WO2018088051A1 - Antenna device for in-vehicle mobile station, and in-vehicle mobile station - Google Patents

Antenna device for in-vehicle mobile station, and in-vehicle mobile station Download PDF

Info

Publication number
WO2018088051A1
WO2018088051A1 PCT/JP2017/035017 JP2017035017W WO2018088051A1 WO 2018088051 A1 WO2018088051 A1 WO 2018088051A1 JP 2017035017 W JP2017035017 W JP 2017035017W WO 2018088051 A1 WO2018088051 A1 WO 2018088051A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna elements
mobile station
vehicle
antenna device
Prior art date
Application number
PCT/JP2017/035017
Other languages
French (fr)
Japanese (ja)
Inventor
麗 岳
竜宏 志村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018550060A priority Critical patent/JP6988816B2/en
Publication of WO2018088051A1 publication Critical patent/WO2018088051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to an on-vehicle mobile station antenna device and an on-vehicle mobile station.
  • This application claims priority based on Japanese Patent Application No. 2016-221380 filed on Nov. 14, 2016, and incorporates all the description content described in the above Japanese application.
  • Patent Document 1 discloses beam forming by a base station.
  • the antenna device for an in-vehicle mobile station that communicates with a mobile communication base station.
  • the antenna device includes a base attached to a vehicle and a plurality of first antenna elements supported by the base.
  • the plurality of first antenna elements are arranged circumferentially at equal intervals on a horizontal plane.
  • the horizontal plane does not have to physically exist in the antenna device, and may be a horizontal plane that is virtually conceived.
  • Each of the plurality of antenna elements has directivity directed outward in the radial direction of the circumference.
  • the cylindrical arrangement of the antenna elements suffices if a part of each antenna element (preferably the center in the horizontal direction of the antenna) is located on the virtual circumference, and the entire antenna element is on the virtual circumference. There is no need to be located. Therefore, the base for indicating the antenna element does not have to be circular, and may be polygonal.
  • FIG. 1 is a diagram showing a vehicle equipped with an in-vehicle mobile station.
  • FIG. 2A is a plan view of the antenna device.
  • FIG. 2B is a side view of the antenna device.
  • FIG. 3 is a circuit diagram of the antenna device.
  • FIG. 4A is an explanatory diagram of antenna element switching.
  • FIG. 4B is an explanatory diagram of antenna element switching.
  • FIG. 5A is an explanatory diagram of antenna element switching based on operation direction estimation.
  • FIG. 5B is an explanatory diagram of antenna element switching based on operation direction estimation.
  • FIG. 5C is an explanatory diagram of antenna element switching based on operation direction estimation.
  • FIG. 6 is a diagram illustrating a modification of the antenna device.
  • FIG. 7 is a diagram illustrating a modification of the antenna device.
  • FIG. 8 is a diagram illustrating a modification of the antenna device.
  • FIG. 9 is a diagram illustrating a modification of the antenna device.
  • FIG. 10 is an explanatory diagram of transmission path calibration.
  • FIG. 11 is an explanatory diagram of reception path calibration.
  • FIG. 12A is a configuration diagram of an antenna device according to the second embodiment.
  • FIG. 12B is a plan view of the antenna device according to the second embodiment.
  • FIG. 12C is a side view of the antenna device according to the second embodiment.
  • the relative positional relationship between a mobile station and a base station continues to fluctuate.
  • the relative change in the horizontal plane is severe.
  • This disclosure relates to a novel structure for accommodating all directions of a horizontal plane in an antenna device in an in-vehicle mobile station, not an antenna of a mobile station carried by a person such as a mobile phone and a smartphone.
  • an in-vehicle mobile station antenna device communicating with a mobile communication base station includes a base attached to a vehicle, a plurality of first antenna elements supported by the base, The plurality of first antenna elements are arranged circumferentially at equal intervals on a horizontal plane, and each has directivity directed outward in the radial direction of the circumference.
  • the plurality of first antenna elements are arranged so that beams can be directed in all horizontal directions. In this case, more stable communication with the base station is possible regardless of the direction of the base station in the horizontal plane.
  • the antenna element to be used can be switched.
  • a control unit is further provided for executing a switching process for switching the first antenna element selected as the used antenna element.
  • the antenna to be used can be switched according to the movement of the mobile station.
  • the number of used antenna elements and the circumferential interval after switching are the same as the number of used antenna elements and the circumferential interval before switching. In this case, variation in antenna gain due to switching can be prevented.
  • At least one of the plurality of used antenna elements after switching is preferably included in the plurality of used antenna elements before switching. In this case, the direction of the beam can be changed finely.
  • the switching process calculates a relative operation direction between the on-vehicle mobile station antenna device and the mobile communication base station, and is selected as the antenna element to be used based on the relative operation direction. It is preferable to include switching. In this case, switching can be easily performed based on the relative operation direction. Also, it is not necessary to perform beam sweep in all directions.
  • a plurality of calibration antenna elements for antenna calibration of each first antenna element.
  • the number of the plurality of calibration antenna elements is the same as the number of the plurality of first antenna elements, and the plurality of calibration antenna elements are positioned differently in the vertical direction from the plurality of first antenna elements. Are arranged at equal intervals in the circumferential direction on the horizontal plane, and their respective circumferential positions coincide with the circumferential position of any one of the first antenna elements.
  • a plurality of second antenna elements equal in number to the plurality of first antenna elements are further provided, and the plurality of second antenna elements are arranged at positions different from each other in the vertical direction from the plurality of first antenna elements.
  • the plurality of second antenna elements may be disposed below the plurality of first antenna elements, and may be disposed radially outward of the circumference from the plurality of first antenna elements. . In this case, an obliquely inclined arrangement is obtained.
  • the plurality of first antenna elements and the plurality of second antenna elements each have directivity directed radially outward and obliquely upward of the circumference. In this case, directivity in an obliquely upward direction can be obtained.
  • the plurality of first antenna elements and the plurality of second antenna elements preferably form a non-directional beam on a horizontal plane. In this case, stable communication is possible regardless of the direction of the base station.
  • the tilt angle control of the beam is performed by array synthesis of the plurality of first antenna elements and the plurality of second antenna elements. In this case, tilt angle control according to the relative height position of the base station can be performed.
  • the in-vehicle mobile station may include the in-vehicle mobile station antenna device according to any one of (1) to (13).
  • FIG. 1 shows a vehicle 20 on which an in-vehicle mobile station 10 is mounted.
  • the in-vehicle mobile station 10 communicates with the mobile communication base station 30.
  • the base station 30 is installed at a relatively high place such as a rooftop of a building or a steel tower, and communicates with a mobile station on the ground.
  • the mobile communication is preferably communication using millimeter waves or quasi-millimeter waves in order to realize high-speed communication.
  • Mobile communication using millimeter waves or quasi-millimeter waves is, for example, a fifth generation mobile network (5G).
  • 5G fifth generation mobile network
  • beam forming is performed to compensate for propagation loss.
  • the directivity can be directed in a specific direction and the gain can be improved.
  • beam forming is performed not only by the base station 30 but also by the mobile station 10 and enables high-speed communication.
  • the in-vehicle mobile station 10 has an array antenna having a plurality of antenna elements, which will be described later.
  • the vehicle 20 is a vehicle in transportation such as a bus or train.
  • the in-vehicle mobile station 10 according to the embodiment is connected to the wireless LAN wireless unit 40.
  • the wireless LAN wireless unit 40 is a wireless LAN access point, and provides a wireless LAN service to the wireless LAN terminal 50 in the vehicle.
  • the in-vehicle wireless LAN terminal 50 is, for example, a mobile phone, a smartphone, a tablet, or a laptop computer that a passenger of the vehicle 20 has.
  • the terminal 50 of the passenger can be connected to the Internet via a wireless LAN and a mobile communication network.
  • the in-vehicle mobile station 10 includes an antenna device 100 for communicating with the base station 30.
  • FIG. 2 shows an example of the antenna device 100.
  • the antenna device 100 shown in FIG. 2 is preferably installed outside the vehicle 20 for communication with the base station 30 outside the vehicle 20.
  • the antenna device 100 can be disposed so as to protrude upward from the ceiling 20a of the vehicle 20 as shown in FIGS.
  • the XY plane in FIG. 2 is a horizontal plane
  • the Z direction indicates a vertical direction.
  • the ceiling 20a of the vehicle 20 is horizontal.
  • the horizontal means the horizontal in a state where the vehicle 20 stands upright on a horizontal surface. Therefore, for example, when the vehicle 20 stands upright on a horizontal surface and the ceiling 20a of the vehicle 20 is horizontal, the ceiling 20a is treated as a horizontal surface regardless of the posture of the vehicle. In other words, regarding the horizontal, it is not considered when the vehicle 20 is on an inclined surface or when the vehicle is inclined due to curve driving or the like.
  • the antenna device 100 has a base 110.
  • the base 110 shown in FIG. 2 has an attachment portion 111 that is attached to the vehicle.
  • the attachment part 111 is a plate-like member, for example, and is attached to the ceiling 20a of the vehicle 20, for example.
  • the attachment portion 111 is attached to the vehicle 20 by, for example, a fastener such as a bolt, an adhesive, or welding.
  • the base 110 includes a support 112 for the antenna element 120.
  • the antenna element 120 is a patch antenna element. Since the patch antenna element is formed on the surface of the dielectric substrate, the dielectric substrate is also the support 112 for the antenna element.
  • a flexible printed wiring board can be used as the dielectric.
  • the support 112 and the antenna element 120 are exposed, but are preferably covered and protected by a radome (not shown).
  • the support 112 is formed in a cylindrical shape in order to obtain a circumferential arrangement of the plurality of antenna elements 120.
  • the support 112 may have a cylindrical shape or a polygonal cylindrical shape (n-square cylindrical shape, where n is an integer of 3 or more). Since the polygon approximates a circle, the circumferential arrangement of the antenna elements 120 can be obtained even with the polygonal cylindrical support 112.
  • each antenna element 120 preferably the center in the horizontal direction of the antenna
  • the entire antenna element 120 is virtual. It is not necessary to be located on a certain circumference. If the support is cylindrical, an arrangement in which the entire antenna element 120 is located on a virtual circumference can be easily obtained.
  • n is not particularly limited, but n is preferably 6 or more, more preferably 12 or more, and further preferably 24 or more. The larger n is, the easier it is to handle in all horizontal plane directions.
  • the lower part of the support body 112 is connected to the mounting part 111.
  • the support body 112 is attached to the horizontal attachment portion 111 so that the cylinder axis 200 is oriented in the vertical direction (Z direction). Therefore, 32 (n) side surfaces 201 of the polygonal cylindrical support 112 are vertical surfaces.
  • a plurality of antenna elements 120 are formed on the side surface 201 (outer surface; antenna element support surface) of the support body 112.
  • the antenna element 120 is advantageously a planar antenna element, for example, in order to reduce the size of the antenna device 100.
  • a patch antenna element is employed as the planar antenna element.
  • the antenna element 120 is formed on each of the 32 (n) side surfaces 201 of the support 112. Therefore, as shown in FIG. 2A, 32 (n) antenna elements 120 are circumferentially arranged on the support 112 in the horizontal plane (XY plane). In FIG. 2A, 32 antenna elements 120 in the circumferential direction are arranged at equal intervals over the entire circumference (360 °). In FIG. 2A, the circumferential angle ⁇ between any two antenna elements 120, 120 adjacent in the circumferential direction is 11.25 °.
  • a plurality of antenna elements 120 are arranged in the vertical direction on each of the 32 side surfaces 201 of the support 112.
  • four stages of antenna elements 120 are arranged in the vertical direction.
  • the number and arrangement of the antenna elements 120 in each stage are the same, and are circumferentially spaced.
  • a total of 128 antenna elements 120 (32 ⁇ 4 stages) are formed on the support 112.
  • the circumferential positions of the antenna elements 120 at each stage are also aligned.
  • Each antenna element 120 has the same shape and the same antenna gain.
  • each of the 32 antenna elements 120 arranged in the uppermost stage of FIG. 2B is referred to as a “first antenna element 120a”, and a set of 32 first antenna elements 120a is referred to as a first antenna element group 130a.
  • Each of the 32 antenna elements 120 arranged immediately below the first antenna element 120a (second stage from the top) is referred to as a “second antenna element 120b”, and a set of 32 second antenna elements 120b is a second antenna. This is referred to as an element group 130b.
  • Each of the 32 antenna elements 120 arranged immediately below the second antenna element 120b (third stage from the top) is referred to as a “third antenna element 120c”, and a set of 32 third antenna elements 120b is a third antenna.
  • Each of the 32 antenna elements 120 arranged immediately below the third antenna element 120c (third stage from the top) is referred to as a “fourth antenna element 120d”, and a set of 32 fourth antenna elements 120c is a fourth antenna. This is referred to as an element group 130d.
  • the first to fourth antenna elements are not distinguished, they are simply referred to as antenna elements 120.
  • the antenna element 120 which is a planar antenna element is formed on the surface of the support side surface 201 which is a vertical surface, the surface direction of the antenna element 120 faces the vertical direction.
  • the planar antenna element is a directional antenna having directivity in the front direction orthogonal to the surface direction. Therefore, the antenna element 120 disposed on the support side surface 201 has directivity that faces outward in the radial direction 210 of the cylindrical support 112, that is, in the horizontal direction.
  • reference numeral 220 indicates the directivity of the beam 220 formed by one antenna element 120.
  • the horizontal beam widths of the beams 220 formed by the antenna elements 120 are set so as to overlap each other in the horizontal plane circumferential direction. Therefore, by using the plurality of antenna elements 120 in the circumferential direction, the beam can be directed in all horizontal plane directions.
  • “being able to direct the beam in all directions in the horizontal plane” refers to directing the beam in any direction included in all directions in the horizontal plane using only one of the plurality of antenna elements 120 in the circumferential direction. And simultaneously using all the plurality of antenna elements 120 in the circumferential direction to direct an omnidirectional beam in all horizontal directions.
  • the antenna device 100 has 32 antennas 140 arranged in a circle. Note that the state in which the 32 antennas 140 are arranged in a circle may be replaced with the state in which only the 32 first antenna elements 120a are arranged in a circle.
  • 32 circumferential antennas 140 are used as array antennas for be forming. However, in the first embodiment, not all of the 32 antennas 140 are used simultaneously, but some of the 32 antennas 140 are used simultaneously. Some antennas may be one or more. Hereinafter, some of the antennas 140 are assumed to be three antennas 140. Three antennas used at the same time are referred to as used antennas (used antenna elements). In other words, in this embodiment, the antenna device 100 operates as an array antenna having three antennas 140 (antenna elements). The three antennas (antenna elements) constituting the array antenna can be switched.
  • the antenna apparatus 100 shown in FIG. 3 includes three adjustment units 301, 302, and 303 for adjusting the phase and amplitude of each of the three (plural) used antennas 140.
  • Each of the adjustment units 301, 302, and 303 includes a variable phase shifter 401 for phase adjustment and an attenuator 402 for amplitude adjustment.
  • the number of the adjustment parts 30 should just respond
  • the adjustment units 301, 302, and 303 are connected to the signal processing unit 500 included in the in-vehicle mobile station 10 via the combiner 410.
  • the signal processing unit 500 performs signal processing for mobile communication in the in-vehicle mobile station 10.
  • the number corresponding to the number of antennas used may be sufficient as the number of adjustment parts, In that case, it is sufficient to use only the adjustment parts connected to the antennas used.
  • the 3 includes a selection unit 350 for connecting each of the three adjustment units 301, 302, and 303 to any three of the 32 (plurality) of antennas 140.
  • the antenna 140 connected to the adjustment units 301, 302, and 303 becomes the use antenna.
  • the selection unit 350 includes three first ports 351 and 32 second ports 352.
  • the three first ports 351 are connected to one of the three adjustment units 301, 302, and 303, respectively.
  • the 32 second ports 352 are each connected to one of the 32 antennas 140.
  • the selection unit 350 includes a switch 355 for selectively connecting each first port 351 to any one of the plurality of second ports 352. Three switches 355 are provided corresponding to the three first ports 351. Each switch selects a different second port 352. Each of the three used antennas 140 is connected to one of the three adjustment units 301, 302, and 303 by the three switches. In the present embodiment, the selection unit 350 selects three adjacent antennas 140 from among a plurality of antennas 140 arranged at equal intervals around the entire circumference. 140 may be selected. The control unit 600 determines which antenna 140 is selected as a use antenna. The control unit 600 controls the selection unit 350 and executes a switching process for switching the antenna selected as the antenna to be used.
  • the beam control method is realized by processing performed by the control unit 600.
  • the processing performed by the control unit 600 is realized by causing a computer to execute a computer program.
  • part or all of the processing performed by the control unit 600 may be realized by a semiconductor integrated circuit. .
  • FIG. 4 shows a state in which a plurality of antennas 140 a, 140 b, 140 c, 140 d,... Circumferentially arranged along a virtual circumference 700 are switched by the selection unit 350 controlled by the control unit 600. ing.
  • the antenna 140a, the antenna 140b, and the antenna 140c are selected by the selection unit 350. Therefore, a beam 251 is formed by array synthesis of these three antennas 140a, 140b, and 140c.
