WO2018088135A1 - Molded article, and compression molding method - Google Patents

Molded article, and compression molding method Download PDF

Info

Publication number
WO2018088135A1
WO2018088135A1 PCT/JP2017/037346 JP2017037346W WO2018088135A1 WO 2018088135 A1 WO2018088135 A1 WO 2018088135A1 JP 2017037346 W JP2017037346 W JP 2017037346W WO 2018088135 A1 WO2018088135 A1 WO 2018088135A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mold
protrusion
continuous
temperature
Prior art date
Application number
PCT/JP2017/037346
Other languages
French (fr)
Japanese (ja)
Inventor
安田 和治
普 菅野
英明 市来
大賀 齋藤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020197003964A priority Critical patent/KR20190028487A/en
Publication of WO2018088135A1 publication Critical patent/WO2018088135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics

Definitions

  • the present invention relates to a molded article made of a thermoplastic resin fiber composite material and a compression molding method for obtaining the molded article.
  • Some molded products used in various machines and automobiles have protrusions such as ribs and bosses. Such a molded article is desired to have high strength from the viewpoint of reliability. The higher the height of the rib, the higher the strength reinforcing effect. However, when a cloth-like or plate-like composite material is used as the base material, there is a problem in formability only by compression molding. Further, the height of the boss or the columnar protrusion is also limited as in the case of the rib. Conventionally, a method has been proposed in which a molded product having a small undulation shape is formed by compression molding or a hybrid molding of compression molding and injection molding using a fabric-like or plate-like continuous fiber reinforced thermoplastic resin composite material. Yes.
  • a continuous fiber reinforced thermoplastic resin composite material called a prepreg in which a matrix resin is impregnated with a reinforcing material composed of continuous fibers such as continuous reinforcing fibers is widely used.
  • a prepreg is used as a material, the prepreg is preheated and softened, and then inserted into a mold kept at a constant temperature of, for example, 30 ° C. to 150 ° C. and solidified to produce a molded product.
  • Patent Document 1 discloses that a member A made of continuous reinforcing fibers and a thermoplastic resin and a member B made of discontinuous reinforcing fibers and a thermoplastic resin are stacked, There has been proposed a method in which the material temperature is heated to 260 ° C. with an infrared heater and cooled and pressed at 150 ° C. According to this method, it is described that a molded product having a complicated shape with a high rib and boss and excellent strength can be obtained.
  • an object of the present invention is to provide a molded product having a complicated shape having a protrusion having excellent shapeability and strength, and a compression molding method for obtaining the molded product. It is. Furthermore, an object of the present invention is to provide a method for obtaining a molded product having a complicated shape excellent in formability and strength by a single molding method using a kind of prepreg.
  • the molded product of the present invention is a molded product containing a continuous fiber reinforced thermoplastic resin composite material composed of continuous reinforced fibers and a thermoplastic resin,
  • the molded product has a substrate portion and a protrusion, There are continuous reinforcing fibers in the protrusion and the substrate,
  • the average value of the height of the continuous reinforcing fibers in the protrusion is 5% or more of the height of the protrusion.
  • the “projection part” refers to a part projecting from the substrate part into a rib, a boss, or a column (including a cylinder, a truncated cone, a quadrangular column, a quadrangular pyramid, and the like).
  • the “height of the protruding portion” will be described with reference to the drawings by taking a rib as an example.
  • FIG. 1 is a schematic top view of an embodiment of the molded article of the present invention.
  • FIG. 3 is a cross-sectional view of the rib 403 in FIG. 1 in the short side direction.
  • FIG. 4 is a perspective view of the rib 403.
  • the “height of the protruding portion” means a distance (reference symbol h) from the surface 420 a of the substrate portion 420 having the rib 403 to the upper end of the rib 403 in the vertical direction.
  • the height of the continuous reinforcing fibers in the protrusions means the vertical distance from the surface 420a on the side of the substrate portion 420 having the ribs 403 to the upper end of the continuous reinforcing fibers 170 as shown in FIG. (Symbol h f ). Note that the “upper end of the continuous reinforcing fiber” is the highest at the measurement point in the region, even if there is a region A where the continuous reinforcing fiber 170 does not partially exist in the rib 403, as shown in FIG. Means the end of continuous reinforcing fiber in position.
  • FIG. 6 is a perspective view of a quadrangular pyramid.
  • FIG. 7 is a cross-sectional view of the quadrangular pyramid.
  • FIG. 8 is a side projection of the quadrangular pyramid.
  • “the height of the continuous reinforcing fiber in the protruding portion” when the protruding portion is columnar is the upper end of the continuous reinforcing fiber 170 from the surface 420 a of the substrate portion 420 having the quadrangular pyramid 413. it is a vertical direction of the distance h f up.
  • the “upper end of the continuous reinforcing fiber” is, for example, as shown in FIG. 8, even if there is a region A or B in which no continuous reinforcing fiber exists in the protrusion, It means the end of continuous reinforcing fiber in the highest position.
  • the average value of the heights of the continuous reinforcing fibers in the protrusions means the average value for the entire protrusions of the “height of the continuous reinforcing fibers in the protrusions” obtained above.
  • the height of the continuous reinforcing fibers in the protrusions and the average value thereof are obtained by using MATLAB software of MathWorks from the side projection image obtained by a digital camera when the reinforcing fibers are visible. If the reinforcing fiber cannot be confirmed visually, the reinforcing fiber is photographed with a soft X-ray apparatus, and the height and average value thereof are calculated using MATLAB software of MathWorks, as in the case of visual observation.
  • the height of the continuous reinforcing fibers in the short side direction has little influence on the average value, and the heights of the continuous reinforcing fibers on the two side surfaces in the long side direction are the same.
  • the “average value of the height of the continuous reinforcing fibers in the part” is a value obtained on one side of the long side direction.
  • the region in which the height of the continuous reinforcing fiber in the protrusion is 5% or more of the height of the protrusion is preferably 20% or more of the bottom of the protrusion.
  • a description will be given of “the region where the height of the continuous reinforcing fiber is 5% or more is 20% or more of the bottom of the projection” when the projection is a rib.
  • FIG. 5 is a side projection view of the rib 403 in the long side direction. In FIG. 5, showing a height h f of more than 5% area of the continuous reinforcing fibers, the long side direction length in L a.
  • the height of more than 5% is a region of continuous reinforcing fibers is not less than 20% of the base of the protrusion
  • the length L a is greater than or equal to 20% of the length L r of the bottom side To do.
  • the protrusion is a rib
  • the influence in the short side direction is small and can be ignored, and therefore, it is expressed as a ratio to the length Lr of the bottom side of one side surface in the long side direction.
  • the protrusions other than the ribs are square pillars, for example, as illustrated in FIG. 6, the value is obtained with respect to the length L (2 ⁇ a 1 + 2 ⁇ b 1 ) of the base.
  • the continuous reinforcing fiber in the protrusion is preferably continuous with the continuous reinforcing fiber in the substrate portion.
  • continuous means that continuous reinforcing fibers are continuously present from the substrate portion.
  • the continuous reinforcing fibers remain continuously from the substrate portion when the molded product is incinerated.
  • the continuous part of a reinforced fiber can also be confirmed by observing by X-ray CT.
  • the area occupied by the continuous reinforcing fibers in the protrusions that are continuous with the continuous reinforcing fibers inside the substrate part at the bottom of the protrusions is preferably 20% or more of the bottom, and most preferably 90% or more.
  • a description will be given of “the region occupied by the continuous reinforcing fibers in the protrusion continuous with the substrate portion is 20% or more of the bottom” when the protrusion is a rib. As shown in FIG.
  • the continuous reinforcing fibers are not continuous from the inside of the substrate part 420 in the region A and the continuous reinforcing fibers are continuous in the region other than the region A
  • "The area occupied by the continuous reinforcing fibers in the protruding portion is 20% or more of the bottom” means that the continuous continuous reinforcing fibers occupy at the bottom L (see FIG. 5) on one side of the long side direction of the rib.
  • the length L b of the long side direction of the region means that at least 20% of the length L r of the base.
  • the height of the average value of the continuous reinforcing fibers in the ribs is preferably at a thickness T 2 or more substrate portions, more preferably 2 times or more, further preferably 3 times or more.
  • the rib height h / T 1 with respect to the base wall thickness T 1 is preferably 2 or more, more preferably 4 or more, and most preferably 6 or more.
  • the thickness T 1 at the base of the rib portion is preferably equal to or less than the thickness T 2 of the substrate portion, and more preferably, the thickness T 1 at the base of the rib portion is 3/4 or less of the thickness T 2 of the substrate portion. Most preferably, it is 1/2 or less.
  • the density Vf of the continuous fiber having a height of 10% at the top when the height of the rib portion is 100% is 10% or less (see FIG. 3).
  • the "region occupied by continuous reinforcing fibers in the protrusions contiguous with the substrate section is greater than or equal to 20% of the bottom"
  • a length L b in the bottom of the area occupied by the continuous reinforcing fibers in the protrusions of the bottom side It means 20% or more of the length L.
  • thermoplastic resin in the protrusion and the thermoplastic resin in the substrate are the same.
  • the protrusion is made of a resin or a composite material different from the substrate portion, there may be a problem that an interface between different materials is formed and the strength of the joint portion is inferior to that of the continuous reinforcing fiber composite material portion.
  • the density Vf of the continuous fiber having a height of 10% at the bottom when the height of the protrusion is 100% is 30% or more, more preferably 50% or more. This is because the strength of the protrusions is preferably such that continuous reinforcing fibers are disposed in this portion because stress tends to concentrate on the joint portion with the substrate portion with respect to the load from above.
  • one compression molding method is: A compression molding method in which a continuous fiber reinforced thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression molded to obtain a molded product having a substrate portion and a protrusion, A continuous fiber reinforced thermoplastic resin composite material is inserted into a mold, and while being compressed, the mold is heated to a temperature higher than the glass transition temperature or the melting point of the thermoplastic resin to form, and then the mold is molded into a thermoplastic resin. Glass transition temperature of ⁇ 10 ° C. or lower or melting point ⁇ 10 ° C. or lower, preferably glass transition temperature ⁇ 30 ° C. or lower or melting point ⁇ 50 ° C.
  • thermoplastic resin or lower, more preferably glass transition temperature ⁇ 50 ° C. or lower or melting point ⁇ 100 ° C. or lower.
  • a compression molding process for solidifying the thermoplastic resin And a step of releasing a gas component in the mold generated from the continuous fiber reinforced thermoplastic resin composite material out of the mold during the compression molding process.
  • the temperature at which the mold is heated indicates a set temperature for setting the cavity surface of the mold to a desired temperature. Since the cavity surface is a molding surface, it is difficult to install a temperature measuring device such as a thermocouple, and it is difficult to measure the actual temperature of the cavity surface. For this reason, the temperature of the cavity surface is set in advance so as to obtain a desired cavity surface temperature by keeping a correlation between the temperature measuring device installed in the vicinity of the cavity surface and the set temperature in the temperature adjusting means without molding. Adjust.
  • the temperature at which the mold is heated is based on the melting point or the glass transition temperature.
  • the thermoplastic resin is a crystalline thermoplastic resin
  • the melting point is used as a reference
  • the thermoplastic resin is an amorphous resin
  • glass is used.
  • the transition temperature is used as a reference.
  • the mold is closed after the continuous fiber reinforced thermoplastic resin composite material is inserted into the mold.
  • a method of relaxing the mold clamping force and releasing the gas from the die mating surface is used as a simple method.
  • a method of sucking air in a mold cavity or a continuous fiber reinforced thermoplastic resin composite material or a gas component generated by heating is used as a means for sucking air or gas.
  • a vacuum pump may be used by providing a gas vent line from the mold cavity.
  • Another compression molding method of the present invention is a compression molding method in which a thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression-molded to obtain a molded product having a substrate portion and a protrusion. And When inserting at least part of the continuous fiber reinforced thermoplastic resin composite material into the mold, the continuous fiber reinforced thermoplastic resin composite material is inserted into the recess corresponding to the protrusion of the mold, and the mold is heated while being compressed. Molding is performed by heating above the glass transition temperature or melting point of the plastic resin, and then the mold is glass transition temperature ⁇ 10 ° C. or lower or melting point ⁇ 10 ° C. or lower, preferably glass transition temperature ⁇ 30 ° C. or lower of the thermoplastic resin. Alternatively, the thermoplastic resin is solidified by cooling to a melting point of ⁇ 50 ° C. or lower, more preferably a glass transition temperature of ⁇ 50 ° C. or lower or a melting point of ⁇ 100 ° C. or lower.
  • thermoplastic resin ⁇ 10 ° C. or lower or a melting point of Cool to 10 ° C. or lower to solidify the thermoplastic resin.
  • the temperature at which the mold is heated is a set temperature of the mold.
  • the temperature at which the mold is heated is based on the melting point or glass transition temperature.
  • the thermoplastic resin is a crystalline thermoplastic resin
  • the melting point is used as a reference
  • the thermoplastic resin is an amorphous resin. Is based on the glass transition temperature.
  • the molded article of the present invention it is possible to obtain a protrusion having excellent shapeability and strength.
  • a molded product having protrusions excellent in formability and strength can be produced with high productivity.
  • FIG. 1 is a schematic top view of a molded article of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ in FIG.
  • FIG. 3 is a cross-sectional view of the rib.
  • FIG. 4 is a perspective view of the rib.
  • FIG. 5 is a side projection of the long side direction of the rib, and is a diagram for explaining that the region where the height of the continuous reinforcing fiber is 5% or more of the height of the protrusion is 20% or more of the bottom side. is there.
  • FIG. 6 is a perspective view of a quadrangular pyramid.
  • FIG. 7 is a cross-sectional view of a quadrangular pyramid.
  • FIG. 8 is a side projection of four sides of a quadrangular pyramid.
  • FIG. 9 is a schematic perspective view showing the compression molding method of the present invention.
  • FIG. 10 is a schematic perspective view showing a hybrid molding method in which an injection molding method is combined with the compression molding method of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an embodiment of a mold used in the compression molding method of the present invention.
  • FIG. 12 is a schematic cross-sectional view for explaining details of an embodiment of a mold used in the compression molding method of the present invention.
  • FIG. 13 is a cross-sectional view of a mold for molding the molded product in FIG.
  • FIG. 14 is a schematic perspective view of a quadrangular prism.
  • FIG. 15 is a schematic perspective view of a truncated cone.
  • FIG. 16 is a schematic diagram for explaining a tensile test method performed on the molded article of the present invention.
  • FIG. 17 is a schematic diagram for explaining a bending test method performed on the molded article of the present invention.
  • FIG. 1 is a schematic top view showing an embodiment of a molded article.
  • 2 is a cross-sectional view taken along the line AA ′ in FIG.
  • the molded product 400 includes a substrate portion 420, holes 401 and 402, ribs (403, 405, 407), bosses (409, 410), a truncated cone (411, 412), and a quadrangular pyramid 413. And a projecting portion made of a quadrangular column (414, 415).
  • continuous reinforcing fibers 170 are present inside the ribs (403, 405, 407) and the truncated cones (411, 412) as shown in FIG.
  • the continuous reinforcing fibers 170 inside the ribs and inside the truncated cone are continuous with the continuous reinforcing fibers 170 of the substrate portion 420 without breaking.
  • the average value of the height h f of the continuous reinforcing fiber in the rib is 5% or more of the height h of the protrusion, preferably 10% or more, and more preferably the height of the protrusion. It is 20% or more, more preferably 50% or more, and most preferably 90% or more.
  • the protrusions can have appropriate strength.
  • the average value of the height h f of the continuous reinforcing fibers may be 5% or more of the height h of the protrusions, and more than 5% of the two or more protrusions.
  • it is most preferably 5% or more in all protrusions.
  • at least one of the same kind of protrusions may satisfy the average value, and two or more of the protrusions may satisfy the average value. It is most preferable that all of the above satisfy the average value.
  • the region in which the height of the continuous reinforcing fiber in the protrusion is 5% or more of the height of the protrusion is preferably 20% or more, more preferably 50% or more, particularly preferably 80% of the bottom of the protrusion. % Or more, most preferably 100%. By being 20% or more of the bottom side, it is possible to give the protrusions appropriate strength even if other regions are not continuous.
  • a portion where no fiber is inserted in the root in each protrusion is 50% or less. Is preferable, more preferably 20% or less, and most preferably 5% or less.
  • the continuous reinforcing fibers in the protrusions may have a part that is partially broken inside, or may be partly separated from the substrate part. It is preferable that the continuous reinforcing fibers inside the protrusions exist in a continuous state.
  • the protrusion is formed by inserting a molten or semi-molten composite material into a portion corresponding to the protrusion of the mold by compression molding.
  • the thermoplastic resin is easier to insert up to the tip of the protrusion than the continuous reinforcing fiber.
  • continuous reinforcing fibers are difficult to move and therefore difficult to insert into the protrusions.
  • the longer the insertion distance the stronger the protrusions.
  • a molded article in which continuous reinforcing fibers are inserted deeply into the protrusions can be obtained by adjusting specific compression conditions described later and further by adjusting the mold temperature during molding.
  • the height of the projection is greater than the thickness T 2 of the substrate portion, and the height of the continuous reinforcing fibers in the projections, the thickness T 2 or more substrate portions of the molded article is preferred.
  • the height of the protrusions more preferably 2 times or more the thickness T 2 of the substrate portion, and further preferably not less than 3 times the thickness T 2 of the substrate portion.
  • the height h of the protrusion is at least twice the thickness T 2 of the substrate portion, and it is preferable the thickness T 1 of the root of the protrusion is less than the thickness T 2 of the substrate portion.
  • the thermoplastic resin in the protrusion and the thermoplastic resin in the substrate are the same.
  • the boss or rib portion is made of a material different from the continuous reinforcing composite material installed for forming the substrate portion, for example, a tape shape.
  • hybrid molding is used in which the substrate is formed by compression molding, the substrate portion is mainly formed by compression molding, and the protrusions of the bosses and ribs are formed by injection molding.
  • the thermoplastic resin of the substrate part and the protrusions is basically formed of the same material. There is no interface of the thermoplastic resin material. This is important in securing the strength of the protrusion.
  • the substrate part and protrusions of the molded body are made of the same fiber-reinforced thermoplastic composite material as described above, basically the material placed on the substrate part is inserted into the protrusions by compression molding. Formed. At this time, continuous reinforcing fibers are also inserted into the protrusions, but the strength of the joints between the protrusions and the substrate part is important as a structural member, and the density Vf of the continuous reinforcing fibers is closer to the substrate part than the tip of the protrusion part. Higher is preferable.
  • FIG. 9 shows a schematic perspective view of the compression molding method.
  • One embodiment of the compression molding method of the present invention is a compression method in which a continuous fiber-reinforced thermoplastic resin composite material comprising continuous reinforcing fibers and a thermoplastic resin is compression-molded to obtain a molded product having a substrate portion and a protruding portion.
  • a molding method The continuous fiber reinforced thermoplastic resin composite material is inserted into a mold, and while the mold is compressed, the mold is heated to a temperature higher than the glass transition temperature or the melting point of the thermoplastic resin, and then molded. Glass transition temperature ⁇ 10 ° C. or lower or melting point ⁇ 10 ° C.
  • the mold 100 including the mold parts 10 and 20 is opened.
  • the cloth 70 which is a cloth-like base material that is a composite material, is cut into a desired shape and inserted into the cavity 30.
  • the mold 100 is closed (clamped), and the temperature of the cavity surface is raised while being compressed.
  • the temperature of the cavity surface of the mold is set to be equal to or higher than the melting point of the thermoplastic resin constituting the composite material or the glass transition temperature, and is always adjusted to a constant temperature by the second temperature adjusting means 14 and 24 described later. .
  • the thermoplastic cavity portion of the fabric set in the cavity is quickly melted by the heated cavity surface.
  • the number of fabrics 70 to be inserted into the cavity 30 is adjusted according to the desired thickness of the obtained molded product.
  • the composite material may be inserted at room temperature into the mold, but may be preheated before being inserted into the mold.
  • a plate-like prepreg when used as the composite material, it is preferable to preheat the composite material to a glass transition temperature of the thermoplastic resin of ⁇ 30 ° C. or higher or a melting point of ⁇ 30 ° C. or higher. It is more preferable to preheat to above or above the melting point.
  • a fabric-like material is used for the composite material, it may be preheated or not preheated before being inserted into the mold, as is the case with the plate material. By preheating, it is possible to remove the gas component in the fabric and improve the shapeability.
  • the temperature of the mold cavity surface when molding by compression molding is a glass transition temperature of the thermoplastic resin of ⁇ 100 ° C. or higher and a glass transition temperature of + 100 ° C. or lower, or a melting point of ⁇ 100 ° C. or higher and a melting point of + 100 ° C. or lower, preferably Glass transition temperature ⁇ 50 ° C. or higher and glass transition temperature + 50 ° C. or lower, melting point ⁇ 50 ° C. or higher and melting point + 50 ° C. or lower, more preferably glass transition temperature ⁇ 30 ° C. or higher and glass transition temperature + 30 ° C. or lower, melting point ⁇ 30 ° C. or higher and Melting point + 30 ° C. or lower.
  • high cycle molding is preferred in which the cavity surface of the mold can be rapidly heated and cooled rapidly.
  • the heating rate when heating the mold in the compression molding process is 30 ° C./min or more
  • the cooling rate when cooling the mold is 30 ° C./min or more
  • the difference between the heating temperature and the cooling temperature Is 80 ° C. or higher.
  • the heating rate is 80 ° C./min or more
  • the cooling rate is 100 ° C./min or more
  • the difference between the heating temperature and the cooling temperature is preferably 100 ° C. or more
  • the heating rate is 150 ° C./min.
  • the cooling rate is 200 ° C./min or more, and the difference between the heating temperature and the cooling temperature is 120 ° C. or more.
  • Productivity can be increased by setting the temperature raising rate and the temperature lowering rate to 30 ° C./min or more. Further, by setting the temperature difference to 80 ° C. or more, the impregnation property of the reinforced continuous fiber of the resin, the solidification property when the molded product is taken out, and the release property are improved. The higher the temperature, the better the impregnation, and the lower the temperature, the better the solidification and release properties.
  • the heating temperature and the cooling temperature are temperatures set as targets when rapid heating or rapid cooling is performed.
  • the target temperature for rapid heating is called the target high temperature
  • the target temperature for rapid cooling is called the target low temperature.
  • the temperature decreasing rate is a rate at which the mold cavity surface is cooled from the target high temperature to the target low temperature.
  • the temperature increase rate is a rate at which the temperature of the cavity is increased from the target low temperature to the target high temperature.
  • the cavity surface is melted by rapidly heating the cavity surface above the melting point or glass transition temperature of the thermoplastic resin constituting the continuous fiber reinforced thermoplastic resin composite material, and then the cavity surface is heated while the mold is clamped.
  • By rapidly cooling below the melting point or glass transition temperature of the plastic resin to cool and solidify the thermoplastic resin it is possible to obtain a thermoplastic resin fiber composite molded article excellent in economic efficiency at a high cycle.
  • the cavity surfaces 31 and 32 of the mold 100 may have a glass transition temperature of ⁇ 10 ° C. or lower or a melting point of ⁇ 10 ° C. or lower, preferably a glass transition temperature of ⁇ 30 ° C. or lower.
  • the thermoplastic resin is solidified by cooling to a melting point of ⁇ 50 ° C. or lower, more preferably a glass transition temperature of ⁇ 50 ° C. or lower or a melting point of ⁇ 100 ° C. or lower.
  • the gas component generated from the fabric 70 is discharged out of the mold in the steps from inserting the fabric 70 to solidifying the thermoplastic resin.
  • a multistage compression method in which the mold clamping force is once released at any stage is particularly effective in the stage of mold clamping.
  • the protrusion of the composite material is heated to a constant temperature and the gas is released when the gas is generated. It is effective for producing a complex shape product having
  • the “stage where gas is generated” is a stage where the composite material inserted into the mold is heated to a certain temperature.
  • the preferable heating temperature is “melting point ⁇ 100 ° C. or higher or glass transition temperature ⁇ 100 ° C. More preferably, “melting point ⁇ 60 ° C. or higher or glass transition temperature ⁇ 60 ° C. or higher”.
  • a method of evacuating the mold and removing the gas generated from the composite material there is a method of evacuating the mold and removing the gas generated from the composite material.
  • a method for removing the gas generated in the mold the following method can be cited in addition to the method for adjusting the compression pressure at the time of mold compression as described above.
  • a method of removing gas by providing a gas vent slit communicating with the mold cavity.
  • the slit may be provided on the parting surface of the mold, or may be provided on the mold protruding pin.
  • a dividing surface of a mold constituting the mold cavity may be used.
  • the temperature for taking out the molded product is preferably a glass transition temperature of ⁇ 30 ° C. or lower or a melting point of ⁇ 80 ° C. or lower, more preferably a glass transition temperature of ⁇ 50 ° C. or lower or a melting point of ⁇ 100 ° C. or lower.
  • the cloth which is a composite material, is cut into a desired shape, inserted into the cavity, and the mold is closed. Thereafter, the compression molding process is repeated to produce a molded product.
  • the mold cavity surface may be raised by flowing high-pressure heating steam or low-pressure superheated steam through the cooling medium passage of the mold at the same time as or after taking out the molded article.
  • the cavity surface may be heated by circulating superheated steam at 300 ° C. or higher through the cavity surface before insertion of the fabric.
  • the superheated steam inserted into the mold can be removed from the vacuum line after insertion for a desired time.
  • the compression molding process since the compression molding process includes a step of releasing a gas component, the composite material enters deep into the protrusions, so that the thermoplastic resin fiber composite molded article having excellent strength is obtained. Can be obtained.
  • the present embodiment includes a step of inserting the composite material into a recess corresponding to the protrusion of the mold, instead of the gas releasing step of the compression molding method of the above-described embodiment.
  • the compression molding method of the present embodiment is a compression molding method in which a thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression-molded to obtain a molded product having a substrate portion and a protruding portion.
  • Molding is performed by heating above the glass transition temperature or melting point of the plastic resin, and then cooling the mold to the glass transition temperature of the thermoplastic resin at ⁇ 10 ° C. or below or the melting point ⁇ 10 ° C. or below to solidify the thermoplastic resin. It is characterized by this.
  • thermoplastic resin melts and flows in the mold and flows together
  • at least a part of the composite material is inserted in the protrusion in advance.
  • the number of fabrics suitable for the desired molded product thickness is used as the mold cavity.
  • the composite material may be inserted into at least one of the plurality of recesses, and more preferably two or more. Furthermore, it is sufficient that it is inserted into at least one of the same type of recesses, more preferably two or more, and most preferably inserted into all of the same type of recesses.
  • the insertion amount of the continuous fiber reinforced thermoplastic resin composite material into the recess of the mold varies depending on the volume of the recess and the details of the manufacturing conditions, but the average value of the height of the continuous reinforcing fiber is 5% of the height of the protrusion. It is preferable to adjust so that it may become above. Further, it is preferable to adjust so that the composite material is continuous with the continuous reinforcing fiber inside the substrate portion at 20% or more of the bottom side of the protrusion.
  • the continuous fiber reinforced thermoplastic resin composite material can be present in a wide area inside the protrusion, a molded product having excellent protrusion strength can be obtained.
  • FIG. 10 shows a schematic diagram of hybrid molding. Elements similar to those in FIG. 9 are denoted by the same reference numerals and description thereof is omitted (the same applies hereinafter).
  • the fabric 70 is inserted in the same procedure as the compression molding method.
  • a mold part 201 of a mold 200 for performing hybrid molding is provided with a runner part 90 for filling a thermoplastic resin from an injection molding machine 80 by a known method. After filling with the thermoplastic resin, the mold is released as shown in FIG.
  • FIG. 11 shows a schematic cross-sectional view of an embodiment of a stamping die.
  • the mold 100 includes a mold part 10 that is an upper mold, a mold part 20 that is a lower mold, and heat insulating plates 15 and 25.
  • a cavity 30 is formed by the mold part 20.
  • a composite material or the like is placed in the cavity 30 to mold a molded product.
  • the mold part 10 includes a first temperature adjusting unit 13 including a plurality of cooling medium passages capable of cooling at least the cavity surface 31 in the vicinity of the cavity surface 31, and a cavity surface 31 of the first temperature adjusting unit 13.
  • a second temperature adjusting means 14 comprising a plurality of rod-shaped cartridge heaters capable of at least heating the cavity surface 31 is provided.
  • the mold portion 20 also includes a first temperature adjusting means 23 including a plurality of cooling medium passages capable of cooling at least the cavity surface 32 in the vicinity of the cavity surface 32, and a cavity of the first temperature adjusting means 23.
  • a second temperature adjusting means 24 comprising a plurality of bar-shaped cartridge heaters capable of at least heating the cavity surface 32 is provided.
  • the mold part 10 has a structure divided into a first part 11 having a first temperature control means 13 and a second part 12 having a second temperature control means 14, and the first part 11 and the second part 12.
  • the spring 40 can be separated.
  • the mold part 20 has a structure divided into a first part 21 having a first temperature adjusting means 23 and a second part 22 having a second temperature adjusting means 24.
  • the second portion 22 is configured to be separated by a spring 40.
  • the mold part 20 is provided with a decompression path 33 for decompressing the cavity 30 during mold clamping.
  • the decompression path 33 is connected by a vacuum line 60 to decompression means (not shown) installed outside the molding die.
  • a sealing packing 50 is provided between the mold part 10 and the mold part 20.
  • FIG. 12 is a schematic cross-sectional view for explaining details of the mold, and some components are omitted.
  • the mold portions 10 and 20 have a distance L0 from the cavity surface 31 to the first temperature adjusting means 13, and a distance L1 from the cavity surface 31 to the surface 16 opposite to the cavity surface 31. It is preferable that the following relationship is satisfied. (L1 / L0)> 3
  • the molding die is composed of a plurality of mold parts, it is sufficient that at least one mold part satisfies the above numerical range, and it is more preferable that all the mold parts satisfy the above numerical range.
  • the distance L0 from the cavity surface to the first temperature adjusting means means the distance from the cavity surface to the center of the first temperature adjusting means in a cross section perpendicular to the cavity surface of the mold.
  • the distance L2 from the first temperature adjusting means to the second temperature adjusting means is the second temperature adjusting means from the center of the first temperature adjusting means in the cross section perpendicular to the cavity surface of the mold.
  • the distance L1 from the cavity surface to the surface opposite to the cavity surface means a distance in a cross section perpendicular to the cavity surface of the mold.
  • the distance L0 from the cavity surface to the center of the first temperature adjusting means is the shortest distance among them. Means. Further, when the cavity surface has an uneven shape and the first temperature adjusting means is provided at the same distance from the cavity surface along the uneven shape, the first temperature adjusting means to the second temperature adjusting means. The distance L2 is different depending on the location. In this case, the distance L2 from the first temperature adjusting means to the second temperature adjusting means means the shortest distance among different L2. In addition, when the cavity surface is uneven, the distance L1 from the cavity surface to the surface opposite to the cavity surface means an average distance of different L1.
  • the distance from the cavity surface of one passage or the heater differs depending on the location.
  • the boundary between the first part and the second part is the second from the center of the first temperature control means in the cross section perpendicular to the cavity surface.
  • the position is L0 away from the temperature adjusting means side.
  • the mold according to the present embodiment has a structure in which at least a first temperature adjusting means for cooling is provided in the vicinity of the cavity surface, and the second temperature at least farther from the cavity surface than the first temperature adjusting means.
  • a temperature adjusting means is provided.
  • the second temperature adjusting means heats the cavity surface by heating the entire mold part.
  • the first temperature control means is preferably closer to the cavity surface, but it is necessary to provide it at a certain distance due to the strength of the mold and design restrictions.
  • the distance L0 from the cavity surface to the first temperature adjusting means is preferably 30 mm or less, more preferably 20 mm or less, and even more preferably 10 mm or less, although it depends on the size of the first temperature means.
  • L0 there is no particular limitation on the lower limit value of L0, although it depends on the size of the first temperature means, the distance from the end of the first temperature means to the mold cavity surface is limited due to restrictions on the strength of the mold. 3 mm or more is preferable and 6 mm or more is more preferable.
  • the relationship between the distance L0 from the cavity surface to the first temperature adjusting means and the distance L1 from the cavity surface to the surface opposite to the cavity surface is (L1 / L0)> 3. More preferably, (L1 / L0)> 5, and most preferably (L1 / L0)> 10.
  • (L1 / L0)> 3 the capacity of the heat storage part, which is higher than that of the cooling part, is increased, so that rapid heating at the time of mold heating can be performed efficiently.
  • the closer the first temperature control means for cooling is to the cavity surface the quicker the molded product can be cooled during cooling. Further, the smaller the cooling portion, the quicker the mold can be heated when the mold is heated.
  • a cooling part is a part cooled by the 1st temperature control means, Comprising: At least 1st part is shown.
  • the heat storage portion is a portion heated by the second temperature adjusting means and indicates at least the second portion.
  • the distance L2 from the first temperature adjusting means to the second temperature adjusting means is L2> L0, and preferably 2 ⁇ L2 / L0 ⁇ 10.
  • L2> L0 it is possible to satisfactorily prevent cooling to the second temperature adjusting means at the time of cooling, while preventing disturbance of the control power of the second temperature adjusting means at the time of heating. Can do.
  • L0 and L2 should be as close as possible.
  • the difference between the upper limit value and the lower limit value of the mold cavity temperature is as large as, for example, 50 ° C. or more, preferably 100 ° C. or more, and more preferably 150 ° C. or more. It is preferable.
  • the mold part may include a first part having a first temperature adjusting means and a second part having a second temperature adjusting means.
  • the first part and the second part may be made of the same material, but more preferably, the first part is made of a material having a higher thermal conductivity than the second part.
  • the relationship between I) and the volume V0 of the mold part to be heated is preferably (V0 / V (I))> 1.3. Further, (V0 / V (I)) ⁇ 3 is preferable. In order to rapidly heat and cool the first part, it is better to make V (I) smaller, and the volume V (II) of the second part is better from the viewpoint of accumulating heat. /V(I))>1.3 is preferred.
  • the volume of V (I) is limited in reducing the volume due to problems such as mold strength and cavity surface shape constraints. If the volume V (II) of the second part is too large, there are limitations due to problems such as long time for initial heating or large release of heat out of the mold. Further, the reduction of V (I) is limited due to limitations due to strength and cavity shape, and (V0 / V (I)) ⁇ 3 is preferable. That is, the heating of the cavity surface can rapidly heat and melt the thermoplastic resin of the material installed in the cavity by rapidly supplying the cavity surface by supplying heat from the second part that serves as a heat storage part that stores a certain amount of heat. . Here, the larger the capacity of the heat storage portion, the more effectively the cavity surface can be heated. However, the capacity of the heat storage portion can be appropriately determined according to the size of the mold and the molding equipment from the viewpoint of the amount of energy consumed for heating due to the equipment.
  • the heating of the cavity surface can heat and melt the thermoplastic resin of the material installed in the cavity by rapidly heating the cavity surface by supplying heat from the second part having the role of a heat storage part that stores a certain amount of heat.
  • the cavity surface for cooling the cavity surface, for example, when the first temperature adjusting means is a plurality of cooling medium passages, the cavity surface is rapidly cooled by circulating the cooling medium through the cooling medium passages near the cavity surface. The molten thermoplastic resin can be cooled and solidified.
  • the mold capacity of the portion having the refrigerant passage is smaller, and the cooling medium passage is preferably closer to the cavity surface.
  • the rate C (II) (J / s ⁇ m ⁇ K) is preferably ⁇ V (II) ⁇ (1 / C (II)) ⁇ / ⁇ V (I) ⁇ (1 / C (I)) ⁇ > 3 More preferably, ⁇ V (II) ⁇ (1 / C (II)) ⁇ / ⁇ V (I) ⁇ (1 / C (I)) ⁇ > 5 Most preferably, ⁇ V (II) ⁇ (1 / C (II)) ⁇ / ⁇ V (I) ⁇ (1 / C (I)) ⁇ > 10 It is.
  • the cavity surface can be quickly cooled during cooling. During heating, the temperature can be quickly raised by heat storage in the second part.
  • the thermal conductivity C (I) (J / s ⁇ m ⁇ K) of the material of the first part is equal to the thermal conductivity C (II) (J / s of the material of the second part having the second temperature adjusting means.
  • -It is preferable that it is 3.5 times or more of m * K). That is, the higher the thermal conductivity during cooling, the faster the cooling, and the higher the thermal conductivity during heating, the quicker the heat can be removed from the heat storage section. In particular, a higher effect can be obtained by separating the first portion when it is cooled. When not separating at the time of cooling, if the thermal conductivity of the first part is good, the second part having the function of the heat storage part may be cooled at the time of cooling, and it is necessary to optimize the material appropriately.
  • the first part and the second part have a separable structure.
  • the mold is slightly opened while the cavity is closed to separate the first part 11 and the second part 12, and the first part 21 and the second part 22. It is also effective to increase the molding cycle by providing a heat insulating layer.
  • the first part and the second part can be separated while the cavity is closed by inserting the spring 40 between the first part and the second part to slightly open the mold. Can do. Separation may be performed with at least one of the plurality of mold parts.
  • ⁇ Cooling water is injected into the cooling medium passage etc. with the mold separated, and the first part including the metal mold is rapidly cooled. At this time, the mold cavity surface is kept closed by using a spring or a hydraulic cylinder so as not to open the cavity. The cooling water is stopped after the mold cavity surface has become below the heat deformation temperature of the thermoplastic resin for a certain time, compressed air is introduced into the cooling medium passage as necessary, and the water in the cooling medium passage is discharged.
  • the cooling of the first part can be achieved by circulating the cooling medium when the first temperature control means is constituted by a plurality of cooling medium passages. It depends on whether or not rapid cooling is possible. Therefore, it is preferable to have a structure that allows the cooling medium to flow through each cooling medium passage independently.
  • a manifold capable of simultaneously circulating a cooling medium having the same temperature can be given.
  • the manifold may be installed on the inflow side of the cooling medium passage outside the mold, and the cooling medium may be simultaneously circulated from the manifold to each cooling medium passage. Further, if the manifold is installed on the cooling medium discharge side and discharged, More efficient.
  • the flow rate greatly affects the cooling efficiency, and the refrigerant may be circulated using a pressure pump or the like as necessary. It is also possible to use a commercially available pressurized temperature controller.
  • Water, chiller liquid, carbon dioxide gas, compressed gas, etc. can be raised as a medium to circulate in the cooling medium passage. Further, one type of medium may be used, but media having different temperatures may be distributed in multiple stages. For example, when the cavity temperature is heated to 300 ° C., 150 ° C. pressurized hot water flows for several seconds, then 60 ° C. temperature-controlled water and 10 ° C. cooling water flow in multiple stages, and the mold reaches a constant temperature. Then, it may be adjusted so that the cavity surface has a uniform temperature by flowing pressurized hot water at 150 ° C. again.
  • thermoplastic resin of the composite material When a composite material is placed in a cavity and heat compression molding is performed in the cavity to melt and solidify the thermoplastic resin of the composite material to obtain a molded product, it is possible to obtain a molded product capable of impregnating the thermoplastic resin into continuous reinforcing fibers. The characteristics are greatly affected.
  • air When air is present in the mold, the air remains as voids in the molded product when the thermoplastic resin melts, causing a fine unimpregnated portion to be formed in the continuous reinforcing fibers.
  • a molded product impregnated with the thermoplastic resin can be obtained more quickly.
  • a pressure reducing path that can reduce the pressure of the cavity to a vacuum during mold clamping may be provided. After the mold is closed and the composite material is heated at a high temperature, the mold pressure is May be released once to release the gas component generated from the composite material out of the mold.
  • the mold cavity temperature when the mold pressure is once released is preferably a glass transition temperature of the thermoplastic resin of ⁇ 50 ° C. or higher, a glass transition temperature of + 50 ° C. or lower, a melting point of ⁇ 100 ° C. or higher, and a melting point of + 50 ° C. or lower. More preferably, the temperature is ⁇ 30 ° C. or more and the glass transition temperature + 30 ° C. or less, the melting point is ⁇ 80 ° C. or more and the melting point + 10 ° C. or less, and the glass transition temperature is ⁇ 30 ° C. or more and the glass transition temperature or less, the melting point ⁇ 80 ° C. or more and the melting point or less. preferable.
  • the mold clamping pressure release for degassing may be performed a plurality of times while raising the mold temperature, but at least the first mold pressure release is preferably performed at the glass transition temperature or below or below the melting point.
  • the second temperature adjusting means is the average temperature of the second part, in the case of non-crystalline resin, preferably above the glass transition temperature of the thermoplastic resin material installed in the cavity, preferably It is set to glass transition temperature + 30 ° C. or higher, most preferably glass transition temperature + 50 ° C. or higher.
  • the melting point is set to be equal to or higher than the melting point of the thermoplastic resin material placed in the cavity, preferably higher than the melting point + 30 ° C., and most preferably higher than the melting point + 50 ° C.
  • the average temperature of the second part is the average temperature of the second part of the mold.
  • a thermometer is placed in the mold in the vicinity of the second temperature adjusting means and at a position 10 to 30 mm apart. The method of measuring the temperature is used.
  • the temperature control detects the aforementioned temperature and controls the power on / off or adjusts the capacity of the power by PID control (Proportional-Integral-Differential Controller) There are ways to do it.
  • the second temperature control means there are no particular restrictions on the second temperature control means.
  • the rod-shaped cartridge heater there are heaters that use electric resistance even with heating media such as heating oil and water vapor, but the mold is the melting point of the thermoplastic resin.
  • a heater is preferable from the viewpoint of versatility and performance. Examples of the heater include a ceramic heater and a sheathed heater.
  • a rod-shaped cartridge heater is preferably used in terms of simplicity and performance.
  • the mold part 10 and the mold part 20 have been described so that the first parts 11 and 21 and the second parts 12 and 22 can be separated from each other, but the spring 40 is not provided. It may be formed integrally with an adhesive or the like.
  • the heat insulating plates 15 and 25 have a role of suppressing heat flow due to heat conduction to the molding machine, it is preferable to provide them at the connecting portion between the mold 100 and the molding machine.
  • thermoplastic resin can be melt-filled after compression molding by providing a mechanism capable of injection molding as appropriate, for example, a sprue forming part, a runner forming part, etc. It is also applicable to hybrid molding with injection molding.
  • Continuous fiber reinforced thermoplastic resin composite material consisting of continuous reinforcing fiber and thermoplastic resin is a composite yarn in which continuous reinforcing fiber and thermoplastic resin fiber are mixed uniformly and continuously, and coated with thermoplastic resin on continuous reinforcing fiber
  • the composite yarn include a composite yarn obtained by impregnating a continuous reinforcing fiber with a thermoplastic resin, a fabric made of the composite yarn, or a plate-like prepreg obtained by impregnating a continuous reinforcing fiber with a thermoplastic resin.
  • the prepreg manufacturing method is not particularly specified, but a powdered material of thermoplastic resin is added to the continuous reinforcing fiber and is preliminarily formed into a plate by hot pressing, or the continuous reinforcing fiber and the thermoplastic resin film are hot pressed.
  • a plate or the like can be used.
  • a continuous reinforcing fiber and a thermoplastic resin fiber are mixed, a mixed yarn is woven, and a fabric is made and heated to a temperature higher than the glass transition temperature or melting point of the thermoplastic resin to impregnate the thermoplastic resin with the reinforcing fiber.
  • a plate-like product obtained by cooling and solidifying can be used.
  • Continuous reinforcing fiber those used as a normal fiber reinforced composite material can be used.
  • glass fiber, carbon fiber, aramid fiber, ultra high strength polyethylene fiber, polybenzazole fiber, liquid crystal polyester fiber, polyketone Examples include at least one selected from the group consisting of fibers, metal fibers, and ceramic fibers.
  • glass fibers, carbon fibers, and aramid fibers are preferable.
  • a sizing agent may be used.
  • the sizing agent is preferably composed of a silane coupling agent, a lubricant and a binding agent.
  • those described in Patent Document 1 can be used as appropriate.
  • the number of single yarns of continuous reinforcing fibers is preferably 30 to 15,000 from the viewpoints of spreadability and handling properties in the fiber blending process.
  • the sizing agent is preferably composed of a lubricant and a binding agent.
  • a lubricant There are no particular limitations on the type of sizing agent, lubricant, and binding agent, and known materials can be used. As a specific material, the thing of patent document 1 can be used.
  • the type and amount of sizing agent used for glass fibers and carbon fibers may be appropriately selected according to the characteristics of the continuous reinforcing fibers. It is preferable to use the kind and the applied amount.
  • thermoplastic resin in the present invention refers to all those generally referred to as thermoplastic resins.
  • polystyrene, high impact polystyrene, rubber reinforced styrene resin such as medium impact polystyrene, styrene-acrylonitrile copolymer (SAN resin), acrylonitrile-butyl acrylate rubber-styrene copolymer (AAS resin), acrylonitrile-ethylene Propyl rubber-styrene copolymer (AES), acrylonitrile-polyethylene chloride-styrene copolymer (ACS), ABS resin (for example, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butadiene-styrene-alphamethylstyrene copolymer) Styrene resin such as acrylonitrile-methyl methacrylate-butadiene-styrene copo
  • thermoplastic resin in the present invention the thermoplastic resin as described above may be produced in the molding step of the present invention. You may shape
  • the thermoplastic resin may contain a filler and / or an additive.
  • thermoplastic resin is polyolefin resin, polyamide resin, polyester resin, polyether ketone, polyether ether ketone, poly It is preferably at least one selected from the group consisting of ether sulfone, polyphenylene sulfide, and thermoplastic polyetherimide.
  • the polyester resin means a polymer compound having a —CO—O— (ester) bond in the main chain.
  • examples thereof include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalenedicarboxylate. .
  • polyester resins those described in Patent Document 1 can be used as appropriate.
  • the polyamide-based resin means a polymer compound having a —CO—NH— (amide) bond in the main chain.
  • examples thereof include polyamides obtained by ring-opening polymerization of lactam, polyamides obtained by self-condensation of ⁇ -aminocarboxylic acid, polyamides obtained by condensing diamine and dicarboxylic acid, and copolymers thereof. It is not limited to.
  • As the polyamide one kind may be used alone, or two or more kinds may be used as a mixture.
  • the details of the other lactam, diamine (monomer), and dicarboxylic acid (monomer) those described in Patent Document 1 can be used as appropriate.
  • polyamides include, for example, polyamide 4 (poly ⁇ -pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecanamide), polyamide 12 (polydodecanamide), polyamide 46 (polytetramethylene adipa) Amide), polyamide 66 (polyhexamethylene adipamide), polyamide 610, polyamide 612, polyamide 6T (polyhexamethylene terephthalamide), polyamide 9T (polynonamethylene terephthalamide), and polyamide 6I (polyhexamethylene isophthalamide) And copolymerized polyamides containing these as constituents.
  • polyamide 4 poly ⁇ -pyrrolidone
  • polyamide 6 polycaproamide
  • polyamide 11 polyundecanamide
  • polyamide 12 polydodecanamide
  • polyamide 46 polytetramethylene adipa) Amide
  • polyamide 66 polyhexamethylene adipamide
  • copolymerized polyamide examples include a copolymer of hexamethylene adipamide and hexamethylene terephthalamide, a copolymer of hexamethylene adipamide and hexamethylene isophthalamide, and hexamethylene terephthalamide and 2-methylpentanediamine terephthalate.
  • examples include amide copolymers.
  • thermoplastic resin fiber composite material Although the specific manufacturing method of the mixed fiber used for a thermoplastic resin fiber composite material is not restrict
  • vortex turbulence caused by fluids such as air, nitrogen gas, and water vapor Create two or more flow zones almost parallel to the yarn axis and guide the fibers into these zones to make non-bulky yarns under tension that does not cause loops or crimps, or continuous reinforcing fibers only
  • fluids such as air, nitrogen gas, and water vapor
  • examples include a method of fluid entanglement after opening, or after opening both continuous reinforcing fibers and thermoplastic resin fibers (fluid entanglement after opening).
  • the thermoplastic resin fiber is subjected to false twisting in a process including thermal processing alone, and then continuously blended by the fluid entanglement method in the same apparatus.
  • the method of patent document 2 can be used suitably.
  • thermoplastic resin constituting the thermoplastic resin fiber composite material may be one coated with continuous reinforcing fibers in a composite yarn or one impregnated with continuous reinforcing fibers.
  • the coating or impregnation of the thermoplastic resin may be performed at the time of manufacturing the continuous reinforcing fiber, or may be performed in a separate process after the continuous reinforcing fiber is manufactured.
  • thermoplastic resin fiber composite material is not particularly limited and may be a sheet shape, a film shape, or a pellet shape, but a fabric shape is preferable from the viewpoint of operability and shape flexibility.
  • the method for obtaining the fabric is not particularly limited, and a known method for producing an appropriate fabric selected according to the use and purpose can be used.
  • the woven fabric may be a loom such as a shuttle loom, a rapier loom, an air jet loom, a water jet loom, etc., and may contain composite yarn at least partially.
  • it may be obtained by driving a weft into a warp in which fibers including a composite yarn are arranged.
  • the knitted fabric is obtained by knitting a fiber containing a composite yarn at least partially using a knitting machine such as a circular knitting machine, a flat knitting machine, a tricot knitting machine, or a Raschel knitting machine.
  • Non-woven fabric is a sheet-like fiber assembly called a web made of fibers containing at least a part of composite yarn, followed by physical action such as a needle punch machine, stitch bond machine, column flow machine, etc. It is obtained by bonding fibers with an agent.
  • the method described in Patent Document 1 can be used as appropriate.
  • a hot blade press cutter is preferable.
  • the temperature of the blade of the hot blade press cutter is appropriately set depending on the material, but it is not less than the melting point or glass transition temperature of the thermoplastic resin, preferably not less than the melting point + 30 ° C. or glass transition temperature + 30 ° C., more preferably not less than the melting point + 70 ° C. Or it is glass transition temperature +70 degreeC or more.
  • thermoplastic resin of a cutting edge part may be burnt, and the physical property fall of the composite material after shaping
  • the cut surface of the continuous fiber reinforced thermoplastic resin composite material is cut while melting the thermoplastic resin with a blade having a temperature equal to or higher than the melting point of the thermoplastic resin, and the molten thermoplastic material is cut. It is desirable to solidify the resin.
  • thermoplastic resin on the cut surface of the composite material is melted and solidified, and the molecular weight of the thermoplastic resin melted and solidified is hot. It is desirable that it is 20% or more of the molecular weight of the plastic resin itself.
  • the “at least part of the thermoplastic resin” is preferably 50% or more, more preferably 80% or more, and most preferably 100% of the thermoplastic resin on the cut surface.
  • the melt-solidification of the thermoplastic resin on the cut surface can be confirmed by visual observation, but preferably can be confirmed using energy dispersive X-ray analysis (EDX).
  • the molecular weight of the thermoplastic resin melted and solidified is measured from a composite material (sample) collected from the cut surface. Specifically, a sample that is cut out from the surface of the cut surface within a thickness region of 500 ⁇ m at an arbitrary position of the central portion of the cut surface (the portion excluding the width of 1 mm from the periphery of the cut surface) is used as a sample.
  • thermoplastic resin in a state of being dissolved in 2-propanol is measured by a gel permeation chromatography (GPC) apparatus, and the molecular weight of the thermoplastic resin melted and solidified.
  • GPC gel permeation chromatography
  • the molecular weight of the thermoplastic resin itself constituting the composite material can be dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol and measured with a gel permeation chromatography (GPC) apparatus.
  • the molecular weight of the thermoplastic resin melted and solidified on the cut surface is 20% or more of the molecular weight of the thermoplastic resin itself constituting the composite material, the physical properties of the composite material can be prevented from being lowered, and the cut surface can be processed. Is possible. Within the range of 20% or more, more preferably 40% or more, and further preferably 50% or more.
  • the continuous reinforcing fibers and the thermoplastic resin are continuously and uniformly mixed, and the continuous reinforcing fibers can be uniformly fixed to the thermoplastic resin. Therefore, it is preferable that the composite material includes a composite yarn shape of continuous reinforcing fiber and continuous thermoplastic resin.
  • the handleability is excellent in processes such as knitting to form a fabric, and the resulting fabric can be a composite material molded body that exhibits sufficient mechanical properties even in a short time.
  • the cutting and melting step it is desirable to cut the composite material while melting the thermoplastic resin by applying a thermal history with a blade having a temperature equal to or higher than the melting point of the thermoplastic resin.
  • the temperature of the blade is equal to or higher than the melting point of the thermoplastic resin, preferably 50 ° C. higher than the melting point, and more preferably 75 ° C. higher.
  • the temperature of a blade is below melting
  • the blade include Swedish steel blades, Thomson blades, and super steel blades, and blades made of a material having high hardness and rigidity are preferable.
  • thermoplastic resin By cutting a composite material composed of continuous reinforcing fibers and a thermoplastic resin with a blade heated above the melting point of the thermoplastic resin, the composite material is cut and cut while melting the thermoplastic resin. A surface is generated, and the cut surface becomes a cut surface by solidifying the melted thermoplastic resin, whereby a composite material in which the end surface is not loosened can be manufactured.
  • Example 1 (Mold) The mold shown in FIGS. 11 and 13 was used as the mold. 13 is a cross-sectional view of the first part of the mold of FIG. 11 and corresponding to the AA ′ cross-sectional view of the molded product of FIG. As shown in FIG. 13, the mold used in this embodiment has first temperature adjusting means 313, 323 in the first parts 310, 320 of the mold, and ribs (403, 405, 407) of the molded product of FIG. ) And a recess corresponding to the truncated cone 412. Since the second portions 12 and 22 having the second temperature adjusting means 14 and 24 of the mold are the same as those in FIG.
  • the first portions 310 and 320 having the cooling medium passages 313 and 323 are made of Corson alloy (Matelion Brush, Mold Max-V) having a thermal conductivity of 165 J / s ⁇ m ⁇ K, and the rod-shaped cartridge heaters 14 and 24 are provided. Carbon steel (S55C) having a thermal conductivity of 40 J / s ⁇ m ⁇ K was used as the mold parts (10 and 20).
  • the volume V0 (V0 / V (I)) of the substantially heated mold part with respect to the volume V (I) of the first part is 10.
  • the cooling medium passages 313 and 323 are provided at an interval of 20 mm (L) at a position where the inner diameter is 8 mm and the distance L0 from the center to the cavity surface is 15 mm.
  • a bar cartridge heater (trade name “GLE4103”, capacity 1000 W, ⁇ 10 mm ⁇ 400 mm, watt density 8.3 W / cm 2 ) manufactured by Yako Electric Co., Ltd. was used.
  • the distance L2 from the center of the cooling medium passage to the center of the rod-shaped cartridge heater is 30 mm.
  • sizing agent A solid content conversion
  • Silane coupling agent 0.6% by mass of ⁇ -aminopropyltriethoxysilane [trade name: KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.)]
  • Lubricant 0.1% by weight of wax [Brand name: Carnauba wax (manufactured by Hiroyuki Kato)]
  • Binder 5% by mass of acrylic acid / maleic acid copolymer salt [trade name: Aqualic TL (manufactured by Nippon Shokubai Co., Ltd.)]
  • thermoplastic resin fibers polyamide 66 fibers (trade name: Leona (registered trademark) 470/144 BAU (manufactured by Asahi Kasei Fibers Co., Ltd.), fineness 470 dtex, number of single yarns 144) not subjected to entanglement treatment were used.
  • the fabric was cut into 7 sheets so as to be suitable for the shape of the desired compression molded product. Furthermore, using a hot blade heated to a temperature of 330 ° C., six of the seven sheets were stacked and cut. The cut surface was fused and a base material excellent in handling was obtained.
  • compression molding A molded article was produced by the compression molding method shown in FIG. 9 according to the following procedure.
  • the molding machine used was Toshiba Machine (S100V-8A) with a maximum clamping force of 300 tons.
  • the detailed conditions of the mold, the base material, and each process are shown in Table 1.
  • Step 1 Fabric setting and mold clamping
  • the mold is opened, and one of the seven fabrics cut into the desired shape is inserted into the mold and the recess corresponding to the rib of the mold All of these were inserted to the depth of the tip of the rib using a thin metal plate.
  • the six stacked fabrics were set at a predetermined position in the mold when the mold temperature was 150 ° C., and clamped with a clamping force of 240 MPa.
  • Step 2 Mold heating
  • the cavity surface is rapidly heated to 300 ° C. using a cartridge heater, and the polyamide resin constituting the fabric is melted in the mold, and the glass fiber Was impregnated.
  • Step 3 Mold Separation, Cooling
  • the mold clamping force was lowered, and the cavity surface was rapidly cooled by passing cooling water at 25 ° C. through the cooling medium passage with the cavity closed. Water flow was stopped 5 seconds after the temperature of the cavity surface reached 150 ° C., the mold was opened 10 seconds after the water flow stopped, and water in the cooling medium passage was simultaneously discharged with compressed air.
  • Step 4 (Release) Immediately after releasing the mold, the molded product was taken out and returned to Step 1.
  • the obtained molded product 400 had an outer size of 250 mm ⁇ 250 mm and a wall thickness of 2 mm.
  • Example 2 Using the same mold as in Example 1, a molded product was produced in the same manner as in Example 1 except for the following. As the cloth, seven sheets were stacked and cut with a hot blade, and seven sheets were stacked and inserted into the mold cavity without being pushed into the rib. As a forming method, when the cavity surface reached 240 ° C. between [Step 1] and [Step 2] instead of pushing the fabric into the recess corresponding to the rib of the mold in [Step 1] of Example 1. The degassing was performed using a dimension opening mode in which the mold clamping pressure was released for 0.5 seconds. Thereafter, molding was performed again by applying a clamping force of 240 MPa.
  • Example 3 The same base material as in Example 1 is used, the protrusions other than the substrate and ribs are formed from the base material, and the rib part is a mold that can be formed by injection molding, except for the following steps, as in Example 1. A molded product was produced.
  • Step 1 (Set of fabric and mold clamping) Open the mold, prepare 7 sheets of fabric cut into the desired shape and cut with a hot blade, do not push into the rib, Seven sheets were stacked, set at a predetermined position in the mold when the mold temperature was 150 ° C., and clamped with a mold clamping force of 240 MPa.
  • Step 2 Injection molding
  • a resin composition of polyamide 66 resin [trade name: Leona (registered trademark) 14G50] containing 50% short fibers GF only in the rib portion in a state where the mold is clamped, is set to a cylinder set temperature. Injection filling was performed at 290 ° C., an injection pressure of 20 MPa, an injection speed of 50 mm / sec, and an injection holding pressure of 20 MPa was applied.
  • Step 3 Tempoture rise
  • the cavity surface is rapidly heated to 300 ° C. using a cartridge heater, and the polyamide resin constituting the fabric is melted in the mold to produce glass fibers.
  • the injection resin composition and the fabric were joined simultaneously with the impregnation.
  • Step 4 Mold separation, cooling
  • each of the first part and the second part is separated by 5 mm, and 25 ° C cooling water is passed through the cooling medium passage.
  • the cavity surface was cooled rapidly.
  • the amount of cooling water during cooling was 15 L / min. Water flow was stopped 5 seconds after the temperature of the cavity surface reached 150 ° C., the mold was opened 10 seconds after the water flow stopped, and water in the cooling medium passage was simultaneously discharged with compressed air.
  • Step 5 Release
  • Step 1 (Preparation of prepreg) A prepreg plate was prepared in advance by the following procedure using the same fabric as in Example 1 as a substrate. 7 sheets of fabric are sandwiched between two steel plates with a 3.0mm thick formwork, then placed in a compression molding machine heated to 300 ° C and heated for 10 minutes at a compression force of 5MPa, then transferred to a cooling plate and cooled for 5 minutes Then, a prepreg of a plate material having a thickness of 3 mm was produced. The plate material was heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reached 300 ° C. and continuously heated for 3 minutes. And compression molded. The obtained molded product was 250 mm ⁇ 250 mm and the wall thickness was 2 mm.
  • a plate material was prepared in advance by the following procedure using the same fabric as in Example 1 as the base material. 7 sheets of fabric are sandwiched between 2 steel plates with a formwork of 2.2 mm thickness, then placed in a compression molding machine heated to 300 ° C. and heated for 10 minutes at a compression force of 5 MPa, then transferred to a cooling plate and cooled for 5 minutes And the board
  • a prepreg plate was prepared in advance by the following procedure using the same fabric as in Example 1 as the substrate. 7 sheets of fabric are sandwiched between 2 steel plates with a formwork of 2.2 mm thickness, then placed in a compression molding machine heated to 300 ° C. and heated for 10 minutes at a compression force of 5 MPa, then transferred to a cooling plate and cooled for 5 minutes Then, a prepreg plate material having a thickness of 2.2 mm was produced. The plate material was heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reached 300 ° C. and then continuously heated for 3 minutes, and the mold temperature was immediately set to a mold temperature of 150 ° C. And compression molded.
  • Step 3 Adhesion of base material portion and rib portion
  • Both the rib part material obtained in step 1 and step 2 and the plate material of the prepreg are heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reaches 300 ° C. and continuously heated for 3 minutes.
  • the rib part is first put in the same mold as in Example 1 set immediately at a mold temperature of 150 ° C., then the plate material is inserted, compression molding is performed, and the rib part and the base material part of the injection resin composition are joined. did.
  • Example 4 As the base material, the same fabric as in Example 2 was used. As the molding method, the same method as in Example 2 was used except that the gas was not removed.
  • strength of the projection part of an Example and a comparative example was evaluated on condition of the following.
  • the results are shown in Table 1.
  • [Evaluation conditions] The tensile strength was measured under the following conditions according to ISO 527-1 except for the shape of the test piece.
  • the rib part or flat plate part from the molded product was cut into a rectangular shape with a length of 80 mm and a width of 20 mm, and the apparent strength was measured.
  • the apparent strength is the strength calculated assuming that the cross-sectional area of the test piece required for calculation of the tensile strength is a rectangle that the rib portion is ignored, and the thickness of the test piece including the rib is other than the rib portion.
  • FIG. 16 shows an outline of this tensile strength test.
  • reference numeral 500 denotes the above-mentioned test piece. A tensile force is applied to the test piece 500 in the direction indicated by the arrow in the figure, and the tensile strength is measured.
  • the bending stiffness was measured under the following conditions according to ISO 178 except for the shape of the test piece.
  • the rib part or flat plate part from the molded product was cut into a rectangular shape with a length of 80 mm and a width of 50 mm, and the apparent elastic modulus was measured.
  • the apparent elastic modulus is the strength calculated by assuming that the cross-sectional area of the test piece necessary for calculating the elastic modulus is a rectangular shape in which the rib portion is ignored, and the test piece including the rib is a portion other than the rib portion.
  • the elastic modulus was calculated by measuring the thickness and width and using the thickness and width as the cross-sectional area.
  • FIG. 17 shows an outline of this tensile strength test.
  • reference numeral 600 denotes the above-described test piece. A load is applied to the test piece 600 in the direction of the arrow through the jig 601, and the bending rigidity is measured.
  • the “bottom dimension” of the truncated cone is a diameter d base of the bottom surface of the truncated cone and a diameter d top of the upper surface.
  • the “bottom dimension” of the rib is the thickness T 1 at the base of the rib, and the “top dimension” is the thickness T 3 of the tip surface of the rib.
  • the average value of the height of the continuous reinforcing fibers was 5% or more in any of the protrusions, and there was no short portion and the appearance was good. It was. Moreover, the area
  • thermoplastic resin fiber composite molded article that requires high-level mechanical properties, such as various machines and structural parts such as automobiles.
  • a molded product having a complicated shape and having a high level of mechanical properties can be obtained. It can also be used for electronic devices, structural members and housings of OA / home appliance parts. Examples of automobile parts that can be used include the following parts and parts thereof.

