WO2018086087A1 - Système de commande de vol sans pilote - Google Patents

Système de commande de vol sans pilote Download PDF

Info

Publication number
WO2018086087A1
WO2018086087A1 PCT/CN2016/105582 CN2016105582W WO2018086087A1 WO 2018086087 A1 WO2018086087 A1 WO 2018086087A1 CN 2016105582 W CN2016105582 W CN 2016105582W WO 2018086087 A1 WO2018086087 A1 WO 2018086087A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
control system
unmanned flight
flight control
gyro
Prior art date
Application number
PCT/CN2016/105582
Other languages
English (en)
Chinese (zh)
Inventor
钟玲珑
Original Assignee
钟玲珑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钟玲珑 filed Critical 钟玲珑
Priority to PCT/CN2016/105582 priority Critical patent/WO2018086087A1/fr
Publication of WO2018086087A1 publication Critical patent/WO2018086087A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the invention relates to an unmanned flight control system and belongs to the field of unmanned flight control.
  • the micro-miniature unmanned flight control system is an electric, vertical landing and landing (VTOL) aircraft that is controlled by radio ground-controlled or/and autonomously controlled. It is a form of rotorcraft and is functionally a vertical take-off and landing aircraft. . It uses aerodynamics to overcome its own weight, has a simple structure and flexible control, and has gained more and more attention.
  • VTOL electric, vertical landing and landing
  • Rotorcraft UAVs are much slower to develop than fixed-wing UAVs.
  • Fixed-wing UAVs are already very mature in technology, and have demonstrated their superior combat performance in local wars over the past two decades, and have made great contributions to the victory of the US, Israel and other countries in the war [2].
  • the rotary-type vertical take-off and landing aircraft has more advantages than the fixed-wing unmanned aerial vehicles: vertical take-off and landing, air hovering, flying in any direction, small take-off and landing site, strong environmental adaptability, and high intelligence.
  • unmanned helicopters can perform a variety of non-lethal tasks as well as perform various hard and soft killing tasks, including reconnaissance, surveillance, target interception, decoy, attack, and communication relay.
  • unmanned helicopters In civil terms, unmanned helicopters have broad application prospects in atmospheric monitoring, traffic monitoring, resource exploration, power line monitoring, and forest fire prevention.
  • Unmanned Flight Control Systems Compared to conventional helicopters, tail rotor control and rotor tilt problems can be ignored because the two pairs of motors on the diagonal rotate in opposite directions, exactly offsetting the torque they produce. That is to say, the unmanned flight control system does not require a tail rotor to counteract the counter-torque torque and avoid complex rotor tilt control to achieve various flight attitudes. Due to its unique symmetry and multi-rotor, the attitude of the flight is achieved by adjusting the speed of the four rotors.
  • unmanned flight control systems have highly coupled dynamics, and a change in rotor speed will affect at least three degrees of freedom. For example, reducing the speed of the right rotor, the left and right lifts are unbalanced, which will cause the helicopter to roll to the right; The moment of birth and the moment generated by a group of rotors are unbalanced, which will cause the helicopter to yaw to the right; in addition, the rolling motion will cause the helicopter to translate to the right, thus changing the direction of advancement.
  • the object of the present invention is to overcome the deficiencies of the conventional unmanned aerial vehicle and provide an intelligent and lightweight unmanned flight control system.
  • the present invention adopts the following technical solutions:
  • the invention provides an unmanned flight control system, which is composed of a rotorcraft, a motor rotor, a control decision maker, a plurality of detectors, a low-pass filter, a Kalman filter and a plurality of AD conversion interfaces, wherein a plurality of detectors A height detector, a tilt detector and a gyro detector are respectively connected to the height detector, the tilt detector and the gyro detector, and the rotor aircraft is also connected to the motor rotor, and the motor rotor passes the PWM module and controls the decision
  • the height detector is connected to a low pass filter, and the tilt detector and the gyro detector are connected to the Kalman filter.
  • the unmanned flight control system further includes a flight command controller coupled to the control decision maker, the low pass filter, and the Kalman filter, respectively.
  • the height detector is connected to the low pass filter through an SPI interface.
  • the tilt detector and the gyro detector are connected to the Kalman filter through an AD conversion interface.