  • the antenna selected by the selection unit 350 is switched to the antenna 140b, the antenna 140c, and the antenna 140d.
  • a beam 252 is formed by combining the three antennas 140b, 140c, and 140d.
  • the directivity of the beam 252 changes in the clockwise direction in FIG. 4B as compared with the beam 251, and the direction of the beam can be changed.
  • the number of used antennas selected by the selection unit 350 before and after switching from FIG. 4A to FIG. 4B is three, which is the same.
  • the three used antennas are the three adjacent antennas 140 selected from the plurality of antennas 140 equally arranged in the circumferential direction, and therefore the circumferential intervals are also equal.
  • the beams 251 and 252 obtained by combining the three antennas used in the array can have the same characteristics in other points, although the positions in the circumferential direction are different.
  • switching of an antenna in a mobile station is not preferable because it changes a propagation environment with the base station 30 and easily causes a problem in communication with the base station 30.
  • the antenna gain does not change and only the beam direction changes. Therefore, there are few problems even if the antenna used is switched.
  • the used antennas 140b, 140c, and 104d after switching can include some of the antennas 140b, 104c among the used antennas 140a, 140b, and 140c before switching.
  • the direction of the beam can be finely adjusted in the circumferential direction like a plurality of beams 251, 252, 253, 254, 255, and 256 shown in FIG. 2A. This makes it possible to form a strong beam in any direction on the horizontal plane. Beam forming that combines adjustment of the beam direction by switching antennas and adjustment of the phase or amplitude of the signal enables high-speed communication by supporting any direction on the horizontal plane while maintaining high gain. It becomes.
  • switching may be performed before and after switching so that the antennas used do not overlap.
  • the antennas 140p, 140q, and 140r in FIG. 2A are used antennas and the beam 257 is formed
  • the antennas 140s, 140t, and 140u in FIG. 2B are used antennas.
  • a beam 258 may be formed.
  • the switching of the antenna used as shown in FIG. 4 is performed, for example, to change the direction of the beam on the horizontal plane in accordance with the movement of the vehicle 20 (the on-vehicle mobile station 10; the antenna device 100). Due to the operation of the vehicle 20, the position and orientation of the vehicle 20 change, and the relative positional relationship with the base station 30 changes. Based on the relative positional relationship between the base station 30 and the mobile station 10, the control unit 600 of the antenna device 100 determines an antenna 140 that is an antenna to be used for obtaining an optimum beam direction.
  • the relative positional relationship between the base station 30 and the mobile station 10 is calculated as, for example, the relative operation direction of the mobile station 10 with respect to the base station 30.
  • the control unit 600 estimates the Doppler frequency from the frequency of the communication signal (Step S10), estimates the relative operation direction of the mobile station 10 from the Doppler frequency (Step S20), Based on the relative direction of travel, the antenna used (switched antenna) can be determined (step S30).
  • the control unit 600 of the mobile station 10 estimates the relative operation direction of the mobile station 10 with respect to the base station 30, and determines the directions of the beams 262 and 263 to be directed next based on the current beam 261 and the relative operation direction. To do.
  • FIG. 5B when the mobile station 10 is operating on the right side of the figure, the beam direction should be changed counterclockwise in the figure, and thus the beam 262 to be directed next is specified. Is done. Also, as shown in FIG.
  • the beam direction should be changed clockwise in the figure, so that the beam 263 to be directed next is Identified.
  • the antenna 140 for forming the beam is determined as the antenna to be used.
  • the relative positional relationship between the mobile station and the person changes irregularly, and it is not easy to estimate the future movement direction of the person.
  • the in-vehicle mobile station 10 is mounted on the vehicle 20, the relative positional relationship with the vehicle 20 hardly changes, and the position and orientation of the vehicle 20 itself does not change abruptly. Therefore, it is relatively easy to estimate the future relative operation direction of the in-vehicle mobile station 10.
  • the beam can be always directed to the base station 30 by estimating the relative operation direction between the base station 30 and the mobile station 10 and switching the beam direction.
  • the antenna device 300 of the present embodiment can direct the beam in all directions on the horizontal plane, it can cope with any direction of the in-vehicle mobile station 10 operating.
  • the estimation of the future relative operation direction of the in-vehicle mobile station 10 is not limited to the Doppler frequency, and may be performed based on a GPS signal. Moreover, when the operation route of the vehicle 20 is determined in advance, the future relative operation direction of the in-vehicle mobile station 10 may be estimated based on the operation route information.
  • the operation route information may be, for example, bus or train route information, or route information selected by the car navigation system.
  • FIG. 6 shows a modification of the antenna device 100.
  • the support body 112 has a regular 32-square tube shape, but in FIG. 6, the support body 112 has a regular hexagonal tube shape, and the antenna element 120 (first antenna element) includes six side surfaces of the support body 112. Each is formed, and six pieces are arranged in the circumferential direction.
  • These six antenna elements 120 are arranged at equal intervals on a circumference 700 in a virtual horizontal plane (XY plane) in the horizontal plane, and are arranged in a circumferential manner.
  • Each of the six antenna elements 120 has a circumferential interval of 60 °.
  • beams 251, 252, 253, 254, 255, and 256 formed by array combining of two antenna elements 120 are shown, but a beam may be formed by array combining of three antenna elements 130. Also in the antenna device 100 of FIG. 6, the antenna elements 120 may be arranged in multiple stages in the vertical direction, or may be arranged in a single stage.
  • FIG. 7 shows another modification of the antenna device 100.
  • the antenna device 100 illustrated in FIG. 7 includes a regular hexagonal cylindrical support body 112, similarly to the antenna device illustrated in FIG. On each of the six side surfaces of the support 112, four (plural) antenna elements are arranged in the horizontal direction. In FIG. 7, there are a total of 24 antenna elements 120 in one horizontal plane.
  • the antenna elements 120 shown in FIG. 7 are arranged in a hexagonal ring shape at intervals in the circumferential direction of the horizontal plane.
  • the ring arrangement in the horizontal plane may be a polygon ring arrangement or a circular ring arrangement. Even in such a ring-shaped arrangement, it is possible to deal with all horizontal plane directions.
  • FIG. 8 shows another modification of the antenna device 100.
  • the support body 112 is composed of a plurality (two) of divided support bodies 112a and 112b.
  • the divided support bodies 112a and 112b in FIG. 8 are obtained by dividing the regular 32-square tube in FIG. 2 into two on the left and right sides, and each has 18 antenna elements 120.
  • the divided supports 112a and 112b of the antenna device 100 of FIG. 8 are coupled, it is equivalent to the antenna device 100 of FIG.
  • the support body 112 is divided into a plurality of parts, an appropriate divided arrangement on the vehicle 20 is possible.
  • one divided support body 112 a can be disposed at the front portion of the vehicle 20, and the other divided support body 112 b can be disposed at the rear portion of the vehicle 20.
  • the number of divisions is not limited to two divisions, and may be four divisions, for example. By dividing into four parts, the divided support bodies can be arranged at the four corners of the vehicle.
  • the support body 112 is constituted by a plurality of divided support bodies 112
  • the circumferentially equidistant arrangement of the antenna elements 120 is obtained when the plurality of divided support bodies 112 are combined. If it is enough.
  • FIG. 9 to 11 show other modified examples of the antenna device 100.
  • FIG. The antenna device 100 shown in FIG. 9 is obtained by adding the calibration antenna element 150 of the antenna device 100 shown in FIG. 2B.
  • the antenna element 150 is used for antenna calibration of the antenna element 120.
  • 32 antenna elements 150 are arranged in the circumferential direction.
  • the arrangement of the plurality of antenna elements 150 is common to the arrangement of the plurality of antenna elements 120 in each stage, and is arranged at equal intervals on the circumference.
  • the circumferential positions of the antenna elements 120 and the antenna elements 150 at the respective stages are also aligned. That is, five antenna elements 120 and 150 are arranged in the vertical direction on each of the 32 side surfaces 201 of the support 112.
  • the antenna element 150 is disposed below the antenna element 120, that is, at the lowermost stage, but may be disposed above the antenna element 120, that is, disposed at the uppermost stage.
  • a set of 32 antenna elements 150 is referred to as a calibration antenna element group 130e.
  • the description of the antenna device 100 in FIG. 9 is the same as that of the antenna device 100 in FIG.
  • the antenna calibration is a calibration of the phase between the antenna elements 120 used for communication. Phase calibration allows the beam to be accurately directed in a specified direction.
  • a signal output from an antenna element to be calibrated is received by the calibration antenna element 150, the received signal is compared with a calibration reference signal, and a comparison result is obtained. Based on this, the phase of the phase shifter connected to the antenna element to be calibrated is calibrated.
  • the four antenna elements 120a, 120b, 120c, and 120d arranged in the vertical direction are treated as one antenna 140, and calibration is performed in units of the antenna 140.
  • Each antenna 140 is provided with adjusting units 301, 302,... 332 including a phase shifter 401 and the like. That is, 32 antennas 140 are arranged in the circumferential direction, and 32 adjustment units 301, 302,... 332 are also provided corresponding to the antennas 140. That is, in FIG. 10 and FIG. 11, there are 32 transmission / reception paths.
  • FIG. 10 shows how to calibrate 32 transmission paths. Transmission from the 32 antennas 140 for calibration is performed in order in a time division manner. That is, during transmission transmission from one antenna 140, transmission from another antenna 140 is not performed. As an antenna element 150 for receiving a signal transmitted from a certain antenna 140, an antenna element 150 having the same circumferential position as that of the antenna 140 is selected.
  • the signal received by the antenna element 150 selected for reception is given to the signal processing unit 500.
  • the signal processing unit 500 compares the received signal with the calibration reference signal, and calculates the configuration parameter of the phase shifter.
  • the calculated configuration parameter is given to the phase shifter included in the transmission path of the antenna 140 that has transmitted the signal, and phase calibration of the transmission path is performed.
  • the calibration of the transmission path of a certain antenna 140 is completed, the calibration of the transmission paths of the other antennas 140 is sequentially performed, whereby the transmission paths of all 32 antennas 140 are calibrated.
  • FIG. 11 shows how to calibrate 32 reception paths. Reception by 32 antennas 140 for calibration is also performed in order in a time division manner.
  • the calibration signal is transmitted by the calibration antenna element 150.
  • the antenna element 150 that transmits a signal received by a certain antenna 140 the antenna element 150 whose circumferential position matches that of the antenna 140 is selected. That is, the antenna element 150 located at the same position in the circumferential direction as the reception antenna 140 is selected as the transmission antenna.
  • a calibration signal transmitted from a certain antenna element 150 is received by the antenna 140 located at the same position in the circumferential direction as that antenna element 150.
  • a signal received by the antenna 140 is given to the signal processing unit 500.
  • the signal processing unit 500 compares the received signal with the calibration reference signal, and calculates the configuration parameter of the phase shifter.
  • the calculated configuration parameter is given to a phase shifter included in the reception path of the antenna 140 that has received the signal, and phase calibration of the reception path is performed.
  • phase calibration not only phase calibration but also amplitude calibration may be performed.
  • FIG. 12 shows the antenna device 100 according to the second embodiment.
  • the antenna device 100 is also provided in the in-vehicle mobile station 10 as with the antenna device 100 of the first embodiment.
  • points that are not particularly described below are the same as in the first embodiment.
  • the antenna device 100 functions as an omnidirectional antenna that corresponds to all directions in the horizontal direction, and improves the gain by narrowing the directivity in the vertical direction by beam forming, thereby enabling high-speed communication.
  • the support body 112 that supports the antenna element 120 has a cone shape.
  • the cone may be a pyramid (n-pyramid) or a cone.
  • the cone shape includes not only a perfect cone but also a frustum.
  • the frustum may be a truncated pyramid or a truncated cone.
  • a plurality of antenna elements 120 are arranged on the inclined surface 201 of the support 112.
  • the antenna element 120 is formed on each of the eight (n) inclined surfaces 201.
  • four (plural) antenna elements 120 are arranged in a row in the radial direction along the inclined surface.
  • antenna elements 120 are arranged at the same height in the vertical direction.
  • the eight antenna elements 120 are arranged in the horizontal plane. Circumferentially arranged at equal intervals. The circumferential positions of the antenna elements 120 in the vertical stages are aligned.
  • the circumferential angle ⁇ between any two antenna elements 120, 120 adjacent in the circumferential direction is 45 °. It can be said that the eight antenna elements 120 having the same height are arranged in an octagonal ring shape in the horizontal plane.
  • each of the eight antenna elements 120 installed at the uppermost stage is referred to as a “first antenna element 120a”, and a set of eight first antenna elements 120a is the first.
  • This is referred to as an antenna element group 130a.
  • Each of the eight antenna elements 120 arranged immediately below the first antenna element 120a (second stage from the top) is referred to as a “second antenna element 120b”, and a set of eight second antenna elements 120b is a second antenna. This is referred to as an element group 130b.
  • Each of the eight antenna elements 120 arranged immediately below the second antenna element 120b (third stage from the top) is referred to as a “third antenna element 120c”, and a set of eight third antenna elements 120b is a third antenna.
  • Each of the eight antenna elements 120 arranged immediately below the third antenna element 120c (third stage from the top) is referred to as a “fourth antenna element 120d”, and a set of eight fourth antenna elements 120c is a fourth antenna. This is referred to as an element group 130d.
  • the antenna elements 120a, 120b, 120c, and 120d at the respective stages are arranged at equal circumferential intervals on the horizontal plane.
  • the second antenna element 120b is disposed radially outward from the first antenna element 120a, and is disposed so as to draw a circumference larger than the circumference drawn by the first antenna element 120a.
  • the third antenna element 120b is disposed radially outward from the second antenna element 120b, and the fourth antenna element 120b is disposed radially outward from the third antenna element 120c.
  • each antenna element 120 has directivity that is radially outward in the horizontal plane and obliquely upward in the vertical plane.
  • the antenna elements 120a, 120b, 120c, and 120d having the same height and arranged circumferentially are combined in phase. Accordingly, the first antenna element group 130a, the second antenna element group 130b, the third antenna element group 130c, and the fourth antenna element group 140d each form a beam that is non-directional on a horizontal plane. By being non-directional on the horizontal plane, stable communication with the base station 30 is possible regardless of the direction in which the base station 30 is viewed from the mobile station 10.
  • the first antenna element group 130a, the second antenna element group 130b, the third antenna element group 130c, and the fourth antenna element group 130d are divided into four antennas.
  • the directivity in the vertical plane can be changed by beam forming.
  • the antenna front direction in which a large gain is easily obtained faces obliquely upward. Since the base station 30 is generally arranged at a high place, the base station 30 has an antenna front direction obliquely upward as compared with a case where the antenna front direction is a vertical direction or a horizontal direction. It is easy to obtain a high gain in communication with
  • the four antennas 130a, 130b, 130c, and 130d arranged along the inclined surface 201 are array-synthesized, and the tilt angle can be controlled by adjusting the phase of each antenna by the variable phase shifter 405. By tilt angle control, the beam can be appropriately directed in the direction of the base station 30.
  • the directivity control in the horizontal plane is not performed as in the first embodiment, but the antenna gain can be obtained by performing the directivity control in the vertical plane.
  • the plurality of first antenna elements and the plurality of second antenna elements each have directivity directed radially outward and obliquely upward of the ring.
  • a mobile station comprising the antenna device according to any one of items 1 to 3.
  • the antenna device is provided with a base, a plurality of first antenna elements supported by the base and arranged in a ring shape on a horizontal plane, and supported by the base and arranged in a ring shape on a horizontal plane.
  • a plurality of second antenna elements are provided.
  • the horizontal plane does not have to physically exist in the antenna device, and may be a horizontal plane that is virtually conceived.
  • the ring shape means that the shape of the antenna element itself is not a ring shape, but the overall arrangement of the plurality of antenna elements is a ring shape.
  • the ring may be a perfect circle, an ellipse, or a polygon.
  • the plurality of antenna elements arranged in a ring shape need not be in contact with each other, and there is a space between the antenna elements. According to the antenna device according to the first item, it is possible to deal with all horizontal directions and to have diagonally upward directivity.
  • the tilt angle of the beam can be controlled by array synthesis of the plurality of first antenna elements and the plurality of second antenna elements.
  • the antenna device is suitable for an on-vehicle mobile station.
  • the mobile station can include the antenna device according to any one of Items 1 to 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

An antenna device 100 for an in-vehicle mobile station 10 that communicates with a mobile communication base station 30 includes: a base 110 that is attached to a vehicle 20; and a plurality of first antenna elements 120a that are supported by the base 110. The plurality of first antenna elements 120a are disposed equidistantly in a circular configuration in a horizontal plane, and each of the first antenna elements 120a has directivity outwards in the radial direction of the circle.