Abstract

[Problem] To provide: a molded article that includes a projection having excellent formability and strength as a result of using a thermoplastic resin fiber composite material; and a molding method with favorable productivity. [Solution] A molded article containing a continuous fiber-reinforced thermoplastic resin composite material which comprises continuous reinforcing fibers and a thermoplastic resin. The molded article has a substrate (420) and a projection (403), with continuous reinforcing fibers (170) being present within the projection (403) and the substrate (420), and the average value of a height hf of the continuous reinforcing fibers (170) within the projection (403) is 5% or more of a height h of the projection (403).

Description

成形品および圧縮成形法Molded products and compression molding methods
 本発明は熱可塑性樹脂繊維複合材料からなる成形品およびその成形品を得る圧縮成形法に関する。 The present invention relates to a molded article made of a thermoplastic resin fiber composite material and a compression molding method for obtaining the molded article.
 近年、各種機械および自動車等の構造部品、圧力容器、および管状の構造物等に使用される成形品の材料として強化繊維と熱可塑性樹脂繊維が連続して均一に混じり合った複合糸、複合糸からなる布帛(以下、複合材料ともいう。)、連続強化繊維に熱可塑性樹脂を予め含浸させた板材が提案されている。布帛を用いた成形品の成形方法として、例えば、特許文献1に、布帛を280℃に加熱した金型に配置し、布帛の熱可塑性樹脂部分を溶融した後に、金型を50℃に冷却して固化させる方法が提案されている。また、板材を熱可塑性樹脂の融点あるいはガラス転移温度以上に予め加熱し、一定温度に温度調節した金型に挿入して圧縮成形する方法が挙げられる。 In recent years, composite yarns and composite yarns in which reinforcing fibers and thermoplastic resin fibers are continuously and uniformly mixed as materials for molded products used in various machines and structural parts such as automobiles, pressure vessels, and tubular structures, etc. Fabrics made of (hereinafter also referred to as composite materials), and plate materials in which continuous reinforcing fibers are impregnated with a thermoplastic resin in advance have been proposed. As a method for forming a molded article using a fabric, for example, in Patent Document 1, the fabric is placed in a mold heated to 280 ° C., and after the thermoplastic resin portion of the fabric is melted, the mold is cooled to 50 ° C. A method of solidifying the material has been proposed. Further, there is a method in which the plate material is preliminarily heated to the melting point or glass transition temperature of the thermoplastic resin and inserted into a mold whose temperature has been adjusted to a constant temperature, and compression molding is performed.
 各種機械および自動車等に用いられる成形品では、リブやボス等の突起部を有するものがある。このような成形品は信頼性の観点から高い強度が望まれる。リブは高さが高いほど強度補強効果が高いが、基材として布状または板状の複合材料を用いた場合には、圧縮成形のみでは賦形性に問題がある。また、ボスまたは柱状の突起部も、リブの場合と同様、成形可能な高さに制限がある。従来、布状または板状の連続繊維強化熱可塑性樹脂複合材料を用いて、形状の起伏が小さい成形品を、圧縮成形、または圧縮成形と射出成形とのハイブリッド成形によって成形する方法が提案されている。 Some molded products used in various machines and automobiles have protrusions such as ribs and bosses. Such a molded article is desired to have high strength from the viewpoint of reliability. The higher the height of the rib, the higher the strength reinforcing effect. However, when a cloth-like or plate-like composite material is used as the base material, there is a problem in formability only by compression molding. Further, the height of the boss or the columnar protrusion is also limited as in the case of the rib. Conventionally, a method has been proposed in which a molded product having a small undulation shape is formed by compression molding or a hybrid molding of compression molding and injection molding using a fabric-like or plate-like continuous fiber reinforced thermoplastic resin composite material. Yes.
 また、機械的強度が求められる成形品の材料として、連続強化繊維などの長繊維からなる補強材にマトリックス樹脂を含浸させたプリプレグと称される連続繊維強化熱可塑性樹脂複合材料が広く用いられている。プリプレグを材料として用いる場合、プリプレグを予備加熱して軟化させた後、例えば30℃~150℃の一定温度に保たれた金型に挿入して固化させて成形品を作製する。
 ところが、複雑形状を有する成形品の場合、プリプレグを用いて圧縮成形法のみで製造すると、成形時の応力によって連続強化繊維がリブの根元周辺で切れる、あるいは、突起部の端まで良好に成形できないという問題があり、さらに、その成形不全による機械的強度が充分でないという問題がある。
In addition, as a material for molded products that require mechanical strength, a continuous fiber reinforced thermoplastic resin composite material called a prepreg in which a matrix resin is impregnated with a reinforcing material composed of continuous fibers such as continuous reinforcing fibers is widely used. Yes. When a prepreg is used as a material, the prepreg is preheated and softened, and then inserted into a mold kept at a constant temperature of, for example, 30 ° C. to 150 ° C. and solidified to produce a molded product.
However, in the case of a molded product having a complex shape, if the prepreg is used only for compression molding, the continuous reinforcing fiber is cut around the rib root due to the stress during molding, or the end of the protrusion cannot be molded well. Furthermore, there is a problem that the mechanical strength due to the molding failure is not sufficient.
 そこで、複雑形状を有する成形品の製造方法として、例えば特許文献1には、連続強化繊維と熱可塑性樹脂からなる部材Aと、非連続強化繊維と熱可塑性樹脂からなる部材Bとを重ね、遠赤外線ヒーターで材料温度が260℃になるまで加熱し、150℃で冷却プレスする方法が提案されている。この方法によれば、高さが高いリブやボスを有し、かつ強度が優れる複雑形状を有する成形品が得られることが記載されている。 Therefore, as a method for producing a molded product having a complicated shape, for example, Patent Document 1 discloses that a member A made of continuous reinforcing fibers and a thermoplastic resin and a member B made of discontinuous reinforcing fibers and a thermoplastic resin are stacked, There has been proposed a method in which the material temperature is heated to 260 ° C. with an infrared heater and cooled and pressed at 150 ° C. According to this method, it is described that a molded product having a complicated shape with a high rib and boss and excellent strength can be obtained.
特開2015-226986号公報Japanese Patent Laying-Open No. 2015-226986 特開2015-101794号公報Japanese Patent Laying-Open No. 2015-101794
 しかしながら、複雑なリブやボスのような突起部を有する成形品を圧縮成形のみで成形する方法に関しては報告されていない。さらに連続強化繊維が突起部に深く侵入した、強度に優れる成形体およびその成形体の圧縮成形法に関しても報告されていない。
 他方、上記特許文献1のような複数種の基材を用いる方法では時間とコストがかかるうえ、連続強化繊維が突起部に深く侵入した、より強度に優れる成形品を得ることは困難である。
 本発明は上記事情に鑑みてなされたものであり、賦形性および強度に優れる突起部を有する複雑形状の成形品およびその成形品を得るための圧縮成形法を提供することを目的とするものである。
 さらに本発明は、賦形性および強度に優れる複雑形状を有する成形品を、一種のプリプレグで、一つの成形法で得るための方法を提供することを目的とするものである。
However, there has been no report on a method of molding a molded product having a projection such as a complicated rib or boss only by compression molding. Furthermore, there is no report on a molded article having excellent strength, in which continuous reinforcing fibers have penetrated deep into the protrusions, and a compression molding method for the molded article.
On the other hand, the method using a plurality of types of base materials as in Patent Document 1 requires time and cost, and it is difficult to obtain a molded product having excellent strength in which continuous reinforcing fibers have penetrated deeply into the protrusions.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a molded product having a complicated shape having a protrusion having excellent shapeability and strength, and a compression molding method for obtaining the molded product. It is.
Furthermore, an object of the present invention is to provide a method for obtaining a molded product having a complicated shape excellent in formability and strength by a single molding method using a kind of prepreg.
 すなわち、本発明は、以下の通りである。
 本発明の成形品は、連続強化繊維と熱可塑性樹脂とからなる連続繊維強化熱可塑性樹脂複合材料を含む成形品であって、
 成形品が、基板部と突起部とを有し、
 突起部中および基板部中に連続強化繊維が存在し、
 突起部中の連続強化繊維の高さの平均値が突起部の高さの5%以上である。
That is, the present invention is as follows.
The molded product of the present invention is a molded product containing a continuous fiber reinforced thermoplastic resin composite material composed of continuous reinforced fibers and a thermoplastic resin,
The molded product has a substrate portion and a protrusion,
There are continuous reinforcing fibers in the protrusion and the substrate,
The average value of the height of the continuous reinforcing fibers in the protrusion is 5% or more of the height of the protrusion.
 ここで「突起部」とは、基板部から、リブ、ボス、または柱状(円柱、円錐台、四角柱、および四角錐等を含む)に突起した部分を示す。
 「突起部の高さ」について、リブを例に図面を参照しながら説明する。図1は、本発明の成形品の一実施形態の概略上面図である。図3は、図1におけるリブ403の短辺方向の断面図である。図4は、リブ403の斜視図である。
 「突起部の高さ」とは、図3に示すように、基板部420のリブ403を有する面420aから垂直方向にリブ403の上端までの距離(符号h)を意味する。
Here, the “projection part” refers to a part projecting from the substrate part into a rib, a boss, or a column (including a cylinder, a truncated cone, a quadrangular column, a quadrangular pyramid, and the like).
The “height of the protruding portion” will be described with reference to the drawings by taking a rib as an example. FIG. 1 is a schematic top view of an embodiment of the molded article of the present invention. FIG. 3 is a cross-sectional view of the rib 403 in FIG. 1 in the short side direction. FIG. 4 is a perspective view of the rib 403.
As shown in FIG. 3, the “height of the protruding portion” means a distance (reference symbol h) from the surface 420 a of the substrate portion 420 having the rib 403 to the upper end of the rib 403 in the vertical direction.
 また、「突起部中の連続強化繊維の高さ」とは、図3に示すように、基板部420上のリブ403を有する側の面420aから連続強化繊維170の上端までの垂直方向の距離(符号h)を意味する。なお、「連続強化繊維の上端」は、例えば図4に示すように、リブ403の内部に連続強化繊維170が一部存在しない領域Aがあっても、その領域内の測定点における一番高い位置にある連続強化繊維の端を意味する。 Further, “the height of the continuous reinforcing fibers in the protrusions” means the vertical distance from the surface 420a on the side of the substrate portion 420 having the ribs 403 to the upper end of the continuous reinforcing fibers 170 as shown in FIG. (Symbol h f ). Note that the “upper end of the continuous reinforcing fiber” is the highest at the measurement point in the region, even if there is a region A where the continuous reinforcing fiber 170 does not partially exist in the rib 403, as shown in FIG. Means the end of continuous reinforcing fiber in position.
 また、柱状突起部の「突起部中の連続強化繊維の高さ」について、四角錐状突起部を例に図面を参照しながら説明する。図6は四角錐の斜視図である。図7はその四角錐の断面図である。図8はその四角錐の側面投影図である。
 突起部が柱状である場合の「突起部中の連続強化繊維の高さ」とは、図7に示すように、基板部420の四角錐413を有する側の面420aから連続強化繊維170の上端までの垂直方向の距離hである。なお、柱状の場合、「連続強化繊維の上端」は、例えば図8に示すように、突起部内部に連続強化繊維が存在しない領域AまたはBがあっても、その領域内の測定点における一番高い位置にある連続強化繊維の端を意味する。
Further, the “height of continuous reinforcing fibers in the protrusion” of the columnar protrusion will be described with reference to the drawings, taking a quadrangular pyramidal protrusion as an example. FIG. 6 is a perspective view of a quadrangular pyramid. FIG. 7 is a cross-sectional view of the quadrangular pyramid. FIG. 8 is a side projection of the quadrangular pyramid.
As shown in FIG. 7, “the height of the continuous reinforcing fiber in the protruding portion” when the protruding portion is columnar is the upper end of the continuous reinforcing fiber 170 from the surface 420 a of the substrate portion 420 having the quadrangular pyramid 413. it is a vertical direction of the distance h f up. In the case of a columnar shape, the “upper end of the continuous reinforcing fiber” is, for example, as shown in FIG. 8, even if there is a region A or B in which no continuous reinforcing fiber exists in the protrusion, It means the end of continuous reinforcing fiber in the highest position.
 「突起部中の連続強化繊維の高さの平均値」とは、上記で求めた「突起部中の連続強化繊維の高さ」の突起部全体についての平均値を意味する。
 突起部中の連続強化繊維の高さおよびその平均値は、目視で強化繊維が見える場合は、デジタルカメラによって得た側面投影画像からMathWorks社のMATLABソフトを用いて求める。目視で強化繊維が確認できない場合は、軟X線装置で強化繊維を撮影し、目視の場合と同様にMathWorks社のMATLABソフトを用いて高さおよびその平均値を求める。
 なお、リブについては、短辺方向の連続強化繊維の高さは平均値への影響が小さく、また、長辺方向の2側面の連続強化繊維の高さはいずれも同等であるため、「突起部中の連続強化繊維の高さの平均値」は長辺方向の一側面で求めた値とする。
“The average value of the heights of the continuous reinforcing fibers in the protrusions” means the average value for the entire protrusions of the “height of the continuous reinforcing fibers in the protrusions” obtained above.
The height of the continuous reinforcing fibers in the protrusions and the average value thereof are obtained by using MATLAB software of MathWorks from the side projection image obtained by a digital camera when the reinforcing fibers are visible. If the reinforcing fiber cannot be confirmed visually, the reinforcing fiber is photographed with a soft X-ray apparatus, and the height and average value thereof are calculated using MATLAB software of MathWorks, as in the case of visual observation.
As for the ribs, the height of the continuous reinforcing fibers in the short side direction has little influence on the average value, and the heights of the continuous reinforcing fibers on the two side surfaces in the long side direction are the same. The “average value of the height of the continuous reinforcing fibers in the part” is a value obtained on one side of the long side direction.
 突起部中の連続強化繊維の高さが突起部の高さの5%以上である領域は、突起部の底辺の20%以上であることが好ましい。
 突起部がリブの場合の「連続強化繊維の高さの5%以上である領域が突起部の底辺の20%以上である」について、図5を参照して説明する。図5はリブ403の長辺方向の側面投影図である。図5中、連続強化繊維の高さhが5%以上の領域の、上記長辺方向の長さをLで示す。「連続強化繊維の高さの5%以上である領域が突起部の底辺の20%以上である」とは、この長さLが底辺の長さLの20%以上であることを意味する。なお、突起部がリブの場合は、短辺方向の影響は小さく無視できるため、長辺方向の一側面の底辺の長さLrに対する割合で表すこととする。
 リブ以外の突起部が四角柱の場合は、例えば、図6で説明すると、底辺の長さL(2・a+2・b)に対して求めた値とする。
The region in which the height of the continuous reinforcing fiber in the protrusion is 5% or more of the height of the protrusion is preferably 20% or more of the bottom of the protrusion.
With reference to FIG. 5, a description will be given of “the region where the height of the continuous reinforcing fiber is 5% or more is 20% or more of the bottom of the projection” when the projection is a rib. FIG. 5 is a side projection view of the rib 403 in the long side direction. In FIG. 5, showing a height h f of more than 5% area of the continuous reinforcing fibers, the long side direction length in L a. Means "the height of more than 5% is a region of continuous reinforcing fibers is not less than 20% of the base of the protrusion" is a, the length L a is greater than or equal to 20% of the length L r of the bottom side To do. When the protrusion is a rib, the influence in the short side direction is small and can be ignored, and therefore, it is expressed as a ratio to the length Lr of the bottom side of one side surface in the long side direction.
In the case where the protrusions other than the ribs are square pillars, for example, as illustrated in FIG. 6, the value is obtained with respect to the length L (2 · a 1 + 2 · b 1 ) of the base.
 突起部中の連続強化繊維は、基板部中の連続強化繊維と連続していることが好ましい。ここで、「連続している」とは連続強化繊維が基板部から連続して存在することを意味する。判定方法としては、成形品を焼却処理したときに連続強化繊維が基板部から連続して残存していることを確認できる。また、X線CTで観察することにより強化繊維の連続部分を確認することもできる。 The continuous reinforcing fiber in the protrusion is preferably continuous with the continuous reinforcing fiber in the substrate portion. Here, “continuous” means that continuous reinforcing fibers are continuously present from the substrate portion. As a determination method, it can be confirmed that the continuous reinforcing fibers remain continuously from the substrate portion when the molded product is incinerated. Moreover, the continuous part of a reinforced fiber can also be confirmed by observing by X-ray CT.
 突起部の底辺において、基板部内部の連続強化繊維と連続している突起部中の連続強化繊維の占める領域は、底辺の20%以上であることが好ましく、90%以上であることが最も好ましい。
 突起部がリブの場合の「基板部と連続している突起部中の連続強化繊維の占める領域が底辺の20%以上である」について、図4を参照しながら説明する。図4に示すように、例えば、領域Aでは連続強化繊維が基板部420内部から連続しておらず、領域A以外の領域では連続強化繊維が連続している場合、「基板部と連続している突起部中の連続強化繊維の占める領域が底辺の20%以上である」とは、リブの長辺方向の一側面の底辺L(図5参照)において、連続している連続強化繊維の占める領域の長辺方向の長さLが底辺の長さLの20%以上であることを意味する。また、リブの連続強化繊維の高さの平均値は基板部の肉厚T以上であることが好ましく、より好ましくは2倍以上、さらに好ましくは3倍以上である。さらに根元の肉厚Tに対するリブの高さh/Tは、2以上が好ましく、さらに好ましくは4以上、最も好ましくは6以上である。かつリブ部の根元の肉厚Tは基板部の肉厚T以下であることが好ましく、より好ましくはリブ部の根元の肉厚Tが基板部の肉厚Tの3/4以下、もっとも好ましくは1/2以下である。リブ部の根元の肉厚Tが大きい場合、基板部の連続強化繊維の直線性が失われ、基板部の直線性が失われ、基板部の引張強度が低下する恐れがある。さらにリブ部の高さを100%としたときの上部10%の高さの連続繊維の密度Vfが10%以下であることが望ましい(図3参照)。
The area occupied by the continuous reinforcing fibers in the protrusions that are continuous with the continuous reinforcing fibers inside the substrate part at the bottom of the protrusions is preferably 20% or more of the bottom, and most preferably 90% or more. .
With reference to FIG. 4, a description will be given of “the region occupied by the continuous reinforcing fibers in the protrusion continuous with the substrate portion is 20% or more of the bottom” when the protrusion is a rib. As shown in FIG. 4, for example, in the case where the continuous reinforcing fibers are not continuous from the inside of the substrate part 420 in the region A and the continuous reinforcing fibers are continuous in the region other than the region A, "The area occupied by the continuous reinforcing fibers in the protruding portion is 20% or more of the bottom" means that the continuous continuous reinforcing fibers occupy at the bottom L (see FIG. 5) on one side of the long side direction of the rib. the length L b of the long side direction of the region means that at least 20% of the length L r of the base. The height of the average value of the continuous reinforcing fibers in the ribs is preferably at a thickness T 2 or more substrate portions, more preferably 2 times or more, further preferably 3 times or more. Further, the rib height h / T 1 with respect to the base wall thickness T 1 is preferably 2 or more, more preferably 4 or more, and most preferably 6 or more. Further, the thickness T 1 at the base of the rib portion is preferably equal to or less than the thickness T 2 of the substrate portion, and more preferably, the thickness T 1 at the base of the rib portion is 3/4 or less of the thickness T 2 of the substrate portion. Most preferably, it is 1/2 or less. If the base of the wall thickness T 1 of the rib portion is large, the linearity of the continuous reinforcing fiber substrate portion is lost, the linearity of the substrate portion is lost, the tensile strength of the substrate portions may be decreased. Further, it is desirable that the density Vf of the continuous fiber having a height of 10% at the top when the height of the rib portion is 100% is 10% or less (see FIG. 3).
 一方、柱状突起部の場合を、例えば図8で説明する。「基板部と連続している突起部中の連続強化繊維の占める領域が底辺の20%以上である」とは、突起部中の連続強化繊維の占める領域の底辺における長さLが底辺の長さLの20%以上であることを意味する。 On the other hand, the case of a columnar projection will be described with reference to FIG. 8, for example. The "region occupied by continuous reinforcing fibers in the protrusions contiguous with the substrate section is greater than or equal to 20% of the bottom", a length L b in the bottom of the area occupied by the continuous reinforcing fibers in the protrusions of the bottom side It means 20% or more of the length L.
 突起物中の熱可塑性樹脂と基板部中の熱可塑性樹脂は、同一物であることが好ましい。基板部とは異なる樹脂又は複合材料で突起物を構成した場合、異なる材料間の界面ができ、接合部の強度が連続強化繊維複合材料部に比べて劣るといった問題が発生することがある。 It is preferable that the thermoplastic resin in the protrusion and the thermoplastic resin in the substrate are the same. When the protrusion is made of a resin or a composite material different from the substrate portion, there may be a problem that an interface between different materials is formed and the strength of the joint portion is inferior to that of the continuous reinforcing fiber composite material portion.
 突起物の高さを100%としたときの下部10%の高さの連続繊維の密度Vfが30%以上、更に好ましくは50%以上であることが望ましい。突起物の強度としては、上部からの荷重に対して基板部との接合部に応力が集中しやすいことから、この部分に連続強化繊維が配置された方が好ましいためである。 It is desirable that the density Vf of the continuous fiber having a height of 10% at the bottom when the height of the protrusion is 100% is 30% or more, more preferably 50% or more. This is because the strength of the protrusions is preferably such that continuous reinforcing fibers are disposed in this portion because stress tends to concentrate on the joint portion with the substrate portion with respect to the load from above.
 射出成形において突起部を有する成形品を作製する場合、リブのような金型キャビティ面に彫り込まれた深い部分(凹部)に複合材料が溶融充填されるとき、ガスだまりと呼ばれるものが発生して、凹部の先端まで溶融された熱可塑性樹脂が入り込まず、成形品の突起部が端部まで形成されないことが知られている。
 発明者らは、この現象を解決する方法としては、ガスが発生してガスだまり現象が起こるタイミングで金型内のガス成分を効率よく除去する方法が好ましく、本発明の圧縮成形法においても、任意のタイミングでガス抜きを行うことにより、突起部を有する圧縮成形品を作製することを見出した。
When producing a molded product having protrusions in injection molding, when the composite material is melt-filled in a deep part (concave) carved into the mold cavity surface such as a rib, what is called a gas pool is generated. It is known that the thermoplastic resin melted up to the tip of the recess does not enter and the projection of the molded product is not formed up to the end.
As a method for solving this phenomenon, the inventors preferred a method of efficiently removing gas components in the mold at the timing when gas is generated and a gas accumulation phenomenon occurs, and in the compression molding method of the present invention, It has been found that by performing degassing at an arbitrary timing, a compression molded product having a protrusion is produced.
 すなわち、本発明による一つの圧縮成形法は、
 連続強化繊維と熱可塑性樹脂とからなる連続繊維強化熱可塑性樹脂複合材料を、圧縮成形して、基板部と突起部とを有する成形品を得る圧縮成形法であって、
 連続繊維強化熱可塑性樹脂複合材料を、金型に挿入し、圧縮しながら金型を熱可塑性樹脂のガラス転移温度以上または融点以上に加熱して、賦形し、次いで、金型を熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下、好ましくはガラス転移温度-30℃以下または融点-50℃以下、さらに好ましくはガラス転移温度-50℃以下または融点-100℃以下に冷却して熱可塑性樹脂を固化する圧縮成形工程と、
 圧縮成形工程中、連続繊維強化熱可塑性樹脂複合材料から発生した金型内のガス成分を、金型外に放出する工程と、を備える。
That is, one compression molding method according to the present invention is:
A compression molding method in which a continuous fiber reinforced thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression molded to obtain a molded product having a substrate portion and a protrusion,
A continuous fiber reinforced thermoplastic resin composite material is inserted into a mold, and while being compressed, the mold is heated to a temperature higher than the glass transition temperature or the melting point of the thermoplastic resin to form, and then the mold is molded into a thermoplastic resin. Glass transition temperature of −10 ° C. or lower or melting point −10 ° C. or lower, preferably glass transition temperature −30 ° C. or lower or melting point −50 ° C. or lower, more preferably glass transition temperature −50 ° C. or lower or melting point −100 ° C. or lower. A compression molding process for solidifying the thermoplastic resin,
And a step of releasing a gas component in the mold generated from the continuous fiber reinforced thermoplastic resin composite material out of the mold during the compression molding process.
 ここで、上記金型を加熱する温度とは、金型のキャビティ面を所望の温度にするための設定温度を示す。キャビティ面は成形面であるため、熱電対等の温度測定器を設置するのは難しく、実際のキャビティ面の温度を測定するのは困難である。このため、キャビティ面の温度は、予め、成形しない状態で、キャビティ面近傍に設置した温度計測器と温度調節手段における設定温度との相関関係を取っておき、所望のキャビティ面温度となるように設定温度を調節する。 Here, the temperature at which the mold is heated indicates a set temperature for setting the cavity surface of the mold to a desired temperature. Since the cavity surface is a molding surface, it is difficult to install a temperature measuring device such as a thermocouple, and it is difficult to measure the actual temperature of the cavity surface. For this reason, the temperature of the cavity surface is set in advance so as to obtain a desired cavity surface temperature by keeping a correlation between the temperature measuring device installed in the vicinity of the cavity surface and the set temperature in the temperature adjusting means without molding. Adjust.
 金型を加熱する温度は、融点またはガラス転移温度を基準にしているが、熱可塑性樹脂が結晶性熱可塑性樹脂の場合は融点を基準に用い、熱可塑性樹脂が非結晶性樹脂の場合はガラス転移温度を基準に用いる。 The temperature at which the mold is heated is based on the melting point or the glass transition temperature. However, if the thermoplastic resin is a crystalline thermoplastic resin, the melting point is used as a reference, and if the thermoplastic resin is an amorphous resin, glass is used. The transition temperature is used as a reference.
 ガス抜き、つまり上記金型内のガス成分を金型外に放出する工程の具体的方法としては、金型内に連続繊維強化熱可塑性樹脂複合材料を挿入した後に金型を閉鎖し、金型温度が任意の温度に達した時に、型締め力を緩和し、金型合わせ面(パーティングライン)からガスを放出する方法が簡便な方法として用いられる。また、別の形態としては、金型キャビティ内や連続繊維強化熱可塑性樹脂複合材料内の空気や加熱に伴って発生するガス成分を吸引する方法などが用いられる。空気やガスの吸引手段としては、金型キャビティからガスベントラインを設けて真空ポンプを用いてもよい。 As a specific method of degassing, that is, releasing the gas component in the mold out of the mold, the mold is closed after the continuous fiber reinforced thermoplastic resin composite material is inserted into the mold. When the temperature reaches an arbitrary temperature, a method of relaxing the mold clamping force and releasing the gas from the die mating surface (parting line) is used as a simple method. As another form, there is used a method of sucking air in a mold cavity or a continuous fiber reinforced thermoplastic resin composite material or a gas component generated by heating. As a means for sucking air or gas, a vacuum pump may be used by providing a gas vent line from the mold cavity.
 また、本発明の別の圧縮成形法は、連続強化繊維と熱可塑性樹脂とからなる熱可塑性樹脂複合材料を、圧縮成形して、基板部および突起部を有する成形品を得る圧縮成形法であって、
 連続繊維強化熱可塑性樹脂複合材料の少なくとも一部を金型に挿入する際に、連続繊維強化熱可塑性樹脂複合材料を金型の突起部に対応する凹部に挿入し、圧縮しながら金型を熱可塑性樹脂のガラス転移温度以上または融点以上に加熱して賦型し、次いで、金型を熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下、好ましくはガラス転移温度-30℃以下または融点-50℃以下、さらに好ましくはガラス転移温度-50℃以下または融点-100℃以下に冷却して熱可塑性樹脂を固化する。
Another compression molding method of the present invention is a compression molding method in which a thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression-molded to obtain a molded product having a substrate portion and a protrusion. And
When inserting at least part of the continuous fiber reinforced thermoplastic resin composite material into the mold, the continuous fiber reinforced thermoplastic resin composite material is inserted into the recess corresponding to the protrusion of the mold, and the mold is heated while being compressed. Molding is performed by heating above the glass transition temperature or melting point of the plastic resin, and then the mold is glass transition temperature −10 ° C. or lower or melting point −10 ° C. or lower, preferably glass transition temperature −30 ° C. or lower of the thermoplastic resin. Alternatively, the thermoplastic resin is solidified by cooling to a melting point of −50 ° C. or lower, more preferably a glass transition temperature of −50 ° C. or lower or a melting point of −100 ° C. or lower.
 さらに本発明者らは、鋭意検討の結果、特定の製造条件とすることにより、一種のプリプレグを用いて圧縮成形法のみで、突起物を有する複雑形状の成形品を製造することができることを見出し、本発明に至った。
 すなわち、本発明によるさらに別の圧縮成形法は、以下の通りである。
 連続強化繊維と熱可塑性樹脂とからなるプリプレグを、圧縮成形して基板部および突起部を有する成形品を得る圧縮成形法であって、
 プリプレグを熱可塑性樹脂のガラス転移温度以上または融点以上に予備加熱して軟化させ、
 軟化したプリプレグを金型に挿入し、
 金型を熱可塑性樹脂のガラス転移温度-80℃以上または融点-80℃以上に加熱して、プリプレグを賦型し、次いで、金型を熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下に冷却して熱可塑性樹脂を固化する。
Furthermore, as a result of intensive studies, the present inventors have found that a molded product having a complicated shape having protrusions can be produced using only a compression molding method using a kind of prepreg by setting specific production conditions. The present invention has been reached.
That is, still another compression molding method according to the present invention is as follows.
A compression molding method in which a prepreg composed of continuous reinforcing fibers and a thermoplastic resin is compression molded to obtain a molded product having a substrate portion and a protrusion,
Pre-preg is softened by preheating above the glass transition temperature or melting point of the thermoplastic resin,
Insert the softened prepreg into the mold,
The mold is heated to a glass transition temperature of the thermoplastic resin of −80 ° C. or higher or a melting point of −80 ° C. or more to mold the prepreg, and then the mold is subjected to a glass transition temperature of the thermoplastic resin of −10 ° C. or lower or a melting point of Cool to 10 ° C. or lower to solidify the thermoplastic resin.
 ここで、上記金型を加熱する温度とは、金型の設定温度である。
 なお、金型を加熱する温度は、融点またはガラス転移温度を基準にしているが、熱可塑性樹脂が結晶性熱可塑性樹脂の場合は融点を基準に用い、熱可塑性樹脂が非結晶性樹脂の場合はガラス転移温度を基準に用いる。
Here, the temperature at which the mold is heated is a set temperature of the mold.
The temperature at which the mold is heated is based on the melting point or glass transition temperature. However, when the thermoplastic resin is a crystalline thermoplastic resin, the melting point is used as a reference, and when the thermoplastic resin is an amorphous resin. Is based on the glass transition temperature.
 本発明の成形品によれば、賦形性および強度に優れた突起部を得ることができる。
 また、本発明による一つの圧縮成形法あるいは本発明による別の圧縮成形法によれば、賦形性および強度に優れた突起部を有する成形品を生産性良く製造することができる。
 本発明によるさらに別の圧縮成形法によれば、一種のプリプレグで、他の成形法を組み合わせることなく、圧縮成形法のみで賦形性および強度に優れた、複雑形状を有する成形品を得ることができる。
According to the molded article of the present invention, it is possible to obtain a protrusion having excellent shapeability and strength.
