WO2018086910A1 - Receiver having absorber modules - Google Patents

Receiver having absorber modules Download PDF

Info

Publication number
WO2018086910A1
WO2018086910A1 PCT/EP2017/077509 EP2017077509W WO2018086910A1 WO 2018086910 A1 WO2018086910 A1 WO 2018086910A1 EP 2017077509 W EP2017077509 W EP 2017077509W WO 2018086910 A1 WO2018086910 A1 WO 2018086910A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
return air
receiver according
absorber
guide tube
Prior art date
Application number
PCT/EP2017/077509
Other languages
German (de)
French (fr)
Inventor
Johannes Trautner
Original Assignee
Kraftanlagen Muenchen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftanlagen Muenchen Gmbh filed Critical Kraftanlagen Muenchen Gmbh
Priority to EP17798127.1A priority Critical patent/EP3538823B1/en
Priority to AU2017356608A priority patent/AU2017356608A1/en
Priority to ES17798127T priority patent/ES2859491T3/en
Publication of WO2018086910A1 publication Critical patent/WO2018086910A1/en
Priority to CY20211100135T priority patent/CY1123923T1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/55Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/80Solar heat collectors using working fluids comprising porous material or permeable masses directly contacting the working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/6004Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by clipping, e.g. by using snap connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • Receiver with absorber modules The present invention relates to a receiver for solar energy generation systems according to the preamble of claim 1.
  • a solar receiver which has a plurality of absorber modules.
  • the absorber modules each contain a porous absorber body, which faces the incident solar radiation. Through the absorber body air is sucked in, which heats up as it flows through the absorber body.
  • the receiver is suitable for large power generation plants, where, for example, numerous heliostats are distributed in a field that reflect solar radiation on the receiver. Thus, a high radiation concentration is produced at the receiver, which results in temperatures in the range of up to 1100 ° C. at the absorber module.
  • a support structure is provided which carries numerous absorber modules. Each absorber module consists of an absorber head and an absorber body held by the absorber head. The absorber body is followed by a hot air duct. The generated hot air is used, for example, for the operation of working machines such as e.g. Turbines for power generators uses and cools down, but still contains residual heat or has a usable temperature difference compared to the ambient temperature.
  • the air is returned to the solar receiver and a part of the air along the walls of the hot air ducts along to cool them.
  • the return air flows between the absorber modules to exit at the front side towards the front. It is then sucked back into the absorber body together with the ambient air.
  • the solar radiation concentrated on the receiver is normally not distributed homogeneously. Rather, the radiation flux density is approximately in the form of a Gaussian distribution.
  • Each absorber module is associated with a hot air mass flow throttling diaphragm, by means of which the hot air mass flow of the radiation flux density is adjusted.
  • the air mass flow ratio of the air flowing through the absorber module air mass flow of the process air is adjusted relative to the air mass flow through the other absorber modules, whereby an optimized mass flow distribution of the hot air flows flowing from the absorber modules is achieved.
  • the absorber modules are also flowed around by the return air and thus cooled.
  • the temperature of the absorber modules thus also depends on the temperature and the mass flow of the return air. For this reason, the mass flow of the return air is set individually for each module, thus further optimizing the mass flow and temperature distribution of the absorber modules.
  • the invention has for its object a receiver of the type mentioned in the introduction with a structurally easy to implement possibility of setting the return flow mass flow to create.
  • the receiver according to the invention for energy sources in such a way has a supporting structure which carries absorber modules.
  • the absorber modules each contain a front absorber body, which is followed by a hot air duct.
  • the individual absorbers are respectively flowed through with process air, which is supplied as a heat transfer medium to a consumer. After the consumer, the cooled process air is fed back to the receiver as so-called return air via a Heilmck arrangement at least partially. Within the support structure, this return air is divided without mixing with the hot air to the individual absorber. It flows in return air ducts along the holding tube and the absorber in front of the absorber body.
  • the invention is characterized in that in each of the return air ducts of each or all of the absorber modules, at least one orifice restricting the return air mass flow is arranged, which determines the mass flow of the return air of the relevant absorber.
  • the ratio of the mass flows of the return air of the absorber modules can be adjusted by means of the return air apertures and the cooling of those modules and the receiver structure can be adapted to the distribution of the radiation power. At the same time, the internal heat loss between hot and return air is significantly reduced while ensuring the minimum cooling of the absorber and
  • the recirculation mass flow is hereby adapted to the respective hot air mass flow of the absorber and optimum return of the air is achieved. This ensures maximum efficiency of the solar energy recovery system.
  • the diaphragms are determined on the basis of the mainly existing radiant flux density division and the temperature distribution of the support structure designed in the main load case and it is achieved a much improved distribution for the majority of the operating time.
  • the design of the panels as simple sheet metal parts is designed so that the flow area of the return air is reduced from hardly to very much and thus results in a large adjustment range.
  • Another essential feature of the diaphragms described is the ease of installation and interchangeability, since the annular gap between the hot air tube and the guide tube is easily accessible on one side from the outside and the panels can be secured in this gap, for example, via an easily detachable connection. Due to the good accessibility, it is possible to assemble these throttle components only after installation of the receiver in a tower of the solar power plant, and thus significantly reduce the susceptibility to errors of assembly, since the cost of a reliable assignment of the panels is much lower. Furthermore, it is possible in such an embodiment of the throttle elements to exchange all or only part of the panels within the scope of a maintenance, without having to dismantle essential parts of the receiver. A rapid adaptation of the individual mass flows of the return air based on Betri ebs protesten is possible.
  • the diaphragm according to the invention can be designed as a perforated ring, which is positioned for the most part within the annular gap between the hot air tube and the guide tube. But it can also be designed so that a large part of the diaphragm is in the form of a retaining ring outside the guide tube and the scrub Jardinsen- current only by small interference surfaces, which are positioned within the annular gap and are formed by aperture elements, is regulated. Furthermore, these two described embodiments can also be designed asymmetrically. Further advantages and advantageous embodiments will become apparent from the description, the drawings and the claims.
  • Fig. 1 is a schematic view of a solar energy production plant with a
  • FIG. 2 shows a schematic view of one of a plurality of receiver modules, of which there is essentially a support structure and an air duct of the receiver according to the invention
  • FIG. 3 shows a schematic longitudinal section through the receiver module with three absorber modules and return air apertures as well as details C and D;
  • FIG. 4 shows a first embodiment of a return air aperture.
  • FIG. 5 shows a second embodiment of a return air diaphragm.
  • FIG. 6 shows a third embodiment of a return air diaphragm
  • a solar energy recovery plant 100 is shown schematically simplified. Sunlight is reflected by the heliostat 1 10 of a heliostat field 120 on the receiver 1 according to the invention.
  • the receiver 1 is designed as an open volumetric receiver, wherein air from the area in front of the front side la of the receiver is sucked in and forms the process air.
  • the process air is heated by the receiver 1 and fed via hot air lines 130 to a consumer.
  • the consumer may for example be a steam generator 140 with a conventional steam cycle 150 or heat storage 160.
  • the heated process air can be used as process heat, for example, to represent hydrogen.
  • the cooled process air is supplied to the receiver 1.
  • a receiver module 5 is shown schematically simplified. Such receiver modules are both an essential part of a supporting structure of the receiver 1 according to the invention, as well as the main component of the receiver-internal air duct.
  • the receiver module 5 has on a front side a plurality of holes 9, in which the absorber modules 11 are inserted.
  • outlets 15 for the hot air are located at the back (in Fig. 2 below) of the receiver module 5 are located outlets 15 for the hot air, which are in communication with the absorber modules 1 1.
  • the return air 35 is supplied to the side of the receiver module 5 and evenly distributed between the absorber modules 11 blown in front of the front of the receiver module 5.
  • Fig. 3 is a receiver module of the inventive receiver including three
  • an absorber module 1 1 shown in section.
  • an absorber module 1 1 consists of a cup-shaped absorber body 13 which holds an absorber head 17.
  • the absorber body 13 opens into a hot air duct 44, wherein the mass flows of each individual Absorbermo- module 1 1 are set in relation to other absorber mass flows of the receiver 1 by differently running hot air apertures 39.
  • the absorber body 13 is inserted into a holding tube 21 and connected thereto with a support structure 7.
  • the holding tube 21 is thermally insulated by an insulation 37 against the hot air duct 44.
  • both the support structure 7 and the guide tubes 41 are cooled.
  • a portion of the return air flows through flow channels 45 in the guide tubes 41 in an annular gap between the respective holding tube 21 and the respective guide tube 41.
  • the throttles the amount of air flowing in the respective annular gap 50 After passing through the return air apertures 43, the air enters an intermediate space 40 between the absorbers and continues from there via gaps between the absorber bodies 13 in front of the front side la.
  • the pressure loss of the return orifice 43 is substantially greater than that of the flow channels 45 in the guide tubes. Accordingly, the mass flow of the return air flowing through the gap between the holding tube 21 and the guide tube 41 and the Holding tubes 21 and the absorber body 13 cools, determined by the return air apertures 43 and by the free flow area 42.
  • FIGS. 4 to 6 have, in particular, the following structure.
  • a retaining ring 44 which is arranged in the annular gap 50 between the guide tube 41 and the retaining tube 21 and which is provided with six retaining webs 47, which respectively engage in a fixing slot 48, which is formed on the guide tube 41.
  • the remindiere Kunststoffblende 43 shown in Figure 4 further comprises an inner ring 45 which is also disposed in the annular gap between the guide tube 41 and the holding tube 21 and which rests with its inner annular surface on the holding tube 21.
  • the inner ring 45 is connected via connecting webs 46 with the retaining ring 44, which extend in the radial direction with respect to the axis of the holding tube 21.
  • the retaining ring 44, the inner ring 45 and the connecting webs 46 By the retaining ring 44, the inner ring 45 and the connecting webs 46, the free flow surface 42 of the return air vent 43 is fixed or arcuate windows are defined, which define the free flow surface 42.
  • the retaining ring 44, the inner ring 45 and the connecting webs are interpreted in terms of their dimensions depending on the desired free flow area 42.
  • the illustrated in Figure 5 embodiment of a scaffold constitutional unit 43 includes a retaining ring 44 which rests against the outer peripheral surface of the guide tube 41 and branch off from the radially inwardly retaining webs 47, the retaining slots 48 of
  • Leitrohrs 41 Wieitrohrs 41 fürgrei fen.
  • six retaining webs 47 merge in each case in the annular gap between the retaining tube 21 and the guide tube 41 into an aperture element 55, which partially fills the annular gap 50 and has an arcuate basic crack.
  • the diaphragm elements 55 each have a support web 51, which is supported in the radial direction on the peripheral surface of the holding tube 21.
  • the diaphragm elements 55 cover the annular gap 50 only proportionately, so that a free flow area 42 for the return air remains between adjacent diaphragm elements 55 and between the individual diaphragm elements 55 and the retaining tube 21.
  • the diaphragm elements 55 can have different dimensions.
  • FIG. 6 shows an embodiment of a return air diaphragm 43, which comprises an outer retaining ring 44, which bears against the outer circumferential surface of the guide tube 41 and projects from the radially inward support webs 47, which pass through the retaining slots 48 of the guide tube 41.
  • Two of the retaining webs 47 go inside the annular gap 50 between the guide tube 1 and the holding tube 21 in aperture elements 55 over, which correspond to the aperture elements of Figure 5.
  • the four other retaining webs 47 merge into a diaphragm part ring 52, which extends over an angular range of about 170 ° and is also supported on its inner side in the radial direction via support webs 51 on the outside of the retaining tube 21.
  • the aperture ring 52 is provided with slots 53 and / or holes 54. Due to the dimensions of the diaphragm elements 55 and the diaphragm part ring 52, the free flow area 42 is fixed, which can be provided by the scrub lecturluffblende 43.

