in soft magnetism. B and N are positively added to the steel material, and BN is formed as a free-cutting inclusion in the steel material to improve the cutting workability, particularly the tool life. Note that the presence of B or N that does not form BN decreases soft magnetism, so the N / B ratio is set to 0.8 to 2.5.
特開2011-115815JP2011-115815A 特開2007-238970JP2007-238970 特開2003-55745JP 2003-55745 A 特開2001-303209JP 2001-303209 A
 軟磁性部品鋼材を切削加工して軟磁性部品を形成する場合には、切削作業の無人化および自動化により生産性を向上することができる。しかしながら、切屑が長く延びると、被削材または工具などに絡みつくことがある。被削材に切屑がからまると、加工製品(軟磁性部品)に疵がつく原因となり得る。また、工具に被削材がからまると、工具からの放熱効率を悪化させる等により工具の寿命が低下し得る。そのため、被削材等に切屑がからまった場合には切屑を取り除くことが必要であるが、そのために装置を停止すると、生産性が低下してしまう。このため、軟磁性部品用鋼材に対して、切削加工中に切屑が自然に分断して、被削材等にからまりにくい特性(すなわち、切屑処理性が良好であること)が求められている。 When forming a soft magnetic part by cutting a soft magnetic part steel material, productivity can be improved by unmanned and automated cutting work. However, if the chips extend for a long time, they may become entangled with the work material or tool. If chips are entangled in the work material, it may cause wrinkles on the processed product (soft magnetic component). Further, when the work material is entangled in the tool, the tool life may be shortened by deteriorating the heat radiation efficiency from the tool. For this reason, it is necessary to remove the chips when the work material or the like becomes entangled, but if the apparatus is stopped for that purpose, the productivity is lowered. For this reason, the steel material for soft magnetic parts is required to have a characteristic that chips are naturally divided during cutting and are not easily entangled with a work material or the like (that is, chip disposal is good). .
 しかしながら、特許文献1および2に開示されている鋼材は、冷間鍛造については考慮されているのみで、切削加工については検討されていない。特許文献3は、切削加工性のうちでも耐バリ性について検討されているが、切屑処理性については検討されていない。 However, the steel materials disclosed in Patent Documents 1 and 2 are only considered for cold forging and not for cutting. In Patent Document 3, burr resistance is studied among cutting workability, but chip disposability is not studied.
 特許文献4には、表3に切屑処理性の良否判断が示されているが、判断基準も記載されておらず、切屑処理性をどのように向上できるのかについて、具体的な説明はされていない。また、表3から、切削工具寿命が良好であれば、切屑処理性は良好になる傾向は読み取れるが、切削工具寿命が不良であっても、切屑処理性は良好となる鋼材も存在しているため、切屑処理性をどのように向上できるのかについて把握することはできない。 In Patent Document 4, the quality judgment of chip disposal is shown in Table 3, but the determination criteria are not described, and a specific explanation is given as to how the chip disposal can be improved. Absent. Further, from Table 3, if the cutting tool life is good, it can be seen that the chip disposal is good, but there are steel materials that have good chip disposal even if the cutting tool life is poor. Therefore, it is impossible to grasp how the chip disposal can be improved.
 本発明の実施形態はこのような状況に鑑みてなされたものであり、その目的は、優れた切削加工性を有しつつ、磁気焼鈍後には優れた磁気特性を発揮できる軟磁性部品用鋼材と、該鋼材を用いて軟磁性部品を製造する方法を提供することにある。 Embodiments of the present invention have been made in view of such circumstances, and the purpose thereof is a steel material for soft magnetic parts that has excellent machinability while exhibiting excellent magnetic properties after magnetic annealing. Another object of the present invention is to provide a method for producing a soft magnetic component using the steel material.
 本発明の実施形態の態様1は、
 焼鈍後の磁気特性に優れる軟磁性部品用鋼材であって、
 C:0.0001質量%~0.05質量%、
 Si:0質量%超~0.5質量%、
 Mn:0.1質量%~0.5質量%、
 P:0質量%超~0.02質量%、
 S:0質量%超~0.1質量%、
 Al:0質量%超~0.05質量%、及び
 N:0.01質量%超~0.1質量%を満たし、
 残部がFe及び不可避不純物からなり、
 フェライト組織の面積率が95.0%以上であり、下記式(1)を満たすことを特徴とする軟磁性部品用鋼材。
 [N]-(1/2[Al])>0.01・・・(1)
 ただし、[N]および[Al]は、それぞれ、NおよびAlの含有量(質量%)を示す。
Aspect 1 of an embodiment of the present invention is:
Steel material for soft magnetic parts with excellent magnetic properties after annealing,
C: 0.0001 mass% to 0.05 mass%
Si: more than 0% by mass to 0.5% by mass,
Mn: 0.1% by mass to 0.5% by mass,
P: more than 0% by mass to 0.02% by mass,
S: more than 0% by mass to 0.1% by mass,
Al: more than 0% by mass to 0.05% by mass, and N: more than 0.01% by mass to 0.1% by mass,
The balance consists of Fe and inevitable impurities,
A steel material for soft magnetic parts, wherein the ferrite structure has an area ratio of 95.0% or more and satisfies the following formula (1).
[N]-(1/2 [Al])> 0.01 (1)
However, [N] and [Al] indicate the content (mass%) of N and Al, respectively.
 本発明の実施形態の態様2は、
 更に、以下の(a)~(c)のいずれか1つ以上を含有することを特徴とする態様1に記載の軟磁性部品用鋼材である。
(a)Cu:0質量%超~0.10質量%、Ni:0質量%超~0.10質量%、及びCr:0質量%超~0.10質量%のうち1種又は2種以上
(b)Ti:0質量%超~0.10質量%、及びNb:0質量%超~0.10質量%のうち1種又は2種、かつ下記式(2)を満たす
(c)B:0質量%超~0.0300質量%、かつ下記式(3)を満たす

 [N]-(1/2[Al]+1/4[Ti]+1/7[Nb])>0.01・・・(2)
 [N]-(1/2[Al]+1/4[Ti]+1/7[Nb]+[B])>0.01・・・(3)
 ただし、[Ti]、[Nb]および[B]は、それぞれ、Ti、NbおよびBの含有量(質量%)を示す。
Aspect 2 of the embodiment of the present invention is:
The steel material for soft magnetic parts according to aspect 1, further comprising any one or more of the following (a) to (c):
(A) One or more of Cu: more than 0% by mass to 0.10% by mass, Ni: more than 0% by mass to 0.10% by mass, and Cr: more than 0% by mass to 0.10% by mass (B) Ti: more than 0% by mass to 0.10% by mass, and Nb: more than 0% by mass to 0.10% by mass, and satisfying the following formula (2) (c) B: Over 0% by mass to 0.0300% by mass and satisfies the following formula (3)

