WO2018086074A1 - 数据采集方法、数据采集装置及数据采集系统 - Google Patents

数据采集方法、数据采集装置及数据采集系统 Download PDF

Info

Publication number
WO2018086074A1
WO2018086074A1 PCT/CN2016/105505 CN2016105505W WO2018086074A1 WO 2018086074 A1 WO2018086074 A1 WO 2018086074A1 CN 2016105505 W CN2016105505 W CN 2016105505W WO 2018086074 A1 WO2018086074 A1 WO 2018086074A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
aerial vehicle
unmanned aerial
data collection
uav
Prior art date
Application number
PCT/CN2016/105505
Other languages
English (en)
French (fr)
Inventor
刘锋
陈廷忠
杨晓旭
张伟
刘志杰
刘太明
徐家新
庞越凡
Original Assignee
中海油信息科技有限公司
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中海油信息科技有限公司, 深圳市大疆创新科技有限公司 filed Critical 中海油信息科技有限公司
Priority to PCT/CN2016/105505 priority Critical patent/WO2018086074A1/zh
Priority to CN201680003350.0A priority patent/CN107438871A/zh
Publication of WO2018086074A1 publication Critical patent/WO2018086074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the invention relates to a data transmission technology, in particular to a data acquisition method, a data acquisition device and a data acquisition system.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention needs to provide a data acquisition method, a data acquisition device, and a data acquisition system.
  • a data acquisition method for collecting feature data of a coalbed methane well or a petroleum well comprising:
  • the feature data is transmitted to the unmanned aerial vehicle.
  • a data acquisition method for collecting feature data of a coalbed methane well or a petroleum well comprising:
  • a data collection device for collecting characteristic data of a coalbed methane well or a petroleum well comprising:
  • An acquisition module configured to acquire characteristic data of the coalbed methane well or the oil well
  • a communication module configured to transmit the feature data to the unmanned aerial vehicle.
  • a data acquisition system for collecting characteristic data of a coalbed methane well or a petroleum well comprising:
  • the data acquisition device
  • An unmanned aerial vehicle in communication with the data acquisition device
  • the data access terminal includes an acquisition module, and the acquisition module is configured to acquire the feature data in the unmanned aerial vehicle.
  • the data collection method, the data collection device and the data acquisition system of the embodiment of the invention use the unmanned aerial vehicle to collect data for the CBM well or the oil well located in the complex terrain, and the operation is simple and convenient, and the operation of the UAV is not affected by the geographical environment. Reduce the layout of ground surface equipment and cable lines, reduce the difficulty of layout, and save costs.
  • FIG. 1 is a flow chart of a data collection method according to some embodiments of the present invention.
  • FIG. 2 is a functional block diagram of a data acquisition system in accordance with some embodiments of the present invention.
  • FIG. 3 is a functional block diagram of a data acquisition device in accordance with some embodiments of the present invention.
  • FIG. 4 is a flow chart of a data collection method according to some embodiments of the present invention.
  • FIG. 5 is a functional block diagram of a data acquisition device in accordance with some embodiments of the present invention.
  • FIG. 6 is a flow chart of a data collection method according to some embodiments of the present invention.
  • FIG. 7 is a functional block diagram of a data collection device in accordance with some embodiments of the present invention.
  • FIG. 8 is a schematic flow chart of a data collection method according to some embodiments of the present invention.
  • FIG. 9 is a schematic diagram of the state of a data acquisition system in accordance with some embodiments of the present invention.
  • FIG. 10 is a schematic flow chart of a data collection method according to some embodiments of the present invention.
  • FIG. 11 is a schematic diagram of functional modules of a data access terminal according to some embodiments of the present invention.
  • FIG. 12 is a schematic diagram of the state of a data acquisition system in accordance with some embodiments of the present invention.
  • FIG. 13 is a schematic diagram of functional modules of a data access terminal according to some embodiments of the present invention.
  • FIG. 14 is a flow chart of a data collection method according to some embodiments of the present invention.
  • 15 is a schematic diagram of the state of a data acquisition system in accordance with some embodiments of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece; can be mechanical, electrical, or can communicate with each other; either directly or through an intermediary Indirectly connected, it can be the internal communication of two components or the interaction of two components.
  • Connected, or connected in one piece can be mechanical, electrical, or can communicate with each other; either directly or through an intermediary Indirectly connected, it can be the internal communication of two components or the interaction of two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a data collection method is used for collecting feature data of a coalbed methane well or a petroleum well.
  • the data collection method includes the following steps:
  • the data collection device 100 of the embodiment of the present invention includes an acquisition module 10 and a communication module 20 .
  • the data collection method of the embodiment of the present invention can be implemented by the data collection device 100 of the embodiment of the present invention, and can be applied to the data collection system 1000.
  • the data collection system 1000 further includes the drone 200.
  • the step S10 of the data collection method of the embodiment of the present invention may be implemented by the acquisition module 10, and the step S20 may be implemented by the communication module 20. That is to say, the acquisition module 10 is used to acquire characteristic data of a coalbed methane well or a petroleum well.
  • the communication module 20 is configured to transmit feature data to the UAV 200.
  • Coalbed methane wells or oil wells are generally distributed in areas with complex terrain such as mountains or deep forests.
  • the collection of coalbed methane or oil requires continuous monitoring of the characteristic data of gas wells or oil wells in order to be timely informed and dealt with when data is abnormal, to prevent safety accidents.
  • the characteristic data includes one or more of temperature, pressure, production, and/or fluid properties of the coalbed methane well or petroleum well.
  • the engineer can know the corresponding information of the coalbed methane well or the oil well, and then determine whether the working state of the gas well or the oil well is normal.