In addition, according to one compression molding method according to the present invention or another compression molding method according to the present invention, a molded product having protrusions excellent in formability and strength can be produced with high productivity.
According to yet another compression molding method according to the present invention, it is possible to obtain a molded article having a complicated shape, which is excellent in formability and strength only by the compression molding method, without combining other molding methods with a kind of prepreg. Can do.
図1は、本発明の成形品の概略上面図である。FIG. 1 is a schematic top view of a molded article of the present invention. 図2は、図1におけるA-A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ in FIG. 図3は、リブの断面図である。FIG. 3 is a cross-sectional view of the rib. 図4は、リブの斜視図である。FIG. 4 is a perspective view of the rib. 図5は、リブの長辺方向の側面投影図であって、連続強化繊維の高さが突起部の高さの5%以上である領域が底辺の20%以上であることを説明する図である。FIG. 5 is a side projection of the long side direction of the rib, and is a diagram for explaining that the region where the height of the continuous reinforcing fiber is 5% or more of the height of the protrusion is 20% or more of the bottom side. is there. 図6は、四角錐の斜視図である。FIG. 6 is a perspective view of a quadrangular pyramid. 図7は、四角錐の断面図である。FIG. 7 is a cross-sectional view of a quadrangular pyramid. 図8は、四角錐の4側面の側面投影図である。FIG. 8 is a side projection of four sides of a quadrangular pyramid. 図9は、本発明の圧縮成形法を示す概略斜視図である。FIG. 9 is a schematic perspective view showing the compression molding method of the present invention. 図10は、本発明の圧縮成形法に射出成形法を組み合わせたハイブリッド成形方法を示す概略斜視図である。FIG. 10 is a schematic perspective view showing a hybrid molding method in which an injection molding method is combined with the compression molding method of the present invention. 図11は、本発明の圧縮成形法に用いる金型の一実施形態の概略断面図である。FIG. 11 is a schematic cross-sectional view of an embodiment of a mold used in the compression molding method of the present invention. 図12は、本発明の圧縮成形法に用いる金型の一実施形態の詳細を説明するための概略断面図である。FIG. 12 is a schematic cross-sectional view for explaining details of an embodiment of a mold used in the compression molding method of the present invention. 図13は、図1における成形品を成形するための金型の断面図である。FIG. 13 is a cross-sectional view of a mold for molding the molded product in FIG. 図14は、四角柱の概略斜視図である。FIG. 14 is a schematic perspective view of a quadrangular prism. 図15は、円錐台の概略斜視図である。FIG. 15 is a schematic perspective view of a truncated cone. 図16は、本発明の成形品に対してなされた引張試験方法を説明する概略図である。FIG. 16 is a schematic diagram for explaining a tensile test method performed on the molded article of the present invention. 図17は、本発明の成形品に対してなされた曲げ試験方法を説明する概略図である。FIG. 17 is a schematic diagram for explaining a bending test method performed on the molded article of the present invention.
 以下、本発明について説明する。
[成形品]
 本発明の成形品の一実施形態について図面を参照しながら説明する。図1は、成形品の一実施形態を示す概略上面図である。図2は、図1におけるA-A’断面図である。
 図1に示すように、成形品400は、基板部420と、穴401,402と、リブ(403,405,407)、ボス(409,410)、円錐台(411,412)、四角錐413、および四角柱(414,415)からなる突起部と、を備える。
The present invention will be described below.
[Molding]
An embodiment of a molded article of the present invention will be described with reference to the drawings. FIG. 1 is a schematic top view showing an embodiment of a molded article. 2 is a cross-sectional view taken along the line AA ′ in FIG.
As shown in FIG. 1, the molded product 400 includes a substrate portion 420, holes 401 and 402, ribs (403, 405, 407), bosses (409, 410), a truncated cone (411, 412), and a quadrangular pyramid 413. And a projecting portion made of a quadrangular column (414, 415).
 本実施形態の成形品は、図2に示すように、リブ内部(403,405,407)および円錐台(411,412)内部には、連続強化繊維170が存在している。リブ内部および円錐台内部の連続強化繊維170は、破断することなく基板部420の連続強化繊維170と連続している。 In the molded product of this embodiment, continuous reinforcing fibers 170 are present inside the ribs (403, 405, 407) and the truncated cones (411, 412) as shown in FIG. The continuous reinforcing fibers 170 inside the ribs and inside the truncated cone are continuous with the continuous reinforcing fibers 170 of the substrate portion 420 without breaking.
 リブにおける連続強化繊維の高さhの平均値は、上記のように、突起部の高さhの5%以上であり、好ましくは10%以上であり、より好ましくは突起部の高さの20%以上であり、さらに好ましくは50%以上、最も好ましくは90%以上である。連続強化繊維の高さの平均値が5%以上であることにより、突起部に適切な強度を持たせることができる。
 突起部の少なくとも一つについて、連続強化繊維の高さhの平均値が、突起部の高さhの5%以上であればよく、二つ以上の突起部において5%以上であればより好ましく、全ての突起部において5%以上であることが最も好ましい。
 同種の突起部が複数ある場合は、同種の突起部のうち、少なくとも一つにおいて、上記平均値を満たしていればよく、二つ以上において上記平均値を満たしていればよく、同種の突起部の全てにおいて上記平均値を満たしていることが最も好ましい。
As described above, the average value of the height h f of the continuous reinforcing fiber in the rib is 5% or more of the height h of the protrusion, preferably 10% or more, and more preferably the height of the protrusion. It is 20% or more, more preferably 50% or more, and most preferably 90% or more. When the average value of the heights of the continuous reinforcing fibers is 5% or more, the protrusions can have appropriate strength.
For at least one of the protrusions, the average value of the height h f of the continuous reinforcing fibers may be 5% or more of the height h of the protrusions, and more than 5% of the two or more protrusions. Preferably, it is most preferably 5% or more in all protrusions.
When there are a plurality of the same kind of protrusions, at least one of the same kind of protrusions may satisfy the average value, and two or more of the protrusions may satisfy the average value. It is most preferable that all of the above satisfy the average value.
 突起部中の連続強化繊維の高さが突起部の高さの5%以上である領域は、突起部の底辺の20%以上であることが好ましく、更に好ましくは50%以上、特に好ましくは80%以上、最も好ましくは100%である。底辺の20%以上であることにより、その他の領域が連続していなくても突起部に適切な強度を持たせることができる。 The region in which the height of the continuous reinforcing fiber in the protrusion is 5% or more of the height of the protrusion is preferably 20% or more, more preferably 50% or more, particularly preferably 80% of the bottom of the protrusion. % Or more, most preferably 100%. By being 20% or more of the bottom side, it is possible to give the protrusions appropriate strength even if other regions are not continuous.
 突起部中の根元の一部に繊維が存在しない領域が広すぎると、そこから破壊の起点になる可能性があるため、個々の突起部中の根元において繊維の挿入がない部分は50%以下が好ましく、さらに好ましくは20%以下、最も好ましくは5%以下である。 If a region where no fiber is present in a part of the root in the protrusion is too wide, there is a possibility that it may become a starting point of destruction. Therefore, a portion where no fiber is inserted in the root in each protrusion is 50% or less. Is preferable, more preferably 20% or less, and most preferably 5% or less.
 なお、突起部中の連続強化繊維は、内部で一部破断している部分があってもよく、基板部から一部分離して存在してもよいが、繊維の切れおよび破断がなく、基板部内部と突起部内部の連続強化繊維が連続状態で存在していることが好ましい。 The continuous reinforcing fibers in the protrusions may have a part that is partially broken inside, or may be partly separated from the substrate part. It is preferable that the continuous reinforcing fibers inside the protrusions exist in a continuous state.
 突起部は、溶融あるいは半溶融した複合材料が圧縮成形によって金型の突起部に対応する部分に挿入されて形成される。この時、熱可塑性樹脂は、連続強化繊維に比べて突起部の先端まで挿入しやすい。一方、連続強化繊維は、移動が困難なため突起部への挿入が難しいが、挿入距離が長いほど突起部強度は強くなる。本発明の成形品では、後述する特定の圧縮条件、さらには成形時の金型温度の調整によって連続強化繊維が突起部に深く挿入した成形品を得ることができる。突起部の高さが基板部の肉厚Tより大きく、かつ、突起部中の連続強化繊維の高さは、成形品の基板部の肉厚T以上が好ましい。突起部の高さは、より好ましくは基板部の肉厚Tの2倍以上、さらに好ましくは基板部の肉厚Tの3倍以上である。 The protrusion is formed by inserting a molten or semi-molten composite material into a portion corresponding to the protrusion of the mold by compression molding. At this time, the thermoplastic resin is easier to insert up to the tip of the protrusion than the continuous reinforcing fiber. On the other hand, continuous reinforcing fibers are difficult to move and therefore difficult to insert into the protrusions. However, the longer the insertion distance, the stronger the protrusions. In the molded article of the present invention, a molded article in which continuous reinforcing fibers are inserted deeply into the protrusions can be obtained by adjusting specific compression conditions described later and further by adjusting the mold temperature during molding. The height of the projection is greater than the thickness T 2 of the substrate portion, and the height of the continuous reinforcing fibers in the projections, the thickness T 2 or more substrate portions of the molded article is preferred. The height of the protrusions, more preferably 2 times or more the thickness T 2 of the substrate portion, and further preferably not less than 3 times the thickness T 2 of the substrate portion.
 さらには、突起部の高さhは基板部の肉厚Tの2倍以上であり、かつ突起部の根元の肉厚Tが基板部の肉厚T以下であることが好ましい。 Furthermore, the height h of the protrusion is at least twice the thickness T 2 of the substrate portion, and it is preferable the thickness T 1 of the root of the protrusion is less than the thickness T 2 of the substrate portion.
 突起物中の熱可塑性樹脂と基板部中の熱可塑性樹脂は、同一物であることが好ましい。一般に連続強化繊維複合材料を用いてリブやボス形状を有する成形品を作成する場合、ボスやリブ部には、基板部を形成するために設置した連続強化複合材料とは異なる材料、例えばテープ状のものを設置して圧縮成形したり、基板部は主に圧縮成形で形成し、ボスやリブの突起部には射出成形にて形成するといったハイブリッド成形が一般に用いられる。本発明でもこれらの方法を用いることは可能であるが、基板部を形成する単一の連続強化繊維複合材料のみで突起部を形成する方が、生産性、設備面で簡便であり、経済的効果も高い。更に単一の連続強化繊維複合材料のみで突起部を形成することにより、基本的に基板部と突起部の熱可塑性樹脂は同一材料で形成されるため、異なる材料間の明確な界面、特に基材である熱可塑性樹脂の界面が存在しない。これは、突起部の強度を確保するうえで重要である。 It is preferable that the thermoplastic resin in the protrusion and the thermoplastic resin in the substrate are the same. In general, when creating a molded article having a rib or boss shape using a continuous reinforcing fiber composite material, the boss or rib portion is made of a material different from the continuous reinforcing composite material installed for forming the substrate portion, for example, a tape shape. In general, hybrid molding is used in which the substrate is formed by compression molding, the substrate portion is mainly formed by compression molding, and the protrusions of the bosses and ribs are formed by injection molding. Although it is possible to use these methods in the present invention, it is easier and more economical in terms of productivity and equipment to form the protrusions with only a single continuous reinforcing fiber composite material that forms the substrate part. The effect is also high. Furthermore, by forming the protrusions with only a single continuous reinforcing fiber composite material, the thermoplastic resin of the substrate part and the protrusions is basically formed of the same material. There is no interface of the thermoplastic resin material. This is important in securing the strength of the protrusion.
 上記に記載のように成形体の基板部と突起物を同一の繊維強化熱可塑性複合材料で作製する場合、基本的に基板部に設置された材料が、圧縮成形によって突起部に樹脂が挿入して形成される。この際、連続強化繊維も突起部に挿入するが、突起物の基板部との結合部分の強度は、構造部材として重要であり、連続強化繊維の密度Vfは基板部付近が突起部の先端よりも高いほうが好ましい。  When the substrate part and protrusions of the molded body are made of the same fiber-reinforced thermoplastic composite material as described above, basically the material placed on the substrate part is inserted into the protrusions by compression molding. Formed. At this time, continuous reinforcing fibers are also inserted into the protrusions, but the strength of the joints between the protrusions and the substrate part is important as a structural member, and the density Vf of the continuous reinforcing fibers is closer to the substrate part than the tip of the protrusion part. Higher is preferable. *
[圧縮成形法]
 本発明の圧縮成形法の一実施形態について説明する。図9に圧縮成形法の概略斜視図を示す。
 本発明の圧縮成形法の一実施形態は、連続強化繊維と熱可塑性樹脂とからなる連続繊維強化熱可塑性樹脂複合材料を、圧縮成形して、基板部と突起部とを有する成形品を得る圧縮成形法であって、
 連続繊維強化熱可塑性樹脂複合材料を、金型に挿入し、圧縮しながら金型を熱可塑性樹脂のガラス転移温度以上または融点以上に加熱して賦型し、次いで、金型を熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下、好ましくはガラス転移温度-30℃以下または融点-50℃以下、さらに好ましくはガラス転移温度-50℃以下または融点-100℃以下に冷却して熱可塑性樹脂を固化する圧縮成形工程と、
 圧縮成形工程中、連続繊維強化熱可塑性樹脂複合材料から発生した金型内のガス成分を、金型外に放出する工程と、を備えるものである。以下、図面を参照して具体的に説明する。
[Compression molding method]
An embodiment of the compression molding method of the present invention will be described. FIG. 9 shows a schematic perspective view of the compression molding method.
One embodiment of the compression molding method of the present invention is a compression method in which a continuous fiber-reinforced thermoplastic resin composite material comprising continuous reinforcing fibers and a thermoplastic resin is compression-molded to obtain a molded product having a substrate portion and a protruding portion. A molding method,
The continuous fiber reinforced thermoplastic resin composite material is inserted into a mold, and while the mold is compressed, the mold is heated to a temperature higher than the glass transition temperature or the melting point of the thermoplastic resin, and then molded. Glass transition temperature −10 ° C. or lower or melting point −10 ° C. or lower, preferably glass transition temperature −30 ° C. or lower or melting point −50 ° C. or lower, more preferably glass transition temperature −50 ° C. or lower or melting point −100 ° C. or lower A compression molding process for solidifying the thermoplastic resin;
And a step of releasing a gas component in the mold generated from the continuous fiber reinforced thermoplastic resin composite material out of the mold during the compression molding process. Hereinafter, specific description will be given with reference to the drawings.
 まず、図9aに示すように、金型部分10,20からなる金型100を開放する。
 次に、図9bに示すように、複合材料である布状の基材である布帛70を所望の形状に裁断し、キャビティ30に挿入する。
First, as shown in FIG. 9a, the mold 100 including the mold parts 10 and 20 is opened.
Next, as shown in FIG. 9 b, the cloth 70, which is a cloth-like base material that is a composite material, is cut into a desired shape and inserted into the cavity 30.
<圧縮成形工程>
-加熱工程-
 次に、図9cに示すように、金型100を閉鎖(型締め)し、圧縮しながらキャビティ面の温度を上昇させる。金型のキャビティ面の温度は、複合材料を構成する熱可塑性樹脂の融点以上またはガラス転移温度以上に設定し、後述する第二の温度調節手段14,24によって常に一定温度に温調しておく。加熱されたキャビティ面により、キャビティにセットした布帛の熱可塑性樹脂部分が素早く溶融される。得られる成形品の所望の肉厚により、キャビティ30に挿入する布帛70の枚数を調整する。
<Compression molding process>
-Heating process-
Next, as shown in FIG. 9c, the mold 100 is closed (clamped), and the temperature of the cavity surface is raised while being compressed. The temperature of the cavity surface of the mold is set to be equal to or higher than the melting point of the thermoplastic resin constituting the composite material or the glass transition temperature, and is always adjusted to a constant temperature by the second temperature adjusting means 14 and 24 described later. . The thermoplastic cavity portion of the fabric set in the cavity is quickly melted by the heated cavity surface. The number of fabrics 70 to be inserted into the cavity 30 is adjusted according to the desired thickness of the obtained molded product.
 ここで、複合材料は、常温の物を金型内に挿入してもよいが、金型内に挿入する前にあらかじめ予備加熱をしてもよい。特に複合材料として板状のプリプレグを用いる場合、複合材料を熱可塑性樹脂のガラス転移温度-30℃以上あるいは融点-30℃以上まで予備加熱することが好ましく、複合材料を熱可塑性樹脂のガラス転移温度以上あるいは融点以上まで予備加熱することがさらに好ましい。複合材料に布帛状の物を用いる場合は、板材の物と同様に、金型に挿入する前に予備加熱してもよいし予備加熱しなくともよい。予備加熱をすることにより布帛中のガス成分を除去することが可能であり、賦形性を向上させることができる。 Here, the composite material may be inserted at room temperature into the mold, but may be preheated before being inserted into the mold. In particular, when a plate-like prepreg is used as the composite material, it is preferable to preheat the composite material to a glass transition temperature of the thermoplastic resin of −30 ° C. or higher or a melting point of −30 ° C. or higher. It is more preferable to preheat to above or above the melting point. When a fabric-like material is used for the composite material, it may be preheated or not preheated before being inserted into the mold, as is the case with the plate material. By preheating, it is possible to remove the gas component in the fabric and improve the shapeability.
 圧縮成形にて賦型する時の金型キャビティ面の温度は熱可塑性樹脂のガラス転移温度-100℃以上かつガラス転移温度+100℃以下あるいは融点-100℃以上かつ融点+100℃以下であり、好ましくは、ガラス転移温度-50℃以上ガラス転移温度+50℃以下、融点-50℃以上かつ融点+50℃以下、さらに好ましくは、ガラス転移温度-30℃以上ガラス転移温度+30℃以下、融点-30℃以上かつ融点+30℃以下である。 The temperature of the mold cavity surface when molding by compression molding is a glass transition temperature of the thermoplastic resin of −100 ° C. or higher and a glass transition temperature of + 100 ° C. or lower, or a melting point of −100 ° C. or higher and a melting point of + 100 ° C. or lower, preferably Glass transition temperature −50 ° C. or higher and glass transition temperature + 50 ° C. or lower, melting point −50 ° C. or higher and melting point + 50 ° C. or lower, more preferably glass transition temperature −30 ° C. or higher and glass transition temperature + 30 ° C. or lower, melting point −30 ° C. or higher and Melting point + 30 ° C. or lower.
-昇温速度・降温速度-
 本発明においては、金型のキャビティ面を急加熱、急冷却できるハイサイクル成形が望ましい。圧縮成形工程における金型を加熱する際の昇温速度は30℃/分以上であり、金型を冷却する際の降温速度は30℃/分以上であり、かつ加熱温度と冷却温度との差は80℃以上である。昇温速度は80℃/分以上であり、降温速度は100℃/分以上であり、かつ、加熱温度と冷却温度との差が100℃以上であることが好ましく、昇温速度は150℃/分以上であり、降温速度は200℃/分以上であり、加熱温度と冷却温度との差は120℃以上であることがさらに好ましい。
 昇温速度および降温速度は、30℃/分以上とするにより生産性を上げることができる。また、温度差を、80℃以上とすることにより、樹脂の強化連続繊維への含浸性、成形品を取り出すときの固化性および離型性が向上する。高温ほど含浸性は良くなり、低温ほど固化性および離型性はよくなる。
-Temperature increase / decrease rate-
In the present invention, high cycle molding is preferred in which the cavity surface of the mold can be rapidly heated and cooled rapidly. The heating rate when heating the mold in the compression molding process is 30 ° C./min or more, the cooling rate when cooling the mold is 30 ° C./min or more, and the difference between the heating temperature and the cooling temperature Is 80 ° C. or higher. The heating rate is 80 ° C./min or more, the cooling rate is 100 ° C./min or more, and the difference between the heating temperature and the cooling temperature is preferably 100 ° C. or more, and the heating rate is 150 ° C./min. More preferably, the cooling rate is 200 ° C./min or more, and the difference between the heating temperature and the cooling temperature is 120 ° C. or more.
Productivity can be increased by setting the temperature raising rate and the temperature lowering rate to 30 ° C./min or more. Further, by setting the temperature difference to 80 ° C. or more, the impregnation property of the reinforced continuous fiber of the resin, the solidification property when the molded product is taken out, and the release property are improved. The higher the temperature, the better the impregnation, and the lower the temperature, the better the solidification and release properties.
 ここで、加熱温度および冷却温度は、急加熱または急冷却するときの目標設定される温度である。急加熱するときの目標の温度を目標高温温度といい、急冷却するときの目標の温度を目標低温温度という。降温速度とは、目標高温温度から目標低温温度までに金型キャビティ面を冷却するときの速度である。また、昇温速度とは、目標低温温度から目標高温温度までにキャビティを昇温するとき速度である。 Here, the heating temperature and the cooling temperature are temperatures set as targets when rapid heating or rapid cooling is performed. The target temperature for rapid heating is called the target high temperature, and the target temperature for rapid cooling is called the target low temperature. The temperature decreasing rate is a rate at which the mold cavity surface is cooled from the target high temperature to the target low temperature. The temperature increase rate is a rate at which the temperature of the cavity is increased from the target low temperature to the target high temperature.
 連続繊維強化熱可塑性樹脂複合材料を構成する熱可塑性樹脂の融点またはガラス転移温度以上にキャビティ面を急加熱することで熱可塑性樹脂を溶融し、次いで金型を型締めした状態でキャビティ面を熱可塑性樹脂の融点またはガラス転移温度未満に急冷却して熱可塑性樹脂を冷却固化することにより、ハイサイクルで経済性に優れた熱可塑性樹脂繊維複合成形品を得ることができる。 The cavity surface is melted by rapidly heating the cavity surface above the melting point or glass transition temperature of the thermoplastic resin constituting the continuous fiber reinforced thermoplastic resin composite material, and then the cavity surface is heated while the mold is clamped. By rapidly cooling below the melting point or glass transition temperature of the plastic resin to cool and solidify the thermoplastic resin, it is possible to obtain a thermoplastic resin fiber composite molded article excellent in economic efficiency at a high cycle.
-冷却固化工程-
 次に、金型を型締めした状態で金型100のキャビティ面31,32を、熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下、好ましくはガラス転移温度-30℃以下または融点-50℃以下、さらに好ましくはガラス転移温度-50℃以下または融点-100℃以下に冷却して熱可塑性樹脂を固化する。
-Cooling and solidification process-
Next, with the mold clamped, the cavity surfaces 31 and 32 of the mold 100 may have a glass transition temperature of −10 ° C. or lower or a melting point of −10 ° C. or lower, preferably a glass transition temperature of −30 ° C. or lower. The thermoplastic resin is solidified by cooling to a melting point of −50 ° C. or lower, more preferably a glass transition temperature of −50 ° C. or lower or a melting point of −100 ° C. or lower.
-ガス放出工程-
 布帛70を挿入する工程から熱可塑性樹脂を固化するまでの工程で、布帛70から発生したガス成分を金型外に放出する。圧縮成形法では、射出成形と異なり、金型を型締めする段階において、任意の段階で一旦型締め力を解除する多段圧縮法が特に有効である。特に、本発明の一形態である金型の温度を可変的に変化させる圧縮成形法においては場合、複合材料が一定温度に加熱されて、ガスが発生する段階でガスを抜くことが、突起部を有する複雑形状品の作製に有効である。
-Gas release process-
The gas component generated from the fabric 70 is discharged out of the mold in the steps from inserting the fabric 70 to solidifying the thermoplastic resin. In the compression molding method, unlike the injection molding, a multistage compression method in which the mold clamping force is once released at any stage is particularly effective in the stage of mold clamping. In particular, in the compression molding method that variably changes the temperature of the mold, which is an embodiment of the present invention, the protrusion of the composite material is heated to a constant temperature and the gas is released when the gas is generated. It is effective for producing a complex shape product having
 上記「ガスが発生する段階」とは、金型内に挿入された複合材料が一定温度に加熱された段階であり、好ましい加熱温度としては、「融点-100℃以上またはガラス転移温度-100℃以上」、さらに好ましくは「融点-60℃以上またはガラス転移温度-60℃以上」である。 The “stage where gas is generated” is a stage where the composite material inserted into the mold is heated to a certain temperature. The preferable heating temperature is “melting point−100 ° C. or higher or glass transition temperature−100 ° C. More preferably, “melting point −60 ° C. or higher or glass transition temperature −60 ° C. or higher”.
 金型内のガスを放出する別の形態として金型内を真空引きして複合材料から発生したガスを除去する方法が挙げられる。
 金型内に発生したガスを除去する方法としては、上記のような金型圧縮時の圧縮圧力を調整する方法の他に、以下の方法が挙げることができる。例えば、金型キャビティに連通するガス抜き用のスリットを設けてガスを除去する方法を挙げることができる。スリットは、金型のパーティング面に設けてもよいし、金型突出しピンに設けてもよい。さらに金型キャビティを構成する金型の分割面を利用してもよい。
As another form of releasing the gas in the mold, there is a method of evacuating the mold and removing the gas generated from the composite material.
As a method for removing the gas generated in the mold, the following method can be cited in addition to the method for adjusting the compression pressure at the time of mold compression as described above. For example, there may be mentioned a method of removing gas by providing a gas vent slit communicating with the mold cavity. The slit may be provided on the parting surface of the mold, or may be provided on the mold protruding pin. Furthermore, a dividing surface of a mold constituting the mold cavity may be used.
 次に、図9dおよび図9eに示すように、金型100を開放して、成形品71を取り出す。成形品の取り出し温度としては、好ましくは、ガラス転移温度-30℃以下あるいは融点-80℃以下、さらに好ましくは、ガラス転移温度-50℃以下あるいは融点-100℃以下である。 Next, as shown in FIGS. 9d and 9e, the mold 100 is opened and the molded product 71 is taken out. The temperature for taking out the molded product is preferably a glass transition temperature of −30 ° C. or lower or a melting point of −80 ° C. or lower, more preferably a glass transition temperature of −50 ° C. or lower or a melting point of −100 ° C. or lower.
 成形品を取り出した後、再び複合材料である布状の基材である布帛を所望の形状に裁断し、キャビティに挿入し、金型を閉鎖する。以降、圧縮成形工程を繰り返して成形品を作製する。 After taking out the molded product, the cloth, which is a composite material, is cut into a desired shape, inserted into the cavity, and the mold is closed. Thereafter, the compression molding process is repeated to produce a molded product.
 成形品を取り出しと同時あるいは成形品を取り出し後に、例えば、金型の冷却媒体通路に高圧の加熱蒸気や低圧の過熱蒸気を流通して金型キャビティ面の温度を上げることも可能である。
 さらに300℃以上の過熱蒸気を、布帛を挿入前のキャビティ面に流通させてキャビティ面を加熱してもよい。
It is also possible to raise the temperature of the mold cavity surface by flowing high-pressure heating steam or low-pressure superheated steam through the cooling medium passage of the mold at the same time as or after taking out the molded article.
Furthermore, the cavity surface may be heated by circulating superheated steam at 300 ° C. or higher through the cavity surface before insertion of the fabric.
 また、布帛をキャビティに挿入後、真空ラインからキャビティ内に300℃以上の過熱蒸気を挿入し、基材を直接加熱することも可能である。金型内に挿入した過熱蒸気は、所望時間挿入後に真空ラインから除去することも可能である。 It is also possible to directly heat the substrate by inserting superheated steam at 300 ° C. or higher from the vacuum line into the cavity after inserting the fabric into the cavity. The superheated steam inserted into the mold can be removed from the vacuum line after insertion for a desired time.
 本実施形態の圧縮成形法によれば、圧縮成形工程において、ガス成分を放出する工程を備えているので、突起部の深いところまで複合材料が入り込むため、強度に優れる熱可塑性樹脂繊維複合成形品を得ることができる。 According to the compression molding method of the present embodiment, since the compression molding process includes a step of releasing a gas component, the composite material enters deep into the protrusions, so that the thermoplastic resin fiber composite molded article having excellent strength is obtained. Can be obtained.
 次に、本発明の圧縮成形法の他の実施形態について説明する。
 本実施形態は、上記一実施形態の圧縮成形法のガス放出工程の代わりに、複合材料を金型の突起部に対応する凹部に挿入する工程を備えるものである。
 すなわち、本実施形態の圧縮成形法は、連続強化繊維と熱可塑性樹脂とからなる熱可塑性樹脂複合材料を、圧縮成形して、基板部および突起部を有する成形品を得る圧縮成形法であって、
 連続繊維強化熱可塑性樹脂複合材料を金型に挿入する際に、連続繊維強化熱可塑性樹脂複合材料の少なくとも一部を金型の突起部に対応する凹部に挿入し、圧縮しながら金型を熱可塑性樹脂のガラス転移温度以上または融点以上に加熱して賦型し、次いで、金型を熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下に冷却して熱可塑性樹脂を固化することを特徴とするものである。
Next, another embodiment of the compression molding method of the present invention will be described.
The present embodiment includes a step of inserting the composite material into a recess corresponding to the protrusion of the mold, instead of the gas releasing step of the compression molding method of the above-described embodiment.
That is, the compression molding method of the present embodiment is a compression molding method in which a thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression-molded to obtain a molded product having a substrate portion and a protruding portion. ,
When inserting the continuous fiber reinforced thermoplastic resin composite material into the mold, insert at least part of the continuous fiber reinforced thermoplastic resin composite material into the recess corresponding to the protrusion of the mold and heat the mold while compressing. Molding is performed by heating above the glass transition temperature or melting point of the plastic resin, and then cooling the mold to the glass transition temperature of the thermoplastic resin at −10 ° C. or below or the melting point −10 ° C. or below to solidify the thermoplastic resin. It is characterized by this.
 連続強化繊維を突起部に挿入するには、金型内での熱可塑性樹脂の溶融、流動時に一緒に流動させる方法と予め突起物内に少なくとも一部の複合材料を挿入しておく方法がある。 In order to insert the continuous reinforcing fiber into the protrusion, there are a method in which the thermoplastic resin melts and flows in the mold and flows together, and a method in which at least a part of the composite material is inserted in the protrusion in advance. .
 連続繊維強化熱可塑性樹脂複合材料の一部を金型の凹部に挿入する方法としては、例えば、布帛を複数枚重ねて用いる場合は、所望の成形品肉厚に適する枚数の布帛を金型キャビティ内に投入するが、そのうちの少なくとも1枚を金型内に挿入し、金属製の薄板等を用いて凹部に押し込むことが挙げられる。 As a method for inserting a part of the continuous fiber reinforced thermoplastic resin composite material into the concave portion of the mold, for example, when a plurality of fabrics are used in a stacked manner, the number of fabrics suitable for the desired molded product thickness is used as the mold cavity. However, it is possible to insert at least one of them into a mold and push it into the recess using a thin metal plate or the like.
 複合材料は、複数の凹部のうち少なくとも一つの凹部に挿入されればよく、二つ以上がより好ましい。
 またさらに、同種の凹部のうち少なくとも一つに挿入されればよく、二つ以上がより好ましく、同種の凹部の全てに挿入されることが最も好ましい。
The composite material may be inserted into at least one of the plurality of recesses, and more preferably two or more.
Furthermore, it is sufficient that it is inserted into at least one of the same type of recesses, more preferably two or more, and most preferably inserted into all of the same type of recesses.