[N] − (1/2 [Al] +1/4 [Ti] +1/7 [Nb])> 0.01 (2)
[N] − (1/2 [Al] +1/4 [Ti] +1/7 [Nb] + [B])> 0.01 (3)
However, [Ti], [Nb] and [B] represent the contents (mass%) of Ti, Nb and B, respectively.
 本発明の実施形態の態様3は、
 態様1又は2に記載の軟磁性部品用鋼材を部品形状に成形する工程と、
 成形した軟磁性部品用鋼材を、鋼中の固溶N量が90ppm以下となるように焼鈍する焼鈍工程と、を含む、軟磁性部品の製造方法である。
Aspect 3 of the embodiment of the present invention is:
Forming the steel material for soft magnetic parts according to aspect 1 or 2 into a part shape;
An annealing process of annealing the formed steel material for soft magnetic parts so that the amount of solute N in the steel is 90 ppm or less.
 本発明の実施形態の態様4は、
 焼鈍工程は、水素雰囲気、不活性ガス雰囲気又は10-2Torr以下の減圧下で行う、態様3に記載の製造方法である。
Aspect 4 of the embodiment of the present invention provides:
The annealing process is the manufacturing method according to the aspect 3, wherein the annealing step is performed under a hydrogen atmosphere, an inert gas atmosphere, or a reduced pressure of 10 −2 Torr or less.
 本発明の実施形態によれば、優れた切削加工性を有しつつ、磁気焼鈍後には優れた磁気特性を発揮できる軟磁性部品用鋼材と、該鋼材を用いて軟磁性部品を製造する方法を提供することができる。 According to an embodiment of the present invention, there is provided a steel material for soft magnetic parts capable of exhibiting excellent magnetic properties after magnetic annealing while having excellent machinability, and a method for producing a soft magnetic part using the steel material. Can be provided.
切屑の形状の分類例を示す図である。It is a figure which shows the example of classification | category of the shape of a chip.
 一般的に、軟磁性部品は、磁気特性を向上させるために、軟磁性部品用の鋼材(以下、単に「鋼材」ということがある)に添加する合金元素の添加量を少量とする。焼鈍工程中に、フェライト結晶の粒成長が合金元素によって阻害されることがないため、結晶粒界の数が低減する。結晶粒界は磁壁移動の障害となるため、結晶粒界が少ない鋼材は、磁気特性に優れているといえる。しかし、鋼材の合金元素の添加量が少ないと、鋼材の靱性が高まり、鋼材の切削加工性、特に切屑処理性が悪化する。 Generally, in soft magnetic parts, in order to improve magnetic properties, the amount of alloying elements added to steel materials for soft magnetic parts (hereinafter sometimes simply referred to as “steel materials”) is made small. Since the grain growth of the ferrite crystal is not inhibited by the alloy element during the annealing process, the number of crystal grain boundaries is reduced. Since the crystal grain boundary becomes an obstacle to domain wall movement, it can be said that the steel material with few crystal grain boundaries is excellent in magnetic properties. However, if the added amount of alloying elements in the steel material is small, the toughness of the steel material increases, and the machinability of the steel material, particularly the chip disposal, deteriorates.
 このような現状の下、本発明者は鋭意研究を重ねた結果、鋼材中の固溶N量を多くすることにより、磁気焼鈍前においては、磁気特性は低いものの切屑処理性が高く、磁気焼鈍後においては磁気特性を高くできる軟磁性部品用鋼材が得られることを見いだした。鋼材中の固溶N量が多いと、磁気特性は大幅に低下する。そのため、磁気焼鈍前においては、軟磁性部品用鋼材の磁気特性は悪い。しかしながら、焼鈍条件、特に焼鈍時の雰囲気を制御することにより、磁気焼鈍中に固溶Nの少なくとも一部を鋼外に放出できる。これにより、磁気焼鈍後の最終製品では固溶N量は低減し、良好な磁気特性を有する最終製品が得られる。 Under such circumstances, the present inventor has conducted intensive research. As a result, by increasing the amount of solute N in the steel material, the magnetic properties are low but the chip treatment is high before magnetic annealing. Later, it was found that a steel material for soft magnetic parts with improved magnetic properties could be obtained. When the amount of solute N in the steel material is large, the magnetic properties are greatly deteriorated. Therefore, before the magnetic annealing, the magnetic properties of the steel material for soft magnetic parts are poor. However, by controlling the annealing conditions, particularly the atmosphere during annealing, at least a part of the solid solution N can be released out of the steel during the magnetic annealing. Thereby, in the final product after magnetic annealing, the amount of solute N is reduced, and a final product having good magnetic properties can be obtained.
 このように、本発明者は、鋼材中に固溶Nを敢えて残存させることにより、磁気焼鈍前は切屑処理性が良好で、磁気焼鈍後は磁気特性に優れた軟磁性部品を得ることのできる軟磁性部品用鋼材の発明を完成させた。
 以下に本発明の実施形態に係る軟磁性部品用鋼材と、それを用いた軟磁性部品の製造方法の詳細を示す。
Thus, the present inventor can obtain a soft magnetic component having good chip disposal before magnetic annealing and having excellent magnetic properties after magnetic annealing by leaving solid solution N in the steel material. The invention of steel material for soft magnetic parts was completed.
Details of a steel material for soft magnetic parts according to an embodiment of the present invention and a method for producing a soft magnetic part using the same will be described below.
1.軟磁性部品用鋼材の成分組成
 本発明の実施形態に係る軟磁性部品用鋼材の成分組成について、以下に説明する。
 なお、成分組成について単位の%表示は、すべて質量%を意味する。
1. Component Composition of Steel Material for Soft Magnetic Parts The component composition of the steel material for soft magnetic parts according to the embodiment of the present invention will be described below.
In addition, unit% display of a component composition means the mass% altogether.
〔C:0.0001~0.05%〕
 Cは、鋼材の強度と延性のバランスを支配する元素であり、添加量を低減するほど強度は低下し、延性は向上する。鋼材を効率よく製造する観点から、C量の下限は0.0001%とした。C量は、好ましくは0.001%以上であり、より好ましくは0.002%以上である。しかし、磁気特性は、強磁性体であるフェライトの体積率が多いほど良好である。C量が多いとセメンタイトが析出しフェライトの体積率が減少すると共に、セメンタイトが磁壁移動の妨げとなるため、磁気特性が悪化する。そこで、C量の上限は0.05%と定めた。C量は、好ましくは0.03%以下であり、より好ましくは0.015%以下である。
[C: 0.0001 to 0.05%]
C is an element that governs the balance between the strength and ductility of the steel material, and the strength decreases and the ductility improves as the amount added is reduced. From the viewpoint of efficiently producing a steel material, the lower limit of the C content is set to 0.0001%. The amount of C is preferably 0.001% or more, and more preferably 0.002% or more. However, the magnetic properties are better as the volume fraction of ferrite, which is a ferromagnetic material, increases. When the amount of C is large, cementite precipitates, the volume fraction of ferrite decreases, and cementite hinders domain wall movement, so that the magnetic properties deteriorate. Therefore, the upper limit of the C amount is set to 0.05%. The amount of C is preferably 0.03% or less, and more preferably 0.015% or less.
〔Si:0超~0.5%〕
 Siは、溶製時に脱酸材として用いられる。更に磁気特性を向上させる効果をもたらす。上記効果を有効に発揮するためには、Siは0.001%以上とすることが好ましく、より好ましくは0.003%以上である。しかし、Siが過剰に含まれると却って磁気特性は低下する。よってSi量の上限は0.5%と定めた。Si量は、好ましくは0.4%以下であり、より好ましくは0.3%以下である。
[Si: over 0 to 0.5%]
Si is used as a deoxidizer during melting. Furthermore, the effect of improving the magnetic characteristics is brought about. In order to effectively exhibit the above effect, Si is preferably 0.001% or more, more preferably 0.003% or more. However, if Si is excessively contained, the magnetic properties are deteriorated. Therefore, the upper limit of Si content is set to 0.5%. The amount of Si is preferably 0.4% or less, and more preferably 0.3% or less.
〔Mn:0.1~0.5%〕
 Mnは、脱酸材としてとして有効に作用する。さらに、Mnは、鋼材中に含まれるSと結合してMnS析出物として微細分散することで、切削加工の際に生じる切屑のチップブレーカーとなり、被削性の向上に寄与する。こうした作用を有効に発揮させるため、Mn量を0.1%以上と定めた。Mn量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。Mn量が多すぎると、磁気特性が悪化するため、0.5%以下と定めた。Mn量は、好ましくは0.45%以下であり、より好ましくは0.4%以下であり、更に好ましくは0.38%以下である。
[Mn: 0.1 to 0.5%]
Mn acts effectively as a deoxidizer. Further, Mn combines with S contained in the steel material and finely disperses as MnS precipitates, thereby forming a chip breaker for chips generated during the cutting process and contributing to improvement of machinability. In order to exhibit such an action effectively, the amount of Mn was determined to be 0.1% or more. The amount of Mn is preferably 0.15% or more, more preferably 0.20% or more. If the amount of Mn is too large, the magnetic properties are deteriorated. The amount of Mn is preferably 0.45% or less, more preferably 0.4% or less, and still more preferably 0.38% or less.
〔P:0超~0.02%〕
 P(リン)は、鋼材中で粒界偏析を起こして磁気特性を悪化させる元素である。よってP量を0.02%以下に抑えて磁気特性の改善を図る。P量は、好ましくは0.015%以下であり、より好ましくは0.010%以下である。P量は少なければ少ないほど好ましいが、通常0.001%程度含まれる。
[P: over 0 to 0.02%]
P (phosphorus) is an element that causes grain boundary segregation in steel and deteriorates magnetic properties. Therefore, the P amount is suppressed to 0.02% or less to improve the magnetic characteristics. The amount of P is preferably 0.015% or less, more preferably 0.010% or less. The smaller the amount of P, the better. However, it is usually contained by about 0.001%.
〔S:0超~0.1%〕
 S(硫黄)は、上記のように鋼中でMnSを形成し、切削加工で応力が負荷された時に応力集中箇所となって被削性を向上させる作用を有する。こうした作用を有効に発揮させるため、Sは0.003%以上含有させても良く、より好ましくは0.010%以上である。しかし、S量が多くなりすぎると、磁気特性に有害なMnSの過剰な個数増加を招くため、S量は0.1%以下と定めた。S量は、好ましくは0.05%以下であり、より好ましくは0.030%以下である。
[S: over 0 to 0.1%]
S (sulfur) forms MnS in steel as described above, and has a function of improving the machinability by becoming a stress concentration spot when stress is applied by cutting. In order to exhibit such an action effectively, S may be contained in an amount of 0.003% or more, and more preferably 0.010% or more. However, if the amount of S is excessively increased, an excessive increase in the number of MnS harmful to the magnetic properties is caused. Therefore, the amount of S is determined to be 0.1% or less. The amount of S is preferably 0.05% or less, more preferably 0.030% or less.
〔Al:0超~0.05%〕
 Alは、脱酸材として添加される元素であり、脱酸に伴って不純物を低減し、磁気特性を改善する効果を有する。この効果を発揮させるためには、Al量は0.001%以上とすることが好ましく、より好ましくは0.002%以上である。また、Alは、鋼材中のNと化合してAlNを形成しうる。形成されたAlNは、後述する焼鈍工程において結晶粒成長を抑制するピン止め粒子として作用するため、磁壁移動の障害となる結晶粒界を増加させて、磁気特性を低下させる。従って、Al量は0.05%以下と定めた。より優れた磁気特性を発揮するためには、Al量は0.04%以下が好ましく、より好ましくは0.03%以下である。
[Al: more than 0 to 0.05%]
Al is an element added as a deoxidizing material, and has an effect of reducing impurities and improving magnetic properties with deoxidation. In order to exert this effect, the Al content is preferably 0.001% or more, more preferably 0.002% or more. Further, Al can combine with N in the steel material to form AlN. The formed AlN acts as a pinning particle that suppresses crystal grain growth in an annealing process to be described later, and therefore increases the crystal grain boundary that hinders domain wall movement, thereby degrading the magnetic properties. Therefore, the Al content is determined to be 0.05% or less. In order to exhibit more excellent magnetic properties, the Al content is preferably 0.04% or less, more preferably 0.03% or less.
〔N:0.01超~0.1%〕
