WO2018085988A1 - A method of providing a graphene coating on a carbon steel substrate - Google Patents

A method of providing a graphene coating on a carbon steel substrate Download PDF

Info

Publication number
WO2018085988A1
WO2018085988A1 PCT/CN2016/105059 CN2016105059W WO2018085988A1 WO 2018085988 A1 WO2018085988 A1 WO 2018085988A1 CN 2016105059 W CN2016105059 W CN 2016105059W WO 2018085988 A1 WO2018085988 A1 WO 2018085988A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon steel
steel substrate
heating
sccm
graphene
Prior art date
Application number
PCT/CN2016/105059
Other languages
French (fr)
Inventor
Haiyong Cai
Chunyang DUAN
Lene Hviid
Li QIAO
Yu Wang
Original Assignee
Shell Internationale Research Maatschappij B.V.
Shell Oil Company
Institute of Process Engineering, Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V., Shell Oil Company, Institute of Process Engineering, Chinese Academy of Science filed Critical Shell Internationale Research Maatschappij B.V.
Priority to PCT/CN2016/105059 priority Critical patent/WO2018085988A1/en
Publication of WO2018085988A1 publication Critical patent/WO2018085988A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Definitions

  • the present invention relates to a method of providing a graphene coating on a carbon steel substrate.
  • US20130251998 discloses a steel sheet coated with graphene and a method for manufacturing the same.
  • the method for manufacturing the graphene-coated sheet according to US20130251998 comprises the steps of: washing a surface of a steel sheet in a vacuum container with inert gas ions; and forming a graphene layer on the steel sheet by heating the washed steel sheet and injecting hydrocarbon into the vacuum container to dissociatively absorb the hydrocarbon onto the steel sheet.
  • US20150118411 discloses a method of producing a graphene coating on a stainless steel surface, the method comprising the steps of electrochemically polishing of the stainless steel surface, and heating the polished stainless steel surface in contact with a carbon precursor.
  • a problem of the above known and other methods is that under certain circumstances no graphene coating is formed on the metal substrate, in particular if the metal substrate is low in Ni content, such as carbon steel comprising less than 5.0 wt. %Ni.
  • One or more of the above or other objects can be achieved by providing a method of providing a graphene coating on a carbon steel substrate, the method at least comprising the steps of:
  • step (b) heating the carbon steel substrate as provided in step (a) in an oxygen-free chamber in the presence of a carbon source to a temperature above 800°C, thereby obtaining a heated carbon steel substrate;
  • step (c) decreasing the surface temperature of the heated carbon steel substrate as obtained in step (b) to lower than 700°C at a cooling rate of at least 1°C/s, thereby obtaining a cooled graphene-coated carbon steel substrate.
  • a carbon steel substrate is provided.
  • the carbon steel substrate provided in step (a) comprises at least 0.1 wt. %carbon (C) , preferably at least 0.5 wt. %.
  • the carbon steel substrate comprises at most 2.5 wt. %carbon (C) , preferably less than 2.2 wt. %, more preferably less than 2.11 wt. %.
  • the carbon steel substrate provided in step (a) comprises at most 9.0 wt. %Ni, preferably less than 5.0 wt. %, more preferably less than 1.0 wt.
  • the carbon steel substrate typically contains at least 90 wt. %Fe.
  • Other components of the carbon steel may e.g. be Si, Cu, Mn, P, which are typically present as trace components.
  • the carbon steel substrate as used according to the present invention has a yield strength of at least 50 KSI (kilopounds per square inch) and includes steel grades such as X60 and X70.
  • the carbon steel substrate is washed (e.g. using dichloromethane to remove protection oil) and polished (e.g. to remove any rust spots) .
  • dichloromethane to remove protection oil
  • polished e.g. to remove any rust spots
  • step (b) the carbon steel substrate as provided in step (a) is heated in an oxygen-free chamber in the presence of a carbon source to a temperature above 800°C, thereby obtaining a heated carbon steel substrate.
  • the surface temperature of the heated carbon steel substrate is subsequently decreased in step (c) thereby obtaining a graphene coating on the carbon steel substrate.
  • the carbon steel substrate as provided in step (a) is subjected in step (b) to Chemical Vapour Deposition (CVD) , preferably continuous CVD.