 連続繊維強化熱可塑性樹脂複合材料の金型の凹部への挿入量は、凹部の体積および製造条件の詳細によっても異なるが、連続強化繊維の高さの平均値が突起部の高さの5%以上となるように調整することが好ましい。また、突起部の底辺の20%以上において複合材料が基板部内部の連続強化繊維と連続しているように調整することが好ましい。 The insertion amount of the continuous fiber reinforced thermoplastic resin composite material into the recess of the mold varies depending on the volume of the recess and the details of the manufacturing conditions, but the average value of the height of the continuous reinforcing fiber is 5% of the height of the protrusion. It is preferable to adjust so that it may become above. Further, it is preferable to adjust so that the composite material is continuous with the continuous reinforcing fiber inside the substrate portion at 20% or more of the bottom side of the protrusion.
 本実施形態の圧縮成形法によれば、連続繊維強化熱可塑性樹脂複合材料を突起部内部の広い領域に存在させることができるので、突起部の強度に優れる成形品を得ることができる。 According to the compression molding method of the present embodiment, since the continuous fiber reinforced thermoplastic resin composite material can be present in a wide area inside the protrusion, a molded product having excellent protrusion strength can be obtained.
[ハイブリッド成形]
 本発明の圧縮成形法は、さらに射出成形工程を組み合わせてハイブリッド成形方法として利用することができる。図10にハイブリッド成形の概略図を示す。図9と同様の要素には同符号を付し、その説明を省略する(以下、同様)。
 図10aおよび図10bに示すように、圧縮成形法と同様の手順で布帛70を挿入する。
 図10cに示すようにハイブリッド成形を行うための金型200の金型部分201には、射出成形機80から熱可塑性樹脂を充填するランナー部90が公知の方法により設けられている。
 熱可塑性樹脂を充填後、図10dに示すように、金型を解放し、図10eに示すように、布帛70と熱可塑性樹脂81とからなるハイブリッド成形品72を取り出す。
 このハイブリッド成形方法においては、射出成形機で熱可塑性樹脂を充填する前に、上記第一の実施形態に例示する金型内で発生したガスを放出させる工程を設けてもよい。ガスを放出させる具体的な方法は、上記実施形態の方法を同様に用いることができる。
[Hybrid molding]
The compression molding method of the present invention can be used as a hybrid molding method by further combining an injection molding process. FIG. 10 shows a schematic diagram of hybrid molding. Elements similar to those in FIG. 9 are denoted by the same reference numerals and description thereof is omitted (the same applies hereinafter).
As shown in FIGS. 10a and 10b, the fabric 70 is inserted in the same procedure as the compression molding method.
As shown in FIG. 10c, a mold part 201 of a mold 200 for performing hybrid molding is provided with a runner part 90 for filling a thermoplastic resin from an injection molding machine 80 by a known method.
After filling with the thermoplastic resin, the mold is released as shown in FIG. 10d, and the hybrid molded product 72 composed of the fabric 70 and the thermoplastic resin 81 is taken out as shown in FIG. 10e.
In this hybrid molding method, before filling the thermoplastic resin with an injection molding machine, a step of releasing the gas generated in the mold exemplified in the first embodiment may be provided. As a specific method for releasing the gas, the method of the above embodiment can be used in the same manner.
[金型]
 次に、本発明の圧縮成形法に用いることができる金型の一実施形態について図面を参照しながら説明する。本発明の圧縮成形法に用いることができる金型は以下に説明するものに限定されない。図11に印籠型の金型の一実施形態の概略断面図を示す。
 図11に示すように、金型100は、上金型である金型部分10と、下金型である金型部分20と、断熱板15,25とを備えてなり、金型部分10と金型部分20とにより、キャビティ30を形成する。キャビティ30に複合材料等を設置して成形品を賦型するものである。
[Mold]
Next, an embodiment of a mold that can be used in the compression molding method of the present invention will be described with reference to the drawings. The metal mold | die which can be used for the compression molding method of this invention is not limited to what is demonstrated below. FIG. 11 shows a schematic cross-sectional view of an embodiment of a stamping die.
As shown in FIG. 11, the mold 100 includes a mold part 10 that is an upper mold, a mold part 20 that is a lower mold, and heat insulating plates 15 and 25. A cavity 30 is formed by the mold part 20. A composite material or the like is placed in the cavity 30 to mold a molded product.
 金型部分10は、キャビティ面31近傍にキャビティ面31を少なくとも冷却することができる複数の冷却媒体通路からなる第一の温度調節手段13と、第一の温度調節手段13のキャビティ面31とは反対側に、キャビティ面31を少なくとも加熱することができる複数の棒状カートリッジヒーターからなる第二の温度調節手段14とを備える。
 また、金型部分20も同様に、キャビティ面32近傍にキャビティ面32を少なくとも冷却することができる複数の冷却媒体通路からなる第一の温度調節手段23と、第一の温度調節手段23のキャビティ面32とは反対側に、キャビティ面32を少なくとも加熱することができる複数の棒状カートリッジヒーターからなる第二の温度調節手段24とを備える。
The mold part 10 includes a first temperature adjusting unit 13 including a plurality of cooling medium passages capable of cooling at least the cavity surface 31 in the vicinity of the cavity surface 31, and a cavity surface 31 of the first temperature adjusting unit 13. On the opposite side, a second temperature adjusting means 14 comprising a plurality of rod-shaped cartridge heaters capable of at least heating the cavity surface 31 is provided.
Similarly, the mold portion 20 also includes a first temperature adjusting means 23 including a plurality of cooling medium passages capable of cooling at least the cavity surface 32 in the vicinity of the cavity surface 32, and a cavity of the first temperature adjusting means 23. On the opposite side of the surface 32, a second temperature adjusting means 24 comprising a plurality of bar-shaped cartridge heaters capable of at least heating the cavity surface 32 is provided.
 金型部分10は、第一の温度調節手段13を有する第一部分11と、第二の温度調節手段14を有する第二部分12とに分割された構造であり、第一部分11と第二部分12が、ばね40によって離間可能に構成されている。
 また、金型部分20も同様に、第一の温度調節手段23を有する第一部分21と、第二の温度調節手段24を有する第二部分22とに分割された構造であり、第一部分21と第二部分22とが、ばね40によって離間可能に構成されている。
The mold part 10 has a structure divided into a first part 11 having a first temperature control means 13 and a second part 12 having a second temperature control means 14, and the first part 11 and the second part 12. However, the spring 40 can be separated.
Similarly, the mold part 20 has a structure divided into a first part 21 having a first temperature adjusting means 23 and a second part 22 having a second temperature adjusting means 24. The second portion 22 is configured to be separated by a spring 40.
 金型部分20には、型締め時にキャビティ30を減圧するための減圧経路33が設けられている。減圧経路33は、真空ライン60によって成形用金型の外部に設置された減圧手段(不図示)に連結されている。金型部分10と金型部分20との間にはシール用パッキング50が設けられている。 The mold part 20 is provided with a decompression path 33 for decompressing the cavity 30 during mold clamping. The decompression path 33 is connected by a vacuum line 60 to decompression means (not shown) installed outside the molding die. A sealing packing 50 is provided between the mold part 10 and the mold part 20.
 次に、図12を用いてさらに金型部分の詳細について説明する。図12は、金型の詳細を説明するための概略断面図であり、一部構成要素を省略している。
 図12に示すように、金型部分10,20は、キャビティ面31から第一の温度調節手段13までの距離L0、キャビティ面31からキャビティ面31とは反対側の面16までの距離L1が、下記の関係を満たすものであることが好ましい。
   (L1/L0)>3
Next, the details of the mold part will be described with reference to FIG. FIG. 12 is a schematic cross-sectional view for explaining details of the mold, and some components are omitted.
As shown in FIG. 12, the mold portions 10 and 20 have a distance L0 from the cavity surface 31 to the first temperature adjusting means 13, and a distance L1 from the cavity surface 31 to the surface 16 opposite to the cavity surface 31. It is preferable that the following relationship is satisfied.
(L1 / L0)> 3
 成形用金型が複数の金型部分で構成される場合、上記数値範囲を満たす金型部分は少なくとも一つあればよく、全ての金型部分で上記数値範囲を満たすことがより好ましい。 When the molding die is composed of a plurality of mold parts, it is sufficient that at least one mold part satisfies the above numerical range, and it is more preferable that all the mold parts satisfy the above numerical range.
 ここで、キャビティ面から第一の温度調節手段までの距離L0とは、金型のキャビティ面に対して垂直な断面における、キャビティ面から第一の温度調節手段の中心までの距離を意味する。
 また、第一の温度調節手段から第二の温度調節手段までの距離L2とは、金型のキャビティ面に対して垂直な断面における、第一の温度調節手段の中心から第二の温度調節手段の中心までの距離を意味する。
 また、キャビティ面からキャビティ面とは反対側の面までの距離L1とは、金型のキャビティ面に対して垂直な断面における距離を意味する。
Here, the distance L0 from the cavity surface to the first temperature adjusting means means the distance from the cavity surface to the center of the first temperature adjusting means in a cross section perpendicular to the cavity surface of the mold.
Further, the distance L2 from the first temperature adjusting means to the second temperature adjusting means is the second temperature adjusting means from the center of the first temperature adjusting means in the cross section perpendicular to the cavity surface of the mold. Means the distance to the center of
Further, the distance L1 from the cavity surface to the surface opposite to the cavity surface means a distance in a cross section perpendicular to the cavity surface of the mold.
 キャビティ面が凹凸形状であってキャビティ面から第一の温度調節手段までの距離が場所によって異なる場合は、キャビティ面から第一の温度調節手段の中心までの距離L0は、それらのうちの最短距離を意味する。
 また、キャビティ面が凹凸形状であって、第一の温度調節手段がその凹凸形状に沿ってキャビティ面から同距離に設けられている場合は、第一の温度調節手段から第二の温度調節手段までの距離L2は場所によって異なることとなる。この場合の、第一の温度調節手段から第二の温度調節手段までの距離L2とは、異なるL2のうち最短距離を意味する。
 また、キャビティ面が凹凸形状の場合の、キャビティ面からキャビティ面とは反対側の面までの距離L1とは、異なるL1の平均距離を意味する。
When the cavity surface has an uneven shape and the distance from the cavity surface to the first temperature adjusting means varies depending on the location, the distance L0 from the cavity surface to the center of the first temperature adjusting means is the shortest distance among them. Means.
Further, when the cavity surface has an uneven shape and the first temperature adjusting means is provided at the same distance from the cavity surface along the uneven shape, the first temperature adjusting means to the second temperature adjusting means. The distance L2 is different depending on the location. In this case, the distance L2 from the first temperature adjusting means to the second temperature adjusting means means the shortest distance among different L2.
In addition, when the cavity surface is uneven, the distance L1 from the cavity surface to the surface opposite to the cavity surface means an average distance of different L1.
 また、第一の温度調節手段および第二の温度調節手段が複数の冷却媒体通路または複数のヒーターを備えてなる場合は、1つの通路またはヒーターについて、キャビティ面からの距離が場所によって異なる場合は、全ての通路またはヒーターについての最短距離の平均値とする。 In the case where the first temperature adjusting means and the second temperature adjusting means include a plurality of cooling medium passages or a plurality of heaters, the distance from the cavity surface of one passage or the heater differs depending on the location. The average value of the shortest distances for all passages or heaters.
 また、第一部分と第二部分とが同素材で一体的に形成された場合、第一部分と第二部分との境界は、キャビティ面に垂直な断面における第一の温度調節手段の中心から第二の温度調節手段側にL0離れた位置とする。 Further, when the first part and the second part are integrally formed of the same material, the boundary between the first part and the second part is the second from the center of the first temperature control means in the cross section perpendicular to the cavity surface. The position is L0 away from the temperature adjusting means side.
 本実施形態の金型は、キャビティ面近傍に少なくとも冷却を行う第一の温度調節手段を設けた構造を有し、第一の温度調節手段よりもキャビティ面から遠方に少なくとも加熱を行う第二の温度調節手段を設けたものである。第二の温度調節手段は、金型部分全体を加熱することにより、キャビティ面を加熱するものである。 The mold according to the present embodiment has a structure in which at least a first temperature adjusting means for cooling is provided in the vicinity of the cavity surface, and the second temperature at least farther from the cavity surface than the first temperature adjusting means. A temperature adjusting means is provided. The second temperature adjusting means heats the cavity surface by heating the entire mold part.
 第一の温度調節手段は、キャビティ面に近いほど好ましいが、金型の強度、設計上の制約から一定の距離に設ける必要がある。キャビティ面から第一の温度調節手段までの距離L0は、第一の温度手段の寸法にもよるが、30mm以下が好ましく、20mm以下がより好ましく、10mm以下がさらに好ましい。L0の下限値に特に制限はないが、第一の温度手段の寸法にもよるが、金型の強度上の制約からは、第一の温度手段の端部から金型キャビティ面までの距離が、3mm以上が好ましく、6mm以上がより好ましい。 The first temperature control means is preferably closer to the cavity surface, but it is necessary to provide it at a certain distance due to the strength of the mold and design restrictions. The distance L0 from the cavity surface to the first temperature adjusting means is preferably 30 mm or less, more preferably 20 mm or less, and even more preferably 10 mm or less, although it depends on the size of the first temperature means. Although there is no particular limitation on the lower limit value of L0, although it depends on the size of the first temperature means, the distance from the end of the first temperature means to the mold cavity surface is limited due to restrictions on the strength of the mold. 3 mm or more is preferable and 6 mm or more is more preferable.
 本実施形態の金型では、キャビティ面から第一の温度調節手段までの距離L0、キャビティ面からキャビティ面とは反対側の面までの距離L1との関係は、(L1/L0)>3が好ましく、より好ましくは、(L1/L0)>5であり、最も好ましくは、(L1/L0)>10である。
 (L1/L0)>3とすることにより、冷却部分に比して高温である蓄熱部分の容量を大きくすることで、金型加熱時の急加熱を効率よく実施することができる。さらに冷却を行う第一の温度調節手段がキャビティ面に近いほど、冷却時に素早く成形品を冷却できる。また、冷却部分が少ないほど、金型加熱時に金型を素早く加熱することができる。
 ここで、冷却部分とは、第一の温度調節手段で冷却される部分であって、少なくとも第一部分を示す。また、蓄熱部分とは、第二の温度調節手段で加熱される部分であって、少なくとも第二部分を示す。
In the mold of the present embodiment, the relationship between the distance L0 from the cavity surface to the first temperature adjusting means and the distance L1 from the cavity surface to the surface opposite to the cavity surface is (L1 / L0)> 3. More preferably, (L1 / L0)> 5, and most preferably (L1 / L0)> 10.
By setting (L1 / L0)> 3, the capacity of the heat storage part, which is higher than that of the cooling part, is increased, so that rapid heating at the time of mold heating can be performed efficiently. Furthermore, the closer the first temperature control means for cooling is to the cavity surface, the quicker the molded product can be cooled during cooling. Further, the smaller the cooling portion, the quicker the mold can be heated when the mold is heated.
Here, a cooling part is a part cooled by the 1st temperature control means, Comprising: At least 1st part is shown. Further, the heat storage portion is a portion heated by the second temperature adjusting means and indicates at least the second portion.
 さらに第一の温度調節手段から第二の温度調節手段までの距離L2は、L2>L0であり、好ましくは、2<L2/L0<10である。
 L2>L0とすることにより、冷却時には、第二の温度調節手段まで冷却してしまうのを良好に防ぐことができ、一方、加熱時には、第二の温度調節手段の制御パワーの乱れを防ぐことができる。
 キャビティ面の温度制御において、キャビティ温度の上下温度がわずかな場合は、L0とL2はできるだけ近い方がよい。しかし、複合材料を成形する場合には、金型キャビティ温度の上限値と下限値の差が、例えば50℃以上、好ましくは100℃以上、さらに好ましくは150℃以上と大きいため、上記範囲とすることが好ましい。
Furthermore, the distance L2 from the first temperature adjusting means to the second temperature adjusting means is L2> L0, and preferably 2 <L2 / L0 <10.
By setting L2> L0, it is possible to satisfactorily prevent cooling to the second temperature adjusting means at the time of cooling, while preventing disturbance of the control power of the second temperature adjusting means at the time of heating. Can do.
In temperature control of the cavity surface, when the temperature above and below the cavity temperature is slight, L0 and L2 should be as close as possible. However, when molding a composite material, the difference between the upper limit value and the lower limit value of the mold cavity temperature is as large as, for example, 50 ° C. or more, preferably 100 ° C. or more, and more preferably 150 ° C. or more. It is preferable.
 金型部分は、第一温度調節手段を有する第一部分と、第二の温度調節手段を有する第二部分とを備えてなるものであってもよい。その場合、第一部分と第二部分とは、同じ材質の材料を用いてもよいが、より好ましくは、第一部分の材料に第二部分の材料よりも熱伝導率のよい材質のものを用いる。第一部分に熱伝導率の良い材質の材料を用いることによって、冷却時に第一部分を急速に冷却することができる。さらに第一部分の第一の温度調節手段の冷却を止めて加熱する時にも第二の温度調節手段を有する第二部分に蓄熱された熱を素早く伝導することが可能となる。 The mold part may include a first part having a first temperature adjusting means and a second part having a second temperature adjusting means. In this case, the first part and the second part may be made of the same material, but more preferably, the first part is made of a material having a higher thermal conductivity than the second part. By using a material having a good thermal conductivity for the first portion, the first portion can be rapidly cooled during cooling. Furthermore, it is possible to quickly conduct the heat stored in the second part having the second temperature adjusting means when the first temperature adjusting means of the first part is stopped and heated.
また、第一の温度調節手段である冷却媒体通路を有する第一部分と第二の温度調節手段を有する第二部分とを備えた構造の場合、図12に示すように、第一部分の体積V(I)と、実質的に加熱される金型部分の体積V0との関係は、(V0/V(I))>1.3であることが好ましい。また、(V0/V(I))<3であることが好ましい。第一部分を急速加熱、急速冷却させるためには、V(I)を小さくした方がよく、第二部分の体積V(II)は、熱をためる観点からは容量が大きいほうが良いため、(V0/V(I))>1.3が好ましい。一方、V(I)の容量は、金型の強度やキャビティ面の形状制約の問題等から減量化には限界がある。第二部分の体積V(II)が大きすぎると初期加熱に時間がかかる、あるいは、熱の金型外への放出が大きくなる等の問題から制限がある。さらに、V(I)の減量化は、強度やキャビティ形状による制限から限界があり、(V0/V(I))<3が好ましい。
 すなわち、キャビティ面の加熱は、熱を一定量蓄熱した蓄熱部分の役割を有する第二部分からの熱の供給によりキャビティ面を急加熱してキャビティに設置された材料の熱可塑性樹脂を加熱溶融できる。ここで蓄熱部分の容量が大きいほど効果的にキャビティ面を加熱することができる。ただし、蓄熱部分の容量の大きさには、設備上、加熱に伴う消費エネルギー量の観点から、金型や成形設備の大きさに応じて適宜決定することができる。
Moreover, in the case of the structure provided with the 1st part which has a cooling medium channel | path which is a 1st temperature control means, and the 2nd part which has a 2nd temperature control means, as shown in FIG. The relationship between I) and the volume V0 of the mold part to be heated is preferably (V0 / V (I))> 1.3. Further, (V0 / V (I)) <3 is preferable. In order to rapidly heat and cool the first part, it is better to make V (I) smaller, and the volume V (II) of the second part is better from the viewpoint of accumulating heat. /V(I))>1.3 is preferred. On the other hand, the volume of V (I) is limited in reducing the volume due to problems such as mold strength and cavity surface shape constraints. If the volume V (II) of the second part is too large, there are limitations due to problems such as long time for initial heating or large release of heat out of the mold. Further, the reduction of V (I) is limited due to limitations due to strength and cavity shape, and (V0 / V (I)) <3 is preferable.
That is, the heating of the cavity surface can rapidly heat and melt the thermoplastic resin of the material installed in the cavity by rapidly supplying the cavity surface by supplying heat from the second part that serves as a heat storage part that stores a certain amount of heat. . Here, the larger the capacity of the heat storage portion, the more effectively the cavity surface can be heated. However, the capacity of the heat storage portion can be appropriately determined according to the size of the mold and the molding equipment from the viewpoint of the amount of energy consumed for heating due to the equipment.
 すなわち、キャビティ面の加熱は、熱を一定量蓄熱した蓄熱部の役割を有する第二部分からの熱の供給によりキャビティ面を急加熱してキャビティに設置された材料の熱可塑性樹脂を加熱溶融できる。
 一方、キャビティ面の冷却は、例えば、第一の温度調節手段を複数の冷却媒体通路とした場合には、キャビティ面近傍の冷却媒体通路に冷却媒体を流通することにより、キャビティ面を急冷却し、溶融した熱可塑性樹脂を冷却固化することが可能となる。この際、キャビティ面近傍のみを冷却するためには冷媒通路を有する部分の金型容量が小さいほど好ましく、冷却媒体通路は、よりキャビティ面に近い方が好ましい。
That is, the heating of the cavity surface can heat and melt the thermoplastic resin of the material installed in the cavity by rapidly heating the cavity surface by supplying heat from the second part having the role of a heat storage part that stores a certain amount of heat. .
On the other hand, for cooling the cavity surface, for example, when the first temperature adjusting means is a plurality of cooling medium passages, the cavity surface is rapidly cooled by circulating the cooling medium through the cooling medium passages near the cavity surface. The molten thermoplastic resin can be cooled and solidified. At this time, in order to cool only the vicinity of the cavity surface, it is preferable that the mold capacity of the portion having the refrigerant passage is smaller, and the cooling medium passage is preferably closer to the cavity surface.
 第一部分と第二部分の材質は、同じものを用いてもよいが、熱伝導率の異なる材料を用いてもよい。第一部分の体積V(I)および第一部分の材質の熱伝導率C(I)(J/s・m・K)と、第二部分の体積V(II)および第二部分の材質の熱伝導率C(II)(J/s・m・K)とは、好ましくは、
 {V(II)×(1/C(II))}/{V(I)×(1/C(I))}>3
さらに好ましくは、{V(II)×(1/C(II))}/{V(I)×(1/C(I))}>5
最も好ましくは、{V(II)×(1/C(II))}/{V(I)×(1/C(I))}>10
である。
 {V(II)×(1/C(II))}/{V(I)×(1/C(I))}>3とすることによって、冷却時には迅速にキャビティ面を冷却することができ、加熱時には、第二部分の蓄熱によって迅速に昇温することができる。
The same material may be used for the first part and the second part, but materials having different thermal conductivities may be used. Volume V (I) of the first part and the thermal conductivity C (I) (J / s · m · K) of the material of the first part, and Volume V (II) of the second part and the heat conduction of the material of the second part The rate C (II) (J / s · m · K) is preferably
{V (II) × (1 / C (II))} / {V (I) × (1 / C (I))}> 3
More preferably, {V (II) × (1 / C (II))} / {V (I) × (1 / C (I))}> 5
Most preferably, {V (II) × (1 / C (II))} / {V (I) × (1 / C (I))}> 10
It is.
By setting {V (II) × (1 / C (II))} / {V (I) × (1 / C (I))}> 3, the cavity surface can be quickly cooled during cooling. During heating, the temperature can be quickly raised by heat storage in the second part.
 また、第一部分の材質の熱伝導率C(I)(J/s・m・K)は、第二の温度調節手段を有する第二部分の材質の熱伝導率C(II)(J/s・m・K)の3.5倍以上であることが好ましい。すなわち冷却時には熱伝導率が高い方が、早く冷却でき、加熱時には熱伝導率が高い方が、素早く蓄熱部から熱を奪って加熱することができる。これは、特に第一部分を冷却する際に分離することにより、より高い効果を得ることができる。冷却時に分離しない場合は、第一部分の熱伝導率が良いと冷却時に蓄熱部の機能を有する第二部分を冷却することもあり、適宜、材料を最適化する必要がある。 Further, the thermal conductivity C (I) (J / s · m · K) of the material of the first part is equal to the thermal conductivity C (II) (J / s of the material of the second part having the second temperature adjusting means. -It is preferable that it is 3.5 times or more of m * K). That is, the higher the thermal conductivity during cooling, the faster the cooling, and the higher the thermal conductivity during heating, the quicker the heat can be removed from the heat storage section. In particular, a higher effect can be obtained by separating the first portion when it is cooled. When not separating at the time of cooling, if the thermal conductivity of the first part is good, the second part having the function of the heat storage part may be cooled at the time of cooling, and it is necessary to optimize the material appropriately.
 第一部分と第二部分とは、分離できる構造とすることがさらに好ましい。キャビティを所望の温度に加熱した後に金型をキャビティが閉じた状態でわずかに型開動作を行い、第一部分11と第二部分12、および第一部分21と第二部分22とを分離し、空気の断熱層を設けることも成形サイクルを上げるために有効である。
 具体的な方法としては、第一部分と第二部分の間にばね40を挿入することによって、金型を僅かに開放することにより、キャビティを閉鎖したまま第一部分と第二部分とを分離することができる。分離は、複数の金型部分の少なくとも一つで行ってよい。
More preferably, the first part and the second part have a separable structure. After the cavity is heated to a desired temperature, the mold is slightly opened while the cavity is closed to separate the first part 11 and the second part 12, and the first part 21 and the second part 22. It is also effective to increase the molding cycle by providing a heat insulating layer.
As a concrete method, the first part and the second part can be separated while the cavity is closed by inserting the spring 40 between the first part and the second part to slightly open the mold. Can do. Separation may be performed with at least one of the plurality of mold parts.
 金型を分離した状態で冷却水を冷却媒体通路等に圧入し、金ャビティを含む第一部分を急冷する。この際、キャビティが開放しないようにばねや油圧シリンダーを用いて金型キャビティ面は閉鎖状態を保つ。金型キャビティン面が一定時間、熱可塑性樹脂の加熱変形温度以下になった後に冷却水を止め、必要に応じて冷却媒体通路に圧縮空気を導入し、冷却媒体通路内の水を排出する。 ¡Cooling water is injected into the cooling medium passage etc. with the mold separated, and the first part including the metal mold is rapidly cooled. At this time, the mold cavity surface is kept closed by using a spring or a hydraulic cylinder so as not to open the cavity. The cooling water is stopped after the mold cavity surface has become below the heat deformation temperature of the thermoplastic resin for a certain time, compressed air is introduced into the cooling medium passage as necessary, and the water in the cooling medium passage is discharged.
 第一部分の冷却は、第一の温度調節手段を複数の冷却媒体通路で構成した場合は、冷却媒体を流通することで達せられるが、冷却媒体をいかに素早く多量に流通させるかが、キャビティ面の急冷却を可能にするかどうかを左右する。
 そのために、各冷却媒体通路に単独で冷却媒体を流通できるような構造とすることが好ましい。具体例として同温度の冷却媒体を同時に流通させることできるマニホールドが挙げられる。マニホールドを金型外部の冷却媒体通路の流入側に設置し、マニホールドから同時に冷却媒体を各冷却媒体通路に流通させてもよく、さらに冷却媒体の排出側にもマニホールドを設置して排出すれば、より効率的である。
 流量は、冷却効率に大きく影響し、必要に応じて加圧ポンプ等を用いて冷媒を流通させてもよい。また、市販の加圧温調機を用いることも可能である。
The cooling of the first part can be achieved by circulating the cooling medium when the first temperature control means is constituted by a plurality of cooling medium passages. It depends on whether or not rapid cooling is possible.
Therefore, it is preferable to have a structure that allows the cooling medium to flow through each cooling medium passage independently. As a specific example, a manifold capable of simultaneously circulating a cooling medium having the same temperature can be given. The manifold may be installed on the inflow side of the cooling medium passage outside the mold, and the cooling medium may be simultaneously circulated from the manifold to each cooling medium passage. Further, if the manifold is installed on the cooling medium discharge side and discharged, More efficient.
The flow rate greatly affects the cooling efficiency, and the refrigerant may be circulated using a pressure pump or the like as necessary. It is also possible to use a commercially available pressurized temperature controller.
 冷却媒体通路に流通させる媒体としては、水、チラー液、炭酸ガス、圧縮気体等を上げることができる。また媒体は、1種類でもよいが、温度の異なる媒体を多段で流通してもよい。たとえば、キャビティ温度を300℃まで加熱した場合に、150℃の加圧温水を数秒流し、その後、60℃の温調水、さらに10℃の冷却水を多段で流し、金型が一定温度に達したときに再び150℃の加圧温水を流してキャビティ面が均一温度になるように調整してもよい。 Water, chiller liquid, carbon dioxide gas, compressed gas, etc. can be raised as a medium to circulate in the cooling medium passage. Further, one type of medium may be used, but media having different temperatures may be distributed in multiple stages. For example, when the cavity temperature is heated to 300 ° C., 150 ° C. pressurized hot water flows for several seconds, then 60 ° C. temperature-controlled water and 10 ° C. cooling water flow in multiple stages, and the mold reaches a constant temperature. Then, it may be adjusted so that the cavity surface has a uniform temperature by flowing pressurized hot water at 150 ° C. again.
 複合材料をキャビティに設置してキャビティ内で加熱圧縮成形して複合材料の熱可塑性樹脂を溶融固化して成形品を得る場合、連続強化繊維への熱可塑性樹脂の含浸性が得られる成形品の特性に大きく影響する。金型内に空気が存在すると、空気が熱可塑性樹脂の溶融時に成形品の中にボイドとなって残り、連続強化繊維内に微細な未含浸部分を形成する原因となる。これらの空気や樹脂から発生するガス体を金型内で除去することにより、より素早く熱可塑性樹脂が含浸した成形品を得ることができる。金型内に発生したガス成分を放出する方法としては、型締め時にキャビティを真空に減圧できる減圧経路を設けてもよく、金型を一旦閉じて複合材料を高温で加熱した後に、金型圧力を一旦開放して、複合材料から発生したガス成分を金型外に放出してもよい。 When a composite material is placed in a cavity and heat compression molding is performed in the cavity to melt and solidify the thermoplastic resin of the composite material to obtain a molded product, it is possible to obtain a molded product capable of impregnating the thermoplastic resin into continuous reinforcing fibers. The characteristics are greatly affected. When air is present in the mold, the air remains as voids in the molded product when the thermoplastic resin melts, causing a fine unimpregnated portion to be formed in the continuous reinforcing fibers. By removing the gas bodies generated from these air and resin in the mold, a molded product impregnated with the thermoplastic resin can be obtained more quickly. As a method for releasing the gas component generated in the mold, a pressure reducing path that can reduce the pressure of the cavity to a vacuum during mold clamping may be provided. After the mold is closed and the composite material is heated at a high temperature, the mold pressure is May be released once to release the gas component generated from the composite material out of the mold.
 金型圧力を一旦開放する時の金型キャビティの温度は、熱可塑性樹脂のガラス転移温度-50℃以上かつガラス転移温度+50℃以下、融点-100℃以上かつ融点+50℃以下が好ましく、ガラス転移温度-30℃以上かつガラス転移温度+30℃以下、融点-80℃以上かつ融点+10℃以下がさらに好ましく、ガラス転移温度-30℃以上かつガラス転移温度以下、融点-80℃以上かつ融点以下が最も好ましい。ガス抜きのための金型型締め圧力開放は、金型温度を上昇させながら複数回行ってもよいが、少なくとも初回の金型圧力開放は、ガラス転移温度以下または融点以下で行う方が好ましい。 The mold cavity temperature when the mold pressure is once released is preferably a glass transition temperature of the thermoplastic resin of −50 ° C. or higher, a glass transition temperature of + 50 ° C. or lower, a melting point of −100 ° C. or higher, and a melting point of + 50 ° C. or lower. More preferably, the temperature is −30 ° C. or more and the glass transition temperature + 30 ° C. or less, the melting point is −80 ° C. or more and the melting point + 10 ° C. or less, and the glass transition temperature is −30 ° C. or more and the glass transition temperature or less, the melting point −80 ° C. or more and the melting point or less. preferable. The mold clamping pressure release for degassing may be performed a plurality of times while raising the mold temperature, but at least the first mold pressure release is preferably performed at the glass transition temperature or below or below the melting point.
 本発明に用いる金型の一つの使用形態として複合材料を金型内で加熱し熱可塑性樹脂を溶融することが求められる。熱可塑性樹脂の種類にもよるが、第二の温度調節手段は、第二部分の平均温度を、非結晶性樹脂の場合は、キャビティに設置する熱可塑性樹脂材料のガラス転移温度以上、好ましくはガラス転移温度+30℃以上、最も好ましくはガラス転移温度+50℃以上に設定する。結晶性樹脂の場合は、キャビティに設置する熱可塑性樹脂材料の融点以上、好ましくは融点+30℃以上、最も好ましくは融点+50℃以上に設定する。
 第二部分の平均温度とは、金型第二部分の平均温度であり、測定法の一例としては、第二温度調節手段の近傍、10mm~30mm離れた位置の金型内部に温度計を入れて温度を測定する方法が用いられる。第二温度調節手段にカートリッジヒーターを用いる場合、温度制御は、前述の温度を検知して電源の入切制御をしたり、PID制御(Proportional-Integral-Differential Controller)をして電源の容量を調整する方法などがある。