Abstract

The invention relates to a receiver of a solar energy recovery plant (100), comprising a support structure (7), which carries a plurality of absorber modules (11) on a receiver front side, each comprising a retaining tube (21), which engages in a guide tube (41) of the support structure (7) such that a ring gap (50) is formed between the retaining tube (21) and the guide tube (41), through which return air flows to the receiver front side during operation in order to cool the support structure (7) and/or the affected absorber module (11). At least one throttling return air aperture (43) is arranged in at least one of the ring gaps (50), which defines a mass flow of the return air flowing through the affected ring gap (50) to the receiver front side.

Description

Receiver mit Absorbermodulen Die vorliegende Erfindung betrifft einen Receiver für Solarenergiegewinnungsanlagen nach dem Oberbegriff von Anspruch 1.  Receiver with absorber modules The present invention relates to a receiver for solar energy generation systems according to the preamble of claim 1.
In der Druckschrift DE 197 44 541 C2 ist ein Solarempfänger beschrieben, der mehrere Absorbermodule aufweist. Die Absorbermodule enthalten jeweils einen porösen Absorberkörper, der der einfallenden Solarstrahlung zugewandt ist. Durch den Absor- berkörper hindurch wird Luft angesaugt, die sich beim Durchströmen des Absorberkörpers erwärmt. In the document DE 197 44 541 C2, a solar receiver is described which has a plurality of absorber modules. The absorber modules each contain a porous absorber body, which faces the incident solar radiation. Through the absorber body air is sucked in, which heats up as it flows through the absorber body.
Der Receiver eignet sich für große Energiegewinnungsanlagen, bei denen beispielsweise zahlreiche Heliostate auf einem Feld verteilt angeordnet sind, die Solarstrahlung auf den Receiver reflektieren. An dem Receiver entsteht somit eine hohe Strahlungskon- zentration, wodurch sich am Absorbermodul Temperaturen im Bereich von bis zu 1 100 °C ergeben. Bei dem vorbekannten Solarempfänger ist eine Tragstruktur vorgesehen, welche zahlreiche Absorbermodule trägt. Jedes Absorbermodul besteht aus einem Absorberkopf und einem von dem Absorberkopf gehalten Absorberkörper. An den Absorberkörper schließt sich ein Heißluftkanal an. Die erzeugte Heißluft wird bei- spielsweise für den Betrieb von Arbeitsmaschinen wie z.B. Turbinen für Stromgeneratoren benutzt und kühlt sich dabei ab, enthält jedoch noch Restwärme bzw. hat gegenüber der Umgebungstemperatur eine nutzbare Temperaturdifferenz. The receiver is suitable for large power generation plants, where, for example, numerous heliostats are distributed in a field that reflect solar radiation on the receiver. Thus, a high radiation concentration is produced at the receiver, which results in temperatures in the range of up to 1100 ° C. at the absorber module. In the prior art solar receiver, a support structure is provided which carries numerous absorber modules. Each absorber module consists of an absorber head and an absorber body held by the absorber head. The absorber body is followed by a hot air duct. The generated hot air is used, for example, for the operation of working machines such as e.g. Turbines for power generators uses and cools down, but still contains residual heat or has a usable temperature difference compared to the ambient temperature.
Zur Nutzung dieser Restwärme bzw. nutzbaren Temperaturdifferenz wird die Luft zum Solarempfänger zurückgeführt und ein Teil der Luft an den Wänden der Heißluftkanäle entlang geführt, um diese zu kühlen. Die Rückführluft strömt zwischen den Absorbermodulen hindurch, um an der Frontseite nach vorne hin auszutreten. Sie wird anschließend zusammen mit der Umgebungsluft wieder in den Absorberkörper eingesaugt. Die auf den Receiver konzentrierte Solarstrahlung ist normalerweise nicht homogen verteilt. Vielmehr hat die Strahlungsflussdichte näherungsweise die Form einer Gauß- Verteilung. To use this residual heat or usable temperature difference, the air is returned to the solar receiver and a part of the air along the walls of the hot air ducts along to cool them. The return air flows between the absorber modules to exit at the front side towards the front. It is then sucked back into the absorber body together with the ambient air. The solar radiation concentrated on the receiver is normally not distributed homogeneously. Rather, the radiation flux density is approximately in the form of a Gaussian distribution.
Jedem Absorbermodul ist eine den Heißluftmassenstrom drosselnde Blende zugeordnet, mittels der der Heißluftmassenstrom der Strahlungsflussdichte angepasst ist. Dadurch ist an jedem Absorbermodul das Luftmassenstromverhältnis des durch das Absorbermodul strömenden Luftmassenstroms der Prozessluft relativ zu den Luftmassenströmen durch die anderen Absorbermodule eingestellt, wodurch eine optimierte Massenstromverteilung der aus den Absorbermodulen strömenden Heißluftströme erreicht wird. Zusätzlich werden die Absorbermodule auch von der Rückführluft umströmt und damit gekühlt. Die Temperatur der Absorbermodule hängt somit auch von der Temperatur und dem Massenstrom der Rückführluft ab. Deswegen wird der Massenstrom der Rückführ- luft für jedes Modul einzeln eingestellt und damit die Massenstrom- und Temperaturverteilung der Absorbermodule weiter optimiert. Durch die entlang der Absorber strömende Rückführluft wird nicht nur die Temperatur der Absorbermodule beeinflusst, sondern auch die Temperaturverteilung der Tragstruktur festgelegt. Durch eine individuelle Einstellung dieses Massenstroms wird sichergestellt, dass stark thermisch belastet Bereiche dieser Struktur ausreichend gekühlt werden, und somit eine thermische Ü berbeanspruchung ausgeschlossen ist, und bei- spielsweise eine zusätzliche Kühlung oder der Einsatz von hochtemperaturfesten Werkstoffen unnötig ist. Each absorber module is associated with a hot air mass flow throttling diaphragm, by means of which the hot air mass flow of the radiation flux density is adjusted. As a result, the air mass flow ratio of the air flowing through the absorber module air mass flow of the process air is adjusted relative to the air mass flow through the other absorber modules, whereby an optimized mass flow distribution of the hot air flows flowing from the absorber modules is achieved. In addition, the absorber modules are also flowed around by the return air and thus cooled. The temperature of the absorber modules thus also depends on the temperature and the mass flow of the return air. For this reason, the mass flow of the return air is set individually for each module, thus further optimizing the mass flow and temperature distribution of the absorber modules. Due to the return air flowing along the absorber, not only the temperature of the absorber modules is influenced, but also the temperature distribution of the support structure is determined. An individual adjustment of this mass flow ensures that areas of this structure which are highly thermally stressed are sufficiently cooled, and thus a thermal overloading is precluded, and, for example, additional cooling or the use of high-temperature-resistant materials is unnecessary.
Um zum einen die Mindestkühlung der Tragstruktur sicherzustellen und zum anderen den Wärmeverlust zwischen den beiden Luftströmen möglichst gering zu halten, ist eine sehr genaue Einstellung des Rückführmassenstroms notwendig. Des Weiteren muss die Menge an Heiß- und Rückführluft für jedes einzelne Absorbermodul passend abgestimmt werden, um eine möglichst gute Wiederei nsaugung der Rückführluft sicherzustellen. Somit wird eine möglichst hohe Rückgewinnung der Restwärme der Rückführluft erreicht und der Wirkungsgrad der Solarenergiegewinnungsanlage maximiert. In order to ensure on the one hand, the minimum cooling of the support structure and on the other to keep the heat loss between the two air streams as low as possible, a very accurate adjustment of the recirculation mass flow is necessary. Furthermore, the amount of hot and return air for each absorber module must be matched appropriately to ensure the best possible re-absorption of the return air. Thus, the highest possible recovery of the residual heat of the return air is achieved and maximizes the efficiency of the solar energy recovery plant.
Der Erfindung liegt die Aufgabe zugrunde einen Receiver der einleitend genannten Art mit einer konstruktiv einfach umsetzbaren Möglichkeit der Einstellung des Rückfuhr- massenstroms zu schaffen. The invention has for its object a receiver of the type mentioned in the introduction with a structurally easy to implement possibility of setting the return flow mass flow to create.
Diese Aufgabe ist erfindungsgemäß durch den Receiver mit den Merkmalen des Patentanspruchs 1 gelöst. Der erfindungsgemäße Receiver für So larener giegewinmmgsaniagen weist eine Tragstruktur auf, die Absorbermodule trägt. Die Absorbermodule enthalten jeweils einen frontseitigen Absorberkörper, an welchen sich ein Heißluftkanal anschließt. Die einzelnen Absorber werden jeweils mit Prozessluft durchströmt, die als Wärmeträgermedium einem Verbraucher zugeführt wird. Nach dem Verbraucher wird die abgekühlte Prozessluft als sogenannte Rückführluft über ein Luftmckführungssystem dem Receiver wieder zumindest teilweise zugeführt. Innerhalb der Tragstruktur wird diese Rückführluft ohne Vermischung mit der Heißluft auf die einzelnen Absorber aufgeteilt. Sie strömt in Rückführluftkanälen entlang dem Halterohr und dem Absorber vor den Absorberkörper. Die Erfindung ist dadurch gekennzeichnet, dass in den Rückführluft- kanälen einzelner oder aller Absorbermodule jeweils mindestens eine den Rückluftmas- senstrom drosselnde Blende angeordnet ist, die den Massenstrom der Rückführluft des betreffenden Absorbers bestimmt. Durch den erfindungsgemäßen Einsatz gleicher oder auch verschiedener Rückführluftblenden in mindestens einem der den Absorbermodulen zugeordneten Ringspalte kann das Verhältnis der Massenströme in den Ringspalten eingestellt werden. This object is achieved by the receiver with the features of claim 1. The receiver according to the invention for energy sources in such a way has a supporting structure which carries absorber modules. The absorber modules each contain a front absorber body, which is followed by a hot air duct. The individual absorbers are respectively flowed through with process air, which is supplied as a heat transfer medium to a consumer. After the consumer, the cooled process air is fed back to the receiver as so-called return air via a Luftmckführungssystem at least partially. Within the support structure, this return air is divided without mixing with the hot air to the individual absorber. It flows in return air ducts along the holding tube and the absorber in front of the absorber body. The invention is characterized in that in each of the return air ducts of each or all of the absorber modules, at least one orifice restricting the return air mass flow is arranged, which determines the mass flow of the return air of the relevant absorber. Through the use according to the invention of the same or also different return air apertures in at least one of the annular gaps assigned to the absorber modules, the ratio of the mass flows in the annular gaps can be set.
Über die Rückführluftblenden kann das Verhältnis der Massenströme der Rückführluft der Absorbermodule untereinander eingestellt werden und die Kühlung jener Module und der Receiverstruktur an die Verteilung der Strahlungsleistung angepasst werden. Gleichzeitig wird der interne Wärmeverlust zwischen Heiß- und Rückführluft deutlich reduziert bei gleichzeitiger Gewährleistung der Mindestkühlung der Absorber undThe ratio of the mass flows of the return air of the absorber modules can be adjusted by means of the return air apertures and the cooling of those modules and the receiver structure can be adapted to the distribution of the radiation power. At the same time, the internal heat loss between hot and return air is significantly reduced while ensuring the minimum cooling of the absorber and
Tragstruktur. Des Weiteren wird hierüber der Rückführmassenstrom an den jeweiligen Heißluftmassenstrom des Absorbers angepasst und eine optimale Rückführung der Luft erreicht. Damit wird ein maximaler Wirkungsgrad der Solarenergiegewinnungsanlage gewährleistet. Die Blenden werden anhand der hauptsächlich vorliegenden Strahlungsflussdichtever- teilung und der Temperaturverteilung der Tragstruktur im Hauptlastfall ausgelegt und es wird eine deutlich verbesserte Verteilung für den größten Teil der Betriebszeit erreicht. Supporting structure. Furthermore, the recirculation mass flow is hereby adapted to the respective hot air mass flow of the absorber and optimum return of the air is achieved. This ensures maximum efficiency of the solar energy recovery system. The diaphragms are determined on the basis of the mainly existing radiant flux density division and the temperature distribution of the support structure designed in the main load case and it is achieved a much improved distribution for the majority of the operating time.
Die Ausführung der Blenden als einfache Blechteile ist so gestaltet, dass die Strömungsfläche der Rückführluft von kaum bis sehr stark verkleinert wird und sich dadurch ein großer Einstellbereich ergibt. The design of the panels as simple sheet metal parts is designed so that the flow area of the return air is reduced from hardly to very much and thus results in a large adjustment range.
Durch eine asymmetrische Gestaltung der Blenden kann sogar eine richtungsabhängige Strömungsdrosselung erfolgen. Diese Richtungsabhängigkeit der Drosselung ist notwendig, wenn die Strömung vor der Blende nicht symmetrisch ausgebildet ist und nach der Blende ein möglichst gleichmäßiges Strömungsprofil gefordert ist. Des Weiteren kann über die Kombination zweier Blenden die Variationsmöglichkeit der Massenstromeinstellung deutlich erweitert werden. By an asymmetrical design of the aperture even a direction-dependent flow throttling can take place. This directional dependence of the throttling is necessary if the flow is not formed symmetrically in front of the diaphragm and after the aperture as uniform as possible flow profile is required. Furthermore, the possibility of variation of the mass flow setting can be significantly increased by the combination of two diaphragms.