  • CVD Chemical Vapour Deposition
  • the growing of the graphene coating in the method according to the present invention is preferably by means of CVD, other coating methods may in principle be used.
  • the graphene coating comprises 1-20 graphene layers, preferably 1-10 graphene layers.
  • the coating method may be a continuous or a batch process. In case the coating process is a continuous CVD process, the movement rate is typically from 0.1-2.0 m/min, preferably below 0.5 m/min, more preferably below 0.3 m/min.
  • oxygen-free is meant a concentration of less than 0.1 vol. %O 2 , preferably less than 0.05 vol. %O 2 , and preferably no O 2 at all.
  • the heating in step (b) is to above 850°C, more preferably above 900°C.
  • the heating in step (b) is to below 1400°C, preferably below 1200°C, more preferably below 1000°C.
  • the heating in step (b) is performed at a pressure of from 10 to 1000 Pa, preferably above 20 Pa, and preferably below 500 Pa, more preferably below 100 Pa.
  • the heating in step (b) is performed in the presence of H 2 (hydrogen) .
  • the heating in step (b) is performed at an H 2 flow rate of from 1 to 500 sccm (Standard Cubic Centimeter per Minute) , preferably above 10 sccm, more preferably above 20 sccm and preferably below 200 sccm, more preferably below 100 sccm, even more preferably below 50 sccm.
  • the reaction zone is typically purged with an inert gas such nitrogen or argon.
  • the presence of the carbon source during the heating of the carbon steel substrate in the oxygen-free chamber of step (b) can be obtained in various ways.
  • the presence of the carbon source is obtained by injecting the carbon source (rather than pre-coating the substrate or the like) , in particular as a gas.
  • the carbon source is selected from C1-C8 alkanes and olefins, preferably C1-C6 alkanes and olefins, more preferably C1-C6 alkanes.
  • the flow rate of the carbon source is typically from 0.001 to 500 sccm, preferably above 1 sccm, more preferably above 2 sccm and preferably below 50 sccm, more preferably below 25 sccm [cf. Ex. 1: 20 sccm] .
  • a temperature above 800°C is done for a period of between 3 and 400 minutes, preferably above 5 minutes and preferably below 50 minutes, more preferably below 25 minutes.
  • an intermediate ( ‘buffer’ ) coating layer is applied on the carbon steel substrate before allowing to grow the graphene coating in step (b) .
  • Suitable methods of applying a buffer layer include CVD, electroplating, chemical plating, sputtering, thermal evaporating, etc.
  • the buffer layer has a thickness of 0.1-10 ⁇ m and usually contains Ni, Cu, Si, etc. Of course, two or more buffer layers may be present.
  • the carbon steel substrate contains no buffer layer (as a result of which the graphene is coated directly onto the carbon steel substrate) .
  • step (c) the surface temperature of the heated carbon steel substrate as obtained in step (b) is decreased to lower than 700°C at a cooling rate of at least 1°C/s, thereby obtaining a cooled graphene-coated carbon steel substrate.
  • US20150118411 does not make use of active cooling as used in the present invention; it is estimated that the cooling according to US20150118411 will be in the order of magnitude of 5°C/m ( ⁇ 0.08°C/s) , i.e. significantly less than 1°C/saccording to the present invention.
  • the heated carbon steel substrate as obtained in step (b) is cooled to below 600°C, more preferably to below 500°C, even more preferably to below 400°C, yet even more preferably to below 300°C or even below 250°C, at the cooling rate of at least 1°C/s.
  • the cooling rate is at least 2°C/s, preferably at least 5°C/s, more preferably at least 8°C/s.
  • the relatively fast decrease in temperature may be achieved in various ways, such as by using fans, additional cooling in CVD device, etc.
  • the temperature decrease of the surface temperature may be monitored, e.g. using a conventional thermal sensor such as a thermal couple.
  • the cooled graphene-coated carbon steel substrate will be subjected to characterization and evaluation.
  • conventional methods such as Raman spectrum, NSS (neutral salt spray; e.g. according to ISO 9227: 2012) , Raman mapping, optical microscope, SEM (Scanning Electron Microscope) and XRD and electrochemistry may be used.
  • the apparatus (generally referred to with reference number 1) comprises a chamber 2 (defined by a quartz tube) , a movable heating zone 3, an air cooling system 4 (external to the chamber 2) , the (cleaned) carbon steel substrates 5, a temperature sensor (not shown) for determining the surface temperature of the substrates 5, a container 6 for liquid carbon source (i.c. hexane) , a mechanical vacuum pump 7 and a gas flow meter 8 for controlling the composition of the carrier gas.