 Nは、本発明で特に重要な元素である。Nは鋼材中に固溶Nとして存在すると、鋼材の靱性を低下させて、切削加工時に切屑を分断され易くするため、切屑処理性を向上させる。切屑処理性を向上させる効果を十分に発揮させるためには、鋼材中に固溶Nが0.01%を超えて存在する必要がある。そのため、N量は0.01%超とした。切屑処理性を更に高めるため、固溶N量は、好ましくは0.015%以上であり、より好ましくは0.018%以上である。なお、固溶Nは磁気特性を低下させるが、後述する軟磁性部品の製造方法を経ることによって無害化することができる。N量が過剰であると、溶製時にNガスが発生し、溶鋼が飛び散るなど安全性に問題が発生するため、本発明の実施形態では鋼材の製造性の観点からN量の上限は0.1%と定めた。
[N: more than 0.01 to 0.1%]
N is an element particularly important in the present invention. When N is present as solid solution N in the steel material, the toughness of the steel material is lowered and the chips are easily cut off during the cutting process. In order to sufficiently exhibit the effect of improving chip disposal, solid solution N needs to be present in the steel material in excess of 0.01%. Therefore, the N content is set to more than 0.01%. In order to further improve the chip disposability, the solid solution N amount is preferably 0.015% or more, and more preferably 0.018% or more. In addition, although solid solution N reduces a magnetic characteristic, it can be made harmless by passing through the manufacturing method of the soft-magnetic component mentioned later. If the amount of N is excessive, N 2 gas is generated during melting, and there is a problem in safety such that the molten steel scatters. Therefore, in the embodiment of the present invention, the upper limit of the amount of N is 0 from the viewpoint of the productivity of the steel material. Set to 1%.
〔NとAlの含有量の関係〕
 鋼材中のNの含有量とAlの含有量は、以下のような関係式を満たしている。
 [N]-(1/2[Al])>0.01・・・(1)
 ただし、[N]および[Al]は、それぞれ、NおよびAlの含有量(質量%)を示す。
 前述したように、切屑処理性を向上させるためには、鋼材中に固溶Nが0.01%超で存在する必要がある。式(1)を満たすことにより、鋼材中のAlが全てNと反応してAlNを形成したとしても、固溶Nが0.01%超で存在することができる。
 式(1)の右辺は0.01であるが、当該右辺は、好ましくは0.015(つまり、固溶Nが0.015%超)であり、より好ましくは0.018(つまり、固溶Nが0.018%超)である。
[Relationship between N and Al contents]
The N content and the Al content in the steel material satisfy the following relational expression.
[N]-(1/2 [Al])> 0.01 (1)
However, [N] and [Al] indicate the content (mass%) of N and Al, respectively.
As described above, in order to improve the chip disposability, it is necessary that solute N is present in the steel material in an amount exceeding 0.01%. By satisfy | filling Formula (1), even if all Al in steel materials reacts with N and forms AlN, solid solution N can exist in more than 0.01%.
The right side of the formula (1) is 0.01, but the right side is preferably 0.015 (that is, the solid solution N exceeds 0.015%), more preferably 0.018 (that is, the solid solution). N is more than 0.018%).
〔残部〕
 好ましい1つの実施形態では、残部は、鉄および不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる微量元素(例えば、As、Sb、Snなど)の混入が許容される。なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
[Balance]
In one preferred embodiment, the balance is iron and inevitable impurities. As inevitable impurities, mixing of trace elements (for example, As, Sb, Sn, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed. In addition, for example, like P and S, it is usually preferable that the content is small. Therefore, although it is an unavoidable impurity, there is an element that separately defines the composition range as described above. For this reason, in this specification, the term “inevitable impurities” constituting the balance is a concept that excludes elements whose composition ranges are separately defined.
 しかし、この実施形態に限定されるものではない。本発明の高強度鋼板の特性を維持できる限り、任意のその他の元素を更に含んでよい。そのように選択的に含有させることができるその他の元素を以下に例示する。 However, it is not limited to this embodiment. Any other element may be further included as long as the characteristics of the high-strength steel sheet of the present invention can be maintained. Other elements that can be selectively contained as described above are exemplified below.
〔Cu:0超~0.10%、Ni:0超~0.10%、及びCr:0超~0.10%のうち1種又は2種以上〕
 Cuは、フェライト相の電気抵抗を増加させ、渦電流の減衰時定数低減に有効である。しかし、Cuが過剰に含まれていると、磁気モーメントが低下して軟磁性部品の磁気特性が劣化するため、Cuを含む場合、上限は0.1%と定めた。好ましくは0.05%以下である。
[One or more of Cu: more than 0 to 0.10%, Ni: more than 0 to 0.10%, and Cr: more than 0 to 0.10%]
Cu increases the electrical resistance of the ferrite phase and is effective in reducing the decay time constant of the eddy current. However, if Cu is contained excessively, the magnetic moment is lowered and the magnetic properties of the soft magnetic component are deteriorated. Therefore, when Cu is contained, the upper limit is set to 0.1%. Preferably it is 0.05% or less.
 Niは、Cuと同様にフェライト相の電気抵抗を増加させ、渦電流の減衰時定数低減に有効である。しかし、Niが過剰に含まれていると、磁気モーメントが低下して軟磁性部品の磁気特性が劣化するため、Niを含む場合、上限は0.10%と定めた。好ましくは0.05%以下である。
 Crは、Cu及びNiと同様にフェライト相の電気抵抗を増加させ、渦電流の減衰時定数低減に有効である。また、Crは強力な炭化物生成元素であるため、炭化物を形成し、固溶Cを低減するのに有効である。しかし、Crが過剰に含まれていると、磁気モーメントが低下して軟磁性部品の磁気特性が劣化するため、Crを含む場合、上限は0.10%と定めた。好ましくは0.05%以下である。
Ni, like Cu, increases the electrical resistance of the ferrite phase and is effective in reducing the decay time constant of eddy currents. However, if Ni is contained excessively, the magnetic moment is lowered and the magnetic properties of the soft magnetic component are deteriorated. Therefore, when Ni is contained, the upper limit is set to 0.10%. Preferably it is 0.05% or less.
Cr, like Cu and Ni, increases the electrical resistance of the ferrite phase and is effective in reducing the decay time constant of eddy current. Further, since Cr is a strong carbide-forming element, it is effective in forming carbides and reducing solute C. However, if Cr is excessively contained, the magnetic moment is lowered and the magnetic properties of the soft magnetic component are deteriorated. Therefore, when Cr is contained, the upper limit is set to 0.10%. Preferably it is 0.05% or less.
〔Ti:0超~0.10%、及びNb:0超~0.10%のうち1種又は2種〕
 TiはTiSを形成し、切屑処理性の向上に有効であることから添加してもよい。上記効果を有効に発揮させるためには0超、例えば0.005%以上添加することが好ましい。より好ましくは0.01%以上である。しかし、過剰に添加すると磁気特性を低下させるため、Tiを含む場合、Ti上限を0.10%と定めた。好ましくは0.05%以下であり、より好ましくは0.03%以下である。
[Ti: more than 0 to 0.10% and Nb: more than 0 to 0.10%, one or two]
Ti forms TiS and may be added because it is effective in improving chip disposal. In order to effectively exhibit the above effects, it is preferable to add more than 0, for example, 0.005% or more. More preferably, it is 0.01% or more. However, in order to reduce the magnetic properties when excessively added, when Ti is included, the upper limit of Ti is set to 0.10%. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.
 NbはNbCを形成し、固溶C量を低減し磁気特性の向上に有効であることから添加してもよい。しかし、Nbが過剰に含まれていると、炭化物を形成しなかった固溶Nbがかえって磁気特性を劣化させるため、Nbを含む場合、Nbの上限は0.10%とした。好ましくは0.05%以下であり、より好ましくは0.03%以下である。 Nb may be added because it forms NbC and is effective in reducing the amount of dissolved C and improving magnetic properties. However, if Nb is contained excessively, the solid solution Nb that did not form carbides deteriorates the magnetic properties. Therefore, when Nb is contained, the upper limit of Nb is set to 0.10%. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.
〔N、Al、TiおよびNbの関係〕
 Ti、Nb又はその両方を添加する場合は、以下の関係式(2)を満たすように各元素の含有量を調節する。
 [N]-(1/2[Al]+1/4[Ti]+1/7[Nb])>0.01%・・・(2)
 ただし、[N]、[Al]、[Ti]および[Nb]は、それぞれ、N、Al、TiおよびNbの含有量(質量%)を示す。
[Relationship between N, Al, Ti and Nb]
When adding Ti, Nb or both, the content of each element is adjusted so as to satisfy the following relational expression (2).
[N] − (1/2 [Al] +1/4 [Ti] +1/7 [Nb])> 0.01% (2)
However, [N], [Al], [Ti] and [Nb] indicate the contents (mass%) of N, Al, Ti and Nb, respectively.
 前述したように、切屑処理性を向上させるためには、鋼材中に固溶Nが0.01%超で存在する必要がある。式(2)を満たすことにより、鋼材中のAl、TiおよびNbが全てNと反応して窒化物を形成したとしても、固溶Nが0.01%超で存在することができる。
 式(2)の右辺は0.01であるが、当該右辺は、好ましくは0.015(つまり、固溶Nが0.015%超)であり、より好ましくは0.018(つまり、固溶Nが0.018%超)である。
As described above, in order to improve the chip disposability, it is necessary that solute N is present in the steel material in an amount exceeding 0.01%. By satisfying the formula (2), even if all of Al, Ti, and Nb in the steel react with N to form nitrides, solid solution N can exist in an amount exceeding 0.01%.
The right side of the formula (2) is 0.01, but the right side is preferably 0.015 (that is, the solid solution N exceeds 0.015%), more preferably 0.018 (that is, the solid solution). N is more than 0.018%).
〔B:0超~0.0300%〕
 Bは、Nとの化合物であるBNを形成し、切削加工時の潤滑に寄与し、切削加工性(耐バリ性など)の向上に有効な元素である。しかし、Bが過剰に含まれていると、熱間延性が低下するため連続鋳造及び熱間圧延の製造性が低下する。したがって、Bを含む場合、Bの上限は0.0300%と定めた。好ましくは0.0200%以下であり、より好ましくは0.0150%以下である。
[B: Over 0 to 0.0300%]
B is an element that forms BN, which is a compound with N, contributes to lubrication during cutting, and is effective in improving cutting workability (such as burr resistance). However, if B is contained excessively, the hot ductility is lowered, so the productivity of continuous casting and hot rolling is lowered. Therefore, when B is included, the upper limit of B is set to 0.0300%. Preferably it is 0.0200% or less, More preferably, it is 0.0150% or less.
〔N、Al、Ti、NbおよびBの関係〕
 ここで、上記Bを添加する場合は、以下の関係式(3)を満たすように各元素の含有量を調節する。
 [N]-(1/2[Al]+1/4[Ti]+1/7[Nb]+[B])>0.01・・・(3)
 ただし、[N]、[Al]、[Ti]、[Nb]および[B]は、それぞれ、N、Al、Ti、NbおよびBの含有量(質量%)を示す。
[Relationship between N, Al, Ti, Nb and B]
Here, when adding said B, content of each element is adjusted so that the following relational expression (3) may be satisfy | filled.
[N] − (1/2 [Al] +1/4 [Ti] +1/7 [Nb] + [B])> 0.01 (3)
However, [N], [Al], [Ti], [Nb] and [B] indicate the contents (mass%) of N, Al, Ti, Nb and B, respectively.
 前述したように、切屑処理性を向上させるためには、鋼材中に固溶Nが0.01%超で存在する必要がある。式(3)を満たすことにより、鋼材中のAl、Ti、NbおよびBが全てNと反応して窒化物を形成したとしても、固溶Nが0.01%超で存在することができる。
 式(3)の右辺は0.01であるが、当該右辺は、好ましくは0.015(つまり、固溶Nが0.015%超)であり、より好ましくは0.018(つまり、固溶Nが0.018%超)である。
As described above, in order to improve the chip disposability, it is necessary that solute N is present in the steel material in an amount exceeding 0.01%. By satisfying formula (3), even if all of Al, Ti, Nb and B in the steel material react with N to form nitrides, solid solution N can be present in excess of 0.01%.
Although the right side of the formula (3) is 0.01, the right side is preferably 0.015 (that is, solid solution N exceeds 0.015%), more preferably 0.018 (that is, solid solution). N is more than 0.018%).
2.軟磁性部品用鋼材の金属組織
 軟磁性部品の金属組織は、磁気モーメントを増大させるため、強磁性体であるフェライト組織を多く含んでいることが好ましい。このため、軟磁性部品を製造するための鋼材も、フェライト組織を多く含んでいることが好ましい。鋼材中のフェライト組織の割合を95.0%以上と定めた。好ましくは97.0%以上であり、より好ましくは99.0%以上である。