Ein weiteres wesentliches Merkmal der beschriebenen Blenden ist die einfache Montage und Austauschbarkeit, da der Ringspalt zwischen dem Heißluftrohr und dem Leitrohr einseitig von außen gut zugänglich ist und die Blenden in diesen Spalt beispielsweise auch über eine einfach lösbare Verbindung befestigt werden können. Durch die gute Zugänglichkeit ergibt sich die Möglichkeit, diese Drosselbauteile erst nach dem Einbau des Receivers in einem Turm der Solargewinnungsanlage zu montieren, und damit die Fehleranfälligkeit der Montage deutlich zu reduzieren, da der Aufwand einer sicheren Zuordnung der Blenden deutlich niedriger ist. Weiterhin ist es bei einer solchen Ausführung der Drosselelemente möglich, im Rahmen einer Wartung alle oder nur einen Teil der Blenden zu tauschen, ohne wesentliche Teile des Receivers demontieren zu müssen. Eine schnelle Anpassung der einzelnen Massenströme der Rückführluft anhand von Betri ebserfahrungen ist damit möglich. Another essential feature of the diaphragms described is the ease of installation and interchangeability, since the annular gap between the hot air tube and the guide tube is easily accessible on one side from the outside and the panels can be secured in this gap, for example, via an easily detachable connection. Due to the good accessibility, it is possible to assemble these throttle components only after installation of the receiver in a tower of the solar power plant, and thus significantly reduce the susceptibility to errors of assembly, since the cost of a reliable assignment of the panels is much lower. Furthermore, it is possible in such an embodiment of the throttle elements to exchange all or only part of the panels within the scope of a maintenance, without having to dismantle essential parts of the receiver. A rapid adaptation of the individual mass flows of the return air based on Betri ebserfahrungen is possible.
Die erfindungsgemäße Blende kann als durchbrochener Ring ausgeführt sein, der zum Großteil innerhalb des Ringspaltes zwischen dem Heißluftrohr und dem Leitrohr positioniert ist. Sie kann aber auch so ausgeführt sein, dass sich ein Großteil der Blende in Form eines Halterings außerhalb des Leitrohres befindet und der Rückführmassen- strom nur durch kleine Störflächen, die innerhalb des Ringspaltes positioniert sind und von Blendenelementen gebildet sind, geregelt wird. Des Weiteren können diese beiden beschriebenen Ausführungsvarianten auch asymmetrisch ausgebildet sein. Weitere Vorteile und vorteilhafte Ausführungsformen ergeben sich aus der Beschreibung, der Zeichnung und den Patentansprüchen. The diaphragm according to the invention can be designed as a perforated ring, which is positioned for the most part within the annular gap between the hot air tube and the guide tube. But it can also be designed so that a large part of the diaphragm is in the form of a retaining ring outside the guide tube and the Rückführmassen- current only by small interference surfaces, which are positioned within the annular gap and are formed by aperture elements, is regulated. Furthermore, these two described embodiments can also be designed asymmetrically. Further advantages and advantageous embodiments will become apparent from the description, the drawings and the claims.
Ausführungsbeispiele eines Receivers nach der Erfindung sind in der Zeichnung schematisch vereinfacht dargestellt und werden nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigt: Embodiments of a receiver according to the invention are shown schematically simplified in the drawing and are explained below with reference to the accompanying drawings. It shows:
Fig. 1 eine schematische Ansicht einer Solarenergiegewinnungsanlage mit einem Fig. 1 is a schematic view of a solar energy production plant with a
erfindungsgemäßen Receiver,  inventive receiver,
Fig. 2 eine schematisch Ansicht eines von mehreren Receivermodulen, aus denen im Wesentlichen eine Tragstruktur und eine Luftführung des erfindungsgemäßen Receivers besteht, 2 shows a schematic view of one of a plurality of receiver modules, of which there is essentially a support structure and an air duct of the receiver according to the invention,
Fig. 3 einen schematischen Längsschnitt durch das Receivermodul mit drei Absorbermodulen und Rückführluftblenden sowie Details C und D; 3 shows a schematic longitudinal section through the receiver module with three absorber modules and return air apertures as well as details C and D;
Fig. 4 eine erste Ausfuhrungsform einer Rückführluftblende; 4 shows a first embodiment of a return air aperture.
Fig. 5 eine zweite Ausführungsform einer Rückführluftblende; und Fig. 6 eine dritte Ausführungsform einer Rückführluftblende; 5 shows a second embodiment of a return air diaphragm. and FIG. 6 shows a third embodiment of a return air diaphragm;
In Fig. 1 ist eine Solarenergiegewinnungsanlage 100 schematisch vereinfacht dargestellt. Sonnenlicht wird über die Heliostaten 1 10 eines Heliostatfeldes 120 auf den erfindungsgemäßen Receiver 1 reflektiert. Der Receiver 1 ist als offener volumetrischer Receiver ausgeführt, wobei Luft aus dem Bereich vor der Frontseite la des Receivers angesaugt wird und die Prozessluft bildet. Die Prozessluft wird vom Receiver 1 erhitzt und über Heißluftleitungen 130 einem Verbraucher zugeführt. Der Verbraucher kann beispielsweise ein Dampferzeuger 140 mit einem herkömmlichen Wasserdampfkreislauf 150 oder Wärmespeicher 160 sein. Des Weiteren kann die erhitzte Prozessluft als Prozesswärme genutzt werden, um beispielsweise Wasserstoff darzustellen. Über ein Luftrückführungssystem 170 wird die abgekühlte Prozessluft dem Receiver 1 zugeführt. Dort wird sie vollständig oder nur teilweise zur Kühlung des Receivers verwendet und abschließend vor die Frontseite la geführt und dort größtenteils wieder als Prozessluft angesaugt. In Fig. 2 ist ein Receivermodul 5 schematisch vereinfacht dargestellt. Solche Receiver- module sind sowohl wesentlicher Teil einer Tragstruktur des erfindungsgemäßen Receivers 1 , als auch Hauptbestandteil der receiverinteren Luftführung. Das Receivermodul 5 hat an einer Frontseite mehrere Löcher 9, in die Absorbermodule 11 einge- steckt sind. An der Rückseite (in Fig. 2 unten) des Receivermoduls 5 befinden sich Auslässe 15 für die Heißluft, die in Verbindung mit den Absorbermodulen 1 1 stehen. Die Rückführluft 35 wird seitlich dem Receivermodul 5 zugeführt und gleichmäßig verteilt zwischen den Absorbermodulen 11 vor die Frontseite des Receivermoduls 5 ausgeblasen. In Fig. 3 ist ein Receivermodul des erfmdungsgemäßen Receivers inklusive dreierIn Fig. 1, a solar energy recovery plant 100 is shown schematically simplified. Sunlight is reflected by the heliostat 1 10 of a heliostat field 120 on the receiver 1 according to the invention. The receiver 1 is designed as an open volumetric receiver, wherein air from the area in front of the front side la of the receiver is sucked in and forms the process air. The process air is heated by the receiver 1 and fed via hot air lines 130 to a consumer. The consumer may for example be a steam generator 140 with a