  • the acquisition module 10 can generally be a programmable logic controller.
  • the gas well or the oil well is usually provided with sensors of corresponding parameters, such as a pressure analog quantity sensor, a temperature digital sensor, a gas quantity sensor, a liquid level sensor, etc., and the programmable logic controller passes the corresponding Interfaces such as 485 interface, digital input interface, analog-to-digital converter interface, etc., analog output and digital level transmission of gas or oil wells
  • the semaphore output such as 485 bus output is converted into the network port data of the network communication protocol.
  • the UAV 200 can include a control module and a communication module.
  • the communication module 20 of the data collection device 100 and the communication module of the UAV 200 communicate with each other to transmit data to the UAV 200.
  • the data collecting method, the data collecting device 100 and the data collecting system 1000 of the embodiments of the present invention use the unmanned aerial vehicle 200 to collect data for a CBM well or a petroleum well located in a complex terrain, and the operation is simple and convenient, and the unmanned aerial vehicle 200 is not operated. Geographical environmental impact, reduce the layout of ground surface equipment and cable lines, reduce the difficulty of layout, and save costs.
  • the data collection method includes the steps of:
  • the data collection method further includes the steps of:
  • Step S20 includes:
  • S22 Transfer the feature data to the unmanned aerial vehicle when the UAV agrees to the data transmission request.
  • the data collection device 100 further includes a storage module 30.
  • Step S30 can be implemented by the storage module 30.
  • the storage module 30 is used to store feature data.
  • the data collection device 100 further includes a scanning module 40 and a requesting module 42.
  • Step S40 can be implemented by the scanning module 40
  • step S42 can be implemented by the requesting module 42
  • step S22 can be implemented by the communication module 20.
  • the scanning module 40 is configured to scan whether there is an acquisition signal sent by the UAV 200 within a preset range
  • the requesting module 42 is configured to send a data transmission request to the UAV 200 when scanning the acquisition signal
  • the communication module 20 is configured to: The feature data is transmitted to the UAV 200 when the UAV 200 agrees to the data transmission request.
  • the data collection device 100 first collects the feature data through the acquisition module 10, and the collection may be performed at intervals of a predetermined time, or may be continuously performed, and is not limited herein.
  • the storage module 30, the scanning module 40, and the requesting module 42 may be combined with the communication module 20 to form a network storage portion of the data collection device 100.
  • the storage module 30 receives the feature data from the collection module 10 and temporarily stores it in the storage module 30.
  • the storage module may be a storage medium such as a data storage card, which is not limited herein.
  • the network storage part further includes a network communication route, and the network communication route can scan whether the data acquisition signal sent by the UAV 200 exists in the coverage area by the scanning module 40, and if there is an acquisition signal, the unmanned aerial vehicle 200 flies to the data collection. Within the effective communication range of device 100, it is desirable to perform a data collection action.
  • the network communication route sends a data transmission request to the unmanned aerial vehicle 200 through the requesting module 42 to transmit the feature data in the storage module 30 to the unmanned aerial vehicle 200 after the unmanned aerial vehicle 200 agrees to the transmission request.
  • the UAV 200 includes a storage module for storing feature data transmitted by the data transmission device 100.
  • the data collection method includes the steps of:
  • Step S10 includes the steps of:
  • Step S20 includes the steps of:
  • S22' transmitting the feature data to the UAV when the UAV agrees to the data transmission request.
  • step S40 ′ may be implemented by scanning module 40
  • step S12 may be implemented by acquisition module 10
  • step S42 ′ may be implemented by request module 42
  • step S22 ′ may be implemented by communication module 20 .
  • the scanning module 40 is configured to scan whether there is an acquisition signal sent by the UAV 200 in a preset range
  • the acquisition module 10 is configured to acquire feature data of a CBM or oil well when scanning the acquired signal
  • the request module 42 is used to A data transmission request is issued to the UAV 200
  • the communication module 20 transmits the feature data to the UAV 200 when the UAV 200 agrees to the data transmission request.
  • the data collection device 100 does not include the storage module 30, and therefore, the acquisition feature data is only in the presence and absence.
  • the human aircraft 200 performs communication, or only when the scanning module 40 scans the acquired signal of the unmanned aerial vehicle 200 within a predetermined range, the feature data is collected, and the collected feature data is transmitted to the unmanned aerial vehicle 200.
  • the feature data collection and data transmission reference may be made to the explanation of the same parts in the foregoing, and details are not described herein again.
  • step S20 includes the steps of:
  • Feature data is transmitted to the UAV using a wireless repeater.
  • the communication module 20 includes a wireless repeater, and the step of transmitting the feature data to the unmanned aerial vehicle using the wireless repeater can be implemented by a wireless repeater.
  • the communication module 20 is configured to transmit feature data to the UAV 200 using a wireless repeater.
  • the communication module of the UAV 200 also includes a wireless repeater.
  • the wireless repeater can facilitate the long-distance data transmission between the data collection device 100 and the UAV 200, and the UAV 200 can be used instead of the manual acquisition.
  • the way of data can reduce the layout of transmission cables on the ground surface, reduce engineering construction and save costs.
  • the wireless repeater 24 of the data collection device 100 can be set to the station mode, and the relay of the station mode does not directly access the Internet. If accessing the Internet or accessing the relay of other station mode, the relay of the access point is required. Transit, accordingly, accordingly, the wireless repeater of the UAV 200 is set to the access point mode.
  • the frequency of the wireless repeater can be 2.4G Hz, 5.8G Hz, etc. according to engineering requirements, and the specific purpose is not limited, and the purpose thereof is mainly to ensure normal communication between the UAV 200 and the data collection device 100.
