WO2018084552A1 - Free-space sagnac interferometer using polarizing beam splitter - Google Patents

Free-space sagnac interferometer using polarizing beam splitter Download PDF

Info

Publication number
WO2018084552A1
WO2018084552A1 PCT/KR2017/012218 KR2017012218W WO2018084552A1 WO 2018084552 A1 WO2018084552 A1 WO 2018084552A1 KR 2017012218 W KR2017012218 W KR 2017012218W WO 2018084552 A1 WO2018084552 A1 WO 2018084552A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
light
closed path
polarized light
beams
Prior art date
Application number
PCT/KR2017/012218
Other languages
French (fr)
Korean (ko)
Inventor
조규만
윤승현
잉싱허
박준규
임효섭
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2018084552A1 publication Critical patent/WO2018084552A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0276Stellar interferometer, e.g. Sagnac

Definitions

  • the present invention relates to a Sagnac interferometer, and more particularly, using a polarizing beam splitter (PBS) to separate the input light into polarized components perpendicular to each other to the same path in the opposite direction, that is clockwise (clockwise) , And ⁇ CW '') and counter clockwise ( ⁇ CCW '') and then merged together in PBS, each polarized component output from PBS and proceeding together is 90 Since the signals are separated and output, they are interfered and demodulated using a typical interferometer signal processing method.
  • PBS polarizing beam splitter
  • the Sagnac interferometer was first developed by G. Sagnac in 1913.
  • 1 is a block diagram illustrating a conventional Sagnac interferometer.
  • the Sagnac interferometer has two light beams divided in half by a beam splitter (BS) and has a ring structure by two or more mirrors, and proceeds in the CW and CCW directions, respectively.
  • the interferometer is designed to measure the phase difference between two lights traveling in the CW and CCW directions by analyzing the interference signal measured by the photo detector.
  • Sagnac interferometers are applied to measure / observe phenomena that induce optically irreversible changes in the CW and CCW directions.
  • Typical examples include rotation sensors and current sensors.
  • the interferometer rotates in the CW direction, the light traveling in the same direction travels a little farther than when it stops, and the light traveling in the opposite direction travels a shorter distance.
  • a phase difference occurs between the CW light) and the light traveling in the CCW direction (hereinafter referred to as CCW light), and thus the interference signal is changed. Therefore, the rotational angular velocity can be measured by demodulating the interference signal output from the photodetector.
  • the interference signal should be made proportional to the sine of the phase difference ⁇ induced by rotation, but there is no way to make this condition because of the symmetry of the existing Sagnac interferometer. Therefore, conventional Sagnac interferometers are not suitable for measuring rotations with small angular velocities.
  • a phase difference of 90 degrees occurs between the light reflected from the BS and the transmitted light.
  • the CW light is reflected from the BS and output twice to the photo detector, while reflecting twice from the BS. Since light is transmitted twice to reach the photo detector, a 180 degree phase difference occurs between the CW light and the CCW light reaching the photo detector. That is, in the absence of rotation, an extinction interference occurs between the CW and CCW light, so that the intensity of light directed to the detector is zero. Therefore, when the rotational angular velocity is very small, the noise for the light detection is given by the electronics noise given by the electronic devices including the photodetector, so it is not suitable for the measurement of the small rotational angular velocity.
  • a gyroscope is a device for measuring the rotational kinematics of a rotating object, and in particular, provides a measurement of the rotational angular velocity.
  • Applications of gyroscopes are very wide, such as navigation systems used in airplanes, missiles, spacecraft, submarines, attitude control of cameras, robots, and unmanned automated devices, and gyro compasses.
  • Gyroscopes require different levels of precision and stability depending on their application.
  • the aforementioned gyroscope includes a mechanical gyroscope and an optical gyroscope, and in the field of ultra-precision measurement, an optical gyroscope is mostly used.
  • the above-mentioned optical gyroscopes include ring laser gyroscopes, optical fiber gyroscopes, and the like.
  • a ring laser gyroscope allows the laser beams to travel in opposite directions, for example clockwise and counterclockwise, simultaneously in a resonator of three or more reflectors, and the frequency of these laser beams causes the gyroscope to rotate externally. It is a device for measuring the rotational angular velocity by detecting the difference in the frequency, that is, the difference in the effective resonator length in the CW and CCW directions given by the rotation. Ring laser gyroscopes are most commonly used in navigation systems because of their high bias stability, conversion factor linearity, wide measurement range, and low temperature sensitivity.
  • the output of the ring laser gyroscope appears in the form of a sine wave, and the frequency of the sine wave changes according to the magnitude of the rotational angular velocity.
  • the magnitude of the external rotational angular velocity is small, a frequency lock-in effect occurs, in which frequencies of two laser beams oscillating in both directions are equal to each other by reverse scattering occurring in a reflector.
  • the magnitude of the rotational angular velocity is below a certain threshold, there is a problem that the measurement of the gyroscope is impossible.
  • the optical fiber gyroscope basically includes a sensing unit consisting of a light source and a fiber coil wound around the optical fiber in a circular shape.
  • the operation of the optical fiber gyroscope is briefly described as follows. First, the light from the light source passes through the directional coupler and then splits into two lights, passing through the fiber coil, and the two lights passing through the fiber coil in opposite directions meet and interfere in the directional coupler again. When the gyroscope is stationary, both lights experience the same phase shift as they pass through the fiber coil, thus constructively interfering in the directional coupler, and the output of the photodetector is maximized.
  • optical fiber gyroscopes have great advantages over other types of gyroscopes in terms of price, stability, durability, and fast startup time.
  • optical fiber gyroscopes have temperature-sensitive bias characteristics, and nonlinearities increase when the optical fiber length is extended to increase measurement sensitivity.
  • An object of the present invention for solving the above-mentioned problems is that the two beams polarized perpendicularly to each other by using polarized light beams are configured to proceed clockwise and counterclockwise, respectively, along the same closed path of free space and measure the measurement performance. It is to provide a Sagnac interferometer of the improved structure to improve the.
  • a sagnac interferometer for achieving the above technical problem is a light source for providing linear or circularly polarized light; A detector for dividing the light input from the light source into vertically polarized first and second beams, and moving the first and second beams in a closed path in opposite directions to each other and then combining and outputting the first and second beams together; And a demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween.
  • the sensing unit may be configured to receive linear or circularly polarized light from the light source at 45 degrees, and divide the input light into vertically polarized first and second beams and output the polarized light to different output ports, respectively; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. And a closed path unit configured to input the output port and the second beam to the output port of the first beam, wherein the first beam and the second beam output from the closed path unit are vertically polarized with each other to make polarized light thin. Combined and outputted in the same path is provided to the demodulator.
  • a sagnac interferometer includes a light source for providing linearly polarized light; A detector for dividing the light input from the light source into vertically polarized first and second beams, and moving the first and second beams in a closed path in opposite directions to each other and then combining and outputting the first and second beams together; A resonator formed at an input point and an output point of the detector to resonate the first beam and the second beam of the detector; And a demodulator for interfering a first beam and a second beam output from the resonator to measure a phase difference induced between the first beam and the second beam.
  • the sensing unit receives light linearly polarized at 45 degrees with respect to the polarized light from the light source, divides the input light into vertically polarized first and second beams, and outputs each of them to different output ports.
  • a closed path unit configured to input the output port and input the second beam to the output port of the first beam, wherein the first beam and the second beam output from the closed path unit are combined in the polarized light beams in the same path.
  • the first beam and the second beam output from the polarized light beam are resonated through a resonator and provided to the demodulator.
  • the resonator includes: first and second mirrors disposed at input points and output points of the sensing unit, respectively; A first quarter wave plate (QWP) disposed between the first mirror and the sensing unit; And a second quadrant plate disposed between the second mirror and the sensing unit.