conventional steam cycle 150 or heat storage 160. Furthermore, the heated process air can be used as process heat, for example, to represent hydrogen. Via an air return system 170, the cooled process air is supplied to the receiver 1. There it is used completely or only partially for cooling the receiver and finally led in front of the front side la and sucked there mostly as process air. In Fig. 2, a receiver module 5 is shown schematically simplified. Such receiver modules are both an essential part of a supporting structure of the receiver 1 according to the invention, as well as the main component of the receiver-internal air duct. The receiver module 5 has on a front side a plurality of holes 9, in which the absorber modules 11 are inserted. At the back (in Fig. 2 below) of the receiver module 5 are located outlets 15 for the hot air, which are in communication with the absorber modules 1 1. The return air 35 is supplied to the side of the receiver module 5 and evenly distributed between the absorber modules 11 blown in front of the front of the receiver module 5. In Fig. 3 is a receiver module of the inventive receiver including three
Absorbermodule 1 1 im Schnitt dargestellt. Wie ersichtlich ist, besteht ein Absorbermodul 1 1 aus einem kelchförmigen Absorberkörper 13, der einen Absorberkopf 17 hält. Der Absorberkörper 13 mündet in einen Heißluftkanal 44, wobei durch unterschiedlich ausgeführte Heißluftblenden 39 die Massenströme eines jeden einzelnen Absorbermo- duls 1 1 im Verhältnis zu anderen Absorbermassenströmen des Receivers 1 eingestellt werden. Der Absorberkörper 13 ist in ein Halterohr 21 eingesteckt und hierüber mit einer Tragstruktur 7 verbunden. Das Halterohr 21 ist über eine Isolierung 37 gegenüber den Heißluftkanal 44 wärmeisoliert. Absorber modules 1 1 shown in section. As can be seen, an absorber module 1 1 consists of a cup-shaped absorber body 13 which holds an absorber head 17. The absorber body 13 opens into a hot air duct 44, wherein the mass flows of each individual Absorbermo- module 1 1 are set in relation to other absorber mass flows of the receiver 1 by differently running hot air apertures 39. The absorber body 13 is inserted into a holding tube 21 and connected thereto with a support structure 7. The holding tube 21 is thermally insulated by an insulation 37 against the hot air duct 44.
Mit der Rückführluft 35 aus dem Luftrückführungssystem 170 werden sowohl die Tragstruktur 7 als auch die Leitrohre 41 gekühlt. Um auch bei den Halterohren 21 eine thermische Überlastung zu vermeiden, strömt über Strömungskanäle 45 in den Leitrohren 41 ein Teil der Rückführluft in einen Ringspalt zwischen dem jeweiligen Halterohr 21 und dem jeweiligen Leitrohr 41. Am Ende dieses Ringspaltes sitzt eine Rückführ- luftblende 43, die die im jeweiligen Ringspalt 50 fließende Luftmenge drosselt. Nach dem Passieren der Rückführluftblenden 43 gelangt die Luft in einen Zwischenraum 40 zwischen den Absorbern und strömt von dort weiter über Spalte zwischen den Absorberkörpern 13 vor die Frontseite la. With the return air 35 from the air return system 170, both the support structure 7 and the guide tubes 41 are cooled. In order to avoid a thermal overload in the holding tubes 21, a portion of the return air flows through flow channels 45 in the guide tubes 41 in an annular gap between the respective holding tube 21 and the respective guide tube 41. At the end of this annular gap sits a recirculation orifice 43, the throttles the amount of air flowing in the respective annular gap 50. After passing through the return air apertures 43, the air enters an intermediate space 40 between the absorbers and continues from there via gaps between the absorber bodies 13 in front of the front side la.
Der Druckverlust der Rückführblende 43 ist wesentlich größer als der der Strömungskanäle 45 in den Leitrohren. Dementsprechend wird der Massenstrom der Rückführluft, der durch den Spalt zwischen dem Halterohr 21 und dem Leitrohr 41 fließt und die Halterohre 21 und den Absorberkörper 13 kühlt, durch die Rückführluftblenden 43 bzw. durch deren freie Strömungsfläche 42 bestimmt. The pressure loss of the return orifice 43 is substantially greater than that of the flow channels 45 in the guide tubes. Accordingly, the mass flow of the return air flowing through the gap between the holding tube 21 and the guide tube 41 and the Holding tubes 21 and the absorber body 13 cools, determined by the return air apertures 43 and by the free flow area 42.
In den Figuren 4 bis 6 sind unterschiedliche Ausführungsbeispiele der Rückführluftblenden 43 als Draufsicht und in Einbauposition dargestellt. In den Figuren sind die jeweils gleichen Bauteile mit den gleichen Bezugszeichen versehen. Die Regelung des Rückführmassenstroms im Ringspalt 50 zwischen dem Leitrohr 41 und dem Halterohr 21 erfolgt entweder durch eine entsprechende große oder kleine freie Strömungsfläche 42 der Rückführluftblenden 43. Ist eine eher kleine Strömungsfläche 42 nötig, so kann, wie in Fig. 4 dargestellt, nahezu die gesamte Blende 43 innerhalb des Spaltes unterge- bracht werden. Ist dagegen eine große Strömungsfläche 42 notwendig, finden nur einzelne Störflächen bzw. Blendenelemente 55 der Blende 43 im Ringspalt Patz, die über einen Haltering 44 miteinander verbunden sind (siehe Fig. 5). Diese beiden beschrieben Varianten der Blenden 43 müssen nicht symmetrisch ausgeführt sein, sondern können auch eine deutliche Asymmetrie aufweisen. Diese Variante einer Rückführluftblende 43 ist in Fig. 6 dargestellt. Die asymmetrische Ausführung ist notwendig, wenn die Blende 43 nicht nur eine rein drosselnde Funktion besitzt, sondern auch das Profil der Strömung zwischen dem Halterohr 21 und dem Leitrohr 41 eingestellt werden soll. Dies ist notwendig, wenn die Zuführung der Luft in den Ringspalt 50 über die Stömungskanäle nicht gleichmäßig erfolgt, sondern z.B. aus einer Richtung deutlich stärker ausgeprägt ist. In diesem Fall muss die Strömung aus dieser Richtung erheblich stärker gedrosselt werden, um eine einheitliche Durchströmung des Ringspaltes 50 zu erreichen. In the figures 4 to 6 different embodiments of the return air orifices 43 are shown as a plan view and in the installed position. In the figures, the same components are provided with the same reference numerals. The regulation of the recirculation mass flow in the annular gap 50 between the guide tube 41 and the holding tube 21 is effected either by a corresponding large or small free flow area 42 of the return air apertures 43. If a rather small flow area 42 is necessary, then, as shown in FIG entire aperture 43 are housed within the gap. If, in contrast, a large flow area 42 is necessary, only individual interfering surfaces or diaphragm elements 55 of the diaphragm 43 in the annular gap Patz, which are connected to one another via a retaining ring 44 (see FIG. 5), are found. These two described variants of the aperture 43 need not be symmetrical, but may also have a significant asymmetry. This variant of a return air diaphragm 43 is shown in FIG. 6. The asymmetric design is necessary if the aperture 43 not only has a purely throttling function, but also the profile of the flow between the holding tube 21 and the guide tube 41 is to be adjusted. This is necessary if the supply of air into the annular gap 50 is not uniform across the flow channels, but e.g. from one direction is much more pronounced. In this case, the flow from this direction must be throttled considerably more strongly in order to achieve a uniform flow through the annular gap 50.
