WO2018088020A1 - Method for producing silicon material - Google Patents

Method for producing silicon material Download PDF

Info

Publication number
WO2018088020A1
WO2018088020A1 PCT/JP2017/033018 JP2017033018W WO2018088020A1 WO 2018088020 A1 WO2018088020 A1 WO 2018088020A1 JP 2017033018 W JP2017033018 W JP 2017033018W WO 2018088020 A1 WO2018088020 A1 WO 2018088020A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon material
halogen
carbon
containing polymer
space
Prior art date
Application number
PCT/JP2017/033018
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 大島
敬史 毛利
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2018088020A1 publication Critical patent/WO2018088020A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a silicon material.
  • Silicon is known to be used as a component of semiconductors, solar cells, secondary batteries, etc. Therefore, research on silicon is actively conducted.
  • Patent Document 1 describes a silicon composite in which silicon oxide is coated with carbon by thermal CVD, and a lithium ion secondary battery including the silicon composite as a negative electrode active material.
  • the present inventors synthesized a layered silicon compound mainly composed of polysilane obtained by reacting CaSi 2 and an acid to remove Ca in Patent Document 2, and heating the layered silicon compound at 300 ° C. or higher.
  • a silicon material from which hydrogen is released is manufactured, and a lithium ion secondary battery including the silicon material as an active material is reported.
  • the inventors synthesized a layered silicon compound mainly composed of polysilane obtained by reacting CaSi 2 and an acid to remove Ca in Patent Document 3, and heating the layered silicon compound at 300 ° C. or higher.
  • a silicon material from which hydrogen has been released and to produce a carbon-silicon composite in which the silicon material is coated with carbon, and a lithium ion secondary battery comprising the composite as an active material. Reporting.
  • Patent Document 4 a method for synthesizing a one-pot carbon-coated silicon material using CaSi 2 and a halogen-containing polymer.
  • the one-pot synthesis method of a carbon-coated silicon material using CaSi 2 and a halogen-containing polymer specifically disclosed in Patent Document 4 is a method in which a reaction is allowed to proceed with CaSi 2 and a halogen-containing polymer in contact (Example 1). ) And CaSi 2 and the halogen-containing polymer in a non-contact state (Example 2). And, as evaluated in Evaluation Example 3 of Patent Document 4, it can be said that the method of allowing the reaction to proceed with CaSi 2 and the halogen-containing polymer in a non-contact state can suppress local heat generation, and is therefore easy to control the reaction. .
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a production method capable of producing a silicon material with an excellent yield.
  • the halogen-containing polymer is decomposed by heating to generate a decomposition gas, and the decomposition gas and CaSi 2 come into contact with each other. By doing so, the reaction is started.
  • the present inventor since the flow path of the decomposition gas generated by the decomposition of the halogen-containing polymer is not determined, the contact between the decomposition gas and CaSi 2 is not necessarily sufficient. Conceivable. Therefore, the present inventor directed to arrange CaSi 2 on the flow path of the decomposition gas generated by the decomposition of the halogen-containing polymer.
  • Patent Document 4 specifically disclosed a one-pot synthesis method of carbon-coated silicon material using CaSi 2 and a halogen-containing polymer. However, by appropriately controlling the heating temperature, The inventor has demonstrated that a coated silicon material and a silicon material not coated with carbon can be made separately. And this inventor completed this invention.
  • the method for producing a silicon material according to the present invention includes: Including the first heating step of heating at a temperature higher than the decomposition gas generation temperature of the halogen-containing polymer and lower than the carbonization temperature in the presence of CaSi 2 and the halogen-containing polymer; Ceramics comprising a first space in which the halogen-containing polymer is disposed, a second space in which the CaSi 2 is disposed, the first space and the second space, and a through hole through which the decomposition gas can pass. And a heating furnace in which the second space is provided in the flow path of the decomposition gas generated from the halogen-containing polymer in the first space.
  • the yield of the silicon material is improved by using a specific heating furnace.
  • FIG. 1 is a schematic diagram of a heating furnace used in Example 1.
  • FIG. 3 is a schematic diagram of a heating furnace used in Comparative Example 1.
  • FIG. 4 is a SEM image of a cross section of a negative electrode of Example 4. It is the SEM image which expanded the SEM image of FIG. 10 is a SEM image of a cross section of a negative electrode of Comparative Example 4.
  • the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y.
  • a new numerical range can be configured by arbitrarily combining these upper limit value and lower limit value, and the numerical values listed in the examples.
  • numerical values arbitrarily selected from any one of the numerical ranges described above can be used as the upper and lower numerical values of the new numerical range.
  • the method for producing a silicon material of the present invention (hereinafter, the silicon material produced by the method for producing a silicon material of the present invention may be referred to as “the silicon material of the present invention”) in the presence of CaSi 2 and a halogen-containing polymer.
  • polyvinyl chloride is decomposed by heating to release hydrogen chloride.
  • -(CH 2 CHCl) n- ⁇ nHCl +-(CH CH) n-
  • CaSi 2 acts with the released hydrogen chloride to form a layered silicon compound represented by Si 6 H 6 .
  • a carbon covering silicon material can be manufactured by performing the 2nd heating process heated at the temperature more than the carbonization temperature of a halogen-containing polymer after the 1st heating process in the manufacturing method of the silicon material of this invention. That is, the carbon-coated silicon material produced by the method for producing a carbon-coated silicon material of the present invention is referred to as “the carbon-coated silicon material of the present invention, unless otherwise specified”. Is sometimes referred to as “silicon material”.) Includes a second heating step of heating at a temperature equal to or higher than the carbonization temperature of the halogen-containing polymer after the first heating step in the method for producing a silicon material of the present invention. To do.
  • the manufacturing method of the silicon material of the present invention and the manufacturing method of the carbon-coated silicon material of the present invention may be collectively referred to as “the manufacturing method of the present invention”.
  • the reaction mechanism of the second heating step is as follows.
  • CaSi 2 generally has a structure in which a Ca layer and a Si layer are stacked.
  • CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted.
  • CaSi 2 used in the production method of the present invention is preferably pulverized in advance.
  • the preferred average particle diameter of CaSi 2 can be exemplified by the range of 0.1 to 50 ⁇ m, more preferably within the range of 0.3 to 20 ⁇ m, still more preferably within the range of 0.5 to 10 ⁇ m, particularly preferably 1 to A range of 5 ⁇ m can be exemplified.
  • the average particle diameter in the present specification means a D 50 as measured by conventional laser diffraction type particle size distribution measuring apparatus.
  • the first heating step and, if necessary, the second heating step can be performed on CaSi 2 having a large surface area, so that the desired reaction proceeds smoothly. I can expect.
  • the silicon material or the carbon-coated silicon material of the present invention is manufactured with the shape of CaSi 2 substantially maintained, so the silicon material of the present invention or the carbon-coated silicon material itself is pulverized. There is no need to do. Furthermore, the aspect ratio of the particles of the silicon material or the carbon-coated silicon material of the present invention is increased by previously pulverizing CaSi 2 .
  • the aspect ratio is a value of the minor axis / major axis when the particles of the silicon material or the carbon-coated silicon material of the present invention are observed.
  • the long diameter means the longest diameter of the particles of the silicon material or the carbon-coated silicon material of the present invention
  • the short diameter means the longest diameter among the diameters orthogonal to the longest diameter.
  • the silicon material or carbon-coated silicon material of the present invention has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. When the silicon material is pulverized, the bonded portions of the layers in the laminated structure are broken, and flat particles having a small aspect ratio are manufactured.
  • the aspect ratio r in the particles of the silicon material or carbon-coated silicon material of the present invention is preferably 0.8 ⁇ r ⁇ 1.
  • the powder characteristics such as fluidity of the silicon material or the carbon-coated silicon material of the present invention improve, so the handling of the silicon material or carbon-coated silicon material of the present invention in the manufacturing process becomes easier.
  • suitable charge / discharge can be expected.
  • the halogen-containing polymer may be any polymer that contains halogen in its chemical structure.
  • the reason is as follows. Under the heating conditions of the method for producing a silicon material of the present invention, hydrohalic acid and / or halogen molecules are released from the halogen-containing polymer. Then, the negatively charged halogen constituting the hydrohalic acid or the halogen molecule reacts with Ca of CaSi 2 . That is, in the case of a halogen-containing polymer, it becomes a source of minus-charged halogen, and a desired reaction proceeds.
  • CaSi 2 reacts with hydrohalic acid, Si 6 H 6 and calcium halide are produced, and when CaSi 2 reacts with a halogen molecule, silicon halide and calcium halide are produced. .
  • R 1 is a trivalent or higher hydrocarbon group
  • X is independently halogen
  • n is an integer of 1 or more.
  • Hydrocarbons include saturated hydrocarbons and unsaturated hydrocarbons.
  • Saturated hydrocarbons include chain saturated hydrocarbons and cyclic saturated hydrocarbons.
  • the unsaturated hydrocarbon includes a chain unsaturated hydrocarbon and a cyclic unsaturated hydrocarbon.
  • the chemical structure that is the main chain of the monomer unit is a chain saturated hydrocarbon, a cyclic saturated hydrocarbon, a chain unsaturated hydrocarbon, a cyclic Any of unsaturated hydrocarbons may be used.
  • Specific examples of the chemical structure that becomes the main chain of the monomer unit include CH, CH 2 —CH, CH ⁇ CH, a cyclohexane ring, and a benzene ring.
  • the chemical structure bonded to the main chain of the monomer unit (hereinafter sometimes referred to as a sub-chain) is hydrogen, chain saturated hydrocarbon, cyclic saturated hydrocarbon, chain unsaturated hydrocarbon. Any of cyclic unsaturated hydrocarbons may be used. Moreover, hydrogen of each hydrocarbon may be substituted with another element or another hydrocarbon.
  • X is any of fluorine, chlorine, bromine and iodine. When n is 2 or more, each X may be the same type or other types. X may be directly bonded to the carbon that is the main chain of the monomer unit, or may be bonded to the carbon of the sub-chain. The upper limit of n is determined by the chemical structure of R 1 .
  • the halogen-containing polymer may be composed of only a single type of monomer unit of general formula (1), or may be composed of a plurality of types of monomer units of general formula (1). May be. Moreover, the halogen-containing polymer may be composed of a monomer unit of the general formula (1) and a monomer unit having another chemical structure.
  • the halogen-containing polymer is composed only of the monomer unit of the general formula (1). preferable.
  • the molecular weight of the halogen-containing polymer is preferably in the range of 1,000 to 1,000,000, more preferably in the range of 1,000 to 500,000, and still more preferably in the range of 3,000 to 100,000. In terms of the degree of polymerization of the halogen-containing polymer, it is preferably in the range of 50,000 to 100,000, more preferably in the range of 100,000 to 50,000, and still more preferably in the range of 100 to 10,000.
  • R 2 , R 3 and R 4 are each independently selected from a monovalent hydrocarbon group, a halogen-substituted hydrocarbon group, hydrogen and halogen, and X is a halogen.
  • hydrocarbon and halogen are as described in the general formula (1).
  • Preferred hydrocarbons in the general formula (2) include alkyl groups having 1 to 6 carbon atoms, vinyl groups, and phenyl groups.
  • R 2 , R 3 and R 4 of the monomer unit of the general formula (2) are independently hydrogen or halogen.
  • Particularly suitable halogen-containing polymers include polyvinylidene fluoride, polyvinyl fluoride, polyvinylidene chloride, and polyvinyl chloride.
  • the amount of CaSi 2 and halogen-containing polymer used will be described. It is preferable to use a halogen-containing polymer in an amount such that the molar ratio of halogen is 2 or more with respect to Ca of CaSi 2 to be used.
  • the heating temperature in the first heating step is a temperature not lower than the decomposition gas generation temperature of the halogen-containing polymer and lower than the carbonization temperature.
  • polyvinyl chloride which is one embodiment of the halogen-containing polymer, may start the dehydrochlorination reaction from around 100 ° C., or desorb at about 210 to 300 ° C. under normal conditions. It is known to initiate a hydrogen chloride reaction, and generally organic compounds are carbonized from around 400 ° C.
  • the heating temperature in the first heating step can be exemplified by a range of 100 to 400 ° C., preferably a range of 210 to 380 ° C., more preferably a range of 230 to 360 ° C., and a range of 250 to 350 ° C. Even more preferable.
  • the heating temperature in the second heating step in the method for producing a carbon-coated silicon material of the present invention is a temperature equal to or higher than the carbonization temperature of the halogen-containing polymer.
  • organic compounds generally carbonize from around 400 ° C.
  • the higher the heating temperature in the second heating step the higher the conductivity of the carbide film.
  • the heating temperature in the second heating step is too high, there is a concern about the generation of by-products such as silicon carbide.
  • a structure peculiar to a silicon material considered to be derived from the Si layer in the raw material CaSi 2 is considered to be very advantageous when the silicon material is used as the negative electrode active material of the power storage device.
  • the melting point of silicon is 1414 ° C.
  • the heating temperature in the second heating step needs to be lower than the melting point of silicon.
  • the heating temperature in the second heating step is preferably within a range of 400 to 1400 ° C., more preferably within a range of 500 to 1100 ° C., further preferably within a range of 600 to 1000 ° C., and 700 to 950 It is particularly preferably within the range of ° C, and most preferably within the range of 800 to 900 ° C.
  • the ratio of amorphous silicon and silicon crystallites contained in the silicon material or the carbon-coated silicon material, and the size of the silicon crystallites can also be adjusted.
  • the shape and size of the nano-level layer containing amorphous silicon and silicon crystallites contained in the manufactured silicon material or carbon-coated silicon material can also be prepared.
  • the size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm.
  • the size of the silicon crystallite was obtained by performing X-ray diffraction measurement (XRD measurement) on a silicon material or a carbon-coated silicon material, and using the half width of the diffraction peak on the Si (111) surface of the obtained XRD chart. Calculated from Scherrer's equation.
  • the plate-like silicon body is thick for efficient insertion and desorption reaction of lithium ions. Is preferably in the range of 10 nm to 100 nm, more preferably in the range of 20 nm to 50 nm.
  • the length of the plate-like silicon body in the longitudinal direction is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the plate-like silicon body preferably has (length in the longitudinal direction) / (thickness) in the range of 2 to 1000.
  • the production method of the present invention is preferably carried out in an inert gas atmosphere such as argon, helium, nitrogen gas.
  • the heating furnace divides the first space in which the halogen-containing polymer is arranged, the second space in which CaSi 2 is arranged, the first space and the second space, and has a through-hole through which a decomposition gas of the halogen-containing polymer can pass. And a second space is provided in the flow path of the decomposition gas generated from the halogen-containing polymer in the first space. Due to this structure of the heating furnace, the decomposition gas generated from the halogen-containing polymer can be brought into contact with CaSi 2 without waste, so that a desired reaction proceeds suitably.
  • the heating furnace include a high frequency induction heating furnace, an electric furnace, an arc furnace, and a gas furnace.
  • the first space and the second space in the heating furnace may be formed by arranging a ceramic portion inside the heating furnace. Moreover, you may install in the heating furnace the reaction chamber provided with the 1st chamber provided with 1st space, the 2nd chamber provided with 2nd space, and the ceramic part.
  • Materials for the reaction chamber include refractory metals such as molybdenum, tungsten, tantalum or niobium, or alumina, zirconia, silicon nitride, aluminum nitride, silicon carbide, cordierite, mullite, steatite, calcia, magnesia, sialon, quartz Ceramics such as Vycor are good.
  • refractory metals such as molybdenum, tungsten, tantalum or niobium, or alumina, zirconia, silicon nitride, aluminum nitride, silicon carbide, cordierite, mullite, steatite, calcia, magnesia, sialon, quartz Ceramics such as Vycor are good.
  • the reaction chamber may be sealable, may be provided with a ventilation part, and may be provided with a valve that opens and closes according to the internal pressure.
  • the first space in the reaction chamber preferably has a structure in which there are no ventilation portions and on-off valves other than the ceramic portion.
  • the second space in the reaction chamber preferably has a structure in which a ventilation portion other than the ceramic portion and an on-off valve are present.
  • the ceramic part divides the first space and the second space to suppress direct contact between the halogen-containing polymer and CaSi 2 , and through holes in the ceramic part are generated from the halogen-containing polymer in the first space. It becomes a passage for the cracked gas to be guided and guides the cracked gas to the second space.
  • the open porosity of the ceramic portion include a range of 30 to 80% and a range of 35 to 75%. The open porosity can be measured by a method defined in JIS R 1634, JIS R 2205, JIS A 1509-3, or the like.
  • Examples of the material of the ceramic part include alumina, zirconia, silicon nitride, aluminum nitride, silicon carbide, cordierite, mullite, steatite, calcia, magnesia, sialon, quartz and Vycor.
  • the ceramic portion is arranged as a first space in the lower portion, a second space in the upper portion, and a partition between the first space and the second space.
  • the diameter of the through hole of the ceramic portion is preferably smaller than the particle diameter of CaSi 2 .
  • the silicon material or the carbon-coated silicon material obtained by the production method of the present invention may be pulverized or classified to form particles having a certain particle size distribution.
  • the average particle diameter (D 50 ) is in the range of 1 to 30 ⁇ m. More preferably, the average particle diameter (D 50 ) is in the range of 1 to 10 ⁇ m.
  • the silicon material or the carbon-coated silicon material obtained by the production method of the present invention is preferably subjected to a cleaning step of cleaning with a solvent having a relative dielectric constant of 5 or more.