As one form of use of the mold used in the present invention, it is required to heat the composite material in the mold to melt the thermoplastic resin. Depending on the type of thermoplastic resin, the second temperature adjusting means is the average temperature of the second part, in the case of non-crystalline resin, preferably above the glass transition temperature of the thermoplastic resin material installed in the cavity, preferably It is set to glass transition temperature + 30 ° C. or higher, most preferably glass transition temperature + 50 ° C. or higher. In the case of a crystalline resin, the melting point is set to be equal to or higher than the melting point of the thermoplastic resin material placed in the cavity, preferably higher than the melting point + 30 ° C., and most preferably higher than the melting point + 50 ° C.
The average temperature of the second part is the average temperature of the second part of the mold. As an example of the measuring method, a thermometer is placed in the mold in the vicinity of the second temperature adjusting means and at a position 10 to 30 mm apart. The method of measuring the temperature is used. When a cartridge heater is used as the second temperature control means, the temperature control detects the aforementioned temperature and controls the power on / off or adjusts the capacity of the power by PID control (Proportional-Integral-Differential Controller) There are ways to do it.
 また、第二の温度調節手段に特段の制約はなく、棒状カートリッジヒーター以外に、加熱オイル、水蒸気のような加熱媒体でも電気抵抗を利用したヒーター等があるが、金型を熱可塑性樹脂の融点以上である高温に保持するには、汎用性、性能の面から加熱ヒーターであることが好ましい。ヒーターの種類としては、セラミックスヒーター、シーズヒーターなどがあるが、棒状カートリッジヒーターが簡便性、性能上好ましく使用される。 There are no particular restrictions on the second temperature control means. In addition to the rod-shaped cartridge heater, there are heaters that use electric resistance even with heating media such as heating oil and water vapor, but the mold is the melting point of the thermoplastic resin. In order to maintain the above high temperature, a heater is preferable from the viewpoint of versatility and performance. Examples of the heater include a ceramic heater and a sheathed heater. A rod-shaped cartridge heater is preferably used in terms of simplicity and performance.
 本実施形態では、金型部分10および金型部分20は、それぞれ第一部分11,21と、第二部分12,22とが離間可能に構成された場合について説明したが、ばね40を設けず、接着剤等で一体的に形成されていてもよい。 In the present embodiment, the mold part 10 and the mold part 20 have been described so that the first parts 11 and 21 and the second parts 12 and 22 can be separated from each other, but the spring 40 is not provided. It may be formed integrally with an adhesive or the like.
 断熱板15,25は、成形機への熱伝導による熱流動を抑制する役割を有するために、金型100と成形機との連結部に設けた方が良い。 Since the heat insulating plates 15 and 25 have a role of suppressing heat flow due to heat conduction to the molding machine, it is preferable to provide them at the connecting portion between the mold 100 and the molding machine.
 上記のような成形用金型は、圧縮成形に適用可能であるが、適宜射出成形可能な機構、例えば、スプルー形成部、ランナー形成部等を設けることにより、圧縮成形後に熱可塑性樹脂を溶融充填する射出成形とのハイブリッド成形にも、適用可能である。 Although the molding die as described above can be applied to compression molding, a thermoplastic resin can be melt-filled after compression molding by providing a mechanism capable of injection molding as appropriate, for example, a sprue forming part, a runner forming part, etc. It is also applicable to hybrid molding with injection molding.
[連続繊維強化熱可塑性樹脂複合材料]
 連続強化繊維と熱可塑性樹脂とからなる連続繊維強化熱可塑性樹脂複合材料としては、連続強化繊維と熱可塑性樹脂繊維が連続して均一に混じり合った複合糸、連続強化繊維に熱可塑性樹脂をコーティングした複合糸、連続強化繊維に熱可塑性樹脂を含浸させた複合糸、複合糸からなる布帛、または連続強化繊維に熱可塑性樹脂を含浸させた板状のプリプレグを挙げることができる。プリプレグの製法としては、特に規定はないが、連続強化繊維に熱可塑性樹脂の粉体状の物を添加してあらかじめ熱プレスによって板状にしたものや連続強化繊維と熱可塑性樹脂フィルムを熱プレスにて板状にしたものなどを用いることができる。更に連続強化繊維と熱可塑性樹脂繊維を混繊し、混繊糸を織って、布帛を作成したものを熱可塑性樹脂のガラス転移温度又は融点以上に加熱して熱可塑性樹脂を強化繊維に含浸し、冷却固化して得られる板状の物を用いることができる。
[Continuous fiber reinforced thermoplastic resin composite]
Continuous fiber reinforced thermoplastic resin composite material consisting of continuous reinforcing fiber and thermoplastic resin is a composite yarn in which continuous reinforcing fiber and thermoplastic resin fiber are mixed uniformly and continuously, and coated with thermoplastic resin on continuous reinforcing fiber Examples of the composite yarn include a composite yarn obtained by impregnating a continuous reinforcing fiber with a thermoplastic resin, a fabric made of the composite yarn, or a plate-like prepreg obtained by impregnating a continuous reinforcing fiber with a thermoplastic resin. The prepreg manufacturing method is not particularly specified, but a powdered material of thermoplastic resin is added to the continuous reinforcing fiber and is preliminarily formed into a plate by hot pressing, or the continuous reinforcing fiber and the thermoplastic resin film are hot pressed. A plate or the like can be used. Furthermore, a continuous reinforcing fiber and a thermoplastic resin fiber are mixed, a mixed yarn is woven, and a fabric is made and heated to a temperature higher than the glass transition temperature or melting point of the thermoplastic resin to impregnate the thermoplastic resin with the reinforcing fiber. A plate-like product obtained by cooling and solidifying can be used.
<連続強化繊維>
 連続強化繊維は、通常の繊維強化複合材料として使用されるものを用いることができ、例えば、ガラス繊維、炭素繊維、アラミド繊維、超高強力ポリエチレン繊維、ポリベンザゾール系繊維、液晶ポリエステル繊維、ポリケトン繊維、金属繊維、セラミック繊維からなる群から選ばれる少なくとも1種があげられる。機械的特性、熱的特性、汎用性の観点から、ガラス繊維、炭素繊維、アラミド繊維が好ましい。
 連続強化繊維として、ガラス繊維を選択した場合、集束剤を用いてもよく。集束剤としてはシランカップリング剤、潤滑剤および結束剤からなることが好ましい。
 上記のガラス繊維および集束剤の詳細に関しては、適宜特許文献1に記載のものを用いることができる。
<Continuous reinforcing fiber>
As the continuous reinforcing fiber, those used as a normal fiber reinforced composite material can be used. For example, glass fiber, carbon fiber, aramid fiber, ultra high strength polyethylene fiber, polybenzazole fiber, liquid crystal polyester fiber, polyketone Examples include at least one selected from the group consisting of fibers, metal fibers, and ceramic fibers. In view of mechanical properties, thermal properties, and versatility, glass fibers, carbon fibers, and aramid fibers are preferable.
When glass fiber is selected as the continuous reinforcing fiber, a sizing agent may be used. The sizing agent is preferably composed of a silane coupling agent, a lubricant and a binding agent.
Regarding the details of the glass fiber and the sizing agent, those described in Patent Document 1 can be used as appropriate.
-連続強化繊維の形態-
 連続強化繊維の単糸数は、混繊工程における開繊性、および取扱い性の観点から30~15,000本であることが好ましい。
-Form of continuous reinforcing fiber-
The number of single yarns of continuous reinforcing fibers is preferably 30 to 15,000 from the viewpoints of spreadability and handling properties in the fiber blending process.
 連続強化繊維として、炭素繊維を選択した場合、集束剤は潤滑剤、結束剤からなることが好ましい。
 集束剤、潤滑剤、結束剤の種類については、特に制限はなく公知の物が使用できる。具体的材料としては、特許文献1に記載の物が使用できる。
When carbon fiber is selected as the continuous reinforcing fiber, the sizing agent is preferably composed of a lubricant and a binding agent.
There are no particular limitations on the type of sizing agent, lubricant, and binding agent, and known materials can be used. As a specific material, the thing of patent document 1 can be used.
 その他の連続強化繊維を用いる場合、連続強化繊維の特性に応じ、ガラス繊維、炭素繊維に用いる集束剤の種類、付与量を適宜選択すればよく、炭素繊維に用いる集束剤に準じた集束剤の種類、付与量とすることが好ましい。 When other continuous reinforcing fibers are used, the type and amount of sizing agent used for glass fibers and carbon fibers may be appropriately selected according to the characteristics of the continuous reinforcing fibers. It is preferable to use the kind and the applied amount.
<熱可塑性樹脂>
 本発明における熱可塑性樹脂とは、一般に熱可塑性樹脂と称されるものすべてを示す。例えば、ポリスチレンや、ハイインパクトポリスチレン、ミデイアムインパクトポリスチレンのようなゴム補強スチレン系樹脂、スチレン-アクリロニトリル共重合体(SAN樹脂)、アクリロニトリル-ブチルアクリレートゴム-スチレン共重合体(AAS樹脂)、アクリロニトリル-エチレンプロピルゴム-スチレン共重合体(AES)、アクリロニトリル-塩化ポリエチレン-スチレン共重合体(ACS)、ABS樹脂(例えば、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリルーブタジエン-スチレン-アルファメチルスチレン共重合体、アクリロニトリル-メチルメタクリレート-ブタジエン-スチレン共重合体)等のスチレン系樹脂;ポリメチールメタクリレート(PMMA)等のアクリル系樹脂;低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)等のオレフィン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;エチレン塩化ビニル酢酸ビニル共重合体、エチレン塩化ビニル共重合体等の塩化ビニル系樹脂;ポリエチレンテレフタレート(PETP、PET)、ポリブチレンテレフタレート(PBTP、PBT)等のポリエステル系樹脂;ポリカーボネート(PC)、変性ポリカーボネート等のポリカーボネート系樹脂;ポリアミド66、ポリアミド6、ポリアミド46等のポリアミド系樹脂;ポリオキシメチレンコポリマー、ポリオキシメチレンホモポリマー等のポリアセタール(POM)樹脂;その他のエンジニアリング樹脂、スーパーエンジニアリング樹脂として例えば、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド(TPI)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PSU)等;セルロースアセテート(CA)、セルロースアセテートブチレート(CAB)、エチルセルロース(EC)等のセルロース誘導体;液晶ポリマー、液晶アロマチックポリエステル等の液晶系ポリマー(LCP);熱可塑性ポリウレタンエラストマー(TPU)、熱可塑性スチレンブタジエンエラストマー(SBC)、熱可塑性ポリオレフィンエラストマー(TPO)、熱可塑性ポリエステルエラストマー(TPEE)、熱可塑性塩化ビニルエラストマー(TPVC)、熱可塑性ポリアミドエラストマー(TPAE)等の熱可塑性エラストマーが挙げられる。本発明における熱可塑性樹脂としては、本発明の成形工程において上述のような熱可塑性樹脂が生成されるものでもよい。一種もしくはそれ以上の熱可塑性樹脂のブレンド体を用いて本発明方法によって成形してもよい。熱可塑性樹脂は、充填材および/または添加剤等を含有してもよい。
<Thermoplastic resin>
The thermoplastic resin in the present invention refers to all those generally referred to as thermoplastic resins. For example, polystyrene, high impact polystyrene, rubber reinforced styrene resin such as medium impact polystyrene, styrene-acrylonitrile copolymer (SAN resin), acrylonitrile-butyl acrylate rubber-styrene copolymer (AAS resin), acrylonitrile-ethylene Propyl rubber-styrene copolymer (AES), acrylonitrile-polyethylene chloride-styrene copolymer (ACS), ABS resin (for example, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butadiene-styrene-alphamethylstyrene copolymer) Styrene resin such as acrylonitrile-methyl methacrylate-butadiene-styrene copolymer); acrylic resin such as polymethyl methacrylate (PMMA); low density Olefin resins such as polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP); vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; ethylene vinyl chloride vinyl acetate copolymer, ethylene vinyl chloride copolymer Polyvinyl chloride resins such as coalescence; Polyester resins such as polyethylene terephthalate (PETP, PET) and polybutylene terephthalate (PBTP, PBT); Polycarbonate resins such as polycarbonate (PC) and modified polycarbonate; Polyamide 66, Polyamide 6, Polyamide Polyamide resins such as 46; polyacetal (POM) resins such as polyoxymethylene copolymers and polyoxymethylene homopolymers; other engineering resins and super engineering resins such as Polyethersulfone (PES), polyetherimide (PEI), thermoplastic polyimide (TPI), polyetherketone (PEK), polyetheretherketone (PEEK), polyphenylene sulfide (PSU), etc .; cellulose acetate (CA), cellulose Cellulose derivatives such as acetate butyrate (CAB) and ethyl cellulose (EC); liquid crystal polymers (LCP) such as liquid crystal polymers and liquid crystal aromatic polyesters; thermoplastic polyurethane elastomers (TPU), thermoplastic styrene butadiene elastomers (SBC), heat Plastic polyolefin elastomer (TPO), thermoplastic polyester elastomer (TPEE), thermoplastic vinyl chloride elastomer (TPVC), thermoplastic polyamide elastomer (TPAE), etc. These thermoplastic elastomers can be mentioned. As the thermoplastic resin in the present invention, the thermoplastic resin as described above may be produced in the molding step of the present invention. You may shape | mold by the method of this invention using the blend body of a 1 type or more thermoplastic resin. The thermoplastic resin may contain a filler and / or an additive.
 連続強化繊維と熱可塑性樹脂からなる連続繊維強化熱可塑性樹脂複合材料が布帛である場合、熱可塑性樹脂は、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンサルファイド、および熱可塑性ポリエーテルイミドからなる群から選ばれる少なくとも1種であることが好ましい。 When the continuous fiber reinforced thermoplastic resin composite material composed of continuous reinforcing fiber and thermoplastic resin is a fabric, the thermoplastic resin is polyolefin resin, polyamide resin, polyester resin, polyether ketone, polyether ether ketone, poly It is preferably at least one selected from the group consisting of ether sulfone, polyphenylene sulfide, and thermoplastic polyetherimide.
-ポリエステル系樹脂-
 ポリエステル系樹脂とは、主鎖に-CO-O-(エステル)結合を有する高分子化合物を意味する。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリ-1,4-シクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート等が挙げられるが、これらに限定されるものではない。
 その他のポリエステル系樹脂の詳細に関しては、適宜特許文献1記載のものを用いることができる。
-Polyester resin-
The polyester resin means a polymer compound having a —CO—O— (ester) bond in the main chain. Examples thereof include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalenedicarboxylate. .
For details of other polyester resins, those described in Patent Document 1 can be used as appropriate.
-ポリアミド系樹脂-
 ポリアミド系樹脂とは、主鎖に-CO-NH-(アミド)結合を有する高分子化合物を意味する。例えば、ラクタムの開環重合で得られるポリアミド、ω-アミノカルボン酸の自己縮合で得られるポリアミド、ジアミンおよびジカルボン酸を縮合することで得られるポリアミド、並びにこれらの共重合物が挙げられるが、これらに限定されるものではない。
ポリアミドとしては、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。その他の上記のラクタム、ジアミン(単量体)、ジカルボン酸(単量体)の詳細に関しては、適宜特許文献1に記載のものを用いることができる。
-Polyamide resin-
The polyamide-based resin means a polymer compound having a —CO—NH— (amide) bond in the main chain. Examples thereof include polyamides obtained by ring-opening polymerization of lactam, polyamides obtained by self-condensation of ω-aminocarboxylic acid, polyamides obtained by condensing diamine and dicarboxylic acid, and copolymers thereof. It is not limited to.
As the polyamide, one kind may be used alone, or two or more kinds may be used as a mixture. Regarding the details of the other lactam, diamine (monomer), and dicarboxylic acid (monomer), those described in Patent Document 1 can be used as appropriate.
 ポリアミドの具体例としては、例えば、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610、ポリアミド612、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナンメチレンテレフタルアミド)、およびポリアミド6I(ポリヘキサメチレンイソフタルアミド)、並びにこれらを構成成分として含む共重合ポリアミドが挙げられる。 Specific examples of polyamides include, for example, polyamide 4 (poly α-pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecanamide), polyamide 12 (polydodecanamide), polyamide 46 (polytetramethylene adipa) Amide), polyamide 66 (polyhexamethylene adipamide), polyamide 610, polyamide 612, polyamide 6T (polyhexamethylene terephthalamide), polyamide 9T (polynonamethylene terephthalamide), and polyamide 6I (polyhexamethylene isophthalamide) And copolymerized polyamides containing these as constituents.
 共重合ポリアミドとしては、例えば、ヘキサメチレンアジパミドおよびヘキサメチレンテレフタルアミドの共重合物、ヘキサメチレンアジパミドおよびヘキサメチレンイソフタルアミドの共重合物、並びにヘキサメチレンテレフタルアミドおよび2-メチルペンタンジアミンテレフタルアミドの共重合物が挙げられる。 Examples of the copolymerized polyamide include a copolymer of hexamethylene adipamide and hexamethylene terephthalamide, a copolymer of hexamethylene adipamide and hexamethylene isophthalamide, and hexamethylene terephthalamide and 2-methylpentanediamine terephthalate. Examples include amide copolymers.
 熱可塑性樹脂繊維複合材料に用いられる混繊糸の具体的製造方法は、特に制限されないが、混繊する方法は公知の方法を利用できる。例えば、静電気力や流体噴霧による圧力、ローラー等に押し付ける圧力等による外力によって開繊した後、連続強化繊維と熱可塑性樹脂繊維を開繊したままの状態で合糸・引き揃える開繊合糸法、および流体交絡(インターレース)法が挙げられる。なかでも連続強化繊維の損傷が抑制でき、開繊性に優れ、かつ均一に混合可能な流体交絡法が好ましく、流体交絡(インターレース)法としては、空気、窒素ガスおよび水蒸気等の流体による渦流乱流帯域を糸軸とほぼ平行に2個またはそれ以上作り、この帯域に繊維を導いてループや捲縮を生じない程度の張力下で非嵩高性の糸条とする方法や、連続強化繊維のみ開繊した後、または連続強化繊維と熱可塑性樹脂繊維共に開繊した後に流体交絡させる方法(開繊後流体交絡法)等が挙げられる。特に、熱可塑性樹脂繊維に単独で熱加工を含む工程で仮撚加工を施した後、同一の装置で連続して、流体交絡法で混繊することが好ましい。
 その他、混繊法の詳細については、適宜特許文献2に記載の方法を用いることができる。
Although the specific manufacturing method of the mixed fiber used for a thermoplastic resin fiber composite material is not restrict | limited, A well-known method can be utilized for the method of mixing. For example, after opening by external force such as electrostatic force, pressure by fluid spraying, pressure applied to rollers, etc., continuous fiber and thermoplastic resin fibers are opened and then combined and aligned. , And fluid entanglement (interlace) methods. Among them, the fluid entanglement method that can suppress damage of continuous reinforcing fibers, has excellent spreadability, and can be mixed uniformly is preferable. As the fluid entanglement method, vortex turbulence caused by fluids such as air, nitrogen gas, and water vapor Create two or more flow zones almost parallel to the yarn axis and guide the fibers into these zones to make non-bulky yarns under tension that does not cause loops or crimps, or continuous reinforcing fibers only Examples include a method of fluid entanglement after opening, or after opening both continuous reinforcing fibers and thermoplastic resin fibers (fluid entanglement after opening). In particular, it is preferable that the thermoplastic resin fiber is subjected to false twisting in a process including thermal processing alone, and then continuously blended by the fluid entanglement method in the same apparatus.
In addition, about the detail of the fiber-mixing method, the method of patent document 2 can be used suitably.
 熱可塑性樹脂繊維複合材料を構成する熱可塑性樹脂は、複合糸における連続強化繊維にコーティングしたものでもよく、連続強化繊維に含浸させたものでもよい。熱可塑性樹脂のコーティングや含浸は、連続強化繊維の製造時に行ってもよいし、連続強化繊維を製造した後に別工程で行ってもよい。 The thermoplastic resin constituting the thermoplastic resin fiber composite material may be one coated with continuous reinforcing fibers in a composite yarn or one impregnated with continuous reinforcing fibers. The coating or impregnation of the thermoplastic resin may be performed at the time of manufacturing the continuous reinforcing fiber, or may be performed in a separate process after the continuous reinforcing fiber is manufactured.
 熱可塑性樹脂繊維複合材料の形態に特に制限はなくシート状、フィルム状、ペレット状でも構わないが、操作性、形状柔軟性の観点から布帛状が好ましい。 The form of the thermoplastic resin fiber composite material is not particularly limited and may be a sheet shape, a film shape, or a pellet shape, but a fabric shape is preferable from the viewpoint of operability and shape flexibility.
 布帛を得る方法は特に限定されず、用途、目的に応じて選定した適切な布帛を作製する公知の方法を用いることができる。例えば、織物は、シャトル織機、レピア織機、エアジェット織機、ウォータージェット織機等の製織機を用い、少なくとも一部に複合糸を含んでいればよい。好ましくは、複合糸を含む繊維を配列させた経糸に、緯糸を打ち込むことによって、得てもよい。編物は、丸編み機、横編み機、トリコット編み機、ラッシェル編み機等の編み機を用い、少なくとも一部に複合糸を含む繊維を編成することによって得られる。不織布は、少なくとも一部に複合糸を含む繊維をウェブと呼ばれるシート状の繊維集合体とした後、ニードルパンチ機、ステッチボンド機、柱状流機等の物理作用やエンボスロール等による熱作用や接着剤によって繊維同士を結合させることによって、得られる。
 その他の布帛の形態等については、適宜特許文献1に記載の方法を用いることができる。
The method for obtaining the fabric is not particularly limited, and a known method for producing an appropriate fabric selected according to the use and purpose can be used. For example, the woven fabric may be a loom such as a shuttle loom, a rapier loom, an air jet loom, a water jet loom, etc., and may contain composite yarn at least partially. Preferably, it may be obtained by driving a weft into a warp in which fibers including a composite yarn are arranged. The knitted fabric is obtained by knitting a fiber containing a composite yarn at least partially using a knitting machine such as a circular knitting machine, a flat knitting machine, a tricot knitting machine, or a Raschel knitting machine. Non-woven fabric is a sheet-like fiber assembly called a web made of fibers containing at least a part of composite yarn, followed by physical action such as a needle punch machine, stitch bond machine, column flow machine, etc. It is obtained by bonding fibers with an agent.
For other forms of the fabric and the like, the method described in Patent Document 1 can be used as appropriate.
 また、布帛を所望の形状に裁断する方法としては、ウォータージェットカッター、レーザーカッター、プロッタカッター、超音波カッター、超鋼刃プレスカッター、熱刃プレスカッター等があるが、経済性、生産性、性能面から熱刃プレスカッターが好ましい。熱刃プレスカッターの刃の温度は、素材により適宜設定されるが、熱可塑性樹脂の融点またはガラス転移温度以上、好ましくは融点+30℃以上またはガラス転移温度+30℃以上、さらに好ましくは融点+70℃以上またはガラス転移温度+70℃以上である。 In addition, there are water jet cutters, laser cutters, plotter cutters, ultrasonic cutters, super steel blade press cutters, hot blade press cutters, etc. as methods for cutting the fabric into a desired shape. From the surface, a hot blade press cutter is preferable. The temperature of the blade of the hot blade press cutter is appropriately set depending on the material, but it is not less than the melting point or glass transition temperature of the thermoplastic resin, preferably not less than the melting point + 30 ° C. or glass transition temperature + 30 ° C., more preferably not less than the melting point + 70 ° C. Or it is glass transition temperature +70 degreeC or more.
 ところで、連続繊維強化熱可塑性樹脂複合材料からなる布帛やプリプレグを、金型に挿入する前に、上述のウォータージェットカッターやレーザーカッター等によって裁断する場合には、以下の問題が生じることがある。すなわち、ウォータージェットカッターを用いる場合は、水に混ぜた研磨材が複合材料に付着したり、研磨材が内部に入ったりして複合材料の品質を低下させることがある。また、レーザーカッターを用いる場合は、裁断端部の熱可塑性樹脂が焦げてしまい、成形後の複合材料の物性低下を招くことがある。 By the way, when a fabric or prepreg made of a continuous fiber reinforced thermoplastic resin composite material is cut by the above-described water jet cutter or laser cutter before being inserted into a mold, the following problems may occur. That is, when a water jet cutter is used, the abrasive mixed with water may adhere to the composite material or the abrasive may enter the interior, thereby reducing the quality of the composite material. Moreover, when using a laser cutter, the thermoplastic resin of a cutting edge part may be burnt, and the physical property fall of the composite material after shaping | molding may be caused.
 上述の問題を防止するためには、連続繊維強化熱可塑性樹脂複合材料の切断面を、熱可塑性樹脂の融点以上の温度を有する刃により熱可塑性樹脂を溶融させながら裁断し、溶融させた熱可塑性樹脂を固化させることが望ましい。 In order to prevent the above-mentioned problem, the cut surface of the continuous fiber reinforced thermoplastic resin composite material is cut while melting the thermoplastic resin with a blade having a temperature equal to or higher than the melting point of the thermoplastic resin, and the molten thermoplastic material is cut. It is desirable to solidify the resin.
 上述のようにして作製される連続繊維強化熱可塑性樹脂複合材料は、複合材料の切断面における熱可塑性樹脂の少なくとも一部が溶融固化してなり、溶融固化している熱可塑性樹脂の分子量が熱可塑性樹脂そのものの分子量の20%以上であることが望ましい。ここで、上記「熱可塑性樹脂の少なくとも一部」とは、好ましくは切断面における熱可塑性樹脂の50%以上、さらに好ましくは80%以上、もっとも好ましくは100%である。切断面における熱可塑性樹脂の溶融固化は、目視によっても確認することができるが、好ましくは、エネルギー分散型X線分析(EDX)を用いて確認することができる。 In the continuous fiber reinforced thermoplastic resin composite material produced as described above, at least a part of the thermoplastic resin on the cut surface of the composite material is melted and solidified, and the molecular weight of the thermoplastic resin melted and solidified is hot. It is desirable that it is 20% or more of the molecular weight of the plastic resin itself. Here, the “at least part of the thermoplastic resin” is preferably 50% or more, more preferably 80% or more, and most preferably 100% of the thermoplastic resin on the cut surface. The melt-solidification of the thermoplastic resin on the cut surface can be confirmed by visual observation, but preferably can be confirmed using energy dispersive X-ray analysis (EDX).
 溶融固化している熱可塑性樹脂の分子量は、切断面から採取される複合材料(サンプル)から測定されるものである。具体的には切断面の中央部分(切断面の周縁から幅1mmを除いた部分)の任意の位置において、切断面の表面から500μmの厚さ領域内で切り出されるものをサンプルとする。このサンプルを1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶かして、不溶の連続強化繊維を除去し、上記1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶けている状態の熱可塑性樹脂の分子量をゲル浸透クロマトグラフィー(GPC)装置で測定したものが、溶融固化している熱可塑性樹脂の分子量である。同様に複合材料を構成する熱可塑性樹脂そのものの分子量も1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに溶かし、ゲル浸透クロマトグラフィー(GPC)装置で測定することができる。 The molecular weight of the thermoplastic resin melted and solidified is measured from a composite material (sample) collected from the cut surface. Specifically, a sample that is cut out from the surface of the cut surface within a thickness region of 500 μm at an arbitrary position of the central portion of the cut surface (the portion excluding the width of 1 mm from the periphery of the cut surface) is used as a sample. This sample was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol to remove insoluble continuous reinforcing fibers, and the 1,1,1,3,3,3-hexafluoro- The molecular weight of the thermoplastic resin in a state of being dissolved in 2-propanol is measured by a gel permeation chromatography (GPC) apparatus, and the molecular weight of the thermoplastic resin melted and solidified. Similarly, the molecular weight of the thermoplastic resin itself constituting the composite material can be dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol and measured with a gel permeation chromatography (GPC) apparatus.
 切断面における溶融固化している熱可塑性樹脂の分子量が、複合材料を構成する熱可塑性樹脂そのものの分子量の20%以上であれば、複合材料の物性低下を抑制することができ、切断面の加工が可能となる。上記20%以上の範囲の中で、より好ましくは40%以上であり、さらには50%以上であることが好ましい。 If the molecular weight of the thermoplastic resin melted and solidified on the cut surface is 20% or more of the molecular weight of the thermoplastic resin itself constituting the composite material, the physical properties of the composite material can be prevented from being lowered, and the cut surface can be processed. Is possible. Within the range of 20% or more, more preferably 40% or more, and further preferably 50% or more.
 上述のようにして形成される複合材料においては、連続強化繊維と熱可塑性樹脂が連続して均一に混じり合い、連続強化繊維を熱可塑性樹脂に均一に固定させることが可能である。そこで、この複合材料は、連続強化繊維と連続熱可塑性樹脂の複合糸状を含むことが好ましい。この複合糸状を用いることにより、布帛化する編織等の工程における取扱い性に優れ、得られる布帛は、短時間成形でも充分な力学特性を発揮する複合材料成形体となり得る。 In the composite material formed as described above, the continuous reinforcing fibers and the thermoplastic resin are continuously and uniformly mixed, and the continuous reinforcing fibers can be uniformly fixed to the thermoplastic resin. Therefore, it is preferable that the composite material includes a composite yarn shape of continuous reinforcing fiber and continuous thermoplastic resin. By using this composite yarn shape, the handleability is excellent in processes such as knitting to form a fabric, and the resulting fabric can be a composite material molded body that exhibits sufficient mechanical properties even in a short time.
 裁断溶融する工程においては、熱可塑性樹脂の融点以上の温度を有する刃により、熱履歴を付すことにより、熱可塑性樹脂を溶融させながら複合材料を裁断するのが望ましい。刃の温度は、熱可塑性樹脂の融点以上であり、融点よりも50℃高いことが好ましく、75℃高いことがより好ましい。なお、刃の温度は熱可塑性樹脂の劣化の観点からすれば、融点+150℃以下であることが好ましい。刃はスェーデン鋼刃、トムソン刃、超鋼刃などが挙げられ、硬度や剛性が高い材質からなる刃が好ましい。 In the cutting and melting step, it is desirable to cut the composite material while melting the thermoplastic resin by applying a thermal history with a blade having a temperature equal to or higher than the melting point of the thermoplastic resin. The temperature of the blade is equal to or higher than the melting point of the thermoplastic resin, preferably 50 ° C. higher than the melting point, and more preferably 75 ° C. higher. In addition, it is preferable that the temperature of a blade is below melting | fusing point +150 degreeC from a viewpoint of deterioration of a thermoplastic resin. Examples of the blade include Swedish steel blades, Thomson blades, and super steel blades, and blades made of a material having high hardness and rigidity are preferable.
 複合材料を熱可塑性樹脂の融点以上に熱された刃により、連続強化繊維と熱可塑性樹脂とから構成される複合材料を裁断することにより、熱可塑性樹脂を溶融させながら複合材料は裁断されて裁断面が発生し、裁断面は溶融させた熱可塑性樹脂が固化することで切断面となり、これによって、端面がほぐれない複合材料を製造することができる。 By cutting a composite material composed of continuous reinforcing fibers and a thermoplastic resin with a blade heated above the melting point of the thermoplastic resin, the composite material is cut and cut while melting the thermoplastic resin. A surface is generated, and the cut surface becomes a cut surface by solidifying the melted thermoplastic resin, whereby a composite material in which the end surface is not loosened can be manufactured.
[実施例1]
(金型)
 金型は、図11および図13に示す金型を用いた。図13は、図11の金型の第一部分であって、図1の成形品のA-A’断面図に対応する部分の断面図である。図13に示すように、本実施例に用いる金型は、金型の第一部分310,320に第一の温度調節手段313,323有し、図1の成形品のリブ(403,405,407)および円錐台412に対応する凹部を有する。金型の第二の温度調節手段14,24を有する第二部分12,22は図11と同様であるため説明は省略する。
 冷却媒体通路313,323を有する第一部分310,320には、熱伝導率165J/s・m・Kのコルソン合金(マテリオン ブラッシュ社製、モールドマックス-V)を用い、棒状カートリッジヒーター14,24を有する金型部分(10,および20)は、熱伝導率40J/s・m・Kの炭素鋼(S55C)を用いた。第一部分の体積V(I)に対する実質的に加熱される金型部分の体積V0(V0/V(I))は10である。
 冷却媒体通路313,323は、内径8mmで中心部からキャビティ面までの距離L0が15mmの位置に20mm間隔(L)で設置したものである。
 第二の温度調節手段14,24として、株式会社八光電機製棒状カートリッジヒーター(商品名「GLE4103」,容量1000W,φ10mm×400mm,ワット密度8.3W/cm)を用いた。
 冷却媒体通路の中心から棒状カートリッジヒーターの中心までの距離L2は30mmである。
[Example 1]
(Mold)
The mold shown in FIGS. 11 and 13 was used as the mold. 13 is a cross-sectional view of the first part of the mold of FIG. 11 and corresponding to the AA ′ cross-sectional view of the molded product of FIG. As shown in FIG. 13, the mold used in this embodiment has first temperature adjusting means 313, 323 in the first parts 310, 320 of the mold, and ribs (403, 405, 407) of the molded product of FIG. ) And a recess corresponding to the truncated cone 412. Since the second portions 12 and 22 having the second temperature adjusting means 14 and 24 of the mold are the same as those in FIG.
The first portions 310 and 320 having the cooling medium passages 313 and 323 are made of Corson alloy (Matelion Brush, Mold Max-V) having a thermal conductivity of 165 J / s · m · K, and the rod-shaped cartridge heaters 14 and 24 are provided. Carbon steel (S55C) having a thermal conductivity of 40 J / s · m · K was used as the mold parts (10 and 20). The volume V0 (V0 / V (I)) of the substantially heated mold part with respect to the volume V (I) of the first part is 10.