Description

車載移動局用アンテナ装置及び車載移動局In-vehicle mobile station antenna device and in-vehicle mobile station
 本発明は、車載移動局用アンテナ装置及び車載移動局に関するものである。本出願は、2016年11月14日出願の日本特許出願2016-221380号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present invention relates to an on-vehicle mobile station antenna device and an on-vehicle mobile station. This application claims priority based on Japanese Patent Application No. 2016-221380 filed on Nov. 14, 2016, and incorporates all the description content described in the above Japanese application.
 モバイル通信においては、基地局と移動局との間で通信が行われる。特許文献1は、基地局によるビームフォーミングを開示している。 In mobile communication, communication is performed between a base station and a mobile station. Patent Document 1 discloses beam forming by a base station.
国際公開第2011/43298号International Publication No. 2011/43298
 本開示の一の態様は、モバイル通信基地局と通信する車載移動局用のアンテナ装置である。実施形態において、アンテナ装置は、車両に取り付けられるベースと、前記ベースに支持された複数の第1アンテナ素子と、を備える。複数の前記第1アンテナ素子は、水平面において円周状に等間隔に配置される。ここで、水平面は、アンテナ装置において物理的に存在している必要はなく、仮想的に観念される水平面であれば足りる。複数のアンテナ素子は、それぞれ前記円周の径方向外方に向く指向性を有する。アンテナ素子の円筒状配置は、各アンテナ素子の一部(好ましくはアンテナ水平方向中心)が、仮想的な円周上に位置していれば足り、アンテナ素子の全体が仮想的な円周上に位置している必要はない。したがって、アンテナ素子を指示するベースが円周状である必要はなく、多角形状であってもよい。 One aspect of the present disclosure is an antenna device for an in-vehicle mobile station that communicates with a mobile communication base station. In the embodiment, the antenna device includes a base attached to a vehicle and a plurality of first antenna elements supported by the base. The plurality of first antenna elements are arranged circumferentially at equal intervals on a horizontal plane. Here, the horizontal plane does not have to physically exist in the antenna device, and may be a horizontal plane that is virtually conceived. Each of the plurality of antenna elements has directivity directed outward in the radial direction of the circumference. The cylindrical arrangement of the antenna elements suffices if a part of each antenna element (preferably the center in the horizontal direction of the antenna) is located on the virtual circumference, and the entire antenna element is on the virtual circumference. There is no need to be located. Therefore, the base for indicating the antenna element does not have to be circular, and may be polygonal.
図1は車載移動局を搭載した車両を示す図である。FIG. 1 is a diagram showing a vehicle equipped with an in-vehicle mobile station. 図2Aは、アンテナ装置の平面図である。図2Bは、アンテナ装置の側面図である。FIG. 2A is a plan view of the antenna device. FIG. 2B is a side view of the antenna device. 図3は、アンテナ装置の回路図である。FIG. 3 is a circuit diagram of the antenna device. 図4Aは、アンテナ素子切替の説明図である。図4Bは、アンテナ素子切替の説明図である。FIG. 4A is an explanatory diagram of antenna element switching. FIG. 4B is an explanatory diagram of antenna element switching. 図5Aは、運行方向推定によるアンテナ素子切替の説明図である。図5Bは、運行方向推定によるアンテナ素子切替の説明図である。図5Cは、運行方向推定によるアンテナ素子切替の説明図である。FIG. 5A is an explanatory diagram of antenna element switching based on operation direction estimation. FIG. 5B is an explanatory diagram of antenna element switching based on operation direction estimation. FIG. 5C is an explanatory diagram of antenna element switching based on operation direction estimation. 図6は、アンテナ装置の変形例を示す図である。FIG. 6 is a diagram illustrating a modification of the antenna device. 図7は、アンテナ装置の変形例を示す図である。FIG. 7 is a diagram illustrating a modification of the antenna device. 図8は、アンテナ装置の変形例を示す図である。FIG. 8 is a diagram illustrating a modification of the antenna device. 図9は、アンテナ装置の変形例を示す図である。FIG. 9 is a diagram illustrating a modification of the antenna device. 図10は、送信パスキャリブレーションの説明図である。FIG. 10 is an explanatory diagram of transmission path calibration. 図11は、受信パスキャリブレーションの説明図である。FIG. 11 is an explanatory diagram of reception path calibration. 図12Aは、第2実施形態に係るアンテナ装置の構成図である。図12Bは、第2実施形態に係るアンテナ装置の平面図である。図12Cは、第2実施形態に係るアンテナ装置の側面図である。FIG. 12A is a configuration diagram of an antenna device according to the second embodiment. FIG. 12B is a plan view of the antenna device according to the second embodiment. FIG. 12C is a side view of the antenna device according to the second embodiment.
[1.実施形態の概要] [1. Outline of Embodiment]
 モバイル通信においては、移動局と基地局の相対位置関係は、変動し続ける。特に、水平面における相対方向の変化が激しい。このため、移動局のアンテナは、水平面の全方向に対応していることが望ましい。 In mobile communication, the relative positional relationship between a mobile station and a base station continues to fluctuate. In particular, the relative change in the horizontal plane is severe. For this reason, it is desirable that the antenna of the mobile station corresponds to all directions on the horizontal plane.
 本開示は、携帯電話及びスマートフォンのように人によって携帯される移動局のアンテナではなく、車載移動局におけるアンテナ装置において、水平面の全方向に対応するための新規な構造に関する。 This disclosure relates to a novel structure for accommodating all directions of a horizontal plane in an antenna device in an in-vehicle mobile station, not an antenna of a mobile station carried by a person such as a mobile phone and a smartphone.
(1)実施形態において、モバイル通信基地局と通信する車載移動局用のアンテナ装置は、車両に取り付けられるベースと、前記ベースに支持された複数の第1アンテナ素子と、
を備え、複数の前記第1アンテナ素子は、水平面において円周状に等間隔に配置され、それぞれ前記円周の径方向外方に向く指向性を有する。かかる構成により、水平面全方向への対応が容易となり、基地局との安定した通信が可能となる。
(1) In the embodiment, an in-vehicle mobile station antenna device communicating with a mobile communication base station includes a base attached to a vehicle, a plurality of first antenna elements supported by the base,
The plurality of first antenna elements are arranged circumferentially at equal intervals on a horizontal plane, and each has directivity directed outward in the radial direction of the circumference. With this configuration, it is easy to deal with all horizontal planes, and stable communication with the base station is possible.
(2)複数の前記第1アンテナ素子は、水平面全方向にビームを向けることができるように配置されているのが好ましい。この場合、基地局が水平面のどの方向にあっても、基地局とのより安定した通信が可能となる。 (2) It is preferable that the plurality of first antenna elements are arranged so that beams can be directed in all horizontal directions. In this case, more stable communication with the base station is possible regardless of the direction of the base station in the horizontal plane.
(3)複数の前記第1アンテナ素子のうちの一部を、前記モバイル通信基地局との通信に用いられる1又は複数の使用アンテナ素子として選択する選択部を更に備えるのが好ましい。この場合、使用アンテナ素子を切り替えることが可能となる。 (3) It is preferable to further include a selection unit that selects a part of the plurality of first antenna elements as one or a plurality of antenna elements to be used for communication with the mobile communication base station. In this case, the antenna element to be used can be switched.
(4)前記車載移動局用アンテナ装置の移動に応じて水平面におけるビームの向きを変えるために、前記使用アンテナ素子として選択される第1アンテナ素子を切り替える切替処理を実行する制御部を更に備えるのが好ましい。この場合、移動局の移動に応じて、使用アンテナを切り替えることができる。 (4) In order to change the direction of the beam in the horizontal plane according to the movement of the on-vehicle mobile station antenna device, a control unit is further provided for executing a switching process for switching the first antenna element selected as the used antenna element. Is preferred. In this case, the antenna to be used can be switched according to the movement of the mobile station.
(5)切り替え後の複数の使用アンテナ素子の数及び円周方向間隔は、切り替え前の複数の使用アンテナ素子の数及び円周方向間隔と同じであるのが好ましい。この場合、切替によるアンテナ利得の変動を防止できる。 (5) It is preferable that the number of used antenna elements and the circumferential interval after switching are the same as the number of used antenna elements and the circumferential interval before switching. In this case, variation in antenna gain due to switching can be prevented.
(6)切り替え後の複数の使用アンテナ素子の少なくともいずれか一つは、切り替え前の複数の使用アンテナ素子に含まれるのが好ましい。この場合、ビームの向きを細かく変化させることが可能となる。 (6) At least one of the plurality of used antenna elements after switching is preferably included in the plurality of used antenna elements before switching. In this case, the direction of the beam can be changed finely.
(7)前記切替処理は、前記車載移動局用アンテナ装置と前記モバイル通信基地局との相対運行方向を算出し、前記相対運行方向に基づいて、前記使用アンテナ素子として選択される第1アンテナ素子を切り替えることを含むのが好ましい。この場合、相対運行方向に基づいて、容易に切り替えを行うことができる。また、全方向のビームスイープをする必要がなくなる。 (7) The switching process calculates a relative operation direction between the on-vehicle mobile station antenna device and the mobile communication base station, and is selected as the antenna element to be used based on the relative operation direction. It is preferable to include switching. In this case, switching can be easily performed based on the relative operation direction. Also, it is not necessary to perform beam sweep in all directions.
(8)各第1アンテナ素子のアンテナキャリブレーションのための複数のキャリブレーション用アンテナ素子を更に備えるのが好ましい。この場合、キャリブレーションアンテナ素子を用いた第1アンテナ素子のキャリブレーションが可能となる。第1アンテナ素子のキャリブレーションによって、より正確なビーム制御が可能となる。複数の前記キャリブレーション用アンテナ素子の数は、複数の前記第1アンテナ素子の数と同じであり、複数の前記キャリブレーション用アンテナ素子は、複数の前記第1アンテナ素子とは垂直方向に異なる位置に配置され、水平面において円周状に等間隔に配置され、それぞれの円周方向位置が、いずれか一つの前記第1アンテナ素子の円周方向位置と一致するのが好ましい。 (8) It is preferable to further include a plurality of calibration antenna elements for antenna calibration of each first antenna element. In this case, it is possible to calibrate the first antenna element using the calibration antenna element. More accurate beam control is possible by calibration of the first antenna element. The number of the plurality of calibration antenna elements is the same as the number of the plurality of first antenna elements, and the plurality of calibration antenna elements are positioned differently in the vertical direction from the plurality of first antenna elements. Are arranged at equal intervals in the circumferential direction on the horizontal plane, and their respective circumferential positions coincide with the circumferential position of any one of the first antenna elements.
(9)複数の前記第1アンテナ素子の数と同数の複数の第2アンテナ素子を更に備え、複数の前記第2アンテナ素子は、複数の前記第1アンテナ素子とは垂直方向に異なる位置に配置され、水平面において円周状に等間隔に配置され、それぞれの円周方向位置が、いずれか一つの前記第1アンテナ素子の円周方向位置と一致し、それぞれ前記円周の径方向外方に向く指向性を有するのが好ましい。この場合、垂直方向におけるアンテナ素子多段構造が得られ、アンテナ利得向上が可能となるか、又は垂直面におけるビームフォーミングが可能となる。 (9) A plurality of second antenna elements equal in number to the plurality of first antenna elements are further provided, and the plurality of second antenna elements are arranged at positions different from each other in the vertical direction from the plurality of first antenna elements. Are arranged at equal intervals in a circumferential manner in a horizontal plane, and each circumferential position thereof coincides with the circumferential position of any one of the first antenna elements, and each radially outward of the circumference. It preferably has a directivity that faces. In this case, a multi-stage structure of antenna elements in the vertical direction can be obtained, and the antenna gain can be improved, or beam forming in the vertical plane can be performed.
(10)複数の前記第2アンテナ素子は、複数の前記第1アンテナ素子よりも下方に配置され、複数の前記第1アンテナ素子よりも前記円周の径方向外方に配置されていてもよい。この場合、斜めに傾斜した配置が得られる。 (10) The plurality of second antenna elements may be disposed below the plurality of first antenna elements, and may be disposed radially outward of the circumference from the plurality of first antenna elements. . In this case, an obliquely inclined arrangement is obtained.
(11)複数の前記第1アンテナ素子及び複数の前記第2アンテナ素子は、それぞれ、前記円周の径方向外方かつ斜め上方に向く指向性を有するのが好ましい。この場合、斜め上方の指向性が得られる。 (11) It is preferable that the plurality of first antenna elements and the plurality of second antenna elements each have directivity directed radially outward and obliquely upward of the circumference. In this case, directivity in an obliquely upward direction can be obtained.
(12)複数の前記第1アンテナ素子及び複数の第2アンテナ素子は、水平面において無指向性となるビームを形成するのが好ましい。この場合、どの方向に基地局があっても安定した通信が可能である。 (12) The plurality of first antenna elements and the plurality of second antenna elements preferably form a non-directional beam on a horizontal plane. In this case, stable communication is possible regardless of the direction of the base station.
(13)複数の前記第1アンテナ素子と複数の前記第2アンテナ素子とのアレイ合成によりビームのチルト角制御が行われるのが好ましい。この場合、基地局の相対的高さ位置に応じたチルト角制御を行うことができる。 (13) It is preferable that the tilt angle control of the beam is performed by array synthesis of the plurality of first antenna elements and the plurality of second antenna elements. In this case, tilt angle control according to the relative height position of the base station can be performed.
(14)実施形態において、車載移動局は、(1)~(13)ののいずれか1項に記載の車載移動局用アンテナ装置を備えることができる。 (14) In the embodiment, the in-vehicle mobile station may include the in-vehicle mobile station antenna device according to any one of (1) to (13).
[2.実施形態の詳細] [2. Details of Embodiment]
[2.1 第1実施形態]
 図1は、車載移動局10が搭載された車両20を示している。車載移動局10は、モバイル通信基地局30と通信をする。基地局30は、建物の屋上、鉄塔の上などの比較的高い場所に設置され、地上の移動局と通信する。モバイル通信は、高速通信の実現のため、ミリ波又は準ミリ波が利用される通信であるのが好ましい。ミリ波又は準ミリ波が利用されるモバイル通信は、例えば、第5世代モバイルネットワーク(5G)である。
[2.1 First Embodiment]
FIG. 1 shows a vehicle 20 on which an in-vehicle mobile station 10 is mounted. The in-vehicle mobile station 10 communicates with the mobile communication base station 30. The base station 30 is installed at a relatively high place such as a rooftop of a building or a steel tower, and communicates with a mobile station on the ground. The mobile communication is preferably communication using millimeter waves or quasi-millimeter waves in order to realize high-speed communication. Mobile communication using millimeter waves or quasi-millimeter waves is, for example, a fifth generation mobile network (5G).
 ミリ波又は準ミリ波が利用される通信では、高い周波数のため、伝搬損失が大きい。本実施形態では、伝播損失の補償のため、ビームフォーミングが行われる。ビームフォーミングをすることで、特定の方向に指向性を向けて利得を向上させることができる。本実施形態では、ビームフォーミングは、基地局30だけでなく移動局10によっても行われ、高速通信を可能とする。ビームフォーミングを行うため、車載移動局10は、複数のアンテナ素子を有するアレイアンテナを有するが、この点については後述する。 In communications using millimeter waves or quasi-millimeter waves, the propagation loss is large due to the high frequency. In this embodiment, beam forming is performed to compensate for propagation loss. By performing beam forming, the directivity can be directed in a specific direction and the gain can be improved. In the present embodiment, beam forming is performed not only by the base station 30 but also by the mobile station 10 and enables high-speed communication. In order to perform beam forming, the in-vehicle mobile station 10 has an array antenna having a plurality of antenna elements, which will be described later.
 車両20は、例えば、バス・電車などの交通機関における車両である。実施形態に係る車載移動局10は、無線LAN無線部40と接続されている。無線LAN無線部40は、無線LANアクセスポイントであり、車内の無線LAN端末50に対して、無線LANサービスを提供する。車内の無線LAN端末50は、例えば、車両20の乗客が有する携帯電話、スマートフォン、タブレット、又はノートパソコンなどである。乗客が有する端末50は、無線LAN及びモバイル通信ネットワークを介して、インターネット接続が可能である。 The vehicle 20 is a vehicle in transportation such as a bus or train. The in-vehicle mobile station 10 according to the embodiment is connected to the wireless LAN wireless unit 40. The wireless LAN wireless unit 40 is a wireless LAN access point, and provides a wireless LAN service to the wireless LAN terminal 50 in the vehicle. The in-vehicle wireless LAN terminal 50 is, for example, a mobile phone, a smartphone, a tablet, or a laptop computer that a passenger of the vehicle 20 has. The terminal 50 of the passenger can be connected to the Internet via a wireless LAN and a mobile communication network.
 車載移動局10は、基地局30と通信するためのアンテナ装置100を備える。図2は、アンテナ装置100の一例を示している。図2に示すンテナ装置100は、車両20の外部の基地局30との通信のため、車両20の外部に設置されるのが好ましい。アンテナ装置100は、例えば、図1及び図2に示すように車両20の天井20aから上方突出状に配置できるが、車両20の側面に設置されてもよい。 The in-vehicle mobile station 10 includes an antenna device 100 for communicating with the base station 30. FIG. 2 shows an example of the antenna device 100. The antenna device 100 shown in FIG. 2 is preferably installed outside the vehicle 20 for communication with the base station 30 outside the vehicle 20. The antenna device 100 can be disposed so as to protrude upward from the ceiling 20a of the vehicle 20 as shown in FIGS.
 ここで、図2におけるXY平面は、水平面であり、Z方向は垂直方向を示す。本実施形態においては、車両20の天井20aは水平とする。また、水平とは、車両20が水平な面の上で直立している状態での水平をいう。したがって、例えば、車両20が水平な面の上で直立しているときに、車両20の天井20aが水平であれば、車両の姿勢にかかわらず、天井20aは、水平な面として扱う。つまり、水平に関して、車両20が傾斜面上にある場合や、カーブ走行などにより車両が傾斜している場合は考えないものとする。 Here, the XY plane in FIG. 2 is a horizontal plane, and the Z direction indicates a vertical direction. In the present embodiment, the ceiling 20a of the vehicle 20 is horizontal. Further, the horizontal means the horizontal in a state where the vehicle 20 stands upright on a horizontal surface. Therefore, for example, when the vehicle 20 stands upright on a horizontal surface and the ceiling 20a of the vehicle 20 is horizontal, the ceiling 20a is treated as a horizontal surface regardless of the posture of the vehicle. In other words, regarding the horizontal, it is not considered when the vehicle 20 is on an inclined surface or when the vehicle is inclined due to curve driving or the like.