  • the cleaning step is a step of removing unnecessary components adhering to the silicon material or the carbon-coated silicon material by cleaning with a solvent having a relative dielectric constant of 5 or more (hereinafter sometimes referred to as “cleaning solvent”). is there.
  • cleaning solvent a solvent having a relative dielectric constant of 5 or more
  • This step is mainly intended to remove salts that can be dissolved in a washing solvent such as calcium halide.
  • a washing solvent such as calcium halide.
  • the cleaning step may be a method in which a silicon material or a carbon-coated silicon material is immersed in a cleaning solvent, or a method in which the silicon material or the carbon-coated silicon material is exposed to a cleaning solvent.
  • a solvent having a higher relative dielectric constant is preferable from the viewpoint of ease of dissolution of the salt, and a solvent having a relative dielectric constant of 10 or more or 15 or more can be presented as a more preferable one.
  • the range of the relative dielectric constant of the cleaning solvent is preferably within the range of 5 to 90, more preferably within the range of 10 to 90, and even more preferably within the range of 15 to 90.
  • a single solvent may be used, or a mixed solvent of a plurality of solvents may be used.
  • washing solvent examples include water, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, ethylene glycol, glycerin, and N-methyl-2-pyrrolidone.
  • the water as the washing solvent is preferably distilled water, reverse osmosis membrane permeated water, or deionized water.
  • washing solvent water, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, and acetone are particularly preferable.
  • the other solvent is preferably 1 to 100 parts by volume, more preferably 2 to 50 parts by volume, further preferably 5 to 30 parts by volume with respect to 100 parts by volume of water. It is advisable to employ a mixed solvent mixed at a ratio of parts.
  • a mixed solvent as the cleaning solvent, the dispersibility and affinity of the silicon material or the carbon-coated silicon material with respect to the cleaning solvent may be improved, and as a result, unnecessary components are preferably eluted in the cleaning solvent.
  • the cleaning step it is preferable to remove the cleaning solvent from the silicon material or the carbon-coated silicon material by filtration and drying.
  • the cleaning process may be repeated multiple times.
  • the washing solvent may be changed.
  • water with an extremely high relative dielectric constant is selected as the cleaning solvent in the first cleaning process, and water is efficiently removed by using ethanol or acetone with low boiling point that is compatible with water as the next cleaning solvent.
  • the cleaning solvent can be easily prevented from remaining.
  • the drying step after the washing step is preferably performed in a reduced pressure environment, and more preferably at a temperature equal to or higher than the boiling point of the washing solvent.
  • the temperature is preferably 80 ° C to 110 ° C.
  • the silicon material or carbon-coated silicon material of the present invention is manufactured through the manufacturing method of the present invention as described above.
  • a conventional known technique may be applied.
  • a so-called thermal CVD method in which the material is carbonized by bringing the material into contact with an organic gas under heating in a non-oxidizing atmosphere and carbonizing the organic gas may be applied.
  • organic substance gas a gas obtained by vaporizing an organic substance, a gas obtained by sublimating an organic substance, or an organic vapor can be used.
  • organic substances that generate organic gases include those that can be thermally decomposed and carbonized by heating in a non-oxidizing atmosphere, for example, saturated fats such as methane, ethane, propane, butane, isobutane, pentane, and hexane.
  • Hydrocarbons unsaturated aliphatic hydrocarbons such as ethylene, propylene, acetylene, alcohols such as methanol, ethanol, propanol, butanol, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, benzoic acid ,
  • aromatic hydrocarbons such as salicylic acid, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, esters such as ethyl acetate, butyl acetate, amyl acetate, and fatty acids Thing, and the like.
  • the organic substance is preferably a saturated aliphatic hydrocarbon such as propane.
  • the treatment temperature in the carbon coating step varies depending on the type of organic substance, but it is preferable to set it at a temperature higher by 50 ° C. than the temperature at which the organic substance gas is thermally decomposed. However, when the temperature is too high or the organic gas concentration is too high, so-called soot is generated, so it is preferable to select a condition that does not generate soot.
  • the thickness of the carbon layer to be formed can be controlled by the amount of organic matter and the processing time.
  • the carbon coating process it is desirable to perform the carbon coating process while the material is in a fluid state. By doing in this way, the whole surface of material can be made to contact organic substance gas, and a uniform carbon layer can be formed.
  • There are various methods such as using a fluidized bed to bring the material into a fluid state, but it is preferable to contact the material with an organic gas while stirring the material.
  • the material remaining on the baffle plate is stirred by dropping from a predetermined height as the rotary furnace rotates. At that time, the material comes into contact with the organic gas in a stirred state, and a carbon layer is formed on the surface of the material. Therefore, a uniform carbon layer can be formed on the entire material.
  • the first heating step and the second heating step are preferably performed with the material in a fluidized state if possible.
  • the carbon-coated silicon material of the present invention obtained by performing the second heating step and the carbon coating step is in a state where the carbon coating is performed by two kinds of methods.
  • Such a carbon-coated silicon material of the present invention is in a state in which a coating state that has been insufficient with one carbon coating method is complemented with another carbon coating method. Therefore, it is considered that the secondary battery including the carbon-coated silicon material of the present invention as a negative electrode active material has favorable battery characteristics.
  • the carbon-coated silicon material after the second heating step may be heated in the presence of oxygen to remove carbon as carbon dioxide or carbon monoxide.
  • the carbon removal step a part or all of the carbon of the carbon-coated silicon material can be removed. Examples of the heating temperature include 350 to 650 ° C.
  • the carbon removal step it can be expected that impurities contained in the carbon-coated silicon material are also removed at the same time. For this reason, it is speculated that the carbon-coated silicon material of the present invention produced by being subjected to the carbon coating step after the carbon removal step is a more suitable material.
  • the carbon-coated silicon material of the present invention contains carbon and silicon as essential components.
  • carbon is preferably contained within a range of 1 to 30% by mass, more preferably within a range of 3 to 20% by mass. More preferably, it is contained within the range of mass%.
  • silicon is preferably contained in the range of 50 to 99% by mass, more preferably in the range of 60 to 97% by mass, and 65 to 95%. More preferably, it is contained within the range of mass%.
  • the silicon material or carbon-coated silicon material of the present invention may contain impurities derived from raw materials such as Ca and halogen, and inevitable impurities.
  • impurities derived from raw materials such as Ca and halogen, and inevitable impurities. Examples of the abundance (% by mass) of such impurities include the following ranges. Ca: 0 to 5% by mass, 0 to 3% by mass, 0 to 2% by mass, 0.1 to 3% by mass, 0.5 to 2% by mass Halogen: 0 to 10% by mass, 0.001 to 6% by mass
  • the silicon material or carbon-coated silicon material of the present invention preferably has a cavity inside.
  • the cavity expands when the insertion or desorption reaction of lithium ions occurs. And presumed to play a role in buffering contraction.
  • the silicon material or carbon-coated silicon material obtained by the production method of the present invention can be used as a negative electrode active material for a secondary battery such as a lithium ion secondary battery.
  • a lithium ion secondary battery will be described as an example of a secondary battery.
  • the lithium ion secondary battery of the present invention comprises the silicon material or the carbon-coated silicon material of the present invention as a negative electrode active material.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode including the silicon material or the carbon-coated silicon material of the present invention as a negative electrode active material, an electrolytic solution, and a separator.
  • the positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
  • the current collector refers to a chemically inert electronic conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel, etc. Metal materials can be exemplified.
  • the current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive additive and / or a binder.
  • a positive electrode active material a solid solution composed of a spinel such as LiMn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, And a polyanionic compound represented by (selected from at least one of Fe).
  • tavorite compound the M a transition metal
  • LiMPO 4 F such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal
  • Limbo 3 such LiFeBO 3 (M is a transition metal
  • M is a transition metal
  • any metal oxide used as the positive electrode active material may have the above-described composition formula as a basic composition, and those obtained by substituting the metal elements contained in the basic composition with other metal elements can also be used as the positive electrode active material.
  • a positive electrode active material a positive electrode active material that does not contain lithium ions that contribute to charge / discharge, for example, sulfur alone, a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , V 2 O 5 , MnO 2 and other oxides, polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetate-based organic substances, and other known materials can also be used.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material.
  • a positive electrode active material that does not contain lithium it is necessary to add ions to the positive electrode and / or the negative electrode in advance by a known method.
  • a metal or a compound containing the ion may be used.
  • Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent.
  • the conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles.
  • the Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the active material layer alone or in combination of two or more.
  • the binder serves to hold the active material and the conductive auxiliary agent on the surface of the current collector and maintain the conductive network in the electrode.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, poly ( Examples thereof include acrylic resins such as (meth) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethylcellulose. These binders may be used singly or in plural.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. What is necessary is just to employ
  • the negative electrode active material layer includes a negative electrode active material and, if necessary, a conductive additive and / or a binder.
  • the negative electrode active material may be any material as long as it contains the silicon material or carbon-coated silicon material of the present invention, and may employ only the silicon material or carbon-coated silicon material of the present invention, or the silicon material or carbon of the present invention.
  • a covering silicon material and a known negative electrode active material may be used in combination.
  • a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method
  • An active material may be applied to the surface of the body.
  • an active material, a solvent, and, if necessary, a binder and / or a conductive aid are mixed to prepare a slurry.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the slurry is applied to the surface of the current collector and then dried. In order to increase the electrode density, the dried product may be compressed.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic esters examples include ethylene carbonate, propylene carbonate, butylene carbonate, fluorinated ethylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.
  • ethers examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • non-aqueous solvent a compound in which part or all of hydrogen in the chemical structure of the specific solvent is substituted with fluorine may be employed.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate.
  • a solution dissolved at a concentration of about / L can be exemplified.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes.
  • natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • the electrode body may be any of a stacked type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are stacked.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with lithium ion secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles.
  • the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power supplies for ships and / or auxiliary power supply sources, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.
  • Example 1 As shown in FIG. 1, the carbon-coated silicon material of Example 1 was manufactured using a heating furnace 10 in which the reaction chamber 1 was arranged.
  • the reaction chamber 1 is a ceramic pot and the heating furnace 10 is an electric furnace.
  • 1.6 g of polyvinyl chloride 2 (degree of polymerization 1100) was placed at the bottom of the reaction chamber 1.
  • a plate-shaped ceramic part 3 having a through hole 8 and an open porosity of 40% was disposed on the top of the polyvinyl chloride 2.
  • 1 g of CaSi 2 powder 4 was placed on the ceramic part 3. Then, not to touch the CaSi 2 powder 4, the top of CaSi 2 powder 4 was placed the lid 5 made of ceramic.
  • the heating furnace 10 includes a first space 6 in which the polyvinyl chloride 2 that is a halogen-containing polymer is disposed, a second space 7 in which the CaSi 2 powder 4 is disposed, and the first space 6 and the second space 7.
  • the ceramic part 3 which comprises the through-hole 8 which partitions and the decomposition gas of the polyvinyl chloride 2 can pass through is provided.
  • the temperature of the electric furnace was increased to 900 ° C. at a rate of 5 ° C./min, and maintained at 900 ° C. for 1 hour. This heating condition corresponds to the first heating step and the second heating step.
  • the reaction product was washed with water, then with acetone, and then dried under reduced pressure to obtain a black carbon-coated silicon material of Example 1.
  • Example 2 A black carbon-coated silicon material of Example 2 was obtained in the same manner as in Example 1 except that 24 g of polyvinyl chloride and 15 g of CaSi 2 powder were used.
  • Comparative Example 1 A black carbon-coated silicon material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the heating furnace 20 of FIG. 2 was used instead of the heating furnace 10 of FIG. Specifically, 1 g of CaSi 2 powder 4 was put in a first crucible 11 made of alumina, and the first crucible 11 was placed in a second crucible 12 made of alumina larger than this. 1.6 g of polyvinyl chloride 2 (degree of polymerization 1100) was put in the second crucible 12 made of alumina, and the lid 13 was put on the second crucible 12. The second crucible 12 with the lid 13 was placed in a heating furnace 20 as an electric furnace. There is a gap between the second crucible 12 and the lid 13. Thereafter, a black carbon-coated silicon material of Comparative Example 1 was obtained in the same manner as in Example 1.
  • Comparative Example 2 A black carbon-coated silicon material of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that 24 g of polyvinyl chloride and 15 g of CaSi 2 powder were used.
  • the production method of the present invention is a method with excellent yield.
  • Example 3 The black carbon-coated silicon of Example 3 was used in the same manner as in Example 1 except that a plate-like ceramic part having an open porosity of 71% was used instead of the plate-like ceramic part having an open porosity of 40%. Obtained material.
  • Comparative Example 3 The carbon-coated silicon material of Comparative Example 3 was prepared in the same manner as in Example 1 except that a plate-like ceramic part having an open porosity of 0% was used instead of the plate-like ceramic part having an open porosity of 40%. Obtained.
  • Example 4 CaSi 2 was pulverized using a jet mill to produce CaSi 2 powder having an average particle size of 2.18 ⁇ m.
  • 2 g of the above CaSi 2 powder and 3.6 g of polyvinyl chloride (degree of polymerization 1100) were placed in the reaction chamber in the same manner as in Example 1.
  • the electric furnace was heated to 300 ° C. at a rate of 5 ° C./min and maintained at 300 ° C. for 30 minutes. This heating condition corresponds to the first heating step.
  • the reaction product was washed with water and then dried under reduced pressure to obtain the silicon material of Example 4.
  • Example 4 45 parts by mass of the silicon material of Example 4 as the negative electrode active material, 40 parts by mass of natural graphite as the negative electrode active material, 5 parts by mass of acetylene black as the conductive additive, 10 parts by mass of polyamideimide as the binder, N-methyl-2- Pyrrolidone was mixed to prepare a slurry.
  • the slurry was applied to the surface of an electrolytic copper foil having a thickness of about 20 ⁇ m as a current collector using a doctor blade and dried to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely joined by a roll press. This was vacuum dried at 200 ° C. for 2 hours to produce a negative electrode of Example 4.
  • Comparative Example 4 Using CaSi 2 that was not pulverized by a jet mill, a silicon material and a negative electrode of Comparative Example 4 were produced as follows. CaSi 2 was added to concentrated hydrochloric acid in an ice bath and stirred under an argon atmosphere. After confirming the completion of foaming from the reaction solution, the reaction solution was warmed to room temperature, the resulting reaction solution was filtered, the residue was washed with distilled water, washed with ethanol, vacuum dried and layered. A silicon compound was obtained. The layered silicon compound was heated up to 900 ° C. at a rate of 5 ° C./min in an argon gas atmosphere, and a heat treatment was performed for 1 hour at 900 ° C.
  • the silicon material of the comparative example 4 whose average particle diameter is 3 micrometers was manufactured by grind
  • a negative electrode of Comparative Example 4 was produced in the same manner as in Example 4 except that the silicon material of Comparative Example 4 was used instead of the silicon material of Example 4.
  • Example 3 The silicon material of Example 4 and the silicon material of Comparative Example 4 were subjected to an image analysis particle size distribution analyzer (trade name: IF-200 nano, Jusco International Co., Ltd.) to perform image analysis of particles, and the average value of the aspect ratio was calculated. Calculated.
  • the average value of the aspect ratio of the silicon material of Example 4 was 0.842, and the average value of the aspect ratio of the silicon material of Comparative Example 4 was 0.758. It can be said that the silicon material of Example 4 has a shape closer to a sphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a production method capable of producing a silicon material at excellent yield. This method for producing a silicon material includes a first heating step of performing heating, in the presence of both CaSi2 and a halogen-containing polymer, at a temperature greater than or equal to the temperature at which decomposition gas of the halogen-containing polymer is generated and lower than the carbonization temperature of the halogen-containing polymer. The method for producing a silicon material is characterized by using a heating furnace which includes a first space in which the halogen-containing polymer is disposed, a second space in which the CaSi2 is disposed, and a ceramic portion which divides the first space and the second space and has a through hole through which the decomposition gas can pass, the second space being provided in a flow channel of the decomposition gas generated from the halogen-containing polymer in the first space.