  • QWP quarter wave plate
  • a sagnac interferometer includes a light source for providing polarized light;
  • a detector which divides the light provided from the light source into a first beam and a second beam according to a polarization direction, moves the first beam and the second beam in different directions in one closed path, and then combines and outputs the combined light;
  • a demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween; Is disposed between the light source and the sensing unit, and transmits a part of the beam provided from the light source and outputs to the sensing unit, and the light beam to reflect a portion of the beam provided from the sensing unit to output to the demodulator;
  • the sensing unit may be configured to split light provided from the light source into a first beam and a second beam that are vertically polarized with each other, and to output light to different output ports through the light beam; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam.
  • a closed path unit configured to input an output port and input the second beam to an output port of the first beam; And a half wave plate (HWP) disposed at an arbitrary position on the closed path of the closed path portion and retarding the light transmitted through the closed path by half a wavelength. And a first beam and a second beam output from the closed path part are combined and output from the polarized light beam and then reflected or transmitted by the light beam and provided to the demodulator.
  • HWP half wave plate
  • a sagnac interferometer includes: a light source for providing polarized light; A detector which divides the light provided from the light source into a first beam and a second beam according to a polarization direction, moves the first beam and the second beam in different directions in one closed path, and then combines and outputs the combined light; A demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween; A light beam disposed between the light source and the sensing unit to transmit a part of the beam provided from the light source and output to the sensing unit, and reflect a part of the beam provided from the sensing unit to output to the demodulator; And a resonator disposed between the light beam and the sensing unit.
  • the sensing unit may be configured to split light provided from the light source into a first beam and a second beam that are vertically polarized with each other, and to output light to different output ports through the light beam; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam.
  • a closed path unit configured to input an output port and input the second beam to an output port of the first beam; And a half wave plate (HWP) disposed at an arbitrary position on the closed path of the closed path portion and retarding the light transmitted through the closed path by half a wavelength. And a first beam and a second beam output from the closed path part are combined and output from the polarized light beam and then reflected or transmitted by the light beam and provided to the demodulator.
  • HWP half wave plate
  • sanyak interferometer receives from the demodulator providing a first phase difference ( ⁇ ⁇ ) of the phase change of the first beam and a second beam, by using the phase difference angular velocity ( ⁇ ) It is preferable to further include a control unit for measuring and providing.
  • the demodulator comprises: a phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit; Dividing the beam output from the phase delay device into a third beam and a fourth beam, respectively and outputting light; An I signal output unit for detecting and outputting an I output signal from the third beam passing through the light beam; A Q signal output unit for detecting and outputting a Q output signal from the fourth beam reflected by the light beam; It is preferable to have a.
  • the demodulator comprises: a phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit; A polarizer for aligning the first beam and the second beam delayed by the phase delay device by 45 degrees to output an interference signal of the first beam and the second beam; And a photodetector for outputting a detection signal detecting the beam output from the polarizer.
  • the demodulator comprises: a phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit; A polarized light beam that interferes with the first beam and the second beam output from the phase delay device and outputs the divided light according to the polarization state; A first photodetector for detecting a third beam reflected from the polarized light beam and outputting a first detection signal; A second photodetector for detecting a fourth beam transmitted through the polarized light beam and outputting a second detection signal; And a differential amplifier detecting and outputting a difference between the first and second detection signals.
  • a resonator mirror fixed to a displacement device such as a piezoelectric transducer to actively adjust the resonance conditions.
  • the sagnac interferometer according to the present invention can be precisely measured even by a rotation with a small angular velocity unlike the conventional sagnac interferometer by using a polarized light filter.
  • the sagnac interferometer according to the second and fourth embodiments of the present invention constitute a resonant structure, so that the CW light and the CCW light are output after a plurality of times in the resonator.
  • the rotation can be measured more precisely and always maintain high sensitivity.
  • 1 is a block diagram showing a conventional Sagnac interferometer.
  • Figure 2 is a schematic diagram showing the overall Sagnac interferometer according to a first embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the overall Sagnac interferometer according to a second embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the overall Sagnac interferometer according to a third embodiment of the present invention.
  • FIG. 5 is a block diagram showing the overall Sagnac interferometer according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a Sagnac Effect used to detect a rotational angular velocity using a phase difference according to a Sagnac interferometer according to the present invention.
  • FIG. 7 is a block diagram showing an embodiment of a demodulation unit in the sagnac interferometer according to the present invention.
  • FIG. 8 is a block diagram showing another embodiment of the demodulator in the sagnac interferometer according to the present invention.
  • FIG. 9 is a block diagram showing another embodiment of the demodulation unit in the sagnac interferometer according to the present invention.
  • Sagnac interferometer is characterized in that it is configured using a polarized light filter and a resonator.
  • Figure 2 is a schematic diagram showing the overall improved Sagnac interferometer according to the first embodiment of the present invention.
  • the free space gyroscope 1 includes a light source 10, a detector 20, and a demodulator 30, and further includes a controller 40. It can be provided.
  • the light source 10 provides 45 degrees linear or circularly polarized light to the polarized light beam 200 of the sensing unit 20.
  • the light source may be configured to output a linear or circularly polarized laser beam by 45 degrees using a single laser beam generator, or may be configured by combining the laser beam generator and a polarization rotating device to produce a linear or circularly polarized laser beam by 45 degrees. You could also print
  • the sensing unit 20 includes a closed path unit 210 formed of a polarized light beam 200 and a plurality of light path changing elements 211, 212, and 213 to form one closed path.
  • the sensing unit having the above-described structure, detects the rotation or movement of the Sagnac interferometer using the light provided from the light source, and demodulates the first beam and the second beam having a phase difference according to the rotational angular velocity by the rotation or movement ( 30).
  • the closed path unit 210 is composed of two or more light path changing elements, and together with the polarized light beam 200 constitutes one closed path.
  • the light path changing devices may use devices that reflect or totally reflect an incident beam, such as a reflector or a prism. As illustrated in FIG. 2, in one embodiment, three reflectors 211, 212, and 213 may be sequentially arranged.
  • the first and second beams respectively output from the first output port and the second output port of the polarized light beam are input to the closed path part, respectively, and the first and second beams input to the closed path part are closed. Moved along the path in the CCW direction and the CW direction, respectively, so that the first beam is input back to the output port of the second beam and the second beam is input back to the output port of the first beam.
  • the first beam and the second beam output from the closed path part are polarized perpendicularly to each other, input back to the polarized light beam, merged in the polarized light beam, and then output through the same path to the demodulator.
  • the sensing unit 20 divides the light incident from the light source into two beams by reflecting the S-polarized light and transmitting the P-polarized light according to the polarization direction in the polarized light beam 200. It proceeds in opposite directions along one closed path and then merges again in the polarized light beam and outputs to the demodulator.
  • the demodulator demodulates the beam thus output, thereby measuring the phase difference between the second beam and the first beam, which have advanced in the CW and CCW directions, respectively.
  • the polarized light beam 200 is an optical element that reflects S-polarized light and transmits P-polarized light according to the polarization direction according to the polarization direction.
  • the first beam having different polarization directions by reflecting or transmitting it according to the polarization direction It is separated into a second beam and output to the closed path portion 210.
  • the first beam and the second beam output to the closed path portion are rotated in opposite directions, respectively, and re-entered again into the first polarized light beam, and the re-entered first beam and the second beam are combined and output to the demodulator.
  • the closed path unit 210 includes a plurality of light path changing elements that are sequentially arranged such that beams output from the polarized light beam move in opposite directions along the closed path and then enter the polarized light beam again.
  • the first beam reflected from the polarized light beam by the closed path part is output in a counterclockwise direction and re-entered into the polarized light beam, and the second beam transmitted through the polarized light beam is clockwise. Proceed is reincident to the polarized light beam. Accordingly, the first beam and the second beam, which are in the state of perpendicular polarization, move in opposite directions along the closed path of the closed path portion, and are re-entered into the polarized light beam and output to the demodulator.
  • the Sagnac interferometer rotates while the first beam and the second beam move through the free space of the closed path portion, the first beam and the second beam have a phase difference according to the rotational angular velocity of the sagnac interferometer.
  • the demodulator 30 interferes with the first beam and the second beam output from the detector 20, and measures and provides a phase difference induced therebetween.