The cooling medium passages 313 and 323 are provided at an interval of 20 mm (L) at a position where the inner diameter is 8 mm and the distance L0 from the center to the cavity surface is 15 mm.
As the second temperature control means 14 and 24, a bar cartridge heater (trade name “GLE4103”, capacity 1000 W, φ10 mm × 400 mm, watt density 8.3 W / cm 2 ) manufactured by Yako Electric Co., Ltd. was used.
The distance L2 from the center of the cooling medium passage to the center of the rod-shaped cartridge heater is 30 mm.
(基材)
 下記集束剤Aを1.0質量%付着させた繊度685dtexで単糸数400本のガラス繊維を連続強化繊維として用いた。
 集束剤Aの組成(固形分換算):
 ・シランカップリング剤:γ-アミノプロピルトリエトキシシラン0.6質量%〔商品名:KBE-903(信越化学工業(株)製)〕
 ・潤滑剤:ワックス0.1質量%〔商品名:カルナウバワックス((株)加藤洋行製)〕
 ・結束剤:アクリル酸/マレイン酸共重合体塩5質量%〔商品名:アクアリックTL(日本触媒(株)製)〕
(Base material)
Glass fibers of 400 single yarns with a fineness of 685 dtex to which 1.0% by mass of the following sizing agent A was attached were used as continuous reinforcing fibers.
Composition of sizing agent A (solid content conversion):
Silane coupling agent: 0.6% by mass of γ-aminopropyltriethoxysilane [trade name: KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.)]
・ Lubricant: 0.1% by weight of wax [Brand name: Carnauba wax (manufactured by Hiroyuki Kato)]
・ Binder: 5% by mass of acrylic acid / maleic acid copolymer salt [trade name: Aqualic TL (manufactured by Nippon Shokubai Co., Ltd.)]
 熱可塑性樹脂繊維として、交絡処理を施していないポリアミド66繊維〔商品名:レオナ(登録商標)470/144BAU(旭化成せんい(株)製)、繊度470dtex、単糸数144本〕を用いた。 As the thermoplastic resin fibers, polyamide 66 fibers (trade name: Leona (registered trademark) 470/144 BAU (manufactured by Asahi Kasei Fibers Co., Ltd.), fineness 470 dtex, number of single yarns 144) not subjected to entanglement treatment were used.
 繊度685dtexで単糸数400本のガラス繊維2束と繊度470dtexのPA(ポリアミド)繊維2束を合糸・引き揃えた後、流体交絡ノズルに実質的に垂直に供給し、下記条件で流体交絡させて、複合糸を得た。
 ・流体交絡ノズル:京セラ KC-AJI-L(1.5mm径、推進型)
 ・空気圧:2kg/cm
 ・加工速度:30m/分
 複合糸を経糸および緯糸として用い、経糸密度が6本/5mmおよび緯糸密度が6本/5mmの織物(布帛)を製織した。製織時に毛羽やフィブリル状物の発生はなく、織機にも糸くずや毛玉の付着は観察されず製織性は良好であった。
Two bundles of glass fibers with a fineness of 685 dtex and 400 single yarns and two bundles of PA (polyamide) fibers with a fineness of 470 dtex are combined and aligned, then supplied substantially vertically to the fluid entanglement nozzle and fluid entangled under the following conditions Thus, a composite yarn was obtained.
-Fluid entanglement nozzle: Kyocera KC-AJI-L (1.5 mm diameter, propulsion type)
・ Air pressure: 2kg / cm 2
Processing speed: 30 m / min Using a composite yarn as warp and weft, a woven fabric (fabric) having a warp density of 6/5 mm and a weft density of 6/5 mm was woven. There was no generation of fluff or fibrils during weaving, and no lint or fluff was observed on the loom, and weaving was good.
 布帛は、7枚重ねにして所望の圧縮成形品の形状に適するように裁断した。さらに温度330℃に加熱した熱刃を用いて、7枚のうち6枚を重ねて裁断した。裁断面は、融着し、取扱いに優れた基材が得られた。 The fabric was cut into 7 sheets so as to be suitable for the shape of the desired compression molded product. Furthermore, using a hot blade heated to a temperature of 330 ° C., six of the seven sheets were stacked and cut. The cut surface was fused and a base material excellent in handling was obtained.
(圧縮成形)
 成形品を図9に示す圧縮成形法で下記の手順に従って作製した。
 成形機は、最大型締め力300トンの東芝機械製(S100V-8A)を用いた。
 金型、基材、および各工程の詳細条件を表1に示す。
(Compression molding)
A molded article was produced by the compression molding method shown in FIG. 9 according to the following procedure.
The molding machine used was Toshiba Machine (S100V-8A) with a maximum clamping force of 300 tons.
The detailed conditions of the mold, the base material, and each process are shown in Table 1.
 [工程1](布帛のセットおよび金型型締め)金型を開放し、上記所望の形状に裁断した布帛7枚のうち1枚を、金型に挿入して金型のリブに対応する凹部の全てに金属製の薄板を用いてリブの先端の深さまで挿入した。次に、6枚重ねた布帛を、金型温度150℃の時に金型内の所定の位置にセットし、型締め力240MPaで型締めした。
 [工程2](金型加熱)金型を型締めした状態で、カートリッジヒーターを用いてキャビティ面を300℃まで急加熱し、布帛を構成するポリアミド樹脂を金型内で溶融させ、ガラス繊維内に含浸させた。
 [工程3](金型分離、冷却)型締め力を下げ、キャビティを閉鎖した状態で冷却媒体通路に25℃の冷却水を通水して、キャビティ面を急冷却した。
 キャビティ面の温度が150℃に達してから5秒後に通水を停止し、通水停止後10秒後に金型を開放し、同時に冷却媒体通路の水を圧縮空気にて排出した。
 [工程4](離型)金型離型後、直ちに成形品を取り出し、工程1に戻した。
 得られた成形品400の外寸は250mm×250mm、肉厚は2mmであった。
[Step 1] (Fabric setting and mold clamping) The mold is opened, and one of the seven fabrics cut into the desired shape is inserted into the mold and the recess corresponding to the rib of the mold All of these were inserted to the depth of the tip of the rib using a thin metal plate. Next, the six stacked fabrics were set at a predetermined position in the mold when the mold temperature was 150 ° C., and clamped with a clamping force of 240 MPa.
[Step 2] (Mold heating) With the mold clamped, the cavity surface is rapidly heated to 300 ° C. using a cartridge heater, and the polyamide resin constituting the fabric is melted in the mold, and the glass fiber Was impregnated.
[Step 3] (Mold Separation, Cooling) The mold clamping force was lowered, and the cavity surface was rapidly cooled by passing cooling water at 25 ° C. through the cooling medium passage with the cavity closed.
Water flow was stopped 5 seconds after the temperature of the cavity surface reached 150 ° C., the mold was opened 10 seconds after the water flow stopped, and water in the cooling medium passage was simultaneously discharged with compressed air.
[Step 4] (Release) Immediately after releasing the mold, the molded product was taken out and returned to Step 1.
The obtained molded product 400 had an outer size of 250 mm × 250 mm and a wall thickness of 2 mm.
[実施例2]
 実施例1と同じ金型を用い、下記以外は実施例1と同様に成形品を作製した。
 布帛としては7枚重ねて熱刃で裁断したものを用意し、リブには押し込まず、7枚重ねて金型キャビティ内に挿入した。成形法としては、実施例1の[工程1]で金型のリブに対応する凹部に布帛を押し込む代わりに、[工程1]と[工程2]の間でキャビティ面が240℃に達したときに金型の型締め圧力を0.5秒開放する寸開モードを使用してガス抜きをした。その後、再び240MPaの型締め力をかけて成形した。
[Example 2]
Using the same mold as in Example 1, a molded product was produced in the same manner as in Example 1 except for the following.
As the cloth, seven sheets were stacked and cut with a hot blade, and seven sheets were stacked and inserted into the mold cavity without being pushed into the rib. As a forming method, when the cavity surface reached 240 ° C. between [Step 1] and [Step 2] instead of pushing the fabric into the recess corresponding to the rib of the mold in [Step 1] of Example 1. The degassing was performed using a dimension opening mode in which the mold clamping pressure was released for 0.5 seconds. Thereafter, molding was performed again by applying a clamping force of 240 MPa.
[実施例3]
 実施例1と同じ基材を使用し、基板とリブ以外の突起部は基材で形成し、リブ部分は射出成形で形成可能な金型を使用し、下記工程以外は実施例1と同様に成形品を作製した。
 [工程1](布帛のセットおよび金型型締め)金型を開放し、上記所望の形状に裁断した布帛としては7枚重ねて熱刃で裁断したものを用意し、リブには押し込まず、7枚重ねて、金型温度150℃の時に金型内の所定の位置にセットし、型締め力240MPaで型締めした。
 [工程2](射出成形)金型を型締めした状態で、リブ部分のみに短繊維GF50%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G50]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力20MPaをかけた。
 [工程3](金型昇温)金型を型締めした状態で、カートリッジヒーターを用いてキャビティ面を300℃まで急加熱し、布帛を構成するポリアミド樹脂を金型内で溶融させ、ガラス繊維内に含浸させると同時に射出樹脂組成物と布帛を接合した。
 [工程4](金型分離、冷却)型締め力を下げ、キャビティを閉鎖した状態で、第一部分と第二部分とをそれぞれ5mm分離し、冷却媒体通路に25℃の冷却水を通水して、キャビティ面を急冷却した。冷却時の冷却水の水量は、15L/分であった。
 キャビティ面の温度が150℃に達してから5秒後に通水を停止し、通水停止後10秒後に金型を開放し、同時に冷却媒体通路の水を圧縮空気にて排出した。
 [工程5](離型)金型離型後、直ちに成形品を取り出し、工程1に戻した。
[Example 3]
The same base material as in Example 1 is used, the protrusions other than the substrate and ribs are formed from the base material, and the rib part is a mold that can be formed by injection molding, except for the following steps, as in Example 1. A molded product was produced.
[Step 1] (Set of fabric and mold clamping) Open the mold, prepare 7 sheets of fabric cut into the desired shape and cut with a hot blade, do not push into the rib, Seven sheets were stacked, set at a predetermined position in the mold when the mold temperature was 150 ° C., and clamped with a mold clamping force of 240 MPa.
[Step 2] (Injection molding) A resin composition of polyamide 66 resin [trade name: Leona (registered trademark) 14G50] containing 50% short fibers GF only in the rib portion in a state where the mold is clamped, is set to a cylinder set temperature. Injection filling was performed at 290 ° C., an injection pressure of 20 MPa, an injection speed of 50 mm / sec, and an injection holding pressure of 20 MPa was applied.
[Step 3] (Temperature rise) With the mold clamped, the cavity surface is rapidly heated to 300 ° C. using a cartridge heater, and the polyamide resin constituting the fabric is melted in the mold to produce glass fibers. The injection resin composition and the fabric were joined simultaneously with the impregnation.
[Step 4] (Mold separation, cooling) With the mold clamping force lowered and the cavity closed, each of the first part and the second part is separated by 5 mm, and 25 ° C cooling water is passed through the cooling medium passage. The cavity surface was cooled rapidly. The amount of cooling water during cooling was 15 L / min.
Water flow was stopped 5 seconds after the temperature of the cavity surface reached 150 ° C., the mold was opened 10 seconds after the water flow stopped, and water in the cooling medium passage was simultaneously discharged with compressed air.
[Step 5] (Release) Immediately after mold release, the molded product was taken out and returned to Step 1.
[実施例4]
 [工程1](プリプレグの作成)基材として実施例1と同じ布帛を用いてプリプレグの板材を予め下記の手順で作成した。布帛7枚を厚み3.0mmの型枠を付けた鉄板二枚に挟み、次いで300℃に加熱した圧縮成形機に入れて圧縮力5MPaで10分間加熱した後に冷却板に移し替え、5分間冷却し、厚み3mmの板材のプリプレグを作製した。
 板材を、赤外線ヒーターを用いて加熱し、7分後に板材の表面温度が300℃に達してから3分間継続的に加熱し、直ちに金型温度250℃に設定した実施例1と同様の金型に挿入し、圧縮成形した。
 得られた成形品は250mm×250mm、肉厚は2mmであった。
[Example 4]
[Step 1] (Preparation of prepreg) A prepreg plate was prepared in advance by the following procedure using the same fabric as in Example 1 as a substrate. 7 sheets of fabric are sandwiched between two steel plates with a 3.0mm thick formwork, then placed in a compression molding machine heated to 300 ° C and heated for 10 minutes at a compression force of 5MPa, then transferred to a cooling plate and cooled for 5 minutes Then, a prepreg of a plate material having a thickness of 3 mm was produced.
The plate material was heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reached 300 ° C. and continuously heated for 3 minutes. And compression molded.
The obtained molded product was 250 mm × 250 mm and the wall thickness was 2 mm.
[比較例1]
 基材として実施例1と同じ布帛を用いて板材を予め下記の手順で作成した。
 布帛7枚を厚み2.2mmの型枠を付けた鉄板二枚に挟み、次いで300℃に加熱した圧縮成形機に入れて圧縮力5MPaで10分間加熱した後に冷却板に移し替え、5分間冷却し、板材を作製した。
 板材を、赤外線ヒーターを用いて加熱し、7分後に板材の表面温度が300℃に達してから3分間継続的に加熱し、直ちに金型温度150℃に設定した金型に挿入し、圧縮成形した。
 得られた成形品は250mm×250mm、肉厚は2mmの平板であった。
[Comparative Example 1]
A plate material was prepared in advance by the following procedure using the same fabric as in Example 1 as the base material.
7 sheets of fabric are sandwiched between 2 steel plates with a formwork of 2.2 mm thickness, then placed in a compression molding machine heated to 300 ° C. and heated for 10 minutes at a compression force of 5 MPa, then transferred to a cooling plate and cooled for 5 minutes And the board | plate material was produced.
The plate material is heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reaches 300 ° C, and then continuously heated for 3 minutes, immediately inserted into a mold set at a mold temperature of 150 ° C, and compression molded. did.
The obtained molded product was a flat plate having a size of 250 mm × 250 mm and a thickness of 2 mm.
[比較例2]
基材として実施例1と同じ布帛を用いてプリプレグの板材を予め下記の手順で作成した。
 布帛7枚を厚み2.2mmの型枠を付けた鉄板二枚に挟み、次いで300℃に加熱した圧縮成形機に入れて圧縮力5MPaで10分間加熱した後に冷却板に移し替え、5分間冷却し、厚み2.2mmのプリプレグの板材を作製した。
 板材を、赤外線ヒーターを用いて加熱し、7分後に板材の表面温度が300℃に達してから3分間継続的に加熱し、直ちに金型温度150℃に設定した実施例1と同様の金型に挿入し、圧縮成形した。
[Comparative Example 2]
A prepreg plate was prepared in advance by the following procedure using the same fabric as in Example 1 as the substrate.
7 sheets of fabric are sandwiched between 2 steel plates with a formwork of 2.2 mm thickness, then placed in a compression molding machine heated to 300 ° C. and heated for 10 minutes at a compression force of 5 MPa, then transferred to a cooling plate and cooled for 5 minutes Then, a prepreg plate material having a thickness of 2.2 mm was produced.
The plate material was heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reached 300 ° C. and then continuously heated for 3 minutes, and the mold temperature was immediately set to a mold temperature of 150 ° C. And compression molded.
[比較例3]
 [工程1](リブ部分の作成)
 実施例3と同様の金型を用いて、短繊維GF50%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G50]の樹脂組成物をシリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力20MPaをかけて得られた成形品のリブ部分のみを切り出した。
 [工程2](基材部分の作成)
 比較例1と同様の工程で、250mm×250mm、厚み2.2mmのプリプレグの板材を成形した。
 [工程3](基材部分とリブ部分の接着)
 工程1と工程2で得られたリブ部分の材料とプリプレグの板材の両方を、赤外線ヒーターを用いて加熱し、7分後に板材の表面温度が300℃に達してから3分間継続的に加熱し、直ちに金型温度150℃に設定した実施例1と同様の金型に、リブ部分を先に入れ、次いで板材を挿入し、圧縮成形し、射出樹脂組成物のリブ部分と基材部分を接合した。
[Comparative Example 3]
[Step 1] (Create rib part)
Using a mold similar to that of Example 3, a resin composition of polyamide 66 resin [trade name: Leona (registered trademark) 14G50] containing 50% short fibers GF was set at a cylinder set temperature of 290 ° C., an injection pressure of 20 MPa, and an injection speed of 50 mm. Only the rib part of the molded product obtained by injection filling at / sec and applying an injection holding pressure of 20 MPa was cut out.
[Step 2] (Creation of base material part)
In the same process as Comparative Example 1, a prepreg plate material having a size of 250 mm × 250 mm and a thickness of 2.2 mm was formed.
[Step 3] (Adhesion of base material portion and rib portion)
Both the rib part material obtained in step 1 and step 2 and the plate material of the prepreg are heated using an infrared heater, and after 7 minutes, the surface temperature of the plate material reaches 300 ° C. and continuously heated for 3 minutes. The rib part is first put in the same mold as in Example 1 set immediately at a mold temperature of 150 ° C., then the plate material is inserted, compression molding is performed, and the rib part and the base material part of the injection resin composition are joined. did.
[比較例4]
 基材としては、実施例2と同じ布帛を用いた。成形法としては、ガス抜きを行わなかった以外は実施例2と同様の方法を用いた。
[Comparative Example 4]
As the base material, the same fabric as in Example 2 was used. As the molding method, the same method as in Example 2 was used except that the gas was not removed.
 実施例および比較例の突起部の強度を以下の条件により評価した。その結果を表1に示す。
[評価条件]
(引張強度)
 引張強度は、試験片の形状以外は、ISO527-1に準じ以下の条件にて測定した。成形品からのリブ部分または平板部分を長さ80mm、幅20mmで長方形状に切断し、見かけの強度を測定した。
 ここで見かけの強度とは、引張強度算出の際に必要な試験片の断面積を、リブ部分は無視した長方形と仮定して算出した強度であり、リブを含む試験片はリブ部分以外の厚みと幅を測定し、それを断面積として用いて引張強度を算出した。
 ・試験環境:23℃50RH%
 ・引張速度:5mm/min
 ・チャック間:50mm
 ・使用機器:インストロン50kN(インストロン社製)
 図16に、この引張強度の試験の概略を示す。図中500で示すのが上述の試験片である。この試験片500に対して図中矢印で示す方向に引張力が加えられて、引張強度が測定される。
The intensity | strength of the projection part of an Example and a comparative example was evaluated on condition of the following. The results are shown in Table 1.
[Evaluation conditions]
(Tensile strength)
The tensile strength was measured under the following conditions according to ISO 527-1 except for the shape of the test piece. The rib part or flat plate part from the molded product was cut into a rectangular shape with a length of 80 mm and a width of 20 mm, and the apparent strength was measured.
Here, the apparent strength is the strength calculated assuming that the cross-sectional area of the test piece required for calculation of the tensile strength is a rectangle that the rib portion is ignored, and the thickness of the test piece including the rib is other than the rib portion. And the width were measured, and the tensile strength was calculated using this as the cross-sectional area.
・ Test environment: 23 ° C, 50RH%
・ Tensile speed: 5mm / min
・ Chuck interval: 50mm
-Equipment used: Instron 50kN (Instron)
FIG. 16 shows an outline of this tensile strength test. In the figure, reference numeral 500 denotes the above-mentioned test piece. A tensile force is applied to the test piece 500 in the direction indicated by the arrow in the figure, and the tensile strength is measured.
(曲げ剛性)
 曲げ剛性は、試験片の形状以外は、ISO178に準じ以下の条件にて測定した。
成形品からのリブ部分または平板部分を長さ80mm、幅50mmで長方形状に切断し、見かけの弾性率を測定した。
 ここで見かけの弾性率とは、弾性率算出の際に必要な試験片の断面積を、リブ部分は無視した長方形と仮定して算出した強度であり、リブを含む試験片はリブ部分以外の厚みと幅を測定し、それを断面積として用いて弾性率を算出した。
 ・試験環境:23℃50RH%
 ・試験速度:1mm/min
 ・スパン間:32mm
 ・使用機器:インストロン50kN(インストロン社製)
 ・弾性率算出区間:ひずみ0.05%-0.25%
 図17に、この引張強度の試験の概略を示す。図中600で示すのが上述の試験片である。この試験片600に対し、治具601を介して矢印方向に荷重が加えられて、曲げ剛性が測定される。
(Bending rigidity)
The bending stiffness was measured under the following conditions according to ISO 178 except for the shape of the test piece.
The rib part or flat plate part from the molded product was cut into a rectangular shape with a length of 80 mm and a width of 50 mm, and the apparent elastic modulus was measured.
Here, the apparent elastic modulus is the strength calculated by assuming that the cross-sectional area of the test piece necessary for calculating the elastic modulus is a rectangular shape in which the rib portion is ignored, and the test piece including the rib is a portion other than the rib portion. The elastic modulus was calculated by measuring the thickness and width and using the thickness and width as the cross-sectional area.
・ Test environment: 23 ° C, 50RH%
・ Test speed: 1 mm / min
-Between spans: 32mm
-Equipment used: Instron 50kN (Instron)
-Elastic modulus calculation section: Strain 0.05% -0.25%
FIG. 17 shows an outline of this tensile strength test. In the figure, reference numeral 600 denotes the above-described test piece. A load is applied to the test piece 600 in the direction of the arrow through the jig 601, and the bending rigidity is measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 柱の外側の四角柱の底面(a×b)および先端面(a×b)の大きさである。また、円錐台の「底面寸法」とは、図15に示すように、円錐台の底面の直径dbaseと上面の直径dtopである。また、リブの「底面寸法」とは、リブの根元の肉厚Tであり、「天面寸法」とはリブの先端面の肉厚Tである。 Is the magnitude of the bottom surface of the square pillar outer column (a 1 × b 1) and a tip surface (a 2 × b 2). Further, as shown in FIG. 15, the “bottom dimension” of the truncated cone is a diameter d base of the bottom surface of the truncated cone and a diameter d top of the upper surface. Further, the “bottom dimension” of the rib is the thickness T 1 at the base of the rib, and the “top dimension” is the thickness T 3 of the tip surface of the rib.
<連続強化繊維の高さが5%以上である領域の底辺に対する割合>
 デジタルカメラによって得た側面投影画像から連続強化繊維の高さが5%以上である領域の長辺方向の長さを求めた後、リブの場合は、長辺方向の底辺の長さに対する割合を算出し、柱状の場合は、底辺の長さ(全周)に対する割合を算出した。
<Ratio to the base of the region where the height of the continuous reinforcing fiber is 5% or more>
After obtaining the length in the long side direction of the region where the height of the continuous reinforcing fiber is 5% or more from the side projection image obtained by the digital camera, in the case of the rib, the ratio to the length of the bottom side in the long side direction is In the case of a columnar shape, the ratio to the length of the base (entire circumference) was calculated.
<外観>
 以下の評価基準により、外観を評価した。
 A:ショート部分が全く無く、設計通りの成形品が得られた。
 B:ショート部分が発生した。
<Appearance>
The appearance was evaluated according to the following evaluation criteria.
A: There was no short part at all, and a molded product as designed was obtained.
B: A short part occurred.
 表1に示すように、実施例1、2、3および4は、いずれの突起部においても、連続強化繊維の高さの平均値が5%以上であり、ショート部分が無く外観は良好であった。また、突起部中の連続強化繊維の高さが突起部の高さの5%以上である領域も、突起部の底辺の20%以上であった。さらに、突起部中の連続強化繊維が、基板部の連続強化繊維と連続している領域の底辺に対する領域も20%以上であった。
 一方、プリプレグを用いてガス抜きも押し込みも行わなかった比較例2、および布帛を用いてガス抜きも押し込みも行わなかった比較例4はショート部分が発生した。
As shown in Table 1, in Examples 1, 2, 3 and 4, the average value of the height of the continuous reinforcing fibers was 5% or more in any of the protrusions, and there was no short portion and the appearance was good. It was. Moreover, the area | region where the height of the continuous reinforcement fiber in a projection part is 5% or more of the height of a projection part was also 20% or more of the base of the projection part. Furthermore, the area | region with respect to the base of the area | region where the continuous reinforcement fiber in a projection part is continuing with the continuous reinforcement fiber of a board | substrate part was also 20% or more.
On the other hand, a short part occurred in Comparative Example 2 in which neither degassing nor pushing was performed using the prepreg and in Comparative Example 4 where neither degassing nor pushing was performed using the fabric.
 本発明によれば、各種機械や自動車等の構造部品等、高レベルでの機械的物性が要求される熱可塑性樹脂繊維複合成形品を提供することができる。
 本発明のさらに別の圧縮成形法によれば、複雑形状を有し、高レベルでの機械的物性を有する成形品が得られるため、これらの成形品は各種機械や自動車等の構造部品等更に電子機器、OA・家電部品の構造部材や筐体などにも用いることができる。
 使用できる自動車部品例としては、下記の部品やその一部が考えられる。
具体的には、ステアリング軸、マウント、サンルーフ、ステップ、スーフトリム、ドアトリム、トランク、ブートリッド、ボンネット、シートフレーム、シートバック、リトラクター、リタラクター支持ブラケット、クラッチ、ギア、プーリー、カム、アーゲー、弾性ビーム、バッフリング、ランプ、リフレクタ、グレージング、フロントエンドモジュール、バックドアインナー、ブレーキペダル、ハンドル、電装材、吸音材、ドア外装、内装パネル、インパネ、リアゲート、天井ハリ、シート、シート枠組み、ワイパー支柱、EPS(Electric Power Steering)、小型モーター、ヒートシンク、ECU(Engine Control Unit)ボックス、ECUハウジング、ステアリングギアボックスハウジング、プラスチックハウジング、EV(Electric Vehicle)モーター用筐体、ワイヤーハーネス、車載メーター、コンビネーションスイッチ、小型モーター、スプリング、ダンパー、ホイール、ホイールカバー、フレーム、サブフレーム、サイドフレーム、二輪フレーム、燃料タンク、オイルパン、インマニ、プロペラシャフト、駆動用モーター、モノコック、水素タンク、燃料電池の電極、パネル、フロアパネル、外板パネル、ドア、キャビン、ルーフ、フード、バルブ、EGR(Exhaust Gas Recirculation)バルブ、可変バルブタイミングユニット、コネクティングロッド、シリンダボア、メンバー(エンジンマウンティング、フロントフロアクロス、フットウェルクロス、シートクロス、インナーサイド、リヤクロス、サスペンション、ピラーリーンフォース、フロントサイド、フロントパネル、アッパー、ダッシュパネルクロス、ステアリング)、トンネル、締結インサート、クラッシュボックス、クラッシュレール、コルゲート、ルーフレール、アッパボディ、サイドレール、ブレーディング、ドアサラウンドアッセンブリー、エアバッグ用部材、ボディーピラー、ダッシュツゥピラーガセット、サスペンジョンタワー、バンパー、ボディーピラーロワー、フロントボディーピラー、レインフォースメント(インパネ、レール、ルーフ、フロントボディーピラー、ルーフレール、ルーフサイドレール、ロッカー、ドアベルトライン、フロントフロアアンダー、フロントボディーピラーアッパー、フロントボディーピラーロワー、センターピラー、センターピラーヒンジ、ドアアウトサイドパネル、)、サイドアウターパネル、フロントドアウインドゥフレーム、MICS(Minimum Intrusion Cabin System)バルク、トルクボックス、ラジエーターサポート、ラジエーターファン、ウォーターポンプ、燃料ポンプ、電子制御スロットルボディ、エンジン制御ECU、スターター、オルタネーター、マニホールド、トランスミッション、クラッチ、ダッシュパネル、ダッシュパネルインシュレータパッド、ドアサイドインパクトプロテクションビーム、バンパービーム、ドアビーム、バルクヘッド、アウタパッド、インナパッド、リヤシートロッド、ドアパネル、ドアトリムボドサブアッセンブリー、エネルギーアブソーバー(バンパー、衝撃吸収)、衝撃吸収体、衝撃吸収ガーニッシュ、ピラーガーニッシュ、ルーフサイドインナーガーニッシュ、クラッシュボックス、樹脂リブ、サイドレールフロントスペーサー、サイドレールリアスペーサー、シートベルトプリテンショナー、エアバッグセンサー、アーム(サスペンション、ロアー、フードヒンジ)、サスペンションリンク、衝撃吸収ブラケット、フェンダーブラケット、インバーターブラケット、インバーターモジュール、フードインナーパネル、フードパネル、カウルルーバー、カウルトップアウターフロントパネル、カウルトップアウターパネル、フロアサイレンサー、ダンプシート、フードインシュレーター、フェンダーサイドパネルプロテクター、カウルインシュレーター、カウルトップベンチレータールーパー、シリンダーヘッドカバー、タイヤディフレクター、フェンダーサポート、ストラットタワーバー、ミッションセンタートンネル、フロアトンネル、ラジコアサポート、ラゲッジパネル、ラゲッジフロア等である。
According to the present invention, it is possible to provide a thermoplastic resin fiber composite molded article that requires high-level mechanical properties, such as various machines and structural parts such as automobiles.
According to still another compression molding method of the present invention, a molded product having a complicated shape and having a high level of mechanical properties can be obtained. It can also be used for electronic devices, structural members and housings of OA / home appliance parts.
Examples of automobile parts that can be used include the following parts and parts thereof.
Specifically, steering shaft, mount, sunroof, step, soof trim, door trim, trunk, boot lid, bonnet, seat frame, seat back, retractor, retractor support bracket, clutch, gear, pulley, cam, AG, elastic beam , Buffing, lamp, reflector, glazing, front end module, back door inner, brake pedal, handle, electrical component, sound absorbing material, door exterior, interior panel, instrument panel, rear gate, ceiling tension, seat, seat frame, wiper support, EPS (Electric Power Steering), small motor, heat sink, ECU (Engine Control Unit) box, ECU housing, steering gear box housing, plastic housing, EV (Electric Vehicle) motor Housing, wire harness, in-vehicle meter, combination switch, small motor, spring, damper, wheel, wheel cover, frame, subframe, side frame, two-wheel frame, fuel tank, oil pan, intake manifold, propeller shaft, drive motor , Monocoque, hydrogen tank, fuel cell electrode, panel, floor panel, outer panel, door, cabin, roof, hood, valve, EGR (Exhaust Gas Recirculation) valve, variable valve timing unit, connecting rod, cylinder bore, member ( Engine mounting, front floor cross, footwell cross, seat cross, inner side, rear cross, suspension, pillar lean force, front side, front panel, upper, duck (Stepanel Cross, Steering), Tunnel, Fastening Insert, Crash Box, Crash Rail, Corrugated, Roof Rail, Upper Body, Side Rail, Braiding, Door Surround Assembly, Airbag Components, Body Pillar, Dash Tupillar Gusset, Suspension Tower , Bumper, body pillar lower, front body pillar, reinforcement (instrument panel, rail, roof, front body pillar, roof rail, roof side rail, rocker, door belt line, front floor under, front body pillar upper, front body pillar lower , Center pillar, center pillar hinge, door outside panel,), side outer panel, front door window Frame, MICS (Minimum Intrusion Cabin System) bulk, torque box, radiator support, radiator fan, water pump, fuel pump, electronically controlled throttle body, engine control ECU, starter, alternator, manifold, transmission, clutch, dash panel, dash panel Insulator pad, door side impact protection beam, bumper beam, door beam, bulkhead, outer pad, inner pad, rear seat rod, door panel, door trim body subassembly, energy absorber (bumper, shock absorption), shock absorber, shock absorption garnish, pillar Garnish, roof side inner garnish, crash box, resin rib, side rail flow Spacer, side rail rear spacer, seat belt pretensioner, airbag sensor, arm (suspension, lower, hood hinge), suspension link, shock absorbing bracket, fender bracket, inverter bracket, inverter module, hood inner panel, hood panel, Cowl louver, cowl top outer front panel, cowl top outer panel, floor silencer, dump seat, hood insulator, fender side panel protector, cowl insulator, cowl top ventilator looper, cylinder head cover, tire deflector, fender support, strut tower bar, mission Center tunnel, floor tunnel, radio core support , Luggage panels, luggage floors, etc.
 100,200 金型
 10,20,201  金型部分
 11,21,310,320  第一部分
 12,22  第二部分
 13,23,313,323  第一の温度調節手段(冷却媒体通路)
 14,24  第二の温度調節手段(棒状カートリッジヒーター)
 15,25  断熱板
 16,26  キャビティ面とは反対側の面
 30  キャビティ
 31,32  キャビティ面
 33  経路
 40  ばね
 50  シール用パッキング
 60  真空ライン
 70  布帛
 71,78,400,440  成形品
 72  ハイブリッド成形品
 77  プリプレグ
 80  射出成形機
 90  ランナー部
 L0  キャビティ面から第一の温度調節手段までの距離
 L1  キャビティ面からキャビティ面とは反対側の面までの距離
 L2  第一の温度調節手段から第二の温度調節手段までの距離
 V0  金型部分の体積
 V(I)  第一部分の体積
 V(II)  第二部分の体積
 170  連続強化繊維
 401,402  穴
 403,405,407,  リブ
 409,410  ボス
 411,412  円錐台
 413  四角錐
 414,415  四角柱
 420  基板部
 420a  基板部の表面
 h  突起部の高さ
 h  連続強化繊維の高さ
 L  リブの長辺方向の底辺の長さ
 L  底辺の長さ
 L  連続強化繊維の高さが突起部の高さの5%以上である領域の長さ
 L  突起部中の連続強化繊維が基板部の連続強化繊維と連続している領域の長さ
 T  突起部の根元の肉厚
 T  基板部の肉厚
 T  突起部の先端面の肉厚
100, 200 Mold 10, 20, 201 Mold part 11, 21, 310, 320 First part 12, 22 Second part 13, 23, 313, 323 First temperature adjusting means (cooling medium passage)
14, 24 Second temperature adjusting means (bar-shaped cartridge heater)
15, 25 Insulating plate 16, 26 Surface opposite to the cavity surface 30 Cavity 31, 32 Cavity surface 33 Path 40 Spring 50 Seal packing 60 Vacuum line 70 Fabric 71, 78, 400, 440 Molded product 72 Hybrid molded product 77 Prepreg 80 Injection molding machine 90 Runner part L0 Distance from cavity surface to first temperature adjusting means L1 Distance from cavity surface to surface opposite to cavity surface L2 First temperature adjusting means to second temperature adjusting means Distance V0 Volume of mold part V (I) Volume of first part V (II) Volume of second part 170 Continuous reinforcing fibers 401, 402 Holes 403, 405, 407, Ribs 409, 410 Boss 411, 412 Frustum 413 Square pyramid 414, 415 Square prism 420 Substrate part 4 The height h f height L r length L a height of continuous reinforcing fibers of length L bottom of the base of the wide side direction height of the projections of the ribs of the continuous reinforcing fiber surface h protrusions 0a substrate portion 5% or more in a region length L b continuous reinforcing fibers in the protrusions of the base of the wall thickness T 2 substrate portion of the length T 1 protrusion area that is continuous with continuous reinforcing fiber substrate portion meat Thickness T 3 Thickness of tip surface of protrusion