  • Argon gas was first injected into the chamber 2 to remove the O 2 in the chamber 2. Then the pressure in the chamber was reduced to low pressure (10 Pa) using the pump 7. Then, whilst introducing Ar/H 2 at a rate of 200 sccm/100 sccm, the carbon steel substrates were heated to 980°C at a heating rate of 10°C/min.
  • hexane vapour (stored in the container 6 as hexane liquid) was introduced as a carbon source at a flow rate of 20 sccm, due to the low pressure in the heating chamber 2.
  • the hexane injection was 7 min and the pressure in the chamber 2 was maintained at 50 Pa.
  • the temperature of the chamber was rapidly reduced to 800°C at a rate of 5°C/sby moving the movable heating zone 3 to the distal end of the chamber 3 and by applying active cooling using the air cooling system 4.
  • This active cooling at a rate of 5°C/s was continued until the surface temperature (as measured using a thermal couple; commercially available from Shanghai Jvj ing Precision Instrument Manufacturing Co.Ltd. (Shanghai, China) ) of the carbon steel substrates 5 reached a temperature of 680°C.
  • the carbon steel substrates 5 were allowed to cool down further in the chamber 2, whilst the air cooling system 4 was turned off.
  • the graphene coating on the carbon steel substrates 5 was examined using XRD and Raman tests.
  • a carbon peak at 26.46° confirmed the growth of graphene on the carbon steel substrates 5.
  • Raman spectra and Raman mapping methods were used to evaluate the quality of the as-grown graphene.
  • the characteristic peaks of graphene were clearly present in the Raman spectra with sharp G peak and 2D peaks and a very low D peak; this demonstrated the low defects in and high crystallization of the as-grown multi-layer graphene coating.
  • Example 1 The procedure of Example 1 was repeated, except for that no active cooling was applied, i.e. the air cooling system 4 was not used. It was confirmed by the Raman spectra that no graphene had grown on the surface of the carbon steel substrates.
  • the anti-corrosion performance of the graphene-coated carbon steel substrates of Example 1 were evaluated by an NSS (Neutral Salt Spray) test and an electrochemical test, and compared with carbon steel substrates without graphene coating.
  • the carbon steel substrates were subjected, in accordance with ISO 9227: 2012, to a NSS solution of 5 wt. %NaCl, with pH of 6.5-7.2 adjusted by HCl.
  • SEM Sccanning Electron Microscope
  • the corrosion rates of the carbon steel samples with and without graphene coating were calculated by corrosion current as obtained from Tafel-plots in an electrochemical test.
  • electrochemical test a 3-electrode cell was used which used the carbon steel samples as the work electrode and a saturated calomel (SCE) as the reference electrode and a platinum sheet as counter electrode.
  • SCE saturated calomel
  • the exposed area of the working electrode was 1x1 cm 2 and a (CHI 660D) electrochemical workstation was used to provide the required potential. All tests were carried out in a 5 wt. %NaCl solution.
  • EIS electrochemical impedance spectroscopy
  • the graphene coating reduced the corrosion rate by 54.8%, which confirmed the good anti-corrosion ability of the as-grown graphene coating.
  • the present invention surprisingly provides a method for providing a graphene coating on a Ni-free carbon steel substrate. It has surprisingly been found according to the present invention that active cooling helped in obtaining a graphene-coated carbon steel substrate having desirable anti-corrosion properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method of providing a graphene coating on a carbon steel substrate, at least comprising the steps of (a) providing a carbon steel substrate; (b) heating the carbon steel substrate as provided in step (a) in an oxygen-free chamber in the presence of a carbon source to a temperature above 800℃, thereby obtaining a heated carbon steel substrate; (c) decreasing the surface temperature of the heated carbon steel substrate as obtained in step (b) to lower than 700℃ at a cooling rate of at least 1℃/s, thereby obtaining a cooled graphene-coated carbon steel substrate. The graphene coating reduced the corrosion rate by 54.8%, which confirm the good anti-corrosion ability of the as-grown graphene coating.