Des Weiteren ist es unter Umständen auch vorteilhaft, wenn die Warmluft nicht gleichmäßig ausströmt. Eine solche gewollte asymmetrische Strömung kann ebenfalls über die in Fig. 6 dargestellte Blende erfolgen. Furthermore, it may also be advantageous if the hot air does not flow evenly. Such a desired asymmetric flow can likewise take place via the diaphragm shown in FIG. 6.
Die in den Figuren 4 bis 6 dargestellten Ausführungsformen einer Rückführluftblende haben insbesondere folgenden Aufbau. The embodiments of a return air diaphragm illustrated in FIGS. 4 to 6 have, in particular, the following structure.
Die Rückführluftblende 43 gemäß Figur 4 umfasst einen Haltering 44, der in dem Ringspalt 50 zwischen dem Leitrohr 41 und dem Halterohr 21 angeordnet ist und der mit sechs Haltestegen 47 versehen ist, die jeweils in einen Fixierschlitz 48 eingreifen, der an dem Leitrohr 41 ausgebildet ist. Dadurch ist die Rückfuhrluftblende 43 sicher an dem Leitrohr 41 gehalten. 4 comprises a retaining ring 44, which is arranged in the annular gap 50 between the guide tube 41 and the retaining tube 21 and which is provided with six retaining webs 47, which respectively engage in a fixing slot 48, which is formed on the guide tube 41. As a result, the Rückfuhrluftblende 43 is securely held on the guide tube 41.
Die in Figur 4 dargestellte Rückfuhrluftblende 43 umfasst des Weiteren einen Innenring 45, der ebenfalls in dem Ringspalt zwischen dem Leitrohr 41 und dem Halterohr 21 angeordnet ist und der mit seiner inneren Ringfläche an dem Halterohr 21 anliegt. Der Innenring 45 ist über Verbindungsstege 46 mit dem Haltering 44 verbunden, die sich in radialer Richtung bezogen auf die Achse des Halterohrs 21 erstrecken. Durch den Haltering 44, den Innenring 45 und die Verbindungsstege 46 ist die freie Strömungsfläche 42 der Rückführluftblende 43 festgelegt bzw. sind bogenförmige Fenster definiert, die die freie Strömungstläche 42 definieren. Der Haltering 44, der Innenring 45 und die Verbindungsstege sind in Anhängigkeit von der gewünschten freien Strömungsfläche 42 hinsichtlich ihrer Abmessungen auslegbar. The Rückfuhrluftblende 43 shown in Figure 4 further comprises an inner ring 45 which is also disposed in the annular gap between the guide tube 41 and the holding tube 21 and which rests with its inner annular surface on the holding tube 21. The inner ring 45 is connected via connecting webs 46 with the retaining ring 44, which extend in the radial direction with respect to the axis of the holding tube 21. By the retaining ring 44, the inner ring 45 and the connecting webs 46, the free flow surface 42 of the return air vent 43 is fixed or arcuate windows are defined, which define the free flow surface 42. The retaining ring 44, the inner ring 45 and the connecting webs are interpreted in terms of their dimensions depending on the desired free flow area 42.
Die in Figur 5 dargestellte Ausführungsform einer Rückführluftblende 43 umfasst einen Haltering 44, der an der äußeren Umfangsfläche des Leitrohrs 41 anliegt und von dem in radialer Richtung nach innen Haltestege 47 abzweigen, die Halteschlitze 48 desThe illustrated in Figure 5 embodiment of a Rückführluftblende 43 includes a retaining ring 44 which rests against the outer peripheral surface of the guide tube 41 and branch off from the radially inwardly retaining webs 47, the retaining slots 48 of
Leitrohrs 41 durchgrei fen. Die im vorliegenden Fall sechs Haltestege 47 gehen jeweils in dem Ringspalt zwischen dem Halterohr 21 und dem Leitrohr 41 in ein Blendenelement 55 über, das den Ringspalt 50 teilweise ausfüllt und einen bogenförmigen Grund- riss hat. Die Blendenelemente 55 weisen jeweils einen Stützsteg 51 auf, der sich in radialer Richtung an der Umfangsfläche des Halterohrs 21 abstützt. Leitrohrs 41 durchgrei fen. In the present case, six retaining webs 47 merge in each case in the annular gap between the retaining tube 21 and the guide tube 41 into an aperture element 55, which partially fills the annular gap 50 and has an arcuate basic crack. The diaphragm elements 55 each have a support web 51, which is supported in the radial direction on the peripheral surface of the holding tube 21.
Die Blendenelemente 55 überdecken den Ringspalt 50 nur anteilig, so dass zwischen benachbarten Blendenelementen 55 und zwischen den einzelnen Blendenelementen 55 und dem Halterohr 21 eine freie Strömungsfläche 42 für die Rückführluft verbleibt. Je nach gewünschter freier Strömungsfläche 42 können die Blendenelemente 55 unter- schiedliche Abmessungen haben. The diaphragm elements 55 cover the annular gap 50 only proportionately, so that a free flow area 42 for the return air remains between adjacent diaphragm elements 55 and between the individual diaphragm elements 55 and the retaining tube 21. Depending on the desired free flow area 42, the diaphragm elements 55 can have different dimensions.
In Figur 6 ist eine Ausführungsform einer Rückführluftblende 43 dargestellt, die einen äußeren Haltering 44 umfasst, der an der äußeren Umfangsfläche des Leitrohrs 41 anliegt und von dem in radialer Richtung nach innen Haltestege 47 abstehen, die Halteschlitze 48 des Leitrohrs 41 durchgreifen. Zwei der Haltestege 47 gehen innerhalb des Ringspalts 50 zwischen dem Leitrohr 1 und dem Halterohr 21 in Blendenelemente 55 über, die den Blendenelementen nach Figur 5 entsprechen. Die vier anderen Haltestege 47 gehen in einen Blendenteilring 52 über, der sich über einen Winkelbereich von etwa 170° erstreckt und sich an seiner Innenseite in radialer Richtung ebenfalls über Stützstege 51 an der Außenseite des Halterohrs 21 abstützt. Der Blendenteilring 52 ist mit Schlitzen 53 und/oder Bohrungen 54 versehen. Durch die Abmessungen der Blendenelemente 55 und des Blendenteilrings 52 ist die freie Strömungsfläche 42 festgelegt, die durch die Rückführluffblende 43 zur Verfügung gestellt werden kann. FIG. 6 shows an embodiment of a return air diaphragm 43, which comprises an outer retaining ring 44, which bears against the outer circumferential surface of the guide tube 41 and projects from the radially inward support webs 47, which pass through the retaining slots 48 of the guide tube 41. Two of the retaining webs 47 go inside the annular gap 50 between the guide tube 1 and the holding tube 21 in aperture elements 55 over, which correspond to the aperture elements of Figure 5. The four other retaining webs 47 merge into a diaphragm part ring 52, which extends over an angular range of about 170 ° and is also supported on its inner side in the radial direction via support webs 51 on the outside of the retaining tube 21. The aperture ring 52 is provided with slots 53 and / or holes 54. Due to the dimensions of the diaphragm elements 55 and the diaphragm part ring 52, the free flow area 42 is fixed, which can be provided by the Rückführluffblende 43.