Description

シリコン材料の製造方法Method for producing silicon material
 本発明は、シリコン材料の製造方法に関するものである。 The present invention relates to a method for manufacturing a silicon material.
 シリコンは半導体、太陽電池、二次電池などの構成要素として用いられることが知られており、それゆえに、シリコンに関する研究が活発に行われている。 Silicon is known to be used as a component of semiconductors, solar cells, secondary batteries, etc. Therefore, research on silicon is actively conducted.
 例えば、特許文献1には、熱CVDにより酸化珪素を炭素で被覆したシリコン複合体が記載されており、当該シリコン複合体を負極活物質として具備するリチウムイオン二次電池が記載されている。 For example, Patent Document 1 describes a silicon composite in which silicon oxide is coated with carbon by thermal CVD, and a lithium ion secondary battery including the silicon composite as a negative electrode active material.
 また、本発明者らは、特許文献2にて、CaSiと酸とを反応させてCaを除去したポリシランを主成分とする層状シリコン化合物を合成し、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させたシリコン材料を製造したこと、及び、当該シリコン材料を活物質として具備するリチウムイオン二次電池を報告している。 Moreover, the present inventors synthesized a layered silicon compound mainly composed of polysilane obtained by reacting CaSi 2 and an acid to remove Ca in Patent Document 2, and heating the layered silicon compound at 300 ° C. or higher. In this report, a silicon material from which hydrogen is released is manufactured, and a lithium ion secondary battery including the silicon material as an active material is reported.
 さらに、本発明者らは、特許文献3にて、CaSiと酸とを反応させてCaを除去したポリシランを主成分とする層状シリコン化合物を合成し、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させたシリコン材料を製造し、さらに、当該シリコン材料を炭素で被覆した炭素-シリコン複合体を製造したこと、及び、当該複合体を活物質として具備するリチウムイオン二次電池を報告している。 Furthermore, the inventors synthesized a layered silicon compound mainly composed of polysilane obtained by reacting CaSi 2 and an acid to remove Ca in Patent Document 3, and heating the layered silicon compound at 300 ° C. or higher. To produce a silicon material from which hydrogen has been released, and to produce a carbon-silicon composite in which the silicon material is coated with carbon, and a lithium ion secondary battery comprising the composite as an active material. Reporting.
 そして、本発明者らは、特許文献4にて、CaSiと含ハロゲンポリマーを用いた炭素被覆シリコン材料のone-pot合成方法を報告している。 Then, the present inventors have reported in Patent Document 4 a method for synthesizing a one-pot carbon-coated silicon material using CaSi 2 and a halogen-containing polymer.
特許第3952180号公報Japanese Patent No. 3952180 国際公開第2014/080608号International Publication No. 2014/080608 国際公開第2015/114692号International Publication No. 2015/114692 国際公開第2016/031146号International Publication No. 2016/031146
 特許文献4で具体的に開示されたCaSiと含ハロゲンポリマーを用いた炭素被覆シリコン材料のone-pot合成方法は、CaSiと含ハロゲンポリマーを接触状態として反応を進行させる方法(実施例1)と、CaSiと含ハロゲンポリマーを非接触状態として反応を進行させる方法(実施例2)であった。そして、特許文献4の評価例3で評価しているとおり、CaSiと含ハロゲンポリマーを非接触状態として反応を進行させる方法は、局所的な発熱を抑制できるため、反応をコントロールしやすいといえる。 The one-pot synthesis method of a carbon-coated silicon material using CaSi 2 and a halogen-containing polymer specifically disclosed in Patent Document 4 is a method in which a reaction is allowed to proceed with CaSi 2 and a halogen-containing polymer in contact (Example 1). ) And CaSi 2 and the halogen-containing polymer in a non-contact state (Example 2). And, as evaluated in Evaluation Example 3 of Patent Document 4, it can be said that the method of allowing the reaction to proceed with CaSi 2 and the halogen-containing polymer in a non-contact state can suppress local heat generation, and is therefore easy to control the reaction. .
 本発明者が、CaSiと含ハロゲンポリマーを非接触状態として反応を進行させる方法についての検討を進めたところ、収率の点で改善の余地があることを知見した。 When the present inventor made a study on a method for allowing the reaction to proceed in a non-contact state between CaSi 2 and the halogen-containing polymer, it was found that there was room for improvement in terms of yield.
 本発明は、かかる事情に鑑みて為されたものであり、優れた収率でシリコン材料を製造できる製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a production method capable of producing a silicon material with an excellent yield.
 本発明者は、特許文献4の製造方法について熟慮した。CaSiと含ハロゲンポリマーを用いた炭素被覆シリコン材料のone-pot合成方法においては、初めに、含ハロゲンポリマーが加熱により分解されて、分解ガスを発生し、当該分解ガスとCaSiとが接触することで、反応が開始される。ここで、特許文献4の実施例2で開示された方法においては、含ハロゲンポリマーの分解によって生じる分解ガスの流路が定まっていないため、分解ガスとCaSiとの接触が必ずしも十分ではなかったと考えられる。そこで、本発明者は、含ハロゲンポリマーの分解によって生じる分解ガスの流路上に、CaSiを配置することを指向した。 The inventor considered the manufacturing method of Patent Document 4. In the one-pot synthesis method of carbon-coated silicon material using CaSi 2 and a halogen-containing polymer, first, the halogen-containing polymer is decomposed by heating to generate a decomposition gas, and the decomposition gas and CaSi 2 come into contact with each other. By doing so, the reaction is started. Here, in the method disclosed in Example 2 of Patent Document 4, since the flow path of the decomposition gas generated by the decomposition of the halogen-containing polymer is not determined, the contact between the decomposition gas and CaSi 2 is not necessarily sufficient. Conceivable. Therefore, the present inventor directed to arrange CaSi 2 on the flow path of the decomposition gas generated by the decomposition of the halogen-containing polymer.
 また、特許文献4で具体的に開示されたのは、CaSiと含ハロゲンポリマーを用いた炭素被覆シリコン材料のone-pot合成方法であったが、加熱温度を適切に管理することで、炭素被覆シリコン材料と、炭素被覆されていないシリコン材料とを作り分けることができることを本発明者は実証した。そして、本発明者は本発明を完成させた。 Further, Patent Document 4 specifically disclosed a one-pot synthesis method of carbon-coated silicon material using CaSi 2 and a halogen-containing polymer. However, by appropriately controlling the heating temperature, The inventor has demonstrated that a coated silicon material and a silicon material not coated with carbon can be made separately. And this inventor completed this invention.
 すなわち、本発明のシリコン材料の製造方法は、
 CaSi及び含ハロゲンポリマーの共存下、前記含ハロゲンポリマーの分解ガス発生温度以上かつ炭化温度未満の温度で加熱する第一加熱工程を含み、
 前記含ハロゲンポリマーを配置する第一空間と、前記CaSiを配置する第二空間と、前記第一空間と前記第二空間とを区画し、前記分解ガスが通過可能な貫通孔を具備するセラミックス部と、を備え、かつ、前記第一空間の前記含ハロゲンポリマーから発生する分解ガスの流路に、前記第二空間が設けられている加熱炉を用いることを特徴とする。
That is, the method for producing a silicon material according to the present invention includes:
Including the first heating step of heating at a temperature higher than the decomposition gas generation temperature of the halogen-containing polymer and lower than the carbonization temperature in the presence of CaSi 2 and the halogen-containing polymer;
Ceramics comprising a first space in which the halogen-containing polymer is disposed, a second space in which the CaSi 2 is disposed, the first space and the second space, and a through hole through which the decomposition gas can pass. And a heating furnace in which the second space is provided in the flow path of the decomposition gas generated from the halogen-containing polymer in the first space.
 本発明のシリコン材料の製造方法においては、特定の加熱炉を用いることで、シリコン材料の収率が向上する。 In the method for producing a silicon material of the present invention, the yield of the silicon material is improved by using a specific heating furnace.
実施例1で用いた加熱炉の模式図である。1 is a schematic diagram of a heating furnace used in Example 1. FIG. 比較例1で用いた加熱炉の模式図である。3 is a schematic diagram of a heating furnace used in Comparative Example 1. FIG. 実施例4の負極の断面のSEM像である。4 is a SEM image of a cross section of a negative electrode of Example 4. 図3のSEM像を拡大したSEM像である。It is the SEM image which expanded the SEM image of FIG. 比較例4の負極の断面のSEM像である。10 is a SEM image of a cross section of a negative electrode of Comparative Example 4.
 以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで新たな数値範囲を構成し得る。更に、上記の何れかの数値範囲内から任意に選択した数値を新たな数値範囲の上限、下限の数値とすることができる。 The best mode for carrying out the present invention will be described below. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. A new numerical range can be configured by arbitrarily combining these upper limit value and lower limit value, and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from any one of the numerical ranges described above can be used as the upper and lower numerical values of the new numerical range.
 本発明のシリコン材料の製造方法(以下、本発明のシリコン材料の製造方法で製造されるシリコン材料を「本発明のシリコン材料」ということがある。)は、CaSi及び含ハロゲンポリマーの共存下、前記含ハロゲンポリマーの分解ガス発生温度以上かつ炭化温度未満の温度で加熱する第一加熱工程を含み、前記含ハロゲンポリマーを配置する第一空間と、前記CaSiを配置する第二空間と、前記第一空間と前記第二空間とを区画し、前記分解ガスが通過可能な貫通孔を具備するセラミックス部と、を備え、かつ、前記第一空間の前記含ハロゲンポリマーから発生する分解ガスの流路に、前記第二空間が設けられている加熱炉を用いることを特徴とする。 The method for producing a silicon material of the present invention (hereinafter, the silicon material produced by the method for producing a silicon material of the present invention may be referred to as “the silicon material of the present invention”) in the presence of CaSi 2 and a halogen-containing polymer. A first heating step of heating at a temperature higher than the decomposition gas generation temperature of the halogen-containing polymer and less than the carbonization temperature, a first space in which the halogen-containing polymer is arranged, and a second space in which the CaSi 2 is arranged, A ceramic portion that divides the first space and the second space and has a through hole through which the cracked gas can pass, and the cracked gas generated from the halogen-containing polymer in the first space A heating furnace in which the second space is provided in the flow path is used.
 含ハロゲンポリマーとしてポリ塩化ビニルを採用した場合の第一加熱工程の反応機構を以下に説明する。 The reaction mechanism of the first heating step when polyvinyl chloride is employed as the halogen-containing polymer will be described below.
 加熱により、まず、ポリ塩化ビニルが分解し、塩化水素を放出する。
-(CHCHCl)n- → nHCl + -(CH=CH)n-
First, polyvinyl chloride is decomposed by heating to release hydrogen chloride.
-(CH 2 CHCl) n- → nHCl +-(CH = CH) n-
 次に、CaSiが上記放出された塩化水素と作用し、Siで表される層状シリコン化合物となる。
 3CaSi + 6HCl → Si + 3CaCl
Next, CaSi 2 acts with the released hydrogen chloride to form a layered silicon compound represented by Si 6 H 6 .
3CaSi 2 + 6HCl → Si 6 H 6 + 3CaCl 2
 そして、加熱条件下であるので、Siの水素が離脱して、シリコンが得られる。
 Si → 6Si + 3H
And since it is under heating conditions, hydrogen of Si 6 H 6 is released and silicon is obtained.
Si 6 H 6 → 6Si + 3H 2
 また、本発明のシリコン材料の製造方法における第一加熱工程の後に、含ハロゲンポリマーの炭化温度以上の温度で加熱する第二加熱工程を行うことで、炭素被覆シリコン材料を製造することができる。
 すなわち、本発明の炭素被覆シリコン材料の製造方法(以下、特別な限定を付す場合を除いて、本発明の炭素被覆シリコン材料の製造方法で製造される炭素被覆シリコン材料を「本発明の炭素被覆シリコン材料」ということがある。)は、本発明のシリコン材料の製造方法における第一加熱工程の後に、前記含ハロゲンポリマーの炭化温度以上の温度で加熱する第二加熱工程を含むことを特徴とする。以下、本発明のシリコン材料の製造方法と、本発明の炭素被覆シリコン材料の製造方法とを総合して、「本発明の製造方法」ということがある。
 第一加熱工程の反応機構に引き続く、第二加熱工程の反応機構は以下のとおりである。
Moreover, a carbon covering silicon material can be manufactured by performing the 2nd heating process heated at the temperature more than the carbonization temperature of a halogen-containing polymer after the 1st heating process in the manufacturing method of the silicon material of this invention.
That is, the carbon-coated silicon material produced by the method for producing a carbon-coated silicon material of the present invention is referred to as “the carbon-coated silicon material of the present invention, unless otherwise specified”. Is sometimes referred to as “silicon material”.) Includes a second heating step of heating at a temperature equal to or higher than the carbonization temperature of the halogen-containing polymer after the first heating step in the method for producing a silicon material of the present invention. To do. Hereinafter, the manufacturing method of the silicon material of the present invention and the manufacturing method of the carbon-coated silicon material of the present invention may be collectively referred to as “the manufacturing method of the present invention”.
Following the reaction mechanism of the first heating step, the reaction mechanism of the second heating step is as follows.
 ポリ塩化ビニルの分解物である(CH=CH)nはその炭化温度以上の加熱条件において炭化する。その際にシリコンと(CH=CH)nの炭化物が共存するため、シリコンと炭素が一体化した炭素被覆シリコン材料が得られる。
 Si + (CH=CH)n → 炭素被覆Si + nH
(CH = CH) n, which is a decomposition product of polyvinyl chloride, is carbonized under heating conditions higher than its carbonization temperature. At that time, since silicon and (CH = CH) n carbide coexist, a carbon-coated silicon material in which silicon and carbon are integrated is obtained.
Si + (CH═CH) n → carbon-coated Si + nH 2
 以下、詳細に本発明の製造方法について説明する。
 CaSiは、一般にCa層とSi層が積層した構造である。CaSiは、公知の製造方法で合成してもよく、市販されているものを採用してもよい。本発明の製造方法に用いるCaSiは、あらかじめ粉砕しておくことが好ましい。好ましいCaSiの平均粒子径として、0.1~50μmの範囲内を例示でき、より好ましくは0.3~20μmの範囲内、さらに好ましくは0.5~10μmの範囲内、特に好ましくは1~5μmの範囲内を例示できる。なお、本明細書における平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で測定した場合のD50を意味する。
Hereinafter, the production method of the present invention will be described in detail.
CaSi 2 generally has a structure in which a Ca layer and a Si layer are stacked. CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted. CaSi 2 used in the production method of the present invention is preferably pulverized in advance. The preferred average particle diameter of CaSi 2 can be exemplified by the range of 0.1 to 50 μm, more preferably within the range of 0.3 to 20 μm, still more preferably within the range of 0.5 to 10 μm, particularly preferably 1 to A range of 5 μm can be exemplified. Incidentally, the average particle diameter in the present specification means a D 50 as measured by conventional laser diffraction type particle size distribution measuring apparatus.
 CaSiをあらかじめ粉砕しておくことで、表面積の大きなCaSiに対して、第一加熱工程及び必要に応じて第二加熱工程を行うことができるので、所望の反応が円滑に進行することを期待できる。また、本発明の製造方法においては、CaSiの形状を概ね保持した状態で本発明のシリコン材料又は炭素被覆シリコン材料が製造されるので、本発明のシリコン材料自体又は炭素被覆シリコン材料自体を粉砕する必要が無くなる。さらに、CaSiをあらかじめ粉砕しておくことで、本発明のシリコン材料又は炭素被覆シリコン材料の粒子のアスペクト比は大きくなる。ここで、アスペクト比とは、本発明のシリコン材料又は炭素被覆シリコン材料の粒子を観察した際の、短径/長径の値である。長径とは、本発明のシリコン材料又は炭素被覆シリコン材料の粒子の最長径を意味し、短径とは、最長径に直交する径のうち、最も長い径を意味する。なお、本発明のシリコン材料又は炭素被覆シリコン材料は、後述するように、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するため、塊状の本発明のシリコン材料又は炭素被覆シリコン材料を粉砕すると、積層構造における層の結合部が破壊されて、アスペクト比の小さな偏平状態の粒子が製造される。 By crushing CaSi 2 in advance, the first heating step and, if necessary, the second heating step can be performed on CaSi 2 having a large surface area, so that the desired reaction proceeds smoothly. I can expect. Further, in the manufacturing method of the present invention, the silicon material or the carbon-coated silicon material of the present invention is manufactured with the shape of CaSi 2 substantially maintained, so the silicon material of the present invention or the carbon-coated silicon material itself is pulverized. There is no need to do. Furthermore, the aspect ratio of the particles of the silicon material or the carbon-coated silicon material of the present invention is increased by previously pulverizing CaSi 2 . Here, the aspect ratio is a value of the minor axis / major axis when the particles of the silicon material or the carbon-coated silicon material of the present invention are observed. The long diameter means the longest diameter of the particles of the silicon material or the carbon-coated silicon material of the present invention, and the short diameter means the longest diameter among the diameters orthogonal to the longest diameter. As will be described later, the silicon material or carbon-coated silicon material of the present invention has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. When the silicon material is pulverized, the bonded portions of the layers in the laminated structure are broken, and flat particles having a small aspect ratio are manufactured.
 本発明のシリコン材料又は炭素被覆シリコン材料の粒子におけるアスペクト比rは、0.8≦r≦1が好ましい。アスペクト比が1に近づくほど、本発明のシリコン材料又は炭素被覆シリコン材料の流動性などの粉体特性が改善するので、製造工程における本発明のシリコン材料又は炭素被覆シリコン材料の取り扱いが簡便になるし、また、本発明のシリコン材料又は炭素被覆シリコン材料を蓄電装置の負極活物質として用いた時に、好適な充放電を期待できる。 The aspect ratio r in the particles of the silicon material or carbon-coated silicon material of the present invention is preferably 0.8 ≦ r ≦ 1. As the aspect ratio approaches 1, the powder characteristics such as fluidity of the silicon material or the carbon-coated silicon material of the present invention improve, so the handling of the silicon material or carbon-coated silicon material of the present invention in the manufacturing process becomes easier. In addition, when the silicon material or the carbon-coated silicon material of the present invention is used as a negative electrode active material of a power storage device, suitable charge / discharge can be expected.
 含ハロゲンポリマーは、ハロゲンを化学構造に含むポリマーであればよい。その理由は、次のとおりである。本発明のシリコン材料の製造方法の加熱条件下であれば、含ハロゲンポリマーからは、ハロゲン化水素酸及び/又はハロゲン分子が離脱する。そして、ハロゲン化水素酸又はハロゲン分子を構成するマイナスチャージされたハロゲンが、CaSiのCaと反応する。すなわち、含ハロゲンポリマーであれば、マイナスチャージされたハロゲンの供給源となり、所望の反応が進行する。なお、CaSiがハロゲン化水素酸と反応した場合にはSiとハロゲン化カルシウムが生成し、CaSiがハロゲン分子と反応した場合にはハロゲン化シリコンとハロゲン化カルシウムが生成すると考えられる。 The halogen-containing polymer may be any polymer that contains halogen in its chemical structure. The reason is as follows. Under the heating conditions of the method for producing a silicon material of the present invention, hydrohalic acid and / or halogen molecules are released from the halogen-containing polymer. Then, the negatively charged halogen constituting the hydrohalic acid or the halogen molecule reacts with Ca of CaSi 2 . That is, in the case of a halogen-containing polymer, it becomes a source of minus-charged halogen, and a desired reaction proceeds. When CaSi 2 reacts with hydrohalic acid, Si 6 H 6 and calcium halide are produced, and when CaSi 2 reacts with a halogen molecule, silicon halide and calcium halide are produced. .
 含ハロゲンポリマーとしては、一般式(1)のモノマーユニットを有するものを挙げることができる。
 一般式(1)
As a halogen-containing polymer, what has a monomer unit of General formula (1) can be mentioned.
General formula (1)
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、Rは3価以上の炭化水素基であり、Xはそれぞれ独立にハロゲンであり、nは1以上の整数である。
Figure JPOXMLDOC01-appb-C000003