  • the controller 40 calculates a phase difference between the first beam and the second beam from the interference signals of the first beam and the second beam provided from the demodulator, and calculates and outputs a rotational angular velocity of the sagnac interferometer.
  • the sagnac interferometer according to the present invention may include the control unit 40 therein or may be configured without the control unit 40.
  • the sagnac interferometer may provide an external control device or a computer with an interference signal of the first beam and the second beam measured by the sagnac interferometer using an external control device or a computer.
  • the control device or computer may calculate the phase difference between the first beam and the first beam and the rotational angular velocity of the sagnac interferometer using the interference signals of the first beam and the second beam.
  • FIG. 6 is a schematic diagram illustrating the Sagnac Effect used to detect the rotational angular velocity using the phase difference between the first beam and the second beam in the Sagnac interferometer according to the present invention.
  • the optical path difference ⁇ L occurs between the first beam and the second beam traveling in opposite directions by the closed path part. . Therefore, the optical path difference is obtained using the phase difference between the first beam and the second beam measured by the Sagnac interferometer, and the rotational angular velocity can be measured based on the optical path difference.
  • Figure 3 is a schematic diagram showing the overall improved Sagnac interferometer according to a second embodiment of the present invention.
  • the gyroscope 2 includes a light source 12, a detector 22, a demodulator 32, and a resonator 52, and a controller 42. ) May be further provided. Since the structure of the sensing unit 22 of the second embodiment is the same as those of the first embodiment, overlapping description is omitted.
  • the light source 12 may use a laser light source linearly polarized at 45 degrees.
  • the detector 22 is disposed inside the resonator 52, and divides the light input from the light source into a first beam and a second beam polarized perpendicularly to each other, and divides the first beam and the second beam into a single beam. In the closed path, move along the opposite direction and then combine again to output to the demodulator.
  • the resonator 52 includes a first mirror 520 and a second mirror 522 disposed at an input point and an output point of the sensing unit 22, respectively.
  • a quarter wave plate (QWP) 521 and a second quarter wave plate 523 are disposed, respectively.
  • the first and second quarter-wave plates are phase delay plates for delaying and outputting the input beam by? / 4.
  • the first and second mirrors 520 and 522 are composed of mirrors having a large reflection coefficient (R).
  • R reflection coefficient
  • the finesse of the resonator is 157, assuming there is no loss in the polarized light beam, and the CW and CCW beams in the resonator are approximately Since it can go back 100 times, the induced phase value increases by about 100 times. Even considering the loss in the polarized light beam, the performance of the interferometer can be improved accordingly because the CW beam and the CCW beam can be repeatedly returned several dozen times.
  • the detector 22 has the same structure as that of the detector of the first embodiment, but includes a first mirror 520 and a first quarter wave plate of the resonator between the light source and the incident surface of the polarized light beam 200. 521 is disposed, and a second mirror 522 and a second quarter wave plate 523 of the resonator are disposed between the emission surface of the polarized light beam and the demodulator.
  • a part of the linearly polarized light provided from the light source is incident on the first QWP 521 through the mirror, and the polarization state is passed through the first QWP since the polarization direction of the incident light is parallel to the main axis of the first QWP. Is kept in the same state as the incident light. Since the main axis of the first QWP, that is, the polarization direction of the incident light forms an angle of 45 degrees with the main axis of the polarized light beam, the P polarized light component of the incident beam passes through the polarized light beam 200 to form the first beam. The S component is reflected to form a second beam.
  • the first beam transmitted through the polarized light beam goes along the path formed by the closed path part in the CCW direction
  • the second beam reflected from the polarized light beam goes along the path formed by the closed path part in the CW direction.
  • the first beam traveling in the CCW direction along the closed path part is re-entered into the polarized light beam as P-polarized light and transmitted again to transmit the second QWP, the second mirror, and the second QWP, and then enter the polarized light beam again. do.
  • the first beam is transmitted through the second QWP twice and the polarization direction is rotated by 90 degrees.
  • the first beam is reflected in the polarized light beam which is incident again, and then proceeds to the closed path part again in the CCW direction.
  • the first beam is repeatedly returned in the CCW direction. Therefore, when the resonator satisfies the standing wave condition, the light incident through the first mirror causes augmented interference, and the intensity of the light is gradually increased in the resonator, and some of them are output through the second mirror 522.
  • the number of times the first beam returns along the closed path is given by the reflectivity of the mirror.
  • the second beam is output through the second mirror 522 while rotating the same number of times in the CW direction.
  • the reflection coefficients (R) of the first and second mirrors constituting the resonator are 98%
  • the finesse of the resonator is 157
  • the first and second beams are separated from other elements such as polarized light. If the loss is not considered, it will be printed after about 100 times.
  • the first beam and the second beam oscillated from the resonator are provided to the demodulator 32.
  • the demodulator 32 demodulates the first beam and the second beam output from the resonator 52, detects and outputs a phase difference between the first beam and the second beam.
  • the sagnac interferometer according to the second embodiment may improve the sensitivity by the number of times the beam is returned by the resonator as compared with the sagnac interferometer according to the first embodiment in which the beam is rotated once along the closed path part of the sensing unit. .
  • Figure 4 is a schematic diagram showing the overall improved Sagnac interferometer according to a third embodiment of the present invention.
  • a sagnac interferometer 3 includes a light source 10, a light beam 250, a detector 23, and a demodulator 30. 40 may be further provided.
  • the light source 10 provides 45 degrees linear or circularly polarized light to the detector 23 through the light beam 250.
  • the light source may be configured to output a linear or circularly polarized laser beam by 45 degrees using a single laser beam generator, or may be configured by combining the laser beam generator and a polarization rotating device to produce a linear or circularly polarized laser beam by 45 degrees. You could also print
  • the light beam 250 is disposed between the light source 10 and the sensing unit 23 to transmit a part of the beam provided from the light source and output it to the sensing unit, and reflect and demodulate a part of the beam provided from the sensing unit. Output as negative.
  • the sensing unit 23 includes a polarization light path 200, a closed path unit 210 composed of a plurality of light path changing elements 211, 212, and 213, and a half wave plate 240. Detects the rotation or movement of the Sagnac interferometer using the provided light, and outputs the first beam and the second beam having a phase difference according to the rotational angular velocity by the rotation or movement to the demodulator 30 through the light beam 250. do.
  • the polarized light beam 200 divides the light provided from the light source through the light beam and divides the first beam and the second beam polarized perpendicularly to each other and outputs them to different output ports.
  • the closed path unit 210 constitutes one closed path using two or more mirrors, and changes the first and second beams output from the polarized light beam to move along the closed path.
  • the first beam is input to the output port of the second beam and the second beam is input to the output port of the first beam.
  • the half-wave plate 240 is attached to, or immediately behind, the polarized light beam 200 on the closed path of the closed path part to rotate the polarization direction of the beam transmitted through the closed path by 90 degrees. Therefore, since the polarization state of the light traveling in the CW direction and the CCW direction along the closed path is the same, it is not affected by the birefringence noise that may be applied to an anisotropic flow of air.
  • the first beam and the second beam output from the closed path part are polarized perpendicularly to each other, merged in the polarized light beam, and output from the light beam 200 along the same path to the demodulator.
  • the light incident from the light source is incident to the polarized light beam 200 through the light beam 250, in which the S polarized beam is reflected and the P polarized beam is transmitted according to the polarization direction.
  • the beam is divided into two beams, and the two beams are divided in a direction opposite to each other along one closed path, and are then combined and output again in the polarized light beam.
  • the beam passing through the closed path of the closed path portion is rotated by 90 degrees by the half-wave plate.
  • the first beam which is P-polarized light transmitted through the polarized light beam, moves the closed path of the closed path portion in a counterclockwise direction and reenters the polarized light beam, wherein the polarization direction is caused by the half-wave plate 240.
  • it is rotated by 90 degrees, it is reflected from the re-incident polarized light beam 200 and proceeds to the light beam.