  • the data collection device and the data access terminal are taken as an execution object of the step, and the data collection method includes the following steps:
  • S50 Acquire feature data in the unmanned aerial vehicle.
  • the data collection system 1000 further includes a data access terminal 300.
  • the data access terminal 300 includes an acquisition module 310.
  • Step S50 may be implemented by the acquisition module 310, or the acquisition module 310 may be configured to acquire feature data in the UAV 200.
  • the data collection device 100 and the unmanned aerial vehicle 200 in the present embodiment include the data collection device 100 and the unmanned aerial vehicle 200 of all the above embodiments.
  • the data collection device 100 and the unmanned aerial vehicle 200 of all the above embodiments.
  • the related content refer to the explanation of the corresponding part in the above embodiment. It will not be expanded in detail here.
  • UAV 200 typically does not have an interface for data cable transmission.
  • the data access terminal 300 is used as a device for acquiring the feature data collected by the unmanned aerial vehicle 200, and can be carried by the flight operator and used to obtain the communication between the unmanned aerial vehicle 200 and the unmanned aerial vehicle 200 after the flight is completed. Characteristic data in the UAV 200.
  • step S50 includes the steps of:
  • the wireless repeater is used to acquire the feature data in the unmanned aerial vehicle.
  • the acquisition module 310 includes a wireless repeater.
  • the step of acquiring the feature data in the unmanned aerial vehicle using the wireless repeater can be implemented by a wireless repeater.
  • the acquisition module 310 is configured to acquire feature data in the UAV 200 using a wireless repeater.
  • the wireless repeater of the data access terminal 300 is set to the station mode, and thus, can be used for the wireless repeater with the unmanned aerial vehicle 200 set to the access point mode. Communicate with each other to complete data acquisition.
  • the data collection method further includes the steps of:
  • S60 issuing an acquisition signal of the simulated unmanned aerial vehicle
  • Step S10 includes the steps of:
  • the data access terminal 300 further includes a signal emulation module 320.
  • Step S60 can be implemented by the signal simulation module 320
  • step S62 can be implemented by the scanning module 40
  • step S14 can be implemented by the acquisition module 10.
  • the signal simulation module 320 is configured to send an acquisition signal of the simulated unmanned aerial vehicle 200
  • the scanning module 60 is configured to scan whether there is an acquisition signal of the simulated unmanned aerial vehicle 200 within a preset range
  • the acquisition module 10 uses The feature data is acquired when scanning the acquired signal of the simulated unmanned aerial vehicle 200.
  • the data collection device 100 is configured to collect data of a gas well or an oil well to determine whether the gas well or the oil well is in a safe state.
  • the data access terminal 300 can also be used to detect whether the working state of the data collection device 100 is normal.
  • the data access terminal 300 can transmit the acquired signal of the simulated unmanned aerial vehicle 200 through the signal simulation device 320 to simulate data acquisition by the unmanned aerial vehicle 200.
  • the data acquisition device 100 can be completed without dispatching the unmanned aerial vehicle 200 to fly.
  • the detection of the state reduces the frequency of use of the UAV 200 to complete routine detection of the data collection device 100.
  • the wireless repeater of the data access terminal 300 should also include an access point mode, and The access point mode and the station mode of the wireless repeater are simultaneously turned on at the time of detection.
  • the digital access terminal 300 includes two different modes of wireless repeaters to implement signals and data of the simulated unmanned aerial vehicle 200. Communication.
  • the data access terminal 300 further includes a relay switching module, and the relay switching module is configured to switch the access point mode and the station mode of the repeater according to the working requirements of the data access terminal 300.
  • the data collection method includes the following steps:
  • data acquisition system 1000 also includes a control station 400.
  • Steps S70 and S72 may be implemented by the control station 400, or the control station 400 may be used to set the route of the UAV 200 and to control the UAV 200 to fly along the route to a preset range.
  • the data collection device 100, the unmanned aerial vehicle 200, and the data access terminal 300 in the present embodiment include the data collection device 100, the unmanned aerial vehicle 200, and the data access terminal 300 of all the above embodiments. With reference to the explanation of the corresponding portions in the above embodiments, the detailed development is not repeated here.
  • control station 400 can include a remote control module and a planning module.
  • the engineering personnel knows the coordinates of the gas well or the oil well in advance, and plans the flight path of the unmanned aerial vehicle 200 according to the take-off point and the position of the oil well or the gas well on the satellite map interface of the control station 400, and generates a control module for transmitting the route file to the unmanned aerial vehicle 200. in.
  • the control module performs the route task according to the route file generated by the control station 400, and sequentially flies to the waypoints and stops at the waypoints near the gas well or the oil well, that is, within a predetermined range for oil well data collection.
  • control station 400 also has the functions of modifying the flight parameters of the unmanned aerial vehicle 200, such as flight speed, return altitude, safe takeoff voltage, etc., as well as detecting real-time data of the unmanned aerial vehicle 200, such as real-time position, power, and the like.
  • the remote control module and the planning module of the control station 400 can respectively adopt a data communication scheme of 2.4 GHz and 900 MHz with the UAV 200, which is not limited herein.
  • the route of the UAV 200 is facilitated by the control station 400, and during the flight, the data of the UAV 200 can be learned to modify the flight parameters of the UAV as needed.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据采集方法,用于采集煤层气井或石油井的特征数据。数据采集方法包括:获取煤层气井或石油井的特征数据(S10);及传输特征数据至无人飞行器(S20)。此外,还提供一种数据采集装置及数据采集系统。该数据采集方法、数据采集装置及数据采集系统,利用无人飞行器对地处复杂地形的煤层气井或石油井进行数据采集,操作简单方便,无人飞行器作业不受地理环境影响,减少地表面器材及电缆线路的布设,降低布设难度,节约成本。

Description

数据采集方法、数据采集装置及数据采集系统 技术领域
本发明涉及数据传输技术,特别涉及一种数据采集方法、数据采集装置及数据采集系统。
背景技术
工程人员需要采集煤层气井或石油井的数据以对其进行安全监控,然而,煤层气井或石油井通常分布在地形较为复杂的地区,常规的数据采集方案在地表面进行布设大量器材及电缆线路,由于地形的复杂,布设难度大、成本较高、数据采集作业难度大。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种数据采集方法、数据采集装置及数据采集系统。
一种数据采集方法,用于采集煤层气井或石油井的特征数据,所述数据采集方法包括:
获取所述煤层气井或所述石油井的特征数据;及
传输所述特征数据至无人飞行器。
一种数据采集方法,用于采集煤层气井或石油井的特征数据,所述数据采集方法包括:
获取所述煤层气井或所述石油井的特征数据;
传输所述特征数据至无人飞行器;及
获取所述无人飞行器中的所述特征数据。
一种数据采集装置,用于采集煤层气井或石油井的特征数据,所述数据采集装置包括:
采集模块,用于获取所述煤层气井或所述石油井的特征数据;及
通信模块,用于传输所述特征数据至无人飞行器。
一种数据采集系统,用于采集煤层气井或石油井的特征数据,所述数据采集系统包括:
所述的数据采集装置;
与所述数据采集装置通信的无人飞行器;及
包括获取模块的数据接入终端,所述获取模块用于获取所述无人飞行器中的所述特征数据。
本发明实施方式的数据采集方法、数据采集装置及数据采集系统,利用无人飞行器对地处复杂地形的煤层气井或石油井进行数据采集,操作简单方便,无人飞行器作业不受地理环境影响,减少地表面器材及电缆线路的布设,降低布设难度,节约成本。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的数据采集方法的流程示意图。
图2是本发明某些实施方式的数据采集系统的功能模块示意图。
图3是本发明某些实施方式的数据采集装置的功能模块示意图。
图4是本发明某些实施方式的数据采集方法的流程示意图。
图5是本发明某些实施方式的数据采集装置的功能模块示意图。
图6是本发明某些实施方式的数据采集方法的流程示意图。
图7是本发明某些实施方式的数据采集装置的功能模块示意图。
图8是本发明某些实施方式的数据采集方法的流程示意图。
图9是本发明某些实施方式的数据采集系统的状态示意图。
图10是本发明某些实施方式的数据采集方法的流程示意图。
图11是本发明某些实施方式的数据接入终端的功能模块示意图。
图12是本发明某些实施方式的数据采集系统的状态示意图。
图13是本发明某些实施方式的数据接入终端的功能模块示意图。
图14是本发明某些实施方式的数据采集方法的流程示意图。
图15是本发明某些实施方式的数据采集系统的状态示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介 间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,本发明实施方式的数据采集方法,用于采集煤层气井或石油井的特征数据,在该实施方式中,以数据采集装置作为步骤的执行对象为例,数据采集方法包括步骤:
S10:获取煤层气井或石油井的特征数据;
S20:传输特征数据至无人飞行器。
请参阅图2,本发明实施方式的数据采集装置100包括采集模块10及通信模块20。作为例子,本发明实施方式的数据采集方法可以由本发明实施方式的数据采集装置100实现,并可应用于数据采集系统1000,数据采集系统1000还包括无人机200。
其中,本发明实施方式的数据采集方法的步骤S10可以由采集模块10实现,步骤S20可以由通信模块20实现。也即是说,采集模块10用于获取煤层气井或石油井的特征数据。通信模块20用于传输特征数据至无人飞行器200。
煤层气井或石油井一般分布在山区或深林等地形复杂的地区,煤层气或石油的采集需要连续监测气井或油井的特征数据,以在数据发生异常时及时获知并处理,防止发生安全事故。
进一步地,特征数据包括煤层气井或石油井的温度、压力、产量及/或流体性质中的一个或多个。通过获取所述的特征数据中的一个或多个,工程人员可获知煤层气井或石油井的相应信息,进而判断气井或油井的工作状态是否正常。
请参阅图3,可以理解,由于需要对气井或油井的特征数据进行采集,因此,数据采集装置100通常布设在气井或油井处或其附近处,以方便数据采集。采集模块10通常可以是可编程逻辑控制器,气井或油井中通常布设有相应参数的传感器,例如压力模拟量传感器、温度数字传感器、气量传感器、液面传感器等,可编程逻辑控制器通过相应的接口如485接口、数字量输入接口、模数转换器接口等将气井或油井的模拟量输出、数字电平输 出、485总线输出等信号量转换为网络通讯协议的网口数据。无人飞行器200可包括控制模块与通信模块。其中数据采集装置100的通信模块20与无人飞行器200的通信模块相互通信,从而将数据传输至无人飞行器200。
本发明实施方式的数据采集方法及数据采集装置100及数据采集系统1000,利用无人飞行器200对地处复杂地形的煤层气井或石油井进行数据采集,操作简单方便,无人飞行器200作业不受地理环境影响,减少地表面器材及电缆线路的布设,降低布设难度,节约成本。
请参阅图4,在某些实施方式中,数据采集方法包括步骤:
S30:存储所述特征数据。
在一些示例中,数据采集方法进一步包括步骤:
S40:扫描预设范围内是否存在无人飞行器发出的采集信号;
S42:在扫描到采集信号时向无人飞行器发出数据传输请求;
步骤S20包括:
S22:在无人飞行器同意数据传输请求时向无人飞行器传输特征数据。
请参阅图5,在某些实施方式中,数据采集装置100还包括存储模块30。步骤S30可以由存储模块30实现。或者说存储模块30用于存储特征数据。
进一步地,数据采集装置100还包括扫描模块40及请求模块42。步骤S40可以由扫描模块40实现,步骤S42可以由请求模块42实现,步骤S22可以由通信模块20实现。或者说,扫描模块40用于扫描预设范围内是否存在无人飞行器200发出的采集信号,请求模块42用于在扫描到采集信号时向无人飞行器200发出数据传输请求,通信模块20用于在无人飞行器200同意数据传输请求时向无人飞行器200传输特征数据。
在这样的实施方式中,数据采集装置100首先通过采集模块10对特征数据采集,采集可以是间隔预定时间进行采集,也可以是持续进行采集,在此不做限制。存储模块30、扫描模块40、请求模块42可以与通信模块20共同组成数据采集装置100的网络存储部分。例如,存储模块30接收来自采集模块10的特征数据,并临时存储于存储模块30,存储模块可以是数据存储卡等存储介质,在此不做限制。网络存储部分还包括有网络通讯路由,网络通讯路由可以通过扫描模块40扫描其覆盖范围内是否存在无人飞行器200发出的数据采集信号,若存在采集信号,则说明无人飞行器200飞行至数据采集装置100的有效通信范围内,并希望进行数据采集动作。网络通讯路由会通过请求模块42向无人飞行器200发出数据传输请求,在无人飞行器200同意传输请求后,将存储模块30中的特征数据传输至无人飞行器200。相应地,无人飞行器200包括有存储模块,用于存储数据传输装置100发送的特征数据。
请参阅图6,在某些实施方式中,数据采集方法包括步骤:
S40’:扫描预设范围内是否存在无人飞行器发出的采集信号;
步骤S10包括步骤:
S12:在扫描到采集信号时获取煤层气井或石油井的特征数据;
S42’:向无人飞行器发出数据传输请求;
步骤S20包括步骤:
S22’:在无人飞行器同意数据传输请求时向无人飞行器传输特征数据。
请参阅图7,在某些实施方式中,步骤S40’可以由扫描模块40实现,步骤S12可以由采集模块10实现,步骤S42’可以由请求模块42实现,步骤S22’可以由通信模块20实现。或者说,扫描模块40用于扫描预设范围内是否存在无人飞行器200发出的采集信号,采集模块10用于在扫描到采集信号时获取煤层气井或石油井的特征数据,请求模块42用于向无人飞行器200发出数据传输请求,通信模块20在无人飞行器200同意数据传输请求时向无人飞行器200传输特征数据。
与前述实施方式关于无人飞机器200与数据采集装置100的数据传输方式不同的是,在本实施方式中,数据采集装置100不包括有存储模块30,因此,其获取特征数据仅在与无人飞行器200进行通信时进行,或者说仅当扫描模块40扫描到预定范围内存在无人飞行器200的采集信号时,进行特征数据的采集,并将采集的特征数据传输至无人飞行器200。特征数据采集及数据传输的实施方式,可参考前述相同部分的解释说明,在此不再赘述。
进一步地,在某些实施方式中,步骤S20包括步骤:
采用无线中继器传输特征数据至无人飞行器。
在某些实施方式中,通信模块20包括无线中继器,采用无线中继器传输特征数据至无人飞行器的步骤可由无线中继器实现。或者说,通信模块20用于采用无线中继器传输特征数据至无人飞行器200。
具体地,无人飞行器200的通信模块也包括无线中继器,采用无线中继器可以方便数据采集装置100与无人飞行器200进行远距离数据传输,一来可使用无人飞行器200代替人工获取数据的方式,二来,可以减少地表面的传输线缆的布设,减少工程施工,节省成本。
其中,数据采集装置的100的无线中继器24可设置为站模式,站模式的中继不直接接入互联网,若访问互联网或访问其他站模式的中继时需要接入点的中继进行中转,因此,相应地,无人飞行器200的无线中继器设置为接入点模式。
在本发明中,无线中继器的频率可根据工程需求采用2.4G赫兹、5.8G赫兹等,具体不做限制,其目的主要能够保证无人飞行器200与数据采集装置100进行正常通信。
请参阅图8,在某些实施方式中,以数据采集装置及数据接入终端为作为步骤的执行对象为例,数据采集方法包括步骤:
S10:获取煤层气井或石油井的特征数据;
S20:传输特征数据至无人飞行器;及
S50:获取无人飞行器中的特征数据。
请参阅图9,在某些实施方式中,数据采集系统1000还包括数据接入终端300。数据接入终端300包括获取模块310。步骤S50可以由获取模块310实现,或者说,获取模块310用于获取无人飞行器200中的特征数据。
需要说明的是,本实施方式中的数据采集装置100及无人飞行器200包括上述全部实施方式的数据采集装置100及无人飞行器200,相关内容请参照上述实施方式中的相应部分的解释说明,在此不再详细展开。
具体地,无人飞行器200通常不具有数据有线传输的接口。数据接入终端300作为获取无人飞行器200采集的特征数据的装置,可以由飞行作业人员携带,并用于在无人飞行器200完成飞行任务或者说采集任务返航后,通过与无人飞行器200通信获取无人飞行器200中的特征数据。
在某些实施方式中,步骤S50包括步骤:
采用无线中继器获取无人飞行器中的特征数据。
在某些实施方式中,获取模块310包括无线中继器。采用无线中继器获取无人飞行器中的特征数据的步骤可以由无线中继器实现。或者说,获取模块310用于采用无线中继器获取无人飞行器200中的特征数据。
如前述关于无线中继器的解释说明,可以理解,数据接入终端300的无线中继器设置为站模式,如此,可用于与设置为接入点模式的无人飞行器200的无线中继器相互通信,从而完成数据获取。
请参阅图10,在某些实施方式中,数据采集方法还包括步骤:
S60:发出模拟无人飞行器的采集信号;
S62:扫描预设范围内是否存在模拟无人飞行器的采集信号;
步骤S10包括步骤:
S14:在扫描到模拟无人飞行器的采集信号时获取特征数据。
请参阅图11,在某些实施方式中,数据接入终端300还包括信号模拟模块320。步骤S60可以由信号模拟模块320实现,步骤S62可以由扫描模块40实现,步骤S14可以由采集模块10实现。或者说,信号模拟模块320用于发出模拟无人飞行器200的采集信号,扫描模块60用于扫描预设范围内是否存在模拟无人飞行器200的采集信号,采集模块10用 于在扫描到模拟无人飞行器200的采集信号时获取特征数据。
请参阅图12及图13,具体地,可以理解,数据采集装置100用于采集气井或油井的数据进而判断气井或油井是否处于安全状态。相类似地,数据接入终端300还可用于检测数据采集装置100的工作状态是否正常。数据接入终端300可通过信号模拟装置320发出模拟无人飞行器200的采集信号,以模拟由无人飞行器200进行数据采集,如此,可无需派出无人飞行器200飞行即完成对数据采集装置100工作状态的检测,减少无人飞行器200的使用频率完成数据采集装置100的例行检测。
由于在检测过程中,数据接入终端300需模拟无人飞行器200的信号以与数据采集装置100进行通信,因此,数据接入终端300的无线中继器还应包括有接入点模式,并在检测时同时开启无线中继器的接入点模式与站模式,在一些示例中,数字接入终端300包括两个不同模式的无线中继器,以实现模拟无人飞行器200的信号及数据通信。
较佳地,数据接入终端300还包括有中继切换模块,中继切换模块可用于根据数据接入终端300的工作需求切换中继器的接入点模式与站模式。
请参阅图14,在某些实施方式中,以控制站作为执行对象为例,数据采集方法包括步骤:
S70:设定无人飞行器的航线;及
S72:控制无人飞行器沿航线飞行至预设范围内。
请参阅图15,在某些实施方式中,数据采集系统1000还包括控制站400。步骤S70及S72可以由控制站400实现,或者说,控制站400用于设定无人飞行器200的航线,并用于控制无人飞行器200沿航线飞行至预设范围内。
需要说明的是,本实施方式中的数据采集装置100、无人飞行器200及数据接入终端300包括上述全部实施方式的数据采集装置100、无人飞行器200及数据接入终端300,相关内容请参照上述实施方式中的相应部分的解释说明,在此不再详细展开。
具体地,控制站400可包括遥控模块及规划模块。工程人员预先获知气井或油井的坐标,并在控制站400的卫星地图界面上根据起飞点和油井或气井的位置规划无人飞行器200飞行的航线,生成航线文件发送至无人飞行器200的控制模块中。控制模块根据控制站400生成的航线文件执行航线任务,按顺序飞往这些航点并在气井或油井附近的航点也即是预定范围内停留进行油井数据采集。同时控制站400也具备修改无人飞行器200的飞行参数,例如飞行速度,返航高度,安全起飞电压等,以及检测无人飞行器200的实时数据,例如实时位置、电量等的功能。
较佳地,控制站400的遥控模块及规划模块可分别与无人飞行器200采用2.4G赫兹及900M赫兹的数据通信方案,在此不做限制。
如此,通过控制站400便于制定无人飞行器200的航线,并在飞行过程中,可以获知无人飞行器200的数据,以根据需求修改无人机的飞行参数。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该 程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种数据采集方法,用于采集煤层气井或石油井的特征数据,其特征在于,所述数据采集方法包括步骤:
    获取所述煤层气井或所述石油井的特征数据;及
    传输所述特征数据至无人飞行器。
  2. 如权利要求1所述的数据采集方法,其特征在于,所述数据采集方法包括:
    存储所述特征数据。
  3. 如权利要求2所述的数据采集方法,其特征在于,所述数据采集方法包括步骤:
    扫描预设范围内是否存在所述无人飞行器发出的采集信号;及
    在扫描到所述采集信号时向所述无人飞行器发出数据传输请求;
    所述传输所述特征数据至无人飞行器的步骤包括:
    在所述无人飞行器同意所述数据传输请求时向所述无人飞行器传输所述特征数据。
  4. 如权利要求1所述的数据采集方法,其特征在于,所述数据采集方法包括步骤:
    扫描预设范围内是否存在所述无人飞行器发出的采集信号;
    所述获取所述煤层气井或所述石油井的特征数据的步骤包括:
    在扫描到所述采集信号时获取所述煤层气井或所述石油井的特征数据;
    向所述无人飞行器发出数据传输请求;
    所述传输所述特征数据至无人飞行器的步骤包括:
    在所述无人飞行器同意所述数据传输请求时向所述无人飞行器传输所述特征数据。
  5. 如权利要求1所述的数据采集方法,其特征在于,所述传输所述特征数据至无人飞行器的步骤包括:
    采用无线中继器传输所述特征数据至所述无人飞行器。
  6. 一种数据采集方法,用于采集煤层气井或石油井的特征数据,其特征在于,所述数据采集方法包括:
    获取所述煤层气井或所述石油井的特征数据;
    传输所述特征数据至无人飞行器;及
    获取所述无人飞行器中的所述特征数据。
  7. 如权利要求6所述的数据采集方法,其特征在于,所述数据采集方法还包括:
    发出模拟所述无人飞行器的采集信号;及
    扫描预设范围内是否存在所述模拟所述无人飞行器的采集信号;
    所述获取所述煤层气井或所述石油井的特征步骤包括:
    在扫描到所述模拟所述无人飞行器的采集信号时获取所述特征数据。
  8. 如权利要求6所述的数据采集方法,其特征在于,所述数据采集方法包括:
    存储所述特征数据。
  9. 如权利要求8所述的数据采集方法,其特征在于,所述数据采集方法包括步骤:
    扫描预设范围内是否存在所述无人飞行器发出的采集信号;及
    在扫描到所述采集信号时向所述无人飞行器发出数据传输请求;
    所述传输所述特征数据至无人飞行器的步骤包括:
    在所述无人飞行器同意所述数据传输请求时向所述无人飞行器传输所述特征数据。
  10. 如权利要求6所述的数据采集方法,其特征在于,所述数据采集方法包括步骤:
    扫描预设范围内是否存在所述无人飞行器发出的采集信号;
    所述获取所述煤层气井或所述石油井的特征数据的步骤包括:
    在扫描到所述采集信号时获取所述煤层气井或所述石油井的特征数据;
    向所述无人飞行器发出数据传输请求;
    所述传输所述特征数据至无人飞行器的步骤包括:
    在所述无人飞行器同意所述数据传输请求时向所述无人飞行器传输所述特征数据。
  11. 如权利要求6所述的数据采集方法,其特征在于,所述传输所述特征数据至无人飞行器的步骤包括:
    采用无线中继器传输所述特征数据至所述无人飞行器。
  12. 如权利要求6所述的数据采集方法,其特征在于,所述获取所述无人飞行器中的特征数据的步骤包括:
    采用无线中继器获取所述无人飞行器中的特征数据。
  13. 如权利要求9或10所述的数据采集方法,其特征在于,所述数据采集方法还包括步骤:
    设定所述无人飞行器的航线;及
    控制所述无人飞行器沿所述航线飞行至所述预设范围内。
  14. 一种数据采集装置,用于采集煤层气井或石油井的特征数据,其特征在于,所述数据采集装置包括:
    采集模块,用于获取所述煤层气井或所述石油井的特征数据;及
    通信模块,用于传输所述特征数据至无人飞行器。
  15. 如权利要求14所述的数据采集装置,其特征在于,所述数据采集装置还包括:
    存储模块,用于存储所述特征数据。
  16. 如权利要求15所述的数据采集装置,其特征在于,所述数据采集装置包括:
    扫描模块,用于扫描预设范围内是否存在所述无人飞行器发出的采集信号;及
    请求模块,用于在扫描到所述采集信号时向所述无人飞行器发出数据传输请求;
    所述通信模块用于在所述无人飞行器同意所述数据传输请求时向所述无人飞行器传输所述特征数据。
  17. 如权利要求14所述的数据采集方法,其特征在于,所述数据采集装置包括:
    扫描模块,用于扫描预设范围内是否存在所述无人飞行器发出的采集信号;
    所述采集模块用于在扫描到所述采集信号时获取所述煤层气井或所述石油井的特征数据;
    请求模块,用于向所述无人飞行器发出数据传输请求;
    所述通信模块用于在所述无人飞行器同意所述数据传输请求时向所述无人飞行器传输所述特征数据。
  18. 如权利要求14所述的数据采集装置,其特征在于,所述通信模块包括无线中继器。
  19. 如权要求14所述的数据采集方法,其特征在于,所述特征数据包括所述煤层气井或所述石油井的温度、压力、产量及/或流体性质中的一个或多个。
  20. 一种数据采集系统,用于采集煤层气井或石油井的特征数据,其特征在于,所述数据采集系统包括:
    如权利要求14-19任意一项所述的数据采集装置;
    与所述数据采集采集装置通信的无人飞行器;及
    包括获取模块的数据接入终端,所述获取模块用于获取所述无人飞行器中的所述特征数据。
  21. 如权利要求20所述的数据采集系统,其特征在于,所述数据接入终端还包括:
    信号模拟模块,用于发出模拟所述无人飞行器的采集信号;
    所述扫描模块用于扫描预设范围内是否存在所述模拟所述无人飞行器发出的采集信号;
    所述采集模块用于在所述扫描模块在预设范围内扫描到所述模拟所述无人飞行器的采集信号时获取所述特征数据。
  22. 如权利要求20所述的数据采集系统,其特征在于,所述获取模块包括无线中继器。
  23. 如权利要求20所述的数据采集系统,其特征在于,所述数据采集系统还包括:
    控制站,所述控制站用于设定所述无人飞行器的航线,并用于控制所述无人飞行器沿所述航线飞行至所述预设范围内。
PCT/CN2016/105505 2016-11-11 2016-11-11 数据采集方法、数据采集装置及数据采集系统 WO2018086074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/105505 WO2018086074A1 (zh) 2016-11-11 2016-11-11 数据采集方法、数据采集装置及数据采集系统
CN201680003350.0A CN107438871A (zh) 2016-11-11 2016-11-11 数据采集方法、数据采集装置及数据采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105505 WO2018086074A1 (zh) 2016-11-11 2016-11-11 数据采集方法、数据采集装置及数据采集系统