 アンテナ装置100は、ベース110を有する。図2に示すベース110は、車両に取り付けられる取付部111を有する。取付部111は、例えば、板状部材であり、例えば、車両20の天井20aに取り付けられる。取付部111は、例えば、ボルト等の締結具、接着剤、又は溶接などによって、車両20に取り付けられる。ベース110は、アンテナ素子120の支持体112を備える。後述するように、本実施形態において、アンテナ素子120は、パッチアンテナ素子である。パッチアンテナ素子は、誘電体基板の表面に形成されるため、誘電体基板は、アンテナ素子の支持体112でもある。誘電体としては、フレキシブルプリント配線基板を用いることができる。なお、図2において、支持体112及びアンテナ素子120は、露出しているが、図示しないレドームによって覆われて、保護されるのが好ましい。 The antenna device 100 has a base 110. The base 110 shown in FIG. 2 has an attachment portion 111 that is attached to the vehicle. The attachment part 111 is a plate-like member, for example, and is attached to the ceiling 20a of the vehicle 20, for example. The attachment portion 111 is attached to the vehicle 20 by, for example, a fastener such as a bolt, an adhesive, or welding. The base 110 includes a support 112 for the antenna element 120. As will be described later, in the present embodiment, the antenna element 120 is a patch antenna element. Since the patch antenna element is formed on the surface of the dielectric substrate, the dielectric substrate is also the support 112 for the antenna element. A flexible printed wiring board can be used as the dielectric. In FIG. 2, the support 112 and the antenna element 120 are exposed, but are preferably covered and protected by a radome (not shown).
 図2において、支持体112は、複数のアンテナ素子120の円周状配置を得るため、筒状に形成されている。支持体112は、円筒状であってもよいし、多角形筒状(n角筒状:nは3以上の整数)であってもよい。多角形は円を近似するため、多角形筒状の支持体112でも、アンテナ素子120の円周状配置は得られる。 In FIG. 2, the support 112 is formed in a cylindrical shape in order to obtain a circumferential arrangement of the plurality of antenna elements 120. The support 112 may have a cylindrical shape or a polygonal cylindrical shape (n-square cylindrical shape, where n is an integer of 3 or more). Since the polygon approximates a circle, the circumferential arrangement of the antenna elements 120 can be obtained even with the polygonal cylindrical support 112.
 なお、アンテナ素子120の円筒状配置は、各アンテナ素子120の一部(好ましくはアンテナ水平方向中心)が、仮想的な円周上に位置していれば足り、アンテナ素子120の全体が仮想的な円周上に位置している必要はない。なお、支持体が円筒状であれば、アンテナ素子120の全体が仮想的な円周上に位置している配置を容易に得ることができる。 Note that the cylindrical arrangement of the antenna elements 120 suffices if a part of each antenna element 120 (preferably the center in the horizontal direction of the antenna) is located on a virtual circumference, and the entire antenna element 120 is virtual. It is not necessary to be located on a certain circumference. If the support is cylindrical, an arrangement in which the entire antenna element 120 is located on a virtual circumference can be easily obtained.
 図2において支持体112は、正多角筒状であり、より具体的には、正32角筒状(n=32)である。nの値は特に限定されないが、nは、6以上であるのが好ましく、12以上であるのがより好ましく、24以上であるのがさらに好ましい。nが大きいほど、水平面全方向への対応が容易となる。 In FIG. 2, the support body 112 has a regular polygonal cylinder shape, and more specifically, a regular 32 square cylinder shape (n = 32). The value of n is not particularly limited, but n is preferably 6 or more, more preferably 12 or more, and further preferably 24 or more. The larger n is, the easier it is to handle in all horizontal plane directions.
 支持体112は、その下部が取付部111に接続されている。支持体112は、筒軸心200が、垂直方向(Z方向)に向くように、水平な取付部111に対して取り付けられている。したがって、多角筒状支持体112の32個(n個)の側面201は、垂直面となっている。 The lower part of the support body 112 is connected to the mounting part 111. The support body 112 is attached to the horizontal attachment portion 111 so that the cylinder axis 200 is oriented in the vertical direction (Z direction). Therefore, 32 (n) side surfaces 201 of the polygonal cylindrical support 112 are vertical surfaces.
 支持体112の側面201(外表面;アンテナ素子支持面)には、複数のアンテナ素子120が形成されている。アンテナ素子120は、アンテナ装置100の小型化のため、例えば、平面アンテナ素子であるのが有利である。実施形態においては、平面アンテナ素子として、パッチアンテナ素子を採用した。実施形態において、アンテナ素子120は、支持体112の32個(n個)の側面201それぞれ形成されている。したがって、図2Aに示すように、支持体112には、水平面(XY平面)において、32個(n個)のアンテナ素子120が円周状に配置されている。図2Aにおいて、円周方向の32個のアンテナ素子120は、全周(360°)に亘って均等間隔で配置されている。図2Aにおいて、円周方向に隣接する任意の2つのアンテナ素子120,120間の円周方向角θは11.25°である。 A plurality of antenna elements 120 are formed on the side surface 201 (outer surface; antenna element support surface) of the support body 112. The antenna element 120 is advantageously a planar antenna element, for example, in order to reduce the size of the antenna device 100. In the embodiment, a patch antenna element is employed as the planar antenna element. In the embodiment, the antenna element 120 is formed on each of the 32 (n) side surfaces 201 of the support 112. Therefore, as shown in FIG. 2A, 32 (n) antenna elements 120 are circumferentially arranged on the support 112 in the horizontal plane (XY plane). In FIG. 2A, 32 antenna elements 120 in the circumferential direction are arranged at equal intervals over the entire circumference (360 °). In FIG. 2A, the circumferential angle θ between any two antenna elements 120, 120 adjacent in the circumferential direction is 11.25 °.
 支持体112の32個の側面201それぞれには、垂直方向に複数のアンテナ素子120が配置されている。図2Bにおいては、垂直方向に4段のアンテナ素子120が配置されている。各段におけるアンテナ素子120の数・配置は共通しており、円周状等間隔配置である。つまり、支持体112には、合計で128個=(32個×4段)のアンテナ素子120が形成されている。また、各段のアンテナ素子120の円周方向位置も揃っている。なお、各アンテナ素子120は、同じ形状であり、同じアンテナ利得を持つ。 A plurality of antenna elements 120 are arranged in the vertical direction on each of the 32 side surfaces 201 of the support 112. In FIG. 2B, four stages of antenna elements 120 are arranged in the vertical direction. The number and arrangement of the antenna elements 120 in each stage are the same, and are circumferentially spaced. In other words, a total of 128 antenna elements 120 (32 × 4 stages) are formed on the support 112. In addition, the circumferential positions of the antenna elements 120 at each stage are also aligned. Each antenna element 120 has the same shape and the same antenna gain.
 以下では、図2Bの最上段に配置された32個のアンテナ素子120それぞれを「第1アンテナ素子120a」といい、32個の第1アンテナ素子120aの集合を第1アンテナ素子群130aという。第1アンテナ素子120aの直下(上から2段目)に配置された32個のアンテナ素子120それぞれを「第2アンテナ素子120b」といい、32個の第2アンテナ素子120bの集合を第2アンテナ素子群130bという。第2アンテナ素子120bの直下(上から3段目)に配置された32個のアンテナ素子120それぞれを「第3アンテナ素子120c」といい、32個の第3アンテナ素子120bの集合を第3アンテナ素子群130cという。第3アンテナ素子120cの直下(上から3段目)に配置された32個のアンテナ素子120それぞれを「第4アンテナ素子120d」といい、32個の第4アンテナ素子120cの集合を第4アンテナ素子群130dという。なお、第1から第4アンテナ素子を区別しない場合には、単に、アンテナ素子120という。 Hereinafter, each of the 32 antenna elements 120 arranged in the uppermost stage of FIG. 2B is referred to as a “first antenna element 120a”, and a set of 32 first antenna elements 120a is referred to as a first antenna element group 130a. Each of the 32 antenna elements 120 arranged immediately below the first antenna element 120a (second stage from the top) is referred to as a “second antenna element 120b”, and a set of 32 second antenna elements 120b is a second antenna. This is referred to as an element group 130b. Each of the 32 antenna elements 120 arranged immediately below the second antenna element 120b (third stage from the top) is referred to as a “third antenna element 120c”, and a set of 32 third antenna elements 120b is a third antenna. This is referred to as an element group 130c. Each of the 32 antenna elements 120 arranged immediately below the third antenna element 120c (third stage from the top) is referred to as a “fourth antenna element 120d”, and a set of 32 fourth antenna elements 120c is a fourth antenna. This is referred to as an element group 130d. When the first to fourth antenna elements are not distinguished, they are simply referred to as antenna elements 120.
 平面アンテナ素子であるアンテナ素子120は、垂直面である支持体側面201の表面に形成されているため、アンテナ素子120の面方向が垂直方向を向いている。そして、平面アンテナ素子は、その面方向に対して直交する正面方向に指向性を持つ指向性アンテナである。したがって、支持体側面201に配置されたアンテナ素子120は、筒状支持体112の径方向210の外方、すなわち水平方向に向く指向性を有する。 Since the antenna element 120 which is a planar antenna element is formed on the surface of the support side surface 201 which is a vertical surface, the surface direction of the antenna element 120 faces the vertical direction. The planar antenna element is a directional antenna having directivity in the front direction orthogonal to the surface direction. Therefore, the antenna element 120 disposed on the support side surface 201 has directivity that faces outward in the radial direction 210 of the cylindrical support 112, that is, in the horizontal direction.
 図2Aにおいて、符号220は、1個のアンテナ素子120によって形成されるビーム220の指向性を示している。図2Aに示すように、各アンテナ素子120によって形成されるビーム220は、互いに水平面周方向に重複するように、それらの水平ビーム幅が設定されている。したがって、円周方向の複数のアンテナ素子120を用いることにより、水平面全方向にビームを向けることができる。ここで、「水平面全方向にビームを向けることができる」とは、円周方向における複数のアンテナ素子120のうちのいずれかだけを用いて、水平面全方向に含まれる任意の方向にビームを向けることを含むとともに、円周方向における複数のアンテナ素子120全てを同時に用いて、水平面全方向に無指向のビームを向けることの双方を含む。 2A, reference numeral 220 indicates the directivity of the beam 220 formed by one antenna element 120. As shown in FIG. 2A, the horizontal beam widths of the beams 220 formed by the antenna elements 120 are set so as to overlap each other in the horizontal plane circumferential direction. Therefore, by using the plurality of antenna elements 120 in the circumferential direction, the beam can be directed in all horizontal plane directions. Here, “being able to direct the beam in all directions in the horizontal plane” refers to directing the beam in any direction included in all directions in the horizontal plane using only one of the plurality of antenna elements 120 in the circumferential direction. And simultaneously using all the plurality of antenna elements 120 in the circumferential direction to direct an omnidirectional beam in all horizontal directions.
 第1実施形態では、1つの支持体側面301に形成され垂直方向に並ぶ4つのアンテナ素子120a,120b,120c,120dを一つのアンテナ140として使う例を説明する。4つのアンテナ素子120a,120b,120c,120dを一つのアンテナ140として使う場合、アンテナ装置100は、32個のアンテナ140が円周状に並んだものとなる。なお、32個のアンテナ140が円周状に並んでいる状態は、32個の第1アンテナ素子120aだけが円周状に並んでいる状態に置き換えて考えても良い。 In the first embodiment, an example will be described in which four antenna elements 120a, 120b, 120c, and 120d formed on one support side surface 301 and arranged in the vertical direction are used as one antenna 140. When the four antenna elements 120a, 120b, 120c, and 120d are used as one antenna 140, the antenna device 100 has 32 antennas 140 arranged in a circle. Note that the state in which the 32 antennas 140 are arranged in a circle may be replaced with the state in which only the 32 first antenna elements 120a are arranged in a circle.
 また、第1実施形態では、円周状の32個のアンテナ140をビーフォーミングのためのアレイアンテナとして用いる。ただし、第1実施形態では、32個のアンテナ140は、全てが同時に使用されるのではなく、32個のアンテナのうちの一部のアンテナ140が同時に使用される。一部のアンテナは、1個でも複数個でもよい。以下では、一部のアンテナ140は、3個のアンテナ140とする。同時に使用される3個のアンテナを使用アンテナ(使用アンテナ素子)という。つまり、本実施形態では、アンテナ装置100は、3個のアンテナ140(アンテナ素子)を有するアレーアンテナとして動作する。アレーアンテナを構成する3個のアンテナ(アンテナ素子)は切替可能である。 In the first embodiment, 32 circumferential antennas 140 are used as array antennas for be forming. However, in the first embodiment, not all of the 32 antennas 140 are used simultaneously, but some of the 32 antennas 140 are used simultaneously. Some antennas may be one or more. Hereinafter, some of the antennas 140 are assumed to be three antennas 140. Three antennas used at the same time are referred to as used antennas (used antenna elements). In other words, in this embodiment, the antenna device 100 operates as an array antenna having three antennas 140 (antenna elements). The three antennas (antenna elements) constituting the array antenna can be switched.
 図3に示すアンテナ装置100は、3個(複数)の使用アンテナ140それぞれの位相・振幅を調整するための3個の調整部301,302,303を備える。各調整部301,302,303は、それぞれ、位相調整のための可変移相器401及び振幅調整のための減衰器402を備える。調整部30の数は、使用アンテナ(使用アンテナ素子)の数に対応していればよい。調整部301,302,303は、合成器410を介して、車載移動局10が有する信号処理部500に接続されている。信号処理部500は、車載移動局10においてモバイル通信のための信号処理を行う。なお、調整部の数は、使用アンテナの数に対応した数であってもよく、その場合、使用アンテナに接続されている調整部だけを使用すればよい。 The antenna apparatus 100 shown in FIG. 3 includes three adjustment units 301, 302, and 303 for adjusting the phase and amplitude of each of the three (plural) used antennas 140. Each of the adjustment units 301, 302, and 303 includes a variable phase shifter 401 for phase adjustment and an attenuator 402 for amplitude adjustment. The number of the adjustment parts 30 should just respond | correspond to the number of use antennas (use antenna element). The adjustment units 301, 302, and 303 are connected to the signal processing unit 500 included in the in-vehicle mobile station 10 via the combiner 410. The signal processing unit 500 performs signal processing for mobile communication in the in-vehicle mobile station 10. In addition, the number corresponding to the number of antennas used may be sufficient as the number of adjustment parts, In that case, it is sufficient to use only the adjustment parts connected to the antennas used.
 図3のアンテナ装置100は、3つの調整部301,302,303それぞれを、32個(複数)のアンテナ140のいずれか3つに接続するための選択部350を備える。調整部301,302,303に接続されたアンテナ140が使用アンテナとなる。選択部350は、3個の第1ポート351と、32個の第2ポート352を有する。3個の第1ポート351は、それぞれ、3個の調整部301,302,303のうちの1つに接続されている。32個の第2ポート352は、それぞれ、32個のアンテナ140のうちの1つに接続されている。 3 includes a selection unit 350 for connecting each of the three adjustment units 301, 302, and 303 to any three of the 32 (plurality) of antennas 140. The antenna 140 connected to the adjustment units 301, 302, and 303 becomes the use antenna. The selection unit 350 includes three first ports 351 and 32 second ports 352. The three first ports 351 are connected to one of the three adjustment units 301, 302, and 303, respectively. The 32 second ports 352 are each connected to one of the 32 antennas 140.
 選択部350は、各第1ポート351を、複数の第2ポート352のうちのいずれか一つに選択的に接続するためのスイッチ355を備えて構成されている。スイッチ355は、第1ポート351が3つあることに対応して、3つ設けられている。各スイッチは、それぞれ、異なる第2ポート352を選択する。3つのスイッチによって、3つの使用アンテナ140それぞれが、3つの調整部301,302,303のうちの1つに接続される。なお、本実施形態では、選択部350は、円周全体に等間隔に配置された複数のアンテナ140の中から隣接する3つのアンテナ140を選択するが、一つ又は二つ置きに3つのアンテナ140を選択してもよい。どのアンテナ140を使用アンテナとして選択するかは、制御部600によって決定される。制御部600は、選択部350を制御し、使用アンテナとして選択されるアンテナを切り替える切替処理を実行する。実施形態において、制御部600が行う処理によってビーム制御方法が実現される。また、実施形態において、制御部600が行う処理は、コンピュータプログラムをコンピュータに実行させることによって実現されるが、制御部600が行う処理の一部又は全部が、半導体集積回路によって実現されてもよい。 The selection unit 350 includes a switch 355 for selectively connecting each first port 351 to any one of the plurality of second ports 352. Three switches 355 are provided corresponding to the three first ports 351. Each switch selects a different second port 352. Each of the three used antennas 140 is connected to one of the three adjustment units 301, 302, and 303 by the three switches. In the present embodiment, the selection unit 350 selects three adjacent antennas 140 from among a plurality of antennas 140 arranged at equal intervals around the entire circumference. 140 may be selected. The control unit 600 determines which antenna 140 is selected as a use antenna. The control unit 600 controls the selection unit 350 and executes a switching process for switching the antenna selected as the antenna to be used. In the embodiment, the beam control method is realized by processing performed by the control unit 600. In the embodiment, the processing performed by the control unit 600 is realized by causing a computer to execute a computer program. However, part or all of the processing performed by the control unit 600 may be realized by a semiconductor integrated circuit. .
 図4は、仮想的な円周700に沿った円周状配置の複数のアンテナ140a,140b,140c,140d,・・・が、制御部600によって制御される選択部350によって切り替えられる様子を示している。図4Aでは、選択部350によって、アンテナ140a、アンテナ140b及びアンテナ140cが選択されている。したがって、これら3つのアンテナ140a,140b,140cのアレイ合成によりビーム251が形成される。図4Bでは、選択部350によって選択されているアンテナは、アンテナ140b、アンテナ140c及びアンテナ140dに切り替わる。これら3つのアンテナ140b,140c,140dのアレイ合成によりビーム252が形成される。ビーム252は、ビーム251よりも、図4Bにおいて時計回りに指向性が変化しており、ビームの向きを変更できている。 FIG. 4 shows a state in which a plurality of antennas 140 a, 140 b, 140 c, 140 d,... Circumferentially arranged along a virtual circumference 700 are switched by the selection unit 350 controlled by the control unit 600. ing. In FIG. 4A, the antenna 140a, the antenna 140b, and the antenna 140c are selected by the selection unit 350. Therefore, a beam 251 is formed by array synthesis of these three antennas 140a, 140b, and 140c. In FIG. 4B, the antenna selected by the selection unit 350 is switched to the antenna 140b, the antenna 140c, and the antenna 140d. A beam 252 is formed by combining the three antennas 140b, 140c, and 140d. The directivity of the beam 252 changes in the clockwise direction in FIG. 4B as compared with the beam 251, and the direction of the beam can be changed.
 図4Aから図4Bの切り替え前後において、選択部350によって選択されている使用アンテナの数は、3つであって、同じである。図4Aから図4Bの切り替え前後において、3つの使用アンテナは、円周方向に均等配置された複数のアンテナ140から選択された3つの隣接するアンテナ140であるため、円周方向間隔も等しい。 The number of used antennas selected by the selection unit 350 before and after switching from FIG. 4A to FIG. 4B is three, which is the same. Before and after switching from FIG. 4A to FIG. 4B, the three used antennas are the three adjacent antennas 140 selected from the plurality of antennas 140 equally arranged in the circumferential direction, and therefore the circumferential intervals are also equal.
 したがって、図4Aから図4Bの切り替え前後において、3つの使用アンテナのアレイ合成により得られるビーム251,252は、円周方向位置は異なるものの、その他の点においては同じ特性を持つことができる。一般に移動局におけるアンテナの切り替えは、基地局30との間の伝搬環境を変化させ、基地局30との通信に問題を招き易いため好ましくない。しかし、本実施形態では、使用アンテナを切り替えても、アンテナ利得は変化せず、ビームの方向が変化するだけであるため、使用アンテナを切り替えても問題が少ない。 Therefore, before and after switching from FIG. 4A to FIG. 4B, the beams 251 and 252 obtained by combining the three antennas used in the array can have the same characteristics in other points, although the positions in the circumferential direction are different. In general, switching of an antenna in a mobile station is not preferable because it changes a propagation environment with the base station 30 and easily causes a problem in communication with the base station 30. However, in this embodiment, even if the antenna used is switched, the antenna gain does not change and only the beam direction changes. Therefore, there are few problems even if the antenna used is switched.