2. Metal structure of soft magnetic component steel material The metal structure of the soft magnetic component preferably contains a large amount of ferrite structure as a ferromagnetic material in order to increase the magnetic moment. For this reason, it is preferable that the steel material for manufacturing the soft magnetic component also contains a large amount of ferrite structure. The ratio of the ferrite structure in the steel material was set to 95.0% or more. Preferably it is 97.0% or more, more preferably 99.0% or more.
3.軟磁性部品用鋼材の製造方法
 本実施形態に係る軟磁性部品用鋼材の製造方法は、まず、従来の方法により、上記成分組成の要件を満たす製鋼原料を溶融してから鋳造して、熱間圧延又は熱間鍛造を行う。
3. Method for Producing Steel Material for Soft Magnetic Parts A method for producing a steel material for soft magnetic parts according to the present embodiment is a method for producing a steel material for soft magnetic parts according to the conventional method. Rolling or hot forging.
4.軟磁性部品の製造方法
 鋼材を使用して軟磁性部品を製造する方法について説明する。
 本発明の実施形態に係る軟磁性部品用鋼材を、所望の部品形状に成形する。成形方法は、冷間鍛造、熱間鍛造、プレス加工および切削加工等の、従来の方法を採用することができる。なお、本発明の鋼材は切削加工性に優れていることを特徴とするが、切削加工を行わずに、他の加工方法で軟磁性部品を製造してもよい。例えば、切削加工と鍛造加工を組み合わせてもよく、鍛造加工のみで成形してもよい。
4). Method for Manufacturing Soft Magnetic Component A method for manufacturing a soft magnetic component using steel will be described.
The steel material for soft magnetic parts according to the embodiment of the present invention is formed into a desired part shape. As the forming method, conventional methods such as cold forging, hot forging, pressing and cutting can be adopted. Although the steel material of the present invention is characterized by excellent machinability, soft magnetic parts may be manufactured by other processing methods without performing the cutting processing. For example, cutting and forging may be combined, or molding may be performed only by forging.
 続いて、部品形状に成形された鋼材(成形品)に対して、鋼材中の固溶N量が90ppm以下となるように磁気焼鈍を行う。これにより、軟磁性部品が製造される。磁気焼鈍前は、鋼材中に固溶Nが0.01%超(100ppm超)で含まれている。磁気焼鈍により鋼材中の固溶Nの一部を鋼外に放出させて鋼中の固溶N量を90ppm以下に低下させることにより、焼鈍後の軟磁性部品の磁気特性を向上させることができる。焼鈍後の鋼材中の固溶N量は、80ppm以下にするのが好ましく、70ppm以下にするのがより好ましく、60ppm以下に低下させることが更により好ましい。 Subsequently, magnetic annealing is performed on the steel material (molded product) formed into a part shape so that the amount of solute N in the steel material is 90 ppm or less. Thereby, a soft magnetic component is manufactured. Before the magnetic annealing, solid solution N is contained in the steel material in an amount of more than 0.01% (more than 100 ppm). The magnetic properties of the soft magnetic parts after annealing can be improved by releasing a part of the solute N in the steel out of the steel by magnetic annealing and reducing the amount of solute N in the steel to 90 ppm or less. . The amount of solute N in the steel after annealing is preferably 80 ppm or less, more preferably 70 ppm or less, and even more preferably reduced to 60 ppm or less.
 磁気焼鈍では、磁気特性を劣化させるひずみを除去することもできる。また、結晶粒を粗大化させ、磁気特性を劣化させる結晶粒界の面積率を低減させることもできる。 Magnetic annealing can also remove strains that degrade magnetic properties. In addition, the area ratio of the crystal grain boundary that makes the crystal grains coarse and deteriorates the magnetic characteristics can be reduced.
 焼鈍条件には、焼鈍温度、焼鈍時間及び焼鈍雰囲気の制御があるが、特に固溶Nを十分に鋼外に放出する観点からは、焼鈍雰囲気を制御することが重要である。以下に、各焼鈍条件について説明する。 Annealing conditions include control of annealing temperature, annealing time, and annealing atmosphere, but it is important to control the annealing atmosphere from the viewpoint of releasing solid solution N sufficiently outside the steel. Below, each annealing condition is demonstrated.
 焼鈍温度は、鋼材中のひずみを除去し、結晶粒界の面積率を低減するために、500℃~1200℃にするのが好ましく、より好ましくは600℃~1100℃であり、更により好ましくは700℃~1000℃である。 The annealing temperature is preferably 500 ° C. to 1200 ° C., more preferably 600 ° C. to 1100 ° C., and still more preferably in order to remove strain in the steel material and reduce the area ratio of the grain boundaries. 700 ° C. to 1000 ° C.
 焼鈍時間は、鋼材中のひずみを除去し、結晶粒界の面積率を低減するために、0.5時間~10時間にするのが好ましく、より好ましくは1時間~8時間であり、更により好ましくは2時間~5時間である。 The annealing time is preferably 0.5 hours to 10 hours, more preferably 1 hour to 8 hours, and even more preferably, in order to remove strain in the steel material and reduce the area ratio of the grain boundaries. Preferably, it is 2 hours to 5 hours.
 焼鈍雰囲気は、鋼中の固溶N量が90ppm以下となるように、鋼材中の固溶Nを鋼外に十分に放出しやすいものが選択される。例えば、水素雰囲気、不活性ガス雰囲気又は10-2Torr以下の減圧下が好ましい。ここで、「不活性ガス」とは、反応性の低いガスのことであり、例えば窒素、アルゴンなどが挙げられる。
 上記焼鈍雰囲気下で磁気焼鈍を行うことにより、磁気特性に有害な固溶Nが鋼外に十分に放出されて、軟磁性部品の磁気特性が飛躍的に向上する。
The annealing atmosphere is selected such that the solute N in the steel material is easily released out of the steel so that the amount of solute N in the steel is 90 ppm or less. For example, a hydrogen atmosphere, an inert gas atmosphere, or a reduced pressure of 10 −2 Torr or less is preferable. Here, the “inert gas” is a gas having low reactivity, and examples thereof include nitrogen and argon.
By performing magnetic annealing in the annealing atmosphere, solid solution N harmful to the magnetic properties is sufficiently released out of the steel, and the magnetic properties of the soft magnetic parts are dramatically improved.
 水素雰囲気及び不活性ガス雰囲気で焼鈍する場合は、雰囲気中の水分量が0.5%以下であると、固溶Nの放出効果が向上するので好ましい。水分量は、より好ましくは0.05%以下であり、更により好ましくは0.005%以下である。 In the case of annealing in a hydrogen atmosphere and an inert gas atmosphere, the moisture content in the atmosphere is preferably 0.5% or less because the effect of releasing solid solution N is improved. The amount of water is more preferably 0.05% or less, and even more preferably 0.005% or less.
 また、減圧下で焼鈍する場合は、固溶Nの放出効果を有効に発揮するために、残存酸素量を極力低減することが好ましい。残存酸素量が大きいと、鋼材表面に酸化スケールが形成され、固溶Nが鋼外に放出され難くなるためであると考えられる。減圧下で焼鈍する場合、残存酸素量を減らす観点から、真空度の上限は10-2Torrとした。好ましくは10-3Torr以下であり、より好ましくは10-4Torr以下である。 Further, when annealing under reduced pressure, it is preferable to reduce the amount of residual oxygen as much as possible in order to effectively exhibit the effect of releasing solid solution N. If the amount of residual oxygen is large, an oxide scale is formed on the surface of the steel material, and it is considered that solute N is difficult to be released out of the steel. In the case of annealing under reduced pressure, the upper limit of the degree of vacuum is set to 10 −2 Torr from the viewpoint of reducing the amount of residual oxygen. It is preferably 10 −3 Torr or less, more preferably 10 −4 Torr or less.
 本実施の形態における軟磁性部品の製造方法によれば、固溶N量が高い(すなわち、磁気特性の悪い)鋼材を用いても、磁気特性に優れた軟磁性部品を製造することができる。 According to the method for manufacturing a soft magnetic component in the present embodiment, a soft magnetic component having excellent magnetic characteristics can be manufactured even when a steel material having a high solid solution N amount (that is, poor magnetic characteristics) is used.
 以下、実施例を挙げて本発明の実施形態をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適用し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the embodiments of the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and may be appropriately changed within the scope applicable to the purpose described above and below. Of course, the present invention can be carried out in addition to those described above, and both are included in the technical scope of the present invention.
1.切削試験
 表1に示す成分組成の供試材を溶製し、鋼種D及びEの鋳造片は1100℃で熱間圧延を行い、鋼種A~C及びF~Oの鋳造片は1100℃で熱間鍛造を行って、直径42mmの棒材とした。その後、棒材から長さ1000mmの線材片を切り出し、1200℃で1時間の焼きならし処理を行った。焼きならし処理の雰囲気は大気中とした。なお、焼きならし処理前の線材片表面には酸化スケールが形成されているため、焼きならし処理によって、線材片中の固溶Nが大気中に放出されることは抑制される。
1. Cutting test Specimens with the composition shown in Table 1 were melted. Cast pieces of steel types D and E were hot-rolled at 1100 ° C, and cast pieces of steel types A to C and F to O were heated at 1100 ° C. Inter-forging was performed to obtain a bar with a diameter of 42 mm. Thereafter, a wire piece having a length of 1000 mm was cut out from the bar and subjected to a normalizing treatment at 1200 ° C. for 1 hour. The atmosphere of the normalizing treatment was in the air. In addition, since the oxide scale is formed in the surface of the wire piece before the normalization process, it is suppressed by the normalization process that the solid solution N in the wire piece is released into the atmosphere.
 焼きならし処理後の線材片から長さ400mmの切削試験用のサンプルを切り出した。切削試験は株式会社大隈鐵工所(現:オークマ株式会社)製LS-N型NC旋盤を用いて行った。切削加工条件は、送り速度0.04mm/rev、切り込み量0.2mm及び切削速度50m/分、75m/分、100m/分、および150m/分で行った。また、切削工具には、株式会社タンガロイ製のチップ(形番:SNMA12404 T9005)を使用した。 A sample for cutting test having a length of 400 mm was cut out from the wire piece after the normalizing treatment. The cutting test was carried out using an LS-N type NC lathe manufactured by Otsuchi Corporation (currently Okuma Corporation). The cutting conditions were a feed rate of 0.04 mm / rev, a cutting depth of 0.2 mm, and a cutting rate of 50 m / min, 75 m / min, 100 m / min, and 150 m / min. Moreover, the chip | tip (model number: SNMA12404 T9005) by Tangaloy Co., Ltd. was used for the cutting tool.
 各サンプルの切削試験で出た切屑を用いて、以下の手順で、各サンプルの切屑処理性を評価した。
 各サンプルの切屑を無作為に10本採取し、図1に示したように、形状を以下のA~Dの4水準に分類した。各水準は、以下のように説明される。
 A:半径Rが10mmを超える1巻き以下、または不規則な連結
 B:巻き長さ(らせん状の切屑の中心軸方向の長さ)が40.0mm超
 C:巻き長さが40.0mm以下
 D:半径Rが10mm以下の1巻き以下
Using the chips produced in the cutting test of each sample, the chip disposal of each sample was evaluated by the following procedure.
Ten chips of each sample were collected at random, and the shapes were classified into the following four levels A to D as shown in FIG. Each level is explained as follows.
A: 1 turn or less with radius R exceeding 10 mm, or irregular connection B: Winding length (length of spiral chip in the central axis direction) is over 40.0 mm C: Winding length is 40.0 mm or less D: 1 roll or less with radius R of 10 mm or less
 切屑が長く延びた場合、被削材及び工具などに絡みつき、製品の品質低下及び工具の損傷を招く可能性がある。本発明の実施形態では、Aが最も切屑が長く、好ましくない切屑とした。B~Dは許容される切屑で、特にDが最も良好、次にC、その次にBが好ましい。それらの評価を踏まえて係数で重み付けした以下の式(4)により、切屑処理指数を算出した。
(切屑処理指数)=(Dの切屑の本数)×10+(Cの切屑の本数)×20/3+(Bの切屑の本数)×10/3・・・(4)
If the chips extend for a long time, they may become entangled with the work material and the tool, resulting in deterioration of the product quality and damage to the tool. In the embodiment of the present invention, A is the longest chip and is not preferable. B to D are acceptable chips, in particular D is the best, C is the next, and B is the next. Based on these evaluations, the chip disposal index was calculated by the following formula (4) weighted by a coefficient.