Publications (1)

Publication Number Publication Date
WO2018086074A1 true WO2018086074A1 (zh) 2018-05-17

Family

ID=60458669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105505 WO2018086074A1 (zh) 2016-11-11 2016-11-11 数据采集方法、数据采集装置及数据采集系统

Country Status (2)

Country Link
CN (1) CN107438871A (zh)
WO (1) WO2018086074A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209100A (zh) * 2019-07-01 2019-09-06 山东广域科技有限责任公司 基于无人智能巡航机的井场非接触式数据采集系统
CN113225140A (zh) * 2021-04-20 2021-08-06 中国长江电力股份有限公司 一种用于模拟量信号远距离抗电磁干扰传输的模拟量孪生信号接收器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459527A (zh) * 2018-04-12 2018-08-28 澳门培正中学 一种基于网页的水下探测器控制方法及系统
CN108563596B (zh) * 2018-04-18 2021-06-08 天津津航计算技术研究所 一种便携式飞机1188a接口信号采集与检测装置
CN111105611A (zh) * 2019-09-16 2020-05-05 领亚电子科技股份有限公司 一种地理灾害信息激光传输飞行数据采集器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514624A (zh) * 2008-03-05 2009-08-26 中国科学院自动化研究所 嵌入式油井参数实时采集系统
CN101650201A (zh) * 2008-08-13 2010-02-17 中国科学院自动化研究所 一种地面信息采集系统及方法
CN204833672U (zh) * 2015-08-11 2015-12-02 苏交科集团股份有限公司 一种基于无人机的桥梁监测数据采集系统
CN105988475A (zh) * 2015-02-11 2016-10-05 阜阳师范学院 一种无人机农田信息采集系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201383212Y (zh) * 2009-05-05 2010-01-13 中国石油集团川庆钻探工程有限公司 油气井地面测试计量数据采集与传输装置
CN105676165B (zh) * 2015-12-30 2020-07-24 联想(北京)有限公司 一种检测方法、检测系统及检测设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514624A (zh) * 2008-03-05 2009-08-26 中国科学院自动化研究所 嵌入式油井参数实时采集系统
CN101650201A (zh) * 2008-08-13 2010-02-17 中国科学院自动化研究所 一种地面信息采集系统及方法
CN105988475A (zh) * 2015-02-11 2016-10-05 阜阳师范学院 一种无人机农田信息采集系统
CN204833672U (zh) * 2015-08-11 2015-12-02 苏交科集团股份有限公司 一种基于无人机的桥梁监测数据采集系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209100A (zh) * 2019-07-01 2019-09-06 山东广域科技有限责任公司 基于无人智能巡航机的井场非接触式数据采集系统
CN113225140A (zh) * 2021-04-20 2021-08-06 中国长江电力股份有限公司 一种用于模拟量信号远距离抗电磁干扰传输的模拟量孪生信号接收器
CN113225140B (zh) * 2021-04-20 2022-09-16 中国长江电力股份有限公司 一种用于模拟量信号远距离抗电磁干扰传输的模拟量孪生信号接收器

Also Published As

Publication number Publication date
CN107438871A (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2018086074A1 (zh) 数据采集方法、数据采集装置及数据采集系统
US9913102B2 (en) Operating unmanned aerial vehicles to maintain or create wireless networks
US8335601B2 (en) System and method of automated fault analysis and diagnostic testing of an aircraft
DE112018003945T5 (de) Verfahren und vorrichtungen zur bereitstellung von drahtlos-aktualisierungen zu sensorknoten des internets der dinge
EP3523995B1 (en) Method and system for remote processing and analysis of industrial asset inspection data
EP2905229A1 (en) Virtual aircraft network
RU2678760C2 (ru) Система беспроводных топливных датчиков
CN106919183A (zh) 统一控制的多功能无人机群组
US20090228195A1 (en) Discrepancy reporting in electronic map applications
CN110723303A (zh) 辅助决策的方法、装置、设备、存储介质及系统
McAree et al. Quantifying situation awareness for small unmanned aircraft: Towards routine Beyond Visual Line of Sight operations
KR102447519B1 (ko) 안전진단 및 감시순찰을 위한 군집로봇 관제 시스템 및 그 운용방법
Young et al. Flight Testing In-Time Safety Assurance Technologies for UAS Operations
DE102021110017A1 (de) Feldgerät mit ortsangepasster Parameterermittlung und/oder Messwertermittlung
CN110011694A (zh) 用于电力线连接的物理安全的方法和设备
KR102065271B1 (ko) 드론을 이용한 항공분야 전파 및 영상분석 방법, 및 장치
CN109213114A (zh) 车载设备配置方法和装置
CN109799841A (zh) 一种无人机地面控制系统、设备和存储介质
CN104699049A (zh) 一种4g通讯实现桥梁、隧道的现场监测方法
CN114067613B (zh) 一种飞行校验科目的飞行线路自动生成系统
Balsi et al. Establishing new foundations for the use of remotely-piloted aircraft systems for civilian applications
Stefani et al. From the Concept of Operations towards an Operational Design Domain for safe AI in Aviation
CN114063631A (zh) 一种用于实现全自动飞行校验的无人机系统和校验系统
CN109900505B (zh) 一种可配置的多功能近地告警测试设备
KR101483100B1 (ko) 항공기 연료관리절차 훈련 수행이 가능한 비행시뮬레이터 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 21/10/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 16921453

Country of ref document: EP

Kind code of ref document: A1