WO2018087885A1 - Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program - Google Patents

Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program Download PDF

Info

Publication number
WO2018087885A1
WO2018087885A1 PCT/JP2016/083529 JP2016083529W WO2018087885A1 WO 2018087885 A1 WO2018087885 A1 WO 2018087885A1 JP 2016083529 W JP2016083529 W JP 2016083529W WO 2018087885 A1 WO2018087885 A1 WO 2018087885A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
degradation
frequency
outlet
waveform
Prior art date
Application number
PCT/JP2016/083529
Other languages
French (fr)
Japanese (ja)
Inventor
利康 樋熊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/083529 priority Critical patent/WO2018087885A1/en
Priority to JP2018549716A priority patent/JP6570767B2/en
Publication of WO2018087885A1 publication Critical patent/WO2018087885A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing

Definitions

  • the present invention relates to a deterioration detection device, a deterioration detection system, a deterioration detection method, and a program.
  • Patent Document 1 discloses a wet deterioration detection device that detects wet deterioration before a plug or an outlet is carbonized.
  • the wet degradation detection device disclosed in Patent Document 1 counts when the absolute value of both the positive and negative peak values of the waveform having a frequency higher than the power supply frequency in the current waveform of the electric circuit is 300 mA or more.
  • the wet deterioration detection device disclosed in Patent Document 1 determines that wet deterioration has occurred when the number of counts during the voltage half cycle is 20 times or more when the connection load is in a stopped / standby state. To do.
  • the wet deterioration detection device disclosed in Patent Document 1 cannot be detected unless the wet deterioration proceeds to the extent that a current of 300 mA or more flows.
  • the wet deterioration detection device disclosed in Patent Document 1 cannot detect the sign that the tracking phenomenon occurs at an early stage, and cannot notify the user of the sign that the tracking phenomenon occurs at an early stage. .
  • a technique for informing the user of the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage is desired.
  • the present invention has been made in view of the above problems, and provides a deterioration detection device, a deterioration detection system, a deterioration detection method, and a program that notify a user of deterioration of an outlet leading to the occurrence of a tracking phenomenon at an early stage. With the goal.
  • the deterioration detection apparatus is: Current measuring means for measuring the current flowing through the main breaker; A waveform generating means for generating a waveform of the current measured by the current measuring means; Feature quantity calculating means for calculating a feature quantity of a harmonic component in the waveform of the current generated by the waveform generating means; A pre-degradation device model that associates the type of electrical equipment with the characteristic amount of the harmonic component in the waveform of the current that flows through the main breaker when operating while connected to the outlet before degradation, and the type of electrical equipment and after degradation A device model storage means for storing a post-degradation device model that correlates with a feature quantity of a harmonic component in a waveform of a current that flows through the main breaker when connected to an outlet of the device, and Based on the feature amount calculated by the feature amount calculation unit, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model, the electric device connected to the outlet after the
  • the electrical connected to the outlet after degradation Information indicating the device is displayed. Therefore, according to the present invention, it is possible to notify the user of the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage.
  • the block diagram of the degradation detection system which concerns on Embodiment 1 of this invention Functional configuration diagram of the deterioration detection apparatus according to the first embodiment of the present invention 1 is an equivalent circuit diagram of an indoor wiring circuit according to the first embodiment of the present invention.
  • the figure which shows the relationship between the voltage between power supply lines, and the electric current which flows through a power supply line Diagram showing frequency characteristics of filter circuit Diagram showing the characteristics of the detected current when the basic equipment model is adopted The figure which shows the characteristic of the detection current at the time of adoption of the equipment model before deterioration
  • the figure which shows the characteristic of the detection current at the time of equipment model adoption after degradation The flowchart which shows the deterioration detection process which the deterioration detection apparatus which concerns on Embodiment 1 of this invention performs.
  • generation process shown in FIG. The block diagram of the deterioration detection system which concerns on Embodiment 2 of this invention
  • the deterioration detection system 1000 As shown in FIG. 1, the deterioration detection system 1000 according to Embodiment 1 of the present invention includes a current sensor 10, a voltage sensor 20, and a deterioration detection device 100.
  • the deterioration detection system 1000 detects deterioration of the outlets 41 and 42 leading to the occurrence of the tracking phenomenon at an early stage.
  • the deterioration detection system 1000 detects deterioration of the outlets 41 and 42 for supplying electric power from the main breaker 30 to the electrical equipment based on the current flowing through the main breaker 30.
  • the deterioration detection system 1000 detects the deteriorated outlets 41 and 42, the deterioration detection system 1000 notifies that the deteriorated outlets 41 and 42 exist and the electrical devices connected to the deteriorated outlets 41 and 42.
  • Electrical equipment includes, for example, air conditioners, televisions, lighting, refrigerators, IHCH (Induction Heating Cooking Heater), eco-cute, ventilation fans, ice machines, lighting, insecticidal equipment, showcases, dehumidifiers, humidifiers, heating equipment, electric pots, electronic Range, rice cooker, bath dryer, etc.
  • a refrigerator 210 and an air conditioner 220 will be described as an example of an electrical device that is considered to be likely to generate a tracking phenomenon because the state where the plug is inserted into the outlet continues for a long period of time.
  • the deterioration detection device 100 is connected to the current sensor 10 and the voltage sensor 20 by, for example, a coaxial cable.
  • the degradation detection apparatus 100 is connected to the cloud server 300 and the terminal apparatus 400 via the communication network 500.
  • the deterioration detection device 100 may include the current sensor 10 and the voltage sensor 20.
  • the current sensor 10 transmits a voltage value representing an instantaneous value of the current flowing through the power line 31 to the deterioration detection device 100.
  • the current sensor 10 includes, for example, a magnetic core (not shown) through which the power line 31 penetrates, a winding (not shown) wound around the magnetic core, and a shunt resistor (not shown) connected to both ends of the winding. And). The current sensor 10 transmits the voltage value across the shunt resistor to the deterioration detection device 100.
  • the voltage sensor 20 transmits a voltage value representing a voltage between the power line 31 and the power line 32 to the deterioration detection apparatus 100.
  • the voltage sensor 20 includes, for example, a voltage transformer (not shown) that generates a voltage obtained by reducing the voltage between the power line 31 and the power line 32 to 1 / M.
  • the main breaker 30 is connected to the electrical equipment used in the home when the sum of the currents flowing to the electrical equipment used in the home (hereinafter referred to as “total current” as appropriate) exceeds a predetermined threshold. Stop supplying current. Accordingly, the total current flows through the main breaker 30.
  • the power line 31 and the power line 32 supply power to the electrical equipment used in the house. Therefore, the total current flows through the power line 31 and the power line 32.
  • the power line 31 is a power line to which an L (live) phase potential is applied.
  • the power line 32 is a power line to which an N (neutral) phase potential is applied.
  • the outlet 41 supplies power to the refrigerator 210.
  • the outlet 41 has an insertion port (not shown) provided with an electrode (not shown) connected to the power line 31 and an insertion port (not shown) provided with an electrode (not shown) connected to the power line 32.
  • the refrigerator 210 is supplied with electric power from a power system (not shown) via a plug 211 inserted into the outlet 41.
  • the refrigerator 210 and the plug 211 are connected by a cable (not shown).
  • a current flows inside the refrigerator 210 and a current also flows through the main breaker 30 (power lines 31 and 32).
  • the current flowing in the refrigerator 210 when the refrigerator 210 is operating includes a harmonic component peculiar to the refrigerator 210. Therefore, the current flowing through the main breaker 30 when the refrigerator 210 is operating basically includes harmonic components peculiar to the refrigerator 210. However, since the harmonic component of the current flowing through the main breaker 30 is affected by the impedance of the outlet 41 and the wiring (impedance of the power lines 31 and 32), the harmonic component of the current flowing inside the refrigerator 210 and Is different.
  • the deterioration detection apparatus 100 detects the wet deterioration of the outlet 41 in order to detect as soon as possible a sign that such a tracking phenomenon occurs.
  • the wet deterioration of the outlet 41 appears as a change in the impedance of the outlet 41. Therefore, when the deterioration detection apparatus 100 detects that the harmonic component of the current flowing through the main breaker 30 has changed due to the change in the impedance of the outlet 41 when the refrigerator 210 is operating, the outlet 41 has deteriorated. Is determined.
  • the outlet 42 supplies power to the air conditioner 220.
  • the outlet 42 has an insertion port (not shown) provided with an electrode (not shown) connected to the power line 31 and an insertion port (not shown) provided with an electrode (not shown) connected to the power line 32.
  • the air conditioner 220 is supplied with electric power from a power system (not shown) through a plug 221 inserted into the outlet 42.
  • the air conditioner 220 and the plug 221 are connected by a cable (not shown).
  • the wet deterioration of the outlet 42 appears as a change in the impedance of the outlet 42. Therefore, when the deterioration detection apparatus 100 detects that the harmonic component of the current flowing through the main breaker 30 has changed due to the impedance change of the outlet 42 when the air conditioner 220 is operating, the outlet 42 has deteriorated. Is determined.
  • the cloud server 300 is a server that provides resources in cloud computing.
  • the cloud server 300 is connected to the deterioration detection device 100 and the terminal device 400 via the communication network 500.
  • the cloud server 300 stores the basic device model (reference model) and the filter model (pre-degradation filter model, post-degradation filter model), and provides the basic device model and the filter model to the degradation detection apparatus 100.
  • the terminal device 400 is connected to the deterioration detection device 100 and the cloud server 300 via the communication network 500.
  • the terminal device 400 functions as a user interface for the deterioration detection device 100.
  • the terminal device 400 notifies the outlets 41 and 42 that the outlets 41 and 42 have deteriorated and the electrical equipment connected to the deteriorated outlets 41 and 42 according to an instruction from the deterioration detection device 100.
  • the terminal device 400 is, for example, a personal computer, a smartphone, a mobile phone, a tablet terminal, or the like.
  • the communication network 500 is a network for devices connected to the communication network 500 to communicate with each other.
  • the communication network 500 is, for example, a WAN (Wide Area ⁇ Network), which is the Internet.
  • the degradation detection apparatus 100 is, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), AD (Analog Digital) converter, flash memory, RTC (Real Time Clock). , Touch screen, NIC (Network Interface Card).
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • AD Analog Digital
  • flash memory RTC (Real Time Clock).
  • Touch screen NIC (Network Interface Card).
  • the degradation detection apparatus 100 functionally includes a communication unit 101, a basic device model storage unit 102, a filter model storage unit 103, a device model generation unit 104, and a device model storage unit 105.
  • the function of the communication unit 101 is realized by, for example, cooperation between the CPU and the NIC.
  • the functions of the basic device model storage unit 102, the filter model storage unit 103, and the device model storage unit 105 are realized by, for example, a flash memory function.
  • the functions of the device model generation unit 104, the waveform generation unit 107, the frequency analysis unit 108, the operation probability estimation unit 109, and the deterioration detection unit 110 are realized by, for example, the cooperation of the CPU, the ROM, and the RAM.
  • the function of the AD conversion unit 106 is realized by an AD converter, for example.
  • the function of the display unit 111 is realized by, for example, cooperation between the CPU and the touch screen.
  • the communication unit 101 acquires a basic device model (basic device model data) and a filter model (filter model data) from the cloud server 300 via the communication network 500.
  • the basic device model associates the type of the electric device with the characteristic amount of the harmonic component in the waveform of the current flowing through the main breaker 30 when operating directly connected to the main breaker 30.
  • the type of electrical device is represented by a character string (for example, “refrigerator”, “air conditioner”, etc.) composed of alphabets, numbers, hiragana, katakana, kanji, and the like.
  • Filter models (filter model data) are classified into pre-degradation filter models (pre-degradation filter model data) and post-degradation filter models (post-degradation filter model data).
  • the pre-deterioration filter model indicates frequency characteristics in the pre-deterioration filter circuit.
  • the pre-deterioration filter circuit is composed of an outlet before deterioration and wiring (power lines 31 and 32) connecting the main breaker 30 and the outlet 41 before deterioration.
  • the post-degradation filter model indicates frequency characteristics in the post-degradation filter circuit.
  • the post-deterioration filter circuit is configured by an outlet 41 after deterioration, and wiring (power lines 31, 32) connecting the main breaker 30 and the outlet 41 after deterioration.
  • the communication unit 101 transmits notification instruction information to the terminal device 400 via the communication network 500 when the deterioration is detected by the deterioration detection unit 110.
  • the notification instruction information is information instructing to notify that the outlet has deteriorated and the electrical equipment connected to the deteriorated outlet.
  • the basic device model storage unit 102 stores the basic device model supplied from the communication unit 101.
  • the filter model storage unit 103 stores the filter models (pre-degradation filter model and post-degradation filter model) supplied from the communication unit 101.
  • the device model generation unit 104 Generate models (pre-degradation equipment model and post-degradation equipment model).
  • the device model storage unit 105 stores the device models (pre-degradation device model and post-degradation device model) generated by the device model generation unit 104.
  • the basic device model, the device model before deterioration, and the device model after deterioration are managed for each type of electric device.
  • the pre-degradation equipment model is a model including the indoor wiring, the pre-deterioration outlet 41, and the electrical equipment.
  • the pre-degradation device model includes the type of the electric device and the harmonics of the waveform of the current flowing through the main breaker 30 when the electric device connected to the outlet 41 before deterioration is operating. This is data indicating the characteristics.
  • the pre-degradation device model is, for example, time-series data for each frequency component (the phase and signal intensity for each frequency) obtained by decomposing a current waveform for one cycle into one or more frequency components by wavelet transform. Data showing correspondence).
  • the post-degradation equipment model is a model including indoor wiring, a post-degradation outlet 41, and electrical equipment.
  • the after-degradation equipment model (after-degradation equipment model data) includes the type of the electrical equipment and the harmonics of the waveform of the current flowing through the main breaker 30 when the electrical equipment connected to the outlet 41 after degradation is operating. This is data indicating the characteristics.
  • the post-degradation device model is, for example, time-series data for each frequency component (phase and signal intensity for each frequency) obtained by decomposing a current waveform for one cycle into one or more frequency components by wavelet transform. Data showing correspondence).
  • the AD converter 106 changes the voltage value (for example, 0 V to 5 V) corresponding to the current value (for example, -10 A to 10 A) detected by the current sensor 10 from an analog value to a digital value. Further, the AD conversion unit 106 changes a voltage value (for example, 0 V to 5 V) corresponding to a voltage value (for example, ⁇ 200 V to 200 V) detected by the voltage sensor 20 from an analog value to a digital value.
  • the waveform generation unit 107 converts the voltage value (for example, 0V to 5V) supplied from the AD conversion unit 106 into a current value (for example, ⁇ 10A to 10A), and the converted current value (for example, ⁇ 10A to 10A) ) To generate a current waveform.
  • the waveform generation unit 107 converts the voltage value (for example, 0V to 5V) supplied from the AD conversion unit 106 into a voltage value (for example, ⁇ 200V to 200V), and the converted voltage value (for example, ⁇ 200V). To 200V) to generate a voltage waveform.
  • the waveform generator 107 detects the zero cross in the voltage waveform, thereby specifying the phase in the current waveform or the voltage waveform, or the current waveform or voltage waveform for one period (for example, 50 Hz) starting from the zero cross. Can be generated.
  • FIG. 4 shows a voltage waveform for one cycle and a current waveform for one cycle.
  • the graph 410 is a graph showing a voltage waveform for one cycle of the voltage between the power line 31 and the power line 32.
  • a graph 420 is a graph showing a current waveform for one cycle of the current flowing through the power line 31.
  • the frequency analysis unit 108 analyzes the frequency component of the current waveform for one cycle generated by the waveform generation unit 107. For example, the frequency analysis unit 108 decomposes a current waveform for one cycle into one or more frequency components by wavelet transform, and shows time-series data for each frequency component (showing the correspondence between phase and signal intensity for each frequency) Data). The time-series data for each frequency component is data indicating the characteristics of the harmonics of the current waveform. Note that the frequency analysis unit 108 may decompose the current waveform for one period into one or more frequency components by discrete Fourier transform.
  • the operation probability estimation unit 109 is based on the time-series data for each frequency component supplied from the frequency analysis unit 108 and the device models (pre-degradation device model and post-degradation device model) stored in the device model storage unit 105. Thus, the operation probability (the operation probability before deterioration and the operation probability after deterioration) is estimated for each electric device.
  • the pre-deterioration operation probability is a probability that an electrical device connected to the outlet 41 before deterioration is operating.
  • the post-degradation operation probability is a probability that the electric device connected to the post-deterioration outlet 41 is operating.
  • the operation probability estimation unit 109 selects one electric device from among the electric devices whose device models are stored in the device model storage unit 105. Then, the operation probability estimation unit 109 acquires the pre-degradation device model and the post-degradation device model corresponding to the selected electrical device from the device model storage unit 105. The operation probability estimation unit 109 calculates the pre-deterioration operation probability based on the similarity between the characteristics of the harmonic components indicated by the time-series data for each frequency component and the characteristics of the harmonic components indicated by the pre-deterioration equipment model. Ask. In addition, the operation probability estimation unit 109 operates based on the similarity between the characteristics of the harmonic components indicated by the time-series data for each frequency component and the characteristics of the harmonic components indicated by the deteriorated device model. Find the probability.
  • the operation probability estimation unit 109 estimates, for example, a correlation coefficient between time series data at a specific frequency as an operation probability. For example, when the correlation coefficient is ⁇ 1 to 0, the operation probability is 0%, and when the correlation coefficient exceeds 0, the correlation coefficient is multiplied by 100 to represent the operation probability as%.
  • the specific frequency may be different or may be the same in the case of obtaining the pre-degradation operation probability and the case of obtaining the post-degradation operation probability. For example, when the operation probability before deterioration is obtained, the specific frequency may be 0.4 MHz, and when the operation probability after deterioration is obtained, the specific frequency may be 1 MHz.
  • the specific frequency may be 0.4 MHz in both cases of obtaining the pre-degradation operation probability and obtaining the post-degradation operation probability.
  • the characteristic amount of the harmonic component compared between the acquired current waveform, the pre-degradation device model, and the post-degradation device model can be the intensity for each phase at a predetermined frequency.
  • the feature quantity of the harmonic component to be compared is not limited to this example.
  • the operation probability is 100%.
  • the pre-degradation operation probability is set to 50%.
  • the post-degradation operation probability can be estimated according to the matching degree of the combination (frequency and phase) having relatively high strength.
  • the characteristic amount of the harmonic component compared between the acquired current waveform, the pre-degradation device model, and the post-degradation device model can be the intensity at the predetermined frequency and the predetermined phase.
  • the operation probability estimation unit 109 obtains the pre-deterioration operation probability and the post-degradation operation probability for other electrical devices.
  • the deterioration detection unit 110 detects the deteriorated outlets 41 and 42 based on the operation probabilities (pre-deterioration operation probability and post-degradation operation probability) estimated by the operation probability estimation unit 109. For example, regarding an electrical device, when the pre-degradation operation probability and the post-degradation operation probability are 50% or more and the post-degradation operation probability is higher than the pre-degradation operation probability, the outlet 41 to which the electrical device is connected, 42 is determined to be deteriorated.
  • the outlet to which the electric device is connected it is determined that 41 and 42 are not deteriorated. Further, for example, when an operation probability before deterioration and an operation probability after deterioration are less than 50% for a certain electric device, it is determined that the electric device is not operating.
  • the deterioration detection unit 110 determines that there are deteriorated outlets 41 and 42, the deterioration detection unit 110 transmits notification instruction information to the communication unit 101 and the display unit 111.
  • the deterioration detection unit 110 can be expected to reduce false detections by considering not only the post-deterioration operation probability but also the pre-deterioration operation probability.
  • the post-degradation device model related to the refrigerator 210 may be similar to the pre-degradation device model related to the air conditioner 220. In this case, even if neither the outlet 41 nor the outlet 42 has deteriorated, the operation probability after deterioration relating to the refrigerator 210 becomes very high. For this reason, if the deterioration is detected only by the operation probability after deterioration, it is determined that the outlet 41 is deteriorated. On the other hand, considering not only the post-deterioration operation probability but also the pre-deterioration operation probability, the pre-deterioration operation probability related to the refrigerator 210 is low, and therefore, it is not determined that the outlet 41 is deteriorated.
  • the present embodiment first, it is determined whether or not an electrical device is operating by determining whether or not the pre-deterioration operation probability and the pre-deterioration operation probability are equal to or greater than the threshold value, and then the pre-deterioration operation. By comparing the magnitude relationship between the probability and the pre-deterioration operation probability, it is determined whether or not the outlet to which the electrical device is connected has deteriorated.
  • both the pre-degradation operation probability of this electrical device and the post-degradation operation probability of this electrical device are the pre-degradation operation probability of other electrical devices and other The fact that the probability of operation after deterioration of electrical equipment is likely to be significantly higher is utilized.
  • the deterioration detection unit 110 may determine whether or not the outlet 41 has deteriorated without being based on the pre-deterioration operation probability and the pre-deterioration operation probability. For example, in the deterioration detection unit 110, the outlet 41 deteriorates based on the feature amount in the current waveform generated by the waveform generation unit 107, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model. It may be determined whether or not.
  • the deterioration detection unit 110 approximates the feature amount in the generated current waveform to the feature amount in the pre-degradation device model and the feature amount in the post-degradation device model, and the feature amount in the generated current waveform and the post-degradation feature If the degree of approximation with the feature amount in the device model is higher, it may be determined that the outlet 41 has deteriorated. For example, it is assumed that the feature amount is signal intensity at a specific frequency and a specific phase. In this case, for example, the deterioration detection unit 110 generates a difference between the signal strength in the generated current waveform and the signal strength in the pre-degradation device model (hereinafter referred to as “first difference”) that is equal to or less than a threshold value.
  • first difference a difference between the signal strength in the generated current waveform and the signal strength in the pre-degradation device model
  • the difference between the signal strength in the current waveform and the signal strength in the post-degradation device model (hereinafter referred to as “second difference”) is less than or equal to the threshold value, and the second difference is smaller than the first difference, It is determined that 41 is deteriorated.
  • the degree of approximation described above may not be a difference in signal strength, but a ratio of signal strength. Further, it is preferable that the difference or ratio of the signal intensity is calculated after normalizing the generated current waveform, the pre-degradation device model, and the post-degradation device model.
  • the display unit 111 When the display unit 111 receives the notification instruction information from the deterioration detection unit 110, the display unit 111 notifies that there is a deteriorated outlet and the electrical equipment connected to the deteriorated outlet. That is, the display unit 111 displays a message indicating that there is a deteriorated outlet and information indicating an electrical device connected to the deteriorated outlet.
  • the indoor wiring circuit is a harmonic current source (V / ZI) constituted by a series circuit of an internal impedance 212 (ZI) and a harmonic voltage source 213 (V)
  • the indoor wiring circuit is as shown in FIG. Can be modeled as an equivalent circuit. That is, in the equivalent circuit of the indoor wiring circuit, the harmonic current source (V / ZI) is connected to the external system impedance 33 via the impedance 43 (Zc (t)) of the outlet 41 and the wiring impedance 34 (Zf). It is a circuit terminated with (Zs).
  • Zf is configured by connecting R (for example, 0.3 m ⁇ / m) and L (for example, 0.64 ⁇ H / m) in series.
  • Zc (t) is assumed to change with age (wet deterioration).
  • Zc (t) is configured by connecting R and C in parallel. For example, in a dry state (state before deterioration), R is infinite and C is about 100 pF. In a wet state (the state after deterioration), R is about 200 k ⁇ and C is about 20 pF to 30 pF.
  • Is (t), which is a current flowing from the refrigerator 210 to the outlet 41 is defined by Expression (1).
  • Ih (t) which is a current flowing from the outlet 41 to the main breaker 30, is defined by Expression (2). “//” indicates parallel impedance.
  • Is (t) V / (ZI + Zc (t) // (Zf + Zs))
  • the frequency characteristic of the filter circuit 44 is shown in FIG.
  • a graph 510 is a graph showing the frequency characteristics of the filter circuit 44 before the outlet 41 is deteriorated.
  • the graph 520 is a graph showing the frequency characteristics of the filter circuit 44 after the outlet 41 is deteriorated.
  • the filter circuit 44 has greatly different frequency characteristics before the outlet 41 is deteriorated and after the outlet 41 is deteriorated. For example, when focusing on the frequency of 1 MHz, the gain before deterioration is ⁇ 52 dB, the gain after deterioration is ⁇ 34 dB, and the gain after deterioration is 18 dB higher than the gain before deterioration (about 8 times). ).
  • Fig. 6 shows the basic equipment model.
  • the basic device model is a current (Ih (t) or Is flowing through Zs in a circuit in which the filter circuit 44 is removed (a circuit in which Zf is 0 ⁇ and Zc (t) is infinite) in the equivalent circuit shown in FIG. It is a model which shows the characteristic of the harmonic component of (t)).
  • Fig. 7 shows the pre-degradation equipment model.
  • the pre-degradation device model is a model that shows the characteristics of the harmonic component of the current (Ih (t)) flowing through Zs when Zc (t) is the impedance before degradation in the equivalent circuit shown in FIG.
  • the device model before deterioration is obtained by adding the frequency characteristics of the filter circuit 44 before deterioration to the basic device model.
  • the pre-degradation device model has higher strength at 0.4 MHz and lower strength at other frequencies than the basic device model. This is because the peak of the graph 510 indicating the frequency characteristics of the filter circuit 44 before deterioration is about 0.4 MHz.
  • the gain peak in the filter characteristic before deterioration is about 0.4 MHz
  • the gain peak in the filter characteristic after deterioration is about 1 MHz. Therefore, the description will be made with attention paid to 0.4 MHz and 1 MHz.
  • the gain of 0 MHz (about ⁇ 40 dB) is used as a reference
  • the gain of 0.4 MHz (about ⁇ 33 dB) is about 7 dB plus
  • the gain of 1 MHz (about ⁇ 52 dB) is about 12 dB minus. is there. Therefore, in the basic equipment model shown in FIG. 6, the frequency component of 0.4 MHz is about 2.2 times (10 7/20 ), and the frequency component of 1 MHz is about 1/4 times (10 ⁇ 12/20 ).
  • the device model before deterioration shown in FIG. Similarly, other frequency components are increased or decreased according to the gain of the filter characteristics before deterioration.
  • Fig. 8 shows the equipment model after degradation.
  • the post-degradation device model is a model that shows the characteristics of the harmonic component of the current (Ih (t)) flowing through Zs when Zc (t) is the impedance after degradation in the equivalent circuit shown in FIG.
  • the post-degradation device model is obtained by adding the frequency characteristics of the post-degradation filter circuit 44 to the basic device model.
  • the post-degradation device model has higher strength at 1.0 MHz and lower strength at other frequencies than the basic device model. This is because the peak of the graph 520 showing the frequency characteristics of the filter circuit 44 after deterioration is about 1.0 MHz.
  • the filter characteristics after degradation are based on 0 MHz gain (about ⁇ 40 dB), 0.4 MHz gain (about ⁇ 39 dB) is about 1 dB plus, and 1 MHz gain (about ⁇ 34 dB) is about 6 dB plus. is there. Therefore, in the basic equipment model shown in FIG. 6, the frequency component of 0.4 MHz is approximately 1.1 times (10 1/20 ) and the frequency component of 1 MHz is approximately double (10 6/20 ).
  • a post-degradation device model shown in FIG. Similarly, other frequency components are increased or decreased in accordance with the gain of the filter characteristics after deterioration.
  • the deterioration detection process executed by the degradation detection apparatus 100 will be described with reference to FIG.
  • the deterioration detection process is started, for example, in response to the power supply of the deterioration detection apparatus 100 being turned on.
  • the deterioration detection apparatus 100 executes a device model generation process (step S101).
  • the device model generation process will be described with reference to FIG.
  • the communication unit 101 acquires a basic device model for each electric device from the cloud server 300 (step S201).
  • the communication unit 101 causes the basic device model storage unit 102 to store the acquired basic device model.
  • the communication unit 101 acquires a pre-degradation filter model from the cloud server 300 (step S202).
  • the communication unit 101 stores the acquired pre-degradation filter model in the filter model storage unit 103.
  • the communication unit 101 acquires a post-degradation filter model from the cloud server 300 (step S203).
  • the communication unit 101 stores the acquired post-degradation filter model in the filter model storage unit 103.
  • the device model generation unit 104 selects an electrical device (step S204).
  • the device model generation unit 104 generates a pre-degradation device model for the selected electrical device (step S205).
  • the device model generation unit 104 stores the generated pre-degradation device model in the device model storage unit 105.
  • the device model generation unit 104 generates a post-degradation device model for the selected electrical device (step S206).
  • the device model generation unit 104 stores the generated post-degradation device model in the device model storage unit 105.
  • step S207 the device model generation unit 104 determines whether there is an unselected electric device. If it is determined that there is an unselected electrical device (step S207: YES), the device model generation unit 104 returns the process to step S204 and selects another electrical device. On the other hand, when the device model generation unit 104 determines that there is no unselected electric device (step S207: NO), the device model generation process is completed.
  • the waveform generation unit 107 When the device model generation process is completed, the waveform generation unit 107 generates a current waveform (step S102).
  • the frequency analysis unit 108 analyzes the frequency of the generated current waveform (step S103). For example, the frequency analysis unit 108 obtains time-series data for each frequency component by performing wavelet transform on the generated current waveform.
  • step S104 the operation probability estimation unit 109 selects an electrical device (step S104).
  • step S104 the motion probability estimation unit 109 calculates a feature amount (step S105). For example, the motion probability estimation unit 109 extracts 0.4 MHz time series data and 1 MHz time series data from the time series data for each frequency component.
  • the operation probability estimation unit 109 estimates the operation probability of the pre-degradation device model (step S106). For example, the operation probability estimation unit 109 obtains a correlation coefficient between the extracted 0.4 MHz time series data and the 0.4 MHz time series data in the pre-degradation device model, and estimates the operation probability of the pre-degradation device model. To do.
  • the operation probability estimation unit 109 estimates the operation probability of the deteriorated device model (step S107). For example, the operation probability estimation unit 109 obtains a correlation coefficient between the extracted 1 MHz time series data and the 1 MHz time series data in the deteriorated device model, and estimates the operation probability of the deteriorated device model.
  • the deterioration detection unit 110 determines whether or not the outlet has deteriorated (step S108). For example, in the deterioration detection unit 110, the operation probability of the device model before deterioration and the operation probability of the device model after deterioration are 50% or more, and the operation probability of the device model after deterioration is more than the operation probability of the device model before deterioration. When it is high, it is determined that the outlet to which the selected electrical device is connected has deteriorated.
  • step S108 determines that the outlet is deteriorated
  • step S109 displays that the outlet is deteriorated
  • the display unit 111 displays information indicating an electrical device connected to the deteriorated outlet in addition to a message indicating that the outlet is deteriorated.
  • step S108: NO determines whether there is an unselected electrical device. Is determined (step S110).
  • step S110: YES If the operation probability estimation unit 109 determines that there is an unselected electrical device (step S110: YES), the process returns to step S104 to select an unselected electrical device. On the other hand, when it is determined that there is no unselected electrical device (step S110: NO), the operation probability estimation unit 109 waits for a predetermined time (step S111). The predetermined time is, for example, one day. When the operation probability estimation unit 109 completes the process of step S111, the operation probability estimation unit 109 returns the process to step S102.
  • the connection is made to the outlet 41 after deterioration based on the feature amount obtained from the waveform of the current flowing through the main breaker 30, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model.
  • Information indicating the selected electrical device is displayed. Therefore, according to the present embodiment, it is possible to detect the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage and notify the user at an early stage.
  • the wet deterioration detection device described in Patent Document 1 described above needs to be provided for each electric device.
  • the deterioration detection apparatus 100 according to the present embodiment does not have to be provided for each electric device, and detects which outlet connected to which electric device has deteriorated by monitoring the current flowing through the main breaker 30. Can do.
  • the electrical device may not have a special function.
  • a pre-degradation device model is generated based on the basic device model and the frequency characteristic in the pre-deterioration filter circuit
  • the post-degradation device model is generated based on the basic device model and the frequency characteristic in the post-degradation filter circuit.
  • models basic device model, pre-degradation filter model, post-degradation filter model
  • pre-degradation device model post-degradation device model
  • the basic device model is basically a model corresponding to the type of electric device, it may be prepared for each type of electric device.
  • the basic device model may also be provided by the manufacturer of the electrical device.
  • the pre-degradation filter model and the post-degradation filter model are models corresponding to the type of outlet and the wiring length from the outlet to the main breaker 30, for example. If the frequency characteristics do not change so much depending on the type of outlet, a pre-degradation filter model and a post-degradation filter model may be prepared for each wiring length. That is, when generating the pre-degradation device model and the post-degradation device model from the basic device model, the pre-degradation filter model, and the post-degradation filter model, it is not necessary to prepare much information.
  • the outlet is deteriorated when the pre-deterioration operation probability and the post-deterioration operation probability are equal to or higher than a predetermined threshold, and the post-deterioration operation probability is higher than the pre-deterioration operation probability.
  • the effect is notified. That is, in this embodiment, first, it is determined whether or not any electrical device is operating based on the heights of both the pre-degradation operation probability and the post-degradation operation probability, and then, the pre-degradation operation probability and It is determined whether or not the outlet connected to the electrical device determined to be operating is deteriorated based on the magnitude relationship with the post-deterioration operation probability. Therefore, according to the present embodiment, it is possible to reduce erroneous detection of outlet deterioration.
  • the degradation detection apparatus 100 detects a degraded outlet based on the pre-degradation device model and the post-degradation device model has been described.
  • the deterioration detection device 120 detects a deteriorated outlet without being based on the pre-deterioration device model and the post-degradation device model.
  • the electrical device connected to the electrical outlet is provided with a function of outputting a signal having a pattern unique to the electrical device so that the degradation detection device 120 can easily detect the degraded electrical outlet.
  • the deterioration detection device 120 when the deterioration detection device 120 detects that the level of the signal of the pattern unique to the electric device has increased due to the deterioration of the outlet, it determines that the outlet connected to the electric device has deteriorated. To do.
  • the description of the same parts as those in the first embodiment is omitted or simplified.
  • the deterioration detection system 1100 includes electrical devices (a refrigerator 214 and an air conditioner 224) in addition to the current sensor 10, the voltage sensor 20, and the deterioration detection device 120.
  • the refrigerator 214 includes a harmonic current source 215 and a voltage measuring device 216.
  • the air conditioner 224 includes a harmonic current source 225 and a voltage measuring device 226.
  • the harmonic current source 215 basically has the same function as the harmonic current source 225.
  • the voltage measuring device 216 basically has the same function as the voltage measuring device 226.
  • the harmonic current source 215 and the voltage measuring device 216 will be described using the refrigerator 214 as an example.
  • the harmonic current source 215 is a current source provided to flow a current having harmonics unique to the refrigerator 214.
  • the harmonic current source 215 includes an internal impedance 217 and a harmonic voltage source 218.
  • the internal impedance 217 corresponds to the internal impedance 212
  • the harmonic voltage source 218 corresponds to the harmonic voltage source 213. That is, the harmonic current source 215 is a current source for allowing a current having a specific harmonic to flow instead of a load circuit (not shown) provided in the refrigerator 214.
  • the load circuit (not shown) included in the refrigerator 214 does not pass a current having a specific harmonic and can be ignored with respect to detection of the harmonic.
  • the voltage measuring device 216 measures the voltage generated by the harmonic voltage source 213 across the impedance 43.
  • the function of the voltage measuring device 216 is basically the same as the function of the voltage sensor 20. Note that the voltage generated by the harmonic voltage source 213 across the impedance 43 depends on the frequency characteristics of the filter circuit 44. Therefore, even if the harmonic voltage source 213 outputs the same voltage, if the frequency characteristic of the filter circuit 44 is changed, the voltage generated across the impedance 43 is changed.
  • the refrigerator 214 includes, for example, a CPU, ROM, RAM, AD converter, flash memory, RTC, touch screen, and NIC in addition to the harmonic current source 215 and the voltage measuring device 216.
  • the refrigerator 214 functionally includes a pattern storage unit 201, a control unit 202, a signal generation unit 203, a voltage measurement unit 204, a frequency characteristic registration unit 205, and a frequency characteristic storage unit. 206 and a frequency determination unit 207.
  • the functions of the pattern storage unit 201 and the frequency characteristic storage unit 206 are realized by, for example, a flash memory function.
  • the functions of the control unit 202, the frequency characteristic registration unit 205, and the frequency determination unit 207 are realized by, for example, the cooperation of the CPU, the ROM, and the RAM.
  • the function of the signal generation unit 203 is realized by the function of the harmonic current source 215, for example.
  • the function of the voltage measuring unit 204 is realized by the function of the voltage measuring device 216, for example.
  • the pattern storage unit 201 stores a signal pattern unique to the refrigerator 214.
  • An example of the signal pattern is shown in FIG.
  • the signal pattern shown in FIG. 16 is a pattern in which a harmonic signal of about ⁇ 1 V (for example, about 0.8 MHz) is output three times with a period of 0.2 seconds.
  • the frequency of the harmonic signal is determined in consideration of the frequency characteristics of the filter circuit 44. For example, the signal is output at intervals of about 1 to 10 minutes.
  • the control unit 202 executes various controls. For example, the control unit 202 controls signal generation by the signal generation unit 203. In addition, the control unit 202 instructs the signal generation unit 203 on the frequency of the generated signal. When acquiring the frequency characteristics, the control unit 202 causes the signal generation unit 203 to output a signal while gradually increasing or decreasing the frequency. For example, the control unit 202 changes the frequency in the range of 0.2 MHz to 2 MHz.
  • the signal generation unit 203 generates a signal having a frequency specified by the control unit 202 according to control by the control unit 202.
  • the voltage measurement unit 204 measures the voltage of the signal generated by the signal generation unit 203.
  • the frequency characteristic registration unit 205 identifies the frequency characteristic by associating the relationship between the frequency of the output signal and the voltage measured by the voltage measurement unit 204.
  • the frequency characteristic registration unit 205 causes the frequency characteristic storage unit 206 to store the specified frequency characteristic.
  • the frequency characteristic storage unit 206 stores the frequency characteristic specified by the frequency characteristic registration unit 205.
  • the frequency determination unit 207 determines the frequency of the signal to be generated by the signal generation unit 203 based on the frequency characteristic stored in the frequency characteristic storage unit 206. For example, it is assumed that the frequency characteristic indicated by the graph 510 in FIG. 15 is stored as the frequency characteristic before deterioration. In this case, when the outlet 41 is deteriorated, the frequency characteristic of the filter circuit 44 is considered to change like the frequency characteristic indicated by the graph 520 in FIG. That is, it is considered that the frequency at which the gain reaches a peak increases due to deterioration of the outlet 41. Therefore, a frequency higher than the peak frequency in the frequency characteristic before deterioration is determined as the frequency of the signal generated by the signal generation unit 203. Accordingly, it is possible to detect that the outlet 41 has deteriorated by detecting an increase in the level of the signal generated by the signal generator 203.
  • the peak frequency before deterioration is 0.44 MHz.
  • a frequency ranging from 0.66 MHz which is 1.5 times 0.44 MHz to about 1.11 MHz which is 2.5 times 0.44 MHz is determined as the signal frequency.
  • 0.88 MHz which is twice 0.44 MHz is determined as the signal frequency.
  • the deterioration detection device 120 includes, for example, a CPU, ROM, RAM, AD converter, flash memory, RTC, touch screen, and NIC. As illustrated in FIG. 14, the deterioration detection device 120 functionally includes a communication unit 101, an AD conversion unit 106, a waveform generation unit 107, a frequency analysis unit 108, a deterioration detection unit 110, and a display unit 111. A frequency identification unit 113, a device information storage unit 114, a pattern detection unit 115, and a level detection unit 116.
  • the function of the communication unit 101 is realized by, for example, cooperation between the CPU and the NIC.
  • the function of the AD conversion unit 106 is realized by an AD converter, for example.
  • the functions of the waveform generation unit 107, the frequency analysis unit 108, the deterioration detection unit 110, the frequency specification unit 113, the pattern detection unit 115, and the level detection unit 116 are realized, for example, by the cooperation of the CPU, ROM, and RAM.
  • the function of the display unit 111 is realized by, for example, cooperation between the CPU and the touch screen.
  • the function of the device information storage unit 114 is realized by a function of a flash memory, for example.
  • the communication unit 101 acquires device information from the cloud server 300 via the communication network 500.
  • the device information is information that associates the type of electric device with a signal pattern.
  • the communication unit 101 transmits the notification instruction information to the terminal device 400 via the communication network 500.
  • the AD conversion unit 106 converts the voltage value supplied from the current sensor 10 and the voltage value supplied from the voltage sensor 20 from an analog value to a digital value.
  • the waveform generation unit 107 converts and connects the voltage values supplied from the AD conversion unit 106 to generate a current waveform and a voltage waveform.
  • the frequency analysis unit 108 performs frequency analysis on the current waveform generated by the waveform generation unit 107. For example, the frequency analysis unit 108 performs wavelet transform or discrete Fourier transform on the current waveform in order to specify a frequency with high signal strength.
  • the deterioration detection unit 110 determines whether or not the outlet is deteriorated based on the signal level detected by the level detection unit 116 and the device information stored in the device information storage unit 114. In the device information, in addition to the type of electric device and the signal pattern, the signal frequency and the initial signal level are associated with each other. Therefore, when the signal level detected by the level detection unit 116 is higher than the initial level of the signal indicated by the device information, the deterioration detection unit 110 determines that the outlet is deteriorated.
  • the deterioration detecting unit 110 When detecting deterioration of the outlet, the deterioration detecting unit 110 transmits notification instruction information to the communication unit 101 and the display unit 111.
  • the display unit 111 displays a message indicating that the outlet has deteriorated and information indicating the electrical device connected to the deteriorated outlet.
  • the frequency specifying unit 113 specifies the frequency of the signal based on the result of the frequency analysis by the frequency analyzing unit 108.
  • the device information storage unit 114 stores device information acquired from the communication unit 101.
  • the frequency specified by the pattern detection unit 115 and the signal level detected by the level detection unit 116 are added to the device information stored in the device information storage unit 114.
  • the pattern detection unit 115 is based on the result of the frequency analysis performed by the frequency analysis unit 108, the frequency specified by the frequency specifying unit 113, and the signal pattern included in the device information stored in the device information storage unit 114. Detect the signal level.
  • the pattern detection unit 115 adds the frequency of the detected signal pattern to the device information having this signal pattern.
  • the level detection unit 116 detects the signal level of the signal detected by the pattern detection unit 115. When the signal level of the new signal pattern is detected, the level detection unit 116 adds the detected signal level as the initial signal level to the device information including the detected signal.
  • the signal output process is started in response to, for example, turning on the refrigerator 214.
  • the control unit 202 selects a frequency (step S301).
  • the control unit 202 initially selects 0.2 MHz, gradually increases the frequency to be selected, and finally selects 2.0 MHz. That is, the selectable frequency is between 0.2 MHz and 2.0 MHz, and is higher than the selected frequency.
  • step S301 When the process of step S301 is completed, the control unit 202 outputs a signal at the selected frequency (step S302).
  • the control unit 202 controls the signal generation unit 203 to output a signal at the selected frequency.
  • the voltage measurement unit 204 measures the voltage (step S303).
  • the frequency characteristic registration unit 205 stores the correspondence relationship between the frequency and the voltage in the frequency characteristic storage unit 206 as a frequency characteristic (step S304).
  • step S305 determines whether there is an unselected frequency.
  • step S305: YES determines that there is an unselected frequency
  • step S305: NO the control unit 202 returns the process to step S301 and selects a frequency slightly higher than the selected frequency.
  • step S305: NO determines the frequency of the signal to be output (step S306). Note that the absence of an unselected frequency means that the acquisition of frequency characteristics has been completed. Therefore, the frequency determination unit 207 refers to the acquired frequency characteristic and determines a frequency that is about twice the gain peak as the frequency of the output signal.
  • step S306 When the process of step S306 is completed, the control unit 202 outputs a predetermined pattern signal at the determined frequency (step S307).
  • the control unit 202 waits for a predetermined time (for example, 1 minute) (step S308).
  • step S308 When the process of step S308 is completed, the control unit 202 returns the process to step S307.
  • the frequency characteristics are acquired, the frequency of the signal is determined based on the acquired frequency characteristics, and thereafter, a signal having a predetermined pattern is output periodically at the determined frequency. Is done.
  • the deterioration detection process executed by the deterioration detection device 120 will be described with reference to FIG.
  • the deterioration detection process is started, for example, in response to the power supply of the deterioration detection device 120 being turned on.
  • the deterioration detection apparatus 120 performs a frequency specifying process (step S401).
  • the frequency specifying process will be described in detail with reference to FIG.
  • the waveform generation unit 107 generates a current waveform (step S501).
  • the frequency analysis unit 108 performs frequency analysis on the generated current waveform (step S502).
  • the frequency specifying unit 113 specifies a frequency having an intensity equal to or higher than the threshold (step S503).
  • the pattern detection unit 115 selects a frequency from the identified frequencies (step S504).
  • the pattern detection unit 115 detects a signal pattern at the selected frequency (step S505).
  • the level detection unit 116 specifies the level of the signal pattern when the process of step S505 is completed (step S506).
  • the pattern detection unit 115 and the level detection unit 116 add the selected frequency and the detected signal level to the device information (step S507).
  • the pattern detection unit 115 determines whether there is an unselected frequency among the specified frequencies (step S508).
  • the pattern detection unit 115 returns the process to step S504 and selects an unselected frequency.
  • step S508: NO the pattern detection unit 115 completes the frequency specifying process.
  • the waveform generation unit 107 generates a current waveform when the frequency specifying process is completed (step S402).
  • the frequency analysis unit 108 performs frequency analysis on the generated current waveform (step S403).
  • the pattern detection unit 115 selects an electrical device (step S404). Note that selecting an electric device means selecting a frequency of a signal output from the electric device.
  • the pattern detection unit 115 detects a signal pattern at the selected frequency (step S405).
  • the level detection unit 116 specifies the level of the signal pattern (step S406).
  • the deterioration detection unit 110 determines whether or not the outlet connected to the selected electrical device has deteriorated (step S407). For example, the deterioration detection unit 110 determines that the outlet is deteriorated when the detected signal level is five times the initial signal level indicated by the device information.
  • step S407 determines that the outlet is deteriorated
  • step S408 determines that the outlet is deteriorated
  • step S408 determines whether there is an unselected electrical device. Is discriminated (step S409).
  • step S409 determines that there is an unselected electrical device (step S409: YES)
  • the pattern detection unit 115 returns the process to step S404 and selects an unselected electrical device.
  • step S409: NO determines that there is no unselected electrical device (step S409: NO)
  • the pattern detection unit 115 waits for a predetermined time (step S410).
  • the predetermined time is, for example, one day.
  • information indicating the electrical equipment connected to the deteriorated outlet 41 is displayed based on the signal level detected from the current waveform of the current flowing through the main breaker 30 and the initial signal level. . Therefore, according to the present embodiment, it is possible to detect the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage and notify the user at an early stage. Further, the deterioration detection device 120 according to the present embodiment does not need to be provided for each electric device, and detects which outlet connected to the electric device has deteriorated by monitoring the current flowing through the main breaker 30. Can do.
  • the refrigerator 230 includes, for example, a CPU, ROM, RAM, AD converter, flash memory, RTC, touch screen, and NIC in addition to the harmonic current source 215 and the voltage measuring device 216. .
  • the refrigerator 230 functionally includes a control unit 202, a signal generation unit 203, a voltage measurement unit 204, a frequency characteristic registration unit 205, a frequency characteristic storage unit 206, and a deterioration detection unit. 208 and a display unit 209.
  • the functions of the control unit 202, the frequency characteristic registration unit 205, and the deterioration detection unit 208 are realized by, for example, the cooperation of the CPU, the ROM, and the RAM.
  • the function of the signal generation unit 203 is realized by the function of the harmonic current source 215, for example.
  • the function of the voltage measuring unit 204 is realized by the function of the voltage measuring device 216, for example.
  • the function of the frequency characteristic storage unit 206 is realized by the function of a flash memory, for example.
  • the function of the display unit 209 is realized by, for example, cooperation between the CPU and the touch screen.
  • the control unit 202 executes various controls. For example, the control unit 202 controls signal generation by the signal generation unit 203. In addition, the control unit 202 instructs the signal generation unit 203 on the frequency of the generated signal. When acquiring the frequency characteristics, the control unit 202 causes the signal generation unit 203 to output a signal while gradually increasing or decreasing the frequency. For example, the control unit 202 changes the frequency in the range of 0.2 MHz to 2 MHz.
  • the signal generation unit 203 generates a signal having a frequency specified by the control unit 202 according to control by the control unit 202.
  • the voltage measurement unit 204 measures the voltage of the signal generated by the signal generation unit 203.
  • the control part 202 performs the process which acquires a frequency characteristic regularly (for example, every day).
  • the frequency characteristic registration unit 205 identifies the frequency characteristic by associating the relationship between the frequency of the output signal and the voltage measured by the voltage measurement unit 204.
  • the frequency characteristic registration unit 205 causes the frequency characteristic storage unit 206 to store the specified frequency characteristic.
  • the frequency characteristic storage unit 206 stores the frequency characteristic specified by the frequency characteristic registration unit 205.
  • the deterioration detection unit 208 detects the deterioration of the outlet based on the frequency characteristic history stored in the frequency characteristic storage unit 206. For example, the deterioration detection unit 208 determines that the outlet has deteriorated when the peak frequency in the newly acquired frequency characteristic is higher than about 1.5 times the peak frequency in the frequency characteristic acquired before the outlet deteriorates. Determine. The deterioration detection unit 208 transmits notification instruction information to the display unit 209 when detecting deterioration of the outlet. On the other hand, when receiving the notification instruction information, the display unit 209 displays a message indicating that the outlet has deteriorated.
  • the deterioration detection process is started in response to, for example, turning on the refrigerator 230.
  • the control unit 202 selects a frequency (step S601).
  • the control unit 202 initially selects 0.2 MHz, gradually increases the frequency to be selected, and finally selects 2.0 MHz. That is, the selectable frequency is between 0.2 MHz and 2.0 MHz, and is higher than the selected frequency.
  • step S601 When the process of step S601 is completed, the control unit 202 outputs a signal at the selected frequency (step S602). The control unit 202 controls the signal generation unit 203 to output a signal at the selected frequency.
  • step S602 When the process of step S602 is completed, the voltage measurement unit 204 measures the voltage (step S603).
  • step S603 When the process of step S603 is completed, the frequency characteristic registration unit 205 stores the correspondence relationship between the frequency and the voltage in the frequency characteristic storage unit 206 as a frequency characteristic (step S604).
  • step S605 determines whether there is an unselected frequency.
  • step S605: YES determines that there is an unselected frequency
  • step S605: NO the control unit 202 determines that there is no unselected frequency.
  • the deterioration detection unit 208 determines whether or not there is a change in the frequency characteristics when the process of step S606 is completed (step S607). When determining that there is no change in the frequency characteristics (step S607: NO), the deterioration detection unit 208 waits for a predetermined time (for example, one day) (step S608), and returns the process to step S601. On the other hand, when the deterioration detection unit 208 determines that there is a change in the frequency characteristics (step S607: YES), the display unit 209 notifies that the outlet has deteriorated (step S609). When the process of step S609 is completed, the deterioration detection process is completed.
  • the oscillation frequency (peak frequency) at which the level of the high-frequency signal output from the electrical equipment reaches a peak is increased by a predetermined threshold or more (for example, the detected peak frequency is the peak detected initially).
  • the threshold is 4 times the peak frequency detected at the beginning. Therefore, according to the present embodiment, it is possible to detect the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage and notify the user at an early stage.
  • the functional configuration included in the degradation detection system 1000 may be included in any of the degradation detection device 100, the cloud server 300, and the terminal device 400.
  • the deterioration detection apparatus 100 includes a processing circuit instead of the CPU.
  • This processing circuit is configured by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • the personal computer it is also possible to cause the personal computer to function as the deterioration detection device 100 according to the present invention by applying an operation program that defines the operation of the deterioration detection device 100 according to the present invention to an existing personal computer or information terminal device.
  • the distribution method of such a program is arbitrary.
  • the program is stored and distributed on a computer-readable recording medium such as a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or a memory card.
  • a communication network for example, the Internet.
  • the present invention is applicable to a deterioration detection system that detects deterioration of an outlet leading to occurrence of a tracking phenomenon at an early stage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

A waveform generation unit (107) generates a waveform of an electric current measured by a current sensor (10). A frequency analysis unit (108) calculates the feature quantity of a harmonic component in the waveform of the current generated by the waveform generation unit (107). A device model storage unit (105) stores a pre-deterioration device model in which are associated the type of an electric device and a feature quantity of a harmonic component in the waveform of the current flowing in a principal breaker when the device is operated while connected to a socket prior to deterioration, and a post-deterioration device model in which are associated the type of the electric device and a feature quantity of a harmonic component in the waveform of the current flowing in the principal breaker when the device is operated while connected to a socket after deterioration. A display unit (111) displays, on the basis of the feature quantity calculated by the frequency analysis unit (108), the feature quantity in the pre-deterioration device model, and the feature quantity in the post-deterioration device model, information that indicates an electric device connected to a socket after deterioration.

Description

劣化検出装置、劣化検出システム、劣化検出方法、及び、プログラムDeterioration detection apparatus, deterioration detection system, deterioration detection method, and program
 本発明は、劣化検出装置、劣化検出システム、劣化検出方法、及び、プログラムに関する。 The present invention relates to a deterioration detection device, a deterioration detection system, a deterioration detection method, and a program.
 現在、トラッキング現象が発生する兆候を検出する種々の技術が知られている。トラッキング現象は、プラグとコンセントとの隙間に蓄積したホコリが湿気を帯びて導通し、導通により炭化した部分がショートして発火する現象である。このような技術として、例えば、特許文献1には、プラグやコンセントが炭化する前の湿潤劣化を検出する湿潤劣化検出装置が開示されている。 Currently, various techniques for detecting signs of occurrence of tracking phenomenon are known. The tracking phenomenon is a phenomenon in which dust accumulated in the gap between the plug and the outlet becomes wet and conducts, and a portion carbonized by the conduction is short-circuited and ignites. As such a technique, for example, Patent Document 1 discloses a wet deterioration detection device that detects wet deterioration before a plug or an outlet is carbonized.
 特許文献1に開示された湿潤劣化検出装置は、電路の電流波形の中で電源周波数より高い周波数の波形の正負双方のピーク値の絶対値が300mA以上の場合にカウントする。そして、特許文献1に開示された湿潤劣化検出装置は、接続負荷が停止・待機状態にある時に、電圧半周期の間におけるカウント数が20回以上であった場合、湿潤劣化が発生したと判定する。 The wet degradation detection device disclosed in Patent Document 1 counts when the absolute value of both the positive and negative peak values of the waveform having a frequency higher than the power supply frequency in the current waveform of the electric circuit is 300 mA or more. The wet deterioration detection device disclosed in Patent Document 1 determines that wet deterioration has occurred when the number of counts during the voltage half cycle is 20 times or more when the connection load is in a stopped / standby state. To do.
特許第4921868号公報Japanese Patent No. 4921868
 しかしながら、特許文献1に開示された湿潤劣化検出装置では、300mA以上の電流が流れる程度まで湿潤劣化が進行しないと湿潤劣化を検出することができなかった。つまり、特許文献1に開示された湿潤劣化検出装置では、トラッキング現象が発生する兆候を早い段階で検出することができず、トラッキング現象が発生する兆候を早い段階でユーザに知らせることができなかった。このため、トラッキング現象の発生に繋がるコンセントの劣化を早い段階でユーザに知らせる技術が望まれている。 However, with the wet deterioration detection device disclosed in Patent Document 1, the wet deterioration cannot be detected unless the wet deterioration proceeds to the extent that a current of 300 mA or more flows. In other words, the wet deterioration detection device disclosed in Patent Document 1 cannot detect the sign that the tracking phenomenon occurs at an early stage, and cannot notify the user of the sign that the tracking phenomenon occurs at an early stage. . For this reason, a technique for informing the user of the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage is desired.
 本発明は、上記問題に鑑みてなされたものであり、トラッキング現象の発生に繋がるコンセントの劣化を早い段階でユーザに知らせる劣化検出装置、劣化検出システム、劣化検出方法、及び、プログラムを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a deterioration detection device, a deterioration detection system, a deterioration detection method, and a program that notify a user of deterioration of an outlet leading to the occurrence of a tracking phenomenon at an early stage. With the goal.
 上記目的を達成するために、本発明に係る劣化検出装置は、
 主幹ブレーカに流れる電流を測定する電流測定手段と、
 前記電流測定手段により測定された電流の波形を生成する波形生成手段と、
 前記波形生成手段により生成された電流の波形における高調波成分の特徴量を算出する特徴量算出手段と、
 電気機器の種別と劣化前のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化前機器モデルと、電気機器の種別と劣化後のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化後機器モデルと、を記憶する機器モデル記憶手段と、
 前記特徴量算出手段により算出された特徴量と、前記劣化前機器モデルにおける特徴量と、前記劣化後機器モデルにおける特徴量と、に基づいて、前記劣化後のコンセントに接続された電気機器を示す情報を表示する表示手段と、を備える。
In order to achieve the above object, the deterioration detection apparatus according to the present invention is:
Current measuring means for measuring the current flowing through the main breaker;
A waveform generating means for generating a waveform of the current measured by the current measuring means;
Feature quantity calculating means for calculating a feature quantity of a harmonic component in the waveform of the current generated by the waveform generating means;
A pre-degradation device model that associates the type of electrical equipment with the characteristic amount of the harmonic component in the waveform of the current that flows through the main breaker when operating while connected to the outlet before degradation, and the type of electrical equipment and after degradation A device model storage means for storing a post-degradation device model that correlates with a feature quantity of a harmonic component in a waveform of a current that flows through the main breaker when connected to an outlet of the device, and
Based on the feature amount calculated by the feature amount calculation unit, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model, the electric device connected to the outlet after the deterioration is shown Display means for displaying information.
 本発明では、主幹ブレーカに流れる電流の波形から求められた特徴量と、劣化前機器モデルにおける特徴量と、劣化後機器モデルにおける特徴量と、に基づいて、劣化後のコンセントに接続された電気機器を示す情報が表示される。従って、本発明によれば、トラッキング現象の発生に繋がるコンセントの劣化を早い段階でユーザに知らせることができる。 In the present invention, based on the feature amount obtained from the waveform of the current flowing through the main breaker, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model, the electrical connected to the outlet after degradation Information indicating the device is displayed. Therefore, according to the present invention, it is possible to notify the user of the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage.
本発明の実施形態1に係る劣化検出システムの構成図The block diagram of the degradation detection system which concerns on Embodiment 1 of this invention 本発明の実施形態1に係る劣化検出装置の機能構成図Functional configuration diagram of the deterioration detection apparatus according to the first embodiment of the present invention 本発明の実施形態1に係る屋内配線回路の等価回路図1 is an equivalent circuit diagram of an indoor wiring circuit according to the first embodiment of the present invention. 電源線間の電圧と電源線を流れる電流との関係を示す図The figure which shows the relationship between the voltage between power supply lines, and the electric current which flows through a power supply line フィルタ回路の周波数特性を示す図Diagram showing frequency characteristics of filter circuit 基本機器モデル採用時における検出電流の特徴を示す図Diagram showing the characteristics of the detected current when the basic equipment model is adopted 劣化前機器モデル採用時における検出電流の特徴を示す図The figure which shows the characteristic of the detection current at the time of adoption of the equipment model before deterioration 劣化後機器モデル採用時における検出電流の特徴を示す図The figure which shows the characteristic of the detection current at the time of equipment model adoption after degradation 本発明の実施形態1に係る劣化検出装置が実行する劣化検出処理を示すフローチャートThe flowchart which shows the deterioration detection process which the deterioration detection apparatus which concerns on Embodiment 1 of this invention performs. 図9に示す機器モデル生成処理を示すフローチャートThe flowchart which shows the apparatus model production | generation process shown in FIG. 本発明の実施形態2に係る劣化検出システムの構成図The block diagram of the deterioration detection system which concerns on Embodiment 2 of this invention 本発明の実施形態2に係る屋内配線回路の等価回路図Equivalent circuit diagram of indoor wiring circuit according to embodiment 2 of the present invention 本発明の実施形態2に係る電気機器の機能構成図Functional configuration diagram of an electric device according to Embodiment 2 of the present invention 本発明の実施形態2に係る劣化検出装置の機能構成図Functional configuration diagram of a deterioration detection apparatus according to Embodiment 2 of the present invention 信号の周波数を決定する手法を説明するための図Diagram for explaining the method of determining the frequency of the signal 信号パターンを説明するための図Diagram for explaining signal pattern 本発明の実施形態2に係る電気機器が実行する信号出力処理を示すフローチャートThe flowchart which shows the signal output process which the electric equipment which concerns on Embodiment 2 of this invention performs 本発明の実施形態2に係る劣化検出装置が実行する劣化検出処理を示すフローチャートThe flowchart which shows the deterioration detection process which the deterioration detection apparatus which concerns on Embodiment 2 of this invention performs. 図18に示す周波数特定処理を示すフローチャートThe flowchart which shows the frequency specific process shown in FIG. 本発明の実施形態3に係る電気機器の機能構成図Functional configuration diagram of an electric apparatus according to Embodiment 3 of the present invention 本発明の実施形態3に係る電気機器が実行する劣化検出処理を示すフローチャートThe flowchart which shows the deterioration detection process which the electric equipment which concerns on Embodiment 3 of this invention performs.
(実施形態1)
 図1に示すように、本発明の実施形態1に係る劣化検出システム1000は、電流センサ10と、電圧センサ20と、劣化検出装置100と、を備える。劣化検出システム1000は、トラッキング現象の発生に繋がるコンセント41,42の劣化を早い段階で検出する。劣化検出システム1000は、主幹ブレーカ30に流れる電流に基づいて、主幹ブレーカ30から電気機器に電力を供給するためのコンセント41,42の劣化を検出する。また、劣化検出システム1000は、劣化したコンセント41,42を検出した場合、劣化したコンセント41,42が存在する旨と、劣化したコンセント41,42に接続されている電気機器とを報知する。
(Embodiment 1)
As shown in FIG. 1, the deterioration detection system 1000 according to Embodiment 1 of the present invention includes a current sensor 10, a voltage sensor 20, and a deterioration detection device 100. The deterioration detection system 1000 detects deterioration of the outlets 41 and 42 leading to the occurrence of the tracking phenomenon at an early stage. The deterioration detection system 1000 detects deterioration of the outlets 41 and 42 for supplying electric power from the main breaker 30 to the electrical equipment based on the current flowing through the main breaker 30. In addition, when the deterioration detection system 1000 detects the deteriorated outlets 41 and 42, the deterioration detection system 1000 notifies that the deteriorated outlets 41 and 42 exist and the electrical devices connected to the deteriorated outlets 41 and 42.
 電気機器は、例えば、エアコン、テレビ、照明、冷蔵庫、IHCH(Induction Heating Cooking Heater)、エコキュート、換気扇、製氷機、照明、殺虫装置、ショーケース、除湿器、加湿器、暖房機器、電気ポット、電子レンジ、炊飯器、バス乾燥機などである。本実施形態では、プラグがコンセントに挿入された状態が長い期間継続し、トラッキング現象が発生しやすいと考えられる電気機器として、冷蔵庫210とエアコン220とを例にして説明する。 Electrical equipment includes, for example, air conditioners, televisions, lighting, refrigerators, IHCH (Induction Heating Cooking Heater), eco-cute, ventilation fans, ice machines, lighting, insecticidal equipment, showcases, dehumidifiers, humidifiers, heating equipment, electric pots, electronic Range, rice cooker, bath dryer, etc. In the present embodiment, a refrigerator 210 and an air conditioner 220 will be described as an example of an electrical device that is considered to be likely to generate a tracking phenomenon because the state where the plug is inserted into the outlet continues for a long period of time.
 劣化検出装置100は、例えば、同軸ケーブルにより、電流センサ10と電圧センサ20とに接続される。また、劣化検出装置100は、通信ネットワーク500を介して、クラウドサーバ300と端末装置400とに接続される。なお、劣化検出装置100に、電流センサ10と電圧センサ20とを含めてもよい。 The deterioration detection device 100 is connected to the current sensor 10 and the voltage sensor 20 by, for example, a coaxial cable. In addition, the degradation detection apparatus 100 is connected to the cloud server 300 and the terminal apparatus 400 via the communication network 500. The deterioration detection device 100 may include the current sensor 10 and the voltage sensor 20.
 電流センサ10は、電力線31に流れる電流の瞬時値を表す電圧値を、劣化検出装置100に送信する。電流センサ10は、例えば、電力線31が貫通する磁気コア(図示せず)と、磁気コアに巻かれた巻線(図示せず)と、巻線の両端に接続されたシャント抵抗(図示せず)と、を備える。電流センサ10は、シャント抵抗の両端間の電圧値を、劣化検出装置100に送信する。 The current sensor 10 transmits a voltage value representing an instantaneous value of the current flowing through the power line 31 to the deterioration detection device 100. The current sensor 10 includes, for example, a magnetic core (not shown) through which the power line 31 penetrates, a winding (not shown) wound around the magnetic core, and a shunt resistor (not shown) connected to both ends of the winding. And). The current sensor 10 transmits the voltage value across the shunt resistor to the deterioration detection device 100.
 電圧センサ20は、電力線31と電力線32との間の電圧を表す電圧値を、劣化検出装置100に送信する。電圧センサ20は、例えば、電力線31と電力線32との間の電圧をM分の1にした電圧を発生させる電圧トランス(図示せず)を備える。 The voltage sensor 20 transmits a voltage value representing a voltage between the power line 31 and the power line 32 to the deterioration detection apparatus 100. The voltage sensor 20 includes, for example, a voltage transformer (not shown) that generates a voltage obtained by reducing the voltage between the power line 31 and the power line 32 to 1 / M.
 主幹ブレーカ30は、宅内で使用される電気機器に流れる電流の総和(以下、適宜「総電流」という。)が、予め定められた閾値を超えた場合に、宅内で使用される電気機器への電流の供給を停止する。従って、主幹ブレーカ30には、総電流が流れる。電力線31と電力線32とは、宅内で使用される電気機器に電力を供給する。従って、電力線31と電力線32とには、総電流が流れる。電力線31は、L(ライブ)相の電位が印加される電力線である。電力線32は、N(ニュートラル)相の電位が印加される電力線である。 The main breaker 30 is connected to the electrical equipment used in the home when the sum of the currents flowing to the electrical equipment used in the home (hereinafter referred to as “total current” as appropriate) exceeds a predetermined threshold. Stop supplying current. Accordingly, the total current flows through the main breaker 30. The power line 31 and the power line 32 supply power to the electrical equipment used in the house. Therefore, the total current flows through the power line 31 and the power line 32. The power line 31 is a power line to which an L (live) phase potential is applied. The power line 32 is a power line to which an N (neutral) phase potential is applied.
 コンセント41は、冷蔵庫210に電力を供給する。コンセント41は、電力線31と接続された電極(図示せず)が設けられた差し込み口(図示せず)と、電力線32と接続された電極(図示せず)が設けられた差し込み口(図示せず)と、を備える。冷蔵庫210は、コンセント41に差し込まれたプラグ211を介して、電力系統(図示せず)から電力の供給を受ける。冷蔵庫210とプラグ211とは、ケーブル(図示せず)により接続される。冷蔵庫210が動作すると、冷蔵庫210の内部に電流が流れ、主幹ブレーカ30(電力線31,32)にも電流が流れる。 The outlet 41 supplies power to the refrigerator 210. The outlet 41 has an insertion port (not shown) provided with an electrode (not shown) connected to the power line 31 and an insertion port (not shown) provided with an electrode (not shown) connected to the power line 32. And). The refrigerator 210 is supplied with electric power from a power system (not shown) via a plug 211 inserted into the outlet 41. The refrigerator 210 and the plug 211 are connected by a cable (not shown). When the refrigerator 210 operates, a current flows inside the refrigerator 210 and a current also flows through the main breaker 30 (power lines 31 and 32).
 冷蔵庫210が動作しているときに冷蔵庫210の内部に流れる電流には、冷蔵庫210に特有の高調波成分が含まれる。従って、冷蔵庫210が動作しているときに主幹ブレーカ30に流れる電流には、基本的に、冷蔵庫210に特有の高調波成分が含まれる。ただし、主幹ブレーカ30に流れる電流の高調波成分は、コンセント41のインピーダンスや配線(電力線31,32のインピーダンス)の影響を受けたものとなるため、冷蔵庫210の内部に流れる電流の高調波成分とは異なる。 The current flowing in the refrigerator 210 when the refrigerator 210 is operating includes a harmonic component peculiar to the refrigerator 210. Therefore, the current flowing through the main breaker 30 when the refrigerator 210 is operating basically includes harmonic components peculiar to the refrigerator 210. However, since the harmonic component of the current flowing through the main breaker 30 is affected by the impedance of the outlet 41 and the wiring (impedance of the power lines 31 and 32), the harmonic component of the current flowing inside the refrigerator 210 and Is different.
 ここで、コンセント41とプラグ211との接触部分に蓄積したホコリが湿気を帯びると、プラグ211が備える電極(図示せず)間が導通することがある。このような状態が継続すると、コンセント41とプラグ211との接触部分において、コンセント41、プラグ211、ホコリなどの炭化が進行する。そして、炭化が進行すると、炭化した部分がショートして発火するトラッキング現象が発生する。劣化検出装置100は、このようなトラッキング現象が発生する兆候をなるべく早期に発見するために、コンセント41の湿潤劣化を検出する。コンセント41の湿潤劣化は、コンセント41のインピーダンスの変化として表れる。従って、劣化検出装置100は、冷蔵庫210が動作しているときに主幹ブレーカ30に流れる電流の高調波成分が、コンセント41のインピーダンスの変化によって変化したことを検出した場合に、コンセント41が劣化したと判別する。 Here, if the dust accumulated in the contact portion between the outlet 41 and the plug 211 gets wet, there may be electrical connection between electrodes (not shown) provided in the plug 211. If such a state continues, carbonization of the outlet 41, the plug 211, dust and the like proceeds at the contact portion between the outlet 41 and the plug 211. As carbonization proceeds, a tracking phenomenon occurs in which the carbonized portion is short-circuited and ignites. The deterioration detection apparatus 100 detects the wet deterioration of the outlet 41 in order to detect as soon as possible a sign that such a tracking phenomenon occurs. The wet deterioration of the outlet 41 appears as a change in the impedance of the outlet 41. Therefore, when the deterioration detection apparatus 100 detects that the harmonic component of the current flowing through the main breaker 30 has changed due to the change in the impedance of the outlet 41 when the refrigerator 210 is operating, the outlet 41 has deteriorated. Is determined.
 コンセント42は、エアコン220に電力を供給する。コンセント42は、電力線31と接続された電極(図示せず)が設けられた差し込み口(図示せず)と、電力線32と接続された電極(図示せず)が設けられた差し込み口(図示せず)と、を備える。エアコン220は、コンセント42に差し込まれたプラグ221を介して、電力系統(図示せず)から電力の供給を受ける。エアコン220とプラグ221とは、ケーブル(図示せず)により接続される。エアコン220が動作すると、エアコン220の内部に電流が流れ、主幹ブレーカ30(電力線31,32)にも電流が流れる。 The outlet 42 supplies power to the air conditioner 220. The outlet 42 has an insertion port (not shown) provided with an electrode (not shown) connected to the power line 31 and an insertion port (not shown) provided with an electrode (not shown) connected to the power line 32. And). The air conditioner 220 is supplied with electric power from a power system (not shown) through a plug 221 inserted into the outlet 42. The air conditioner 220 and the plug 221 are connected by a cable (not shown). When the air conditioner 220 is operated, a current flows in the air conditioner 220, and a current also flows in the main breaker 30 (power lines 31, 32).
 コンセント42の湿潤劣化は、コンセント42のインピーダンスの変化として表れる。従って、劣化検出装置100は、エアコン220が動作しているときに主幹ブレーカ30に流れる電流の高調波成分が、コンセント42のインピーダンスの変化によって変化したことを検出した場合に、コンセント42が劣化したと判別する。 The wet deterioration of the outlet 42 appears as a change in the impedance of the outlet 42. Therefore, when the deterioration detection apparatus 100 detects that the harmonic component of the current flowing through the main breaker 30 has changed due to the impedance change of the outlet 42 when the air conditioner 220 is operating, the outlet 42 has deteriorated. Is determined.
 クラウドサーバ300は、クラウドコンピューティングにおけるリソースを提供するサーバである。クラウドサーバ300は、通信ネットワーク500を介して、劣化検出装置100と端末装置400とに接続される。クラウドサーバ300は、基本機器モデル(基準モデル)とフィルタモデル(劣化前フィルタモデル、劣化後フィルタモデル)とを記憶し、基本機器モデルとフィルタモデルとを劣化検出装置100に提供する。 The cloud server 300 is a server that provides resources in cloud computing. The cloud server 300 is connected to the deterioration detection device 100 and the terminal device 400 via the communication network 500. The cloud server 300 stores the basic device model (reference model) and the filter model (pre-degradation filter model, post-degradation filter model), and provides the basic device model and the filter model to the degradation detection apparatus 100.
 端末装置400は、通信ネットワーク500を介して、劣化検出装置100とクラウドサーバ300とに接続される。端末装置400は、劣化検出装置100のユーザインターフェースとして機能する。端末装置400は、劣化検出装置100により劣化が検出された場合、劣化検出装置100からの指示に従って、コンセント41,42が劣化した旨や劣化したコンセント41,42に接続された電気機器を報知する。端末装置400は、例えば、パーソナルコンピュータ、スマートフォン、携帯電話、タブレット端末などである。 The terminal device 400 is connected to the deterioration detection device 100 and the cloud server 300 via the communication network 500. The terminal device 400 functions as a user interface for the deterioration detection device 100. When the deterioration is detected by the deterioration detection device 100, the terminal device 400 notifies the outlets 41 and 42 that the outlets 41 and 42 have deteriorated and the electrical equipment connected to the deteriorated outlets 41 and 42 according to an instruction from the deterioration detection device 100. . The terminal device 400 is, for example, a personal computer, a smartphone, a mobile phone, a tablet terminal, or the like.
 通信ネットワーク500は、通信ネットワーク500に接続された機器同士が相互に通信するためのネットワークである。通信ネットワーク500は、例えば、WAN(Wide Area Network)であり、インターネットである。 The communication network 500 is a network for devices connected to the communication network 500 to communicate with each other. The communication network 500 is, for example, a WAN (Wide Area 、 Network), which is the Internet.
 劣化検出装置100は、図示しないが、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、AD(Analog Digital)変換器、フラッシュメモリ、RTC(Real Time Clock)、タッチスクリーン、NIC(Network Interface Card))を備える。 Although not shown, the degradation detection apparatus 100 is, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), AD (Analog Digital) converter, flash memory, RTC (Real Time Clock). , Touch screen, NIC (Network Interface Card).
 図2に示すように、劣化検出装置100は、機能的には、通信部101と、基本機器モデル記憶部102と、フィルタモデル記憶部103と、機器モデル生成部104と、機器モデル記憶部105と、AD変換部106と、波形生成部107と、周波数解析部108と、動作確率推定部109と、劣化検出部110と、表示部111と、を備える。通信部101の機能は、例えば、CPUとNICとが協働することにより実現される。基本機器モデル記憶部102、フィルタモデル記憶部103、機器モデル記憶部105の機能は、例えば、フラッシュメモリの機能により実現される。機器モデル生成部104、波形生成部107、周波数解析部108、動作確率推定部109、劣化検出部110の機能は、例えば、CPUとROMとRAMとが協働することにより実現される。AD変換部106の機能は、例えば、AD変換器により実現される。表示部111の機能は、例えば、CPUとタッチスクリーンとが協働することにより実現される。 As shown in FIG. 2, the degradation detection apparatus 100 functionally includes a communication unit 101, a basic device model storage unit 102, a filter model storage unit 103, a device model generation unit 104, and a device model storage unit 105. An AD conversion unit 106, a waveform generation unit 107, a frequency analysis unit 108, an operation probability estimation unit 109, a deterioration detection unit 110, and a display unit 111. The function of the communication unit 101 is realized by, for example, cooperation between the CPU and the NIC. The functions of the basic device model storage unit 102, the filter model storage unit 103, and the device model storage unit 105 are realized by, for example, a flash memory function. The functions of the device model generation unit 104, the waveform generation unit 107, the frequency analysis unit 108, the operation probability estimation unit 109, and the deterioration detection unit 110 are realized by, for example, the cooperation of the CPU, the ROM, and the RAM. The function of the AD conversion unit 106 is realized by an AD converter, for example. The function of the display unit 111 is realized by, for example, cooperation between the CPU and the touch screen.
 通信部101は、通信ネットワーク500を介して、基本機器モデル(基本機器モデルデータ)とフィルタモデル(フィルタモデルデータ)とを、クラウドサーバ300から取得する。基本機器モデルは、電気機器の種別と、主幹ブレーカ30に直接接続されて動作したときに主幹ブレーカ30に流れる電流の波形における高調波成分の特徴量と、を対応付けたものである。電気機器の種別は、例えば、アルファベット、数字、平仮名、カタカナ、漢字などから構成された文字列(例えば、「冷蔵庫」、「エアコン」など。)により表される。フィルタモデル(フィルタモデルデータ)は、劣化前フィルタモデル(劣化前フィルタモデルデータ)と劣化後フィルタモデル(劣化後フィルタモデルデータ)とに分類される。劣化前フィルタモデルは、劣化前フィルタ回路における周波数特性を示すものである。劣化前フィルタ回路は、劣化前のコンセントと、主幹ブレーカ30と劣化前のコンセント41とを結ぶ配線(電力線31,32)と、により構成される。劣化後フィルタモデルは、劣化後フィルタ回路における周波数特性を示すものである。劣化後フィルタ回路は、劣化後のコンセント41と、主幹ブレーカ30と劣化後のコンセント41とを結ぶ配線(電力線31,32)と、により構成される。また、通信部101は、劣化検出部110により劣化が検出された場合、通信ネットワーク500を介して、報知指示情報を端末装置400に送信する。報知指示情報は、コンセントが劣化した旨と劣化したコンセントに接続された電気機器とを報知することを指示する情報である。 The communication unit 101 acquires a basic device model (basic device model data) and a filter model (filter model data) from the cloud server 300 via the communication network 500. The basic device model associates the type of the electric device with the characteristic amount of the harmonic component in the waveform of the current flowing through the main breaker 30 when operating directly connected to the main breaker 30. The type of electrical device is represented by a character string (for example, “refrigerator”, “air conditioner”, etc.) composed of alphabets, numbers, hiragana, katakana, kanji, and the like. Filter models (filter model data) are classified into pre-degradation filter models (pre-degradation filter model data) and post-degradation filter models (post-degradation filter model data). The pre-deterioration filter model indicates frequency characteristics in the pre-deterioration filter circuit. The pre-deterioration filter circuit is composed of an outlet before deterioration and wiring (power lines 31 and 32) connecting the main breaker 30 and the outlet 41 before deterioration. The post-degradation filter model indicates frequency characteristics in the post-degradation filter circuit. The post-deterioration filter circuit is configured by an outlet 41 after deterioration, and wiring (power lines 31, 32) connecting the main breaker 30 and the outlet 41 after deterioration. Further, the communication unit 101 transmits notification instruction information to the terminal device 400 via the communication network 500 when the deterioration is detected by the deterioration detection unit 110. The notification instruction information is information instructing to notify that the outlet has deteriorated and the electrical equipment connected to the deteriorated outlet.
 基本機器モデル記憶部102は、通信部101から供給された基本機器モデルを記憶する。フィルタモデル記憶部103は、通信部101から供給されたフィルタモデル(劣化前フィルタモデル及び劣化後フィルタモデル)を記憶する。機器モデル生成部104は、基本機器モデル記憶部102に記憶された基本機器モデルと、フィルタモデル記憶部103に記憶されたフィルタモデル(劣化前フィルタモデル及び劣化後フィルタモデル)とに基づいて、機器モデル(劣化前機器モデル及び劣化後機器モデル)を生成する。機器モデル記憶部105は、機器モデル生成部104により生成された機器モデル(劣化前機器モデル及び劣化後機器モデル)を記憶する。基本機器モデル、劣化前機器モデル、劣化後機器モデルは、電気機器の種別毎に管理される。 The basic device model storage unit 102 stores the basic device model supplied from the communication unit 101. The filter model storage unit 103 stores the filter models (pre-degradation filter model and post-degradation filter model) supplied from the communication unit 101. Based on the basic device model stored in the basic device model storage unit 102 and the filter models (pre-degradation filter model and post-degradation filter model) stored in the filter model storage unit 103, the device model generation unit 104 Generate models (pre-degradation equipment model and post-degradation equipment model). The device model storage unit 105 stores the device models (pre-degradation device model and post-degradation device model) generated by the device model generation unit 104. The basic device model, the device model before deterioration, and the device model after deterioration are managed for each type of electric device.
 劣化前機器モデル(劣化前モデル)は、屋内配線と劣化前のコンセント41と電気機器とを含むモデルである。劣化前機器モデル(劣化前機器モデルデータ)は、電気機器の種別と、劣化前のコンセント41に接続された電気機器が動作しているときに、主幹ブレーカ30に流れる電流の波形の高調波の特徴と、を示すデータである。劣化前機器モデルは、例えば、1周期分の電流波形を、ウェーブレット変換により、1以上の周波数成分に分解することにより得られる、周波数成分毎の時系列データ(周波数毎に位相と信号強度との対応関係を示すデータ)である。劣化後機器モデル(劣化後モデル)は、屋内配線と劣化後のコンセント41と電気機器とを含むモデルである。劣化後機器モデル(劣化後機器モデルデータ)は、電気機器の種別と、劣化後のコンセント41に接続された電気機器が動作しているときに、主幹ブレーカ30に流れる電流の波形の高調波の特徴と、を示すデータである。劣化後機器モデルは、例えば、1周期分の電流波形を、ウェーブレット変換により、1以上の周波数成分に分解することにより得られる、周波数成分毎の時系列データ(周波数毎に位相と信号強度との対応関係を示すデータ)である。 The pre-degradation equipment model (pre-degradation model) is a model including the indoor wiring, the pre-deterioration outlet 41, and the electrical equipment. The pre-degradation device model (pre-degradation device model data) includes the type of the electric device and the harmonics of the waveform of the current flowing through the main breaker 30 when the electric device connected to the outlet 41 before deterioration is operating. This is data indicating the characteristics. The pre-degradation device model is, for example, time-series data for each frequency component (the phase and signal intensity for each frequency) obtained by decomposing a current waveform for one cycle into one or more frequency components by wavelet transform. Data showing correspondence). The post-degradation equipment model (post-degradation model) is a model including indoor wiring, a post-degradation outlet 41, and electrical equipment. The after-degradation equipment model (after-degradation equipment model data) includes the type of the electrical equipment and the harmonics of the waveform of the current flowing through the main breaker 30 when the electrical equipment connected to the outlet 41 after degradation is operating. This is data indicating the characteristics. The post-degradation device model is, for example, time-series data for each frequency component (phase and signal intensity for each frequency) obtained by decomposing a current waveform for one cycle into one or more frequency components by wavelet transform. Data showing correspondence).
 AD変換部106は、電流センサ10により検出された電流値(例えば、-10Aから10A)に対応する電圧値(例えば、0Vから5V)を、アナログ値からデジタル値に変化する。また、AD変換部106は、電圧センサ20により検出された電圧値(例えば、-200Vから200V)に対応する電圧値(例えば、0Vから5V)を、アナログ値からデジタル値に変化する。波形生成部107は、AD変換部106から供給された電圧値(例えば、0Vから5V)を電流値(例えば、-10Aから10A)に変換し、変換後の電流値(例えば、-10Aから10A)を連結することにより、電流波形を生成する。また、波形生成部107は、AD変換部106から供給された電圧値(例えば、0Vから5V)を電圧値(例えば、-200Vから200V)に変換し、変換後の電圧値(例えば、-200Vから200V)を連結することにより、電圧波形を生成する。なお、波形生成部107は、電圧波形においてゼロクロスを検出することにより、電流波形や電圧波形において位相を特定したり、ゼロクロスを先頭とした1周期(例えば、50Hz)分の電流波形や電圧波形を生成したりすることができる。 The AD converter 106 changes the voltage value (for example, 0 V to 5 V) corresponding to the current value (for example, -10 A to 10 A) detected by the current sensor 10 from an analog value to a digital value. Further, the AD conversion unit 106 changes a voltage value (for example, 0 V to 5 V) corresponding to a voltage value (for example, −200 V to 200 V) detected by the voltage sensor 20 from an analog value to a digital value. The waveform generation unit 107 converts the voltage value (for example, 0V to 5V) supplied from the AD conversion unit 106 into a current value (for example, −10A to 10A), and the converted current value (for example, −10A to 10A) ) To generate a current waveform. Further, the waveform generation unit 107 converts the voltage value (for example, 0V to 5V) supplied from the AD conversion unit 106 into a voltage value (for example, −200V to 200V), and the converted voltage value (for example, −200V). To 200V) to generate a voltage waveform. The waveform generator 107 detects the zero cross in the voltage waveform, thereby specifying the phase in the current waveform or the voltage waveform, or the current waveform or voltage waveform for one period (for example, 50 Hz) starting from the zero cross. Can be generated.
 図4に、1周期分の電圧波形と1周期分の電流波形とを示す。グラフ410は、電力線31と電力線32との間の電圧の1周期分の電圧波形を示すグラフである。グラフ420は、電力線31に流れる電流の1周期分の電流波形を示すグラフである。 FIG. 4 shows a voltage waveform for one cycle and a current waveform for one cycle. The graph 410 is a graph showing a voltage waveform for one cycle of the voltage between the power line 31 and the power line 32. A graph 420 is a graph showing a current waveform for one cycle of the current flowing through the power line 31.
 周波数解析部108は、波形生成部107により生成された1周期分の電流波形の周波数成分を解析する。例えば、周波数解析部108は、1周期分の電流波形を、ウェーブレット変換により、1以上の周波数成分に分解し、周波数成分毎の時系列データ(周波数毎に位相と信号強度との対応関係を示すデータ)を求める。周波数成分毎の時系列データは、電流波形の高調波の特徴を示すデータである。なお、周波数解析部108は、1周期分の電流波形を、離散フーリエ変換により、1以上の周波数成分に分解してもよい。 The frequency analysis unit 108 analyzes the frequency component of the current waveform for one cycle generated by the waveform generation unit 107. For example, the frequency analysis unit 108 decomposes a current waveform for one cycle into one or more frequency components by wavelet transform, and shows time-series data for each frequency component (showing the correspondence between phase and signal intensity for each frequency) Data). The time-series data for each frequency component is data indicating the characteristics of the harmonics of the current waveform. Note that the frequency analysis unit 108 may decompose the current waveform for one period into one or more frequency components by discrete Fourier transform.
 動作確率推定部109は、周波数解析部108から供給された周波数成分毎の時系列データと、機器モデル記憶部105に記憶された機器モデル(劣化前機器モデル及び劣化後機器モデル)と、に基づいて、電気機器毎に、動作確率(劣化前動作確率及び劣化後動作確率)を推定する。劣化前動作確率は、劣化前のコンセント41に接続された電気機器が動作している確率である。劣化後動作確率は、劣化後のコンセント41に接続された電気機器が動作している確率である。 The operation probability estimation unit 109 is based on the time-series data for each frequency component supplied from the frequency analysis unit 108 and the device models (pre-degradation device model and post-degradation device model) stored in the device model storage unit 105. Thus, the operation probability (the operation probability before deterioration and the operation probability after deterioration) is estimated for each electric device. The pre-deterioration operation probability is a probability that an electrical device connected to the outlet 41 before deterioration is operating. The post-degradation operation probability is a probability that the electric device connected to the post-deterioration outlet 41 is operating.
 例えば、動作確率推定部109は、機器モデル記憶部105に機器モデルが記憶されている電気機器の中から1つの電気機器を選択する。そして、動作確率推定部109は、選択した電気機器に対応する、劣化前機器モデルと劣化後機器モデルとを、機器モデル記憶部105から取得する。動作確率推定部109は、周波数成分毎の時系列データにより示される高調波成分の特徴と、劣化前機器モデルにより示される高調波成分の特徴と、の類似度に基づいて、劣化前動作確率を求める。また、動作確率推定部109は、周波数成分毎の時系列データにより示される高調波成分の特徴と、劣化後機器モデルにより示される高調波成分の特徴と、の類似度に基づいて、劣化後動作確率を求める。 For example, the operation probability estimation unit 109 selects one electric device from among the electric devices whose device models are stored in the device model storage unit 105. Then, the operation probability estimation unit 109 acquires the pre-degradation device model and the post-degradation device model corresponding to the selected electrical device from the device model storage unit 105. The operation probability estimation unit 109 calculates the pre-deterioration operation probability based on the similarity between the characteristics of the harmonic components indicated by the time-series data for each frequency component and the characteristics of the harmonic components indicated by the pre-deterioration equipment model. Ask. In addition, the operation probability estimation unit 109 operates based on the similarity between the characteristics of the harmonic components indicated by the time-series data for each frequency component and the characteristics of the harmonic components indicated by the deteriorated device model. Find the probability.
 動作確率推定部109は、例えば、特定の周波数における時系列データ同士の相関係数を動作確率として推定する。例えば、相関係数が-1から0である場合、動作確率を0%とし、相関係数が0を超える場合、相関係数に100を乗じて%で表したものを動作確率とする。特定の周波数は、劣化前動作確率を求める場合と劣化後動作確率を求める場合とで、異なっていてもよいし、同じであってもよい。例えば、劣化前動作確率を求める場合、特定の周波数が0.4MHzであり、劣化後動作確率を求める場合、特定の周波数が1MHzであってもよい。或いは、例えば、劣化前動作確率を求める場合と劣化後動作確率を求める場合とのいずれの場合にも、特定の周波数が0.4MHzであってもよい。このように、取得された電流波形と劣化前機器モデルと劣化後機器モデルとで比較される高調波成分の特徴量は、予め定められた周波数における位相毎の強度とすることができる。ただし、比較される高調波成分の特徴量は、この例に限定されない。 The operation probability estimation unit 109 estimates, for example, a correlation coefficient between time series data at a specific frequency as an operation probability. For example, when the correlation coefficient is −1 to 0, the operation probability is 0%, and when the correlation coefficient exceeds 0, the correlation coefficient is multiplied by 100 to represent the operation probability as%. The specific frequency may be different or may be the same in the case of obtaining the pre-degradation operation probability and the case of obtaining the post-degradation operation probability. For example, when the operation probability before deterioration is obtained, the specific frequency may be 0.4 MHz, and when the operation probability after deterioration is obtained, the specific frequency may be 1 MHz. Alternatively, for example, the specific frequency may be 0.4 MHz in both cases of obtaining the pre-degradation operation probability and obtaining the post-degradation operation probability. As described above, the characteristic amount of the harmonic component compared between the acquired current waveform, the pre-degradation device model, and the post-degradation device model can be the intensity for each phase at a predetermined frequency. However, the feature quantity of the harmonic component to be compared is not limited to this example.
 例えば、周波数=0.4MHz、位相=225°における強度が相対的に高いことが、劣化前機器モデルの特徴であるものとする。この場合、例えば、劣化前機器モデルの周波数=0.4MHz、位相=225°における強度に対する、取得された電流波形の周波数=0.4MHz、位相=225°における強度の比率を、劣化前動作確率とすることができる。同様に、例えば、周波数=1MHz、位相=135°における強度が相対的に高いことが、劣化後機器モデルの特徴であるものとする。この場合、例えば、劣化後機器モデルの周波数=1MHz、位相=135°における強度に対する、取得された電流波形の周波数=1MHz、位相=135°における強度の比率を、劣化後動作確率とすることができる。 For example, a relatively high intensity at a frequency = 0.4 MHz and a phase = 225 ° is a characteristic of the pre-degradation device model. In this case, for example, the ratio of the intensity of the acquired current waveform at frequency = 0.4 MHz and phase = 225 ° to the intensity at frequency = 0.4 MHz and phase = 225 ° of the pre-degradation device model is the operation probability before deterioration. It can be. Similarly, for example, a relatively high intensity at a frequency = 1 MHz and a phase = 135 ° is a characteristic of the post-degradation device model. In this case, for example, the ratio of the intensity at the frequency = 1 MHz and the phase = 135 ° of the acquired current waveform to the intensity at the frequency = 1 MHz and the phase = 135 ° of the post-degradation device model may be set as the post-degradation operation probability. it can.
 或いは、例えば、周波数=0.4MHz、位相=225°における強度が1番高く、周波数=0.4MHz、位相=45°における強度が2番目に高いことが、劣化前機器モデルの特徴であるものとする。この場合、例えば、劣化前機器モデルと取得された電流波形とで、強度が1番高い組み合わせ(周波数及び位相)と強度が2番目に高い組み合わせ(周波数及び位相)とが一致する場合、劣化前動作確率を100%とする。また、例えば、劣化前機器モデルと取得された電流波形とで、強度が1番高い組み合わせ(周波数及び位相)のみ一致する場合、劣化前動作確率を50%とする。劣化後動作確率についても劣化前動作確率と同様に、相対的に強度が高い組み合わせ(周波数及び位相)の一致度に応じて劣化後動作確率を推定することができる。 Or, for example, the characteristic of the pre-degradation device model is that the intensity at the frequency = 0.4 MHz and the phase = 225 ° is the highest, and the intensity at the frequency = 0.4 MHz and the phase = 45 ° is the second highest. And In this case, for example, when the combination with the highest intensity (frequency and phase) matches the combination with the second highest intensity (frequency and phase) in the pre-degradation device model and the acquired current waveform, The operation probability is 100%. Also, for example, when only the combination (frequency and phase) having the highest intensity matches the pre-degradation device model and the acquired current waveform, the pre-degradation operation probability is set to 50%. Similarly to the pre-degradation operation probability, the post-degradation operation probability can be estimated according to the matching degree of the combination (frequency and phase) having relatively high strength.
 このように、取得された電流波形と劣化前機器モデルと劣化後機器モデルとで比較される高調波成分の特徴量は、予め定められた周波数及び予め定められた位相における強度とすることができる。動作確率推定部109は、他の電気機器についても、同様に、劣化前動作確率と劣化後動作確率とを求める。 Thus, the characteristic amount of the harmonic component compared between the acquired current waveform, the pre-degradation device model, and the post-degradation device model can be the intensity at the predetermined frequency and the predetermined phase. . Similarly, the operation probability estimation unit 109 obtains the pre-deterioration operation probability and the post-degradation operation probability for other electrical devices.
 劣化検出部110は、動作確率推定部109により推定された動作確率(劣化前動作確率及び劣化後動作確率)に基づいて、劣化したコンセント41,42を検出する。例えば、ある電気機器に関して、劣化前動作確率と劣化後動作確率とが50%以上であり、劣化前動作確率よりも劣化後動作確率の方が高い場合、その電気機器が接続されたコンセント41,42が劣化していると判別される。一方、例えば、ある電気機器に関して、劣化前動作確率と劣化後動作確率とが50%以上であり、劣化前動作確率よりも劣化後動作確率の方が低い場合、その電気機器が接続されたコンセント41,42が劣化していないと判別される。また、例えば、ある電気機器に関して、劣化前動作確率と劣化後動作確率とが50%未満である場合、その電気機器は動作していないと判別される。劣化検出部110は、劣化したコンセント41,42があると判別した場合、通信部101と表示部111とに、報知指示情報を送信する。 The deterioration detection unit 110 detects the deteriorated outlets 41 and 42 based on the operation probabilities (pre-deterioration operation probability and post-degradation operation probability) estimated by the operation probability estimation unit 109. For example, regarding an electrical device, when the pre-degradation operation probability and the post-degradation operation probability are 50% or more and the post-degradation operation probability is higher than the pre-degradation operation probability, the outlet 41 to which the electrical device is connected, 42 is determined to be deteriorated. On the other hand, for example, when the pre-deterioration operation probability and the post-deterioration operation probability are 50% or more for a certain electric device, and the post-deterioration operation probability is lower than the pre-deterioration operation probability, the outlet to which the electric device is connected. It is determined that 41 and 42 are not deteriorated. Further, for example, when an operation probability before deterioration and an operation probability after deterioration are less than 50% for a certain electric device, it is determined that the electric device is not operating. When the deterioration detection unit 110 determines that there are deteriorated outlets 41 and 42, the deterioration detection unit 110 transmits notification instruction information to the communication unit 101 and the display unit 111.
 なお、劣化検出部110は、劣化後動作確率のみならず、劣化前動作確率をも考慮することにより、誤検出を減らすことが期待できる。例えば、冷蔵庫210に関する劣化後機器モデルが、エアコン220に関する劣化前機器モデルと類似する場合がある。この場合、コンセント41とコンセント42とのいずれもが劣化していなくても、冷蔵庫210に関する劣化後動作確率が非常に高くなる。このため、仮に、劣化後動作確率のみで劣化を検出する場合、コンセント41が劣化していると判別されてしまう。一方、劣化後動作確率のみならず、劣化前動作確率をも考慮すると、冷蔵庫210に関する劣化前動作確率が低くなるため、コンセント41が劣化していると判別されない。 Note that the deterioration detection unit 110 can be expected to reduce false detections by considering not only the post-deterioration operation probability but also the pre-deterioration operation probability. For example, the post-degradation device model related to the refrigerator 210 may be similar to the pre-degradation device model related to the air conditioner 220. In this case, even if neither the outlet 41 nor the outlet 42 has deteriorated, the operation probability after deterioration relating to the refrigerator 210 becomes very high. For this reason, if the deterioration is detected only by the operation probability after deterioration, it is determined that the outlet 41 is deteriorated. On the other hand, considering not only the post-deterioration operation probability but also the pre-deterioration operation probability, the pre-deterioration operation probability related to the refrigerator 210 is low, and therefore, it is not determined that the outlet 41 is deteriorated.
 このように、本実施形態では、まず、劣化前動作確率と劣化前動作確率とが閾値以上であるか否かの判別によりある電気機器が動作しているかが判別され、次に、劣化前動作確率と劣化前動作確率との大小関係の比較によりこの電気機器が接続されたコンセントが劣化しているか否かが判別される。本実施形態では、ある電気機器が動作している場合、この電気機器の劣化前動作確率とこの電気機器の劣化後動作確率とのいずれもが、他の電気機器の劣化前動作確率や他の電気機器の劣化後動作確率などよりも大幅に高くなる可能性が高いことを利用している。 As described above, in the present embodiment, first, it is determined whether or not an electrical device is operating by determining whether or not the pre-deterioration operation probability and the pre-deterioration operation probability are equal to or greater than the threshold value, and then the pre-deterioration operation. By comparing the magnitude relationship between the probability and the pre-deterioration operation probability, it is determined whether or not the outlet to which the electrical device is connected has deteriorated. In this embodiment, when a certain electrical device is operating, both the pre-degradation operation probability of this electrical device and the post-degradation operation probability of this electrical device are the pre-degradation operation probability of other electrical devices and other The fact that the probability of operation after deterioration of electrical equipment is likely to be significantly higher is utilized.
 なお、劣化検出部110は、劣化前動作確率と劣化前動作確率とに基づかずに、コンセント41が劣化しているか否かを判別してもよい。例えば、劣化検出部110は、波形生成部107により生成された電流波形における特徴量と、劣化前機器モデルにおける特徴量と、劣化後機器モデルにおける特徴量と、に基づいて、コンセント41が劣化しているか否かを判別してもよい。例えば、劣化検出部110は、生成された電流波形における特徴量が劣化前機器モデルにおける特徴量と劣化後機器モデルにおける特徴量とのいずれとも近似し、生成された電流波形における特徴量と劣化後機器モデルにおける特徴量との近似の程度の方が高い場合、コンセント41が劣化していると判別してもよい。例えば、特徴量が、特定の周波数、特定の位相における信号強度であるものとする。この場合、例えば、劣化検出部110は、生成された電流波形における信号強度と劣化前機器モデルにおける信号強度との差(以下「第1の差」という。)が閾値以下であり、生成された電流波形における信号強度と劣化後機器モデルにおける信号強度との差(以下「第2の差」という。)が閾値以下であり、第1の差よりも第2の差の方が小さい場合、コンセント41が劣化していると判別する。なお、上述した近似の程度は、信号強度の差ではなく、信号強度の割合であってもよい。また、信号強度の差や割合は、生成された電流波形と劣化前機器モデルと劣化後機器モデルとを正規化した後に算出されることが好適である。 It should be noted that the deterioration detection unit 110 may determine whether or not the outlet 41 has deteriorated without being based on the pre-deterioration operation probability and the pre-deterioration operation probability. For example, in the deterioration detection unit 110, the outlet 41 deteriorates based on the feature amount in the current waveform generated by the waveform generation unit 107, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model. It may be determined whether or not. For example, the deterioration detection unit 110 approximates the feature amount in the generated current waveform to the feature amount in the pre-degradation device model and the feature amount in the post-degradation device model, and the feature amount in the generated current waveform and the post-degradation feature If the degree of approximation with the feature amount in the device model is higher, it may be determined that the outlet 41 has deteriorated. For example, it is assumed that the feature amount is signal intensity at a specific frequency and a specific phase. In this case, for example, the deterioration detection unit 110 generates a difference between the signal strength in the generated current waveform and the signal strength in the pre-degradation device model (hereinafter referred to as “first difference”) that is equal to or less than a threshold value. If the difference between the signal strength in the current waveform and the signal strength in the post-degradation device model (hereinafter referred to as “second difference”) is less than or equal to the threshold value, and the second difference is smaller than the first difference, It is determined that 41 is deteriorated. The degree of approximation described above may not be a difference in signal strength, but a ratio of signal strength. Further, it is preferable that the difference or ratio of the signal intensity is calculated after normalizing the generated current waveform, the pre-degradation device model, and the post-degradation device model.
 表示部111は、劣化検出部110から報知指示情報を受信した場合、劣化したコンセントがある旨と、劣化したコンセントに接続された電気機器と、を報知する。つまり、表示部111は、劣化したコンセントがある旨のメッセージと、劣化したコンセントに接続された電気機器を示す情報とを表示する。 When the display unit 111 receives the notification instruction information from the deterioration detection unit 110, the display unit 111 notifies that there is a deteriorated outlet and the electrical equipment connected to the deteriorated outlet. That is, the display unit 111 displays a message indicating that there is a deteriorated outlet and information indicating an electrical device connected to the deteriorated outlet.
 次に、図3を参照して、屋内配線回路の等価回路について説明する。ここでは、主幹ブレーカ30から冷蔵庫210までの屋内配線回路を例にして説明する。屋内配線回路は、冷蔵庫210を、内部インピーダンス212(ZI)と高調波電圧源213(V)との直列回路により構成される高調波電流源(V/ZI)とすると、図3に示すような等価回路にモデル化できる。つまり、屋内配線回路の等価回路は、高調波電流源(V/ZI)が、コンセント41が有するインピーダンス43(Zc(t))と、配線インピーダンス34(Zf)とを介して、外部系統インピーダンス33(Zs)で終端された回路である。 Next, an equivalent circuit of the indoor wiring circuit will be described with reference to FIG. Here, an indoor wiring circuit from the main breaker 30 to the refrigerator 210 will be described as an example. When the indoor wiring circuit is a harmonic current source (V / ZI) constituted by a series circuit of an internal impedance 212 (ZI) and a harmonic voltage source 213 (V), the indoor wiring circuit is as shown in FIG. Can be modeled as an equivalent circuit. That is, in the equivalent circuit of the indoor wiring circuit, the harmonic current source (V / ZI) is connected to the external system impedance 33 via the impedance 43 (Zc (t)) of the outlet 41 and the wiring impedance 34 (Zf). It is a circuit terminated with (Zs).
 ここで、V、ZI、Zf、Zsは、いずれも、経年劣化せず、固定値であるものとする。なお、Zfは、R(例えば、0.3mΩ/m)とL(例えば、0.64μH/m)とが直列に接続されて構成されるものとする。一方、Zc(t)は、経年劣化(湿潤劣化)し、変動するものとする。Zc(t)は、RとCとが並列に接続されて構成されるものとする。例えば、乾燥状態(劣化前の状態)では、Rは無限大であり、Cは100pF程度である。また、湿潤状態(劣化後の状態)では、Rは200kΩ程度であり、Cは20pFから30pF程度となる。 Here, it is assumed that V, ZI, Zf, and Zs are fixed values without deterioration over time. Zf is configured by connecting R (for example, 0.3 mΩ / m) and L (for example, 0.64 μH / m) in series. On the other hand, Zc (t) is assumed to change with age (wet deterioration). Zc (t) is configured by connecting R and C in parallel. For example, in a dry state (state before deterioration), R is infinite and C is about 100 pF. In a wet state (the state after deterioration), R is about 200 kΩ and C is about 20 pF to 30 pF.
 この場合、冷蔵庫210からコンセント41に流れる電流であるIs(t)は、式(1)により定義される。また、コンセント41から主幹ブレーカ30に流れる電流であるIh(t)は、式(2)により定義される。なお、「//」は、並列インピーダンスを示す。
 Is(t)=V/(ZI+Zc(t)//(Zf+Zs))・・・式(1)
 Ih(t)=Is×Zc(t)/(Zc(t)+Zf+Zs)・・・式(2)
In this case, Is (t), which is a current flowing from the refrigerator 210 to the outlet 41, is defined by Expression (1). Further, Ih (t), which is a current flowing from the outlet 41 to the main breaker 30, is defined by Expression (2). “//” indicates parallel impedance.
Is (t) = V / (ZI + Zc (t) // (Zf + Zs)) Expression (1)
Ih (t) = Is × Zc (t) / (Zc (t) + Zf + Zs) (2)
 ここで、図5に、フィルタ回路44の周波数特性を示す。グラフ510は、コンセント41の劣化前におけるフィルタ回路44の周波数特性を示すグラフである。一方、グラフ520は、コンセント41の劣化後におけるフィルタ回路44の周波数特性を示すグラフである。図5に示すように、フィルタ回路44は、コンセント41の劣化前とコンセント41の劣化後とでは、大きく周波数特性が異なる。例えば、1MHzの周波数に注目すると、劣化前のゲインは-52dBであり、劣化後のゲインは-34dBであり、劣化後のゲインは、劣化前のゲインに比べて、18dBも高い(約8倍)。 Here, the frequency characteristic of the filter circuit 44 is shown in FIG. A graph 510 is a graph showing the frequency characteristics of the filter circuit 44 before the outlet 41 is deteriorated. On the other hand, the graph 520 is a graph showing the frequency characteristics of the filter circuit 44 after the outlet 41 is deteriorated. As shown in FIG. 5, the filter circuit 44 has greatly different frequency characteristics before the outlet 41 is deteriorated and after the outlet 41 is deteriorated. For example, when focusing on the frequency of 1 MHz, the gain before deterioration is −52 dB, the gain after deterioration is −34 dB, and the gain after deterioration is 18 dB higher than the gain before deterioration (about 8 times). ).
 図6に、基本機器モデルを示す。基本機器モデルは、図3に示す等価回路において、フィルタ回路44を除去した回路(Zfを0Ωとし、Zc(t)を無限大とした回路)において、Zsに流れる電流(Ih(t)或いはIs(t))の高調波成分の特徴を示すモデルである。 Fig. 6 shows the basic equipment model. The basic device model is a current (Ih (t) or Is flowing through Zs in a circuit in which the filter circuit 44 is removed (a circuit in which Zf is 0Ω and Zc (t) is infinite) in the equivalent circuit shown in FIG. It is a model which shows the characteristic of the harmonic component of (t)).
 図7に、劣化前機器モデルを示す。劣化前機器モデルは、図3に示す等価回路において、Zc(t)が劣化前のインピーダンスであるときに、Zsに流れる電流(Ih(t))の高調波成分の特徴を示すモデルである。劣化前機器モデルは、基本機器モデルに対して、劣化前のフィルタ回路44の周波数特性を加味することにより得られる。劣化前機器モデルは、基本機器モデルと比較すると、0.4MHzにおける強度が高く、他の周波数における強度が低くなっている。これは、劣化前のフィルタ回路44の周波数特性を示すグラフ510のピークが0.4MHz程度であることによる。 Fig. 7 shows the pre-degradation equipment model. The pre-degradation device model is a model that shows the characteristics of the harmonic component of the current (Ih (t)) flowing through Zs when Zc (t) is the impedance before degradation in the equivalent circuit shown in FIG. The device model before deterioration is obtained by adding the frequency characteristics of the filter circuit 44 before deterioration to the basic device model. The pre-degradation device model has higher strength at 0.4 MHz and lower strength at other frequencies than the basic device model. This is because the peak of the graph 510 indicating the frequency characteristics of the filter circuit 44 before deterioration is about 0.4 MHz.
 以下、図5に示すフィルタ特性に基づいて、図6に示す基本機器モデルから図7に示す劣化前機器モデルを生成する手法について説明する。まず、図5を参照すると、劣化前のフィルタ特性におけるゲインのピークは約0.4MHzであり、劣化後のフィルタ特性におけるゲインのピークは約1MHzである。そこで、0.4MHzと1MHzとに注目して説明する。劣化前のフィルタ特性では、0MHzのゲイン(約-40dB)を基準とすると、0.4MHzのゲイン(約-33dB)は約7dBプラスであり、1MHzのゲイン(約-52dB)は約12dBマイナスである。このため、図6に示す基本機器モデルにおいて、0.4MHzの周波数成分を約2.2倍(107/20)にし、1MHzの周波数成分を約1/4倍(10-12/20)にしたものを、図7に示す劣化前機器モデルとする。なお、他の周波数成分に関しても同様に、劣化前のフィルタ特性のゲインに応じて増減させる。 Hereinafter, a method of generating the pre-degradation device model shown in FIG. 7 from the basic device model shown in FIG. 6 based on the filter characteristics shown in FIG. 5 will be described. First, referring to FIG. 5, the gain peak in the filter characteristic before deterioration is about 0.4 MHz, and the gain peak in the filter characteristic after deterioration is about 1 MHz. Therefore, the description will be made with attention paid to 0.4 MHz and 1 MHz. In the pre-degradation filter characteristics, when the gain of 0 MHz (about −40 dB) is used as a reference, the gain of 0.4 MHz (about −33 dB) is about 7 dB plus, and the gain of 1 MHz (about −52 dB) is about 12 dB minus. is there. Therefore, in the basic equipment model shown in FIG. 6, the frequency component of 0.4 MHz is about 2.2 times (10 7/20 ), and the frequency component of 1 MHz is about 1/4 times (10 −12/20 ). This is the device model before deterioration shown in FIG. Similarly, other frequency components are increased or decreased according to the gain of the filter characteristics before deterioration.
 図8に、劣化後機器モデルを示す。劣化後機器モデルは、図3に示す等価回路において、Zc(t)が劣化後のインピーダンスであるときに、Zsに流れる電流(Ih(t))の高調波成分の特徴を示すモデルである。劣化後機器モデルは、基本機器モデルに対して、劣化後のフィルタ回路44の周波数特性を加味することにより得られる。劣化後機器モデルは、基本機器モデルと比較すると、1.0MHzにおける強度が高く、他の周波数における強度が低くなっている。これは、劣化後のフィルタ回路44の周波数特性を示すグラフ520のピークが1.0MHz程度であることによる。 Fig. 8 shows the equipment model after degradation. The post-degradation device model is a model that shows the characteristics of the harmonic component of the current (Ih (t)) flowing through Zs when Zc (t) is the impedance after degradation in the equivalent circuit shown in FIG. The post-degradation device model is obtained by adding the frequency characteristics of the post-degradation filter circuit 44 to the basic device model. The post-degradation device model has higher strength at 1.0 MHz and lower strength at other frequencies than the basic device model. This is because the peak of the graph 520 showing the frequency characteristics of the filter circuit 44 after deterioration is about 1.0 MHz.
 以下、図5に示すフィルタ特性に基づいて、図6に示す基本機器モデルから図8に示す劣化後機器モデルを生成する手法について説明する。ここでも、0.4MHzと1MHzとに注目して説明する。劣化後のフィルタ特性では、0MHzのゲイン(約-40dB)を基準とすると、0.4MHzのゲイン(約-39dB)は約1dBプラスであり、1MHzのゲイン(約-34dB)は約6dBプラスである。このため、図6に示す基本機器モデルにおいて、0.4MHzの周波数成分を約1.1倍(101/20)にし、1MHzの周波数成分を約2倍(106/20)にしたものを、図8に示す劣化後機器モデルとする。なお、他の周波数成分に関しても同様に、劣化後のフィルタ特性のゲインに応じて増減させる。 Hereinafter, a method of generating the post-degradation device model shown in FIG. 8 from the basic device model shown in FIG. 6 based on the filter characteristics shown in FIG. 5 will be described. Here, the description will be given focusing on 0.4 MHz and 1 MHz. The filter characteristics after degradation are based on 0 MHz gain (about −40 dB), 0.4 MHz gain (about −39 dB) is about 1 dB plus, and 1 MHz gain (about −34 dB) is about 6 dB plus. is there. Therefore, in the basic equipment model shown in FIG. 6, the frequency component of 0.4 MHz is approximately 1.1 times (10 1/20 ) and the frequency component of 1 MHz is approximately double (10 6/20 ). A post-degradation device model shown in FIG. Similarly, other frequency components are increased or decreased in accordance with the gain of the filter characteristics after deterioration.
 次に、図9を参照して、劣化検出装置100が実行する劣化検出処理について説明する。劣化検出処理は、例えば、劣化検出装置100の電源が投入されたことに応答して開始される。まず、劣化検出装置100は、機器モデル生成処理を実行する(ステップS101)。機器モデル生成処理については、図10を参照して説明する。 Next, the degradation detection process executed by the degradation detection apparatus 100 will be described with reference to FIG. The deterioration detection process is started, for example, in response to the power supply of the deterioration detection apparatus 100 being turned on. First, the deterioration detection apparatus 100 executes a device model generation process (step S101). The device model generation process will be described with reference to FIG.
 機器モデル生成処理では、まず、通信部101は、クラウドサーバ300から、電気機器毎に、基本機器モデルを取得する(ステップS201)。なお、通信部101は、取得した基本機器モデルを基本機器モデル記憶部102に記憶させる。ステップS201の処理が完了すると、通信部101は、クラウドサーバ300から劣化前フィルタモデルを取得する(ステップS202)。なお、通信部101は、取得した劣化前フィルタモデルをフィルタモデル記憶部103に記憶させる。ステップS202の処理が完了すると、通信部101は、クラウドサーバ300から劣化後フィルタモデルを取得する(ステップS203)。なお、通信部101は、取得した劣化後フィルタモデルをフィルタモデル記憶部103に記憶させる。 In the device model generation process, first, the communication unit 101 acquires a basic device model for each electric device from the cloud server 300 (step S201). The communication unit 101 causes the basic device model storage unit 102 to store the acquired basic device model. When the process of step S201 is completed, the communication unit 101 acquires a pre-degradation filter model from the cloud server 300 (step S202). Note that the communication unit 101 stores the acquired pre-degradation filter model in the filter model storage unit 103. When the process of step S202 is completed, the communication unit 101 acquires a post-degradation filter model from the cloud server 300 (step S203). The communication unit 101 stores the acquired post-degradation filter model in the filter model storage unit 103.
 ステップS203の処理が完了すると、機器モデル生成部104は、電気機器を選択する(ステップS204)。ステップS204の処理が完了すると、機器モデル生成部104は、選択された電気機器について、劣化前機器モデルを生成する(ステップS205)。なお、機器モデル生成部104は、生成した劣化前機器モデルを機器モデル記憶部105に記憶させる。ステップS205の処理が完了すると、機器モデル生成部104は、選択された電気機器について、劣化後機器モデルを生成する(ステップS206)。なお、機器モデル生成部104は、生成した劣化後機器モデルを機器モデル記憶部105に記憶させる。 When the processing in step S203 is completed, the device model generation unit 104 selects an electrical device (step S204). When the process of step S204 is completed, the device model generation unit 104 generates a pre-degradation device model for the selected electrical device (step S205). The device model generation unit 104 stores the generated pre-degradation device model in the device model storage unit 105. When the process of step S205 is completed, the device model generation unit 104 generates a post-degradation device model for the selected electrical device (step S206). The device model generation unit 104 stores the generated post-degradation device model in the device model storage unit 105.
 ステップS206の処理が完了すると、機器モデル生成部104は、未選択の電気機器があるか否かを判別する(ステップS207)。機器モデル生成部104は、未選択の電気機器があると判別すると(ステップS207:YES)、ステップS204に処理を戻し、他の電気機器を選択する。一方、機器モデル生成部104は、未選択の電気機器がないと判別すると(ステップS207:NO)、機器モデル生成処理を完了する。 When the processing in step S206 is completed, the device model generation unit 104 determines whether there is an unselected electric device (step S207). If it is determined that there is an unselected electrical device (step S207: YES), the device model generation unit 104 returns the process to step S204 and selects another electrical device. On the other hand, when the device model generation unit 104 determines that there is no unselected electric device (step S207: NO), the device model generation process is completed.
 機器モデル生成処理を完了すると、波形生成部107は、電流波形を生成する(ステップS102)。ステップS102の処理が完了すると、周波数解析部108は、生成された電流波形の周波数を解析する(ステップS103)。例えば、周波数解析部108は、生成された電流波形を、ウェーブレット変換することにより、周波数成分毎の時系列データを取得する。 When the device model generation process is completed, the waveform generation unit 107 generates a current waveform (step S102). When the process of step S102 is completed, the frequency analysis unit 108 analyzes the frequency of the generated current waveform (step S103). For example, the frequency analysis unit 108 obtains time-series data for each frequency component by performing wavelet transform on the generated current waveform.
 ステップS103の処理が完了すると、動作確率推定部109は、電気機器を選択する(ステップS104)。ステップS104の処理が完了すると、動作確率推定部109は、特徴量を算出する(ステップS105)。例えば、動作確率推定部109は、周波数成分毎の時系列データから、0.4MHzの時系列データと、1MHzの時系列データと、を抽出する。 When the processing in step S103 is completed, the operation probability estimation unit 109 selects an electrical device (step S104). When the process of step S104 is completed, the motion probability estimation unit 109 calculates a feature amount (step S105). For example, the motion probability estimation unit 109 extracts 0.4 MHz time series data and 1 MHz time series data from the time series data for each frequency component.
 ステップS105の処理が完了すると、動作確率推定部109は、劣化前機器モデルの動作確率を推定する(ステップS106)。例えば、動作確率推定部109は、抽出された0.4MHzの時系列データと、劣化前機器モデルにおける0.4MHzの時系列データとの相関係数を求め、劣化前機器モデルの動作確率を推定する。ステップS106の処理が完了すると、動作確率推定部109は、劣化後機器モデルの動作確率を推定する(ステップS107)。例えば、動作確率推定部109は、抽出された1MHzの時系列データと、劣化後機器モデルにおける1MHzの時系列データとの相関係数を求め、劣化後機器モデルの動作確率を推定する。 When the processing in step S105 is completed, the operation probability estimation unit 109 estimates the operation probability of the pre-degradation device model (step S106). For example, the operation probability estimation unit 109 obtains a correlation coefficient between the extracted 0.4 MHz time series data and the 0.4 MHz time series data in the pre-degradation device model, and estimates the operation probability of the pre-degradation device model. To do. When the process of step S106 is completed, the operation probability estimation unit 109 estimates the operation probability of the deteriorated device model (step S107). For example, the operation probability estimation unit 109 obtains a correlation coefficient between the extracted 1 MHz time series data and the 1 MHz time series data in the deteriorated device model, and estimates the operation probability of the deteriorated device model.
 ステップS107の処理が完了すると、劣化検出部110は、コンセントが劣化しているか否かを判別する(ステップS108)。例えば、劣化検出部110は、劣化前機器モデルの動作確率と劣化後機器モデルの動作確率とが50%以上であり、劣化前機器モデルの動作確率よりも劣化後機器モデルの動作確率の方が高い場合、選択された電気機器が接続されたコンセントが劣化していると判定する。 When the processing in step S107 is completed, the deterioration detection unit 110 determines whether or not the outlet has deteriorated (step S108). For example, in the deterioration detection unit 110, the operation probability of the device model before deterioration and the operation probability of the device model after deterioration are 50% or more, and the operation probability of the device model after deterioration is more than the operation probability of the device model before deterioration. When it is high, it is determined that the outlet to which the selected electrical device is connected has deteriorated.
 劣化検出部110が、コンセントが劣化していると判別すると(ステップS108:YES)、表示部111は、コンセントが劣化している旨を表示する(ステップS109)。なお、表示部111は、コンセントが劣化している旨のメッセージに加え、劣化したコンセントに接続されている電気機器を示す情報を表示する。劣化検出部110が、コンセントが劣化していないと判別した場合(ステップS108:NO)、又は、ステップS109の処理が完了した場合、動作確率推定部109は、未選択の電気機器があるか否かを判別する(ステップS110)。 When the deterioration detecting unit 110 determines that the outlet is deteriorated (step S108: YES), the display unit 111 displays that the outlet is deteriorated (step S109). The display unit 111 displays information indicating an electrical device connected to the deteriorated outlet in addition to a message indicating that the outlet is deteriorated. When the deterioration detection unit 110 determines that the outlet has not deteriorated (step S108: NO), or when the process of step S109 is completed, the operation probability estimation unit 109 determines whether there is an unselected electrical device. Is determined (step S110).
 動作確率推定部109は、未選択の電気機器があると判別すると(ステップS110:YES)、ステップS104に処理を戻して、未選択の電気機器を選択する。一方、動作確率推定部109は、未選択の電気機器がないと判別すると(ステップS110:NO)、予め定められた時間ウェイトする(ステップS111)。予め定められた時間は、例えば、1日である。動作確率推定部109は、ステップS111の処理を完了すると、ステップS102に処理を戻す。 If the operation probability estimation unit 109 determines that there is an unselected electrical device (step S110: YES), the process returns to step S104 to select an unselected electrical device. On the other hand, when it is determined that there is no unselected electrical device (step S110: NO), the operation probability estimation unit 109 waits for a predetermined time (step S111). The predetermined time is, for example, one day. When the operation probability estimation unit 109 completes the process of step S111, the operation probability estimation unit 109 returns the process to step S102.
 本実施形態では、主幹ブレーカ30に流れる電流の波形から求められた特徴量と、劣化前機器モデルにおける特徴量と、劣化後機器モデルにおける特徴量と、に基づいて、劣化後のコンセント41に接続された電気機器を示す情報が表示される。従って、本実施形態によれば、トラッキング現象の発生に繋がるコンセントの劣化を、早い段階で検出し、早い段階でユーザに知らせることができる。 In the present embodiment, the connection is made to the outlet 41 after deterioration based on the feature amount obtained from the waveform of the current flowing through the main breaker 30, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model. Information indicating the selected electrical device is displayed. Therefore, according to the present embodiment, it is possible to detect the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage and notify the user at an early stage.
 また、上述した特許文献1に記載された湿潤劣化検出装置は、電気機器毎に設ける必要があった。しかしながら、本実施形態に係る劣化検出装置100は、電気機器毎に設ける必要はなく、主幹ブレーカ30に流れる電流を監視することにより、どの電気機器が接続されたコンセントが劣化したのかを検知することができる。また、本実施形態では、電気機器には特別な機能を持たせなくてもよい。 In addition, the wet deterioration detection device described in Patent Document 1 described above needs to be provided for each electric device. However, the deterioration detection apparatus 100 according to the present embodiment does not have to be provided for each electric device, and detects which outlet connected to which electric device has deteriorated by monitoring the current flowing through the main breaker 30. Can do. In the present embodiment, the electrical device may not have a special function.
 また、本実施形態では、基本機器モデルと劣化前フィルタ回路における周波数特性とに基づいて劣化前機器モデルが生成され、基本機器モデルと劣化後フィルタ回路における周波数特性とに基づいて劣化後機器モデルが生成される。つまり、本実施形態では、入手しやすいと考えられるモデル(基本機器モデル、劣化前フィルタモデル、劣化後フィルタモデル)から、入手しにくいと考えられるモデル(劣化前機器モデル、劣化後機器モデル)が生成される。このため、本実施形態によれば、入手しにくいと考えられる膨大な量のモデル(劣化前機器モデル、劣化後機器モデル)を、予め入手しなくてもよい。 In the present embodiment, a pre-degradation device model is generated based on the basic device model and the frequency characteristic in the pre-deterioration filter circuit, and the post-degradation device model is generated based on the basic device model and the frequency characteristic in the post-degradation filter circuit. Generated. In other words, in the present embodiment, models (basic device model, pre-degradation filter model, post-degradation filter model) that are considered to be easily obtained are not easily modeled (pre-degradation device model, post-degradation device model). Generated. For this reason, according to this embodiment, it is not necessary to obtain in advance a huge amount of models (pre-degradation device model, post-degradation device model) that are considered difficult to obtain.
 つまり、基本機器モデルは、基本的に、電気機器の種別に対応するモデルであるため、電気機器の種別毎に用意されていればよい。また、基本機器モデルは、電気機器のメーカーにより提供される可能性もある。また、劣化前フィルタモデルや劣化後フィルタモデルは、例えば、コンセントの種別やコンセントから主幹ブレーカ30までの配線長に対応するモデルである。コンセントの種別により周波数特性がそれほど変わらないとすれば、劣化前フィルタモデルや劣化後フィルタモデルは、配線長毎に用意すればよい。つまり、基本機器モデルと劣化前フィルタモデルと劣化後フィルタモデルとから劣化前機器モデルと劣化後機器モデルとを生成する場合、それ程、多くの情報を用意しなくて済む。一方、劣化前機器モデルや劣化後機器モデルを予め用意しようとすると、電気機器の種別と配線長との組み合わせ分用意する必要があり、膨大な手間や膨大な記憶容量が必要になると考えられる。 That is, since the basic device model is basically a model corresponding to the type of electric device, it may be prepared for each type of electric device. The basic device model may also be provided by the manufacturer of the electrical device. The pre-degradation filter model and the post-degradation filter model are models corresponding to the type of outlet and the wiring length from the outlet to the main breaker 30, for example. If the frequency characteristics do not change so much depending on the type of outlet, a pre-degradation filter model and a post-degradation filter model may be prepared for each wiring length. That is, when generating the pre-degradation device model and the post-degradation device model from the basic device model, the pre-degradation filter model, and the post-degradation filter model, it is not necessary to prepare much information. On the other hand, if an attempt is made to prepare a pre-degradation device model and a post-degradation device model in advance, it is necessary to prepare a combination of the type of electrical device and the wiring length, which would require a great deal of effort and a large storage capacity.
 また、本実施形態では、劣化前動作確率と劣化後動作確率とが予め定められた閾値以上であり、劣化前動作確率よりも劣化後動作確率の方が高い場合に、コンセントが劣化している旨が報知される。つまり、本実施形態では、まず、劣化前動作確率と劣化後動作確率との双方の高さにより、いずれかの電気機器が動作しているか否かが判別され、次に、劣化前動作確率と劣化後動作確率との大小関係により、動作していると判別された電気機器に接続されたコンセントが劣化しているか否かが判別される。従って、本実施形態によれば、コンセントの劣化の誤検出を減らすことができる。 In the present embodiment, the outlet is deteriorated when the pre-deterioration operation probability and the post-deterioration operation probability are equal to or higher than a predetermined threshold, and the post-deterioration operation probability is higher than the pre-deterioration operation probability. The effect is notified. That is, in this embodiment, first, it is determined whether or not any electrical device is operating based on the heights of both the pre-degradation operation probability and the post-degradation operation probability, and then, the pre-degradation operation probability and It is determined whether or not the outlet connected to the electrical device determined to be operating is deteriorated based on the magnitude relationship with the post-deterioration operation probability. Therefore, according to the present embodiment, it is possible to reduce erroneous detection of outlet deterioration.
(実施形態2)
 実施形態1では、劣化検出装置100が、劣化前機器モデルと劣化後機器モデルとに基づいて、劣化したコンセントを検出する例について説明した。本実施形態では、劣化検出装置120が、劣化前機器モデルと劣化後機器モデルとに基づかずに、劣化したコンセントを検出する例について説明する。本実施形態では、劣化検出装置120が劣化したコンセントを検出しやすくなるように、コンセントに接続される電気機器に、電気機器に固有のパターンの信号を出力する機能を持たせる。そして、本実施形態では、劣化検出装置120は、電気機器に固有のパターンの信号のレベルがコンセントの劣化により増大したことを検知した場合に、この電気機器が接続されたコンセントが劣化したと判別する。なお、実施形態2では、実施形態1と重複する部分については、説明を省略又は簡略化する。
(Embodiment 2)
In the first embodiment, the example in which the degradation detection apparatus 100 detects a degraded outlet based on the pre-degradation device model and the post-degradation device model has been described. In the present embodiment, an example will be described in which the deterioration detection device 120 detects a deteriorated outlet without being based on the pre-deterioration device model and the post-degradation device model. In the present embodiment, the electrical device connected to the electrical outlet is provided with a function of outputting a signal having a pattern unique to the electrical device so that the degradation detection device 120 can easily detect the degraded electrical outlet. In the present embodiment, when the deterioration detection device 120 detects that the level of the signal of the pattern unique to the electric device has increased due to the deterioration of the outlet, it determines that the outlet connected to the electric device has deteriorated. To do. In the second embodiment, the description of the same parts as those in the first embodiment is omitted or simplified.
 図11に示すように、実施形態2に係る劣化検出システム1100は、電流センサ10と、電圧センサ20と、劣化検出装置120と、に加え、電気機器(冷蔵庫214、エアコン224)を備える。冷蔵庫214は、高調波電流源215と、電圧測定器216と、を内蔵している。また、エアコン224は、高調波電流源225と、電圧測定器226と、を内蔵している。高調波電流源215は、基本的に、高調波電流源225と同様の機能を有する。また、電圧測定器216は、基本的に、電圧測定器226と同様の機能を有する。以下、冷蔵庫214を例にして、高調波電流源215と、電圧測定器216と、について説明する。 As shown in FIG. 11, the deterioration detection system 1100 according to the second embodiment includes electrical devices (a refrigerator 214 and an air conditioner 224) in addition to the current sensor 10, the voltage sensor 20, and the deterioration detection device 120. The refrigerator 214 includes a harmonic current source 215 and a voltage measuring device 216. The air conditioner 224 includes a harmonic current source 225 and a voltage measuring device 226. The harmonic current source 215 basically has the same function as the harmonic current source 225. The voltage measuring device 216 basically has the same function as the voltage measuring device 226. Hereinafter, the harmonic current source 215 and the voltage measuring device 216 will be described using the refrigerator 214 as an example.
 図12に示すように、高調波電流源215は、冷蔵庫214に特有の高調波を有する電流を流すために設けられた電流源である。高調波電流源215は、内部インピーダンス217と、高調波電圧源218と、を備える。内部インピーダンス217は、内部インピーダンス212に対応し、高調波電圧源218は、高調波電圧源213に対応する。つまり、高調波電流源215は、冷蔵庫214が備える負荷回路(図示せず)の代わりに、特有の高調波を有する電流を流すための電流源である。なお、本実施形態では、冷蔵庫214が備える負荷回路(図示せず)は、特有の高調波を有する電流を流さず、高調波の検出に関しては無視できるものとする。 As shown in FIG. 12, the harmonic current source 215 is a current source provided to flow a current having harmonics unique to the refrigerator 214. The harmonic current source 215 includes an internal impedance 217 and a harmonic voltage source 218. The internal impedance 217 corresponds to the internal impedance 212, and the harmonic voltage source 218 corresponds to the harmonic voltage source 213. That is, the harmonic current source 215 is a current source for allowing a current having a specific harmonic to flow instead of a load circuit (not shown) provided in the refrigerator 214. In the present embodiment, the load circuit (not shown) included in the refrigerator 214 does not pass a current having a specific harmonic and can be ignored with respect to detection of the harmonic.
 電圧測定器216は、高調波電圧源213がインピーダンス43の両端間に発生させた電圧を測定する。電圧測定器216の機能は、基本的に、電圧センサ20の機能と同様である。なお、高調波電圧源213がインピーダンス43の両端間に発生させる電圧は、フィルタ回路44の周波数特性に依存する。従って、高調波電圧源213が同じ電圧を出力したとしても、フィルタ回路44の周波数特性が変更されると、インピーダンス43の両端間に発生する電圧が変更される。 The voltage measuring device 216 measures the voltage generated by the harmonic voltage source 213 across the impedance 43. The function of the voltage measuring device 216 is basically the same as the function of the voltage sensor 20. Note that the voltage generated by the harmonic voltage source 213 across the impedance 43 depends on the frequency characteristics of the filter circuit 44. Therefore, even if the harmonic voltage source 213 outputs the same voltage, if the frequency characteristic of the filter circuit 44 is changed, the voltage generated across the impedance 43 is changed.
 冷蔵庫214は、図示しないが、高調波電流源215と電圧測定器216とに加え、例えば、CPU、ROM、RAM、AD変換器、フラッシュメモリ、RTC、タッチスクリーン、NICを備える。 Although not shown, the refrigerator 214 includes, for example, a CPU, ROM, RAM, AD converter, flash memory, RTC, touch screen, and NIC in addition to the harmonic current source 215 and the voltage measuring device 216.
 図13に示すように、冷蔵庫214は、機能的には、パターン記憶部201と、制御部202と、信号発生部203と、電圧測定部204と、周波数特性登録部205と、周波数特性記憶部206と、周波数決定部207と、を備える。パターン記憶部201、周波数特性記憶部206の機能は、例えば、フラッシュメモリの機能により実現される。制御部202、周波数特性登録部205、周波数決定部207の機能は、例えば、CPUとROMとRAMとが協働することにより実現される。信号発生部203の機能は、例えば、高調波電流源215の機能により実現される。電圧測定部204の機能は、例えば、電圧測定器216の機能により実現される。 As shown in FIG. 13, the refrigerator 214 functionally includes a pattern storage unit 201, a control unit 202, a signal generation unit 203, a voltage measurement unit 204, a frequency characteristic registration unit 205, and a frequency characteristic storage unit. 206 and a frequency determination unit 207. The functions of the pattern storage unit 201 and the frequency characteristic storage unit 206 are realized by, for example, a flash memory function. The functions of the control unit 202, the frequency characteristic registration unit 205, and the frequency determination unit 207 are realized by, for example, the cooperation of the CPU, the ROM, and the RAM. The function of the signal generation unit 203 is realized by the function of the harmonic current source 215, for example. The function of the voltage measuring unit 204 is realized by the function of the voltage measuring device 216, for example.
 パターン記憶部201は、冷蔵庫214に特有の信号パターンを記憶する。信号パターンの例を、図16に示す。図16に示す信号パターンは、±1V程度の高調波信号(例えば、0.8MHz程度)を、0.2秒周期で、3回出力するパターンである。なお、高調波信号の周波数は、フィルタ回路44の周波数特性を考慮して決定される。信号は、例えば、1分から10分程度の間隔で出力される。 The pattern storage unit 201 stores a signal pattern unique to the refrigerator 214. An example of the signal pattern is shown in FIG. The signal pattern shown in FIG. 16 is a pattern in which a harmonic signal of about ± 1 V (for example, about 0.8 MHz) is output three times with a period of 0.2 seconds. The frequency of the harmonic signal is determined in consideration of the frequency characteristics of the filter circuit 44. For example, the signal is output at intervals of about 1 to 10 minutes.
 制御部202は、種々の制御を実行する。例えば、制御部202は、信号発生部203による信号の発生を制御する。また、制御部202は、信号発生部203に対して、発生する信号の周波数を指示する。制御部202は、周波数特性を取得する場合、周波数を少しずつ増加又は減少させながら、信号発生部203に信号を出力させる。制御部202は、例えば、0.2MHzから2MHzの範囲で、周波数を変化させる。信号発生部203は、制御部202による制御に従って、制御部202により指定された周波数の信号を発生する。電圧測定部204は、信号発生部203が発生した信号の電圧を測定する。 The control unit 202 executes various controls. For example, the control unit 202 controls signal generation by the signal generation unit 203. In addition, the control unit 202 instructs the signal generation unit 203 on the frequency of the generated signal. When acquiring the frequency characteristics, the control unit 202 causes the signal generation unit 203 to output a signal while gradually increasing or decreasing the frequency. For example, the control unit 202 changes the frequency in the range of 0.2 MHz to 2 MHz. The signal generation unit 203 generates a signal having a frequency specified by the control unit 202 according to control by the control unit 202. The voltage measurement unit 204 measures the voltage of the signal generated by the signal generation unit 203.
 周波数特性登録部205は、出力された信号の周波数と、電圧測定部204により測定された電圧と、の関係を対応付けることにより、周波数特性を特定する。周波数特性登録部205は、特定された周波数特性を、周波数特性記憶部206に記憶させる。周波数特性記憶部206は、周波数特性登録部205により特定された周波数特性を記憶する。 The frequency characteristic registration unit 205 identifies the frequency characteristic by associating the relationship between the frequency of the output signal and the voltage measured by the voltage measurement unit 204. The frequency characteristic registration unit 205 causes the frequency characteristic storage unit 206 to store the specified frequency characteristic. The frequency characteristic storage unit 206 stores the frequency characteristic specified by the frequency characteristic registration unit 205.
 周波数決定部207は、周波数特性記憶部206に記憶された周波数特性に基づいて、信号発生部203に発生させる信号の周波数を決定する。例えば、図15におけるグラフ510により示される周波数特性が劣化前の周波数特性として記憶されているものとする。この場合、コンセント41が劣化すると、フィルタ回路44の周波数特性は、図15におけるグラフ520により示される周波数特性のように変化すると考えられる。つまり、ゲインのピークとなる周波数は、コンセント41の劣化により、高くなると考えられる。そこで、劣化前の周波数特性におけるピークの周波数よりも高い周波数を、信号発生部203に発生させる信号の周波数として決定する。これにより、信号発生部203が発生した信号のレベルの上昇を検出することで、コンセント41が劣化したことを検出することができるようになる。 The frequency determination unit 207 determines the frequency of the signal to be generated by the signal generation unit 203 based on the frequency characteristic stored in the frequency characteristic storage unit 206. For example, it is assumed that the frequency characteristic indicated by the graph 510 in FIG. 15 is stored as the frequency characteristic before deterioration. In this case, when the outlet 41 is deteriorated, the frequency characteristic of the filter circuit 44 is considered to change like the frequency characteristic indicated by the graph 520 in FIG. That is, it is considered that the frequency at which the gain reaches a peak increases due to deterioration of the outlet 41. Therefore, a frequency higher than the peak frequency in the frequency characteristic before deterioration is determined as the frequency of the signal generated by the signal generation unit 203. Accordingly, it is possible to detect that the outlet 41 has deteriorated by detecting an increase in the level of the signal generated by the signal generator 203.
 例えば、図15に示す例では、劣化前におけるピークの周波数は、0.44MHzである。この場合、例えば、0.44MHzの1.5倍である0.66MHzから、0.44MHzの2.5倍である1.11MHz程度の周波数が、信号の周波数として決定される。例えば、0.44MHzの2倍である0.88MHzが、信号の周波数として決定される。 For example, in the example shown in FIG. 15, the peak frequency before deterioration is 0.44 MHz. In this case, for example, a frequency ranging from 0.66 MHz which is 1.5 times 0.44 MHz to about 1.11 MHz which is 2.5 times 0.44 MHz is determined as the signal frequency. For example, 0.88 MHz which is twice 0.44 MHz is determined as the signal frequency.
 劣化検出装置120は、図示しないが、例えば、CPU、ROM、RAM、AD変換器、フラッシュメモリ、RTC、タッチスクリーン、NICを備える。図14に示すように、劣化検出装置120は、機能的には、通信部101と、AD変換部106と、波形生成部107と、周波数解析部108と、劣化検出部110と、表示部111と、周波数特定部113と、機器情報記憶部114と、パターン検出部115と、レベル検出部116と、を備える。 Although not shown, the deterioration detection device 120 includes, for example, a CPU, ROM, RAM, AD converter, flash memory, RTC, touch screen, and NIC. As illustrated in FIG. 14, the deterioration detection device 120 functionally includes a communication unit 101, an AD conversion unit 106, a waveform generation unit 107, a frequency analysis unit 108, a deterioration detection unit 110, and a display unit 111. A frequency identification unit 113, a device information storage unit 114, a pattern detection unit 115, and a level detection unit 116.
 通信部101の機能は、例えば、CPUとNICとが協働することにより実現される。AD変換部106の機能は、例えば、AD変換器により実現される。波形生成部107、周波数解析部108、劣化検出部110、周波数特定部113、パターン検出部115、レベル検出部116の機能は、例えば、CPUとROMとRAMとが協働することにより実現される。表示部111の機能は、例えば、CPUとタッチスクリーンとが協働することにより実現される。機器情報記憶部114の機能は、例えば、フラッシュメモリの機能により実現される。 The function of the communication unit 101 is realized by, for example, cooperation between the CPU and the NIC. The function of the AD conversion unit 106 is realized by an AD converter, for example. The functions of the waveform generation unit 107, the frequency analysis unit 108, the deterioration detection unit 110, the frequency specification unit 113, the pattern detection unit 115, and the level detection unit 116 are realized, for example, by the cooperation of the CPU, ROM, and RAM. . The function of the display unit 111 is realized by, for example, cooperation between the CPU and the touch screen. The function of the device information storage unit 114 is realized by a function of a flash memory, for example.
 通信部101は、通信ネットワーク500を介して、機器情報を、クラウドサーバ300から取得する。機器情報は、電気機器の種別と、信号のパターンと、を対応付ける情報である。また、通信部101は、劣化検出部110から報知指示情報を受信した場合、通信ネットワーク500を介して、報知指示情報を端末装置400に送信する。AD変換部106は、電流センサ10から供給された電圧値と電圧センサ20から供給された電圧値とを、アナログ値からデジタル値に変換する。波形生成部107は、AD変換部106から供給された電圧値を変換及び連結して、電流波形と電圧波形とを生成する。 The communication unit 101 acquires device information from the cloud server 300 via the communication network 500. The device information is information that associates the type of electric device with a signal pattern. In addition, when the communication unit 101 receives the notification instruction information from the deterioration detection unit 110, the communication unit 101 transmits the notification instruction information to the terminal device 400 via the communication network 500. The AD conversion unit 106 converts the voltage value supplied from the current sensor 10 and the voltage value supplied from the voltage sensor 20 from an analog value to a digital value. The waveform generation unit 107 converts and connects the voltage values supplied from the AD conversion unit 106 to generate a current waveform and a voltage waveform.
 周波数解析部108は、波形生成部107により生成された電流波形を周波数解析する。例えば、周波数解析部108は、信号強度の高い周波数を特定するために、電流波形をウェーブレット変換や離散フーリエ変換する。劣化検出部110は、レベル検出部116により検出された信号レベルと、機器情報記憶部114に記憶された機器情報と、に基づいて、コンセントが劣化しているか否かを判別する。なお、機器情報は、電気機器の種別と、信号のパターンとに加え、信号の周波数と、信号の初期レベルとが、対応付けられている。そこで、劣化検出部110は、レベル検出部116により検出された信号レベルが、機器情報により示される信号の初期レベルに比べて増大している場合、コンセントが劣化していると判別する。劣化検出部110は、コンセントの劣化を検出した場合、報知指示情報を通信部101と表示部111とに送信する。表示部111は、劣化検出部110から報知指示情報を受信した場合、コンセントが劣化した旨のメッセージと、劣化したコンセントに接続されている電気機器を示す情報と、を表示する。 The frequency analysis unit 108 performs frequency analysis on the current waveform generated by the waveform generation unit 107. For example, the frequency analysis unit 108 performs wavelet transform or discrete Fourier transform on the current waveform in order to specify a frequency with high signal strength. The deterioration detection unit 110 determines whether or not the outlet is deteriorated based on the signal level detected by the level detection unit 116 and the device information stored in the device information storage unit 114. In the device information, in addition to the type of electric device and the signal pattern, the signal frequency and the initial signal level are associated with each other. Therefore, when the signal level detected by the level detection unit 116 is higher than the initial level of the signal indicated by the device information, the deterioration detection unit 110 determines that the outlet is deteriorated. When detecting deterioration of the outlet, the deterioration detecting unit 110 transmits notification instruction information to the communication unit 101 and the display unit 111. When receiving the notification instruction information from the deterioration detection unit 110, the display unit 111 displays a message indicating that the outlet has deteriorated and information indicating the electrical device connected to the deteriorated outlet.
 周波数特定部113は、周波数解析部108による周波数解析の結果に基づいて、信号の周波数を特定する。機器情報記憶部114は、通信部101から取得した機器情報を記憶する。機器情報記憶部114に記憶された機器情報には、パターン検出部115により指定された周波数と、レベル検出部116により検出された信号レベルと、が追加される。パターン検出部115は、周波数解析部108による周波数解析の結果と、周波数特定部113により特定された周波数と、機器情報記憶部114に記憶された機器情報に含まれる信号パターンと、に基づいて、信号レベルを検出する。パターン検出部115は、検出した信号パターンの周波数を、この信号パターンを有する機器情報に追加する。 The frequency specifying unit 113 specifies the frequency of the signal based on the result of the frequency analysis by the frequency analyzing unit 108. The device information storage unit 114 stores device information acquired from the communication unit 101. The frequency specified by the pattern detection unit 115 and the signal level detected by the level detection unit 116 are added to the device information stored in the device information storage unit 114. The pattern detection unit 115 is based on the result of the frequency analysis performed by the frequency analysis unit 108, the frequency specified by the frequency specifying unit 113, and the signal pattern included in the device information stored in the device information storage unit 114. Detect the signal level. The pattern detection unit 115 adds the frequency of the detected signal pattern to the device information having this signal pattern.
 レベル検出部116は、パターン検出部115により検出された信号の信号レベルを検出する。レベル検出部116は、新たな信号パターンの信号レベルを検出した場合、検出した信号レベルを、初期の信号レベルとして、検出された信号を含む機器情報に追加する。 The level detection unit 116 detects the signal level of the signal detected by the pattern detection unit 115. When the signal level of the new signal pattern is detected, the level detection unit 116 adds the detected signal level as the initial signal level to the device information including the detected signal.
 次に、図17を参照して、冷蔵庫214が実行する信号出力処理について説明する。信号出力処理は、例えば、冷蔵庫214の電源が投入されたことに応答して開始される。まず、制御部202は、周波数を選択する(ステップS301)。制御部202は、最初は、0.2MHzを選択し、徐々に、選択する周波数を上げていき、最終的に、2.0MHzを選択する。つまり、選択可能な周波数は、0.2MHzから2.0MHzまでの間であり、選択済みの周波数よりも高い周波数であるものとする。 Next, a signal output process executed by the refrigerator 214 will be described with reference to FIG. The signal output process is started in response to, for example, turning on the refrigerator 214. First, the control unit 202 selects a frequency (step S301). The control unit 202 initially selects 0.2 MHz, gradually increases the frequency to be selected, and finally selects 2.0 MHz. That is, the selectable frequency is between 0.2 MHz and 2.0 MHz, and is higher than the selected frequency.
 制御部202は、ステップS301の処理が完了すると、選択された周波数で信号を出力する(ステップS302)。制御部202は、信号発生部203を制御して、選択された周波数で信号を出力させる。電圧測定部204は、ステップS302の処理が完了すると、電圧を測定する(ステップS303)。周波数特性登録部205は、ステップS303の処理が完了すると、周波数と電圧との対応関係を周波数特性として周波数特性記憶部206に記憶させる(ステップS304)。 When the process of step S301 is completed, the control unit 202 outputs a signal at the selected frequency (step S302). The control unit 202 controls the signal generation unit 203 to output a signal at the selected frequency. When the process of step S302 is completed, the voltage measurement unit 204 measures the voltage (step S303). When the process of step S303 is completed, the frequency characteristic registration unit 205 stores the correspondence relationship between the frequency and the voltage in the frequency characteristic storage unit 206 as a frequency characteristic (step S304).
 制御部202は、ステップS304の処理が完了すると、未選択の周波数があるか否かを判別する(ステップS305)。制御部202は、未選択の周波数があると判別すると(ステップS305:YES)、ステップS301に処理を戻し、選択済みの周波数よりもやや高い周波数を選択する。一方、制御部202が、未選択の周波数がないと判別すると(ステップS305:NO)、周波数決定部207は、出力する信号の周波数を決定する(ステップS306)。なお、未選択の周波数がないことは、周波数特性の取得が完了したことを意味する。従って、周波数決定部207は、取得された周波数特性を参照して、ゲインのピークの2倍程度の周波数を、出力する信号の周波数として決定する。 When the process of step S304 is completed, the control unit 202 determines whether there is an unselected frequency (step S305). When determining that there is an unselected frequency (step S305: YES), the control unit 202 returns the process to step S301 and selects a frequency slightly higher than the selected frequency. On the other hand, when the control unit 202 determines that there is no unselected frequency (step S305: NO), the frequency determination unit 207 determines the frequency of the signal to be output (step S306). Note that the absence of an unselected frequency means that the acquisition of frequency characteristics has been completed. Therefore, the frequency determination unit 207 refers to the acquired frequency characteristic and determines a frequency that is about twice the gain peak as the frequency of the output signal.
 制御部202は、ステップS306の処理が完了すると、予め定められたパターンの信号を決定された周波数で出力する(ステップS307)。制御部202は、ステップS307の処理が完了すると、予め定められた時間(例えば、1分間)ウェイトする(ステップS308)。制御部202は、ステップS308の処理が完了すると、ステップS307に処理を戻す。このように、信号出力処理では、周波数特性が取得され、取得された周波数特性に基づいて信号の周波数が決定され、以後、定期的に、決定された周波数で予め定められたパターンの信号が出力される。 When the process of step S306 is completed, the control unit 202 outputs a predetermined pattern signal at the determined frequency (step S307). When the process of step S307 is completed, the control unit 202 waits for a predetermined time (for example, 1 minute) (step S308). When the process of step S308 is completed, the control unit 202 returns the process to step S307. As described above, in the signal output process, the frequency characteristics are acquired, the frequency of the signal is determined based on the acquired frequency characteristics, and thereafter, a signal having a predetermined pattern is output periodically at the determined frequency. Is done.
 次に、図18を参照して、劣化検出装置120が実行する劣化検出処理について説明する。劣化検出処理は、例えば、劣化検出装置120の電源が投入されたことに応答して開始される。まず、劣化検出装置120は、周波数特定処理を実行する(ステップS401)。周波数特定処理に関しては、図19を参照して、詳細に説明する。 Next, the deterioration detection process executed by the deterioration detection device 120 will be described with reference to FIG. The deterioration detection process is started, for example, in response to the power supply of the deterioration detection device 120 being turned on. First, the deterioration detection apparatus 120 performs a frequency specifying process (step S401). The frequency specifying process will be described in detail with reference to FIG.
 周波数特定処理では、まず、波形生成部107が、電流波形を生成する(ステップS501)。周波数解析部108は、ステップS501の処理が完了すると、生成された電流波形を周波数解析する(ステップS502)。周波数特定部113は、ステップS502の処理が完了すると、閾値以上の強度を有する周波数を特定する(ステップS503)。パターン検出部115は、ステップS503の処理が完了すると、特定された周波数の中から、周波数を選択する(ステップS504)。パターン検出部115は、ステップS504の処理が完了すると、選択した周波数で、信号パターンを検出する(ステップS505)。 In the frequency specifying process, first, the waveform generation unit 107 generates a current waveform (step S501). When the process of step S501 is completed, the frequency analysis unit 108 performs frequency analysis on the generated current waveform (step S502). When the process of step S502 is completed, the frequency specifying unit 113 specifies a frequency having an intensity equal to or higher than the threshold (step S503). When the process of step S503 is completed, the pattern detection unit 115 selects a frequency from the identified frequencies (step S504). When the process of step S504 is completed, the pattern detection unit 115 detects a signal pattern at the selected frequency (step S505).
 レベル検出部116は、ステップS505の処理が完了すると、信号パターンのレベルを特定する(ステップS506)。ステップS506の処理が完了すると、パターン検出部115とレベル検出部116とは、選択された周波数と検出された信号レベルとを機器情報に追加する(ステップS507)。パターン検出部115は、ステップS507の処理が完了すると、特定された周波数のうち、未選択の周波数があるか否かを判別する(ステップS508)。パターン検出部115は、未選択の周波数があると判別すると(ステップS508:YES)、ステップS504に処理を戻し、未選択の周波数を選択する。一方、パターン検出部115は、未選択の周波数がないと判別すると(ステップS508:NO)、周波数特定処理を完了する。 The level detection unit 116 specifies the level of the signal pattern when the process of step S505 is completed (step S506). When the process of step S506 is completed, the pattern detection unit 115 and the level detection unit 116 add the selected frequency and the detected signal level to the device information (step S507). When the process of step S507 is completed, the pattern detection unit 115 determines whether there is an unselected frequency among the specified frequencies (step S508). When determining that there is an unselected frequency (step S508: YES), the pattern detection unit 115 returns the process to step S504 and selects an unselected frequency. On the other hand, when determining that there is no unselected frequency (step S508: NO), the pattern detection unit 115 completes the frequency specifying process.
 波形生成部107は、周波数特定処理が完了すると、電流波形を生成する(ステップS402)。周波数解析部108は、ステップS402の処理が完了すると、生成された電流波形を周波数解析する(ステップS403)。パターン検出部115は、ステップS403の処理が完了すると、電気機器を選択する(ステップS404)。なお、電気機器を選択することは、電気機器が出力する信号の周波数を選択することである。パターン検出部115は、ステップS404の処理が完了すると、選択した周波数で、信号パターンを検出する(ステップS405)。レベル検出部116は、ステップS405の処理が完了すると、信号パターンのレベルを特定する(ステップS406)。 The waveform generation unit 107 generates a current waveform when the frequency specifying process is completed (step S402). When the processing in step S402 is completed, the frequency analysis unit 108 performs frequency analysis on the generated current waveform (step S403). When the process of step S403 is completed, the pattern detection unit 115 selects an electrical device (step S404). Note that selecting an electric device means selecting a frequency of a signal output from the electric device. When the process of step S404 is completed, the pattern detection unit 115 detects a signal pattern at the selected frequency (step S405). When the process of step S405 is completed, the level detection unit 116 specifies the level of the signal pattern (step S406).
 劣化検出部110は、ステップS406の処理が完了すると、選択された電気機器が接続されたコンセントが劣化しているか否かを判別する(ステップS407)。例えば、劣化検出部110は、検出された信号レベルが、機器情報により示される、初期の信号レベルの5倍になった場合、コンセントが劣化していると判別する。 When the process of step S406 is completed, the deterioration detection unit 110 determines whether or not the outlet connected to the selected electrical device has deteriorated (step S407). For example, the deterioration detection unit 110 determines that the outlet is deteriorated when the detected signal level is five times the initial signal level indicated by the device information.
 劣化検出部110が、コンセントが劣化していると判別すると(ステップS407:YES)、表示部111は、コンセントが劣化している旨を表示する(ステップS408)。なお、表示部111は、コンセントが劣化している旨のメッセージに加え、劣化したコンセントに接続されている電気機器を示す情報を表示する。劣化検出部110が、コンセントが劣化していないと判別した場合(ステップS407:NO)、又は、ステップS408の処理が完了した場合、パターン検出部115は、未選択の電気機器があるか否かを判別する(ステップS409)。 When the deterioration detection unit 110 determines that the outlet is deteriorated (step S407: YES), the display unit 111 displays that the outlet is deteriorated (step S408). The display unit 111 displays information indicating an electrical device connected to the deteriorated outlet in addition to a message indicating that the outlet is deteriorated. When the deterioration detection unit 110 determines that the outlet has not deteriorated (step S407: NO), or when the process of step S408 is completed, the pattern detection unit 115 determines whether there is an unselected electrical device. Is discriminated (step S409).
 パターン検出部115は、未選択の電気機器があると判別すると(ステップS409:YES)、ステップS404に処理を戻し、未選択の電気機器を選択する。一方、パターン検出部115は、未選択の電気機器がないと判別すると(ステップS409:NO)、予め定められた時間ウェイトする(ステップS410)。予め定められた時間は、例えば、1日である。パターン検出部115は、ステップS410の処理を完了すると、ステップS402に処理を戻す。 If the pattern detection unit 115 determines that there is an unselected electrical device (step S409: YES), the pattern detection unit 115 returns the process to step S404 and selects an unselected electrical device. On the other hand, when determining that there is no unselected electrical device (step S409: NO), the pattern detection unit 115 waits for a predetermined time (step S410). The predetermined time is, for example, one day. When completing the process of step S410, the pattern detection unit 115 returns the process to step S402.
 本実施形態では、主幹ブレーカ30に流れる電流の電流波形から検出された信号レベルと、初期の信号レベルと、に基づいて、劣化後のコンセント41に接続された電気機器を示す情報が表示される。従って、本実施形態によれば、トラッキング現象の発生に繋がるコンセントの劣化を、早い段階で検出し、早い段階でユーザに知らせることができる。また、本実施形態に係る劣化検出装置120は、電気機器毎に設ける必要はなく、主幹ブレーカ30に流れる電流を監視することにより、どの電気機器が接続されたコンセントが劣化したのかを検知することができる。 In the present embodiment, information indicating the electrical equipment connected to the deteriorated outlet 41 is displayed based on the signal level detected from the current waveform of the current flowing through the main breaker 30 and the initial signal level. . Therefore, according to the present embodiment, it is possible to detect the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage and notify the user at an early stage. Further, the deterioration detection device 120 according to the present embodiment does not need to be provided for each electric device, and detects which outlet connected to the electric device has deteriorated by monitoring the current flowing through the main breaker 30. Can do.
(実施形態3)
 実施形態2では、劣化検出装置120が、フィルタ回路44の周波数特性の変化に伴う、信号レベルの変化を検出することにより、劣化したコンセント41を検出する例について説明した。本実施形態では、電気機器自身が、フィルタ回路44の周波数特性の変化に伴う、信号レベルの変化を検出することにより、劣化したコンセントを検出する例について説明する。なお、本実施形態にかかる電気機器は、電気機器に内蔵された劣化検出装置120と考えることもできる。なお、本実施形態では、実施形態2と重複する部分については、説明を省略又は簡略化する。
(Embodiment 3)
In the second embodiment, the example in which the deterioration detecting device 120 detects the deteriorated outlet 41 by detecting the change in the signal level accompanying the change in the frequency characteristic of the filter circuit 44 has been described. In the present embodiment, an example will be described in which the electrical device itself detects a deteriorated outlet by detecting a change in signal level accompanying a change in frequency characteristics of the filter circuit 44. Note that the electrical device according to the present embodiment can also be considered as the deterioration detection device 120 built in the electrical device. In the present embodiment, the description overlapping with the second embodiment is omitted or simplified.
 本実施形態に係る冷蔵庫230は、図示しないが、高調波電流源215と電圧測定器216とに加え、例えば、CPU、ROM、RAM、AD変換器、フラッシュメモリ、RTC、タッチスクリーン、NICを備える。 Although not shown, the refrigerator 230 according to the present embodiment includes, for example, a CPU, ROM, RAM, AD converter, flash memory, RTC, touch screen, and NIC in addition to the harmonic current source 215 and the voltage measuring device 216. .
 図20に示すように、冷蔵庫230は、機能的には、制御部202と、信号発生部203と、電圧測定部204と、周波数特性登録部205と、周波数特性記憶部206と、劣化検出部208と、表示部209と、を備える。制御部202、周波数特性登録部205、劣化検出部208の機能は、例えば、CPUとROMとRAMとが協働することにより実現される。信号発生部203の機能は、例えば、高調波電流源215の機能により実現される。電圧測定部204の機能は、例えば、電圧測定器216の機能により実現される。周波数特性記憶部206の機能は、例えば、フラッシュメモリの機能により実現される。表示部209の機能は、例えば、CPUとタッチスクリーンとが協働することにより実現される。 As shown in FIG. 20, the refrigerator 230 functionally includes a control unit 202, a signal generation unit 203, a voltage measurement unit 204, a frequency characteristic registration unit 205, a frequency characteristic storage unit 206, and a deterioration detection unit. 208 and a display unit 209. The functions of the control unit 202, the frequency characteristic registration unit 205, and the deterioration detection unit 208 are realized by, for example, the cooperation of the CPU, the ROM, and the RAM. The function of the signal generation unit 203 is realized by the function of the harmonic current source 215, for example. The function of the voltage measuring unit 204 is realized by the function of the voltage measuring device 216, for example. The function of the frequency characteristic storage unit 206 is realized by the function of a flash memory, for example. The function of the display unit 209 is realized by, for example, cooperation between the CPU and the touch screen.
 制御部202は、種々の制御を実行する。例えば、制御部202は、信号発生部203による信号の発生を制御する。また、制御部202は、信号発生部203に対して、発生する信号の周波数を指示する。制御部202は、周波数特性を取得する場合、周波数を少しずつ増加又は減少させながら、信号発生部203に信号を出力させる。制御部202は、例えば、0.2MHzから2MHzの範囲で、周波数を変化させる。信号発生部203は、制御部202による制御に従って、制御部202により指定された周波数の信号を発生する。電圧測定部204は、信号発生部203が発生した信号の電圧を測定する。制御部202は、周波数特性を取得する処理を、定期的(例えば、1日毎)に、実行する。 The control unit 202 executes various controls. For example, the control unit 202 controls signal generation by the signal generation unit 203. In addition, the control unit 202 instructs the signal generation unit 203 on the frequency of the generated signal. When acquiring the frequency characteristics, the control unit 202 causes the signal generation unit 203 to output a signal while gradually increasing or decreasing the frequency. For example, the control unit 202 changes the frequency in the range of 0.2 MHz to 2 MHz. The signal generation unit 203 generates a signal having a frequency specified by the control unit 202 according to control by the control unit 202. The voltage measurement unit 204 measures the voltage of the signal generated by the signal generation unit 203. The control part 202 performs the process which acquires a frequency characteristic regularly (for example, every day).
 周波数特性登録部205は、出力された信号の周波数と、電圧測定部204により測定された電圧と、の関係を対応付けることにより、周波数特性を特定する。周波数特性登録部205は、特定された周波数特性を、周波数特性記憶部206に記憶させる。周波数特性記憶部206は、周波数特性登録部205により特定された周波数特性を記憶する。 The frequency characteristic registration unit 205 identifies the frequency characteristic by associating the relationship between the frequency of the output signal and the voltage measured by the voltage measurement unit 204. The frequency characteristic registration unit 205 causes the frequency characteristic storage unit 206 to store the specified frequency characteristic. The frequency characteristic storage unit 206 stores the frequency characteristic specified by the frequency characteristic registration unit 205.
 劣化検出部208は、周波数特性記憶部206に記憶された周波数特性の履歴に基づいて、コンセントの劣化を検出する。例えば、劣化検出部208は、新たに取得された周波数特性におけるピーク周波数が、コンセントが劣化する前に取得された周波数特性におけるピーク周波数の1.5倍程度以上に高い場合、コンセントが劣化したと判別する。劣化検出部208は、コンセントの劣化を検出した場合、報知指示情報を表示部209に送信する。一方、表示部209は、報知指示情報を受信した場合、コンセントが劣化したことを示すメッセージを表示する。 The deterioration detection unit 208 detects the deterioration of the outlet based on the frequency characteristic history stored in the frequency characteristic storage unit 206. For example, the deterioration detection unit 208 determines that the outlet has deteriorated when the peak frequency in the newly acquired frequency characteristic is higher than about 1.5 times the peak frequency in the frequency characteristic acquired before the outlet deteriorates. Determine. The deterioration detection unit 208 transmits notification instruction information to the display unit 209 when detecting deterioration of the outlet. On the other hand, when receiving the notification instruction information, the display unit 209 displays a message indicating that the outlet has deteriorated.
 次に、図21を参照して、冷蔵庫230が実行する劣化検出処理について説明する。劣化検出処理は、例えば、冷蔵庫230の電源が投入されたことに応答して開始される。まず、制御部202は、周波数を選択する(ステップS601)。制御部202は、最初は、0.2MHzを選択し、徐々に、選択する周波数を上げていき、最終的に、2.0MHzを選択する。つまり、選択可能な周波数は、0.2MHzから2.0MHzまでの間であり、選択済みの周波数よりも高い周波数であるものとする。 Next, the deterioration detection process performed by the refrigerator 230 will be described with reference to FIG. The deterioration detection process is started in response to, for example, turning on the refrigerator 230. First, the control unit 202 selects a frequency (step S601). The control unit 202 initially selects 0.2 MHz, gradually increases the frequency to be selected, and finally selects 2.0 MHz. That is, the selectable frequency is between 0.2 MHz and 2.0 MHz, and is higher than the selected frequency.
 制御部202は、ステップS601の処理が完了すると、選択された周波数で信号を出力する(ステップS602)。制御部202は、信号発生部203を制御して、選択された周波数で信号を出力させる。電圧測定部204は、ステップS602の処理が完了すると、電圧を測定する(ステップS603)。周波数特性登録部205は、ステップS603の処理が完了すると、周波数と電圧との対応関係を周波数特性として周波数特性記憶部206に記憶させる(ステップS604)。 When the process of step S601 is completed, the control unit 202 outputs a signal at the selected frequency (step S602). The control unit 202 controls the signal generation unit 203 to output a signal at the selected frequency. When the process of step S602 is completed, the voltage measurement unit 204 measures the voltage (step S603). When the process of step S603 is completed, the frequency characteristic registration unit 205 stores the correspondence relationship between the frequency and the voltage in the frequency characteristic storage unit 206 as a frequency characteristic (step S604).
 制御部202は、ステップS604の処理が完了すると、未選択の周波数があるか否かを判別する(ステップS605)。制御部202は、未選択の周波数があると判別すると(ステップS605:YES)、ステップS601に処理を戻し、選択済みの周波数よりもやや高い周波数を選択する。一方、制御部202が、未選択の周波数がないと判別すると(ステップS605:NO)、周波数特性登録部205は、周波数特性を周波数特性記憶部206に記憶させる(ステップS606)。 When the process in step S604 is completed, the control unit 202 determines whether there is an unselected frequency (step S605). When determining that there is an unselected frequency (step S605: YES), the control unit 202 returns the process to step S601 and selects a frequency slightly higher than the selected frequency. On the other hand, when the control unit 202 determines that there is no unselected frequency (step S605: NO), the frequency characteristic registration unit 205 stores the frequency characteristic in the frequency characteristic storage unit 206 (step S606).
 劣化検出部208は、ステップS606の処理が完了すると、周波数特性に変化があるか否かを判別する(ステップS607)。劣化検出部208は、周波数特性に変化がないと判別すると(ステップS607:NO)、予め定められた時間(例えば、1日)ウェイトし(ステップS608)、ステップS601に処理を戻す。一方、劣化検出部208が、周波数特性に変化があると判別すると(ステップS607:YES)、表示部209は、コンセントが劣化した旨を報知する(ステップS609)。ステップS609の処理が完了すると、劣化検出処理が完了する。 The deterioration detection unit 208 determines whether or not there is a change in the frequency characteristics when the process of step S606 is completed (step S607). When determining that there is no change in the frequency characteristics (step S607: NO), the deterioration detection unit 208 waits for a predetermined time (for example, one day) (step S608), and returns the process to step S601. On the other hand, when the deterioration detection unit 208 determines that there is a change in the frequency characteristics (step S607: YES), the display unit 209 notifies that the outlet has deteriorated (step S609). When the process of step S609 is completed, the deterioration detection process is completed.
 本実施形態では、電気機器が出力した高周波信号のレベルがピークとなる発振周波数(ピーク周波数)が予め定められた閾値以上増大した場合(例えば、検出されたピーク周波数が、当初に検出されたピーク周波数の5倍以上に増大した場合。この場合、閾値は、当初に検出されたピーク周波数の4倍である。)に、コンセントが劣化したことが報知される。従って、本実施形態によれば、トラッキング現象の発生に繋がるコンセントの劣化を、早い段階で検出し、早い段階でユーザに知らせることができる。 In the present embodiment, when the oscillation frequency (peak frequency) at which the level of the high-frequency signal output from the electrical equipment reaches a peak is increased by a predetermined threshold or more (for example, the detected peak frequency is the peak detected initially). When the frequency increases to 5 times or more, in this case, the threshold is 4 times the peak frequency detected at the beginning. Therefore, according to the present embodiment, it is possible to detect the deterioration of the outlet leading to the occurrence of the tracking phenomenon at an early stage and notify the user at an early stage.
(変形例)
 以上、本発明の実施形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。
(Modification)
As mentioned above, although embodiment of this invention was described, when implementing this invention, a deformation | transformation and application with a various form are possible.
 本発明において、上記実施形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本発明において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。また、上記実施形態において説明した構成、機能、動作は、自由に組み合わせることができる。 In the present invention, which part of the configuration, function, and operation described in the above embodiment is adopted is arbitrary. Further, in the present invention, in addition to the configuration, function, and operation described above, further configuration, function, and operation may be employed. Moreover, the structure, function, and operation | movement demonstrated in the said embodiment can be combined freely.
 例えば、劣化検出装置100とクラウドサーバ300と端末装置400とのいずれにどの機能を持たせるのかは、適宜、調整することができる。つまり、劣化検出システム1000が備える機能的な構成は、劣化検出装置100とクラウドサーバ300と端末装置400とのいずれが備えていてもよい。 For example, which function of the degradation detection device 100, the cloud server 300, and the terminal device 400 is given can be appropriately adjusted. That is, the functional configuration included in the degradation detection system 1000 may be included in any of the degradation detection device 100, the cloud server 300, and the terminal device 400.
 また、実施形態1では、劣化検出装置100が有する機能を多くがソフトウェア(又は、ファームウェア)により実現される例、つまり、劣化検出装置100が有する機能を多くがプロセッサによるプログラムの実行により実現されるについて説明した。本発明において、このような機能は、ハードウェアにより実現されてもよい。この場合、例えば、劣化検出装置100は、CPUに代えて、処理回路を備える。この処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらの組合せにより構成される。 In the first embodiment, an example in which many of the functions of the degradation detection device 100 are realized by software (or firmware), that is, many of the functions of the degradation detection device 100 are realized by execution of a program by a processor. Explained. In the present invention, such a function may be realized by hardware. In this case, for example, the deterioration detection apparatus 100 includes a processing circuit instead of the CPU. This processing circuit is configured by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
 本発明に係る劣化検出装置100の動作を規定する動作プログラムを既存のパーソナルコンピュータや情報端末装置に適用することで、当該パーソナルコンピュータを本発明に係る劣化検出装置100として機能させることも可能である。また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、メモリカードなどのコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、通信ネットワーク(例えば、インターネット)を介して配布してもよい。 It is also possible to cause the personal computer to function as the deterioration detection device 100 according to the present invention by applying an operation program that defines the operation of the deterioration detection device 100 according to the present invention to an existing personal computer or information terminal device. . The distribution method of such a program is arbitrary. For example, the program is stored and distributed on a computer-readable recording medium such as a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or a memory card. Alternatively, it may be distributed via a communication network (for example, the Internet).
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、トラッキング現象の発生に繋がるコンセントの劣化を早い段階で検出する劣化検知システムに適用可能である。 The present invention is applicable to a deterioration detection system that detects deterioration of an outlet leading to occurrence of a tracking phenomenon at an early stage.
10 電流センサ、20 電圧センサ、30 主幹ブレーカ、31,32 電力線、33 外部系統インピーダンス、34 配線インピーダンス、41,42 コンセント、43 インピーダンス、44フィルタ回路、100,120 劣化検出装置、101 通信部、102 基本機器モデル記憶部、103 フィルタモデル記憶部、104 機器モデル生成部、105 機器モデル記憶部、106 AD変換部、107 波形生成部、108 周波数解析部、109 動作確率推定部、110 劣化検出部、111 表示部、113 周波数特定部、114 機器情報記憶部、115 パターン検出部、116 レベル検出部、201 パターン記憶部、202 制御部、203 信号発生部、204 電圧測定部、205 周波数特性登録部、206 周波数特性記憶部、207 周波数決定部、208 劣化検出部、209 表示部、210,214,230 冷蔵庫、211,221 プラグ、212,217 内部インピーダンス、 213,218 高調波電圧源、215,225 高調波電流源、216,226 電圧測定器、220,224 エアコン、300 クラウドサーバ、400 端末装置、410,420,510,520 グラフ、500 通信ネットワーク、1000,1100 劣化検出システム 10 current sensor, 20 voltage sensor, 30 trunk breaker, 31, 32 power line, 33 external system impedance, 34 wiring impedance, 41, 42 outlet, 43 impedance, 44 filter circuit, 100, 120 deterioration detection device, 101 communication unit, 102 Basic device model storage unit, 103 filter model storage unit, 104 device model generation unit, 105 device model storage unit, 106 AD conversion unit, 107 waveform generation unit, 108 frequency analysis unit, 109 operation probability estimation unit, 110 deterioration detection unit, 111 Display unit, 113 Frequency identification unit, 114 Device information storage unit, 115 Pattern detection unit, 116 Level detection unit, 201 Pattern storage unit, 202 Control unit, 203 Signal generation unit, 204 Voltage measurement unit, 205 Frequency characteristics Recording unit, 206 Frequency characteristic storage unit, 207 Frequency determination unit, 208 Degradation detection unit, 209 Display unit, 210, 214, 230 Refrigerator, 211, 221 plug, 212, 217 Internal impedance, 213, 218 Harmonic voltage source, 215 , 225 harmonic current source, 216, 226 voltage measuring device, 220, 224 air conditioner, 300 cloud server, 400 terminal device, 410, 420, 510, 520 graph, 500 communication network, 1000, 1100 degradation detection system

Claims (7)

  1.  主幹ブレーカに流れる電流を測定する電流測定手段と、
     前記電流測定手段により測定された電流の波形を生成する波形生成手段と、
     前記波形生成手段により生成された電流の波形における高調波成分の特徴量を算出する特徴量算出手段と、
     電気機器の種別と劣化前のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化前機器モデルと、電気機器の種別と劣化後のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化後機器モデルと、を記憶する機器モデル記憶手段と、
     前記特徴量算出手段により算出された特徴量と、前記劣化前機器モデルにおける特徴量と、前記劣化後機器モデルにおける特徴量と、に基づいて、前記劣化後のコンセントに接続された電気機器を示す情報を表示する表示手段と、を備える、
     劣化検出装置。
    Current measuring means for measuring the current flowing through the main breaker;
    A waveform generating means for generating a waveform of the current measured by the current measuring means;
    Feature quantity calculating means for calculating a feature quantity of a harmonic component in the waveform of the current generated by the waveform generating means;
    A pre-degradation device model that associates the type of electrical equipment with the characteristic amount of the harmonic component in the waveform of the current that flows through the main breaker when operating while connected to the outlet before degradation, and the type of electrical equipment and after degradation A device model storage means for storing a post-degradation device model that correlates with a feature quantity of a harmonic component in a waveform of a current that flows through the main breaker when connected to an outlet of the device, and
    Based on the feature amount calculated by the feature amount calculation unit, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model, the electric device connected to the outlet after the deterioration is shown Display means for displaying information,
    Deterioration detection device.
  2.  電気機器の種別と前記主幹ブレーカに直接接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた基本機器モデルと、前記主幹ブレーカと前記劣化前のコンセントとを結ぶ配線と前記劣化前のコンセントとにより構成される劣化前フィルタ回路における周波数特性と、に基づいて、前記劣化前機器モデルを生成し、前記基本機器モデルと、前記主幹ブレーカと前記劣化後のコンセントとを結ぶ配線と前記劣化後のコンセントとにより構成される劣化後フィルタ回路における周波数特性と、に基づいて、前記劣化後機器モデルを生成する機器モデル生成手段を更に備える、
     請求項1に記載の劣化検出装置。
    A basic device model that associates the type of electrical equipment with the characteristic amount of the harmonic component in the waveform of the current flowing through the main breaker when operating directly connected to the main breaker, and the main breaker and the pre-degradation The pre-degradation device model is generated based on the frequency characteristics in the pre-deterioration filter circuit configured by the wiring connecting the outlet and the undegraded outlet, and the basic device model, the main breaker, and the deterioration Further comprising device model generation means for generating the deteriorated device model based on the frequency characteristics in the post-degradation filter circuit constituted by the wiring connecting the later outlet and the deteriorated outlet.
    The deterioration detection apparatus according to claim 1.
  3.  前記特徴量算出手段により算出された特徴量と前記劣化前機器モデルにおける特徴量とに基づいて、電気機器が前記劣化前のコンセントに接続されて動作している確率である劣化前動作確率を推定し、前記特徴量算出手段により算出された特徴量と前記劣化後機器モデルにおける特徴量とに基づいて、電気機器が前記劣化後のコンセントに接続されて動作している確率である劣化後動作確率を推定する動作確率推定手段を更に備え、
     前記表示手段は、前記劣化前動作確率と前記劣化後動作確率とが予め定められた閾値よりも高く、前記劣化前動作確率よりも前記劣化後動作確率の方が高い場合、前記劣化後のコンセントに接続された電気機器を示す情報を表示する、
     請求項1又は2に記載の劣化検出装置。
    Based on the feature amount calculated by the feature amount calculation unit and the feature amount in the pre-degradation device model, an operation probability before deterioration, which is a probability that an electrical device is connected to the outlet before deterioration and is operating, is estimated. And a post-degradation operation probability, which is a probability that an electrical device is connected to the outlet after operation based on the feature amount calculated by the feature amount calculation unit and the feature amount in the post-degradation device model. Further comprising a motion probability estimating means for estimating
    The display means, when the pre-deterioration operation probability and the post-degradation operation probability are higher than a predetermined threshold, and the post-deterioration operation probability is higher than the pre-deterioration operation probability, the outlet after the deterioration Display information indicating the electrical equipment connected to the
    The deterioration detection apparatus according to claim 1 or 2.
  4.  1以上の電気機器と劣化検出装置とを備える劣化検出システムであって、
     前記1以上の電気機器は、
     コンセントが備える電極間に高周波信号を発生させる信号発生手段と、
     前記電極間の電圧を測定する電圧測定手段と、
     前記高周波信号の発振周波数を変化させる制御手段と、を備え、
     前記制御手段は、前記電圧測定手段により測定された電圧がピークとなる発振周波数に1を超える係数を乗じた周波数で、機器固有のパターンの信号を前記電極間に発生させる処理を、前記信号発生手段に定期的に実行させ、
     前記劣化検出装置は、
     主幹ブレーカに流れる電流を測定する電流測定手段と、
     前記電流測定手段により測定された電流の波形を生成する波形生成手段と、
     電気機器の種別と、機器固有のパターンと、を対応付けた機器情報を記憶する機器情報記憶手段と、
     前記波形生成手段により生成された電流の波形を周波数解析し、予め定められた強度以上の信号成分が検出される周波数を特定する周波数特定手段と、
     前記波形生成手段により生成された電流の波形に、前記周波数特定手段により特定された周波数を有する、前記機器固有のパターンの信号が検出された場合、前記電気機器の種別と、前記機器固有のパターンと、前記周波数特定手段により特定された周波数と、前記機器固有のパターンの信号のレベルと、を対応付けた機器情報を前記機器情報記憶手段に記憶させる機器情報更新手段と、
     前記波形生成手段により新たに生成された電流の波形に含まれる、前記機器固有のパターンの信号のレベルと、前記機器情報における、前記機器固有のパターンの信号のレベルと、の差が予め定められた閾値以上である場合、劣化後のコンセントに接続された電気機器を示す情報として、前記機器情報における、前記電気機器の種別に対応する電気機器を示す情報を表示する表示手段と、を備える、
     劣化検出システム。
    A degradation detection system comprising one or more electrical devices and a degradation detection device,
    The one or more electrical devices are:
    Signal generating means for generating a high-frequency signal between the electrodes of the outlet;
    Voltage measuring means for measuring a voltage between the electrodes;
    Control means for changing the oscillation frequency of the high-frequency signal,
    The control means generates a signal having a pattern peculiar to a device between the electrodes at a frequency obtained by multiplying an oscillation frequency at which the voltage measured by the voltage measuring means reaches a peak by a coefficient exceeding 1. Let the means run regularly,
    The deterioration detecting device is
    Current measuring means for measuring the current flowing through the main breaker;
    A waveform generating means for generating a waveform of the current measured by the current measuring means;
    Device information storage means for storing device information in which the type of electric device and the device-specific pattern are associated with each other;
    Analyzing the frequency of the waveform of the current generated by the waveform generation means, and specifying a frequency at which a signal component having a predetermined intensity or more is detected;
    When a signal having a pattern specific to the device having the frequency specified by the frequency specifying unit is detected in the waveform of the current generated by the waveform generating unit, the type of the electric device and the pattern specific to the device Device information updating means for storing device information in which the frequency specified by the frequency specifying means and the signal level of the device-specific pattern are associated with each other in the device information storage means;
    The difference between the signal level of the device-specific pattern included in the current waveform newly generated by the waveform generation means and the level of the signal of the device-specific pattern in the device information is determined in advance. If it is equal to or more than the threshold value, the information indicating the electrical equipment connected to the outlet after the deterioration, the display means for displaying information indicating the electrical equipment corresponding to the type of the electrical equipment in the equipment information,
    Deterioration detection system.
  5.  電気機器に搭載される劣化検出装置であって、
     コンセントが備える電極間に高周波信号を発生させる信号発生手段と、
     前記電極間の電圧を測定する電圧測定手段と、
     前記高周波信号の発振周波数を変化させる制御手段と、
     前記電圧測定手段により測定された電圧がピークとなる発振周波数が予め定められた閾値以上増大した場合、前記コンセントが劣化したことを報知する情報を表示する表示手段と、を備える、
     劣化検出装置。
    A deterioration detection device mounted on an electrical device,
    Signal generating means for generating a high-frequency signal between the electrodes of the outlet;
    Voltage measuring means for measuring a voltage between the electrodes;
    Control means for changing the oscillation frequency of the high-frequency signal;
    Display means for displaying information notifying that the outlet has deteriorated when the oscillation frequency at which the voltage measured by the voltage measuring means has increased by a predetermined threshold value or more.
    Deterioration detection device.
  6.  主幹ブレーカに流れる電流の波形における高調波成分の特徴量を算出し、
     前記算出された特徴量と、電気機器の種別と劣化前のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化前機器モデルにおける特徴量と、電気機器の種別と劣化後のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化後機器モデルにおける特徴量と、に基づいて、前記劣化後のコンセントに接続された電気機器を示す情報を表示する、
     劣化検出方法。
    Calculate the characteristic amount of the harmonic component in the waveform of the current flowing through the main breaker,
    In the pre-degradation equipment model in which the calculated feature quantity is associated with the type of electrical equipment and the feature quantity of the harmonic component in the waveform of the current flowing through the main circuit breaker when connected to the outlet before degradation. A feature amount in a deteriorated device model in which a feature amount is associated with a feature amount of a harmonic component in a waveform of a current that flows in the main breaker when operated by being connected to a type of electrical device and an outlet after deterioration, and Displaying information indicating the electrical equipment connected to the degraded outlet based on
    Degradation detection method.
  7.  コンピュータを、
     主幹ブレーカに流れる電流の波形を生成する波形生成手段、
     前記波形生成手段により生成された電流の波形における高調波成分の特徴量を算出する特徴量算出手段、
     電気機器の種別と劣化前のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化前機器モデルと、電気機器の種別と劣化後のコンセントに接続されて動作したときに前記主幹ブレーカに流れる電流の波形における高調波成分の特徴量とを対応付けた劣化後機器モデルと、を記憶する機器モデル記憶手段、
     前記特徴量算出手段により算出された特徴量と、前記劣化前機器モデルにおける特徴量と、前記劣化後機器モデルにおける特徴量と、に基づいて、前記劣化後のコンセントに接続された電気機器を示す情報を表示する表示手段、として機能させる、
     プログラム。
    Computer
    Waveform generating means for generating a waveform of current flowing through the main breaker;
    Feature quantity calculating means for calculating a feature quantity of a harmonic component in the waveform of the current generated by the waveform generating means;
    A pre-degradation device model that associates the type of electrical equipment with the characteristic amount of the harmonic component in the waveform of the current that flows through the main breaker when operating while connected to the outlet before degradation, and the type of electrical equipment and after degradation A device model storage means for storing a post-degradation device model that correlates with a feature quantity of a harmonic component in a waveform of a current flowing through the main breaker when connected to an outlet
    Based on the feature amount calculated by the feature amount calculation unit, the feature amount in the pre-degradation device model, and the feature amount in the post-degradation device model, the electric device connected to the outlet after the deterioration is shown Function as a display means for displaying information,
    program.
PCT/JP2016/083529 2016-11-11 2016-11-11 Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program WO2018087885A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083529 WO2018087885A1 (en) 2016-11-11 2016-11-11 Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program
JP2018549716A JP6570767B2 (en) 2016-11-11 2016-11-11 Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083529 WO2018087885A1 (en) 2016-11-11 2016-11-11 Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program

Publications (1)

Publication Number Publication Date
WO2018087885A1 true WO2018087885A1 (en) 2018-05-17

Family

ID=62109498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083529 WO2018087885A1 (en) 2016-11-11 2016-11-11 Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program

Country Status (2)

Country Link
JP (1) JP6570767B2 (en)
WO (1) WO2018087885A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406572A (en) * 2020-11-06 2021-02-26 广州小鹏自动驾驶科技有限公司 Vehicle charging port abrasion detection method and detection device
CN113541639A (en) * 2020-04-17 2021-10-22 株式会社村田制作所 Elastic wave device and composite filter device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226845A (en) * 2005-02-17 2006-08-31 Nagoya Institute Of Technology Tracking detector
JP2008514943A (en) * 2004-10-01 2008-05-08 エアバス フランス Method and apparatus for detecting an arc phenomenon on at least one electrical cable
JP2010151663A (en) * 2008-12-25 2010-07-08 Nagoya Institute Of Technology Tracking phenomenon detection device and detection method
JP2015034700A (en) * 2013-08-07 2015-02-19 三菱電機株式会社 Electric leak detection device, electric leak detection method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048127B2 (en) * 2003-01-10 2008-02-13 松下電工株式会社 Electrical equipment monitoring system
JP2005251185A (en) * 2004-02-05 2005-09-15 Toenec Corp Electric equipment diagnostic system
WO2009125627A1 (en) * 2008-04-11 2009-10-15 三菱電機株式会社 Equipment state detecting apparatus, equipment state detecting method, family member accident detecting apparatus, family member accident detecting system, and family member accident detecting method
JP5751872B2 (en) * 2011-03-14 2015-07-22 三菱電機株式会社 Device state detection device and device state detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514943A (en) * 2004-10-01 2008-05-08 エアバス フランス Method and apparatus for detecting an arc phenomenon on at least one electrical cable
JP2006226845A (en) * 2005-02-17 2006-08-31 Nagoya Institute Of Technology Tracking detector
JP2010151663A (en) * 2008-12-25 2010-07-08 Nagoya Institute Of Technology Tracking phenomenon detection device and detection method
JP2015034700A (en) * 2013-08-07 2015-02-19 三菱電機株式会社 Electric leak detection device, electric leak detection method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541639A (en) * 2020-04-17 2021-10-22 株式会社村田制作所 Elastic wave device and composite filter device
CN112406572A (en) * 2020-11-06 2021-02-26 广州小鹏自动驾驶科技有限公司 Vehicle charging port abrasion detection method and detection device

Also Published As

Publication number Publication date
JP6570767B2 (en) 2019-09-04
JPWO2018087885A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP7041323B2 (en) System and method of operation of smart plug
CN103119454B (en) Infer that energy uses from voltage drop
JP5538140B2 (en) Device state detection device, device state detection server, device state detection system, and device state database maintenance server
AU2011260098B2 (en) Determining an indication of a background level of utility consumption
JP6958599B2 (en) Monitoring equipment, monitoring systems, monitoring methods and programs
WO2015008645A1 (en) Monitoring apparatus, monitoring method, and program
JP5956039B2 (en) Electric equipment monitoring apparatus and method
JPWO2017047296A1 (en) Teacher data providing apparatus, estimating apparatus, estimating system, teacher data providing method, estimating method, and program
JP6570767B2 (en) Deterioration detection apparatus, deterioration detection system, deterioration detection method, and program
US11624761B2 (en) Fault detection for appliances based on energy consumption data
US20200081043A1 (en) Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
EP2651078A1 (en) Method and apparatus for managing electronic appliance
CN110988570A (en) Method and device for identifying starting of fixed-frequency air conditioner and storage medium
JP2017147935A (en) System having power management function and user terminal and power management method thereof
CN111289817A (en) Method, device and system for monitoring faults of electric appliance and storage medium
US20220337081A1 (en) An in-line device and a method for controlling an electrical appliance
JP2015102526A (en) Power estimation device and power estimation method
KR101770798B1 (en) Apparatus and method for identifying type of electronic device
JP6006776B2 (en) Electric device identification method and electric device identification device
JP6143919B2 (en) Electric equipment monitoring apparatus and method
US20240235255A1 (en) Non-intrusive load identification method
Khalid et al. Nonintrusive load monitoring using tt-transform and neural networks
JP2016045052A (en) Apparatus power estimation method and system
GB2584994A (en) An in-line device and a method for controlling an electrical appliance
CN114924142A (en) Working state detection method, device, equipment and storage medium

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549716

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921141

Country of ref document: EP

Kind code of ref document: A1