In General Formula (1), R 1 is a trivalent or higher hydrocarbon group, X is independently halogen, and n is an integer of 1 or more.
 炭化水素には、飽和炭化水素、不飽和炭化水素がある。飽和炭化水素には、鎖状飽和炭化水素と環状飽和炭化水素がある。不飽和炭化水素には、鎖状不飽和炭化水素と環状不飽和炭化水素がある。 Hydrocarbons include saturated hydrocarbons and unsaturated hydrocarbons. Saturated hydrocarbons include chain saturated hydrocarbons and cyclic saturated hydrocarbons. The unsaturated hydrocarbon includes a chain unsaturated hydrocarbon and a cyclic unsaturated hydrocarbon.
 Rの化学構造のうち、モノマーユニットの主鎖となる化学構造(重合反応に関与する炭素を含む化学構造)は、鎖状飽和炭化水素、環状飽和炭化水素、鎖状不飽和炭化水素、環状不飽和炭化水素のいずれでもよい。モノマーユニットの主鎖となる化学構造として、具体的にCH、CH-CH、CH=CH、シクロヘキサン環、ベンゼン環などを挙げることができる。 Among the chemical structures of R 1, the chemical structure that is the main chain of the monomer unit (chemical structure including carbon involved in the polymerization reaction) is a chain saturated hydrocarbon, a cyclic saturated hydrocarbon, a chain unsaturated hydrocarbon, a cyclic Any of unsaturated hydrocarbons may be used. Specific examples of the chemical structure that becomes the main chain of the monomer unit include CH, CH 2 —CH, CH═CH, a cyclohexane ring, and a benzene ring.
 Rの化学構造のうち、モノマーユニットの主鎖に結合する化学構造(以下、副鎖ということがある。)は、水素、鎖状飽和炭化水素、環状飽和炭化水素、鎖状不飽和炭化水素、環状不飽和炭化水素のいずれでもよい。また、各炭化水素の水素は、他の元素や他の炭化水素で置換されていても良い。 Among the chemical structures of R 1, the chemical structure bonded to the main chain of the monomer unit (hereinafter sometimes referred to as a sub-chain) is hydrogen, chain saturated hydrocarbon, cyclic saturated hydrocarbon, chain unsaturated hydrocarbon. Any of cyclic unsaturated hydrocarbons may be used. Moreover, hydrogen of each hydrocarbon may be substituted with another element or another hydrocarbon.
 Xはフッ素、塩素、臭素、ヨウ素のいずれかである。nが2以上の場合、各Xは同一の種類でもよいし、他の種類でもよい。Xはモノマーユニットの主鎖となる炭素に直接結合していてもよいし、副鎖の炭素に結合していてもよい。nの上限数はRの化学構造により定まる。 X is any of fluorine, chlorine, bromine and iodine. When n is 2 or more, each X may be the same type or other types. X may be directly bonded to the carbon that is the main chain of the monomer unit, or may be bonded to the carbon of the sub-chain. The upper limit of n is determined by the chemical structure of R 1 .
 含ハロゲンポリマーは、単一の種類の一般式(1)のモノマーユニットのみで構成されるものであってもよいし、複数の種類の一般式(1)のモノマーユニットで構成されるものであってもよい。また、含ハロゲンポリマーは、一般式(1)のモノマーユニットと、他の化学構造のモノマーユニットとで構成されていてもよい。 The halogen-containing polymer may be composed of only a single type of monomer unit of general formula (1), or may be composed of a plurality of types of monomer units of general formula (1). May be. Moreover, the halogen-containing polymer may be composed of a monomer unit of the general formula (1) and a monomer unit having another chemical structure.
 ここで、ハロゲンの質量%が多い含ハロゲンポリマーを採用すれば、より効率的に所望の反応が進行すると考えられるため、含ハロゲンポリマーは一般式(1)のモノマーユニットのみで構成されるのが好ましい。 Here, if a halogen-containing polymer having a high halogen mass% is employed, it is considered that the desired reaction proceeds more efficiently. Therefore, the halogen-containing polymer is composed only of the monomer unit of the general formula (1). preferable.
 含ハロゲンポリマーの分子量は、数平均分子量で1000~100万の範囲内が好ましく、1000~50万の範囲内がより好ましく、3000~10万の範囲内がさらに好ましい。含ハロゲンポリマーを重合度で表現すると、5~10万の範囲内が好ましく、10~5万の範囲内がより好ましく、100~1万の範囲内がさらに好ましい。 The molecular weight of the halogen-containing polymer is preferably in the range of 1,000 to 1,000,000, more preferably in the range of 1,000 to 500,000, and still more preferably in the range of 3,000 to 100,000. In terms of the degree of polymerization of the halogen-containing polymer, it is preferably in the range of 50,000 to 100,000, more preferably in the range of 100,000 to 50,000, and still more preferably in the range of 100 to 10,000.
 一般式(1)のモノマーユニットのうち、好適なものを以下の一般式(2)で示す。
 一般式(2)
A suitable thing is shown by the following general formula (2) among the monomer units of General formula (1).
General formula (2)
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、R、R、Rはそれぞれ独立に1価の炭化水素基、ハロゲン置換炭化水素基、水素、ハロゲンから選択され、Xはハロゲンである。
Figure JPOXMLDOC01-appb-C000004
In the general formula (2), R 2 , R 3 and R 4 are each independently selected from a monovalent hydrocarbon group, a halogen-substituted hydrocarbon group, hydrogen and halogen, and X is a halogen.
 炭化水素及びハロゲンは、一般式(1)で説明したとおりである。一般式(2)において好ましい炭化水素として、炭素数1~6のアルキル基、ビニル基、フェニル基を挙げることができる。 The hydrocarbon and halogen are as described in the general formula (1). Preferred hydrocarbons in the general formula (2) include alkyl groups having 1 to 6 carbon atoms, vinyl groups, and phenyl groups.
 上述のとおり、含ハロゲンポリマーはハロゲンの質量%が多いものが好ましいと考えられるため、一般式(2)のモノマーユニットのR、R、Rはそれぞれ独立に水素又はハロゲンが好ましい。 As described above, since it is considered that the halogen-containing polymer has a high halogen mass%, it is preferable that R 2 , R 3 and R 4 of the monomer unit of the general formula (2) are independently hydrogen or halogen.
 特に好適な含ハロゲンポリマーとしては、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリ塩化ビニリデン、ポリ塩化ビニルを挙げることができる。 Particularly suitable halogen-containing polymers include polyvinylidene fluoride, polyvinyl fluoride, polyvinylidene chloride, and polyvinyl chloride.
 CaSi及び含ハロゲンポリマーの使用量について説明すると、使用するCaSiのCaに対し、ハロゲンのモル比が2以上となる量の含ハロゲンポリマーを使用するのが好ましい。 The amount of CaSi 2 and halogen-containing polymer used will be described. It is preferable to use a halogen-containing polymer in an amount such that the molar ratio of halogen is 2 or more with respect to Ca of CaSi 2 to be used.
 本発明のシリコン材料の製造方法における第一加熱工程の加熱温度は、含ハロゲンポリマーの分解ガス発生温度以上かつ炭化温度未満の温度である。ここで、例えば、含ハロゲンポリマーの一態様であるポリ塩化ビニルは、100℃付近から脱塩化水素反応を開始する場合があることや、通常の条件下であれば、概ね210~300℃で脱塩化水素反応を開始することが知られており、また、一般に有機化合物は400℃付近から炭化する。よって、第一加熱工程の加熱温度としては、100~400℃の範囲を例示でき、そして、210~380℃の範囲が好ましく、230~360℃の範囲がより好ましく、250~350℃の範囲がさらに好ましいといえる。 In the method for producing a silicon material of the present invention, the heating temperature in the first heating step is a temperature not lower than the decomposition gas generation temperature of the halogen-containing polymer and lower than the carbonization temperature. Here, for example, polyvinyl chloride, which is one embodiment of the halogen-containing polymer, may start the dehydrochlorination reaction from around 100 ° C., or desorb at about 210 to 300 ° C. under normal conditions. It is known to initiate a hydrogen chloride reaction, and generally organic compounds are carbonized from around 400 ° C. Therefore, the heating temperature in the first heating step can be exemplified by a range of 100 to 400 ° C., preferably a range of 210 to 380 ° C., more preferably a range of 230 to 360 ° C., and a range of 250 to 350 ° C. Even more preferable.
 本発明の炭素被覆シリコン材料の製造方法における第二加熱工程の加熱温度は、含ハロゲンポリマーの炭化温度以上の温度である。上述したように、一般に有機化合物は400℃付近から炭化する。ここで、第二加熱工程の加熱温度が高ければ高いほど、導電性の高い炭化物の被膜が得られる。他方、第二加熱工程の加熱温度が高すぎると、炭化ケイ素などの副生物の発生が懸念される。
 また、原料のCaSiにおけるSi層に由来すると考えられるシリコン材料に特有の構造は、シリコン材料を蓄電装置の負極活物質として用いた時に、非常に有利となると考えられる。そして、シリコンの融点は1414℃である。よって、シリコン材料に特有の構造を維持するためには、第二加熱工程の加熱温度をシリコンの融点未満とする必要がある。
 以上の観点から、第二加熱工程の加熱温度としては、400~1400℃の範囲内が好ましく、500~1100℃の範囲内がより好ましく、600~1000℃の範囲内がさらに好ましく、700~950℃の範囲内が特に好ましく、800~900℃の範囲内が最も好ましい。
The heating temperature in the second heating step in the method for producing a carbon-coated silicon material of the present invention is a temperature equal to or higher than the carbonization temperature of the halogen-containing polymer. As described above, organic compounds generally carbonize from around 400 ° C. Here, the higher the heating temperature in the second heating step, the higher the conductivity of the carbide film. On the other hand, if the heating temperature in the second heating step is too high, there is a concern about the generation of by-products such as silicon carbide.
Further, a structure peculiar to a silicon material considered to be derived from the Si layer in the raw material CaSi 2 is considered to be very advantageous when the silicon material is used as the negative electrode active material of the power storage device. The melting point of silicon is 1414 ° C. Therefore, in order to maintain the structure peculiar to the silicon material, the heating temperature in the second heating step needs to be lower than the melting point of silicon.
From the above viewpoint, the heating temperature in the second heating step is preferably within a range of 400 to 1400 ° C., more preferably within a range of 500 to 1100 ° C., further preferably within a range of 600 to 1000 ° C., and 700 to 950 It is particularly preferably within the range of ° C, and most preferably within the range of 800 to 900 ° C.
 第一加熱工程及び第二加熱工程の加熱温度により、シリコン材料又は炭素被覆シリコン材料に含まれるアモルファスシリコン及びシリコン結晶子の割合、並びに、シリコン結晶子の大きさを調製することもでき、さらには、製造されるシリコン材料又は炭素被覆シリコン材料に含まれる、アモルファスシリコン及びシリコン結晶子を含むナノ水準の厚みの層の形状や大きさを調製することもできる。 Depending on the heating temperature of the first heating step and the second heating step, the ratio of amorphous silicon and silicon crystallites contained in the silicon material or the carbon-coated silicon material, and the size of the silicon crystallites can also be adjusted. The shape and size of the nano-level layer containing amorphous silicon and silicon crystallites contained in the manufactured silicon material or carbon-coated silicon material can also be prepared.
 上記シリコン結晶子のサイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料又は炭素被覆シリコン材料に対してX線回折測定(XRD測定)を行い、得られたXRDチャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。 The size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm. In addition, the size of the silicon crystallite was obtained by performing X-ray diffraction measurement (XRD measurement) on a silicon material or a carbon-coated silicon material, and using the half width of the diffraction peak on the Si (111) surface of the obtained XRD chart. Calculated from Scherrer's equation.
 本発明の製造方法により、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するシリコン材料又は炭素被覆シリコン材料を得ることができる。この構造は、走査型電子顕微鏡などによる観察で確認できる。本発明のシリコン材料又は炭素被覆シリコン材料を、リチウムイオン二次電池の活物質として使用することを考慮すると、リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。また、板状シリコン体の長手方向の長さは、0.1μm~50μmの範囲内のものが好ましい。また、板状シリコン体は、(長手方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。 By the manufacturing method of the present invention, a silicon material or a carbon-coated silicon material having a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction can be obtained. This structure can be confirmed by observation with a scanning electron microscope or the like. In consideration of using the silicon material or carbon-coated silicon material of the present invention as an active material of a lithium ion secondary battery, the plate-like silicon body is thick for efficient insertion and desorption reaction of lithium ions. Is preferably in the range of 10 nm to 100 nm, more preferably in the range of 20 nm to 50 nm. The length of the plate-like silicon body in the longitudinal direction is preferably in the range of 0.1 μm to 50 μm. The plate-like silicon body preferably has (length in the longitudinal direction) / (thickness) in the range of 2 to 1000.
 本発明の製造方法は、アルゴン、ヘリウム、窒素ガスなどの不活性ガス雰囲気下で行うのが好ましい。 The production method of the present invention is preferably carried out in an inert gas atmosphere such as argon, helium, nitrogen gas.
 次に、加熱炉について説明する。加熱炉は、含ハロゲンポリマーを配置する第一空間と、CaSiを配置する第二空間と、第一空間と第二空間とを区画し、含ハロゲンポリマーの分解ガスが通過可能な貫通孔を具備するセラミックス部と、を備え、かつ、第一空間の含ハロゲンポリマーから発生する分解ガスの流路に、第二空間が設けられている。加熱炉のこの構造に因り、含ハロゲンポリマーから発生する分解ガスが、無駄なく、CaSiに接触できるため、所望の反応が好適に進行する。 Next, the heating furnace will be described. The heating furnace divides the first space in which the halogen-containing polymer is arranged, the second space in which CaSi 2 is arranged, the first space and the second space, and has a through-hole through which a decomposition gas of the halogen-containing polymer can pass. And a second space is provided in the flow path of the decomposition gas generated from the halogen-containing polymer in the first space. Due to this structure of the heating furnace, the decomposition gas generated from the halogen-containing polymer can be brought into contact with CaSi 2 without waste, so that a desired reaction proceeds suitably.
 具体的な加熱炉の種類としては、高周波誘導加熱炉、電気炉、アーク炉、ガス炉を例示できる。 Specific examples of the heating furnace include a high frequency induction heating furnace, an electric furnace, an arc furnace, and a gas furnace.
 加熱炉における第一空間及び第二空間は、加熱炉内部にセラミックス部を配置して形成してもよい。また、第一空間を備える第一室と第二空間を備える第二室とセラミックス部とを備えた反応室を、加熱炉内に設置してもよい。 The first space and the second space in the heating furnace may be formed by arranging a ceramic portion inside the heating furnace. Moreover, you may install in the heating furnace the reaction chamber provided with the 1st chamber provided with 1st space, the 2nd chamber provided with 2nd space, and the ceramic part.
 反応室の材料としては、モリブデン、タングステン、タンタル若しくはニオブ等の高融点金属、又は、アルミナ、ジルコニア、窒化珪素、窒化アルミニウム、炭化珪素、コージライト、ムライト、ステアタイト、カルシア、マグネシア、サイアロン、石英、バイコール等のセラミックスがよい。 Materials for the reaction chamber include refractory metals such as molybdenum, tungsten, tantalum or niobium, or alumina, zirconia, silicon nitride, aluminum nitride, silicon carbide, cordierite, mullite, steatite, calcia, magnesia, sialon, quartz Ceramics such as Vycor are good.
 反応室は、密閉可能であってもよいし、通気部が設けられていてもよく、また、内部圧に応じて開閉する弁を具備していてもよい。第一加熱工程及び第二加熱工程を実施する際には、反応室における第一空間は、セラミックス部以外の通気部や開閉弁が存在しない構造が好ましい。他方、反応室における第二空間は、セラミックス部以外の通気部や開閉弁が存在する構造が好ましい。 The reaction chamber may be sealable, may be provided with a ventilation part, and may be provided with a valve that opens and closes according to the internal pressure. When the first heating step and the second heating step are performed, the first space in the reaction chamber preferably has a structure in which there are no ventilation portions and on-off valves other than the ceramic portion. On the other hand, the second space in the reaction chamber preferably has a structure in which a ventilation portion other than the ceramic portion and an on-off valve are present.
 セラミックス部は、第一空間と第二空間とを区画することで、含ハロゲンポリマーとCaSiとの直接接触を抑制し、かつ、セラミックス部の貫通孔が、第一空間の含ハロゲンポリマーから発生する分解ガスの通路となり、分解ガスを第二空間に案内する。セラミックス部の開気孔率としては、30~80%の範囲内、35~75%の範囲内を例示できる。なお、開気孔率は、JIS R 1634、JIS R 2205、JIS A 1509-3などで規定する方法で測定できる。 The ceramic part divides the first space and the second space to suppress direct contact between the halogen-containing polymer and CaSi 2 , and through holes in the ceramic part are generated from the halogen-containing polymer in the first space. It becomes a passage for the cracked gas to be guided and guides the cracked gas to the second space. Examples of the open porosity of the ceramic portion include a range of 30 to 80% and a range of 35 to 75%. The open porosity can be measured by a method defined in JIS R 1634, JIS R 2205, JIS A 1509-3, or the like.
 セラミックス部の材料としては、アルミナ、ジルコニア、窒化珪素、窒化アルミニウム、炭化珪素、コージライト、ムライト、ステアタイト、カルシア、マグネシア、サイアロン、石英、バイコールを例示できる。 Examples of the material of the ceramic part include alumina, zirconia, silicon nitride, aluminum nitride, silicon carbide, cordierite, mullite, steatite, calcia, magnesia, sialon, quartz and Vycor.
 第一空間、第二空間及びセラミックス部の配置は、下部に第一空間、上部に第二空間、そして、第一空間と第二空間の仕切りとして、セラミックス部が配置されるのが好ましい。この配置であれば、第一空間で発生した分解ガスが上昇するのに伴い、自然にセラミックス部の貫通孔を通過して、第二空間に到達し、第二空間のCaSiと接触することができる。なお、当然ではあるが、この配置であれば、セラミックス部の貫通孔の孔径は、CaSiの粒子径よりも小さい方が好ましい。 Regarding the arrangement of the first space, the second space, and the ceramic portion, it is preferable that the ceramic portion is arranged as a first space in the lower portion, a second space in the upper portion, and a partition between the first space and the second space. With this arrangement, as the cracked gas generated in the first space rises, it naturally passes through the through hole of the ceramic portion, reaches the second space, and comes into contact with CaSi 2 in the second space. Can do. Of course, in this arrangement, the diameter of the through hole of the ceramic portion is preferably smaller than the particle diameter of CaSi 2 .
 本発明の製造方法により得られたシリコン材料又は炭素被覆シリコン材料は、粉砕や分級を経て、一定の粒度分布の粒子としてもよい。一般的なレーザー回折式粒度分布測定装置で測定した場合における、シリコン材料又は炭素被覆シリコン材料の好ましい粒度分布としては、平均粒子径(D50)が1~30μmの範囲内であることを例示でき、より好ましくは平均粒子径(D50)が1~10μmの範囲内であることを例示できる。 The silicon material or the carbon-coated silicon material obtained by the production method of the present invention may be pulverized or classified to form particles having a certain particle size distribution. As a preferable particle size distribution of the silicon material or the carbon-coated silicon material when measured with a general laser diffraction particle size distribution measuring apparatus, it can be exemplified that the average particle diameter (D 50 ) is in the range of 1 to 30 μm. More preferably, the average particle diameter (D 50 ) is in the range of 1 to 10 μm.
 本発明の製造方法により得られたシリコン材料又は炭素被覆シリコン材料は、比誘電率5以上の溶媒で洗浄する洗浄工程に供されるのが好ましい。洗浄工程は、シリコン材料又は炭素被覆シリコン材料に付着している不要な成分を、比誘電率5以上の溶媒(以下、「洗浄溶媒」ということがある。)で洗浄することにより除去する工程である。同工程は、主に、ハロゲン化カルシウムなどの洗浄溶媒に溶解し得る塩を除去することを目的としている。例えば、含ハロゲンポリマーとしてポリ塩化ビニルを用いた場合、シリコン材料又は炭素被覆シリコン材料には、CaClが残存していると推定される。そこで、洗浄溶媒でシリコン材料又は炭素被覆シリコン材料を洗浄することにより、CaClを含む不要な成分を洗浄溶媒に溶解させて除去できる。洗浄工程は、洗浄溶媒中にシリコン材料又は炭素被覆シリコン材料を浸漬させる方法でもよいし、シリコン材料又は炭素被覆シリコン材料に対して洗浄溶媒を浴びせる方法でもよい。 The silicon material or the carbon-coated silicon material obtained by the production method of the present invention is preferably subjected to a cleaning step of cleaning with a solvent having a relative dielectric constant of 5 or more. The cleaning step is a step of removing unnecessary components adhering to the silicon material or the carbon-coated silicon material by cleaning with a solvent having a relative dielectric constant of 5 or more (hereinafter sometimes referred to as “cleaning solvent”). is there. This step is mainly intended to remove salts that can be dissolved in a washing solvent such as calcium halide. For example, when polyvinyl chloride is used as the halogen-containing polymer, it is presumed that CaCl 2 remains in the silicon material or the carbon-coated silicon material. Therefore, by cleaning the silicon material or the carbon-coated silicon material with a cleaning solvent, unnecessary components including CaCl 2 can be dissolved and removed in the cleaning solvent. The cleaning step may be a method in which a silicon material or a carbon-coated silicon material is immersed in a cleaning solvent, or a method in which the silicon material or the carbon-coated silicon material is exposed to a cleaning solvent.