  • the second beam of S polarized light reflected by the polarized light beam is rotated 90 degrees by the half-wave plate to move the closed path portion clockwise in the clockwise direction to pass through the reentrant polarized light beam You will proceed to crab. Therefore, the light that proceeds clockwise and counterclockwise has the same polarization state in a closed path, thereby constructing a completely reversible sagnac interferometer, and the first beam transmitted or reflected through the reentrant polarized light beam And the second beam is combined in the polarized light beam and proceeds to the light beam, and a part of the beam is output to the demodulator 30.
  • the demodulator demodulates the beam inputted from the light beam, thereby measuring the phase difference between the second beam and the first beam, which have advanced in the CW and CCW directions, respectively.
  • the Sagnac interferometer rotates while the first beam and the second beam move through the free space of the closed path portion, the first beam and the second beam have a phase difference according to the rotational angular velocity of the sagnac interferometer.
  • the demodulator 30 interferes with the first beam and the second beam output from the detector 20, and measures and provides a phase change induced therebetween.
  • the controller 40 calculates and outputs a rotational angular velocity of the Sagnac interferometer using the phase difference between the first beam and the second beam provided from the demodulator.
  • FIG. 5 is a schematic diagram showing an overall improved sagnac interferometer according to a fourth embodiment of the present invention.
  • the Sagnac interferometer 4 includes a light source 10, a light beam 250, a detector 23, a demodulator 30, and a resonator 54. Is provided, and may further include a control unit 40.
  • the resonator 54 is further disposed between the light beam 250 of the sagnac interferometer according to the third embodiment and the polarization light beam 200 of the sensing unit. It features.
  • the resonator 54 is disposed between the light beam 250 and the polarizing light beam 200 of the sensing unit, and comprises a mirror 530 and a quarter-wave plate (QWP) 531.
  • the quarter wave plate is a phase delay plate which delays the phase difference between principal polarization components of the input light by ⁇ / 4 and outputs the delayed phase difference.
  • the mirror 530 is preferably composed of mirrors having a large reflection coefficient (R).
  • R reflection coefficient
  • the finesse of the resonator is 157, assuming that there is no loss in the polarized light, and the CW and CCW beams in the resonator can be repeated about 100 times. In this case, the induced phase value increases by about 100 times. Even considering the loss in the polarized light beam, the performance of the interferometer can be improved accordingly because the CW beam and the CCW beam can be repeatedly returned several dozen times.
  • the driving method of the resonator 54 is the same as the resonator according to the second embodiment.
  • the configuration and operation of the detector 23 are the same as the configuration and operation of the detector 23 according to the third embodiment.
  • the Sagnac interferometer 4 rotates the free space of the closed path part until the first beam and the second beam satisfy the resonance condition by the detector and the resonator, and then outputs the demodulator.
  • the phase difference and the rotational angular velocity induced by the interference signals of the first beam and the second beam are calculated by the demodulator and the controller.
  • the demodulator 30 includes a phase delay device 372, a polarizer 375, and a photodetector PD.
  • the phase delay device 372 is for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit. For optimal demodulation of the first and second beams, it is desirable to use a phase delay device to make the phase bias between the first and second beams an odd multiple of 90 degrees.
  • the polarization state of the first beam and the second beam can be used a quarter wave plate (QWP) that phase-delays the quadrant wavelength between the main polarization component, if the first
  • QWP quarter wave plate
  • the polarizer 375 outputs an interference signal between the first beam and the second beam by aligning the first and second beams phase-delayed by the phase delay device at 45 degrees.
  • the photodetector PD outputs a detection signal that detects a beam output from the polarizer, and is given by Equation 1 below when the bias phase between the first beam and the second beam is 90 degrees.
  • R is the response of the photodetector
  • I 0 is the total intensity of the first beam and the second beam
  • is the phase difference induced in the first beam and the second beam by the rotation of the interferometer and the like and has a very small value in ordinary cases.
  • the demodulator 31 includes a phase delay device 398, polarized light beams 392, first and second photodetectors PD1 and PD2, and a differential amplifier 395.
  • the phase delay device 398 is for applying a bias phase corresponding to an odd multiple of 90 degrees or 90 degrees between the first beam and the second beam, which are provided from the sensing unit, in a vertical polarization state. It can be used in various ways according to the phase values of the first and second beams given by the reflection in the mirror. For example, a quarter wave plate (QWP) which phase-delays quadrant wavelengths between the main polarization components can be used. have.
  • QWP quarter wave plate
  • the polarized light beams 392 are aligned at 45 degrees with respect to the polarization directions of the first beam and the second beam output from the phase delay device. Therefore, the s-components of the first and second beams are combined to cause interference and polarization. Reflected at the light beam, the p components of the first and second beams combine to cause interference and to pass through the polarized light beam.
  • the first photodetector PD1 detects a third beam reflected from the polarized light beam and outputs a first detection signal
  • the second photodetector PD2 transmits the polarized light beam.
  • the fourth beam is detected and a second detection signal is output.
  • the optical signals output from PD1 and PD2 are given by Equations 2 and 3, respectively.
  • the differential amplifier 395 outputs a difference between the first and second detection signals, and an output signal is given by Equation 4 below.
  • the demodulator of the above-described structure subtracts the interference signals detected from the third and fourth beams by the differential amplifier, thereby eliminating mutually correlated noise contained in each optical signal and doubling the optical signal.
  • the noise ratio can be increased.
  • Such a measurement method is called a balanced detection method.
  • the demodulator 32 includes a phase delay device 300, a light beam 310, an I signal output unit 320, and a Q signal output unit 330, and outputs an I signal.
  • An I-output signal (In-phase Signal; V I ) and a Q-output signal (Quadrature-phase Signal: V Q ) having a phase difference of 90 ° from each other are generated and output from the negative and Q signal output units, respectively.
  • the I output signal (In-phase Signal; V I ) is proportional to cos ⁇
  • the Q output signal Quadadrature-phase Signal: V Q
  • V Q Quadrature-phase Signal
  • the demodulator 32 demodulates the first beam and the second beam output from the detector, and outputs an I-output signal ( V I ) signal and a Q output signal for the first beam and the second beam.
  • V I I-output signal
  • Q Q output signal
  • the phase difference according to the rotational angular velocity can be detected from the I output signal and the Q output signal.
  • the phase delay device 300 is for applying a bias phase between the first beam and the second beam that are perpendicular to each other from the sensing unit, and variously selected according to the polarization states of the first and second beams. For example, a half-wave plate that rotates the first beam and the second beam by 45 degrees and outputs the light beam 310 may be used.
  • the light beam 310 is provided with a first beam and a second beam rotated by 45 degrees from the phase delay device, and the first and second beams are 50:50 to the third and fourth beams. Divided and transmitted respectively.
  • the third beam transmitted through the light beam is provided to the I signal output unit, and the fourth beam reflected from the light beam is provided to the Q signal output unit.
  • the I signal output unit 320 is configured to detect and output an I output signal from the third beam transmitted through the light beam.
  • the I signal output unit 320 detects the beam reflected from the second polarized light beam 322 and the second polarized light beam disposed on the traveling path of the third beam passing through the light beam. Detects the difference between the first detection element 323, the second detection element 324 for detecting the beam transmitted through the second polarized light beam, and the beams output from the first detection element and the second detection element And a first differential amplifier 325 for amplifying and outputting the same.
  • the first and second detection elements may be composed of photodiodes.
  • the Q signal output unit 330 is configured to detect and output a Q output signal from the fourth beam passing through the light beam.
  • the Q signal output unit 330 is configured to detect and output a Q output signal from the fourth beam reflected by the light beam.
  • the Q signal output unit 330 may be a QWP (Quarter Wave Plate) 331 for rotating the fourth beam reflected by the light beam by 45 degrees and outputting the fourth beam.
  • a fourth detection element 334 for detecting the beam and a second differential amplifier 335 for detecting, amplifying and outputting a difference between the beams output from the third and fourth detection elements.
  • the first differential amplifier of the I-signal output section and the second differential amplifier of the Q-signal output section having the above-described configuration are respectively an in-phase signal ( V I ) signal and a Q output signal for the first beam and the second beam.
  • Outputs (Quadrature-phase Signal: V Q ).