  • the PWM module includes four PWM channels, namely channel 0 and channel 1, 2 and 3 respectively; using the attitude detection information and the remote control signal to obtain a control strategy, adjusting the duty ratio of the four PWM signals, thereby controlling four The speed of the rotor.
  • the unmanned flight control system uses Kalman filter to optimize the current attitude and the gyro zero drift for the effects of mechanical vibration and zero drift caused by the temperature drift of the gyroscope. It is estimated that the simplified aircraft dynamics model, the system works well and the independent control performance is good.
  • FIG. 1 is a schematic structural view of an unmanned flight control system of the present invention
  • FIG. 2 is a schematic flow chart of a main program of an unmanned flight control system according to the present invention.
  • FIG. 3 is a schematic flow chart of an Ims interrupt program of the unmanned flight control system of the present invention.
  • FIG. 4 is a schematic flow chart of a PWM interrupt routine of the unmanned flight control system of the present invention.
  • the present invention provides an unmanned flight control system.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the present invention is composed of a rotorcraft 1, a motor rotor 2, a control decision maker 4, a plurality of detectors, a low-pass filter 9, a Kalman filter 11, and a plurality of AD conversion interfaces 10.
  • the plurality of detectors comprises a height detector 5, a tilt detector 6 and a gyro detector 7, which are respectively connected to the height detector 5, the tilt detector 6, and the gyro detector 7, and the rotorcraft 1 further Connected to a motor rotor 2, which is connected to a control decision maker 4 via a PWM module 3, said height detector 5 being connected to a low pass filter 9, a tilt detector 6 and a gyro detector 7 and a Kalman filter 11 connections.
  • the unmanned flight control system further includes a flight command controller 12 coupled to the control decision maker 4, the low pass filter 9, and the Kalman filter 11, respectively.
  • the height detector 5 is connected to the low pass filter 9 via the SPI interface 8.
  • the tilt detector 6 and the gyro detector 7 are connected to the Kalman filter 11 through the AD conversion interface 10.
  • the SPI interface is used to read the height information and the tilt information respectively.
  • the PWM module uses four PWM channels, which are channel 0 and channel 1, 2 and 3.
  • the attitude detection information and the remote control signal are used to derive the control strategy, and the duty ratio of the four PWM signals is adjusted to control the rotation speed of the four rotors.
  • the software program design in this embodiment mainly includes three parts, the module initializes the main program, and the Ims timing Interrupt program, PWM interrupt service subroutine.
  • the main program is the execution entry of the entire program. After the program runs, it first initializes the CPU and its basic modules, then initializes the parameters of the designed aircraft controller and enables each interrupt, and finally enters an infinite loop. Wait for the interrupt event to be generated. When the interrupt event occurs, immediately go to the interrupt program execution interrupt event. After the execution is completed, re-enter the wait state and wait for the next interrupt event.
  • the timer enters the timer interrupt service subroutine every time it counts 1ms. After entering the program, it first reads the AD conversion result of the tilt sensor and the gyroscope, and then performs window width on the sampled value. It is a sliding average filtering of 10; if it is the initial state, it performs zero calibration and gives the initial parameters of Kalman filtering. Otherwise, Kalman filtering is integrated on the inclination information and angular velocity information to obtain attitude angle information and gyro zero drift estimation. information.
  • the PWM interrupt service subroutine is the control decision part of the program.
  • the interrupt frequency is 100Hz, which mainly takes into account the response speed of the brushless ESC.
  • Both the remote control and the ESC signals are standard 1-2ms pulse width signals, and the actual command size is determined by reading the pulse width.
  • the position, attitude and remote control information of the integrated aircraft are calculated by the designed control algorithm, and the current motor speed and the duty ratio of the required output are calculated, and then the duty cycle is reloaded as a PWM hardware module to control the rotor speed. Adjust the attitude of the aircraft.
  • the unmanned flight control system uses the Kalman filter to optimally estimate the current attitude and the gyro zero drift for the problem of mechanical vibration and the zero drift caused by the temperature drift of the gyroscope.
  • the aircraft dynamics model the system works well and the independent control performance is good.