 また、本実施形態では、切替後の使用アンテナ140b,140c,104dは、切替前の使用アンテナ140a,140b,140cのうちの一部のアンテナ140b,104cを含むことができる。このような切替を行うと、図2Aに示される複数のビーム251,252,253,254,255,256のように、円周方向に細かくビームの向きを調整することができる。これにより、水平面のいずれの方向へも強いビームを形成することが可能となる。アンテナ切替によるビーム方向の調整と信号の位相又は振幅の調整とを併用したビームフォーミングをすることで、高い利得を維持しつつ、水平面のいずれの方向へも対応することができ、高速通信が可能となる。 In the present embodiment, the used antennas 140b, 140c, and 104d after switching can include some of the antennas 140b, 104c among the used antennas 140a, 140b, and 140c before switching. When such switching is performed, the direction of the beam can be finely adjusted in the circumferential direction like a plurality of beams 251, 252, 253, 254, 255, and 256 shown in FIG. 2A. This makes it possible to form a strong beam in any direction on the horizontal plane. Beam forming that combines adjustment of the beam direction by switching antennas and adjustment of the phase or amplitude of the signal enables high-speed communication by supporting any direction on the horizontal plane while maintaining high gain. It becomes.
 なお、切替前後において、使用アンテナが重複しないように切替を行っても良い。例えば、切替前においては、図2Aにおけるアンテナ140p,140q,140rが使用アンテナとなってビーム257が形成されており、切替後においては、図2Bにおけるアンテナ140s,140t,140uが使用アンテナとなってビーム258が形成されてもよい。 Note that switching may be performed before and after switching so that the antennas used do not overlap. For example, before switching, the antennas 140p, 140q, and 140r in FIG. 2A are used antennas and the beam 257 is formed, and after switching, the antennas 140s, 140t, and 140u in FIG. 2B are used antennas. A beam 258 may be formed.
 図4に示すような、使用アンテナの切り替えは、例えば、車両20(車載移動局10;アンテナ装置100)の移動に応じて、水平面におけるビームの向きを変えるために行われる。車両20の運行により、車両20の位置・向きが変わり、基地局30との相対的な位置関係が変化する。アンテナ装置100の制御部600は、基地局30と移動局10との相対的位置関係に基づいて、最適なビーム方向を得るための使用アンテナとなるアンテナ140を決定する。 The switching of the antenna used as shown in FIG. 4 is performed, for example, to change the direction of the beam on the horizontal plane in accordance with the movement of the vehicle 20 (the on-vehicle mobile station 10; the antenna device 100). Due to the operation of the vehicle 20, the position and orientation of the vehicle 20 change, and the relative positional relationship with the base station 30 changes. Based on the relative positional relationship between the base station 30 and the mobile station 10, the control unit 600 of the antenna device 100 determines an antenna 140 that is an antenna to be used for obtaining an optimum beam direction.
 基地局30と移動局10との相対的位置関係は、例えば、基地局30に対する移動局10の相対運行方向として算出される。図3に示すように、制御部600は、切替処理において、通信信号の周波数からドップラー周波数を推定し(ステップS10)、ドップラー周波数から、移動局10の相対運行方向を推定し(ステップS20)、相対運行方向に基づいて、使用アンテナ(切替先アンテナ)を決定することができる(ステップS30)。 The relative positional relationship between the base station 30 and the mobile station 10 is calculated as, for example, the relative operation direction of the mobile station 10 with respect to the base station 30. As shown in FIG. 3, in the switching process, the control unit 600 estimates the Doppler frequency from the frequency of the communication signal (Step S10), estimates the relative operation direction of the mobile station 10 from the Doppler frequency (Step S20), Based on the relative direction of travel, the antenna used (switched antenna) can be determined (step S30).
 例えば、基地局30と移動局10とが図5Aに示す位置関係にあるときに、移動局10では、ビーム261が形成される使用アンテナ140が選択されているものとする。このとき、移動局10の制御部600は、基地局30に対する移動局10の相対運行方向を推定し、現在のビーム261と相対運行方向に基づき、次に向けるべきビーム262,263の方向を決定する。図5Bに示すように、移動局10が、図の右方に運行している場合、ビーム方向は、図における反時計回りに変化させるべきであり、このことから次に向けるべきビーム262が特定される。また、図5Cに示すように、移動局10が、図の左方に運行している場合、ビーム方向は、図における時計回りに変化させるべきであり、このことから次に向けるべきビーム263が特定される。ビームの方向が特定されると、そのビームを形成するためのアンテナ140が使用アンテナとして決定される。 For example, when the base station 30 and the mobile station 10 are in the positional relationship shown in FIG. 5A, it is assumed that the use antenna 140 on which the beam 261 is formed is selected in the mobile station 10. At this time, the control unit 600 of the mobile station 10 estimates the relative operation direction of the mobile station 10 with respect to the base station 30, and determines the directions of the beams 262 and 263 to be directed next based on the current beam 261 and the relative operation direction. To do. As shown in FIG. 5B, when the mobile station 10 is operating on the right side of the figure, the beam direction should be changed counterclockwise in the figure, and thus the beam 262 to be directed next is specified. Is done. Also, as shown in FIG. 5C, when the mobile station 10 is operating to the left in the figure, the beam direction should be changed clockwise in the figure, so that the beam 263 to be directed next is Identified. When the direction of the beam is specified, the antenna 140 for forming the beam is determined as the antenna to be used.
 人によって携帯(典型的には手持ち)される移動局の場合、移動局と人との相対位置関係は不規則に変化し、人の将来の移動方向の推定も容易ではない。これに対して、車載移動局10は、車両20に搭載されており、車両20との相対位置関係はほとんど変化せず、車両20自体の位置姿勢も急激に変更しない。したがって、車載移動局10の将来の相対運行方向の推定は比較的容易である。これを利用して、基地局30と移動局10との相対運行方向を推定して、ビーム方向を切り替えることで、常にビームを基地局30に向けることができる。また、ビームを基地局30に向けるために、全てのビーム方向をスイープする必要がない。しかも、本実施形態のアンテナ装置300は水平面の全方向にビームを向けることができるため、車載移動局10がどの方向に運行しても対応することができる。 In the case of a mobile station carried by a person (typically hand-held), the relative positional relationship between the mobile station and the person changes irregularly, and it is not easy to estimate the future movement direction of the person. On the other hand, the in-vehicle mobile station 10 is mounted on the vehicle 20, the relative positional relationship with the vehicle 20 hardly changes, and the position and orientation of the vehicle 20 itself does not change abruptly. Therefore, it is relatively easy to estimate the future relative operation direction of the in-vehicle mobile station 10. By utilizing this, the beam can be always directed to the base station 30 by estimating the relative operation direction between the base station 30 and the mobile station 10 and switching the beam direction. In addition, in order to direct the beam to the base station 30, it is not necessary to sweep all beam directions. Moreover, since the antenna device 300 of the present embodiment can direct the beam in all directions on the horizontal plane, it can cope with any direction of the in-vehicle mobile station 10 operating.
 車載移動局10の将来の相対運行方向の推定は、ドップラー周波数に限らず、GPS信号に基づいて行っても良い。また、車両20の運行ルートが予め決まっている場合、運行ルート情報に基づいて、車載移動局10の将来の相対運行方向の推定を行っても良い。運行ルート情報は、例えば、バス又は電車の路線情報でもよいし、カーナビゲーションシステムによって選択された経路情報でもよい。 The estimation of the future relative operation direction of the in-vehicle mobile station 10 is not limited to the Doppler frequency, and may be performed based on a GPS signal. Moreover, when the operation route of the vehicle 20 is determined in advance, the future relative operation direction of the in-vehicle mobile station 10 may be estimated based on the operation route information. The operation route information may be, for example, bus or train route information, or route information selected by the car navigation system.
 図6は、アンテナ装置100の変形例を示している。図2において、支持体112は、正32角筒状であったが、図6では、正6角筒状であり、アンテナ素子120(第1アンテナ素子)は、支持体112の6個の側面それぞれに形成され、円周方向に6個配置されている。これらの6個のアンテナ素子120は、水平面における仮想的な水平面(XY平面)における円周700上に等間隔に配置され、円周状配置となっている。6個のアンテナ素子120それぞれの円周方向間隔は、60°である。図6では、2つのアンテナ素子120のアレイ合成により形成されるビーム251,252,253,254,255,256を示したが、3つのアンテナ素子130のアレイ合成によりビームを形成してもよい。図6のアンテナ装置100においても、アンテナ素子120を垂直方向に多段配置してもよいし、1段配置でもよい。 FIG. 6 shows a modification of the antenna device 100. In FIG. 2, the support body 112 has a regular 32-square tube shape, but in FIG. 6, the support body 112 has a regular hexagonal tube shape, and the antenna element 120 (first antenna element) includes six side surfaces of the support body 112. Each is formed, and six pieces are arranged in the circumferential direction. These six antenna elements 120 are arranged at equal intervals on a circumference 700 in a virtual horizontal plane (XY plane) in the horizontal plane, and are arranged in a circumferential manner. Each of the six antenna elements 120 has a circumferential interval of 60 °. In FIG. 6, beams 251, 252, 253, 254, 255, and 256 formed by array combining of two antenna elements 120 are shown, but a beam may be formed by array combining of three antenna elements 130. Also in the antenna device 100 of FIG. 6, the antenna elements 120 may be arranged in multiple stages in the vertical direction, or may be arranged in a single stage.
 図7は、アンテナ装置100の他の変形例を示している。図7に示すアンテナ装置100は、図6に示すアンテナ装置と同様に、正6角筒状の支持体112を有する。支持体112の6個の側面それぞれには、水平方向に4個(複数)のアンテナ素子が配置されている。図7では、複数のアンテナ素子120は、1つの水平面において合計24個ある。図7に示すアンテナ素子120は、それぞれ水平面周方向に間隔をおいいて、6角形リング状に配置されている。水平面におけるリング状配置は、多角形リング状配置でもよいし、円リング状配置でもよい。このようなリング状配置でも、水平面全方向への対応が可能である。 FIG. 7 shows another modification of the antenna device 100. The antenna device 100 illustrated in FIG. 7 includes a regular hexagonal cylindrical support body 112, similarly to the antenna device illustrated in FIG. On each of the six side surfaces of the support 112, four (plural) antenna elements are arranged in the horizontal direction. In FIG. 7, there are a total of 24 antenna elements 120 in one horizontal plane. The antenna elements 120 shown in FIG. 7 are arranged in a hexagonal ring shape at intervals in the circumferential direction of the horizontal plane. The ring arrangement in the horizontal plane may be a polygon ring arrangement or a circular ring arrangement. Even in such a ring-shaped arrangement, it is possible to deal with all horizontal plane directions.
 図8は、アンテナ装置100の他の変形例を示している。図8において、支持体112は、複数(2個)の分割支持体112a,112bにより構成されている。図8の分割支持体112a,112bは、図2の正32角筒を左右に2つに分割したものであり、それぞれ、18個のアンテナ素子120を有する。図8のアンテナ装置100の分割支持体112a,112bを結合すると、図2のアンテナ装置100と等価である。支持体112が複数に分割されていると、車両20への適切な分割配置が可能となる。例えば、一方の分割支持体112aを、車両20の前部に配置し、他方の分割支持体112bを車両20の後部に配置することができる。また、分割数は、2分割に限られず、例えば、4分割であってもよい。4分割により、分割支持体を車両の四隅に配置することができる。 FIG. 8 shows another modification of the antenna device 100. In FIG. 8, the support body 112 is composed of a plurality (two) of divided support bodies 112a and 112b. The divided support bodies 112a and 112b in FIG. 8 are obtained by dividing the regular 32-square tube in FIG. 2 into two on the left and right sides, and each has 18 antenna elements 120. When the divided supports 112a and 112b of the antenna device 100 of FIG. 8 are coupled, it is equivalent to the antenna device 100 of FIG. When the support body 112 is divided into a plurality of parts, an appropriate divided arrangement on the vehicle 20 is possible. For example, one divided support body 112 a can be disposed at the front portion of the vehicle 20, and the other divided support body 112 b can be disposed at the rear portion of the vehicle 20. Further, the number of divisions is not limited to two divisions, and may be four divisions, for example. By dividing into four parts, the divided support bodies can be arranged at the four corners of the vehicle.
 図8のように、支持体112が、複数の分割支持体112により構成されている場合、アンテナ素子120の円周状等間隔配置は、複数の分割支持体112を結合したときに得られていれば足りる。 As shown in FIG. 8, when the support body 112 is constituted by a plurality of divided support bodies 112, the circumferentially equidistant arrangement of the antenna elements 120 is obtained when the plurality of divided support bodies 112 are combined. If it is enough.
 図9~図11は、アンテナ装置100の他の変形例を示している。図9に示すアンテナ装置100は、図2Bに示すアンテナ装置100のキャリブレーション用アンテナ素子150を追加したものである。アンテナ素子150は、アンテナ素子120のアンテナキャリブレーションに用いられる。アンテナ素子150も、アンテナ素子120と同様に、円周方向に32個配置されている。複数のアンテナ素子150の配置は、各段の複数のアンテナ素子120の配置と共通しており、円周上等間隔配置である。また、各段のアンテナ素子120及びアンテナ素子150の円周方向位置も揃っている。つまり、支持体112の32個の側面201それぞれには、垂直方向に5個のアンテナ素子120,150が配置されている。 9 to 11 show other modified examples of the antenna device 100. FIG. The antenna device 100 shown in FIG. 9 is obtained by adding the calibration antenna element 150 of the antenna device 100 shown in FIG. 2B. The antenna element 150 is used for antenna calibration of the antenna element 120. Similarly to the antenna element 120, 32 antenna elements 150 are arranged in the circumferential direction. The arrangement of the plurality of antenna elements 150 is common to the arrangement of the plurality of antenna elements 120 in each stage, and is arranged at equal intervals on the circumference. In addition, the circumferential positions of the antenna elements 120 and the antenna elements 150 at the respective stages are also aligned. That is, five antenna elements 120 and 150 are arranged in the vertical direction on each of the 32 side surfaces 201 of the support 112.
 図9において、アンテナ素子150は、アンテナ素子120よりも下方、つまり、最下段に配置されているが、アンテナ素子120よりも上方、つまり、最上段に配置されていてもよい。なお、32個のアンテナ素子150の集合を、キャリブレーション用アンテナ素子群130eという。図9のアンテナ装置100において説明を省略した点は、図2Bのアンテナ装置100と同様である。 In FIG. 9, the antenna element 150 is disposed below the antenna element 120, that is, at the lowermost stage, but may be disposed above the antenna element 120, that is, disposed at the uppermost stage. A set of 32 antenna elements 150 is referred to as a calibration antenna element group 130e. The description of the antenna device 100 in FIG. 9 is the same as that of the antenna device 100 in FIG.
 実施形態において、アンテナキャリブレーションは、通信に用いられるアンテナ素子120間の位相のキャリブレーションである。位相のキャリブレーションにより、指定された方向にビームを正確に向けることができる。実施形態において、位相キャリブレーションは、キャリブレーションの対象となるアンテナ素子から出力された信号を、キャリブレーション用アンテナ素子150にて受信し、受信した信号をキャリブレーション基準信号と比較し、比較結果に基づいて、キャリブレーションの対象となるアンテナ素子に接続された位相器の位相を校正することで行われる。 In the embodiment, the antenna calibration is a calibration of the phase between the antenna elements 120 used for communication. Phase calibration allows the beam to be accurately directed in a specified direction. In the embodiment, in phase calibration, a signal output from an antenna element to be calibrated is received by the calibration antenna element 150, the received signal is compared with a calibration reference signal, and a comparison result is obtained. Based on this, the phase of the phase shifter connected to the antenna element to be calibrated is calibrated.
 図10及び図11は、キャリブレーションのより具体的な方法の一例を示している。なお、ここでは、垂直方向に並ぶ4つのアンテナ素子120a,120b,120c,120dを一つのアンテナ140として扱い、アンテナ140単位でキャリブレーションが行われる。各アンテナ140には、位相器401等を含む調整部301,302,・・,332が設けられている。すなわち、アンテナ140は、円周方向に32個配置され、調整部301,302,・・,332もアンテナ140に対応して32個設けられている。すなわち、図10及び図11では、32本の送受信パスが存在する。 10 and 11 show an example of a more specific method of calibration. Here, the four antenna elements 120a, 120b, 120c, and 120d arranged in the vertical direction are treated as one antenna 140, and calibration is performed in units of the antenna 140. Each antenna 140 is provided with adjusting units 301, 302,... 332 including a phase shifter 401 and the like. That is, 32 antennas 140 are arranged in the circumferential direction, and 32 adjustment units 301, 302,... 332 are also provided corresponding to the antennas 140. That is, in FIG. 10 and FIG. 11, there are 32 transmission / reception paths.
 図10は、32本の送信パスのキャリブレーションの仕方を示している。キャリブレーションのための32個のアンテナ140からの送信は、時分割で順番に行われる。つまり、あるアンテナ140から送信の送信中は、他のアンテナ140からの送信は行われない。あるアンテナ140から送信された信号の受信のためのアンテナ素子150として、そのアンテナ140と円周方向位置が一致するアンテナ素子150が選択される。 FIG. 10 shows how to calibrate 32 transmission paths. Transmission from the 32 antennas 140 for calibration is performed in order in a time division manner. That is, during transmission transmission from one antenna 140, transmission from another antenna 140 is not performed. As an antenna element 150 for receiving a signal transmitted from a certain antenna 140, an antenna element 150 having the same circumferential position as that of the antenna 140 is selected.
 受信のために選択されたアンテナ素子150によって受信された信号は、信号処理部500に与えられる。信号処理部500は、受信信号とキャリブレーション基準信号とを比較し、位相器の構成パラメータを計算する。計算された構成パラメータは、信号を送信したアンテナ140の送信パスに含まれる位相器に与えられ、その送信パスの位相キャリブレーションが行われる。あるアンテナ140の送信パスのキャリブレーションが完了すると、他のアンテナ140の送信パスのキャリブレーションが順次行われ、これにより、32個全てのアンテナ140の送信パスのキャリブレーションが行われる。 The signal received by the antenna element 150 selected for reception is given to the signal processing unit 500. The signal processing unit 500 compares the received signal with the calibration reference signal, and calculates the configuration parameter of the phase shifter. The calculated configuration parameter is given to the phase shifter included in the transmission path of the antenna 140 that has transmitted the signal, and phase calibration of the transmission path is performed. When the calibration of the transmission path of a certain antenna 140 is completed, the calibration of the transmission paths of the other antennas 140 is sequentially performed, whereby the transmission paths of all 32 antennas 140 are calibrated.