 洗浄溶媒としては、塩の溶解しやすさの点から、比誘電率がより高いものが好ましく、比誘電率が10以上や15以上の溶媒をより好ましいものとして提示できる。洗浄溶媒の比誘電率の範囲としては、5~90の範囲内が好ましく、10~90の範囲内がより好ましく、15~90の範囲内がさらに好ましい。また、洗浄溶媒としては、単独の溶媒を用いても良いし、複数の溶媒の混合溶媒を用いても良い。 As the washing solvent, a solvent having a higher relative dielectric constant is preferable from the viewpoint of ease of dissolution of the salt, and a solvent having a relative dielectric constant of 10 or more or 15 or more can be presented as a more preferable one. The range of the relative dielectric constant of the cleaning solvent is preferably within the range of 5 to 90, more preferably within the range of 10 to 90, and even more preferably within the range of 15 to 90. In addition, as the cleaning solvent, a single solvent may be used, or a mixed solvent of a plurality of solvents may be used.
 洗浄溶媒の具体例としては、水、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、エチレングリコール、グリセリン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、エチレンカーボネート、プロピレンカーボネート、ベンジルアルコール、フェノール、ピリジン、テトラヒドロフラン、アセトン、酢酸エチル、ジクロロメタンを挙げることができる。これらの具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換したものを洗浄溶媒として採用しても良い。洗浄溶媒としての水は、蒸留水、逆浸透膜透過水、脱イオン水のいずれかが好ましい。 Specific examples of the washing solvent include water, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, ethylene glycol, glycerin, and N-methyl-2-pyrrolidone. N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, ethylene carbonate, propylene carbonate, benzyl alcohol, phenol, pyridine, tetrahydrofuran, acetone, ethyl acetate, and dichloromethane. Of these specific solvent chemical structures, a part or all of hydrogen substituted with fluorine may be employed as the cleaning solvent. The water as the washing solvent is preferably distilled water, reverse osmosis membrane permeated water, or deionized water.
 参考までに、各種の溶媒の比誘電率を表1に示す。 For reference, the dielectric constants of various solvents are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 洗浄溶媒としては、水、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、アセトンが特に好ましい。 As the washing solvent, water, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, and acetone are particularly preferable.
 洗浄溶媒として複数の溶媒の混合溶媒を用いる場合には、水100容量部に対し、その他の溶媒を好ましくは1~100容量部、より好ましくは2~50容量部、さらに好ましくは5~30容量部の割合で混合した混合溶媒を採用するとよい。洗浄溶媒として混合溶媒を用いることで、シリコン材料又は炭素被覆シリコン材料の洗浄溶媒に対する分散性や親和性が向上する場合があり、その結果、不要成分が洗浄溶媒に好適に溶出する。 When a mixed solvent of a plurality of solvents is used as the washing solvent, the other solvent is preferably 1 to 100 parts by volume, more preferably 2 to 50 parts by volume, further preferably 5 to 30 parts by volume with respect to 100 parts by volume of water. It is advisable to employ a mixed solvent mixed at a ratio of parts. By using a mixed solvent as the cleaning solvent, the dispersibility and affinity of the silicon material or the carbon-coated silicon material with respect to the cleaning solvent may be improved, and as a result, unnecessary components are preferably eluted in the cleaning solvent.
 洗浄工程の後には、濾過及び乾燥にてシリコン材料又は炭素被覆シリコン材料から洗浄溶媒を除去することが好ましい。 After the cleaning step, it is preferable to remove the cleaning solvent from the silicon material or the carbon-coated silicon material by filtration and drying.
 洗浄工程は複数回繰り返してもよい。その際には、洗浄溶媒を変更しても良い。例えば、初回の洗浄工程の洗浄溶媒として比誘電率の著しく高い水を選択し、次回の洗浄溶媒として水と相溶し、かつ沸点の低いエタノールやアセトンを用いることによって、水を効率的に除去できるとともに、容易に洗浄溶媒の残存を防ぐことができる。 The cleaning process may be repeated multiple times. In that case, the washing solvent may be changed. For example, water with an extremely high relative dielectric constant is selected as the cleaning solvent in the first cleaning process, and water is efficiently removed by using ethanol or acetone with low boiling point that is compatible with water as the next cleaning solvent. In addition, the cleaning solvent can be easily prevented from remaining.
 洗浄工程の後の乾燥工程は減圧環境下で行うことが好ましく、洗浄溶媒の沸点以上の温度で行うことが更に好ましい。温度としては80℃~110℃が好ましい。 The drying step after the washing step is preferably performed in a reduced pressure environment, and more preferably at a temperature equal to or higher than the boiling point of the washing solvent. The temperature is preferably 80 ° C to 110 ° C.
 本発明のシリコン材料又は炭素被覆シリコン材料は、上述のとおり、本発明の製造方法を経て製造される。ここで、本発明の製造方法で得られたシリコン材料又は炭素被覆シリコン材料に対して、上述した第二加熱工程とは別工程として、炭素で被覆する炭素被覆工程を行ってもよい。また、後述するように、炭素被覆工程の前に、第二加熱工程後の炭素被覆シリコン材料の少なくとも一部の炭素を除去する炭素除去工程を行ってもよい。 The silicon material or carbon-coated silicon material of the present invention is manufactured through the manufacturing method of the present invention as described above. Here, you may perform the carbon coating process coat | covered with carbon with respect to the silicon material or carbon covering silicon material obtained with the manufacturing method of this invention as a process separate from the 2nd heating process mentioned above. Moreover, you may perform the carbon removal process which removes at least one part carbon of the carbon covering silicon material after a 2nd heating process before a carbon covering process so that it may mention later.
 炭素被覆工程としては、従来の公知技術を適用すればよい。例えば、材料を非酸化性雰囲気下の加熱条件下にて有機物ガスと接触させて、有機物ガスを炭素化することで材料を炭素被覆する、いわゆる熱CVD法を適用すればよい。 As the carbon coating process, a conventional known technique may be applied. For example, a so-called thermal CVD method in which the material is carbonized by bringing the material into contact with an organic gas under heating in a non-oxidizing atmosphere and carbonizing the organic gas may be applied.
 有機物ガスとしては、有機物が気化したガス、有機物が昇華したガスあるいは有機物の蒸気を用いることができる。また有機物ガスを発生する有機物としては、非酸化性雰囲気下での加熱によって熱分解して炭化し得るものが用いられ、例えば、メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、ヘキサンなどの飽和脂肪族炭化水素、エチレン、プロピレン、アセチレンなどの不飽和脂肪族炭化水素、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、安息香酸、サリチル酸、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレンなどの芳香族炭化水素、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル類、脂肪酸類などから選択される一種又は混合物が挙げられる。有機物としては、プロパン等の飽和脂肪族炭化水素が好ましい。 As the organic substance gas, a gas obtained by vaporizing an organic substance, a gas obtained by sublimating an organic substance, or an organic vapor can be used. In addition, organic substances that generate organic gases include those that can be thermally decomposed and carbonized by heating in a non-oxidizing atmosphere, for example, saturated fats such as methane, ethane, propane, butane, isobutane, pentane, and hexane. Hydrocarbons, unsaturated aliphatic hydrocarbons such as ethylene, propylene, acetylene, alcohols such as methanol, ethanol, propanol, butanol, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, benzoic acid , One or a mixture selected from aromatic hydrocarbons such as salicylic acid, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, esters such as ethyl acetate, butyl acetate, amyl acetate, and fatty acids Thing, and the like. The organic substance is preferably a saturated aliphatic hydrocarbon such as propane.
 炭素被覆工程における処理温度は、有機物の種類によって異なるが、有機物ガスが熱分解する温度より50℃以上高い温度とするのがよい。しかし、温度が高すぎる場合や有機物ガス濃度が高すぎる場合は、いわゆるススが発生するので、ススが発生しない条件を選択するのがよい。形成される炭素層の厚さは、有機物の量と処理時間によって制御することができる。 The treatment temperature in the carbon coating step varies depending on the type of organic substance, but it is preferable to set it at a temperature higher by 50 ° C. than the temperature at which the organic substance gas is thermally decomposed. However, when the temperature is too high or the organic gas concentration is too high, so-called soot is generated, so it is preferable to select a condition that does not generate soot. The thickness of the carbon layer to be formed can be controlled by the amount of organic matter and the processing time.
 炭素被覆工程は、材料を流動状態にして行うことが望ましい。このようにすることで、材料の全表面を有機物ガスと接触させることができ、均一な炭素層を形成することができる。材料を流動状態にするには、流動床を用いるなど各種方法があるが、材料を撹拌しながら有機物ガスと接触させるのが好ましい。例えば、内部に邪魔板をもつ回転炉を用いる場合には、邪魔板に留まった材料が回転炉の回転に伴って所定高さから落下することで撹拌される。その際に、材料は撹拌状態で有機物ガスと接触し、材料の表面に炭素層が形成されるので、材料全体に均一な炭素層を形成することができる。第一加熱工程及び第二加熱工程についても同様に、可能であれば、材料を流動状態にして実施するのが望ましい。 It is desirable to perform the carbon coating process while the material is in a fluid state. By doing in this way, the whole surface of material can be made to contact organic substance gas, and a uniform carbon layer can be formed. There are various methods such as using a fluidized bed to bring the material into a fluid state, but it is preferable to contact the material with an organic gas while stirring the material. For example, when a rotary furnace having a baffle plate is used, the material remaining on the baffle plate is stirred by dropping from a predetermined height as the rotary furnace rotates. At that time, the material comes into contact with the organic gas in a stirred state, and a carbon layer is formed on the surface of the material. Therefore, a uniform carbon layer can be formed on the entire material. Similarly, the first heating step and the second heating step are preferably performed with the material in a fluidized state if possible.
 第二加熱工程及び炭素被覆工程を行って得られた本発明の炭素被覆シリコン材料は、2種類の方法で炭素被覆を為された状態となる。このような本発明の炭素被覆シリコン材料は、1種類の炭素被覆方法では不十分であった被覆状態を他の炭素被覆方法で補完された状態となる。そのため、かかる本発明の炭素被覆シリコン材料を負極活物質として具備する二次電池は、電池特性が好適化すると考えられる。 The carbon-coated silicon material of the present invention obtained by performing the second heating step and the carbon coating step is in a state where the carbon coating is performed by two kinds of methods. Such a carbon-coated silicon material of the present invention is in a state in which a coating state that has been insufficient with one carbon coating method is complemented with another carbon coating method. Therefore, it is considered that the secondary battery including the carbon-coated silicon material of the present invention as a negative electrode active material has favorable battery characteristics.
 炭素除去工程としては、酸素存在下で第二加熱工程後の炭素被覆シリコン材料を加熱して、炭素を二酸化炭素又は一酸化炭素として除去すればよい。炭素除去工程においては、炭素被覆シリコン材料の一部又は全部の炭素を除去することができる。加熱温度としては、350~650℃を例示できる。 As the carbon removal step, the carbon-coated silicon material after the second heating step may be heated in the presence of oxygen to remove carbon as carbon dioxide or carbon monoxide. In the carbon removal step, a part or all of the carbon of the carbon-coated silicon material can be removed. Examples of the heating temperature include 350 to 650 ° C.
 炭素除去工程においては、炭素被覆シリコン材料中に含まれていた不純物も同時に除去されることが期待できる。そのため、炭素除去工程を経た後に、炭素被覆工程に供されて製造された本発明の炭素被覆シリコン材料は、より好適な材料であると推察される。 In the carbon removal step, it can be expected that impurities contained in the carbon-coated silicon material are also removed at the same time. For this reason, it is speculated that the carbon-coated silicon material of the present invention produced by being subjected to the carbon coating step after the carbon removal step is a more suitable material.
 本発明の炭素被覆シリコン材料は、炭素と珪素を必須の構成要素とする。本発明の炭素被覆シリコン材料を100とした場合に、炭素は1~30質量%の範囲内で含まれるのが好ましく、3~20質量%の範囲内で含まれるのがより好ましく、5~15質量%の範囲内で含まれるのがさらに好ましい。本発明の炭素被覆シリコン材料を100とした場合に、珪素は50~99質量%の範囲内で含まれるのが好ましく、60~97質量%の範囲内で含まれるのがより好ましく、65~95質量%の範囲内で含まれるのがさらに好ましい。 The carbon-coated silicon material of the present invention contains carbon and silicon as essential components. When the carbon-coated silicon material of the present invention is 100, carbon is preferably contained within a range of 1 to 30% by mass, more preferably within a range of 3 to 20% by mass. More preferably, it is contained within the range of mass%. When the carbon-coated silicon material of the present invention is 100, silicon is preferably contained in the range of 50 to 99% by mass, more preferably in the range of 60 to 97% by mass, and 65 to 95%. More preferably, it is contained within the range of mass%.
 本発明のシリコン材料又は炭素被覆シリコン材料は、Caやハロゲンなどの原料由来の不純物や、不可避の不純物を含有する場合がある。そのような不純物の存在量(質量%)として、以下の範囲を例示できる。
 Ca:0~5質量%、0~3質量%、0~2質量%、0.1~3質量%、0.5~2質量%
 ハロゲン:0~10質量%、0.001~6質量%
The silicon material or carbon-coated silicon material of the present invention may contain impurities derived from raw materials such as Ca and halogen, and inevitable impurities. Examples of the abundance (% by mass) of such impurities include the following ranges.
Ca: 0 to 5% by mass, 0 to 3% by mass, 0 to 2% by mass, 0.1 to 3% by mass, 0.5 to 2% by mass
Halogen: 0 to 10% by mass, 0.001 to 6% by mass
 本発明のシリコン材料又は炭素被覆シリコン材料は、内部に空洞を有するものが好ましい。本発明のシリコン材料又は炭素被覆シリコン材料をリチウムイオン二次電池の活物質として用いた場合、当該空洞は、リチウムイオンの挿入及び脱離反応が生じる際の、シリコン材料又は炭素被覆シリコン材料の膨張及び収縮を緩衝する役割を果たすと推定される。 The silicon material or carbon-coated silicon material of the present invention preferably has a cavity inside. When the silicon material or carbon-coated silicon material of the present invention is used as an active material for a lithium ion secondary battery, the cavity expands when the insertion or desorption reaction of lithium ions occurs. And presumed to play a role in buffering contraction.
 本発明の製造方法で得られるシリコン材料又は炭素被覆シリコン材料は、リチウムイオン二次電池などの二次電池の負極活物質として使用することができる。以下、二次電池の代表としてリチウムイオン二次電池を例にして説明する。本発明のリチウムイオン二次電池は、本発明のシリコン材料又は炭素被覆シリコン材料を負極活物質として具備する。具体的には、本発明のリチウムイオン二次電池は、正極、本発明のシリコン材料又は炭素被覆シリコン材料を負極活物質として具備する負極、電解液及びセパレータを具備する。 The silicon material or carbon-coated silicon material obtained by the production method of the present invention can be used as a negative electrode active material for a secondary battery such as a lithium ion secondary battery. Hereinafter, a lithium ion secondary battery will be described as an example of a secondary battery. The lithium ion secondary battery of the present invention comprises the silicon material or the carbon-coated silicon material of the present invention as a negative electrode active material. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode including the silicon material or the carbon-coated silicon material of the present invention as a negative electrode active material, an electrolytic solution, and a separator.
 正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。 The positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 The current collector refers to a chemically inert electronic conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel, etc. Metal materials can be exemplified. The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.
 正極活物質層は正極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。 The positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive additive and / or a binder.
 正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、及びスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の各組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも正極活物質として使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予めイオンを添加させておく必要がある。ここで、当該イオンを添加するためには、金属または当該イオンを含む化合物を用いればよい。 As the positive electrode active material, the layered compound Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 2, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, At least one element selected from Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La, 1.7 ≦ f ≦ 3 ), Li 2 MnO 3 . Further, as a positive electrode active material, a solid solution composed of a spinel such as LiMn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, And a polyanionic compound represented by (selected from at least one of Fe). Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above-described composition formula as a basic composition, and those obtained by substituting the metal elements contained in the basic composition with other metal elements can also be used as the positive electrode active material. . Further, as a positive electrode active material, a positive electrode active material that does not contain lithium ions that contribute to charge / discharge, for example, sulfur alone, a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , V 2 O 5 , MnO 2 and other oxides, polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetate-based organic substances, and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. When using a positive electrode active material that does not contain lithium, it is necessary to add ions to the positive electrode and / or the negative electrode in advance by a known method. Here, in order to add the ion, a metal or a compound containing the ion may be used.
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、及び各種金属粒子等が例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック等が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。 Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent. The conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles. The Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the active material layer alone or in combination of two or more.