  • the controller 40 receives an I output signal and a Q output signal from a demodulator, and detects and outputs a rotational angular velocity using the I output signal and the Q output signal.
  • rotational angular velocity (ohm)
  • I output signal obtained from the demodulator (32) (In-phase Signal ; V I) is proportional to cos ⁇ ⁇
  • the Q output signal: it (Quadrature-phase Signal V Q) is proportional to sin ⁇ ⁇
  • Equation 6 The time ( t +) for the second beam rotating clockwise in the sensing unit to circulate the optical rotating unit can be obtained by Equation 6, and the time taken for the first beam rotating in the counterclockwise direction to circling the optical rotating unit. ( t- ) can be obtained by Equation 7.
  • the optical path difference ⁇ L between the first beam and the second beam according to the rotation of the object may be obtained from Equation 8.
  • an optical path difference ⁇ L is generated between the first beam and the second beam that travel in opposite directions.
  • the interference signal can be obtained by interfering the first beam and the second beam. Since the phase change in the interference signal is given as a linear function of the rotational angular velocity, the phase angular velocity can be measured and the rotational angular velocity can be accurately measured using this. It becomes possible.
  • a phase difference ( ⁇ ⁇ ) of the first beam with a first beam and a second beam using the optical path difference ( ⁇ L) of the second beam in accordance with the rotation of the object can be determined in Equation (9).
  • Rotational angular velocity ( ⁇ ) according to the rotation of the object from Equation (9) can be represented by Equation 10, the first obtained by using the I output signal ( V I ) and Q output signal ( V Q ) through the equation (4) by using the phase difference ( ⁇ ⁇ ) of the beam and the second beam it is able to obtain the rotational angular velocity ( ⁇ ) according to the rotation of the object.
  • is the wavelength of light
  • t- is the time it takes for the first beam to rotate in the counterclockwise direction
  • t + is the time it takes for the second beam to rotate in the clockwise direction
  • is the rotational angular velocity
  • C is the speed of light
  • R is the radius of the ring constituting the optical rotation
  • A is the area of the ring
  • ⁇ L is the first and second beams traveling in opposite directions
  • is a phase change value induced by the angular velocity.
  • the chagnac interferometer according to the present invention having the above-described configuration is constructed in a new structure using polarized light beams, and then, after two beams in a vertical polarization state are advanced in opposite directions along a closed path, the phase difference is obtained. By using the rotation angle of the object can be measured by the rotation.
  • the sagnac interferometer according to the present invention can be widely used in equipment for measuring rotational dynamic information, such as a gyroscope.

Abstract

The present invention relates to an improved Sagnac interferometer. The Sagnac interferometer comprises: a light source; a sensing section which divides light inputted from the light source into a first beam and a second beam which are perpendicularly polarized with each other, moves the first beam and the second beam in a single closed path along opposite directions, and then rejoins and outputs the first beam and the second beam; a demodulation section which causes the first beam and the second beam outputted from the sensing section to interfere with each other and measures a phase shift induced therebetween. The sensing section comprises: a polarizing beam splitter which divides the light inputted from the light source into a first beam and a second beam which are perpendicularly polarized with each other and outputs the first beam and the second beam respectively to output ports different from each other; and a closed path section which forms the single closed path by using two or more mirrors, changes the direction of the first beam and the second beam outputted from the polarizing beam splitter, moves the first beam and the second beam along the closed path, inputs the first beam to the output port of the second beam, and inputs the second beam to the output port of the first beam. The first beam and the second beam outputted from the closed path section are perpendicularly polarized with each other, are joined in the polarizing beam splitter to be outputted to the same path, and are provided to the demodulation section. The Sagnac interferometer detects a rotating angular speed using the phase difference between the first beam and the second beam, and provides the same.

Description

편광 빛살가르게를 이용한 자유공간 사냑 간섭계Free Space Sagnac Interferometer Using Polarized Light
본 발명은 사냑 간섭계에 관한 것으로서, 더욱 구체적으로는 편광 빛살 가르게(polarizing beam splitter, PBS)를 이용하여 입력 빛을 서로 수직인 편광 성분으로 분리시켜 동일한 경로를 서로 반대 방향, 즉 시계방향(clockwise, 이하 'CW'라 한다.)과 반시계 방향(counter clockwise, 이하 'CCW'라 한다.)으로 진행시켜 다시 PBS에서 합쳐주면, PBS에서 출력되어 함께 진행하는 각각의 편광성분은 입력 빛과 90도로 분리되어 출력되기 때문에 이들을 간섭시켜 전형적인 간섭계 신호처리 방법을 이용하여 복조시키면 CW 방향과 CCW 방향으로 진행한 서로 다른 편광성분들 사이의 위상 차이를 측정할 수 있는 사냑 간섭계에 관한 것이다. The present invention relates to a Sagnac interferometer, and more particularly, using a polarizing beam splitter (PBS) to separate the input light into polarized components perpendicular to each other to the same path in the opposite direction, that is clockwise (clockwise) , And `` CW '') and counter clockwise (`` CCW '') and then merged together in PBS, each polarized component output from PBS and proceeding together is 90 Since the signals are separated and output, they are interfered and demodulated using a typical interferometer signal processing method. The present invention relates to a sagnac interferometer capable of measuring a phase difference between different polarization components traveling in the CW and CCW directions.
Sagnac 간섭계는 1913년에 G. Sagnac에 의하여 처음으로 개발되었다. 도 1은 종래의 Sagnac 간섭계를 도시한 블록도이다. 도 1에 도시된 바와 같이, 사냑 간섭계는 빛살 가르게(beam splitter, BS)에 의해 반으로 나누어진 두 빛살이 두 개 이상의 거울에 의해 고리(ring) 구조를 갖고 각각 CW 및 CCW 방향으로 진행하여 다시 BS에 의해 합쳐져 간섭을 일으키게 하는 구조를 가지며 광 검출기로 측정된 간섭신호를 분석하여 CW와 CCW 방향으로 진행한 두 빛 사이의 위상 차이를 측정할 수 있도록 고안된 간섭계이다. The Sagnac interferometer was first developed by G. Sagnac in 1913. 1 is a block diagram illustrating a conventional Sagnac interferometer. As shown in Fig. 1, the Sagnac interferometer has two light beams divided in half by a beam splitter (BS) and has a ring structure by two or more mirrors, and proceeds in the CW and CCW directions, respectively. The interferometer is designed to measure the phase difference between two lights traveling in the CW and CCW directions by analyzing the interference signal measured by the photo detector.
Sagnac 간섭계는 CW와 CCW 방향에 대하여 광학적으로 비가역적인 변화를 유도시키는 현상을 측정/관측하는데 응용되며 그 대표적인 예로 회전센서와 전류센서 등이 있다. 예를 들어, 간섭계가 CW 방향으로 회전할 경우 같은 방향으로 진행하는 빛은 정지했을 때 보다 조금 먼 거리를 이동하고 반대 방향으로 진행하는 빛은 조금 짧은 거리를 이동하기 때문에 CW 방향으로 진행하는 빛(이하 CW 광이라고 함)과 CCW 방향으로 진행하는 빛(이하 CCW 광이라고 함) 사이에 위상차이가 발생하여 간섭신호가 달라진다. 따라서 광 검출기에서 출력되는 간섭신호를 복조시킴으로써 회전 각속도를 측정할 수 있다. Sagnac interferometers are applied to measure / observe phenomena that induce optically irreversible changes in the CW and CCW directions. Typical examples include rotation sensors and current sensors. For example, if the interferometer rotates in the CW direction, the light traveling in the same direction travels a little farther than when it stops, and the light traveling in the opposite direction travels a shorter distance. A phase difference occurs between the CW light) and the light traveling in the CCW direction (hereinafter referred to as CCW light), and thus the interference signal is changed. Therefore, the rotational angular velocity can be measured by demodulating the interference signal output from the photodetector.