Claims

Neue Patentansprüche New claims
1. Receiver einer Solarenergiegewinnungsanlage (100), umfassend eine Tragstruktur (7), die an einer Receivervorderseite mehrere Absorbermodule (1 1) trägt, die jeweils ein Halterohr (21) umfassen, das derart in ein Leitrohr (41) der Tragstruktur (7) eingreift, dass zwischen dem Halterohr (21) und dem Leitrohr (41) ein Ringspalt (50) ausgebildet ist, durch den im Betrieb zur Kühlung der Tragstruktur (7) und/oder des betreffenden Absorbermoduls (1 1) Rückführluft an die Receivervorderseite strömt, dadurch gekennzeichnet, dass in mindestens einem der Ringspalte (50) mindestens eine drosselnde Rückführluftblende (43) angeordnet ist, die einen Massenstrom der Rückführluft definiert, der durch den betreffenden Ringspalt (50) an die Receivervorderseite strömt. 1. Receiver of a solar energy production system (100), comprising a support structure (7) which carries on a receiver front side a plurality of absorber modules (1 1), each comprising a holding tube (21) in such a guide tube (41) of the support structure (7) engages that between the holding tube (21) and the guide tube (41) an annular gap (50) is formed through which flows during operation for cooling the support structure (7) and / or the respective absorber module (1 1) return air to the receiver front side, characterized in that in at least one of the annular gaps (50) at least one throttling Rückführluftblende (43) is arranged, which defines a mass flow of the return air, which flows through the respective annular gap (50) to the receiver front.
2. Receiver nach Anspruch 1 , dadurch gekennzeichnet, dass die Rückführluftblende (43) mindestens einen Haltering (44) umfasst, der an dem betreffenden Leitrohr (41) und/oder dem betreffenden Halterohr (21 ) fixiert ist. 2. Receiver according to claim 1, characterized in that the Rückführluftblende (43) comprises at least one retaining ring (44) which is fixed to the relevant guide tube (41) and / or the respective holding tube (21).
3. Receiver nach Anspruch 2, dadurch gekennzeichnet, dass der Haltering (44) innerhalb des Ringspalts (50) angeordnet ist. 3. Receiver according to claim 2, characterized in that the retaining ring (44) within the annular gap (50) is arranged.
4. Receiver nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Haltering (44) das Leitrohr (41 ) umschließt. 4. Receiver according to claim 2 or 3, characterized in that the retaining ring (44) surrounds the guide tube (41).
5. Receiver nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die 5. Receiver according to one of claims 2 to 4, characterized in that the
Rückführluftblende (43) einen Innenring (45) hat, der innerhalb des Ringspalts (50) zwischen dem Halterohr (21) und dem Leitrohr (41) angeordnet ist und über mindes- tens einen Verbindungssteg (46) mit dem Haltering (44) verbunden ist. Return air diaphragm (43) has an inner ring (45) which is disposed within the annular gap (50) between the holding tube (21) and the guide tube (41) and on at least at least one connecting web (46) with the retaining ring (44) is connected.
6. Receiver nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass von dem Haltering (44) in radialer Richtung mindestens ein Haltesteg (47) vorsteht, der in einen Fixierschlitz (48) des Leitrohrs (41 ) eingreift. 6. Receiver according to one of claims 2 to 5, characterized in that of the retaining ring (44) in the radial direction at least one holding web (47) protrudes, which engages in a fixing slot (48) of the guide tube (41).
7. Receiver nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die 7. Receiver according to one of claims 1 to 6, characterized in that the
Rückfuhrluftblende (43) mindestens ein Blendenelement (55) umfasst, das den Ringspalt (50) teilweise ausfüllt.  Return air diaphragm (43) comprises at least one diaphragm element (55) which partially fills the annular gap (50).
8. Receiver nach Anspruch 7, dadurch gekennzeichnet, dass das Blendenelement (55) einen bogenförmigen Grundriss hat. 8. Receiver according to claim 7, characterized in that the diaphragm element (55) has a curved floor plan.
9. Receiver nach Anspruch 7 oder 8 in Verbindung mit einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das Blendenelement (55) über den Haltesteg (47) an den Haltering (44) angebunden ist. 9. Receiver according to claim 7 or 8 in conjunction with one of claims 2 to 6, characterized in that the diaphragm element (55) via the retaining web (47) to the retaining ring (44) is connected.
10. Receiver nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Blendenelement (55) mindestens einen Stützsteg (51) aufweist, der sich in radialer Richtung an dem Halterohr (21) abstützt. 10. Receiver according to one of claims 7 to 9, characterized in that the diaphragm element (55) has at least one support web (51) which is supported in the radial direction on the holding tube (21).
1 1. Receiver nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in dem Ringspalt (50) mindestens zwei vorzugsweise baugleiche Rückführluftblenden (43) angeordnet sind, die in U mfangsrichtung zueinander verdreht sind. 1 1. Receiver according to one of claims 1 to 10, characterized in that in the annular gap (50) at least two preferably identical return air apertures (43) are arranged, which are twisted in U mfangsrichtung each other.
PCT/EP2017/077509 2016-11-11 2017-10-26 Receiver having absorber modules WO2018086910A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17798127.1A EP3538823B1 (en) 2016-11-11 2017-10-26 Receiver having absorber modules
AU2017356608A AU2017356608A1 (en) 2016-11-11 2017-10-26 Receiver having absorber modules
ES17798127T ES2859491T3 (en) 2016-11-11 2017-10-26 Receiver with absorber modules
CY20211100135T CY1123923T1 (en) 2016-11-11 2021-02-18 RECEIVER WITH BUILDING COMPONENTS-ABSORBERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016121654.2A DE102016121654B3 (en) 2016-11-11 2016-11-11 Receiver with absorber modules
DE102016121654.2 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018086910A1 true WO2018086910A1 (en) 2018-05-17