Claims (16)

  1.  連続強化繊維と熱可塑性樹脂とからなる連続繊維強化熱可塑性樹脂複合材料を含む成形品であって、
     該成形品が、基板部と突起部とを有し、
     該突起部中および前記基板部中に前記連続強化繊維が存在し、
     該突起部中の該連続強化繊維の高さの平均値が該突起部の高さの5%以上である成形品。
    A molded article comprising a continuous fiber reinforced thermoplastic resin composite material consisting of continuous reinforced fibers and a thermoplastic resin,
    The molded product has a substrate portion and a protrusion,
    The continuous reinforcing fiber is present in the protrusion and in the substrate;
    A molded product in which the average value of the height of the continuous reinforcing fibers in the protrusion is 5% or more of the height of the protrusion.
  2.  前記突起部中の前記連続強化繊維の高さが前記突起部の高さの5%以上である領域が、前記突起部の底辺の20%以上である請求項1記載の成形品。 The molded product according to claim 1, wherein the region in which the height of the continuous reinforcing fiber in the protrusion is 5% or more of the height of the protrusion is 20% or more of the bottom of the protrusion.
  3.  前記突起部中の前記連続強化繊維が、前記基板部中の前記連続強化繊維と連続している請求項1または2記載の成形品。 The molded article according to claim 1 or 2, wherein the continuous reinforcing fiber in the protrusion is continuous with the continuous reinforcing fiber in the substrate.
  4.  前記突起部の底辺において、前記基板部と連続している前記突起部中の前記連続強化繊維の占める領域が、該底辺の20%以上である請求項3記載の成形品。 The molded article according to claim 3, wherein a region occupied by the continuous reinforcing fibers in the protrusion continuous with the substrate portion in the bottom of the protrusion is 20% or more of the bottom.
  5.  前記突起部の高さが前記基板部の肉厚より大きく、かつ前記連続強化繊維の高さの平均値が前記基板部の肉厚以上である請求項1から4いずれか1項記載の成形品。 The molded article according to any one of claims 1 to 4, wherein a height of the protruding portion is larger than a thickness of the substrate portion, and an average height of the continuous reinforcing fibers is equal to or greater than a thickness of the substrate portion. .
  6.  前記突起部の高さが前記基板部の肉厚の3倍以上である請求項5記載の成形品。 The molded product according to claim 5, wherein the height of the protrusion is at least three times the thickness of the substrate.
  7.  前記突起物中の樹脂と基板部の樹脂が同一である請求項1から6いずれか1項記載の成形品。 The molded article according to any one of claims 1 to 6, wherein the resin in the projection and the resin in the substrate portion are the same.
  8.  前記突起物の高さを100%としたときの上部10%の高さの連続繊維の密度Vfが10%以下であることを特徴とする請求項1から7いずれか1項記載の成形品。 The molded article according to any one of claims 1 to 7, wherein a density Vf of a continuous fiber having a height of 10% at the top when the height of the protrusion is 100% is 10% or less.
  9.  前記突起物の高さを100%としたときの下部10%の高さの連続繊維の密度Vfが30%以上であることを特徴とする請求項1から8いずれか1項記載の成形品。 The molded article according to any one of claims 1 to 8, wherein a density Vf of a continuous fiber having a height of 10% at a lower portion when the height of the protrusion is 100% is 30% or more.
  10.  前記突起部の高さが前記基板部の肉厚の2倍以上であり、かつ前記突起部の根元の肉厚が前記基板部の肉厚以下である請求項1から9いずれか1項記載の成形品。 10. The height of the protruding portion is not less than twice the thickness of the substrate portion, and the thickness of the base of the protruding portion is not more than the thickness of the substrate portion. Molding.
  11.  前記突起部の高さが、前記基板部の肉厚の3倍以上である請求項10記載の成形品。 The molded product according to claim 10, wherein the height of the protrusion is at least three times the thickness of the substrate.
  12.  連続強化繊維と熱可塑性樹脂とからなる連続繊維強化熱可塑性樹脂複合材料を、圧縮成形して、基板部と突起部とを有する成形品を得る圧縮成形法であって、
     前記連続繊維強化熱可塑性樹脂複合材料を、金型に挿入し、圧縮しながら前記金型を前記熱可塑性樹脂のガラス転移温度以上または融点以上に加熱して賦型し、次いで、前記金型を前記熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下に冷却して前記熱可塑性樹脂を固化する圧縮成形工程と、
     該圧縮成形工程中、前記連続繊維強化熱可塑性樹脂複合材料から発生した前記金型内のガス成分を、前記金型外に放出する工程と、を備える圧縮成形法。
    A compression molding method in which a continuous fiber reinforced thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression molded to obtain a molded product having a substrate portion and a protrusion,
    The continuous fiber reinforced thermoplastic resin composite material is inserted into a mold, and while being compressed, the mold is molded by heating above the glass transition temperature or melting point of the thermoplastic resin, and then molding the mold. A compression molding step of solidifying the thermoplastic resin by cooling to a glass transition temperature of −10 ° C. or lower or a melting point of −10 ° C. or lower of the thermoplastic resin;
    A step of releasing a gas component in the mold generated from the continuous fiber reinforced thermoplastic resin composite material out of the mold during the compression molding process.
  13.  連続強化繊維と熱可塑性樹脂とからなる熱可塑性樹脂複合材料を、圧縮成形して、基板部と突起部とを有する成形品を得る圧縮成形法であって、
     前記連続繊維強化熱可塑性樹脂複合材料を金型に挿入する際に、該連続繊維強化熱可塑性樹脂複合材料の少なくとも一部を前記金型の前記突起部に対応する凹部に挿入し、圧縮しながら前記金型を前記熱可塑性樹脂のガラス転移温度以上または融点以上に加熱して賦型し、次いで、前記金型を前記熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下に冷却して前記熱可塑性樹脂を固化する圧縮成形法。
    A compression molding method in which a thermoplastic resin composite material composed of continuous reinforcing fibers and a thermoplastic resin is compression molded to obtain a molded product having a substrate portion and a protrusion,
    When inserting the continuous fiber reinforced thermoplastic resin composite material into a mold, while inserting and compressing at least a part of the continuous fiber reinforced thermoplastic resin composite material into the concave portion corresponding to the protruding portion of the mold The mold is molded by heating to a temperature above the glass transition temperature or the melting point of the thermoplastic resin, and then the mold is cooled to a glass transition temperature of −10 ° C. or lower or a melting point −10 ° C. or lower of the thermoplastic resin. A compression molding method for solidifying the thermoplastic resin.
  14.  連続強化繊維と熱可塑性樹脂とからなるプリプレグを、圧縮成形して基板部および突起部を有する成形品を得る圧縮成形法であって、
     前記プリプレグを前記熱可塑性樹脂のガラス転移温度以上または融点以上に予備加熱して軟化させ、
     該軟化したプリプレグを金型に挿入し、
     前記金型を前記熱可塑性樹脂のガラス転移温度-80℃以上または融点-80℃以上に加熱して、前記プリプレグを賦型し、次いで、前記金型を前記熱可塑性樹脂のガラス転移温度-10℃以下または融点-10℃以下に冷却して前記熱可塑性樹脂を固化する圧縮成形法。
    A compression molding method in which a prepreg composed of continuous reinforcing fibers and a thermoplastic resin is compression molded to obtain a molded product having a substrate portion and a protrusion,
    The prepreg is softened by preheating above the glass transition temperature or melting point of the thermoplastic resin,
    Insert the softened prepreg into a mold,
    The mold is heated to a glass transition temperature of the thermoplastic resin of −80 ° C. or higher or a melting point of −80 ° C. or higher to mold the prepreg, and then the mold is transferred to a glass transition temperature of the thermoplastic resin of −10. A compression molding method in which the thermoplastic resin is solidified by cooling to a temperature of ℃ or lower or a melting point of -10 ℃ or lower.
  15.  前記成形品の前記突起部の高さが、該成形品の前記基板部の肉厚の2倍以上であり、かつ、前記突起部の根元の肉厚が前記基板部の肉厚以下である請求項10記載の圧縮成形法。 The height of the protruding portion of the molded product is twice or more the thickness of the substrate portion of the molded product, and the thickness of the base of the protruding portion is equal to or less than the thickness of the substrate portion. Item 11. The compression molding method according to Item 10.
  16.  前記連続繊維強化熱可塑性樹脂複合材料として、該複合材料の少なくとも一部の切断面における熱可塑性樹脂の少なくとも1部が溶融固化してなり、該溶融固化している熱可塑性樹脂の分子量が前記熱可塑性樹脂の分子量の20%以上である複合材料を用いる請求項12または13記載の圧縮成形法。 As the continuous fiber reinforced thermoplastic resin composite material, at least a part of the thermoplastic resin at the cut surface of at least a part of the composite material is melt-solidified, and the molecular weight of the thermoplastic resin melted and solidified is the heat The compression molding method according to claim 12 or 13, wherein a composite material having a molecular weight of 20% or more of the plastic resin is used.
PCT/JP2017/037346 2016-11-11 2017-10-16 Molded article, and compression molding method WO2018088135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197003964A KR20190028487A (en) 2016-11-11 2017-10-16 Molded product and compression molding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-220689 2016-11-11
JP2016220689 2016-11-11
JP2016221409 2016-11-14
JP2016-221409 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088135A1 true WO2018088135A1 (en) 2018-05-17