Abstract

La présente invention concerne un système de commande de vol sans pilote, comprenant un aéronef à voilure tournante (1), un rotor de moteur (2), un dispositif de prise de décision de commande (4), une pluralité de détecteurs, un filtre passe-bas (9), un filtre de Kalman (11) et une pluralité d'interfaces de conversion A/N (10). La pluralité de détecteurs comprend un détecteur de hauteur (5), un détecteur d'inclinaison (6) et un détecteur gyroscopique (7). L'aéronef à voilure tournante (1) est connecté respectivement au détecteur de hauteur (5), au détecteur d'inclinaison (6) et au détecteur gyroscopique (7), et est également connecté au rotor de moteur (2). Le rotor de moteur (2) est connecté au dispositif de prise de décision de commande (4) par l'intermédiaire d'un module MID (3). Le détecteur de hauteur (5) est connecté au filtre passe-bas (9), et le détecteur d'inclinaison (6) et le détecteur gyroscopique (7) sont tous deux connectés au filtre de Kalman (11). Le système de commande de vol sans pilote fonctionne bien et présente de bonnes performances de commande indépendante.
PCT/CN2016/105582 2016-11-14 2016-11-14 Système de commande de vol sans pilote WO2018086087A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105582 WO2018086087A1 (fr) 2016-11-14 2016-11-14 Système de commande de vol sans pilote

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105582 WO2018086087A1 (fr) 2016-11-14 2016-11-14 Système de commande de vol sans pilote

Publications (1)

Publication Number Publication Date
WO2018086087A1 true WO2018086087A1 (fr) 2018-05-17

Family

ID=62109036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105582 WO2018086087A1 (fr) 2016-11-14 2016-11-14 Système de commande de vol sans pilote

Country Status (1)

Country Link
WO (1) WO2018086087A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664036A (zh) * 2018-07-03 2018-10-16 安徽太通信科技有限公司 一种无人机控制系统及无人机控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916115A (zh) * 2010-07-27 2010-12-15 东北大学 一种微型共轴双旋翼飞行器控制装置及方法
US7962252B2 (en) * 2005-06-20 2011-06-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self-contained avionics sensing and flight control system for small unmanned aerial vehicle
CN102117072A (zh) * 2011-03-10 2011-07-06 上海交通大学 具有旋翼转速检测功能的多旋翼飞行器地面测控系统
CN102360218A (zh) * 2011-10-14 2012-02-22 天津大学 基于arm和fpga的无人直升机导航与飞行控制系统
CN202583877U (zh) * 2012-03-27 2012-12-05 天津尊德航空科技有限公司 无人飞行器通用自动驾驶仪
CN103364785A (zh) * 2012-03-30 2013-10-23 鹦鹉股份有限公司 用于多转子旋翼式无人驾驶飞机的高度估计器
CN103921949A (zh) * 2014-04-30 2014-07-16 哈尔滨工业大学 基于瑞萨芯片r5f100lea的四旋翼自主飞行器
CN104460685A (zh) * 2014-11-21 2015-03-25 南京信息工程大学 一种四旋翼飞行器的控制系统及其控制方法
CN104932512A (zh) * 2015-06-24 2015-09-23 北京科技大学 一种基于mimo非线性不确定反步法的四旋翼位姿控制方法
US20160327950A1 (en) * 2014-06-19 2016-11-10 Skydio, Inc. Virtual camera interface and other user interaction paradigms for a flying digital assistant