(Chip disposal index) = (Number of chips of D) × 10 + (Number of chips of C) × 20/3 + (Number of chips of B) × 10/3 (4)
 各サンプルについて、それぞれの切削速度における切屑処理指数を表2に示す。表2の「判定」では、すべての切削速度で切屑処理指数が50を超えるものを合格(○)とし、2つの切削速度で切屑処理指数が50以下であったものを不合格(×)とした。この結果から、次のように考察できる。 Table 2 shows the chip disposal index at each cutting speed for each sample. In the “determination” in Table 2, a chip treatment index exceeding 50 at all cutting speeds was accepted (◯), and a chip treatment index at two cutting speeds was 50 or less was rejected (×). did. From this result, it can be considered as follows.
 鋼種A、B、G、H、J、K、L及びNは本発明の実施形態で規定される要件を満足する例であり、切屑処理指数が全ての切削速度で50を超えており、切屑処理性の高い鋼材であることがわかる。
 鋼種D、EおよびFは、N量が少なく、固溶N量が少ない(式(1)を満たさない)。しかしながら、他の合金元素(C、Si、Mn、P、SまたはAl等)が多いため、切屑処理性は高かった。
Steel types A, B, G, H, J, K, L, and N are examples that satisfy the requirements defined in the embodiments of the present invention, and the chip treatment index exceeds 50 at all cutting speeds. It turns out that it is a steel material with high processability.
Steel types D, E, and F have a small amount of N and a small amount of solid solution N (does not satisfy formula (1)). However, since there are many other alloy elements (C, Si, Mn, P, S, Al, etc.), chip disposal was high.
 鋼種Cは、N量が少なく、固溶N量が少ない(式(1)を満たさない)。そのため、切削速度が高速(75m/分、100m/分及び150m/分)になると、切屑処理指数が低くなり、切屑処理性が十分ではなかった。 Steel type C has a small amount of N and a small amount of solid solution N (does not satisfy equation (1)). Therefore, when the cutting speed is high (75 m / min, 100 m / min, and 150 m / min), the chip treatment index is low, and the chip disposability is not sufficient.
 鋼種Mは、固溶N量が少ない(式(2)を満たさない)。そのため、切削速度が高速(100m/分及び150m/分)では切屑処理指数が低くなり、切屑処理性が十分ではなかった。 Steel type M has a small amount of solute N (does not satisfy formula (2)). Therefore, when the cutting speed is high (100 m / min and 150 m / min), the chip treatment index is low, and the chip disposability is not sufficient.
 鋼種Oは、固溶N量が少ない(式(3)を満たさない)。そのため、切削速度が高速(75m/分、100m/分及び150m/分)では切屑処理指数が低くなり、切屑処理性が十分ではなかった。 Steel type O has a small amount of solute N (does not satisfy formula (3)). Therefore, when the cutting speed is high (75 m / min, 100 m / min, and 150 m / min), the chip treatment index is low, and the chip disposability is not sufficient.
 以上説明したように、切屑処理性が劣っている鋼種は、切削速度が高速になる程、切屑処理指数が低くなり、切屑処理性が悪化した。一方、本発明の実施形態で規定される成分組成の要件を満足する鋼種では、高速の切削速度においても、切屑処理指数が合格基準を満足し、切屑処理性が良好であった。 As described above, the steel type having inferior chip disposal has a lower chip disposal index as the cutting speed increases, and the chip disposal has deteriorated. On the other hand, in the steel types satisfying the requirements of the component composition defined in the embodiment of the present invention, the chip treatment index satisfied the acceptance criteria even at a high cutting speed, and the chip disposal was good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.磁気特性の測定
 磁気特性の測定は、切削試験において切屑処理性の判定が合格であった鋼材(鋼種A、B、D~LおよびN)について行った。
 表1に示す成分組成の供試材を溶製し、鋼種D及びEの鋳造片は1100℃で熱間圧延を行い、鋼種A、B、F~L及びNの鋳造片は1100℃で熱間鍛造を行って、直径38mmの棒材とした。その後、1200℃で1時間の焼きならし処理を行った。その後、棒材を切削加工して、外形38mm×内径30mm×厚さ4mmのリング状試料を作成した。リング状試料を、焼鈍温度850℃、焼鈍時間3時間で磁気焼鈍した。焼鈍雰囲気は、表3に記載した。焼鈍雰囲気は、水素雰囲気では水素99.99%の水素ガスを焼鈍炉に充満させ、焼鈍炉内の水分量を0.001%以下に制御し、窒素雰囲気では液体窒素を気化させ窒素99.99%の窒素ガスを焼鈍炉に充満させ、焼鈍炉内の水分量を0.09%以下に制御し、アルゴン雰囲気ではアルゴン99.9%のアルゴンガスを焼鈍炉に充満させ、焼鈍炉内の水分量を0.28%以下に制御し、減圧下では10―3Torr以下とした。
2. Measurement of magnetic properties The measurement of magnetic properties was performed on steel materials (steel types A, B, D to L, and N) that passed the chip disposal evaluation in the cutting test.
The specimens having the composition shown in Table 1 were melted. The cast pieces of steel types D and E were hot-rolled at 1100 ° C., and the cast pieces of steel types A, B, F to L and N were heated at 1100 ° C. Inter-forging was performed to obtain a bar with a diameter of 38 mm. Then, the normalizing process for 1 hour was performed at 1200 degreeC. Thereafter, the rod was cut to prepare a ring-shaped sample having an outer diameter of 38 mm, an inner diameter of 30 mm, and a thickness of 4 mm. The ring-shaped sample was magnetically annealed at an annealing temperature of 850 ° C. and an annealing time of 3 hours. The annealing atmosphere is listed in Table 3. In the annealing atmosphere, in the hydrogen atmosphere, hydrogen gas of 99.99% hydrogen is filled in the annealing furnace, the moisture content in the annealing furnace is controlled to 0.001% or less, and in the nitrogen atmosphere, liquid nitrogen is vaporized and nitrogen is 99.99. % Of nitrogen gas in the annealing furnace, the moisture content in the annealing furnace is controlled to 0.09% or less, and in the argon atmosphere, 99.9% of argon gas is filled in the annealing furnace, and the moisture in the annealing furnace is filled. The amount was controlled to 0.28% or less, and 10 −3 Torr or less under reduced pressure.
 焼鈍後のリング状試料について、以下のように磁気測定を行った。磁化印加用コイルと磁束検出用コイルを巻き線した後、自動磁化測定装置(理研電子株式会社製 直流磁気測定装置 BHS-40CD)を用い、JIS C2504に則ってH-B曲線を測定し、最大比透磁率を求めた。最大比透磁率が4000以上で磁気特性を合格とした。 About the ring-shaped sample after annealing, the magnetic measurement was performed as follows. After winding the magnetization application coil and magnetic flux detection coil, the HB curve is measured according to JIS C2504 using an automatic magnetization measurement device (DC magnetic measurement device BHS-40CD manufactured by Riken Denshi Co., Ltd.) The relative permeability was determined. The maximum relative magnetic permeability was 4000 or more, and the magnetic properties were acceptable.
 また、焼鈍後のリング状試料のうち、鋼種A、B、G、H、J、K、L及びNの試料は、鋼中のN量の測定を行った。N量の測定は、LECO製の酸素・窒素分析装置ON836を用いて行った。なお、測定されるN量は、固溶N量と、窒化物として固定されたN量の合計量である。表3の「固溶N量」は、リング状試料の作成に使用された鋼材の合金元素(表1参照)のうち、窒化物を形成しうる合金元素(Al、Ti、NbおよびB)が全て窒化物を形成したと仮定して算出した。
 磁気特性の測定結果を表3に示す。表3の「判定」では、最大比透磁率が4000を超えるものを合格(○)とし、4000以下のものを不合格(×)とした。この結果から、次のように考察できる。
Moreover, among the ring-shaped samples after annealing, samples of steel types A, B, G, H, J, K, L, and N were measured for the amount of N in the steel. The amount of N was measured using LECO oxygen / nitrogen analyzer ON836. The N amount to be measured is the total amount of the solute N amount and the N amount fixed as nitride. “Solubility N amount” in Table 3 indicates that alloy elements (Al, Ti, Nb, and B) that can form nitrides among the alloy elements (see Table 1) of the steel material used for the preparation of the ring-shaped sample. It was calculated assuming that all nitrides were formed.
Table 3 shows the measurement results of the magnetic characteristics. In “judgment” in Table 3, a sample having a maximum relative permeability exceeding 4000 was evaluated as acceptable (◯), and a value of 4000 or less was rejected (x). From this result, it can be considered as follows.
 サンプルNo.1、7及び11~16は水素雰囲気で焼鈍を行った発明例である。固溶N量は、全てのサンプルで90ppm以下となっており、最大比透磁率はすべて4000を超えていた。 Sample No. Reference numerals 1, 7 and 11 to 16 are invention examples in which annealing was performed in a hydrogen atmosphere. The amount of solute N was 90 ppm or less in all samples, and the maximum relative magnetic permeability exceeded 4000 in all cases.
 サンプルNo.2及び3は不活性ガス雰囲気で焼鈍を行った発明例である。固溶N量は、全てのサンプルで90ppm以下となっており、最大比透磁率はすべて4000を超えていた。 Sample No. 2 and 3 are examples of the invention which were annealed in an inert gas atmosphere. The amount of solute N was 90 ppm or less in all samples, and the maximum relative magnetic permeability exceeded 4000 in all cases.
 サンプルNo.4は減圧下で焼鈍を行った発明例である。固溶N量は、全てのサンプルで90ppm以下となっており、最大比透磁率はすべて4000を超えていた。 Sample No. 4 is an example of the invention which was annealed under reduced pressure. The amount of solute N was 90 ppm or less in all samples, and the maximum relative magnetic permeability exceeded 4000 in all cases.
 表3に示したように、水素雰囲気、不活性ガス雰囲気及び減圧下で焼鈍を行った各サンプル(サンプルNo.1~4、7及び11~16)の固溶N量を比較すると、固溶Nを鋼外に放出する効果は、水素雰囲気が最も高く、水素雰囲気、不活性ガス雰囲気、減圧下の順番で低くなることが分かる。 As shown in Table 3, when the solid solution N amount of each sample (sample Nos. 1 to 4, 7, and 11 to 16) annealed under a hydrogen atmosphere, an inert gas atmosphere, and a reduced pressure was compared, It can be seen that the effect of releasing N out of the steel is highest in the hydrogen atmosphere, and decreases in the order of hydrogen atmosphere, inert gas atmosphere, and reduced pressure.
 サンプルNo.5は、磁気焼鈍時の雰囲気が大気であったため、固溶N量が、磁気焼鈍前の鋼材(鋼種A)から殆ど減少せず、90ppmを超えていた。そのため、最大比透磁率は4000以下であった。 Sample No. In No. 5, since the atmosphere at the time of magnetic annealing was air, the amount of solute N was hardly reduced from the steel material (steel type A) before the magnetic annealing and exceeded 90 ppm. Therefore, the maximum relative permeability was 4000 or less.
 サンプルNo.6は鋼材の成分組成は本発明の実施形態に規定する範囲を満たすが、焼鈍を施さなかったため、固溶N量が90ppmを超えており、最大比透磁率は4000以下であった。 Sample No. Although the component composition of steel 6 satisfy | fills the range prescribed | regulated to embodiment of this invention, since annealing was not given, the amount of solute N exceeded 90 ppm and the maximum relative magnetic permeability was 4000 or less.
 サンプルNo.8は、C量が過剰な例であり、使用した鋼材のフェライト面積率が95%未満であったため、磁気焼鈍後のサンプルの最大比透磁率最大比透磁率は4000以下であった。 Sample No. No. 8 is an example in which the amount of C is excessive, and since the ferrite area ratio of the used steel material was less than 95%, the maximum relative permeability of the sample after magnetic annealing was 4000 or less.
 サンプルNo.9はMn、P及びSが過剰な例であり、磁気焼鈍後も最大比透磁率は4000以下であった。 Sample No. No. 9 is an example in which Mn, P and S are excessive, and the maximum relative permeability was 4000 or less even after magnetic annealing.
 サンプルNo.10はSi及びAlが過剰な例であり、磁気焼鈍後も最大比透磁率は4000以下であった。 Sample No. No. 10 is an example in which Si and Al are excessive, and the maximum relative permeability was 4000 or less even after magnetic annealing.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本出願は、出願日が2016年11月9日である日本国特許出願、特願第2016-219158号を基礎出願とする優先権主張を伴う。特願第2016-219158号は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on Japanese Patent Application No. 2016-219158, whose application date is November 9, 2016. Japanese Patent Application No. 2016-219158 is incorporated herein by reference.