 図11は、32本の受信パスのキャリブレーションの仕方を示している。キャリブレーションのための32個のアンテナ140による受信も、時分割で順番に行われる。キャリブレーション信号の送信は、キャリブレーション用アンテナ素子150によって行われる。あるアンテナ140によって受信される信号を送信するアンテナ素子150として、そのアンテナ140と円周方向位置が一致するアンテナ素子150が選択される。つまり、受信アンテナ140と円周方向において同じ位置にあるアンテナ素子150が送信アンテナとして選択される。 FIG. 11 shows how to calibrate 32 reception paths. Reception by 32 antennas 140 for calibration is also performed in order in a time division manner. The calibration signal is transmitted by the calibration antenna element 150. As the antenna element 150 that transmits a signal received by a certain antenna 140, the antenna element 150 whose circumferential position matches that of the antenna 140 is selected. That is, the antenna element 150 located at the same position in the circumferential direction as the reception antenna 140 is selected as the transmission antenna.
 あるアンテナ素子150から送信されたキャリブレーション信号は、そのアンテナ素子150と円周方向において同じ位置にあるアンテナ140によって受信される。アンテナ140によって受信された信号は、信号処理部500に与えられる。信号処理部500は、受信信号とキャリブレーション基準信号とを比較し、位相器の構成パラメータを計算する。計算された構成パラメータは、信号を受信したアンテナ140の受信パスに含まれる位相器に与えられ、その受信パスの位相キャリブレーションが行われる。あるアンテナ140の受信パスのキャリブレーションが完了すると、他のアンテナ140の受信パスのキャリブレーションが順次行われ、これにより、32個全てのアンテナ140の受信パスのキャリブレーションが行われる。 A calibration signal transmitted from a certain antenna element 150 is received by the antenna 140 located at the same position in the circumferential direction as that antenna element 150. A signal received by the antenna 140 is given to the signal processing unit 500. The signal processing unit 500 compares the received signal with the calibration reference signal, and calculates the configuration parameter of the phase shifter. The calculated configuration parameter is given to a phase shifter included in the reception path of the antenna 140 that has received the signal, and phase calibration of the reception path is performed. When the calibration of the reception path of a certain antenna 140 is completed, the calibration of the reception paths of the other antennas 140 is sequentially performed, whereby the calibration of the reception paths of all 32 antennas 140 is performed.
 なお、キャリブレーションにおいては、位相キャリブレーションだけでなく、振幅キャリブレーションも行っても良い。 In calibration, not only phase calibration but also amplitude calibration may be performed.
[2.2 第2実施形態] [2.2 Second Embodiment]
 図12は、第2実施形態に係るアンテナ装置100を示している。このアンテナ装置100も、第1実施形態のアンテナ装置100と同様に車載移動局10に設けられる。第2実施形態に関し、以下において特に説明しない点については、第1実施形態と同様である。 FIG. 12 shows the antenna device 100 according to the second embodiment. The antenna device 100 is also provided in the in-vehicle mobile station 10 as with the antenna device 100 of the first embodiment. Regarding the second embodiment, points that are not particularly described below are the same as in the first embodiment.
 第2実施形態のアンテナ装置100は、水平方向は全方向に対応した無指向性アンテナとして機能し、ビームフォーミングにより垂直方向に指向性を絞って利得を向上させて、高速通信を可能とする。 The antenna device 100 according to the second embodiment functions as an omnidirectional antenna that corresponds to all directions in the horizontal direction, and improves the gain by narrowing the directivity in the vertical direction by beam forming, thereby enabling high-speed communication.
 図12B,図12Cに示すように、第2実施形態において、アンテナ素子120を支持する支持体112は、錐体状である。錐体は、角錐体(n角錐体)でもよいし、円錐体でもよい。錐体状には、完全な錐体だけでなく、錐台を含むものとする。錐台は、角錐台でもよいし、円錐台でもよい。 As shown in FIGS. 12B and 12C, in the second embodiment, the support body 112 that supports the antenna element 120 has a cone shape. The cone may be a pyramid (n-pyramid) or a cone. The cone shape includes not only a perfect cone but also a frustum. The frustum may be a truncated pyramid or a truncated cone.
 図12B,図12Cに示す支持体112は、8角錐体状(n=8)であり、8個の傾斜面201を有する。支持体112の傾斜面201には、複数のアンテナ素子120が配置されている。アンテナ素子120は、8個(n個)の傾斜面201それぞれに形成されている。各傾斜面201には、傾斜面に沿った径方向に4個(複数)のアンテナ素子120が1列に配置されている。 The support 112 shown in FIGS. 12B and 12C has an octagonal pyramid shape (n = 8), and has eight inclined surfaces 201. A plurality of antenna elements 120 are arranged on the inclined surface 201 of the support 112. The antenna element 120 is formed on each of the eight (n) inclined surfaces 201. In each inclined surface 201, four (plural) antenna elements 120 are arranged in a row in the radial direction along the inclined surface.
 図12B,図12Cにおいては、垂直方向における同じ高さに8個のアンテナ素子120が配置され、同じ高さの8個のアンテナ素子120に着目すると、その8個のアンテナ素子120は、水平面において円周状に等間隔で配置されている。垂直方向の各段のアンテナ素子120の円周方向位置は揃っている。図12Bにおいて、円周方向に隣接する任意の2つのアンテナ素子120,120の間の円周方向角θは45°である。なお、同じ高さの8個のアンテナ素子120は、水平面において8角形リング状に配置されているということもできる。 12B and 12C, eight antenna elements 120 are arranged at the same height in the vertical direction. When attention is paid to the eight antenna elements 120 having the same height, the eight antenna elements 120 are arranged in the horizontal plane. Circumferentially arranged at equal intervals. The circumferential positions of the antenna elements 120 in the vertical stages are aligned. In FIG. 12B, the circumferential angle θ between any two antenna elements 120, 120 adjacent in the circumferential direction is 45 °. It can be said that the eight antenna elements 120 having the same height are arranged in an octagonal ring shape in the horizontal plane.
 第1実施形態と同様に、図12においても、最上段に設置された8個のアンテナ素子120それぞれを「第1アンテナ素子120a」といい、8個の第1アンテナ素子120aの集合を第1アンテナ素子群130aという。第1アンテナ素子120aの直下(上から2段目)に配置された8個のアンテナ素子120それぞれを「第2アンテナ素子120b」といい、8個の第2アンテナ素子120bの集合を第2アンテナ素子群130bという。第2アンテナ素子120bの直下(上から3段目)に配置された8個のアンテナ素子120それぞれを「第3アンテナ素子120c」といい、8個の第3アンテナ素子120bの集合を第3アンテナ素子群130cという。第3アンテナ素子120cの直下(上から3段目)に配置された8個のアンテナ素子120それぞれを「第4アンテナ素子120d」といい、8個の第4アンテナ素子120cの集合を第4アンテナ素子群130dという。 Similarly to the first embodiment, in FIG. 12, each of the eight antenna elements 120 installed at the uppermost stage is referred to as a “first antenna element 120a”, and a set of eight first antenna elements 120a is the first. This is referred to as an antenna element group 130a. Each of the eight antenna elements 120 arranged immediately below the first antenna element 120a (second stage from the top) is referred to as a “second antenna element 120b”, and a set of eight second antenna elements 120b is a second antenna. This is referred to as an element group 130b. Each of the eight antenna elements 120 arranged immediately below the second antenna element 120b (third stage from the top) is referred to as a “third antenna element 120c”, and a set of eight third antenna elements 120b is a third antenna. This is referred to as an element group 130c. Each of the eight antenna elements 120 arranged immediately below the third antenna element 120c (third stage from the top) is referred to as a “fourth antenna element 120d”, and a set of eight fourth antenna elements 120c is a fourth antenna. This is referred to as an element group 130d.
 図12B,図12Cに示すように、各段のアンテナ素子120a,120b,120c,120dは、それぞれ、水平面において、円周状等間隔配置である。また、第2アンテナ素子120bは、第1アンテナ素子120aよりも径方向外方に配置され、第1アンテナ素子120aが描く円周よりも大きな円周を描くように配置されている。また、同様に、第3アンテナ素子120bは第2アンテナ素子120bよりも、第4アンテナ素子120bは第3アンテナ素子120cよりも径方向外方に配置されている。 As shown in FIGS. 12B and 12C, the antenna elements 120a, 120b, 120c, and 120d at the respective stages are arranged at equal circumferential intervals on the horizontal plane. In addition, the second antenna element 120b is disposed radially outward from the first antenna element 120a, and is disposed so as to draw a circumference larger than the circumference drawn by the first antenna element 120a. Similarly, the third antenna element 120b is disposed radially outward from the second antenna element 120b, and the fourth antenna element 120b is disposed radially outward from the third antenna element 120c.
 平面アンテナであるアンテナ素子120は、傾斜面201の表面に形成されているため、アンテナ素子120の面方向が、傾斜している。したがって、各アンテナ素子120は、水平面においては径方向外方であって、垂直面においては、斜め上方に向く指向性を持つ。 Since the antenna element 120 that is a planar antenna is formed on the surface of the inclined surface 201, the surface direction of the antenna element 120 is inclined. Therefore, each antenna element 120 has directivity that is radially outward in the horizontal plane and obliquely upward in the vertical plane.
 図12Aに示すように、円周状に配置された同じ高さのアンテナ素子120a,120b,120c,120dは、同相合成される。したがって、第1アンテナ素子群130a、第2アンテナ素子群130b、第3アンテナ素子群130c及び第4アンテナ素子群140dは、それぞれ、水平面において無指向性となるビームを形成する。水平面において無指向性であることで、基地局30が移動局10からみてどの方向にあっても、基地局30との安定した通信が可能となる。 As shown in FIG. 12A, the antenna elements 120a, 120b, 120c, and 120d having the same height and arranged circumferentially are combined in phase. Accordingly, the first antenna element group 130a, the second antenna element group 130b, the third antenna element group 130c, and the fourth antenna element group 140d each form a beam that is non-directional on a horizontal plane. By being non-directional on the horizontal plane, stable communication with the base station 30 is possible regardless of the direction in which the base station 30 is viewed from the mobile station 10.
 また、図12Aに示すように、第2実施形態のアンテナ装置100では、第1アンテナ素子群130a、第2アンテナ素子群130b、第3アンテナ素子群130c及び第4アンテナ素子群130dを4つのアンテナとして、4つのアンテナによるアレイアンテナとして機能する。4つのアンテナ130a,130b,130c,130dは、垂直方向に位置が異なるため、ビームフォーミングにより、垂直面における指向性を変えることができる。車載移動局10と基地局30との垂直方向の相対的位置に応じて、垂直面における指向性変えることで、基地局30の向きにおいて大きな利得を得ることができ、安定した高速通信が可能となる。 As shown in FIG. 12A, in the antenna device 100 of the second embodiment, the first antenna element group 130a, the second antenna element group 130b, the third antenna element group 130c, and the fourth antenna element group 130d are divided into four antennas. As an array antenna with four antennas. Since the four antennas 130a, 130b, 130c, and 130d have different positions in the vertical direction, the directivity in the vertical plane can be changed by beam forming. By changing the directivity in the vertical plane according to the relative position in the vertical direction between the in-vehicle mobile station 10 and the base station 30, a large gain can be obtained in the direction of the base station 30, and stable high-speed communication is possible. Become.
 また、第2実施形態では、アンテナ素子120が傾斜面201に配置されているため、大きな利得を得やすいアンテナ正面方向が斜め上方を向いている。基地局30は、一般に、高所に配置されているため、アンテナ正面方向が垂直方向であったり、水平方向であったりする場合に比べて、アンテナ正面方向が斜め上方であると、基地局30との通信において高い利得を得やすい。 In the second embodiment, since the antenna element 120 is disposed on the inclined surface 201, the antenna front direction in which a large gain is easily obtained faces obliquely upward. Since the base station 30 is generally arranged at a high place, the base station 30 has an antenna front direction obliquely upward as compared with a case where the antenna front direction is a vertical direction or a horizontal direction. It is easy to obtain a high gain in communication with
 しかも、傾斜面201に沿って並んだ4つのアンテナ130a,130b,130c,130dは、アレイ合成され、各アンテナの位相が、可変位相器405によって調整されることで、チルト角制御が行える。チルト角制御により、基地局30の向きに適切にビームを向けることができる。第2実施形態では、第1実施形態のように、水平面における指向性制御は行わないが、垂直面における指向性制御を行うことで、アンテナ利得を得ることができる。 Furthermore, the four antennas 130a, 130b, 130c, and 130d arranged along the inclined surface 201 are array-synthesized, and the tilt angle can be controlled by adjusting the phase of each antenna by the variable phase shifter 405. By tilt angle control, the beam can be appropriately directed in the direction of the base station 30. In the second embodiment, the directivity control in the horizontal plane is not performed as in the first embodiment, but the antenna gain can be obtained by performing the directivity control in the vertical plane.
[3.他の観点からの発明の開示] [3. Disclosure of Invention from Other Viewpoint]
[3.1 構成] [3.1 Configuration]
[3.1.1 第1項]
 アンテナ装置であって、
 ベースと、
 前記ベースに支持され、水平面においてリング状に配置された複数の第1アンテナ素子と、
 前記ベースに支持され、水平面においてリング状に配置された複数の第2アンテナ素子と、
を備え、
 複数の前記第2アンテナ素子は、複数の前記第1アンテナ素子よりも下方に配置され、複数の前記第1アンテナ素子よりも前記リングの径方向外方に配置され、
 複数の前記第1アンテナ素子及び複数の前記第2アンテナ素子は、それぞれ、前記リングの径方向外方かつ斜め上方に向く指向性を有する
 アンテナ装置。
[3.1.1 Item 1]
An antenna device,
Base and
A plurality of first antenna elements supported by the base and arranged in a ring shape in a horizontal plane;
A plurality of second antenna elements supported by the base and arranged in a ring shape in a horizontal plane;
With
The plurality of second antenna elements are disposed below the plurality of first antenna elements, and are disposed radially outward of the ring from the plurality of first antenna elements.
The plurality of first antenna elements and the plurality of second antenna elements each have directivity directed radially outward and obliquely upward of the ring.
[3.1.2 第2項]
 複数の前記第1アンテナ素子及び複数の第2アンテナ素子は、水平面において無指向性となるビームを形成する
 第1項に記載の車載移動局用アンテナ装置。
[3.1.2 Item 2]
The on-vehicle mobile station antenna device according to claim 1, wherein the plurality of first antenna elements and the plurality of second antenna elements form a beam that is non-directional on a horizontal plane.
[3.1.3 第3項]
 複数の前記第1アンテナ素子と複数の前記第2アンテナ素子とのアレイ合成によりビームのチルト角制御が行われる請求項10~12のいずれか1項に記載の車載移動局用アンテナ装置。
[3.1.3 Item 3]
The in-vehicle mobile station antenna apparatus according to any one of claims 10 to 12, wherein beam tilt angle control is performed by array synthesis of the plurality of first antenna elements and the plurality of second antenna elements.
[3.1.4 第4項]
 前記アンテナ装置は、車載移動局用である
 第1項~第3項のいずれか1項に記載のアンテナ装置。
[3.1.4 Item 4]
The antenna device according to any one of claims 1 to 3, wherein the antenna device is for an in-vehicle mobile station.
[3.1.5 第5項]
 第1項~第3項いずれか1項に記載のアンテナ装置を備えた移動局。
[3.1.5 Item 5]
A mobile station comprising the antenna device according to any one of items 1 to 3.
[3.2 説明] [3.2 Explanation]
[3.2.1 第1項]
 前述の第1項に係るアンテナ装置は、ベースと、前記ベースに支持され、水平面においてリング状に配置された複数の第1アンテナ素子と、前記ベースに支持され、水平面においてリング状に配置された複数の第2アンテナ素子と、を備える。ここで、水平面は、アンテナ装置において物理的に存在している必要はなく、仮想的に観念される水平面であれば足りる。また、リング状とは、アンテナ素子そのものの形状がリング状であるのではなく、複数のアンテナ素子の配置の全体的な形態がリング状であることをいう。リングは、真円であってもよいし、楕円であってもよいし、多角形であってもよい。リング状配置の複数のアンテナ素子は、互いに接触している必要はなく、各アンテナ素子間には間隔が存在する。第1項に係るアンテナ装置によれば、水平方向全方向に対応できるとともに、斜め上方の指向性を持つことができる。
[3.2.1 Paragraph 1]
The antenna device according to the first aspect described above is provided with a base, a plurality of first antenna elements supported by the base and arranged in a ring shape on a horizontal plane, and supported by the base and arranged in a ring shape on a horizontal plane. A plurality of second antenna elements. Here, the horizontal plane does not have to physically exist in the antenna device, and may be a horizontal plane that is virtually conceived. The ring shape means that the shape of the antenna element itself is not a ring shape, but the overall arrangement of the plurality of antenna elements is a ring shape. The ring may be a perfect circle, an ellipse, or a polygon. The plurality of antenna elements arranged in a ring shape need not be in contact with each other, and there is a space between the antenna elements. According to the antenna device according to the first item, it is possible to deal with all horizontal directions and to have diagonally upward directivity.
[3.2.2 第2項]
 第2項のアンテナ装置によれば、水平面において無指向性となるビームを形成することができる。
[3.2.2 Item 2]
According to the antenna device of the second term, it is possible to form a beam that is non-directional on a horizontal plane.
[3.2.3 第3項]
 第3項のアンテナ装置によれば、複数の前記第1アンテナ素子と複数の前記第2アンテナ素子とのアレイ合成によりビームのチルト角制御を行える。
[3.2.3 Item 3]
According to the antenna device of the third item, the tilt angle of the beam can be controlled by array synthesis of the plurality of first antenna elements and the plurality of second antenna elements.
[3.2.4 第4項]
 前記アンテナ装置は、車載移動局用に好適である。
[3.2.5 第5項]
 移動局は、第1項~第3項いずれか1項に記載のアンテナ装置を備えることができる。
[3.2.4 Item 4]
The antenna device is suitable for an on-vehicle mobile station.
[3.2.5 Item 5]
The mobile station can include the antenna device according to any one of Items 1 to 3.
[4.付記]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
[4. Addendum]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined not by the above-described meaning but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
10 車載移動局
20 車両
20a 天井
30 モバイル通信基地局
40 無線LAN無線部
50 端末
100 アンテナ装置
110 ベース
111 取付部
112 支持体
120 アンテナ素子
120a 第1アンテナ素子
120b 第2アンテナ素子
120c 第3アンテナ素子
120d 第4アンテナ素子
130a 第1アンテナ素子群
130b 第2アンテナ素子群
130c 第3アンテナ素子群
130d 第4アンテナ素子群
140 アンテナ
150 キャリブレーション用アンテナ素子
200 軸心
201 側面
210 径方向
220 ビーム
251 ビーム
252 ビーム
253 ビーム
254 ビーム
255 ビーム
256 ビーム
257 ビーム
258 ビーム
261 ビーム
362 ビーム
263 ビーム
301 調整部
302 調整部
303 調整部
332 調整部
333 調整部
350 選択部
351 第1ポート
352 第2ポート
355 スイッチ
401 位相器
402 減衰器
405 可変位相器
410 合成器
500 信号処理部
600 制御部
700 円周
DESCRIPTION OF SYMBOLS 10 In-vehicle mobile station 20 Vehicle 20a Ceiling 30 Mobile communication base station 40 Wireless LAN radio | wireless part 50 Terminal 100 Antenna apparatus 110 Base 111 Attachment part 112 Support body 120 Antenna element 120a 1st antenna element 120b 2nd antenna element 120c 3rd antenna element 120d Fourth antenna element 130a First antenna element group 130b Second antenna element group 130c Third antenna element group 130d Fourth antenna element group 140 Antenna 150 Antenna element 200 for calibration 200 Axis center 201 Side face 210 Radial direction 220 Beam 251 Beam 252 Beam 253 Beam 254 Beam 255 Beam 256 Beam 257 Beam 258 Beam 261 Beam 362 Beam 263 Beam 301 Adjustment unit 302 Adjustment unit 303 Adjustment unit 332 Adjustment unit 333 Adjustment Part 350 selecting unit 351 first port 352 second port 355 switch 401 phase shifter 402 attenuator 405 variable phase shifter 410 combiner 500 the signal processing unit 600 the control unit 700 circle