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7962252B2 (en) * 2005-06-20 2011-06-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self-contained avionics sensing and flight control system for small unmanned aerial vehicle
CN101916115A (zh) * 2010-07-27 2010-12-15 东北大学 一种微型共轴双旋翼飞行器控制装置及方法
CN102117072A (zh) * 2011-03-10 2011-07-06 上海交通大学 具有旋翼转速检测功能的多旋翼飞行器地面测控系统
CN102360218A (zh) * 2011-10-14 2012-02-22 天津大学 基于arm和fpga的无人直升机导航与飞行控制系统
CN202583877U (zh) * 2012-03-27 2012-12-05 天津尊德航空科技有限公司 无人飞行器通用自动驾驶仪
CN103364785A (zh) * 2012-03-30 2013-10-23 鹦鹉股份有限公司 用于多转子旋翼式无人驾驶飞机的高度估计器
CN103921949A (zh) * 2014-04-30 2014-07-16 哈尔滨工业大学 基于瑞萨芯片r5f100lea的四旋翼自主飞行器
US20160327950A1 (en) * 2014-06-19 2016-11-10 Skydio, Inc. Virtual camera interface and other user interaction paradigms for a flying digital assistant
CN104460685A (zh) * 2014-11-21 2015-03-25 南京信息工程大学 一种四旋翼飞行器的控制系统及其控制方法
CN104932512A (zh) * 2015-06-24 2015-09-23 北京科技大学 一种基于mimo非线性不确定反步法的四旋翼位姿控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YING: "Development of Four-rotor Unmanned Aerial Vehicle Autonomous Flight Controller", SCIENCE -ENGINEERING (B) , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 March 2016 (2016-03-15), pages 17 - 24, ISSN: 1674-0246 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664036A (zh) * 2018-07-03 2018-10-16 安徽太通信科技有限公司 一种无人机控制系统及无人机控制方法

Similar Documents

Publication Publication Date Title
AU2019203204B2 (en) Vertical takeoff and landing (VTOL) air vehicle
Çetinsoy et al. Design and construction of a novel quad tilt-wing UAV
US7665688B2 (en) Convertible aerial vehicle with contra-rotating wing/rotors and twin tilting wing and propeller units
Bouabdallah et al. Full control of a quadrotor
Bai et al. Robust control of quadrotor unmanned air vehicles
EP3368413B1 (fr) Véhicule aérien, procédé et apparatus de commande de celui-ci
CN109606674A (zh) 尾坐式垂直起降无人机及其控制系统与控制方法
CN105204514A (zh) 一种新型倾转旋翼无人机姿态控制系统
CN105923147B (zh) 一种固定翼无人机降落控制方法
KR20170094045A (ko) 틸트로터 기반의 멀티콥터형 스마트 드론
CN110001953A (zh) 一种翼型无人机及其飞行控制方法
KR102245397B1 (ko) 다중회전익 무인비행체
CN110077586A (zh) 一种复合式飞行器及其控制方法
WO2018086087A1 (fr) Système de commande de vol sans pilote
CN210133283U (zh) 一种复合式飞行器
CN206470609U (zh) 无人飞行控制系统
EP3162708A1 (fr) Véhicule aérien, procédé et apparatus de commande de celui-ci
CN107054638A (zh) 一种下置式共轴双旋翼无人机
WO2018086088A1 (fr) Aéronef quadrirotor
US20240067329A1 (en) Flying object control method
US20190310660A1 (en) Flying vehicle architecture
Yang et al. Design and implementation of twin-rotor tail-sitter UAV
GB2545077B (en) Air Vehicle convertible between rotational and fixed-wing modes
Juanxia et al. Multimode Controller design and flight test for Tailsitter UAV without elevon
CN113443151A (zh) 一种旋轮式无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921428

Country of ref document: EP

Kind code of ref document: A1