Claims (4)

  1.  焼鈍後の磁気特性に優れる軟磁性部品用鋼材であって、
     C:0.0001質量%~0.05質量%、
     Si:0質量%超~0.5質量%、
     Mn:0.1質量%~0.5質量%、
     P:0質量%超~0.02質量%、
     S:0質量%超~0.1質量%、
     Al:0質量%超~0.05質量%、及び
     N:0.01質量%超~0.1質量%を満たし、
     残部がFe及び不可避不純物からなり、
     フェライト組織の面積率が95.0%以上であり、下記式(1)を満たすことを特徴とする軟磁性部品用鋼材。
     [N]-(1/2[Al])>0.01・・・(1)
     ただし、[N]および[Al]は、それぞれ、NおよびAlの含有量(質量%)を示す。
    Steel material for soft magnetic parts with excellent magnetic properties after annealing,
    C: 0.0001 mass% to 0.05 mass%
    Si: more than 0% by mass to 0.5% by mass,
    Mn: 0.1% by mass to 0.5% by mass,
    P: more than 0% by mass to 0.02% by mass,
    S: more than 0% by mass to 0.1% by mass,
    Al: more than 0% by mass to 0.05% by mass, and N: more than 0.01% by mass to 0.1% by mass,
    The balance consists of Fe and inevitable impurities,
    A steel material for soft magnetic parts, wherein the ferrite structure has an area ratio of 95.0% or more and satisfies the following formula (1).
    [N]-(1/2 [Al])> 0.01 (1)
    However, [N] and [Al] indicate the content (mass%) of N and Al, respectively.
  2.  更に、以下の(a)~(c)のいずれか1つ以上を含有することを特徴とする請求項1に記載の軟磁性部品用鋼材。
    (a)Cu:0質量%超~0.10質量%、Ni:0質量%超~0.10質量%、及びCr:0質量%超~0.10質量%のうち1種又は2種以上
    (b)Ti:0質量%超~0.10質量%、及びNb:0質量%超~0.10質量%のうち1種又は2種、かつ下記式(2)を満たす
    (c)B:0質量%超~0.0300質量%、かつ下記式(3)を満たす