Family

ID=60269376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/077509 WO2018086910A1 (en) 2016-11-11 2017-10-26 Receiver having absorber modules

Country Status (8)

Country Link
EP (1) EP3538823B1 (en)
CN (1) CN208139605U (en)
AU (1) AU2017356608A1 (en)
CY (1) CY1123923T1 (en)
DE (1) DE102016121654B3 (en)
ES (1) ES2859491T3 (en)
PT (1) PT3538823T (en)
WO (1) WO2018086910A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4251788A1 (en) * 2020-11-25 2023-10-04 The Governing Council of the University of Toronto Enhanced conversion of chemisorbed co2 in amine-based electrochemical systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19744541C2 (en) 1997-10-09 2001-05-03 Deutsch Zentr Luft & Raumfahrt Solar receiver
DE102010037206A1 (en) * 2010-08-27 2012-03-01 Solarhybrid Ag Heat exchanger i.e. vaporizer, for transferring heat between e.g. liquid coolant and water in heat pump, has phase switch in chamber inflow region so that phase of coolant is guided into chamber and another phase is guided to exhaust region
DE102010046831A1 (en) * 2010-09-29 2012-03-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Receiver for solar energy generation
EP2699722B1 (en) * 2011-04-19 2015-03-25 Unitech Textile Machinery S.p.a. Textile processing machine with heat recovery
DE102013221889A1 (en) * 2013-10-28 2015-04-30 Kraftanlagen München Gmbh Receiver for solar energy generation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113637C1 (en) * 2001-03-21 2002-11-07 Deutsch Zentr Luft & Raumfahrt solar receiver
DE102009006952A1 (en) * 2009-01-30 2010-08-05 Saint-Gobain Industriekeramik Rödental GmbH Housing for a solar absorber module, solar absorber module and solar absorber arrangement, and method of manufacture
DE102013221887B3 (en) * 2013-10-28 2015-03-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Receiver for solar energy generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19744541C2 (en) 1997-10-09 2001-05-03 Deutsch Zentr Luft & Raumfahrt Solar receiver
DE102010037206A1 (en) * 2010-08-27 2012-03-01 Solarhybrid Ag Heat exchanger i.e. vaporizer, for transferring heat between e.g. liquid coolant and water in heat pump, has phase switch in chamber inflow region so that phase of coolant is guided into chamber and another phase is guided to exhaust region
DE102010046831A1 (en) * 2010-09-29 2012-03-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Receiver for solar energy generation
EP2699722B1 (en) * 2011-04-19 2015-03-25 Unitech Textile Machinery S.p.a. Textile processing machine with heat recovery
DE102013221889A1 (en) * 2013-10-28 2015-04-30 Kraftanlagen München Gmbh Receiver for solar energy generation

Also Published As

Publication number Publication date
ES2859491T3 (en) 2021-10-04
CY1123923T1 (en) 2022-05-27
PT3538823T (en) 2021-03-01
CN208139605U (en) 2018-11-23
EP3538823B1 (en) 2020-12-02
AU2017356608A1 (en) 2019-05-30
EP3538823A1 (en) 2019-09-18
DE102016121654B3 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
DE2937529A1 (en) SUN TOWER POWER PLANT
EP1746363A2 (en) Solar receiver and method for control and/or regulation of flow distribution and/or temperature balance in a solar receiver
DE10239700B3 (en) Solar receiver for solar thermic energy plant has absorber field with absorber elements enclosed by edge absorber with absorber modules
EP0576963B1 (en) Residual heat exchanger for mounting in the boiler casing
WO2018086910A1 (en) Receiver having absorber modules
DE102012022302A1 (en) Spiral exchanger and method for producing such a exchanger
CH713773A2 (en) Method for operating a receiver and receiver for carrying out the method.
DE102010042674A1 (en) Heat transfer device for thermoelectric generator device, has rotary element associated to channels of fluid guide device, where channels are opened or blocked based on rotational position of rotary element
DE10156883A1 (en) Air mixing device for a heating or air conditioning
DE102021109739B4 (en) Central valve device with a rotatable adjustment element for a cooling system of a motor vehicle, cooling system and electric vehicle with such a cooling system
DE102013221889B4 (en) Receiver for solar energy generation
EP1983273A2 (en) Device for introducing heating medium into a heater
DE102013221887B3 (en) Receiver for solar energy generation
DE102009026546B4 (en) solar panel
DE4334768A1 (en) Heat exchanger for central heating system - has collecting tanks with walls welded together and internal moulding forming flow chambers bolted to one wall
DE102015215457A1 (en) Receiver for solar energy generation
WO2017194350A1 (en) Receiver for solar power plants
DE3117515A1 (en) Bypass housing for a gas turbine plant
CH715527A2 (en) Procedure for operating a receiver and receiver for executing the procedure.
CH633870A5 (en) COOLED CONTROL VALVE FOR HOT GAS PIPES.
EP3017247B1 (en) Once-through steam generator
DE102004008967B3 (en) Solar panel heat collector has outer water passages discharging through a separate collector
WO2024056658A1 (en) Solar-thermal module
DE102016208215B4 (en) Receiver for solar energy plants
WO2020083972A1 (en) Absorber module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017356608

Country of ref document: AU

Date of ref document: 20171026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017798127

Country of ref document: EP

Effective date: 20190611