Description

A METHOD OF PROVIDING A GRAPHENE COATING ON A CARBON STEEL SUBSTRATE
The present invention relates to a method of providing a graphene coating on a carbon steel substrate.
Various methods of providing a graphene coating on a metal substrate are known in the art.
As an example, US20130251998 discloses a steel sheet coated with graphene and a method for manufacturing the same. The method for manufacturing the graphene-coated sheet according to US20130251998 comprises the steps of: washing a surface of a steel sheet in a vacuum container with inert gas ions; and forming a graphene layer on the steel sheet by heating the washed steel sheet and injecting hydrocarbon into the vacuum container to dissociatively absorb the hydrocarbon onto the steel sheet.
Furthermore, US20150118411 discloses a method of producing a graphene coating on a stainless steel surface, the method comprising the steps of electrochemically polishing of the stainless steel surface, and heating the polished stainless steel surface in contact with a carbon precursor.
A problem of the above known and other methods is that under certain circumstances no graphene coating is formed on the metal substrate, in particular if the metal substrate is low in Ni content, such as carbon steel comprising less than 5.0 wt. %Ni.
It is an object of the present invention to overcome or minimize the above problem.
It is a further object of the present invention to provide a method of providing a graphene coating on a carbon steel substrate, in particular on a carbon steel substrate that is low in Ni content (such as carbon steel comprising less than 5.0 wt. %Ni) .
One or more of the above or other objects can be achieved by providing a method of providing a graphene coating on a carbon steel substrate, the method at least comprising the steps of:
(a) providing a carbon steel substrate;
(b) heating the carbon steel substrate as provided in step (a) in an oxygen-free chamber in the presence of a carbon source to a temperature above 800℃, thereby obtaining a heated carbon steel substrate;
(c) decreasing the surface temperature of the heated carbon steel substrate as obtained in step (b) to lower than 700℃ at a cooling rate of at least 1℃/s, thereby obtaining a cooled graphene-coated carbon steel substrate.
It has surprisingly been found according to the present invention that no proper graphene coating was formed on the carbon steel substrate (in particular when low or free in Ni content; without wanting to be bound to any specific theory it is believed that the presence of Ni helps in the growing of a graphene coating on a metal substrate) , unless the surface temperature of the heated carbon steel substrate was decreased relatively quickly.
In step (a) of the method according to the present invention, a carbon steel substrate is provided. The person skilled in the art will readily understand that the carbon steel substrate is not particularly limited. Preferably, the carbon steel substrate provided in step (a) comprises at least 0.1 wt. %carbon (C) , preferably at  least 0.5 wt. %. Typically, the carbon steel substrate comprises at most 2.5 wt. %carbon (C) , preferably less than 2.2 wt. %, more preferably less than 2.11 wt. %. Further it is preferred that the carbon steel substrate provided in step (a) comprises at most 9.0 wt. %Ni, preferably less than 5.0 wt. %, more preferably less than 1.0 wt. %, even more preferably less than 0.5 wt. %or even less than 0.1 wt. % (or even Ni-free) . Also, the carbon steel substrate typically contains at least 90 wt. %Fe. Other components of the carbon steel may e.g. be Si, Cu, Mn, P, which are typically present as trace components.
It is preferred according to the present invention that commonly used carbon steel grades are used, such as X60 and X70. Hence, typically, the carbon steel substrate as used according to the present invention has a yield strength of at least 50 KSI (kilopounds per square inch) and includes steel grades such as X60 and X70.
Usually, before the heating in step (b) , the carbon steel substrate is washed (e.g. using dichloromethane to remove protection oil) and polished (e.g. to remove any rust spots) . As the person skilled in the art is familiar with how to do this, this is not discussed here in detail.
In step (b) , the carbon steel substrate as provided in step (a) is heated in an oxygen-free chamber in the presence of a carbon source to a temperature above 800℃, thereby obtaining a heated carbon steel substrate. As will be further discussed below, the surface temperature of the heated carbon steel substrate is subsequently decreased in step (c) thereby obtaining a graphene coating on the carbon steel substrate.
As the person skilled in the art is generally familiar with the process of forming a graphene coating  on a metal substrate, this is not discussed here in detail.
Preferably the carbon steel substrate as provided in step (a) is subjected in step (b) to Chemical Vapour Deposition (CVD) , preferably continuous CVD. Although the growing of the graphene coating in the method according to the present invention is preferably by means of CVD, other coating methods may in principle be used. Usually, the graphene coating comprises 1-20 graphene layers, preferably 1-10 graphene layers. The coating method may be a continuous or a batch process. In case the coating process is a continuous CVD process, the movement rate is typically from 0.1-2.0 m/min, preferably below 0.5 m/min, more preferably below 0.3 m/min.
According to the present invention, with the term ‘oxygen-free’ is meant a concentration of less than 0.1 vol. %O2, preferably less than 0.05 vol. %O2, and preferably no O2 at all.
Preferably, the heating in step (b) is to above 850℃, more preferably above 900℃. Typically, the heating in step (b) is to below 1400℃, preferably below 1200℃, more preferably below 1000℃.
Further, it is preferred that the heating in step (b) is performed at a pressure of from 10 to 1000 Pa, preferably above 20 Pa, and preferably below 500 Pa, more preferably below 100 Pa.
Also, it is preferred that the heating in step (b) is performed in the presence of H2 (hydrogen) . Preferably, the heating in step (b) is performed at an H2 flow rate of from 1 to 500 sccm (Standard Cubic Centimeter per Minute) , preferably above 10 sccm, more preferably above 20 sccm and preferably below 200 sccm, more preferably  below 100 sccm, even more preferably below 50 sccm. In order to obtain absence of oxygen, the reaction zone is typically purged with an inert gas such nitrogen or argon.
The person skilled in the art will readily understand that the presence of the carbon source during the heating of the carbon steel substrate in the oxygen-free chamber of step (b) can be obtained in various ways. Preferably the presence of the carbon source is obtained by injecting the carbon source (rather than pre-coating the substrate or the like) , in particular as a gas. Furthermore, it is preferred that the carbon source is selected from C1-C8 alkanes and olefins, preferably C1-C6 alkanes and olefins, more preferably C1-C6 alkanes. Typically, the flow rate of the carbon source is typically from 0.001 to 500 sccm, preferably above 1 sccm, more preferably above 2 sccm and preferably below 50 sccm, more preferably below 25 sccm [cf. Ex. 1: 20 sccm] .
Preferably, the heating in step (b) a temperature above 800℃ is done for a period of between 3 and 400 minutes, preferably above 5 minutes and preferably below 50 minutes, more preferably below 25 minutes.
If desired, an intermediate ( ‘buffer’ ) coating layer is applied on the carbon steel substrate before allowing to grow the graphene coating in step (b) . Suitable methods of applying a buffer layer include CVD, electroplating, chemical plating, sputtering, thermal evaporating, etc. Typically, the buffer layer has a thickness of 0.1-10 μm and usually contains Ni, Cu, Si, etc. Of course, two or more buffer layers may be present. However, preferably, the carbon steel substrate contains no buffer layer (as a result of which the graphene is coated directly onto the carbon steel substrate) .
In step (c) , the surface temperature of the heated carbon steel substrate as obtained in step (b) is decreased to lower than 700℃ at a cooling rate of at least 1℃/s, thereby obtaining a cooled graphene-coated carbon steel substrate.
As already mentioned above, it has surprisingly been found according to the present invention that no proper graphene coating was formed on the carbon steel substrate, unless the surface temperature of the heated carbon steel substrate was decreased relatively quickly by active cooling. In this respect it is noted that a normal temperature decrease (i.e. when no active cooling is applied) is significantly less than 1℃/s. In this respect it is noted that US20150118411 refers (e.g. in claim 20 and paragraph [0032] ) to “quickly cooling the stainless steel surface” (after heating thereof) ; however, paragraph [0073] clearly indicates that “…Herein, “quickly cooled” does not mean quenching of the surface. Quickly cooling rather refers to cooling rates such as those obtained by turning off the heat source and continuing circulating said atmosphere. ” . Hence, US20150118411 does not make use of active cooling as used in the present invention; it is estimated that the cooling according to US20150118411 will be in the order of magnitude of 5℃/m (~0.08℃/s) , i.e. significantly less than 1℃/saccording to the present invention.
The person skilled in the art will readily understand that further cooling to ambient temperature may take place, but this does not have to occur at the fast temperature decreasing speed (and using active cooling) as indicated in step (c) . However, preferably, the heated carbon steel substrate as obtained in step (b) is cooled  to below 600℃, more preferably to below 500℃, even more preferably to below 400℃, yet even more preferably to below 300℃ or even below 250℃, at the cooling rate of at least 1℃/s. Furthermore it is preferred that the cooling rate (either to 600℃, 500℃, 400℃, 300℃ or 250℃, or even below that) is at least 2℃/s, preferably at least 5℃/s, more preferably at least 8℃/s.
The person skilled in the art will readily understand that the relatively fast decrease in temperature (by active cooling) may be achieved in various ways, such as by using fans, additional cooling in CVD device, etc. Also, if desired, the temperature decrease of the surface temperature may be monitored, e.g. using a conventional thermal sensor such as a thermal couple.
Typically, after cooling down, the cooled graphene-coated carbon steel substrate will be subjected to characterization and evaluation. For this purpose, conventional methods such as Raman spectrum, NSS (neutral salt spray; e.g. according to ISO 9227: 2012) , Raman mapping, optical microscope, SEM (Scanning Electron Microscope) and XRD and electrochemistry may be used.
Hereinafter the invention will be further illustrated by the following non-limiting examples.
Examples
Example 1
X60 carbon steel (Ni-free) was cut into small pieces (1.5 x 2 cm2) , cleaned by washing in dichloromethane and polished to remove rust. Then the cleaned carbon steel substrate pieces were put in an apparatus as shown in Figure 1. As can be seen, the apparatus (generally referred to with reference number 1) comprises a chamber 2 (defined by a quartz tube) , a movable heating zone 3,  an air cooling system 4 (external to the chamber 2) , the (cleaned) carbon steel substrates 5, a temperature sensor (not shown) for determining the surface temperature of the substrates 5, a container 6 for liquid carbon source (i.c. hexane) , a mechanical vacuum pump 7 and a gas flow meter 8 for controlling the composition of the carrier gas.
Argon gas was first injected into the chamber 2 to remove the O2 in the chamber 2. Then the pressure in the chamber was reduced to low pressure (10 Pa) using the pump 7. Then, whilst introducing Ar/H2 at a rate of 200 sccm/100 sccm, the carbon steel substrates were heated to 980℃ at a heating rate of 10℃/min.
After reaching the target temperature of 980℃, hexane vapour (stored in the container 6 as hexane liquid) was introduced as a carbon source at a flow rate of 20 sccm, due to the low pressure in the heating chamber 2. The hexane injection was 7 min and the pressure in the chamber 2 was maintained at 50 Pa. Then the temperature of the chamber was rapidly reduced to 800℃ at a rate of 5℃/sby moving the movable heating zone 3 to the distal end of the chamber 3 and by applying active cooling using the air cooling system 4. This active cooling at a rate of 5℃/swas continued until the surface temperature (as measured using a thermal couple; commercially available from Shanghai Jvj ing Precision Instrument Manufacturing Co.Ltd. (Shanghai, China) ) of the carbon steel substrates 5 reached a temperature of 680℃. Subsequently, the carbon steel substrates 5 were allowed to cool down further in the chamber 2, whilst the air cooling system 4 was turned off.
The graphene coating on the carbon steel substrates 5 was examined using XRD and Raman tests. A carbon peak at 26.46° confirmed the growth of graphene on the carbon steel substrates 5. Raman spectra and Raman mapping methods were used to evaluate the quality of the as-grown graphene. The characteristic peaks of graphene were clearly present in the Raman spectra with sharp G peak and 2D peaks and a very low D peak; this demonstrated the low defects in and high crystallization of the as-grown multi-layer graphene coating.
Comparative Example 1
The procedure of Example 1 was repeated, except for that no active cooling was applied, i.e. the air cooling system 4 was not used. It was confirmed by the Raman spectra that no graphene had grown on the surface of the carbon steel substrates.
Anti-corrosion performance
The anti-corrosion performance of the graphene-coated carbon steel substrates of Example 1 were evaluated by an NSS (Neutral Salt Spray) test and an electrochemical test, and compared with carbon steel substrates without graphene coating.
-NSS test
The carbon steel substrates were subjected, in accordance with ISO 9227: 2012, to a NSS solution of 5 wt. %NaCl, with pH of 6.5-7.2 adjusted by HCl. SEM (Scanning Electron Microscope) images were taken after exposing the samples for 1h in an NSS chamber.
It was found that the bare (non-coated) carbon steel samples started to be corroded seriously, as time passed by, with corrosion pits spreading all across the surface of the carbon steel plates. The graphene-coated  substrates had corroded less severe than the bare carbon steel samples and the area of pits were comparably small.
-Electrochemical test
The corrosion rates of the carbon steel samples with and without graphene coating were calculated by corrosion current as obtained from Tafel-plots in an electrochemical test. In the electrochemical test, a 3-electrode cell was used which used the carbon steel samples as the work electrode and a saturated calomel (SCE) as the reference electrode and a platinum sheet as counter electrode. The exposed area of the working electrode was 1x1 cm2 and a (CHI 660D) electrochemical workstation was used to provide the required potential. All tests were carried out in a 5 wt. %NaCl solution. Before obtaining the Tafel-plots and electrochemical impedance spectroscopy (EIS) spectra, the work electrodes were scanned for open circuit potential during 2 min to make the surface stable.
The results of the electrochemical test showed that the corrosion rates of the graphene-coated and bare carbon steel samples were and 1.82 mil/year and 0.83 mil/year, respectively.
Therefore, the graphene coating reduced the corrosion rate by 54.8%, which confirmed the good anti-corrosion ability of the as-grown graphene coating.
Discussion
As can be seen from the Examples, the present invention surprisingly provides a method for providing a graphene coating on a Ni-free carbon steel substrate. It has surprisingly been found according to the present invention that active cooling helped in obtaining a  graphene-coated carbon steel substrate having desirable anti-corrosion properties.
The person skilled in the art will readily understand that many modifications may be made without departing from the scope of the invention.

Claims (11)

  1. A method of providing a graphene coating on a carbon steel substrate, the method at least comprising the steps of:
    (a) providing a carbon steel substrate;
    (b) heating the carbon steel substrate as provided in step (a) in an oxygen-free chamber in the presence of a carbon source to a temperature above 800℃, thereby obtaining a heated carbon steel substrate;
    (c) decreasing the surface temperature of the heated carbon steel substrate as obtained in step (b) to lower than 700℃ at a cooling rate of at least 1℃/s, thereby obtaining a cooled graphene-coated carbon steel substrate.
  2. The method according to claim 1, wherein the carbon steel substrate provided in step (a) comprises at least 0.1 wt.% carbon.
  3. The method according to claim 1 or 2, wherein the carbon steel substrate provided in step (a) comprises at most 9.0 wt.% Ni, preferably less than 5.0 wt.%, more preferably less than 1.0 wt.%, even more preferably less than 0.5 wt.%.
  4. The method according to any one of the preceding claims, wherein the carbon steel substrate as provided in step (a) is subj ected in step (b) to Chemical Vapour Deposition (CVD) , preferably continuous CVD.
  5. The method according to any one of the preceding claims, wherein the heating in step (b) is to above 850℃.
  6. The method according to any one of the preceding claims, wherein the heating in step (b) is performed at a pressure of from 10 to 1000 Pa, preferably above 20 Pa, and preferably below 500 Pa, more preferably below 100 Pa.
  7. The method according to any one of the preceding claims, wherein the heating in step (b) is performed in the presence of H2 (hydrogen) .
  8. The method according to claim 7, wherein the heating in step (b) is performed at an H2 flow rate of from 1 to 500 sccm (Standard Cubic Centimeter per Minute) , preferably above 10 sccm, more preferably above 20 sccm and preferably below 200 sccm, more preferably below 100 sccm, even more preferably below 50 sccm.
  9. The method according to any one of the preceding claims, wherein the carbon source is selected from C1-C8 alkanes and olefins, preferably C1-C6 alkanes and olefins, more preferably C1-C6 alkanes.
  10. The method according to any one of the preceding claims, wherein the heating in step (b) a temperature above 800℃ is done for a period of 3-400 minutes, preferably above 5 minutes and preferably below 50 minutes, more preferably below 25 minutes.
  11. The method according to any one of the preceding claims, wherein an intermediate (‘buffer’) coating layer is applied on the carbon steel substrate before allowing to grow the graphene coating in step (b) .
PCT/CN2016/105059 2016-11-08 2016-11-08 A method of providing a graphene coating on a carbon steel substrate WO2018085988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105059 WO2018085988A1 (en) 2016-11-08 2016-11-08 A method of providing a graphene coating on a carbon steel substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105059 WO2018085988A1 (en) 2016-11-08 2016-11-08 A method of providing a graphene coating on a carbon steel substrate

Publications (1)

Publication Number Publication Date
WO2018085988A1 true WO2018085988A1 (en) 2018-05-17

Family

ID=62110028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105059 WO2018085988A1 (en) 2016-11-08 2016-11-08 A method of providing a graphene coating on a carbon steel substrate

Country Status (1)