기존의 Sagnac 간섭계는 도 1에서 볼 수 있듯이 CW와 CCW 경로가 정확히 일치하기 때문에 이들 사이의 위상 차이가 0이며, 따라서 간섭계의 회전에 의해 작은 위상 차이 △φ가 유도될 경우 간섭신호는 cos△φ에 비례하게 된다. 그러나 cosine 함수는 매우 작은 위상 변화 △φ에 대하여 민감하게 변하지 않기 때문에 Sagnac 간섭계는 CW와 CCW 경로 사이의 아주 작은 위상변화를 측정하는데 적절치 못하다. 간섭신호가 작은 위상 차이에 대하여 민감하게 반응하기 위해서는 CW와 CCW 경로 사이에 정지 상태에서 위상 차이가 (2n+1)π/2 가 되게 해야 하는데, 여기서 n = 0, ±1, …, 즉 간섭신호가 회전에 의해 유도된 위상 차이 △φ의 sine에 비례하게 만들어 주어야 하는 데 기존의 Sagnac 간섭계의 대칭성 때문에 이 조건을 만들어 줄 수 있는 방법이 없다. 따라서 기존의 Sagnac 간섭계는 각속도가 작은 회전을 측정하는 데는 적합하지 않다. In the existing Sagnac interferometer, as shown in FIG. 1, since the CW and CCW paths exactly match, the phase difference between them is 0. Therefore, when a small phase difference Δφ is induced by the rotation of the interferometer, the interference signal is cos Δφ. Will be proportional to However, because cosine function is not changed very little phase change △ φ sensitive to the Sagnac interferometer mothada appropriate for measuring very small phase shift between the CW and CCW paths. In order for the interfering signal to respond sensitively to small phase differences, the phase difference must be (2n + 1) π / 2 at rest between the CW and CCW paths, where n = 0, ± 1,... In other words, the interference signal should be made proportional to the sine of the phase difference Δφ induced by rotation, but there is no way to make this condition because of the symmetry of the existing Sagnac interferometer. Therefore, conventional Sagnac interferometers are not suitable for measuring rotations with small angular velocities.
또한 BS에서 반사된 빛과 투과된 빛 사이에는 90도 만큼 위상 차이가 발생하는데, 도 1의 Sagnac 간섭계에서 CW 광은 BS에서 반사되어 광 검출기로 출력되면서 BS에서 두 번 반사를 하고, 반면에 CCW 광은 광 검출기에 도달하기 위해서 두 번 투과하기 때문에 광 검출기에 도달하는 CW 광과 CCW 광 사이에는 180도 위상차이가 발생한다. 즉, 회전이 없는 경우 CW와 CCW 광 사이에 소멸 간섭이 발생하여 검출기로 향하는 빛의 세기가 0이다. 따라서 회전 각속도가 매우 작을 경우 광 검출에 대한 잡음은 광검출기를 포함한 전자 소자들에 의해 주어지는 전자적인 잡음(electronics noise)에 의해 주어지기 때문에 작은 회전 각속도에 대한 측정에 적합하지 않다. In addition, a phase difference of 90 degrees occurs between the light reflected from the BS and the transmitted light. In the Sagnac interferometer of FIG. 1, the CW light is reflected from the BS and output twice to the photo detector, while reflecting twice from the BS. Since light is transmitted twice to reach the photo detector, a 180 degree phase difference occurs between the CW light and the CCW light reaching the photo detector. That is, in the absence of rotation, an extinction interference occurs between the CW and CCW light, so that the intensity of light directed to the detector is zero. Therefore, when the rotational angular velocity is very small, the noise for the light detection is given by the electronics noise given by the electronic devices including the photodetector, so it is not suitable for the measurement of the small rotational angular velocity.
자이로스코프(gyroscope)는 회전 물체의 회전 운동 역학을 측정하는 장치로서, 특히 회전 각속도를 측정하여 제공한다. 자이로스코프의 응용분야로는 비행기, 미사일, 우주선, 잠수함 등에 사용되는 항법장치, 카메라, 로봇, 무인 자동화 기기 등의 자세 제어, 그리고 자이로 콤파스 등으로 매우 넓다. 자이로스코프는 그 응용에 따라서 요구되는 정밀도와 안정도가 다르다. 전술한 자이로스코프에는 기계식 자이로스코프와 광학식 자이로스코프가 있으며, 초정밀 계측 분야에서는 대부분 광학식 자이로스코프가 사용된다. 전술한 광학식 자이로스코프에는 링(ring) 레이저 자이로스코프, 광섬유 자이로스코프 등이 있다. A gyroscope is a device for measuring the rotational kinematics of a rotating object, and in particular, provides a measurement of the rotational angular velocity. Applications of gyroscopes are very wide, such as navigation systems used in airplanes, missiles, spacecraft, submarines, attitude control of cameras, robots, and unmanned automated devices, and gyro compasses. Gyroscopes require different levels of precision and stability depending on their application. The aforementioned gyroscope includes a mechanical gyroscope and an optical gyroscope, and in the field of ultra-precision measurement, an optical gyroscope is mostly used. The above-mentioned optical gyroscopes include ring laser gyroscopes, optical fiber gyroscopes, and the like.
링 레이저 자이로스코프는 3개 또는 그 이상의 반사경으로 이루어진 공진기 안에 서로 반대 방향, 예컨대 시계 방향과 반시계 방향으로 진행하는 레이저 빔이 동시에 발진하도록 하고, 이 레이저 빔의 진동수는 외부에서 자이로스코프를 회전시킬 때의 회전 각속도에 따라 달라지게 되며, 이 진동수의 차이 즉, 회전에 의해 주어지는 CW 및 CCW 방향으로의 유효 공진기 길이 차이를 검출하여 회전각속도를 측정하는 장치이다. 링 레이저 자이로스코프는 바이어스 안정성과 환산계수 선형성이 높고, 측정범위가 넓고, 온도 민감도가 낮기 때문에 항법 장치에 대부분 적용된다. A ring laser gyroscope allows the laser beams to travel in opposite directions, for example clockwise and counterclockwise, simultaneously in a resonator of three or more reflectors, and the frequency of these laser beams causes the gyroscope to rotate externally. It is a device for measuring the rotational angular velocity by detecting the difference in the frequency, that is, the difference in the effective resonator length in the CW and CCW directions given by the rotation. Ring laser gyroscopes are most commonly used in navigation systems because of their high bias stability, conversion factor linearity, wide measurement range, and low temperature sensitivity.
하지만, 링 레이저 자이로스코프의 출력은 사인파(sine wave)의 형태로 나타나며, 회전 각속도의 크기에 따라 사인파의 주파수가 바뀌게 된다. 그런데, 외부 회전 각속도의 크기가 작은 경우, 반사경에서 일어나는 역 산란에 의하여 양방향으로 발진하는 두 레이저 빔의 진동수가 서로 같아지려고 하는 현상인 주파수 잠김 현상(Lock-in Effect)이 발생하게 되며, 이로 인하여 회전 각속도의 크기가 어느 한계치 이하일 때는 자이로스코프의 측정이 불가능하게 되는 문제점이 있다. However, the output of the ring laser gyroscope appears in the form of a sine wave, and the frequency of the sine wave changes according to the magnitude of the rotational angular velocity. However, when the magnitude of the external rotational angular velocity is small, a frequency lock-in effect occurs, in which frequencies of two laser beams oscillating in both directions are equal to each other by reverse scattering occurring in a reflector. When the magnitude of the rotational angular velocity is below a certain threshold, there is a problem that the measurement of the gyroscope is impossible.