     [N]-(1/2[Al]+1/4[Ti]+1/7[Nb])>0.01・・・(2)
     [N]-(1/2[Al]+1/4[Ti]+1/7[Nb]+[B])>0.01・・・(3)
     ただし、[Ti]、[Nb]および[B]は、それぞれ、Ti、NbおよびBの含有量(質量%)を示す。
    The steel material for soft magnetic parts according to claim 1, further comprising at least one of the following (a) to (c).
    (A) One or more of Cu: more than 0% by mass to 0.10% by mass, Ni: more than 0% by mass to 0.10% by mass, and Cr: more than 0% by mass to 0.10% by mass (B) Ti: more than 0% by mass to 0.10% by mass, and Nb: more than 0% by mass to 0.10% by mass, and satisfying the following formula (2) (c) B: Over 0% by mass to 0.0300% by mass and satisfies the following formula (3)

    [N] − (1/2 [Al] +1/4 [Ti] +1/7 [Nb])> 0.01 (2)
    [N] − (1/2 [Al] +1/4 [Ti] +1/7 [Nb] + [B])> 0.01 (3)
    However, [Ti], [Nb] and [B] represent the contents (mass%) of Ti, Nb and B, respectively.
  3.  請求項1又は2に記載の軟磁性部品用鋼材を部品形状に成形する工程と、
     成形した軟磁性部品用鋼材を、鋼中の固溶N量が90ppm以下となるように焼鈍する焼鈍工程と、を含む、軟磁性部品の製造方法。
    Forming the steel material for soft magnetic parts according to claim 1 or 2 into a part shape;
    An annealing step of annealing the formed steel material for soft magnetic parts so that the amount of solute N in the steel is 90 ppm or less.
  4.  前記焼鈍工程は、水素雰囲気、不活性ガス雰囲気又は10-2Torr以下の減圧下で行う、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the annealing step is performed under a hydrogen atmosphere, an inert gas atmosphere, or a reduced pressure of 10 −2 Torr or less.
PCT/JP2017/039760 2016-11-09 2017-11-02 Steel material for soft magnetic components and method for producing soft magnetic component using same WO2018088328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-219158 2016-11-09
JP2016219158A JP2018076556A (en) 2016-11-09 2016-11-09 Steel material for soft magnetic component and manufacturing method of soft magnetic component using the same

Publications (1)

Publication Number Publication Date
WO2018088328A1 true WO2018088328A1 (en) 2018-05-17

Family

ID=62110252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039760 WO2018088328A1 (en) 2016-11-09 2017-11-02 Steel material for soft magnetic components and method for producing soft magnetic component using same

Country Status (3)

Country Link
JP (1) JP2018076556A (en)
TW (1) TW201825693A (en)
WO (1) WO2018088328A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113222A (en) * 2003-10-08 2005-04-28 Kobe Steel Ltd Soft magnetic steel excellent in hot forgeability, magnetic property and machinability, soft magnetic steel component excellent in magnetic property, and its production method
JP2007046125A (en) * 2005-08-11 2007-02-22 Kobe Steel Ltd Soft magnetic steel material superior in cold forgeability, machinability and magnetic property, and soft magnetic steel parts superior in magnetic property
JP2007051343A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Soft magnetic steel having excellent magnetic property in high magnetic field and excellent machinability, and soft magnetic steel component having excellent magnetic property in high magnetic field
JP2010185102A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Steel for machine structure, method for producing the same and component for machine structure
JP2015127454A (en) * 2013-11-29 2015-07-09 株式会社神戸製鋼所 Soft magnetic steel material and manufacturing method therefor, and soft magnetic part obtained from soft magnetic steel material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113222A (en) * 2003-10-08 2005-04-28 Kobe Steel Ltd Soft magnetic steel excellent in hot forgeability, magnetic property and machinability, soft magnetic steel component excellent in magnetic property, and its production method
JP2007046125A (en) * 2005-08-11 2007-02-22 Kobe Steel Ltd Soft magnetic steel material superior in cold forgeability, machinability and magnetic property, and soft magnetic steel parts superior in magnetic property
JP2007051343A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Soft magnetic steel having excellent magnetic property in high magnetic field and excellent machinability, and soft magnetic steel component having excellent magnetic property in high magnetic field
JP2010185102A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Steel for machine structure, method for producing the same and component for machine structure
JP2015127454A (en) * 2013-11-29 2015-07-09 株式会社神戸製鋼所 Soft magnetic steel material and manufacturing method therefor, and soft magnetic part obtained from soft magnetic steel material

Also Published As

Publication number Publication date
JP2018076556A (en) 2018-05-17
TW201825693A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
JP4464889B2 (en) Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
JP2018076557A (en) Manufacturing method of soft magnetic component
JP6262599B2 (en) SOFT MAGNETIC STEEL MATERIAL, ITS MANUFACTURING METHOD, AND SOFT MAGNETIC PARTS OBTAINED FROM SOFT MAGNETIC STEEL
JP6139943B2 (en) Steel material for soft magnetic parts with excellent pickling properties, soft magnetic parts with excellent corrosion resistance and magnetic properties, and manufacturing method thereof
KR20150119393A (en) Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
JP4223701B2 (en) Soft magnetic low carbon steel material excellent in machinability and magnetic properties and method for producing the same, and method for producing soft magnetic low carbon steel parts using the steel material
WO2018088328A1 (en) Steel material for soft magnetic components and method for producing soft magnetic component using same
JP2017128784A (en) Manufacturing method of soft magnetic steel component
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP6621504B2 (en) Steel material excellent in corrosion resistance and magnetic properties and method for producing the same
KR101657848B1 (en) Soft magnetic steel having excellent forging characteristic, soft magnetic part and method of manufacturing the same
KR101657849B1 (en) Soft magnetic steel having excellent free cutting characteristics and method of manufacturing therof
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP4398639B2 (en) Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components
JP7355234B2 (en) electromagnetic soft iron
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP5530174B2 (en) Soft magnetic steel for nitriding and soft magnetic steel parts with excellent wear resistance
CN116391056A (en) Electromagnetic soft iron
TW202346617A (en) Soft-magnetic wire, soft-magnetic steel bar, and soft-magnetic component
WO2023084756A1 (en) Soft magnetic iron
KR20240047399A (en) Electronic soft iron bar
WO2024018520A1 (en) High strength stainless steel wire and spring
KR20230132814A (en) A hot-rolled steel sheet for non-oriented electrical steel sheets, a manufacturing method for a hot-rolled steel sheet for non-oriented electrical steel sheets, and a manufacturing method for non-oriented electrical steel sheets.
JP2006328458A (en) Soft magnetic steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869898

Country of ref document: EP

Kind code of ref document: A1