Country Link
WO (1) WO2018085988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124717B1 (en) 2020-03-16 2021-09-21 Saudi Arabian Oil Company Hydroprocessing units and methods for preventing corrosion in hydroprocessing units
WO2023229112A1 (en) * 2022-05-26 2023-11-30 현대제철 주식회사 Carbon-coated steel material and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011100A (en) * 2010-12-01 2011-04-13 中国科学院化学研究所 Method for preparing large-area high quality graphene on iron-based substrate
CN102764724A (en) * 2012-07-23 2012-11-07 贵州新碳高科有限责任公司 Method for spraying graphene coat, and graphene coat prepared by same
CN103201405A (en) * 2010-11-09 2013-07-10 Posco公司 Graphene-coated steel sheet, and method for manufacturing same
WO2014112953A1 (en) * 2013-01-18 2014-07-24 Nanyang Technological University Methods of low temperature preparation of one or more layers of graphene on a metallic substrate for anti-corrosion and anti-oxidation applications
US20150118411A1 (en) * 2013-10-28 2015-04-30 Institut National De La Recherche Scientifique Method of producing a graphene coating on a stainless steel surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201405A (en) * 2010-11-09 2013-07-10 Posco公司 Graphene-coated steel sheet, and method for manufacturing same
CN102011100A (en) * 2010-12-01 2011-04-13 中国科学院化学研究所 Method for preparing large-area high quality graphene on iron-based substrate
CN102764724A (en) * 2012-07-23 2012-11-07 贵州新碳高科有限责任公司 Method for spraying graphene coat, and graphene coat prepared by same
WO2014112953A1 (en) * 2013-01-18 2014-07-24 Nanyang Technological University Methods of low temperature preparation of one or more layers of graphene on a metallic substrate for anti-corrosion and anti-oxidation applications
US20150118411A1 (en) * 2013-10-28 2015-04-30 Institut National De La Recherche Scientifique Method of producing a graphene coating on a stainless steel surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124717B1 (en) 2020-03-16 2021-09-21 Saudi Arabian Oil Company Hydroprocessing units and methods for preventing corrosion in hydroprocessing units
WO2021188406A1 (en) * 2020-03-16 2021-09-23 Saudi Arabian Oil Company Hydroprocessing units and methods for preventing corrosion in hydroprocessing units
CN115279865A (en) * 2020-03-16 2022-11-01 沙特阿拉伯石油公司 Hydroprocessing unit and method for preventing corrosion in a hydroprocessing unit
WO2023229112A1 (en) * 2022-05-26 2023-11-30 현대제철 주식회사 Carbon-coated steel material and method for manufacturing same

Similar Documents

Publication Publication Date Title
Yan et al. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate
KR101532170B1 (en) Graphene coated steel and method for preparing thereof
US5055169A (en) Method of making mixed metal oxide coated substrates
Bomparola et al. Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths
EP2964803B1 (en) Crystallization and bleaching of diamond-like carbon and silicon oxynitride thin films.
Pandey et al. Effect of nickel incorporation on microstructural and optical properties of electrodeposited diamond like carbon (DLC) thin films
JP4938754B2 (en) Method for depositing a diamond layer on a graphite substrate
US20070202340A1 (en) Fluorocarbon film and process for its production
KR101860292B1 (en) Method for producing coated tool
WO2018085988A1 (en) A method of providing a graphene coating on a carbon steel substrate
JPH03501502A (en) How to plate on titanium
Zhang et al. Surface chemical modification of CVD diamond films by laser irradiation
Thorwarth et al. Investigation of DLC synthesized by plasma immersion ion implantation and deposition
Zkria et al. Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide
CN106995910A (en) A kind of metal_based material and preparation method for being covered with carbide coating
KR101968604B1 (en) Graphene coated stainless steel and method for manufacturing thereof
Wang et al. Nucleation and growth of diamond films on aluminum nitride by hot filament chemical vapor deposition
CN109811389B (en) Preparation method of titanium niobium nitride nanotube array and nitriding layer composite structure
CN108878260B (en) Low-friction fluorine-containing onion carbon film and method for directly preparing same on silicon substrate
CN110541129B (en) Method for improving pitting corrosion resistance of aluminum-based amorphous alloy by adopting low-concentration corrosion inhibitor
Thangaraj et al. Corrosion studies of DC reactive magnetron sputtered alumina coating on 304 SS
DE19533748C2 (en) Activation solution for the pretreatment of metallic materials for galvanic metal coating from non-aqueous electrolytes, use and method
CN113106414B (en) Pretreatment process of WC-Co substrate before CVD diamond coating
EP2702185B1 (en) Method for modifying and alloying surfaces of wc based hard metal structures
Ensinger et al. Corrosion performance of thin amorphous carbon films on aluminum formed by ion beam-based coating techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921118

Country of ref document: EP

Kind code of ref document: A1