한편, 광섬유 자이로스코프는 기본적으로 광원과 광섬유를 원형으로 감아놓은 광섬유 코일로 구성된 감지부를 구비한다. 광섬유 자이로스코프의 동작을 간단하게 설명하면 다음과 같다. 먼저, 광원에서 나온 빛이 방향성 결합기를 지난 후 두 개의 빛으로 나뉘어서 광섬유 코일을 지나게 되며, 서로 반대 방향으로 광섬유 코일을 지난 두 빛은 다시 방향성 결합기에서 만나서 간섭한다. 자이로스코프가 정지 상태에 있는 경우, 두 빛은 광섬유 코일을 지나는 동안 똑같은 위상 변화를 경험하므로, 방향성 결합기에서 보강 간섭하고, 광검출기의 출력은 최대가 된다. 반면, 자이로스코프가 회전하고 있는 경우, Sagnac 효과에 의하여 두 빛 사이에는 회전각속도에 비례하는 위상차가 발생하고, 광검출기의 출력이 변화된다. 그러므로 광검출기의 출력 세기 변화를 측정함으로써 회전각속도를 검출할 수 있다. 이러한 광섬유 자이로스코프는 다른 형태의 자이로스코프에 비하여 가격, 안정도, 내구성, 빠른 기동 시간 등에서 큰 이점을 가지고 있다. 하지만, 광섬유 자이로스코프는 온도에 민감한 바이어스 특성을 갖고, 측정 감도를 높이기 위해 광섬유 길이를 확장하는 경우 비선형성이 증가하게 되는 문제점이 발생한다. On the other hand, the optical fiber gyroscope basically includes a sensing unit consisting of a light source and a fiber coil wound around the optical fiber in a circular shape. The operation of the optical fiber gyroscope is briefly described as follows. First, the light from the light source passes through the directional coupler and then splits into two lights, passing through the fiber coil, and the two lights passing through the fiber coil in opposite directions meet and interfere in the directional coupler again. When the gyroscope is stationary, both lights experience the same phase shift as they pass through the fiber coil, thus constructively interfering in the directional coupler, and the output of the photodetector is maximized. On the other hand, when the gyroscope is rotating, a phase difference proportional to the rotational angular velocity occurs between the two lights due to the Sagnac effect, and the output of the photodetector is changed. Therefore, the rotational angular velocity can be detected by measuring the change in output intensity of the photodetector. Such optical fiber gyroscopes have great advantages over other types of gyroscopes in terms of price, stability, durability, and fast startup time. However, optical fiber gyroscopes have temperature-sensitive bias characteristics, and nonlinearities increase when the optical fiber length is extended to increase measurement sensitivity.
전술한 바와 같이, 사냑 간섭계를 이용하여 자이로스코프를 구성하는 경우, 종래의 사냑 간섭계의 문제점들로 인하여 자이로스코프의 측정 성능이 제한되는 문제점이 발생된다. As described above, when a gyroscope is configured using a sagnac interferometer, a problem in that measurement performance of the gyroscope is limited due to problems of the conventional sagnac interferometer.
전술한 문제점을 해결하기 위한 본 발명의 목적은 편광 빛살 가르게를 사용하여 서로 수직으로 편광된 2개의 빔이 자유 공간의 닫혀있는 동일한 경로를 따라 시계 및 반시계 방향으로 각각 진행하도록 구성되어 측정 성능을 향상시킨 개선된 구조의 Sagnac 간섭계를 제공하는 것이다. An object of the present invention for solving the above-mentioned problems is that the two beams polarized perpendicularly to each other by using polarized light beams are configured to proceed clockwise and counterclockwise, respectively, along the same closed path of free space and measure the measurement performance. It is to provide a Sagnac interferometer of the improved structure to improve the.
전술한 기술적 과제를 달성하기 위한 본 발명의 제1 특징에 따른 사냑 간섭계는, 선형 또는 원형 편광된 광을 제공하는 광원; 상기 광원으로부터 입력된 광을 서로 수직 편광된 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 반대 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부; 상기 감지부로부터 출력된 제1 빔과 제2 빔을 간섭시켜 이들 사이에 유도된 위상 변화를 측정하는 복조부;를 구비하며, A sagnac interferometer according to a first aspect of the present invention for achieving the above technical problem is a light source for providing linear or circularly polarized light; A detector for dividing the light input from the light source into vertically polarized first and second beams, and moving the first and second beams in a closed path in opposite directions to each other and then combining and outputting the first and second beams together; And a demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween.
상기 감지부는, 상기 광원으로부터 45도로 선형 또는 원형 편광된 광을 입력받고, 상기 입력된 광을 서로 수직 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게; 둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부;를 구비하며, 상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 서로 수직으로 편광되어 편광 빛살 가르게에서 합쳐져 동일한 경로로 출력되어 상기 복조부로 제공된다. The sensing unit may be configured to receive linear or circularly polarized light from the light source at 45 degrees, and divide the input light into vertically polarized first and second beams and output the polarized light to different output ports, respectively; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. And a closed path unit configured to input the output port and the second beam to the output port of the first beam, wherein the first beam and the second beam output from the closed path unit are vertically polarized with each other to make polarized light thin. Combined and outputted in the same path is provided to the demodulator.
본 발명의 제2 특징에 따른 사냑 간섭계는, 선형 편광된 광을 제공하는 광원; 상기 광원으로부터 입력된 광을 서로 수직 편광된 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 반대 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부; 상기 감지부의 입력지점 및 출력지점에 형성되어 감지부의 제1 빔과 제2 빔을 공진시키는 공진기; 및 상기 공진기로부터 출력된 제1 빔과 제2 빔을 간섭시켜 제1 빔과 제2 빔의 사이에 유도된 위상 차이를 측정하는 복조부;를 구비하며,A sagnac interferometer according to a second aspect of the present invention includes a light source for providing linearly polarized light; A detector for dividing the light input from the light source into vertically polarized first and second beams, and moving the first and second beams in a closed path in opposite directions to each other and then combining and outputting the first and second beams together; A resonator formed at an input point and an output point of the detector to resonate the first beam and the second beam of the detector; And a demodulator for interfering a first beam and a second beam output from the resonator to measure a phase difference induced between the first beam and the second beam.
상기 감지부는, 상기 광원으로부터 편광 빛살 가르게에 대하여 45도로 선형 편광된 광을 입력받고, 상기 입력된 광을 서로 수직으로 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게; 둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부;를 구비하며, 상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 편광 빛살 가르게에서 합쳐져 동일한 경로로 출력되며, 상기 편광 빛살 가르게로부터 출력된 제1 빔과 제2 빔은 공진기를 통해 공진되어 상기 복조부로 제공된다.The sensing unit receives light linearly polarized at 45 degrees with respect to the polarized light from the light source, divides the input light into vertically polarized first and second beams, and outputs each of them to different output ports. Polarized light thinner; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. And a closed path unit configured to input the output port and input the second beam to the output port of the first beam, wherein the first beam and the second beam output from the closed path unit are combined in the polarized light beams in the same path. The first beam and the second beam output from the polarized light beam are resonated through a resonator and provided to the demodulator.
전술한 제2 특징에 따른 사냑 간섭계에 있어서, 상기 공진기는, 상기 감지부의 입력지점 및 출력지점에 각각 배치된 제1 및 제2 거울; 상기 제1 거울과 상기 감지부의 사이에 배치된 제1 사분파장판(Quarter Wave Plate : QWP); 및 상기 제2 거울과 상기 감지부의 사이에 배치된 제2 사분파장판;를 구비하는 것이 바람직하다. In the sagnac interferometer according to the second aspect described above, the resonator includes: first and second mirrors disposed at input points and output points of the sensing unit, respectively; A first quarter wave plate (QWP) disposed between the first mirror and the sensing unit; And a second quadrant plate disposed between the second mirror and the sensing unit.