Family

ID=62110675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037346 WO2018088135A1 (en) 2016-11-11 2017-10-16 Molded article, and compression molding method

Country Status (3)

Country Link
KR (1) KR20190028487A (en)
TW (1) TW201819159A (en)
WO (1) WO2018088135A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057317A (en) * 2018-11-16 2020-05-26 한국생산기술연구원 Compression mold model for laminated flat plate of fiber reinforced composite material
WO2023227803A1 (en) * 2022-05-27 2023-11-30 Inertim Research S.L. Processes for manufacturing load-bearing structures for vehicle doors
WO2023249586A1 (en) * 2022-06-24 2023-12-28 Ditas Dogan Yedek Parca Imalat Ve Teknik A.S. A torque rod with reduced weight and improved thermal conductivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426891B (en) * 2019-11-19 2022-08-12 杭州大和热磁电子有限公司 Cooling and heating device for electronic equipment test and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143542A (en) * 1984-08-06 1986-03-03 Mazda Motor Corp Manufacture of frp parts
JP2003094495A (en) * 2001-09-20 2003-04-03 Asahi Kasei Corp Method for producing precision molding made of thermoplastic resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372996B2 (en) 2013-11-20 2018-08-15 旭化成株式会社 Method for manufacturing composite material molded body
JP6567255B2 (en) 2014-05-30 2019-08-28 東洋紡株式会社 Fiber reinforced thermoplastic resin molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143542A (en) * 1984-08-06 1986-03-03 Mazda Motor Corp Manufacture of frp parts
JP2003094495A (en) * 2001-09-20 2003-04-03 Asahi Kasei Corp Method for producing precision molding made of thermoplastic resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057317A (en) * 2018-11-16 2020-05-26 한국생산기술연구원 Compression mold model for laminated flat plate of fiber reinforced composite material
KR102143863B1 (en) * 2018-11-16 2020-08-12 한국생산기술연구원 Compression mold model for laminated flat plate of fiber reinforced composite material
WO2023227803A1 (en) * 2022-05-27 2023-11-30 Inertim Research S.L. Processes for manufacturing load-bearing structures for vehicle doors
WO2023249586A1 (en) * 2022-06-24 2023-12-28 Ditas Dogan Yedek Parca Imalat Ve Teknik A.S. A torque rod with reduced weight and improved thermal conductivity

Also Published As

Publication number Publication date
KR20190028487A (en) 2019-03-18
TW201819159A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
US20230192197A1 (en) Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool
WO2018088135A1 (en) Molded article, and compression molding method
EP2763831B1 (en) Compression overmolding process and device therefor
JP2013502332A (en) Injection molding method for manufacturing components
US9950749B2 (en) Hybrid composite instrument panel
US9688005B2 (en) Method of making a hybrid composite instrument panel
US11072098B2 (en) Method for manufacturing composite structure and method for manufacturing integrated composite structure
US10414445B2 (en) Hybrid component for a vehicle
WO2017062809A1 (en) Overmolded carbon fiber structures with tailored void content and uses thereof
JPWO2019188873A1 (en) Manufacturing method of press molded products
JP2009096401A (en) Vehicle body undercover
WO2008095845A1 (en) Lightweight component in hybrid construction
JP7293015B2 (en) CONTINUOUS FIBER REINFORCED RESIN COMPOSITE MATERIAL AND PRODUCTION METHOD THEREOF
JP7017917B2 (en) Injection insert molding method
JP2020019897A (en) Manufacturing method of continuous fiber reinforced resin molded body, manufacturing device, and intermediate substrate
JP7286264B2 (en) Cloth, its manufacturing method and continuous fiber reinforced resin composite
JP7370200B2 (en) Fiber-reinforced resin composite and method for producing fiber-reinforced resin composite
JP7028654B2 (en) Press molding method
JP6991766B2 (en) Continuous fiber non-woven fabric, reinforced fiber base material for composite materials and their molded bodies and manufacturing method
CN106143157B (en) Hybrid composite material using gas-assisted molding geometry
JP2019104137A (en) An injection molded article
JP7469147B2 (en) Composite and manufacturing method thereof
TWI803846B (en) Continuous fiber reinforced resin composite material and manufacturing method thereof, and continuous fiber reinforced resin molded product
KR20170111518A (en) Manufacturing method for vehicle interior parts
Tochioka Development of Integrated Functions Module Carriers by Injection Molding with Long Glass Fiber Reinforced Polypropylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003964

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP