WO2018087837A1 - Medical device and medical device manufacturing method - Google Patents

Medical device and medical device manufacturing method Download PDF

Info

Publication number
WO2018087837A1
WO2018087837A1 PCT/JP2016/083224 JP2016083224W WO2018087837A1 WO 2018087837 A1 WO2018087837 A1 WO 2018087837A1 JP 2016083224 W JP2016083224 W JP 2016083224W WO 2018087837 A1 WO2018087837 A1 WO 2018087837A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive coating
conductive
medical device
coating portion
energy
Prior art date
Application number
PCT/JP2016/083224
Other languages
French (fr)
Japanese (ja)
Inventor
庸高 銅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/083224 priority Critical patent/WO2018087837A1/en
Priority to JP2018549675A priority patent/JP6746708B2/en
Publication of WO2018087837A1 publication Critical patent/WO2018087837A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to a medical device having electrical conductivity, in particular, a medical device that performs treatment on a living tissue with energy and a method for manufacturing the medical device.
  • Ni-PTFE is used for the coating formed on the energy application surface.
  • JP 2006-288425 A discloses a bipolar tweezers in which the amount of protein attached to the tip portion is reduced.
  • a composite plating film made of a noble metal material and non-conductive fine particles and a multilayer plating film made of a noble metal material are provided on the opposing surfaces of the pair of arm-shaped tip portions.
  • Japanese Patent Application Laid-Open No. 2010-227462 discloses a medical electrode provided with a coating layer for preventing adhesion of a living tissue.
  • the coat layer is composed of a mixture of a plurality of materials such as a material having higher heat-resistant oxidation characteristics than metal and a material having higher electrochemical oxidation resistance than metal.
  • a medical device has a structure part having a non-conduction part at least in part, and conductivity and water repellency formed in at least part of the structure part.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of the treatment instrument according to the first embodiment.
  • FIG. 2 is a side view showing a distal end portion of a rod member and a jaw member of the handpiece of the treatment instrument shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of the rod member (jaw member) shown in FIG.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the rod member (jaw member) shown in FIG.
  • FIG. 5 is a cross-sectional view showing a state in which the rod member is bent along the surface of the living tissue in the modified example of the treatment instrument of the first embodiment.
  • the treatment instrument 11 (medical device) includes a handpiece 12, a power supply unit 13, and a cable 14 that connects the handpiece 12 and the power supply unit 13.
  • the handpiece 12 includes a housing 15 constituting an outer shell, a fixed handle 16 provided integrally with the housing 15, a handle 17 rotatable with respect to the housing 15, and a housing. 15, a plurality of operation buttons 18, a rod-shaped rod member 21 (treatment section, probe), at least one first electrode 22 formed on the outer surface of the rod member 21, and a proximal end of the rod member 21
  • a cylindrical shaft 23 (sheath) that covers the periphery of the side and protects the rod member 21, and a ring-like shape that is provided between the rod member 21 and the shaft 23 and prevents liquid from entering the shaft 23.
  • the longitudinal direction L is a direction along the central axis C of the rod member 21.
  • the rod member 21 and the jaw member 25 constitute an end effector 30 that performs treatment on a living tissue (tissue).
  • the treatment instrument 11 constitutes a treatment instrument including at least two electrodes, a first electrode 22 on the rod member 21 side and a second electrode 26 on the jaw member 25 side.
  • the handpiece 12 has a conducting wire 28 connected to the first electrode 22 and a conducting wire 28 connected to the second electrode 26.
  • each of the conducting wires 28 includes a conducting wire body 32 having one end connected to the high-frequency power supply unit 31 and a terminal 33 provided on the other end opposite to the one end of the conducting wire body 32.
  • Each of the conductive wires 28 may be formed of a general electric wire (a copper core wire is covered with a resin or the like), or a part of a metal pipe or rod may be used instead of the electric wire. You may be comprised with what was made into the electric supply path
  • the terminal 33 is electrically connected to either the first electrode 22 or the second electrode 26.
  • the terminal 33 may be composed of a metal plate attached to the other end of the conducting wire body 32, or an exposed portion formed by peeling the coating of the electric wire at the other end to expose the core wire of the electric wire. May be.
  • the conducting wire 28 is an example of an energy transmission unit that transmits high-frequency energy for treating living tissue to the conductive coating unit 34.
  • the energy transmission unit supplies energy to the second conductive coating part 35 (contact of the conductive part of the structure part) that is a contact point with the conductive coating part 34 and the structure part. It may be composed of a conductor 28 (supply path).
  • the energy transmission part is connected to the overlapping part formed by the conductive coating part 34 being formed on the conductive part of the rod member 21 (structure part) and the rod member 21 (structure part). And a supply path (conductive wire 28) to which energy is supplied.
  • the shaft 23 has a cylindrical shape and protects the rod member 21 located inside.
  • the shaft 23 is attached to the housing 15 so as to be rotatable with respect to the housing 15 on the proximal end side.
  • the rotating knob 24 is fixed to the shaft 23. By rotating the rotation knob 24 with respect to the housing 15, the shaft 23, the rod member 21, and the jaw member 25 can be rotated integrally around the central axis C.
  • the shaft 23 has a support pin 36 for supporting the jaw member 25 at the tip.
  • the jaw member 25 is rotatable around the support pin 36 between a facing position facing the rod member 21 and a separated position separated from the rod member 21 as indicated by an arrow in FIG. 2.
  • the support pin 36 is attached to the shaft 23.
  • the surgeon can open and close the jaw member 25 by rotating the handle 17 with respect to the housing 15. That is, when the operator operates the handle 17, the advance / retreat portion 27 provided inside the shaft 23 moves forward and backward along the central axis C of the shaft 23, thereby opening and closing the jaw member 25.
  • the jaw member 25 is provided, but an electric knife-like structure (monopolar treatment tool) in which the jaw member 25 is omitted and the treatment portion is configured only by the rod member 21 may be used.
  • the rod member 21 is formed of, for example, a heat-resistant resin material (for example, polyimide, LCP, PEEK, etc.) or ceramic and has an insulating property.
  • Part of the rod member 21 may be made of a resin material, and as a result of securing performances such as heat insulation and low thermal conductivity, the part may become insulating (may be a non-conductive part).
  • the insulating rod member 21 is an example of a structure part having a non-conduction part at least in part.
  • the rod member 21 has a treatment portion (treatment surface) for treating tissue on at least a part of its outer surface.
  • the rod member 21 can be manufactured in large quantities at a low cost by, for example, injection molding.
  • the thermal conductivity of the rod member 21 formed of a resin material is smaller than the thermal conductivity of metal.
  • the rod member 21 has a first surface 41 on the side facing the jaw member 25.
  • the heat-resistant temperature of general PEEK is about 343 degreeC.
  • the rod member 21 (structure part) has a structure having a non-conductive part (resin material part) and a conductive part (metal material part) provided adjacent to the non-conductive part. There may be.
  • the jaw member 25 is formed into a rod shape with, for example, a heat-resistant resin material (for example, polyimide, LCP, PEEK, etc.) or ceramic, and has an insulating property.
  • a heat-resistant resin material for example, polyimide, LCP, PEEK, etc.
  • the part may be insulative (may be a non-conductive part).
  • the jaw member 25 can be manufactured in large quantities at a low cost by, for example, injection molding.
  • the thermal conductivity of the jaw member 25 formed of a resin material is smaller than the thermal conductivity of metal.
  • the jaw member 25 has a shape that can be engaged with the rod member 21 (for example, a shape having a recess capable of accommodating a part of the rod member 21).
  • the jaw member 25 is an example of a structural part (treatment part) having a non-conducting part at least in part.
  • the jaw member 25 has a treatment portion (treatment surface) for treating tissue on at least a part of its outer surface.
  • the jaw member 25 can be engaged with the rod member 21 at a position facing the rod member 21.
  • the jaw member 25 can be formed by injection molding, for example.
  • the jaw member 25 has a second surface 43 on the side facing the rod member 21.
  • the jaw member 25 (structure part) has a structure having a non-conductive part (resin material part) and a conductive part (metal material part) provided adjacent to the non-conductive part. There may be.
  • the first electrode 22 is formed in a flat plate shape on the first surface 41 (treatment portion, treatment surface) of the rod member 21.
  • the first electrode 22 is a second electrode provided to connect the conductive coating portion 34 formed on the outer surface of the rod member 21, and the conductive coating portion 34 and the terminal 33 of the conductive wire 28.
  • a conductive coating portion 35 Most of the conductive coating portions 34 constituting the first electrode 22 constitute a first treatment surface 42 that is in direct contact with the living tissue.
  • the second conductive coating portion 35 is provided at a position (for example, a position inside the cylindrical shaft 23) that deviates from the first treatment surface 42 of the conductive coating portion 34.
  • the conductive coating part 34 and the second conductive coating part 35 can constitute an integrated conductive coating part.
  • the conductive coating portion 34 is made of a conductive material formed by diffusing and distributing a plurality of metal particles in a synthetic resin base material having insulating properties and water repellency. More specifically, the base material of the conductive coating portion 34 is composed of, for example, a mixture of a fluororesin such as PTFE and a binder such as polyamideimide. As shown in FIG. 3, the conductive coating portion 34 is formed on at least a part of the outer surface of the rod member 21 so as to constitute a treatment portion (first treatment surface 42) that comes into contact with a living tissue. The conductive coating portion 34 is applied to at least the non-conductive portion of the rod member 21.
  • the plurality of metal particles are composed of, for example, silver particles, but may be other types of metal particles such as other highly conductive copper particles.
  • the plurality of metal particles include metal particles having various shapes such as spherical metal particles and scale-shaped metal particles.
  • the second conductive coating portion 35 is interposed between the conductive coating portion 34 and the conductive wire 28 (terminal 33) and integrally fixes the conductive coating portion 34 and the conductive wire 28.
  • the second conductive coating portion 35 is made of a conductive material having the same composition as the conductive coating portion 34.
  • the second conductive coating portion 35 constitutes a connection portion between the conductive wire 28 and the conductive coating portion 34.
  • the second conductive coating portion 35 is provided on the outer surface of the conductive coating portion 34 and is formed so as to overlap the conductive coating portion 34.
  • the dimension L2 from the outer surface of the rod member 21 to the outer surface of the second conductive coating portion 35 is larger than the dimension L1 from the outer surface of the rod member 21 to the outer surface of the conductive coating portion 34. Further, the length of the second conductive coating portion 35 is smaller than the length of the conductive coating portion 34 with respect to the longitudinal direction L of the rod member 21 (structure portion).
  • the organic component (liquid component) contained in these base materials is vaporized and the metal particles are in communication with each other. Accordingly, the conductive coating portion 34 and the second conductive coating portion 35 can exhibit conductivity as a whole.
  • the second electrode 26 is formed in a flat plate shape on the second surface 43 of the jaw member 25. Similar to the first electrode 22, the second electrode 26 includes a conductive coating portion 34 and a second conductive coating portion 35, and their structures and the materials constituting them are the same as those of the first electrode 22. Therefore, FIG. 3 is also used for explaining the second electrode 26.
  • the second electrode 26 includes a conductive coating portion 34 formed on the outer surface of the jaw member 25, and a second conductive coating portion 35 provided so as to connect the conductive coating portion 34 and the terminal 33 of the conductive wire 28. Have. Most of the conductive coating portion 34 constituting the second electrode 26 constitutes a second treatment surface 44 that is in direct contact with the living tissue.
  • the conductive coating portion 34 is applied to at least the non-conductive portion of the jaw member 25.
  • the second conductive coating portion 35 is provided at a position (for example, a position inside the cylindrical shaft 23) that deviates from the second treatment surface 44 of the conductive coating portion 34.
  • the conductive coating part 34 and the second conductive coating part 35 can constitute an integrated conductive coating part.
  • the power supply unit 13 includes a high-frequency power supply unit 31 and a control unit 45 that controls the high-frequency power supply unit 31.
  • the control unit 45 can control power supply from the high-frequency power supply unit 31 to the first electrode 22 and the second electrode 26.
  • the control unit 45 supplies power from the high frequency power supply unit 31 to the first electrode 22 and the second electrode 26.
  • the plurality of operation buttons 18 include, for example, a first operation button 18A that outputs high-frequency energy with high output to biological tissue, and a second operation button 18B that outputs high-frequency energy with low output to biological tissue. It is.
  • the high frequency energy is an example of electrical energy transmitted to the conductive coating portion 34.
  • the rod member 21 and the jaw member 25 are molded from a resin material or the like by injection molding or the like.
  • the rod member 21 and the jaw member 25 may be formed by processing a metal material such as a titanium alloy or an aluminum alloy (in this case, the rod member 21 and the jaw member 25 are made of resin on the surface of the metal material).
  • the resin material part is included in part, such as a structure provided with a material, but may be a structure formed of a metal material as a whole).
  • the first electrode 22 is formed in a flat plate shape on the first surface 41 (treatment portion, treatment surface) of the rod member 21. As shown in FIG.
  • the first electrode 22 is a second electrode provided to connect the conductive coating portion 34 formed on the outer surface of the rod member 21, and the conductive coating portion 34 and the terminal 33 of the conductive wire 28. And a conductive coating portion 35.
  • a conductive material is applied to at least a part of the rod member 21 (first surface 41 shown in FIG. 2) to form a conductive coating portion 34.
  • a conductive material is applied to at least a part of the jaw member 25 (second surface 43 shown in FIG. 2) to form the conductive coating portion 34.
  • a second conductive coating portion 35 is formed by applying a conductive material to at least a part (one surface 33 ⁇ / b> A) of the terminals 33 of the plurality of conductive wires 28.
  • heat treatment is performed to temporarily cure (temporarily dry) the conductive coating portion 34 applied to the rod member 21 and the jaw member 25 and the second conductive coating portion 35 applied to the terminals 33 of the plurality of conductive wires 28. .
  • This heat treatment is performed, for example, by leaving it in a furnace set at 60 to 120 ° C. for a predetermined time.
  • the second conductive coating portion 35 of the terminal is abutted against the conductive coating portion 34 of the rod member 21 to obtain the state shown in FIG. 3.
  • the second conductive coating portion 35 of the conductive wire 28 is abutted against the conductive coating portion 34 of the jaw member 25 to obtain the state shown in FIG. 3.
  • a connecting conductive coating may be interposed between the conductive coating portion 34 and the second conductive coating portion 35.
  • the bridging conductive coating is a conductive material having the same composition as that of the conductive coating portion 34, but before the heat treatment.
  • a heat treatment is performed to fully cure (fire) the conductive coating portion 34 applied to the rod member 21 and the jaw member 25 and the second conductive coating portion 35 applied to the terminal 33.
  • This heat treatment is performed by leaving it for a predetermined time in a furnace set at a temperature higher than that of the pre-curing heat treatment, for example, 200 to 330 ° C.
  • the conductive coating portion 34 of the rod member 21 or the jaw member 25 and the second conductive coating portion 35 applied to the terminals 33 of the plurality of conductive wires 28 are integrally joined (fixed) and electrically. Connected.
  • the conductive conductive coating is interposed between the conductive coating portion 34 and the second conductive coating portion 35, the conductive coating portion 34 and the second conductive coating portion 35 are integrally joined, and The reliability of the bonding strength and the reliability of the conductivity are improved.
  • the conductive coating portion 34 of the rod member 21 constitutes the first electrode 22 by main curing, and most of the conductive coating portion 34 becomes the first treatment surface 42. Further, the conductive coating portion 34 of the jaw member 25 constitutes the second electrode 26 by the main curing, and most of the conductive coating portion 34 becomes the second treatment surface 44. From the above, the manufacturing process of the first electrode 22 for the rod member 21 and the manufacturing process of the second electrode 26 for the jaw member 25 are completed.
  • action of the treatment tool 11 of this embodiment is demonstrated.
  • the operator can sandwich the living tissue between the rod member 21 and the jaw member 25 by operating the handle 17. Further, the surgeon operates the first operation button 18A or the second operation button 18B to input high-frequency energy to the sandwiched biological tissue to perform treatment such as coagulation of the biological tissue or coagulation / incision. It can be carried out.
  • the surgeon operates the first operation button 18A
  • high-frequency energy is supplied to the living tissue between the first electrode 22 and the second electrode 26 under the control of the control unit 45.
  • a high-frequency current is applied to a wide range of the living tissue (the entire living tissue grasped between the rod member 21 and the jaw member 25), thereby coagulating or coagulating / incising the living tissue.
  • the second operation button 18B when the operator operates the second operation button 18B, high-frequency energy is supplied to the living tissue at a position between the first electrode 22 and the second electrode 26 on the distal end side under the control of the control unit 45. Is done. At this time, the power supplied to the first electrode 22 and the second electrode 26 is smaller than the normal power supplied by operating the first operation button 18A (that is, a low output smaller than the normal output). ). Also in this case, electricity is supplied only between the first electrode 22 and the second electrode 26, and an efficient high-frequency treatment is possible.
  • the treatment instrument 11 includes a structure part having a non-conduction part at least in part, a conductive coating part 34 having conductivity and water repellency formed in at least a part of the structure part, and electric energy to the conductive coating part. 34, and the conductive coating portion 34 is applied to at least the non-conductive portion of the structure portion, and the electric energy is also passed through the conductive coating portion 34 in the non-conductive portion of the structure portion. Is supplied.
  • the energy transmission part is a conductive wire 28 connected to the conductive coating part 34, and the connection part between the conductive wire 28 and the conductive coating part 34 is integrally fixed by a second conductive coating part 35.
  • an energy transmission part can be fixed with respect to the surface which gave the water-repellent conductive coating part (adhesion). Accordingly, high frequency energy can be supplied to the conductive coating portion via the energy transmission portion, and the conductive coating portion can be utilized as an electrode during high frequency power treatment.
  • the conductive coating portion can take an arbitrary shape with respect to the structure portion by changing a region to be applied. For this reason, the shape of the conductive coating portion can be appropriately changed according to the organ, organ, tissue, or the like to be treated. As a result, a conductive coating portion (electrode) having an optimal shape can be realized in accordance with the target treatment.
  • the thermal conductivity of the structure is smaller than that of metal.
  • the temperature of the structure portion adjacent to the conductive coating portion 34 may increase. According to this structure, the temperature rise of a structure part can be suppressed. Even if the temperature of the structural part has risen, the thermal conductivity of the structural part is lower than that of the metal. Since heat is not applied, damage due to heat can be prevented.
  • the resin base material of the conductive coating portion contains at least a fluororesin. According to this configuration, sticking of the biological tissue piece to the conductive coating portion 34 can be prevented by the water repellency and slipperiness of the fluororesin.
  • the length of the second conductive coating portion 35 is smaller than the length of the conductive coating portion 34 with respect to the longitudinal direction of the structure portion. According to this configuration, the area of the conductive coating portion 34 serving as a treatment surface can be secured with a sufficient width.
  • a conductive coating portion 34 is formed by applying a conductive material in which metal particles are diffused and distributed in a base material having insulating properties and water repellency to at least a part of a structure portion. Applying the conductive material to at least a part of the energy transmission unit for transmitting high-frequency energy to the conductive coating unit 34 to form the second conductive coating unit 35; and the conductive coating unit 34 and the second conductive coating In a state where the part 35 is heat-treated and temporarily cured, and the conductive coating part 34 and the second conductive coating part 35 are in contact with each other, heat treatment is performed at a temperature higher than that of the provisional curing process so that they are integrated. And a main curing step.
  • the energy transmission part can be fixed to Thereby, the conductive coating part 34 can be utilized as an electrode at the time of treatment by high frequency energy.
  • the conductive coating part 34 can take an arbitrary shape with respect to the structure part by changing the area
  • the handpiece 12 does not have the jaw member 25.
  • the end effector 30 of the handpiece 12 is configured only by the rod member 21.
  • the treatment tool 11 of this modification has an electric knife-like structure and constitutes a so-called monopolar treatment tool.
  • the rod member 21 is formed into a rod shape having a smaller diameter than the rod member 21 of the first embodiment, for example, by a resin material (for example, PEEK). For this reason, the rod member 21 is not only insulative, but also has greater flexibility than the rod member 21 of the first embodiment.
  • the rod member 21 can be manufactured in large quantities at a low cost by, for example, injection molding.
  • the rod member 21 is an example of a structure part.
  • the rod member 21 has a first surface 41 on the side facing the jaw member 25.
  • action of the treatment tool 11 of this embodiment is demonstrated.
  • the rod member 21 since the rod member 21 is elongated, it can be bent so as to follow the shape of the outer surface of the living tissue as shown in FIG. Therefore, in this modification, a large contact area of the first electrode 22 (conductive coating portion 34) with the outer surface of the living tissue is ensured. Further, since the rod member 21 is configured to have flexibility, the risk of damaging the living tissue is reduced without accidentally piercing the living tissue with the tip of the rod member 21.
  • surgeon operates the first operation button 18A or the second operation button 18B to input high-frequency energy to the living tissue that is in contact with the treatment, such as coagulation of the living tissue or coagulation / incision. It can be performed.
  • the second operation button 18B when the operator operates the second operation button 18B, high frequency is applied to the living tissue between the first electrode 22 on the distal end side and the counter electrode plate outside the patient's body under the control of the control unit 45. Energy is supplied. At this time, the power supplied to the first electrode 22 is smaller than the normal power supplied by operating the first operation button 18A (that is, a low output smaller than the normal output). As a result, a high-frequency current is applied to the living tissue at the first electrode 22, and the living tissue in the vicinity of the first electrode 22 is coagulated.
  • the structural part is formed of a resin material.
  • the thermal conductivity of the structure portion can be reduced, and the structure portion can have sufficient flexibility.
  • the rod member 21 can follow the outer surface of the living tissue, and a large area where the conductive coating portion 34 contacts the living tissue can be ensured. Accordingly, it is possible to secure a large area for performing treatment on the living tissue, and to improve the operator's workability.
  • the treatment tool 11 can be provided in consideration of safety during treatment without accidentally piercing the structure with living tissue during treatment.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the gist thereof.
  • the present invention can also be applied to medical devices other than the above-described treatment tool 11 such as a treatment tool, forceps, and electric knife capable of supplying electrical energy in a state of direct contact with a living body.
  • the energy supplied to the rod member 21 is not limited to high-frequency energy, and may be other energy.
  • any energy of ultrasonic energy, thermal energy, light energy, and electromagnetic waves may be output as energy used for treatment alone, or may be configured to output high frequency energy, ultrasonic energy, thermal energy, light energy, electromagnetic waves. Any one of them may be output in combination as appropriate.
  • one energy selected from the group consisting of ultrasonic energy, thermal energy, light energy, and electromagnetic waves, and high-frequency energy may be output simultaneously or individually.
  • ultrasonic energy as energy supplied to a rod member, it is desirable to use a metal material for a part of structure part so that the load (high stress) by ultrasonic vibration may be endured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Resistance Heating (AREA)

Abstract

Using metal to conduct electricity in medical devices is sometimes problematic. For example, if heat from a treatment, etc., builds up, a thermal insult can result upon contact with tissue. The purpose of the present invention is to provide a medical device that solves this problem. This medical device is provided with: a structure (21) which has a nonconductive section in at least a portion thereof; a conductive coating (34) which is formed on at least a part of the structure (21) and which is conductive and water repellent; and an energy transfer unit (28) which transfers electric energy to the coating (34). The conductive coating (34) is coated on at least the nonconductive section of the structure (21), and even in the nonconductive section of the structure (21), electric energy is supplied through the conductive coating (34).

Description

医療機器、医療機器の製造方法Medical device, method for manufacturing medical device
 本発明は、導電性を有する医療機器、とりわけ、エネルギーによって生体組織に処置を行う医療機器および医療機器の製造方法に関する。 The present invention relates to a medical device having electrical conductivity, in particular, a medical device that performs treatment on a living tissue with energy and a method for manufacturing the medical device.
 国際公開2014/141530号明細書には、エネルギー印加面への生体組織の付着を防止した治療処置具が開示される。エネルギー印加面に形成されるコーティングには、Ni-PTFEが用いられる。 International Patent Publication No. 2014/141530 discloses a therapeutic treatment tool that prevents adhesion of a living tissue to an energy application surface. Ni-PTFE is used for the coating formed on the energy application surface.
 特開2006-288425号公報には、先端チップ部へのタンパク質の付着量を低下させたバイポーラピンセットが開示される。一対のアーム状の先端チップ部の対向面上には、貴金属材料と非伝導性微粒子からなる複合メッキ皮膜と、この複合メッキ皮膜上に貴金属材料からなる積層メッキ皮膜と、が設けられる。 JP 2006-288425 A discloses a bipolar tweezers in which the amount of protein attached to the tip portion is reduced. A composite plating film made of a noble metal material and non-conductive fine particles and a multilayer plating film made of a noble metal material are provided on the opposing surfaces of the pair of arm-shaped tip portions.
 特開2010-227462号公報には、生体組織の固着防止のコート層を備えた医療用電極が開示される。このコート層には、金属よりも耐熱酸化特性が高い材料、金属よりも電気化学的な耐酸化性が高い材料等、複数の材料を混在されて構成される。 Japanese Patent Application Laid-Open No. 2010-227462 discloses a medical electrode provided with a coating layer for preventing adhesion of a living tissue. The coat layer is composed of a mixture of a plurality of materials such as a material having higher heat-resistant oxidation characteristics than metal and a material having higher electrochemical oxidation resistance than metal.
国際公開2014/141530号明細書International Publication No. 2014/141530 Specification 特開2006-288425号公報JP 2006-288425 A 特開2010-227462号公報JP 2010-227462 A
 医療機器において、金属を用いて通電すること自体に問題が生じることがある。たとえば、処置等による熱がこもった状態で、組織と接触してしまうと、熱侵襲につながってしまう。 In medical equipment, there may be a problem in energizing itself with metal. For example, contact with tissue in a state where heat due to treatment or the like is accumulated leads to thermal invasion.
 前記目的を達成するため、本発明の一つの形態に係る医療機器は、少なくとも一部に非導通部を持つ構造部と、前記構造部の少なくとも一部に形成された、導電性および撥水性を有する導電コーティング部と、電気エネルギーを前記コーティング部に伝達するエネルギー伝達部と、を備え、前記導電コーティング部は少なくとも前記構造部の非導通部に塗布されており、前記構造部の非導通部においても、前記導電コーティング部を通じて電気エネルギーが供給される。 In order to achieve the above object, a medical device according to one aspect of the present invention has a structure part having a non-conduction part at least in part, and conductivity and water repellency formed in at least part of the structure part. An electrically conductive coating part, and an energy transmission part for transmitting electrical energy to the coating part, wherein the electrically conductive coating part is applied to at least the non-conductive part of the structural part, and in the non-conductive part of the structural part Also, electric energy is supplied through the conductive coating portion.
 上記構成によれば、導電コーティング部を介して生体組織に電気エネルギーを流すことができる。 According to the above configuration, electric energy can flow to the living tissue through the conductive coating portion.
図1は、第1実施形態の処置具の全体構成を示した模式図である。FIG. 1 is a schematic diagram illustrating the overall configuration of the treatment instrument according to the first embodiment. 図2は、図1に示す処置具のハンドピースのロッド部材の先端部およびジョー部材を示した側面図である。FIG. 2 is a side view showing a distal end portion of a rod member and a jaw member of the handpiece of the treatment instrument shown in FIG. 図3は、図2に示すロッド部材(ジョー部材)を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view of the rod member (jaw member) shown in FIG. 図4は、図3に示すロッド部材(ジョー部材)の製造工程を示した断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process of the rod member (jaw member) shown in FIG. 図5は、第1実施形態の処置具の変形例において、生体組織の表面に沿わせてロッド部材を湾曲させた状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the rod member is bent along the surface of the living tissue in the modified example of the treatment instrument of the first embodiment.
 [第1の実施形態] 
 本発明の医療機器の一例である処置具の第1実施形態について、図1乃至図4を参照して説明する。
[First Embodiment]
1st Embodiment of the treatment tool which is an example of the medical device of this invention is described with reference to FIG. 1 thru | or FIG.
 図1に示すように、処置具11(医療機器)は、ハンドピース12と、電源ユニット13と、ハンドピース12と電源ユニット13とを接続するケーブル14と、を備える。 As shown in FIG. 1, the treatment instrument 11 (medical device) includes a handpiece 12, a power supply unit 13, and a cable 14 that connects the handpiece 12 and the power supply unit 13.
 図1、図2に示すように、ハンドピース12は、外殻を構成するハウジング15と、ハウジング15と一体に設けられた固定ハンドル16と、ハウジング15に対して回動できるハンドル17と、ハウジング15に設けられた複数の操作ボタン18と、棒状のロッド部材21(処置部、プローブ)と、ロッド部材21の外表面に形成された少なくとも一つの第1電極22と、ロッド部材21の基端側の周囲を覆ってロッド部材21を保護する円筒形のシャフト23(シース)と、ロッド部材21とシャフト23との間に設けられてシャフト23内部に液が侵入することを阻止するリング状の水密部材と、シャフト23に固定された回転用ノブ24と、ロッド部材21に対して回動可能に構成されたジョー部材25と、ジョー部材25の外表面に形成された少なくとも一つの第2電極26と、シャフト23の内部に設けられジョー部材25を開閉する際に進退される円筒形の進退部27と、を備える。 As shown in FIGS. 1 and 2, the handpiece 12 includes a housing 15 constituting an outer shell, a fixed handle 16 provided integrally with the housing 15, a handle 17 rotatable with respect to the housing 15, and a housing. 15, a plurality of operation buttons 18, a rod-shaped rod member 21 (treatment section, probe), at least one first electrode 22 formed on the outer surface of the rod member 21, and a proximal end of the rod member 21 A cylindrical shaft 23 (sheath) that covers the periphery of the side and protects the rod member 21, and a ring-like shape that is provided between the rod member 21 and the shaft 23 and prevents liquid from entering the shaft 23. A watertight member, a rotating knob 24 fixed to the shaft 23, a jaw member 25 configured to be rotatable with respect to the rod member 21, and an outer surface of the jaw member 25 Comprising at least one second electrode 26 is formed, the forward and reverse part 27 of the cylindrical being retractable when opening and closing the jaw member 25 provided inside the shaft 23, to.
 本実施形態では、ロッド部材21の長手方向Lに平行な2方向の一方を先端側とし、先端側とは反対側を基端側として説明を進める。長手方向Lは、ロッド部材21の中心軸Cに沿う方向である。ロッド部材21およびジョー部材25は、生体組織(組織)に処置を行うエンドエフェクタ30を構成する。処置具11は、ロッド部材21側の第1電極22とジョー部材25側の第2電極26との少なくとも二つの電極を含んだ処置具を構成する。 In the present embodiment, description will be given with one of the two directions parallel to the longitudinal direction L of the rod member 21 as the distal end side and the opposite side to the distal end side as the proximal end side. The longitudinal direction L is a direction along the central axis C of the rod member 21. The rod member 21 and the jaw member 25 constitute an end effector 30 that performs treatment on a living tissue (tissue). The treatment instrument 11 constitutes a treatment instrument including at least two electrodes, a first electrode 22 on the rod member 21 side and a second electrode 26 on the jaw member 25 side.
 ハンドピース12は、第1電極22に接続された導線28と、第2電極26に接続された導線28と、を有する。図3に示すように、導線28のそれぞれは、一端が高周波電力供給部31と接続された導線本体32と、導線本体32の一端とは反対側の他端に設けられた端子33と、を有する。導線28のそれぞれは、一般的な電線(銅製の心線の周囲を樹脂等で被覆したもの)で形成されてもよいし、電線の代わりに金属製のパイプや棒の一部を利用して電気供給経路としたもので構成されてもよい。端子33は、第1電極22および第2電極26のいずれかと電気的に接続される。端子33は、導線本体32の他端に取り付けられた金属板で構成されてもよいし、或いは電線の被覆を当該他端で剥いで電線の心線を露出させて形成した露出部で構成されてもよい。導線28は、生体組織を処置するための高周波エネルギーを導電コーティング部34に伝達するエネルギー伝達部の一例である。また、本発明の他の形態として、エネルギー伝達部は、導電コーティング部34との接点である第2導電コーティング部35(構造部の導通部分の接点)と、前記構造部へエネルギーが供給される導線28(供給路)と、で構成されてもよい。さらに、本発明の他の形態として、エネルギー伝達部は、導電コーティング部34がロッド部材21(構造部)の導電部分上に構成されたことによるオーバーラップ部分と、ロッド部材21(構造部)へエネルギーが供給される供給路(導線28)と、で構成されてもよい。 The handpiece 12 has a conducting wire 28 connected to the first electrode 22 and a conducting wire 28 connected to the second electrode 26. As shown in FIG. 3, each of the conducting wires 28 includes a conducting wire body 32 having one end connected to the high-frequency power supply unit 31 and a terminal 33 provided on the other end opposite to the one end of the conducting wire body 32. Have. Each of the conductive wires 28 may be formed of a general electric wire (a copper core wire is covered with a resin or the like), or a part of a metal pipe or rod may be used instead of the electric wire. You may be comprised with what was made into the electric supply path | route. The terminal 33 is electrically connected to either the first electrode 22 or the second electrode 26. The terminal 33 may be composed of a metal plate attached to the other end of the conducting wire body 32, or an exposed portion formed by peeling the coating of the electric wire at the other end to expose the core wire of the electric wire. May be. The conducting wire 28 is an example of an energy transmission unit that transmits high-frequency energy for treating living tissue to the conductive coating unit 34. As another embodiment of the present invention, the energy transmission unit supplies energy to the second conductive coating part 35 (contact of the conductive part of the structure part) that is a contact point with the conductive coating part 34 and the structure part. It may be composed of a conductor 28 (supply path). Furthermore, as another embodiment of the present invention, the energy transmission part is connected to the overlapping part formed by the conductive coating part 34 being formed on the conductive part of the rod member 21 (structure part) and the rod member 21 (structure part). And a supply path (conductive wire 28) to which energy is supplied.
 シャフト23は、円筒形をなしていて、内部に位置されるロッド部材21を保護している。シャフト23は、基端側においてハウジング15に対して回転可能な状態でハウジング15に取り付けられている。回転用ノブ24は、シャフト23に対して固定的に設けられている。ハウジング15に対して回転用ノブ24を回転させることにより、シャフト23、ロッド部材21、及びジョー部材25を中心軸C回りに一体的に回転できる。シャフト23は、先端部にジョー部材25を支持するための支持ピン36を有する。 The shaft 23 has a cylindrical shape and protects the rod member 21 located inside. The shaft 23 is attached to the housing 15 so as to be rotatable with respect to the housing 15 on the proximal end side. The rotating knob 24 is fixed to the shaft 23. By rotating the rotation knob 24 with respect to the housing 15, the shaft 23, the rod member 21, and the jaw member 25 can be rotated integrally around the central axis C. The shaft 23 has a support pin 36 for supporting the jaw member 25 at the tip.
 ジョー部材25は、図2に矢印で示すように、ロッド部材21に対向した対向位置と、ロッド部材21から離隔した離隔位置と、の間で支持ピン36を中心に回動可能である。支持ピン36は、シャフト23に取り付けられている。術者は、ハンドル17をハウジング15に対して回動させることで、このジョー部材25の開閉操作を行うことができる。すなわち、術者がハンドル17を操作すると、シャフト23の内側に設けられた進退部27がシャフト23の中心軸Cに沿って進退移動し、これによってジョー部材25を開閉動作させる。なお、本実施形態では、ジョー部材25が設けられているが、ジョー部材25を省略してロッド部材21のみで処置部を構成する電気メス状の構造(モノポーラ処置具)であってもよい。 2, the jaw member 25 is rotatable around the support pin 36 between a facing position facing the rod member 21 and a separated position separated from the rod member 21 as indicated by an arrow in FIG. 2. The support pin 36 is attached to the shaft 23. The surgeon can open and close the jaw member 25 by rotating the handle 17 with respect to the housing 15. That is, when the operator operates the handle 17, the advance / retreat portion 27 provided inside the shaft 23 moves forward and backward along the central axis C of the shaft 23, thereby opening and closing the jaw member 25. In the present embodiment, the jaw member 25 is provided, but an electric knife-like structure (monopolar treatment tool) in which the jaw member 25 is omitted and the treatment portion is configured only by the rod member 21 may be used.
 ロッド部材21は、例えば耐熱性のある樹脂材料(例えば、ポリイミド、LCP、PEEK等)、或いはセラミックによって成形され、絶縁性を有する。ロッド部材21は、一部を樹脂材料によって形成することで断熱性、低熱伝導率等の性能を確保した結果、その部分が絶縁性となってしまってもよい(非導通部としてよい)。絶縁性のあるロッド部材21は、少なくとも一部に非導通部を持つ構造部の一例である。ロッド部材21は、その外表面上の少なくとも一部に、組織を処置するための処置部(処置面)を有する。ロッド部材21は、例えば射出成形によって安価で大量に製造できる。また、樹脂材料で形成されるロッド部材21の熱伝導率は、金属の熱伝導率よりも小さい。図2に示すように、ロッド部材21は、ジョー部材25と対向する側に第1面41を有する。なお、一般的なPEEKの耐熱温度は、343℃程度である。本発明の他の形態として、ロッド部材21(構造部)は、非導通部(樹脂材料部分)と、非導通部に隣接して設けられた導電部分(金属材料部分)と、を有する構造であってもよい。 The rod member 21 is formed of, for example, a heat-resistant resin material (for example, polyimide, LCP, PEEK, etc.) or ceramic and has an insulating property. Part of the rod member 21 may be made of a resin material, and as a result of securing performances such as heat insulation and low thermal conductivity, the part may become insulating (may be a non-conductive part). The insulating rod member 21 is an example of a structure part having a non-conduction part at least in part. The rod member 21 has a treatment portion (treatment surface) for treating tissue on at least a part of its outer surface. The rod member 21 can be manufactured in large quantities at a low cost by, for example, injection molding. Moreover, the thermal conductivity of the rod member 21 formed of a resin material is smaller than the thermal conductivity of metal. As shown in FIG. 2, the rod member 21 has a first surface 41 on the side facing the jaw member 25. In addition, the heat-resistant temperature of general PEEK is about 343 degreeC. As another embodiment of the present invention, the rod member 21 (structure part) has a structure having a non-conductive part (resin material part) and a conductive part (metal material part) provided adjacent to the non-conductive part. There may be.
 ジョー部材25は、例えば耐熱性のある樹脂材料(例えば、ポリイミド、LCP、PEEK等)、或いはセラミックによって棒状に成形され、絶縁性を有する。ジョー部材25は、一部を樹脂材料によって形成することで、断熱性、低熱伝導率等の性能を確保した結果、その部分が絶縁性となってしまってもよい(非導通部としてよい)。ジョー部材25は、例えば射出成形によって安価で大量に製造できる。また、樹脂材料で形成されるジョー部材25の熱伝導率は、金属の熱伝導率よりも小さい。ジョー部材25は、ロッド部材21と係合可能な形状(例えば、ロッド部材21の一部を収納可能な凹部を有する形状)をなしている。ジョー部材25は、少なくとも一部に非導通部を持つ構造部(処置部)の一例である。ジョー部材25は、その外表面上の少なくとも一部に、組織を処置するための処置部(処置面)を有する。ジョー部材25は、ロッド部材21と対向した位置で、ロッド部材21と係合することができる。ジョー部材25は、例えば射出成形によって形成できる。ジョー部材25は、ロッド部材21と対向する側に第2面43を有する。本発明の他の形態として、ジョー部材25(構造部)は、非導通部(樹脂材料部分)と、非導通部に隣接して設けられた導電部分(金属材料部分)と、を有する構造であってもよい。 The jaw member 25 is formed into a rod shape with, for example, a heat-resistant resin material (for example, polyimide, LCP, PEEK, etc.) or ceramic, and has an insulating property. As a result of securing a performance such as heat insulation and low thermal conductivity by forming a part of the jaw member 25 from a resin material, the part may be insulative (may be a non-conductive part). The jaw member 25 can be manufactured in large quantities at a low cost by, for example, injection molding. Moreover, the thermal conductivity of the jaw member 25 formed of a resin material is smaller than the thermal conductivity of metal. The jaw member 25 has a shape that can be engaged with the rod member 21 (for example, a shape having a recess capable of accommodating a part of the rod member 21). The jaw member 25 is an example of a structural part (treatment part) having a non-conducting part at least in part. The jaw member 25 has a treatment portion (treatment surface) for treating tissue on at least a part of its outer surface. The jaw member 25 can be engaged with the rod member 21 at a position facing the rod member 21. The jaw member 25 can be formed by injection molding, for example. The jaw member 25 has a second surface 43 on the side facing the rod member 21. As another form of the present invention, the jaw member 25 (structure part) has a structure having a non-conductive part (resin material part) and a conductive part (metal material part) provided adjacent to the non-conductive part. There may be.
 図2に示すように、第1電極22は、ロッド部材21の第1面41(処置部、処置面))に平板状に形成される。図3に示すように、第1電極22は、ロッド部材21の外表面に形成された導電コーティング部34と、導電コーティング部34と導線28の端子33とを接続するように設けられた第2導電コーティング部35と、を有する。第1電極22を構成する導電コーティング部34のうちの大部分は、生体組織と直接接触する第1処置面42を構成する。導電コーティング部34の第1処置面42から外れた位置(例えば、円筒形のシャフト23の内側の位置)に、第2導電コーティング部35が設けられる。なお、後述する本硬化(焼成)処理後には、導電コーティング部34および第2導電コーティング部35は、一体になった導電コーティング部を構成することができる。 2, the first electrode 22 is formed in a flat plate shape on the first surface 41 (treatment portion, treatment surface) of the rod member 21. As shown in FIG. 3, the first electrode 22 is a second electrode provided to connect the conductive coating portion 34 formed on the outer surface of the rod member 21, and the conductive coating portion 34 and the terminal 33 of the conductive wire 28. And a conductive coating portion 35. Most of the conductive coating portions 34 constituting the first electrode 22 constitute a first treatment surface 42 that is in direct contact with the living tissue. The second conductive coating portion 35 is provided at a position (for example, a position inside the cylindrical shaft 23) that deviates from the first treatment surface 42 of the conductive coating portion 34. In addition, after the main curing (baking) process described later, the conductive coating part 34 and the second conductive coating part 35 can constitute an integrated conductive coating part.
 導電コーティング部34は、絶縁性および撥水性を有する合成樹脂の母材中に複数の金属粒子が拡散分布して形成した導電材料によって構成される。より具体的には、導電コーティング部34の母材は、例えば、PTFE等のフッ素樹脂と、ポリアミドイミド等のバインダーと、を混合したもので構成される。図3に示すように、導電コーティング部34は、ロッド部材21の外表面上の少なくとも一部に、生体組織と接触する処置部(第1処置面42)を構成するように形成される。導電コーティング部34は、少なくともロッド部材21の非導通部に塗布されている。複数の金属粒子は、例えば、銀粒子で構成されるが、他の導電性の良好な銅粒子等の他の種類の金属粒子であってもよい。複数の金属粒子(銀粒子)には、球形状の金属粒子および鱗形状の金属粒子等の種々の形状の金属粒子が含まれている。 The conductive coating portion 34 is made of a conductive material formed by diffusing and distributing a plurality of metal particles in a synthetic resin base material having insulating properties and water repellency. More specifically, the base material of the conductive coating portion 34 is composed of, for example, a mixture of a fluororesin such as PTFE and a binder such as polyamideimide. As shown in FIG. 3, the conductive coating portion 34 is formed on at least a part of the outer surface of the rod member 21 so as to constitute a treatment portion (first treatment surface 42) that comes into contact with a living tissue. The conductive coating portion 34 is applied to at least the non-conductive portion of the rod member 21. The plurality of metal particles are composed of, for example, silver particles, but may be other types of metal particles such as other highly conductive copper particles. The plurality of metal particles (silver particles) include metal particles having various shapes such as spherical metal particles and scale-shaped metal particles.
 図3に示すように、第2導電コーティング部35は、導電コーティング部34と導線28(端子33)との間に介在されて導電コーティング部34と導線28とを一体的に固定している。第2導電コーティング部35は、導電コーティング部34と同一の組成の導電材料で構成される。第2導電コーティング部35は、導線28と導電コーティング部34との結線部を構成する。図3に示すように、第2導電コーティング部35は、導電コーティング部34の外表面に設けられ、導電コーティング部34の上側に重なるように形成される。したがって、ロッド部材21の外表面から第2導電コーティング部35の外表面までの寸法L2は、ロッド部材21の外表面から導電コーティング部34の外表面までの寸法L1よりも大きい。また、ロッド部材21(構造部)の長手方向Lに関して、第2導電コーティング部35の長さは、導電コーティング部34の長さよりも小さい。 As shown in FIG. 3, the second conductive coating portion 35 is interposed between the conductive coating portion 34 and the conductive wire 28 (terminal 33) and integrally fixes the conductive coating portion 34 and the conductive wire 28. The second conductive coating portion 35 is made of a conductive material having the same composition as the conductive coating portion 34. The second conductive coating portion 35 constitutes a connection portion between the conductive wire 28 and the conductive coating portion 34. As shown in FIG. 3, the second conductive coating portion 35 is provided on the outer surface of the conductive coating portion 34 and is formed so as to overlap the conductive coating portion 34. Therefore, the dimension L2 from the outer surface of the rod member 21 to the outer surface of the second conductive coating portion 35 is larger than the dimension L1 from the outer surface of the rod member 21 to the outer surface of the conductive coating portion 34. Further, the length of the second conductive coating portion 35 is smaller than the length of the conductive coating portion 34 with respect to the longitudinal direction L of the rod member 21 (structure portion).
 導電コーティング部34および第2導電コーティング部35が本硬化(焼成)された状態では、これらの母材に含まれる有機成分(液体成分)が気化して金属粒子同士が連絡する。これによって、導電コーティング部34および第2導電コーティング部35は、全体として導電性を発揮できる。 In the state where the conductive coating portion 34 and the second conductive coating portion 35 are fully cured (baked), the organic component (liquid component) contained in these base materials is vaporized and the metal particles are in communication with each other. Accordingly, the conductive coating portion 34 and the second conductive coating portion 35 can exhibit conductivity as a whole.
 図2に示すように、第2電極26は、ジョー部材25の第2面43に平板状に形成される。第2電極26は、第1電極22と同様に導電コーティング部34および第2導電コーティング部35からなり、これらの構造およびこれらを構成する材料は第1電極22と同様である。このため、図3を第2電極26の説明に兼用する。第2電極26は、ジョー部材25の外表面に形成された導電コーティング部34と、導電コーティング部34と導線28の端子33とを接続するように設けられた第2導電コーティング部35と、を有する。第2電極26を構成する導電コーティング部34のうちの大部分は、生体組織と直接接触する第2処置面44を構成する。導電コーティング部34は、少なくともジョー部材25の非導通部に塗布されている。導電コーティング部34の第2処置面44から外れた位置(例えば、円筒形のシャフト23の内側の位置)に、第2導電コーティング部35が設けられる。なお、後述する本硬化(焼成)処理後には、導電コーティング部34および第2導電コーティング部35は、一体になった導電コーティング部を構成することができる。 As shown in FIG. 2, the second electrode 26 is formed in a flat plate shape on the second surface 43 of the jaw member 25. Similar to the first electrode 22, the second electrode 26 includes a conductive coating portion 34 and a second conductive coating portion 35, and their structures and the materials constituting them are the same as those of the first electrode 22. Therefore, FIG. 3 is also used for explaining the second electrode 26. The second electrode 26 includes a conductive coating portion 34 formed on the outer surface of the jaw member 25, and a second conductive coating portion 35 provided so as to connect the conductive coating portion 34 and the terminal 33 of the conductive wire 28. Have. Most of the conductive coating portion 34 constituting the second electrode 26 constitutes a second treatment surface 44 that is in direct contact with the living tissue. The conductive coating portion 34 is applied to at least the non-conductive portion of the jaw member 25. The second conductive coating portion 35 is provided at a position (for example, a position inside the cylindrical shaft 23) that deviates from the second treatment surface 44 of the conductive coating portion 34. In addition, after the main curing (baking) process described later, the conductive coating part 34 and the second conductive coating part 35 can constitute an integrated conductive coating part.
 図1に示すように、電源ユニット13は、高周波電力供給部31と、これを制御する制御部45と、を有している。制御部45は、高周波電力供給部31から第1電極22および第2電極26への電力の供給を制御することができる。術者によって操作ボタン18が操作されると、制御部45は、高周波電力供給部31から第1電極22および第2電極26に電力を供給する。複数の操作ボタン18には、例えば、生体組織に対して高出力で高周波エネルギーを出力する第1操作ボタン18Aと、生体組織に低出力で高周波エネルギーを出力する第2操作ボタン18Bと、が含まれる。高周波エネルギーは、導電コーティング部34に伝達される電気エネルギーの一例である。 As shown in FIG. 1, the power supply unit 13 includes a high-frequency power supply unit 31 and a control unit 45 that controls the high-frequency power supply unit 31. The control unit 45 can control power supply from the high-frequency power supply unit 31 to the first electrode 22 and the second electrode 26. When the operator operates the operation button 18, the control unit 45 supplies power from the high frequency power supply unit 31 to the first electrode 22 and the second electrode 26. The plurality of operation buttons 18 include, for example, a first operation button 18A that outputs high-frequency energy with high output to biological tissue, and a second operation button 18B that outputs high-frequency energy with low output to biological tissue. It is. The high frequency energy is an example of electrical energy transmitted to the conductive coating portion 34.
 図3、図4を参照して、本実施形態の処置具の製造方法について説明する。 
 ロッド部材21およびジョー部材25を、射出成形等によって樹脂材料等で成形する。なお、ロッド部材21およびジョー部材25は、チタン合金やアルミニウム合金等の金属材料を加工することで形成されていてもよい(この場合、ロッド部材21およびジョー部材25は、金属材料の表面に樹脂材料を設けた構造等、一部に樹脂材料部分を含んでいるが全体としては金属材料で形成される構造であってもよい。)。第1電極22は、ロッド部材21の第1面41(処置部、処置面))に平板状に形成される。図3に示すように、第1電極22は、ロッド部材21の外表面に形成された導電コーティング部34と、導電コーティング部34と導線28の端子33とを接続するように設けられた第2導電コーティング部35と、を有する。続く工程において、このロッド部材21の少なくとも一部(図2に示す第1面41)に対して導電材料を塗布して導電コーティング部34を形成する。同様に、ジョー部材25の少なくとも一部(図2に示す第2面43)に対して導電材料を塗布して導電コーティング部34を形成する。続く工程では、図4に示すように、複数の導線28の端子33の少なくとも一部(一方の面33A)に対して、導電材料を塗布して第2導電コーティング部35を形成する。
With reference to FIG. 3, FIG. 4, the manufacturing method of the treatment tool of this embodiment is demonstrated.
The rod member 21 and the jaw member 25 are molded from a resin material or the like by injection molding or the like. The rod member 21 and the jaw member 25 may be formed by processing a metal material such as a titanium alloy or an aluminum alloy (in this case, the rod member 21 and the jaw member 25 are made of resin on the surface of the metal material). The resin material part is included in part, such as a structure provided with a material, but may be a structure formed of a metal material as a whole). The first electrode 22 is formed in a flat plate shape on the first surface 41 (treatment portion, treatment surface) of the rod member 21. As shown in FIG. 3, the first electrode 22 is a second electrode provided to connect the conductive coating portion 34 formed on the outer surface of the rod member 21, and the conductive coating portion 34 and the terminal 33 of the conductive wire 28. And a conductive coating portion 35. In a subsequent step, a conductive material is applied to at least a part of the rod member 21 (first surface 41 shown in FIG. 2) to form a conductive coating portion 34. Similarly, a conductive material is applied to at least a part of the jaw member 25 (second surface 43 shown in FIG. 2) to form the conductive coating portion 34. In the subsequent step, as shown in FIG. 4, a second conductive coating portion 35 is formed by applying a conductive material to at least a part (one surface 33 </ b> A) of the terminals 33 of the plurality of conductive wires 28.
 次の工程では、ロッド部材21およびジョー部材25に塗布した導電コーティング部34と、複数の導線28の端子33に塗布した第2導電コーティング部35と、を仮硬化(仮乾燥)させる熱処理を行う。この熱処理は、例えば、60~120℃にした炉の内部に、所定時間放置することでなされる。 In the next step, heat treatment is performed to temporarily cure (temporarily dry) the conductive coating portion 34 applied to the rod member 21 and the jaw member 25 and the second conductive coating portion 35 applied to the terminals 33 of the plurality of conductive wires 28. . This heat treatment is performed, for example, by leaving it in a furnace set at 60 to 120 ° C. for a predetermined time.
 仮硬化の終了後、続く工程では、図4に示すように、ロッド部材21の導電コーティング部34に対して端子の第2導電コーティング部35を突き合わせて、図3に示す状態にする。これと並行して、図4に示すように、ジョー部材25の導電コーティング部34に対して導線28の第2導電コーティング部35を突き合わせて、図3に示す状態にする。なお、導電コーティング部34と、第2導電コーティング部35との間に、つなぎ導電コーティングを介在させてもよい。つなぎ導電コーティングは、導電コーティング部34と同一の組成の導電材料であるが、熱処理を行う前のものである。 In the subsequent process after the completion of the temporary curing, as shown in FIG. 4, the second conductive coating portion 35 of the terminal is abutted against the conductive coating portion 34 of the rod member 21 to obtain the state shown in FIG. 3. In parallel with this, as shown in FIG. 4, the second conductive coating portion 35 of the conductive wire 28 is abutted against the conductive coating portion 34 of the jaw member 25 to obtain the state shown in FIG. 3. Note that a connecting conductive coating may be interposed between the conductive coating portion 34 and the second conductive coating portion 35. The bridging conductive coating is a conductive material having the same composition as that of the conductive coating portion 34, but before the heat treatment.
 この状態で、ロッド部材21およびジョー部材25に塗布した導電コーティング部34と、端子33に塗布した第2導電コーティング部35と、を本硬化(焼成)させる熱処理を行う。この熱処理は、仮硬化の熱処理よりも高い温度で、例えば、200~330℃にした炉の内部で、所定時間放置することでなされる。この工程によって、ロッド部材21またはジョー部材25の導電コーティング部34と、複数の導線28の端子33に塗布した第2導電コーティング部35と、が一体的に接合(固定)されるとともに電気的に接続される。なお、導電コーティング部34と、第2導電コーティング部35との間につなぎ導電コーティングを介在させた場合も同様に、導電コーティング部34と第2導電コーティング部35とが一体的に接合され、さらに接合強度の信頼性および導電性についての信頼性が向上する。 In this state, a heat treatment is performed to fully cure (fire) the conductive coating portion 34 applied to the rod member 21 and the jaw member 25 and the second conductive coating portion 35 applied to the terminal 33. This heat treatment is performed by leaving it for a predetermined time in a furnace set at a temperature higher than that of the pre-curing heat treatment, for example, 200 to 330 ° C. Through this process, the conductive coating portion 34 of the rod member 21 or the jaw member 25 and the second conductive coating portion 35 applied to the terminals 33 of the plurality of conductive wires 28 are integrally joined (fixed) and electrically. Connected. Similarly, when the conductive conductive coating is interposed between the conductive coating portion 34 and the second conductive coating portion 35, the conductive coating portion 34 and the second conductive coating portion 35 are integrally joined, and The reliability of the bonding strength and the reliability of the conductivity are improved.
 ロッド部材21の導電コーティング部34は、本硬化によって第1電極22を構成し、導電コーティング部34のうちの大部分が第1処置面42となる。また、ジョー部材25の導電コーティング部34は、本硬化によって第2電極26を構成し、導電コーティング部34のうちの大部分が第2処置面44となる。以上より、ロッド部材21に対する第1電極22の製造工程およびジョー部材25に対する第2電極26の製造工程が完了する。 The conductive coating portion 34 of the rod member 21 constitutes the first electrode 22 by main curing, and most of the conductive coating portion 34 becomes the first treatment surface 42. Further, the conductive coating portion 34 of the jaw member 25 constitutes the second electrode 26 by the main curing, and most of the conductive coating portion 34 becomes the second treatment surface 44. From the above, the manufacturing process of the first electrode 22 for the rod member 21 and the manufacturing process of the second electrode 26 for the jaw member 25 are completed.
 続いて、図1から図3を参照して、本実施形態の処置具11の作用について説明する。 
 術者は、処置において、ハンドル17を操作してロッド部材21とジョー部材25との間に生体組織を挟むことができる。さらに術者は、第1操作ボタン18Aまたは第2操作ボタン18Bを操作することで、挟んでいる生体組織に対して高周波エネルギーを投入して、生体組織の凝固、或いは凝固・切開等の処置を行うことができる。
Then, with reference to FIGS. 1-3, the effect | action of the treatment tool 11 of this embodiment is demonstrated.
In the treatment, the operator can sandwich the living tissue between the rod member 21 and the jaw member 25 by operating the handle 17. Further, the surgeon operates the first operation button 18A or the second operation button 18B to input high-frequency energy to the sandwiched biological tissue to perform treatment such as coagulation of the biological tissue or coagulation / incision. It can be carried out.
 例えば術者が第1操作ボタン18Aを操作する場合には、制御部45の制御下で、第1電極22と第2電極26との間で生体組織に高周波エネルギーが供給される。これによって、生体組織の広範囲(ロッド部材21とジョー部材25との間に把持される生体組織の全体)に対して高周波電流が流されて、生体組織の凝固または凝固・切開等がなされる。このとき、第1電極22と第2電極26との間にのみ通電することでき、ロッド部材21の背面側(ジョー部材25と対向する側とは反対側)やジョー部材25の背面(ロッド部材21と対向する側とは反対側)などの余計な所に電流が流れないので、効率的な高周波処置が可能となる。 For example, when the surgeon operates the first operation button 18A, high-frequency energy is supplied to the living tissue between the first electrode 22 and the second electrode 26 under the control of the control unit 45. As a result, a high-frequency current is applied to a wide range of the living tissue (the entire living tissue grasped between the rod member 21 and the jaw member 25), thereby coagulating or coagulating / incising the living tissue. At this time, it is possible to energize only between the first electrode 22 and the second electrode 26, and the back side of the rod member 21 (the side opposite to the side facing the jaw member 25) or the back side of the jaw member 25 (rod member). Since the current does not flow in an unnecessary place such as the side opposite to the side facing the side 21), an efficient high-frequency treatment can be performed.
 例えば術者が第2操作ボタン18Bを操作する場合には、制御部45の制御下で、先端側にある第1電極22と第2電極26との間の位置で生体組織に高周波エネルギーが供給される。このとき、第1電極22と第2電極26とに供給される電力は、第1操作ボタン18Aを操作して供給される通常の電力よりも小さい(すなわち、通常出力よりも小さい低出力である)。この場合も、第1電極22と第2電極26との間にのみ通電され、効率的な高周波処置が可能となる。 For example, when the operator operates the second operation button 18B, high-frequency energy is supplied to the living tissue at a position between the first electrode 22 and the second electrode 26 on the distal end side under the control of the control unit 45. Is done. At this time, the power supplied to the first electrode 22 and the second electrode 26 is smaller than the normal power supplied by operating the first operation button 18A (that is, a low output smaller than the normal output). ). Also in this case, electricity is supplied only between the first electrode 22 and the second electrode 26, and an efficient high-frequency treatment is possible.
 第1実施形態によれば、以下のことがいえる。処置具11は、少なくとも一部に非導通部を持つ構造部と、前記構造部の少なくとも一部に形成された、導電性および撥水性を有する導電コーティング部34と、電気エネルギーを前記導電コーティング部34に伝達するエネルギー伝達部と、を備え、前記導電コーティング部34は少なくとも前記構造部の非導通部に塗布されており、前記構造部の非導通部においても、前記導電コーティング部34を通じて電気エネルギーが供給される。
 前記エネルギー伝達部は、導電コーティング部34へ結線された導線28であって、導線28と導電コーティング部34との結線部は、第2導電コーティング部35により一体的に固定される。
According to the first embodiment, the following can be said. The treatment instrument 11 includes a structure part having a non-conduction part at least in part, a conductive coating part 34 having conductivity and water repellency formed in at least a part of the structure part, and electric energy to the conductive coating part. 34, and the conductive coating portion 34 is applied to at least the non-conductive portion of the structure portion, and the electric energy is also passed through the conductive coating portion 34 in the non-conductive portion of the structure portion. Is supplied.
The energy transmission part is a conductive wire 28 connected to the conductive coating part 34, and the connection part between the conductive wire 28 and the conductive coating part 34 is integrally fixed by a second conductive coating part 35.
 一般に、物体に撥水性のコーティングを施した場合には、その物体に対して追加的に他の物体を固定(接着)することが困難になることが多い。上記の構成によれば、撥水性の導電コーティング部を施した表面に対してエネルギー伝達部を固定(接着)することができる。これによって、エネルギー伝達部を介して導電コーティング部に高周波エネルギーを供給することができ、導電コーティング部を高周波電力処置時の電極として活用できる。また、導電コーティング部は、塗布する領域を変化させることによって構造部に対して任意の形状をとることができる。このため、処置対象の臓器、器官、組織等に応じて、導電コーティング部の形状を適宜に変化させることができる。これによって、目的の処置に応じて最適な形状の導電コーティング部(電極)を実現できる。 Generally, when a water-repellent coating is applied to an object, it is often difficult to fix (adhere) another object to the object. According to said structure, an energy transmission part can be fixed with respect to the surface which gave the water-repellent conductive coating part (adhesion). Accordingly, high frequency energy can be supplied to the conductive coating portion via the energy transmission portion, and the conductive coating portion can be utilized as an electrode during high frequency power treatment. In addition, the conductive coating portion can take an arbitrary shape with respect to the structure portion by changing a region to be applied. For this reason, the shape of the conductive coating portion can be appropriately changed according to the organ, organ, tissue, or the like to be treated. As a result, a conductive coating portion (electrode) having an optimal shape can be realized in accordance with the target treatment.
 構造部の熱伝導率は、金属の熱伝導率よりも小さい。例えば高周波エネルギーによる処置を行うと、導電コーティング部34に隣接した構造部の温度が上昇することがある。この構成によれば、構造部の温度上昇を抑制することが出来る。また、構造部の温度が上昇してしまった場合でも、構造部の熱伝導率が金属よりも低いため、処置中に誤って周辺組織に構造部を接触させた場合でも、周辺組織に急激に熱が加わらなくなるため、熱によるダメージを防止することができる。 The thermal conductivity of the structure is smaller than that of metal. For example, when treatment with high-frequency energy is performed, the temperature of the structure portion adjacent to the conductive coating portion 34 may increase. According to this structure, the temperature rise of a structure part can be suppressed. Even if the temperature of the structural part has risen, the thermal conductivity of the structural part is lower than that of the metal. Since heat is not applied, damage due to heat can be prevented.
 導電コーティング部の樹脂の母材は、少なくともフッ素樹脂を含む。この構成によれば、フッ素樹脂の撥水性およびすべり性によって導電コーティング部34に対する生体組織片の張り付きを防止できる。 The resin base material of the conductive coating portion contains at least a fluororesin. According to this configuration, sticking of the biological tissue piece to the conductive coating portion 34 can be prevented by the water repellency and slipperiness of the fluororesin.
 構造部の長手方向に関して、第2導電コーティング部35の長さは、導電コーティング部34の長さよりも小さい。この構成によれば、処置面となる導電コーティング部34の面積を十分な広さで確保することができる。 The length of the second conductive coating portion 35 is smaller than the length of the conductive coating portion 34 with respect to the longitudinal direction of the structure portion. According to this configuration, the area of the conductive coating portion 34 serving as a treatment surface can be secured with a sufficient width.
 本実施形態の処置具の製造方法は、絶縁性および撥水性を有する母材中に金属粒子が拡散分布された導電材料を構造部の少なくとも一部に塗布して導電コーティング部34を形成する工程と、高周波エネルギーを導電コーティング部34に伝達するためのエネルギー伝達部の少なくとも一部に前記導電材料を塗布して第2導電コーティング部35を形成する工程と、導電コーティング部34および第2導電コーティング部35を熱処理して仮硬化させる工程と、導電コーティング部34と第2導電コーティング部35とを突き合わせた状態で、前記仮硬化させる工程よりも高い温度で熱処理してこれらが一体になるように本硬化させる工程と、を備える。 In the method for manufacturing a treatment instrument according to this embodiment, a conductive coating portion 34 is formed by applying a conductive material in which metal particles are diffused and distributed in a base material having insulating properties and water repellency to at least a part of a structure portion. Applying the conductive material to at least a part of the energy transmission unit for transmitting high-frequency energy to the conductive coating unit 34 to form the second conductive coating unit 35; and the conductive coating unit 34 and the second conductive coating In a state where the part 35 is heat-treated and temporarily cured, and the conductive coating part 34 and the second conductive coating part 35 are in contact with each other, heat treatment is performed at a temperature higher than that of the provisional curing process so that they are integrated. And a main curing step.
 この構成によれば、本硬化前の導電コーティング部34に対して本硬化前の第2導電コーティング部35を突き合わせることで、固定(接着)が難しい撥水性の導電コーティング部34を施した表面に対してエネルギー伝達部を固定することができる。これによって、導電コーティング部34を高周波エネルギーによる処置の際の電極として活用することができる。また、導電コーティング部34は、塗布する領域を変化させることによって構造部に対して任意の形状をとることができる。このため、処置対象の臓器、器官、組織等に応じて、導電コーティング部34の形状を適宜に変化させることができ、目的の処置に応じた最適な形状の導電コーティング部34(電極)を実現できる。 According to this configuration, the surface provided with the water-repellent conductive coating portion 34 that is difficult to fix (adhere) by abutting the second conductive coating portion 35 before the main curing with the conductive coating portion 34 before the main curing. The energy transmission part can be fixed to Thereby, the conductive coating part 34 can be utilized as an electrode at the time of treatment by high frequency energy. Moreover, the conductive coating part 34 can take an arbitrary shape with respect to the structure part by changing the area | region to apply | coat. Therefore, the shape of the conductive coating portion 34 can be appropriately changed according to the organ, organ, tissue, etc. to be treated, and the conductive coating portion 34 (electrode) having the optimum shape according to the target treatment is realized. it can.
 (変形例) 
 続いて、図5を参照して、第1実施形態の処置具11の変形例について説明する。ここでは、主として第1実施形態と異なる部分について説明し、第1実施形態と共通する箇所については説明を省略する。
(Modification)
Then, with reference to FIG. 5, the modification of the treatment tool 11 of 1st Embodiment is demonstrated. Here, parts different from those of the first embodiment will be mainly described, and descriptions of parts common to the first embodiment will be omitted.
 本変形例では、ハンドピース12は、ジョー部材25を有しない。このため、ハンドピース12のエンドエフェクタ30は、ロッド部材21のみによって構成される。このため、本変形例の処置具11は、電気メス様の構造を有し、いわゆるモノポーラ処置具を構成する。 In this modification, the handpiece 12 does not have the jaw member 25. For this reason, the end effector 30 of the handpiece 12 is configured only by the rod member 21. For this reason, the treatment tool 11 of this modification has an electric knife-like structure and constitutes a so-called monopolar treatment tool.
 ロッド部材21は、例えば樹脂材料(例えば、PEEK等)によって、第1実施形態のロッド部材21よりも直径が小さい棒状に成形される。このため、ロッド部材21は、絶縁性だけでなく、第1実施形態のロッド部材21に比して大きな可撓性を有する。ロッド部材21は、例えば射出成形によって安価で大量に製造できる。ロッド部材21は、構造部の一例である。ロッド部材21は、ジョー部材25と対向する側に第1面41を有する。 The rod member 21 is formed into a rod shape having a smaller diameter than the rod member 21 of the first embodiment, for example, by a resin material (for example, PEEK). For this reason, the rod member 21 is not only insulative, but also has greater flexibility than the rod member 21 of the first embodiment. The rod member 21 can be manufactured in large quantities at a low cost by, for example, injection molding. The rod member 21 is an example of a structure part. The rod member 21 has a first surface 41 on the side facing the jaw member 25.
 続いて、図5を参照して、本実施形態の処置具11の作用について説明する。 
 本変形例では、ロッド部材21が細長いため、図5に示すように生体組織の外表面の形状に追従するように撓むことができる。したがって、本変形例では、生体組織の外表面に対する第1電極22(導電コーティング部34)の接触面積が大きく確保される。また、ロッド部材21が可撓性を有するように構成されるため、ロッド部材21の先端を誤って生体組織に刺してしまうこともなく、生体組織を傷つけてしまう危険性が低減される。
Then, with reference to FIG. 5, the effect | action of the treatment tool 11 of this embodiment is demonstrated.
In this modification, since the rod member 21 is elongated, it can be bent so as to follow the shape of the outer surface of the living tissue as shown in FIG. Therefore, in this modification, a large contact area of the first electrode 22 (conductive coating portion 34) with the outer surface of the living tissue is ensured. Further, since the rod member 21 is configured to have flexibility, the risk of damaging the living tissue is reduced without accidentally piercing the living tissue with the tip of the rod member 21.
 さらに術者は、第1操作ボタン18Aまたは第2操作ボタン18Bを操作することで、当接している生体組織に対して高周波エネルギーを投入して、生体組織の凝固、或いは凝固・切開等の処置を行うことができる。 Furthermore, the surgeon operates the first operation button 18A or the second operation button 18B to input high-frequency energy to the living tissue that is in contact with the treatment, such as coagulation of the living tissue or coagulation / incision. It can be performed.
 例えば術者が第1操作ボタン18Aを操作する場合には、制御部45の制御下で、第1電極22と、患者の体外にある対極板との間で、生体組織に高周波エネルギーが供給される。これによって、第1電極22において生体組織に対して高周波電流が流されて、第1電極22付近にある生体組織の凝固等がなされる。 For example, when the surgeon operates the first operation button 18A, high-frequency energy is supplied to the living tissue between the first electrode 22 and the counter electrode plate outside the patient's body under the control of the control unit 45. The As a result, a high-frequency current is applied to the living tissue at the first electrode 22, and the living tissue in the vicinity of the first electrode 22 is coagulated.
 例えば術者が第2操作ボタン18Bを操作する場合には、制御部45の制御下で、先端側にある第1電極22と、患者の体外にある対極板との間で、生体組織に高周波エネルギーが供給される。このとき、第1電極22に供給される電力は、第1操作ボタン18Aを操作して供給される通常の電力よりも小さい(すなわち、通常出力よりも小さい低出力である)。これによって、第1電極22において生体組織に対して高周波電流が流されて、第1電極22付近にある生体組織の凝固等がなされる。 For example, when the operator operates the second operation button 18B, high frequency is applied to the living tissue between the first electrode 22 on the distal end side and the counter electrode plate outside the patient's body under the control of the control unit 45. Energy is supplied. At this time, the power supplied to the first electrode 22 is smaller than the normal power supplied by operating the first operation button 18A (that is, a low output smaller than the normal output). As a result, a high-frequency current is applied to the living tissue at the first electrode 22, and the living tissue in the vicinity of the first electrode 22 is coagulated.
 本変形例によれば、前記構造部は、樹脂材料で形成される。この構成によれば、構造部の熱伝導率を小さくできるとともに、構造部に十分な可撓性を持たせることができる。これによって、生体組織の外表面にロッド部材21を追従させることができ、生体組織に対して導電コーティング部34が接触する面積を大きく確保することができる。これによって、生体組織に対して処置を加える面積を大きく確保することができ、術者の作業性を向上できる。また、構造部に可撓性を持たせることで、処置中に誤って生体組織に構造部を刺してしまうことがなく、処置中の安全にも配慮した処置具11を提供できる。 According to this modification, the structural part is formed of a resin material. According to this configuration, the thermal conductivity of the structure portion can be reduced, and the structure portion can have sufficient flexibility. As a result, the rod member 21 can follow the outer surface of the living tissue, and a large area where the conductive coating portion 34 contacts the living tissue can be ensured. Accordingly, it is possible to secure a large area for performing treatment on the living tissue, and to improve the operator's workability. In addition, by providing the structure with flexibility, the treatment tool 11 can be provided in consideration of safety during treatment without accidentally piercing the structure with living tissue during treatment.
 本発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変形実施することができる。また、本発明は、生体に対して、直接接触した状態で電気エネルギーを供給することが可能な処置具、鉗子、電気メス等、上記した処置具11以外の医療機器にも同然に適用できる。また、ロッド部材21に供給されるエネルギーは、高周波エネルギーに限られず、それ以外のエネルギーであってもよい。すなわち、超音波エネルギー、熱エネルギー、光エネルギー、電磁波のいずれかのエネルギーを処置に用いるエネルギーとして単独出力するように構成しても良いし、高周波エネルギー、超音波エネルギー、熱エネルギー、光エネルギー、電磁波のうちいずれかを適宜に組み合わせて出力しても良い。この場合、特に、超音波エネルギー、熱エネルギー、光エネルギー、および電磁波で構成される群から選択された一つのエネルギーと、高周波エネルギーと、の両方を同時若しくは個別に出力可能としてもよい。なお、ロッド部材に供給されるエネルギーとして、超音波エネルギーを利用する場合には、超音波振動による負荷(高い応力)に耐えるように、構造部の一部に金属材料を用いることが望ましい。 The present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the gist thereof. The present invention can also be applied to medical devices other than the above-described treatment tool 11 such as a treatment tool, forceps, and electric knife capable of supplying electrical energy in a state of direct contact with a living body. Further, the energy supplied to the rod member 21 is not limited to high-frequency energy, and may be other energy. In other words, any energy of ultrasonic energy, thermal energy, light energy, and electromagnetic waves may be output as energy used for treatment alone, or may be configured to output high frequency energy, ultrasonic energy, thermal energy, light energy, electromagnetic waves. Any one of them may be output in combination as appropriate. In this case, in particular, one energy selected from the group consisting of ultrasonic energy, thermal energy, light energy, and electromagnetic waves, and high-frequency energy may be output simultaneously or individually. In addition, when using ultrasonic energy as energy supplied to a rod member, it is desirable to use a metal material for a part of structure part so that the load (high stress) by ultrasonic vibration may be endured.
11…処置具、28…配線、31…高周波電力供給部、32…配線本体、33…端子、33A…一方の面、34…導電コーティング部、35…第2導電コーティング部、51…導電コーティング部。 DESCRIPTION OF SYMBOLS 11 ... Treatment tool, 28 ... Wiring, 31 ... High frequency electric power supply part, 32 ... Wiring main body, 33 ... Terminal, 33A ... One side, 34 ... Conductive coating part, 35 ... Second conductive coating part, 51 ... Conductive coating part .

Claims (14)

  1.  少なくとも一部に非導通部を持つ構造部と、
     前記構造部の少なくとも一部に形成された、導電性および撥水性を有する導電コーティング部と、
     電気エネルギーを前記導電コーティング部に伝達するエネルギー伝達部と、
     を備え、
     前記導電コーティング部は少なくとも前記構造部の非導通部に塗布されており、前記構造部の非導通部においても、前記導電コーティング部を通じて電気エネルギーが供給されることを特徴とする医療機器。
    A structural part having a non-conductive part at least in part;
    A conductive coating portion having conductivity and water repellency formed on at least a part of the structure portion;
    An energy transmission unit for transmitting electrical energy to the conductive coating unit;
    With
    The conductive coating portion is applied to at least a non-conductive portion of the structure portion, and electrical energy is supplied through the conductive coating portion even in the non-conductive portion of the structure portion.
  2.  前記医療機器は処置具であり、前記電気エネルギーは組織を処置するための高周波エネルギーであり、前記構造部の外表面の少なくとも一部に形成された、前記組織を処置する処置部を有すると共に、前記導電コーティング部は前記処置部の少なくとも一部に形成されたことを特徴とする請求項1に記載の医療機器。 The medical device is a treatment tool, the electrical energy is high-frequency energy for treating tissue, and has a treatment portion for treating the tissue formed on at least a part of the outer surface of the structure portion, The medical device according to claim 1, wherein the conductive coating portion is formed on at least a part of the treatment portion.
  3.  前記エネルギー伝達部は、前記導電コーティング部が前記構造部の導電部分上に構成されたことによるオーバーラップ部分、および前記構造部へエネルギーが供給される供給路であることを特徴とする請求項1に記載の医療機器。 2. The energy transmission part is an overlap part formed by the conductive coating part being formed on a conductive part of the structure part, and a supply path through which energy is supplied to the structure part. Medical device as described in.
  4.  前記エネルギー伝達部は、前記導電コーティング部へ結線された導線であって、前記導線と前記導電コーティング部との結線部は、第2導電コーティング部により一体的に固定されたことを特徴とする請求項1に記載の医療機器。 The energy transmission part is a conductive wire connected to the conductive coating part, and a connection part between the conductive wire and the conductive coating part is integrally fixed by a second conductive coating part. Item 1. A medical device according to Item 1.
  5.  前記構造部の非導通部分の熱伝導率は、金属の熱伝導率よりも小さい請求項1に記載の医療機器。 The medical device according to claim 1, wherein the thermal conductivity of the non-conductive portion of the structure portion is smaller than the thermal conductivity of the metal.
  6.  前記構造部の非導通部分は、樹脂材料で形成される請求項3に記載の医療機器。 The medical device according to claim 3, wherein the non-conductive portion of the structure portion is formed of a resin material.
  7.  前記導電コーティング部は撥水性をもつ樹脂を母材とし、金属粒子を含むことを特徴とする請求項1に記載の医療機器。 The medical device according to claim 1, wherein the conductive coating portion includes a resin having water repellency as a base material and includes metal particles.
  8.  前記母材は、少なくともフッ素樹脂を含む請求項7に記載の医療機器。 The medical device according to claim 7, wherein the base material includes at least a fluororesin.
  9.  前記金属粒子は、銀粒子である請求項7に記載の医療機器。 The medical device according to claim 7, wherein the metal particles are silver particles.
  10.  前記構造部の長手方向に関して、前記第2導電コーティング部の長さは、前記導電コーティング部の長さよりも小さい請求項4に記載の医療機器。 The medical device according to claim 4, wherein a length of the second conductive coating portion is smaller than a length of the conductive coating portion with respect to a longitudinal direction of the structure portion.
  11.  前記構造部の外表面から前記第2導電コーティング部の外表面までの寸法は、前記構造部の外表面から前記導電コーティング部の外表面までの寸法よりも大きい請求項4に記載の医療機器。 The medical device according to claim 4, wherein a dimension from an outer surface of the structure part to an outer surface of the second conductive coating part is larger than a dimension from the outer surface of the structure part to the outer surface of the conductive coating part.
  12.  高周波エネルギー以外のエネルギーを更に1つ以上、同時、もしくは個別に出力可能である請求項2に記載の医療機器。 The medical device according to claim 2, wherein one or more energy other than the high frequency energy can be output simultaneously or individually.
  13.  前記構造部は外力により変形可能な素材、形状を有しており、外力による変形により前記組織へのダメージを低減する、もしくは接触面積を増加させることによる処置性の向上に寄与することを特徴とする請求項2に記載の医療機器。 The structure portion has a material and a shape that can be deformed by an external force, and is characterized by contributing to improvement of treatment properties by reducing damage to the tissue by deformation due to external force or increasing a contact area. The medical device according to claim 2.
  14.  絶縁性および撥水性を有する母材中に金属粒子が拡散分布された導電材料を構造部の少なくとも一部に塗布して導電コーティング部を形成する工程と、
     高周波エネルギーを前記導電コーティング部に伝達するためのエネルギー伝達部の少なくとも一部に前記導電材料を塗布して第2導電コーティング部を形成する工程と、
     前記導電コーティング部および前記第2導電コーティング部を熱処理して仮硬化させる工程と、
     前記導電コーティング部と前記第2導電コーティング部とを突き合わせた状態で、前記仮硬化させる工程よりも高い温度で熱処理してこれらが一体になるように本硬化させる工程と、
     を備える医療機器の製造方法。
    Applying a conductive material in which metal particles are diffused and distributed in a base material having insulating properties and water repellency to at least a part of the structure portion to form a conductive coating portion;
    Applying the conductive material to at least a part of an energy transmission unit for transmitting high-frequency energy to the conductive coating unit to form a second conductive coating unit;
    Heat-treating and pre-curing the conductive coating portion and the second conductive coating portion;
    In the state where the conductive coating portion and the second conductive coating portion are abutted together, a step of heat-curing at a higher temperature than the step of pre-curing and performing a main curing so that they are integrated,
    A method of manufacturing a medical device comprising:
PCT/JP2016/083224 2016-11-09 2016-11-09 Medical device and medical device manufacturing method WO2018087837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083224 WO2018087837A1 (en) 2016-11-09 2016-11-09 Medical device and medical device manufacturing method
JP2018549675A JP6746708B2 (en) 2016-11-09 2016-11-09 Medical device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083224 WO2018087837A1 (en) 2016-11-09 2016-11-09 Medical device and medical device manufacturing method

Publications (1)

Publication Number Publication Date
WO2018087837A1 true WO2018087837A1 (en) 2018-05-17

Family

ID=62110291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083224 WO2018087837A1 (en) 2016-11-09 2016-11-09 Medical device and medical device manufacturing method

Country Status (2)

Country Link
JP (1) JP6746708B2 (en)
WO (1) WO2018087837A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375053A (en) * 1989-08-18 1991-03-29 Muranaka Iryoki Kk Bipolar electrically solidifying tweezers
JPH10512769A (en) * 1994-12-01 1998-12-08 メディカル サイエンティフィク インコーポレイテッド Bipolar surgical cutting tool
WO2015118757A1 (en) * 2014-02-06 2015-08-13 オリンパス株式会社 Ultrasonic probe and ultrasonic treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375053A (en) * 1989-08-18 1991-03-29 Muranaka Iryoki Kk Bipolar electrically solidifying tweezers
JPH10512769A (en) * 1994-12-01 1998-12-08 メディカル サイエンティフィク インコーポレイテッド Bipolar surgical cutting tool
WO2015118757A1 (en) * 2014-02-06 2015-08-13 オリンパス株式会社 Ultrasonic probe and ultrasonic treatment apparatus

Also Published As

Publication number Publication date
JPWO2018087837A1 (en) 2019-07-11
JP6746708B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
CN109788978B (en) Treatment tool
US20190239942A1 (en) Electrosurgical instrument
JP6109908B2 (en) Combined electrosurgical device
EP2554131B1 (en) Treatment tool for endoscope
JP2016516482A (en) Combined electrosurgical device
US9801680B2 (en) Bipolar forceps
JP6180671B2 (en) Medical equipment, coating materials
JP2010022696A (en) High-frequency treatment instrument
US20240108393A1 (en) Thermal cutting elements for electrosurgical instruments and electrosurgical instruments and systems incorporating the same
US10966745B2 (en) Medical device
JP2000271128A (en) High frequency biopsy forceps for endoscope
WO2018087837A1 (en) Medical device and medical device manufacturing method
US20190365455A1 (en) Treatment instrument
US20160081734A1 (en) Bipolar forceps
JP7286068B2 (en) Endoscope Microwave Irradiator
JP2006198233A (en) Coagulating-dissecting utensil and manufacturing method of electrode part of its jaw
US20190298432A1 (en) Energy treatment instrument
JP7286067B2 (en) Endoscope Microwave Irradiator
US20190239943A1 (en) Bipolar forceps
JP2002102237A (en) High frequency snare for endoscope
JP2002102243A (en) High frequency snare for endoscope
JP2002330978A (en) Bipolar high-frequency instrument for medical treatment for endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921396

Country of ref document: EP

Kind code of ref document: A1