Claims (14)

  1.  モバイル通信基地局と通信する車載移動局用のアンテナ装置であって、
     車両に取り付けられるベースと、
     前記ベースに支持された複数の第1アンテナ素子と、
    を備え、
     複数の前記第1アンテナ素子は、水平面において円周状に等間隔に配置され、それぞれ前記円周の径方向外方に向く指向性を有する
     車載移動局用アンテナ装置。
    An antenna device for an in-vehicle mobile station that communicates with a mobile communication base station,
    A base attached to the vehicle;
    A plurality of first antenna elements supported by the base;
    With
    The plurality of first antenna elements are arranged at equal intervals in a circumferential shape on a horizontal plane, and each has a directivity facing radially outward of the circumference.
  2.  複数の前記第1アンテナ素子は、水平面全方向にビームを向けることができるように配置されている
     請求項1に記載の車載移動局用アンテナ装置。
    The on-vehicle mobile station antenna device according to claim 1, wherein the plurality of first antenna elements are arranged so as to direct a beam in all horizontal directions.
  3.  複数の前記第1アンテナ素子のうちの一部を、前記モバイル通信基地局との通信に用いられる1又は複数の使用アンテナ素子として選択する選択部を更に備える
     請求項2に記載の車載移動局用アンテナ装置。
    The on-vehicle mobile station according to claim 2, further comprising a selection unit that selects a part of the plurality of first antenna elements as one or a plurality of antenna elements used for communication with the mobile communication base station. Antenna device.
  4.  前記車載移動局用アンテナ装置の移動に応じて水平面におけるビームの向きを変えるために、前記使用アンテナ素子として選択される第1アンテナ素子を切り替える切替処理を実行する制御部を更に備える
     請求項3に記載の車載移動局用アンテナ装置。
    The apparatus according to claim 3, further comprising: a switching unit that performs a switching process for switching the first antenna element selected as the antenna element to be used in order to change a beam direction in a horizontal plane according to the movement of the antenna device for in-vehicle mobile station. The antenna apparatus for vehicle-mounted mobile stations of description.
  5.  切り替え後の複数の使用アンテナ素子の数及び円周方向間隔は、切り替え前の複数の使用アンテナ素子の数及び円周方向間隔と同じである
     請求項4に記載の車載移動局用アンテナ装置。
    The in-vehicle mobile station antenna device according to claim 4, wherein the number of used antenna elements and the circumferential interval after switching are the same as the number of used antenna elements and the circumferential interval before switching.
  6.  切り替え後の複数の使用アンテナ素子の少なくともいずれか一つは、切り替え前の複数の使用アンテナ素子に含まれる
     請求項4又は5に記載の車載移動局用アンテナ装置。
    The on-vehicle mobile station antenna device according to claim 4 or 5, wherein at least one of the plurality of used antenna elements after switching is included in the plurality of used antenna elements before switching.
  7.  前記切替処理は、前記車載移動局用アンテナ装置と前記モバイル通信基地局との相対運行方向を算出し、前記相対運行方向に基づいて、前記使用アンテナ素子として選択される第1アンテナ素子を切り替えることを含む
     請求項4~6のいずれか1項に記載の車載移動局用アンテナ装置。
    The switching process calculates a relative operation direction between the on-vehicle mobile station antenna device and the mobile communication base station, and switches a first antenna element selected as the use antenna element based on the relative operation direction. The on-vehicle mobile station antenna device according to any one of claims 4 to 6.
  8.  各第1アンテナ素子のアンテナキャリブレーションのための複数のキャリブレーション用アンテナ素子を更に備える
     請求項1~7のいずれか1項に記載の車載移動局用アンテナ装置。
    The in-vehicle mobile station antenna device according to any one of claims 1 to 7, further comprising a plurality of calibration antenna elements for antenna calibration of each first antenna element.
  9.  複数の前記第1アンテナ素子の数と同数の複数の第2アンテナ素子を更に備え、
     複数の前記第2アンテナ素子は、複数の前記第1アンテナ素子とは垂直方向に異なる位置に配置され、水平面において円周状に等間隔に配置され、それぞれの円周方向位置が、いずれか一つの前記第1アンテナ素子の円周方向位置と一致し、それぞれ前記円周の径方向外方に向く指向性を有する
     請求項1~8のいずれか1項に記載の車載移動局用アンテナ装置。
    A plurality of second antenna elements equal in number to the plurality of first antenna elements;
    The plurality of second antenna elements are arranged at different positions in the vertical direction from the plurality of first antenna elements, are arranged circumferentially at equal intervals on a horizontal plane, and each circumferential position is any one of them. The in-vehicle mobile station antenna device according to any one of claims 1 to 8, wherein the antenna device has a directivity that coincides with a circumferential position of each of the first antenna elements and that faces each radially outward of the circumference.
  10.  複数の前記第2アンテナ素子は、複数の前記第1アンテナ素子よりも下方に配置され、複数の前記第1アンテナ素子よりも前記円周の径方向外方に配置されている
     請求項9に記載の車載移動局用アンテナ装置。
    The plurality of second antenna elements are arranged below the plurality of first antenna elements, and are arranged radially outward of the circumference from the plurality of first antenna elements. An in-vehicle mobile station antenna device.
  11.  複数の前記第1アンテナ素子及び複数の前記第2アンテナ素子は、それぞれ、前記円周の径方向外方かつ斜め上方に向く指向性を有する
     請求項10に記載の車載移動局用アンテナ装置。
    The on-vehicle mobile station antenna device according to claim 10, wherein the plurality of first antenna elements and the plurality of second antenna elements each have directivity directed radially outward and obliquely upward of the circumference.
  12.  複数の前記第1アンテナ素子及び複数の第2アンテナ素子は、水平面において無指向性となるビームを形成する
     請求項10又は11に記載の車載移動局用アンテナ装置。
    The on-vehicle mobile station antenna device according to claim 10 or 11, wherein the plurality of first antenna elements and the plurality of second antenna elements form a non-directional beam on a horizontal plane.
  13.  複数の前記第1アンテナ素子と複数の前記第2アンテナ素子とのアレイ合成によりビームのチルト角制御が行われる請求項10~12のいずれか1項に記載の車載移動局用アンテナ装置。 The on-vehicle mobile station antenna device according to any one of claims 10 to 12, wherein beam tilt angle control is performed by array synthesis of a plurality of the first antenna elements and a plurality of the second antenna elements.
  14.  請求項1~13のいずれか1項に記載の車載移動局用アンテナ装置を備えた車載移動局。 A vehicle-mounted mobile station comprising the vehicle-mounted mobile station antenna device according to any one of claims 1 to 13.
PCT/JP2017/035017 2016-11-14 2017-09-27 Antenna device for in-vehicle mobile station, and in-vehicle mobile station WO2018088051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018550060A JP6988816B2 (en) 2016-11-14 2017-09-27 Antenna device for in-vehicle mobile station and in-vehicle mobile station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221380 2016-11-14
JP2016-221380 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088051A1 true WO2018088051A1 (en) 2018-05-17