 活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.005~1:0.5であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.03~1:0.1であるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 The blending ratio of the conductive auxiliary in the active material layer is preferably, in mass ratio, active material: conductive auxiliary = 1: 0.005 to 1: 0.5, and 1: 0.01 to 1: 0. .2 is more preferable, and 1: 0.03 to 1: 0.1 is more preferable. This is because if the amount of the conductive auxiliary is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary is too large, the moldability of the active material layer is deteriorated and the energy density of the electrode is lowered.
 結着剤は、活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロースを例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。 The binder serves to hold the active material and the conductive auxiliary agent on the surface of the current collector and maintain the conductive network in the electrode. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, poly ( Examples thereof include acrylic resins such as (meth) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethylcellulose. These binders may be used singly or in plural.
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.001~1:0.3であるのが好ましく、1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 The blending ratio of the binder in the active material layer is preferably a mass ratio of active material: binder = 1: 0.001 to 1: 0.3, and 1: 0.005 to 1: 0. .2 is more preferable, and 1: 0.01 to 1: 0.15 is even more preferable. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。集電体については、正極で説明したものを適宜適切に採用すれば良い。負極活物質層は負極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。 The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. What is necessary is just to employ | adopt suitably what was demonstrated with the positive electrode about a collector. The negative electrode active material layer includes a negative electrode active material and, if necessary, a conductive additive and / or a binder.
 負極活物質としては、本発明のシリコン材料又は炭素被覆シリコン材料を含むものであればよく、本発明のシリコン材料又は炭素被覆シリコン材料のみを採用してもよいし、本発明のシリコン材料又は炭素被覆シリコン材料と公知の負極活物質を併用してもよい。 The negative electrode active material may be any material as long as it contains the silicon material or carbon-coated silicon material of the present invention, and may employ only the silicon material or carbon-coated silicon material of the present invention, or the silicon material or carbon of the present invention. A covering silicon material and a known negative electrode active material may be used in combination.
 負極に用いる導電助剤及び結着剤については、正極で説明したものを同様の配合割合で適宜適切に採用すれば良い。 What is necessary is just to employ | adopt suitably suitably what was demonstrated with the positive electrode with the same mixture ratio about the conductive support agent and binder used for a negative electrode.
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び/又は導電助剤を混合し、スラリーを調製する。上記溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。該スラリーを集電体の表面に塗布後、乾燥する。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to form an active material layer on the surface of the current collector, a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method can be used. An active material may be applied to the surface of the body. Specifically, an active material, a solvent, and, if necessary, a binder and / or a conductive aid are mixed to prepare a slurry. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. The slurry is applied to the surface of the current collector and then dried. In order to increase the electrode density, the dried product may be compressed.
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。 The electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
 非水溶媒としては、環状エステル類、鎖状エステル類、エーテル類等が使用できる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フッ素化エチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。 As the non-aqueous solvent, cyclic esters, chain esters, ethers and the like can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, fluorinated ethylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which part or all of hydrogen in the chemical structure of the specific solvent is substituted with fluorine may be employed.
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。 As an electrolytic solution, 0.5 mol / L to 1.7 mol of a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate. A solution dissolved at a concentration of about / L can be exemplified.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。 The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes. As separators, natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics. The separator may have a multilayer structure.
 次に、リチウムイオン二次電池の製造方法について説明する。 Next, a method for manufacturing a lithium ion secondary battery will be described.
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。 A separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body. The electrode body may be any of a stacked type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are stacked. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a current collecting lead or the like, an electrolyte is added to the electrode body, and the lithium ion secondary battery Good. Moreover, the lithium ion secondary battery of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with lithium ion secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles. Furthermore, the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power supplies for ships and / or auxiliary power supply sources, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
 以下に、実施例および比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited by these Examples.
 (実施例1)
 図1のように、反応室1が配置された加熱炉10を用いて、実施例1の炭素被覆シリコン材料を製造した。反応室1はセラミックス製の匣鉢であり、加熱炉10は電気炉である。
 具体的には、反応室1の底に、1.6gのポリ塩化ビニル2(重合度1100)を配置した。ポリ塩化ビニル2に触れないように、ポリ塩化ビニル2の上部に、貫通孔8を具備し、開気孔率40%である板状のセラミックス部3を配置した。セラミックス部3上に、1gのCaSi粉末4を配置した。そして、CaSi粉末4に触れないように、CaSi粉末4の上部に、セラミックス製の蓋5を配置した。なお、反応室1の上端と蓋5の間には隙間が存在する。反応室1において、セラミックス部3の貫通孔8は、第一空間6と第二空間7を連絡する通路となる。
 以上のとおり蓋5をした反応室1を、加熱炉10内に配置した。その結果、加熱炉10は、含ハロゲンポリマーであるポリ塩化ビニル2を配置する第一空間6と、CaSi粉末4を配置する第二空間7と、第一空間6と第二空間7とを区画し、ポリ塩化ビニル2の分解ガスが通過可能な貫通孔8を具備するセラミックス部3と、を備えることになる。
Example 1
As shown in FIG. 1, the carbon-coated silicon material of Example 1 was manufactured using a heating furnace 10 in which the reaction chamber 1 was arranged. The reaction chamber 1 is a ceramic pot and the heating furnace 10 is an electric furnace.
Specifically, 1.6 g of polyvinyl chloride 2 (degree of polymerization 1100) was placed at the bottom of the reaction chamber 1. In order not to touch the polyvinyl chloride 2, a plate-shaped ceramic part 3 having a through hole 8 and an open porosity of 40% was disposed on the top of the polyvinyl chloride 2. 1 g of CaSi 2 powder 4 was placed on the ceramic part 3. Then, not to touch the CaSi 2 powder 4, the top of CaSi 2 powder 4 was placed the lid 5 made of ceramic. A gap exists between the upper end of the reaction chamber 1 and the lid 5. In the reaction chamber 1, the through hole 8 of the ceramic part 3 serves as a passage that connects the first space 6 and the second space 7.
The reaction chamber 1 with the lid 5 as described above was placed in the heating furnace 10. As a result, the heating furnace 10 includes a first space 6 in which the polyvinyl chloride 2 that is a halogen-containing polymer is disposed, a second space 7 in which the CaSi 2 powder 4 is disposed, and the first space 6 and the second space 7. The ceramic part 3 which comprises the through-hole 8 which partitions and the decomposition gas of the polyvinyl chloride 2 can pass through is provided.
 アルゴン雰囲気下、電気炉を速度5℃/分で900℃まで昇温し、そして、900℃のまま1時間維持した。この加熱条件は、第一加熱工程及び第二加熱工程に該当する。反応生成物を水で洗浄した後に、アセトンで洗浄し、次いで減圧乾燥して、黒色の実施例1の炭素被覆シリコン材料を得た。 In an argon atmosphere, the temperature of the electric furnace was increased to 900 ° C. at a rate of 5 ° C./min, and maintained at 900 ° C. for 1 hour. This heating condition corresponds to the first heating step and the second heating step. The reaction product was washed with water, then with acetone, and then dried under reduced pressure to obtain a black carbon-coated silicon material of Example 1.
 (実施例2)
 24gのポリ塩化ビニル及び15gのCaSi粉末を用いた以外は、実施例1と同様の方法で、黒色の実施例2の炭素被覆シリコン材料を得た。
(Example 2)
A black carbon-coated silicon material of Example 2 was obtained in the same manner as in Example 1 except that 24 g of polyvinyl chloride and 15 g of CaSi 2 powder were used.
 (比較例1)
 図1の加熱炉10に替えて、図2の加熱炉20を用いた以外は、実施例1と同様の方法で、黒色の比較例1の炭素被覆シリコン材料を得た。
 具体的には、1gのCaSi粉末4をアルミナ製の第1坩堝11に入れ、さらに、第1坩堝11をこれよりも大きなアルミナ製の第2坩堝12内に配置した。1.6gのポリ塩化ビニル2(重合度1100)をアルミナ製の第2坩堝12に入れ、第2坩堝12に蓋13をした。蓋13をした第2坩堝12を電気炉である加熱炉20内に配置した。なお、第2坩堝12と蓋13の間には隙間が存在する。
 以下、実施例1と同様の方法で、黒色の比較例1の炭素被覆シリコン材料を得た。
(Comparative Example 1)
A black carbon-coated silicon material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the heating furnace 20 of FIG. 2 was used instead of the heating furnace 10 of FIG.
Specifically, 1 g of CaSi 2 powder 4 was put in a first crucible 11 made of alumina, and the first crucible 11 was placed in a second crucible 12 made of alumina larger than this. 1.6 g of polyvinyl chloride 2 (degree of polymerization 1100) was put in the second crucible 12 made of alumina, and the lid 13 was put on the second crucible 12. The second crucible 12 with the lid 13 was placed in a heating furnace 20 as an electric furnace. There is a gap between the second crucible 12 and the lid 13.
Thereafter, a black carbon-coated silicon material of Comparative Example 1 was obtained in the same manner as in Example 1.
 (比較例2)
 24gのポリ塩化ビニル及び15gのCaSi粉末を用いた以外は、比較例1と同様の方法で、黒色の比較例2の炭素被覆シリコン材料を得た。
(Comparative Example 2)
A black carbon-coated silicon material of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that 24 g of polyvinyl chloride and 15 g of CaSi 2 powder were used.
 (評価例1)
 実施例1、実施例2、比較例1、比較例2の炭素被覆シリコン材料につき、粉末X線回折装置にて、X線回折測定を行った。いずれの炭素被覆シリコン材料のX線回折チャートにおいても、Siに由来するピークが確認でき、また、原料のCaSiに由来するピークは著しく小さくなっていた。また、それぞれの炭素被覆シリコン材料につき、蛍光X線分析を実施した。得られたSiの定量結果から、Si換算した収率の結果を表2に示す。
(Evaluation example 1)
The carbon-coated silicon materials of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were subjected to X-ray diffraction measurement using a powder X-ray diffractometer. In any X-ray diffraction chart of the carbon-coated silicon material, a peak derived from Si was confirmed, and a peak derived from the raw material CaSi 2 was remarkably small. Further, fluorescent X-ray analysis was performed on each carbon-coated silicon material. Table 2 shows the results of the yield in terms of Si from the obtained quantitative results of Si.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 CaSiの仕込み量が1g又は15gのいずれの場合であっても、加熱炉10を用いた実施例の収率の方が優れている。本発明の製造方法が収率に優れた方法であることが裏付けられた。 Even if the amount of CaSi 2 charged is 1 g or 15 g, the yield of the example using the heating furnace 10 is superior. It was confirmed that the production method of the present invention is a method with excellent yield.
 (実施例3)
 開気孔率40%の板状のセラミックス部に替えて、開気孔率71%の板状のセラミックス部を用いた以外は、実施例1と同様の方法で、黒色の実施例3の炭素被覆シリコン材料を得た。
(Example 3)
The black carbon-coated silicon of Example 3 was used in the same manner as in Example 1 except that a plate-like ceramic part having an open porosity of 71% was used instead of the plate-like ceramic part having an open porosity of 40%. Obtained material.
 (比較例3)
 開気孔率40%の板状のセラミックス部に替えて、開気孔率0%の板状のセラミックス部を用いた以外は、実施例1と同様の方法で、比較例3の炭素被覆シリコン材料を得た。
(Comparative Example 3)
The carbon-coated silicon material of Comparative Example 3 was prepared in the same manner as in Example 1 except that a plate-like ceramic part having an open porosity of 0% was used instead of the plate-like ceramic part having an open porosity of 40%. Obtained.
 (評価例2)
 実施例1、実施例3、比較例3の炭素被覆シリコン材料につき、粉末X線回折装置にて、X線回折測定を行った。実施例1及び実施例3の炭素被覆シリコン材料のX線回折チャートにおいては、原料のCaSiに由来するピークがほとんど観察されず、Siに由来するピークが確認されたものの、比較例3の炭素被覆シリコン材料のX線回折チャートにおいては、原料のCaSiに由来するピークが明確に観察された。この結果から、一定程度の開気孔率のセラミックス部を採用することが好ましいといえる。
(Evaluation example 2)
The carbon-coated silicon materials of Example 1, Example 3, and Comparative Example 3 were subjected to X-ray diffraction measurement using a powder X-ray diffractometer. In the X-ray diffraction charts of the carbon-coated silicon materials of Example 1 and Example 3, a peak derived from the raw material CaSi 2 was hardly observed, and a peak derived from Si was confirmed, but the carbon of Comparative Example 3 was observed. In the X-ray diffraction chart of the coated silicon material, a peak derived from the raw material CaSi 2 was clearly observed. From this result, it can be said that it is preferable to employ a ceramic portion having a certain degree of open porosity.
 (実施例4)
 ジェットミルを用いて、CaSiを粉砕し、平均粒子径が2.18μmのCaSi粉末を製造した。2gの上記CaSi粉末と3.6gのポリ塩化ビニル(重合度1100)とを、実施例1と同様の方法で反応室に配置した。
 アルゴン雰囲気下、電気炉を速度5℃/分で300℃まで昇温し、そして、300℃のまま30分間維持した。この加熱条件は、第一加熱工程に該当する。反応生成物を水で洗浄し、次いで減圧乾燥して、実施例4のシリコン材料を得た。
Example 4
CaSi 2 was pulverized using a jet mill to produce CaSi 2 powder having an average particle size of 2.18 μm. 2 g of the above CaSi 2 powder and 3.6 g of polyvinyl chloride (degree of polymerization 1100) were placed in the reaction chamber in the same manner as in Example 1.
Under an argon atmosphere, the electric furnace was heated to 300 ° C. at a rate of 5 ° C./min and maintained at 300 ° C. for 30 minutes. This heating condition corresponds to the first heating step. The reaction product was washed with water and then dried under reduced pressure to obtain the silicon material of Example 4.
 負極活物質として実施例4のシリコン材料45質量部、負極活物質として天然黒鉛40質量部、導電助剤としてアセチレンブラック5質量部、バインダーとしてポリアミドイミド10質量部、溶剤としてN-メチル-2-ピロリドンを混合し、スラリーを調製した。上記スラリーを、集電体としての厚さ約20μmの電解銅箔の表面にドクターブレードを用いて塗布し、乾燥して、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを200℃で2時間真空乾燥して、実施例4の負極を製造した。 45 parts by mass of the silicon material of Example 4 as the negative electrode active material, 40 parts by mass of natural graphite as the negative electrode active material, 5 parts by mass of acetylene black as the conductive additive, 10 parts by mass of polyamideimide as the binder, N-methyl-2- Pyrrolidone was mixed to prepare a slurry. The slurry was applied to the surface of an electrolytic copper foil having a thickness of about 20 μm as a current collector using a doctor blade and dried to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely joined by a roll press. This was vacuum dried at 200 ° C. for 2 hours to produce a negative electrode of Example 4.
 (比較例4)
 ジェットミルでの粉砕を行っていないCaSiを用いて、以下のとおり、比較例4のシリコン材料及び負極を製造した。
 氷浴中の濃塩酸に、アルゴン雰囲気下、CaSiを加えて撹拌した。反応液からの発泡が完了したのを確認した後に反応液を室温まで昇温し、得られた反応液を濾過し、残渣を蒸留水で洗浄した後、エタノールで洗浄し、真空乾燥して層状シリコン化合物を得た。層状シリコン化合物をアルゴンガス雰囲気下にて速度5℃/分で900℃まで昇温加熱し、900℃で1時間保持する熱処理を行い、シリコン材料を得た。ジェットミルを用いて、シリコン材料を粉砕し、平均粒子径が3μmである比較例4のシリコン材料を製造した。
 実施例4のシリコン材料に替えて、比較例4のシリコン材料を用いた以外は、実施例4と同様の方法で、比較例4の負極を製造した。
(Comparative Example 4)
Using CaSi 2 that was not pulverized by a jet mill, a silicon material and a negative electrode of Comparative Example 4 were produced as follows.
CaSi 2 was added to concentrated hydrochloric acid in an ice bath and stirred under an argon atmosphere. After confirming the completion of foaming from the reaction solution, the reaction solution was warmed to room temperature, the resulting reaction solution was filtered, the residue was washed with distilled water, washed with ethanol, vacuum dried and layered. A silicon compound was obtained. The layered silicon compound was heated up to 900 ° C. at a rate of 5 ° C./min in an argon gas atmosphere, and a heat treatment was performed for 1 hour at 900 ° C. to obtain a silicon material. The silicon material of the comparative example 4 whose average particle diameter is 3 micrometers was manufactured by grind | pulverizing the silicon material using the jet mill.
A negative electrode of Comparative Example 4 was produced in the same manner as in Example 4 except that the silicon material of Comparative Example 4 was used instead of the silicon material of Example 4.
 (評価例3)
 実施例4のシリコン材料及び比較例4のシリコン材料につき、画像解析粒度分布計(商品名:IF-200nano、ジャスコインターナショナル株式会社)に供して、粒子の画像分析を行い、アスペクト比の平均値を算出した。実施例4のシリコン材料のアスペクト比の平均値は0.842であり、比較例4のシリコン材料のアスペクト比の平均値は0.758であった。実施例4のシリコン材料の方が球に近い形状であるといえる。
(Evaluation example 3)
The silicon material of Example 4 and the silicon material of Comparative Example 4 were subjected to an image analysis particle size distribution analyzer (trade name: IF-200 nano, Jusco International Co., Ltd.) to perform image analysis of particles, and the average value of the aspect ratio was calculated. Calculated. The average value of the aspect ratio of the silicon material of Example 4 was 0.842, and the average value of the aspect ratio of the silicon material of Comparative Example 4 was 0.758. It can be said that the silicon material of Example 4 has a shape closer to a sphere.
 (評価例4)
 実施例4の負極及び比較例4の負極の断面を走査型電子顕微鏡(SEM)で観察した。実施例4の負極の断面のSEM像を図3に示し、その拡大SEM像を図4に示す。また、比較例4の負極の断面のSEM像を図5に示す。図3~図5の淡色の箇所が、シリコン材料である。図3~図5のSEM像からも、実施例4のシリコン材料の方が球に近い形状であることがわかる。
(Evaluation example 4)
The cross sections of the negative electrode of Example 4 and the negative electrode of Comparative Example 4 were observed with a scanning electron microscope (SEM). The SEM image of the cross section of the negative electrode of Example 4 is shown in FIG. 3, and the enlarged SEM image is shown in FIG. Moreover, the SEM image of the cross section of the negative electrode of the comparative example 4 is shown in FIG. The light-colored portions in FIGS. 3 to 5 are silicon materials. From the SEM images of FIGS. 3 to 5, it can be seen that the silicon material of Example 4 has a shape closer to a sphere.

Claims (7)

  1.  CaSi及び含ハロゲンポリマーの共存下、前記含ハロゲンポリマーの分解ガス発生温度以上かつ炭化温度未満の温度で加熱する第一加熱工程を含み、
     前記含ハロゲンポリマーを配置する第一空間と、前記CaSiを配置する第二空間と、前記第一空間と前記第二空間とを区画し、前記分解ガスが通過可能な貫通孔を具備するセラミックス部と、を備え、かつ、前記第一空間の前記含ハロゲンポリマーから発生する分解ガスの流路に、前記第二空間が設けられている加熱炉を用いることを特徴とするシリコン材料の製造方法。
    Including the first heating step of heating at a temperature higher than the decomposition gas generation temperature of the halogen-containing polymer and lower than the carbonization temperature in the presence of CaSi 2 and the halogen-containing polymer;
    Ceramics comprising a first space in which the halogen-containing polymer is disposed, a second space in which the CaSi 2 is disposed, the first space and the second space, and a through hole through which the decomposition gas can pass. And a heating furnace in which the second space is provided in the flow path of the decomposition gas generated from the halogen-containing polymer in the first space. .
  2.  前記第一加熱工程の前に、前記CaSiを粉砕する粉砕工程を含む請求項1に記載のシリコン材料の製造方法。 The method for producing a silicon material according to claim 1, further comprising a crushing step of crushing the CaSi 2 before the first heating step.
  3.  前記セラミックス部の開気孔率が30~80%の範囲内である請求項1又は2に記載のシリコン材料の製造方法。 3. The method for producing a silicon material according to claim 1, wherein an open porosity of the ceramic portion is in a range of 30 to 80%.
  4.  前記含ハロゲンポリマーが、下記一般式(1)のモノマーユニットを有する請求項1~3のいずれかに記載のシリコン材料の製造方法。
     一般式(1)
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)において、Rは3価以上の炭化水素基であり、Xはそれぞれ独立にハロゲンであり、nは1以上の整数である。
    The method for producing a silicon material according to any one of claims 1 to 3, wherein the halogen-containing polymer has a monomer unit represented by the following general formula (1).
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    In General Formula (1), R 1 is a trivalent or higher hydrocarbon group, X is independently halogen, and n is an integer of 1 or more.
  5.  前記含ハロゲンポリマーが、下記一般式(2)のモノマーユニットを有する請求項1~4のいずれかに記載のシリコン材料の製造方法。
     一般式(2)
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)において、R、R、Rはそれぞれ独立に1価の炭化水素基、ハロゲン置換炭化水素基、水素、ハロゲンから選択され、Xはハロゲンである。
    The method for producing a silicon material according to any one of claims 1 to 4, wherein the halogen-containing polymer has a monomer unit represented by the following general formula (2).
    General formula (2)
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (2), R 2 , R 3 and R 4 are each independently selected from a monovalent hydrocarbon group, a halogen-substituted hydrocarbon group, hydrogen and halogen, and X is a halogen.
  6.  前記シリコン材料のアスペクト比が0.8以上である請求項1~5のいずれかに記載のシリコン材料の製造方法。 6. The method for producing a silicon material according to claim 1, wherein an aspect ratio of the silicon material is 0.8 or more.
  7.  請求項1~6のいずれかに記載の製造方法における前記第一加熱工程の後に、
     前記含ハロゲンポリマーの炭化温度以上の温度で加熱する第二加熱工程を含む、炭素被覆シリコン材料の製造方法。
    After the first heating step in the production method according to any one of claims 1 to 6,
    A method for producing a carbon-coated silicon material, comprising a second heating step of heating at a temperature equal to or higher than the carbonization temperature of the halogen-containing polymer.
PCT/JP2017/033018 2016-11-11 2017-09-13 Method for producing silicon material WO2018088020A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-221058 2016-11-11
JP2016221058A JP6683107B2 (en) 2016-11-11 2016-11-11 Silicon material manufacturing method

Publications (1)

Publication Number Publication Date
WO2018088020A1 true WO2018088020A1 (en) 2018-05-17

Family

ID=62110534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033018 WO2018088020A1 (en) 2016-11-11 2017-09-13 Method for producing silicon material

Country Status (2)

Country Link
JP (1) JP6683107B2 (en)
WO (1) WO2018088020A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541127A (en) * 2010-07-26 2013-11-07 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Carbon-coated lithium transition metal phosphate and method for producing the same
WO2016031146A1 (en) * 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541127A (en) * 2010-07-26 2013-11-07 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Carbon-coated lithium transition metal phosphate and method for producing the same
WO2016031146A1 (en) * 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. BI ET AL.: "Characteristics of a CaS04 oxygen carrier for chemical-looping combustion: reaction with polyvinylchloride pyrolysis gases in a two-stage reactor", RSC ADVANCES, vol. 5, 2015, pages 3 4913 - 34920 *

Also Published As

Publication number Publication date
JP2018076217A (en) 2018-05-17
JP6683107B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US10446838B2 (en) Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery, negative electrode active material and method for producing same, complex including nano silicon, carbon layer, and cationic polymer layer, and method for producing complex formed of nano silicon and carbon layer
JP6311948B2 (en) Method for producing carbon-coated silicon material
JP6311947B2 (en) Method for producing carbon-coated silicon material
JP7107195B2 (en) Electrolyte and power storage device
JPWO2017081854A1 (en) Negative electrode active material
JP6555520B2 (en) Method for producing carbon-coated silicon material
JP6436234B2 (en) CaSi2-containing composition and method for producing silicon material
JP6376054B2 (en) Silicon material, manufacturing method thereof, and secondary battery including silicon material
JP7243406B2 (en) Electrolyte and lithium ion secondary battery
WO2018088020A1 (en) Method for producing silicon material
JP6589513B2 (en) Method for producing silicon material
JP2020043047A (en) Electrolyte and lithium ion secondary battery
JP2020043000A (en) Electrolyte and lithium ion secondary battery
JP2020013680A (en) Electrolytic solution
JP2018140926A (en) Silicon material having no silicon crystals
JP7243511B2 (en) Electrolyte and lithium ion secondary battery
JP7243461B2 (en) Electrolyte and lithium ion secondary battery
JP7243507B2 (en) Electrolyte and lithium ion secondary battery
JP2018058746A (en) Process for manufacturing silicon material coated with carbon
JP7218663B2 (en) Electrolyte and secondary battery
JP7107177B2 (en) Electrolyte and power storage device
JP6455284B2 (en) Method for producing carbon-coated silicon-based negative electrode active material particles
JP2019197716A (en) Electrolytic solution
JP2020042987A (en) Electrolyte and lithium ion secondary battery
JP2021064542A (en) Electrolyte solution and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870587

Country of ref document: EP

Kind code of ref document: A1