Family

ID=62110598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035017 WO2018088051A1 (en) 2016-11-14 2017-09-27 Antenna device for in-vehicle mobile station, and in-vehicle mobile station

Country Status (2)

Country Link
JP (1) JP6988816B2 (en)
WO (1) WO2018088051A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084841A1 (en) * 2018-10-24 2020-04-30 住友電気工業株式会社 Antenna module, and vehicle
JP2021044789A (en) * 2019-09-13 2021-03-18 株式会社東芝 Electronic device and method
US11223120B2 (en) 2019-01-30 2022-01-11 Murata Manufacturing Co., Ltd. Antenna module and antenna device
DE102021122527A1 (en) 2021-08-31 2023-03-02 Harman Becker Automotive Systems Gmbh Communication unit and vehicle with communication unit
US11916296B2 (en) 2019-03-18 2024-02-27 Autonetworks Technologies, Ltd. Antenna device for mobile body and communication device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203402A (en) * 1986-03-04 1987-09-08 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna system for mobile satellite communication
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array
US5650788A (en) * 1991-11-08 1997-07-22 Teledesic Corporation Terrestrial antennas for satellite communication system
US6292134B1 (en) * 1999-02-26 2001-09-18 Probir K. Bondyopadhyay Geodesic sphere phased array antenna system
US20020036595A1 (en) * 2000-09-22 2002-03-28 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
JP2003163526A (en) * 2001-11-29 2003-06-06 Matsushita Electric Ind Co Ltd On-vehicle antenna device and on-vehicle wireless equipment using the same
JP2004158911A (en) * 2002-11-01 2004-06-03 Murata Mfg Co Ltd Sector antenna system and on-vehicle transmitter-receiver
JP2005210364A (en) * 2004-01-22 2005-08-04 Hitachi Kokusai Electric Inc Radio communication device
JP2005292995A (en) * 2004-03-31 2005-10-20 Kyocera Corp Operation management system
JP2007235649A (en) * 2006-03-02 2007-09-13 Nec Corp Drive controller and driving control method of data relay antenna
JP2007318433A (en) * 2006-05-25 2007-12-06 Fujitsu Ten Ltd In-vehicle communication apparatus
JP2009294911A (en) * 2008-06-05 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Monitor information gathering terminal and measuring device, and facility maintenance check system
US20100079347A1 (en) * 2007-01-19 2010-04-01 David Hayes Selectable beam antenna
JP2010178351A (en) * 2010-02-25 2010-08-12 Casio Computer Co Ltd Information terminal device and control program thereof
US20140085143A1 (en) * 2012-09-27 2014-03-27 Raytheon Company Methods and apparatus for fragmented phased array radar
JP2015128211A (en) * 2013-12-27 2015-07-09 電気興業株式会社 Antenna device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203402A (en) * 1986-03-04 1987-09-08 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna system for mobile satellite communication
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array
US5650788A (en) * 1991-11-08 1997-07-22 Teledesic Corporation Terrestrial antennas for satellite communication system
US6292134B1 (en) * 1999-02-26 2001-09-18 Probir K. Bondyopadhyay Geodesic sphere phased array antenna system
US20020036595A1 (en) * 2000-09-22 2002-03-28 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
JP2003163526A (en) * 2001-11-29 2003-06-06 Matsushita Electric Ind Co Ltd On-vehicle antenna device and on-vehicle wireless equipment using the same
JP2004158911A (en) * 2002-11-01 2004-06-03 Murata Mfg Co Ltd Sector antenna system and on-vehicle transmitter-receiver
JP2005210364A (en) * 2004-01-22 2005-08-04 Hitachi Kokusai Electric Inc Radio communication device
JP2005292995A (en) * 2004-03-31 2005-10-20 Kyocera Corp Operation management system
JP2007235649A (en) * 2006-03-02 2007-09-13 Nec Corp Drive controller and driving control method of data relay antenna
JP2007318433A (en) * 2006-05-25 2007-12-06 Fujitsu Ten Ltd In-vehicle communication apparatus
US20100079347A1 (en) * 2007-01-19 2010-04-01 David Hayes Selectable beam antenna
JP2009294911A (en) * 2008-06-05 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Monitor information gathering terminal and measuring device, and facility maintenance check system
JP2010178351A (en) * 2010-02-25 2010-08-12 Casio Computer Co Ltd Information terminal device and control program thereof
US20140085143A1 (en) * 2012-09-27 2014-03-27 Raytheon Company Methods and apparatus for fragmented phased array radar
JP2015128211A (en) * 2013-12-27 2015-07-09 電気興業株式会社 Antenna device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084841A1 (en) * 2018-10-24 2020-04-30 住友電気工業株式会社 Antenna module, and vehicle
DE112019005320T5 (en) 2018-10-24 2021-07-15 Sumitomo Electric Industries, Ltd. Antenna module and vehicle
US11862846B2 (en) 2018-10-24 2024-01-02 Sumitomo Electric Industries, Ltd. Antenna module and vehicle
US11223120B2 (en) 2019-01-30 2022-01-11 Murata Manufacturing Co., Ltd. Antenna module and antenna device
US11916296B2 (en) 2019-03-18 2024-02-27 Autonetworks Technologies, Ltd. Antenna device for mobile body and communication device
JP2021044789A (en) * 2019-09-13 2021-03-18 株式会社東芝 Electronic device and method
JP7210408B2 (en) 2019-09-13 2023-01-23 株式会社東芝 Electronic device and method
DE102021122527A1 (en) 2021-08-31 2023-03-02 Harman Becker Automotive Systems Gmbh Communication unit and vehicle with communication unit

Also Published As

Publication number Publication date
JPWO2018088051A1 (en) 2019-09-26
JP6988816B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2018088051A1 (en) Antenna device for in-vehicle mobile station, and in-vehicle mobile station
US11296745B2 (en) Mobile station, RF front-end module for mobile station, and front-end integrated circuit
US10916844B2 (en) Array antennas having a plurality of directional beams
US9000982B2 (en) Conformal array antenna
US9306270B2 (en) Antenna array and method for operating antenna array
US9577737B2 (en) Antenna apparatus and method for beam forming thereof
US9294176B2 (en) Transmitter
US10333599B2 (en) Antenna array beamforming in a remote unit(s) in a wireless distribution system (WDS)
US20230269604A1 (en) Adjacent beam determination
EP3790343A1 (en) Minimizing uplink and downlink interference in mobile network connected drones
US20150380807A1 (en) Diversified antenna system for vehicle-to-vehicle or vehicle-to-infrastructure communication
JP3629195B2 (en) Arrival direction estimation apparatus and arrival direction estimation method
CA3107016C (en) Radar device
JP2019041367A (en) Antenna device
EP3512116B1 (en) A drone for sidewardly communicating with flying drones
WO2021039362A1 (en) Antenna device and sandwich array device
KR101686904B1 (en) Twin beam controller for antenna and antenna device using the same
JP2022098395A (en) Radar device
CN111967118A (en) Device and method for constructing circular antenna array
WO2020026546A1 (en) Radar device
JP2020136807A (en) Antenna module, mobile communication device, vehicle, switching method, and computer program
JP2021508196A (en) Interference reduction based on the phase distribution of the antenna system
US20230246348A1 (en) Apparatus for processing radio frequency signals, network element for a wireless communications system, and user equipment for a wireless communications system
JP2006186584A (en) Arrival direction estimating device
JP2023060603A (en) Phased-array antenna, mobile body-mounted communication system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869825

Country of ref document: EP

Kind code of ref document: A1