본 발명의 제3 특징에 따른 사냑 간섭계는, 편광된 광을 제공하는 광원; 상기 광원으로부터 제공된 광을 편광 방향에 따라 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 다른 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부; 상기 감지부로부터 출력된 제1 빔과 제2 빔을 간섭시켜 이들 사이에 유도된 위상 변화를 측정하는 복조부; 상기 광원과 감지부의 사이에 배치되어, 광원으로부터 제공된 빔의 일부는 투과시키고 감지부로 출력하고, 감지부로부터 제공된 빔의 일부는 반사시켜 복조부로 출력하는 빛살 가르게;를 구비하며, A sagnac interferometer according to a third aspect of the present invention includes a light source for providing polarized light; A detector which divides the light provided from the light source into a first beam and a second beam according to a polarization direction, moves the first beam and the second beam in different directions in one closed path, and then combines and outputs the combined light; A demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween; Is disposed between the light source and the sensing unit, and transmits a part of the beam provided from the light source and outputs to the sensing unit, and the light beam to reflect a portion of the beam provided from the sensing unit to output to the demodulator;
상기 감지부는, 빛살 가르게를 통해 상기 광원으로부터 제공된 광을 서로 수직으로 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게; 둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부; 및 상기 폐경로부의 닫힌 경로상의 임의의 위치에 배치되어 상기 닫힌 경로를 투과하는 광을 반파장만큼 위상 지연시키는 반파장판(Half Wave Plate; HWP); 를 구비하며, 상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 편광 빛살 가르게에서 합쳐져 출력된 후 상기 빛살 가르게에 의해 반사되거나 투과되어 상기 복조부로 제공된다. The sensing unit may be configured to split light provided from the light source into a first beam and a second beam that are vertically polarized with each other, and to output light to different output ports through the light beam; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. A closed path unit configured to input an output port and input the second beam to an output port of the first beam; And a half wave plate (HWP) disposed at an arbitrary position on the closed path of the closed path portion and retarding the light transmitted through the closed path by half a wavelength. And a first beam and a second beam output from the closed path part are combined and output from the polarized light beam and then reflected or transmitted by the light beam and provided to the demodulator.
본 발명의 제4 특징에 따른 사냑 간섭계는, 편광된 광을 제공하는 광원; 상기 광원으로부터 제공된 광을 편광 방향에 따라 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 다른 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부; 상기 감지부로부터 출력된 제1 빔과 제2 빔을 간섭시켜 이들 사이에 유도된 위상 변화를 측정하는 복조부; 상기 광원과 감지부의 사이에 배치되어, 광원으로부터 제공된 빔의 일부는 투과시키고 감지부로 출력하고, 감지부로부터 제공된 빔의 일부는 반사시켜 복조부로 출력하는 빛살 가르게; 및 상기 빛살 가르게와 상기 감지부의 사이에 배치된 공진기;를 구비하며, According to a fourth aspect of the present invention, a sagnac interferometer includes: a light source for providing polarized light; A detector which divides the light provided from the light source into a first beam and a second beam according to a polarization direction, moves the first beam and the second beam in different directions in one closed path, and then combines and outputs the combined light; A demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween; A light beam disposed between the light source and the sensing unit to transmit a part of the beam provided from the light source and output to the sensing unit, and reflect a part of the beam provided from the sensing unit to output to the demodulator; And a resonator disposed between the light beam and the sensing unit.
상기 감지부는, 빛살 가르게를 통해 상기 광원으로부터 제공된 광을 서로 수직으로 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게; 둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부; 및 상기 폐경로부의 닫힌 경로상의 임의의 위치에 배치되어 상기 닫힌 경로를 투과하는 광을 반파장만큼 위상 지연시키는 반파장판(Half Wave Plate; HWP); 를 구비하며, 상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 편광 빛살 가르게에서 합쳐져 출력된 후 상기 빛살 가르게에 의해 반사되거나 투과되어 상기 복조부로 제공된다. The sensing unit may be configured to split light provided from the light source into a first beam and a second beam that are vertically polarized with each other, and to output light to different output ports through the light beam; Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. A closed path unit configured to input an output port and input the second beam to an output port of the first beam; And a half wave plate (HWP) disposed at an arbitrary position on the closed path of the closed path portion and retarding the light transmitted through the closed path by half a wavelength. And a first beam and a second beam output from the closed path part are combined and output from the polarized light beam and then reflected or transmitted by the light beam and provided to the demodulator.
전술한 제1 특징 내지 제4 특징에 따른 사냑 간섭계에 있어서, 복조부로부터 제1 빔과 제2 빔의 위상 변화에 따른 위상차(△φ)를 제공받고, 상기 위상차를 이용하여 회전 각속도(Ω)를 측정하여 제공하는 제어부를 더 구비하는 것이 바람직하다. In sanyak interferometer according to the first feature to the fourth feature receives from the demodulator providing a first phase difference (△ φ) of the phase change of the first beam and a second beam, by using the phase difference angular velocity (Ω) It is preferable to further include a control unit for measuring and providing.
전술한 제1 특징 내지 제4 특징에 따른 사냑 간섭계에 있어서, 상기 복조부는, 상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔의 사이에 바이어스 위상을 인가시키기 위한 위상 지연 장치; 상기 위상 지연 장치로부터 출력된 빔을 제3빔과 제4빔으로 나누어 각각 출력하는 빛살 가르게; 상기 빛살 가르게를 투과한 제3빔으로부터 I 출력신호를 검출하여 출력하는 I 신호 출력부; 상기 빛살 가르게에서 반사된 제4빔으로부터 Q 출력신호를 검출하여 출력하는 Q 신호 출력부; 를 구비하는 것이 바람직하다. In the sagnac interferometer according to the first to fourth features described above, the demodulator comprises: a phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit; Dividing the beam output from the phase delay device into a third beam and a fourth beam, respectively and outputting light; An I signal output unit for detecting and outputting an I output signal from the third beam passing through the light beam; A Q signal output unit for detecting and outputting a Q output signal from the fourth beam reflected by the light beam; It is preferable to have a.
전술한 제1 특징 내지 제4 특징에 따른 사냑 간섭계에 있어서, 상기 복조부는, 상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔의 사이에 바이어스 위상을 인가시키기 위한 위상 지연 장치; 상기 위상 지연 장치에 의해 위상 지연된 제1빔과 제2빔을 45도로 정렬시켜 제1빔과 제2빔의 간섭 신호를 출력하는 편광자(Polarizer); 및 상기 편광자로부터 출력된 빔을 검출한 검출 신호를 출력하는 광검출소자;를 구비하는 것이 바람직하다. In the sagnac interferometer according to the first to fourth features described above, the demodulator comprises: a phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit; A polarizer for aligning the first beam and the second beam delayed by the phase delay device by 45 degrees to output an interference signal of the first beam and the second beam; And a photodetector for outputting a detection signal detecting the beam output from the polarizer.
전술한 제1 특징 내지 제4 특징에 따른 사냑 간섭계에 있어서, 상기 복조부는, 상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔 사이에 바이어스 위상을 인가시키기 위한 위상 지연 장치; 상기 위상 지연 장치로부터 출력된 제1빔과 제2빔을 간섭시키고 편광 상태에 따라 나누어 출력하는 편광 빛살 가르게; 상기 편광 빛살 가르게로부터 반사된 제3 빔을 검출하여 제1 검출신호를 출력하는 제1 광검출소자; 상기 편광 빛살 가르게를 투과한 제4 빔을 검출하여 제2 검출신호를 출력하는 제2 광검출소자; 상기 제1 및 제2 검출신호의 차를 검출하여 출력하는 차동 증폭기;를 구비하는 것이 바람직하다. In the sagnac interferometer according to the first to fourth features described above, the demodulator comprises: a phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit; A polarized light beam that interferes with the first beam and the second beam output from the phase delay device and outputs the divided light according to the polarization state; A first photodetector for detecting a third beam reflected from the polarized light beam and outputting a first detection signal; A second photodetector for detecting a fourth beam transmitted through the polarized light beam and outputting a second detection signal; And a differential amplifier detecting and outputting a difference between the first and second detection signals.
전술한 제2 특징과 제4 특징에 따른 사냑 간섭계에 있어서, 압전소자piezoelectric transducer) 등 변위 장치에 고정된 공진기 거울;을 구비하여 능동적으로 공진조건을 조절해 주는 것이 바람직하다. In the sagnac interferometer according to the second and fourth features described above, it is preferable to include a resonator mirror fixed to a displacement device such as a piezoelectric transducer) to actively adjust the resonance conditions.
본 발명에 따른 사냑 간섭계는 편광 빛살 가르게를 이용하여 구성함으로써, 종래의 사냑 간섭계와는 달리 각속도가 작은 회전까지도 정밀하게 측정할 수 있다. The sagnac interferometer according to the present invention can be precisely measured even by a rotation with a small angular velocity unlike the conventional sagnac interferometer by using a polarized light filter.
또한, 본 발명의 제2 실시예와 제 4실시예에 따른 사냑 간섭계는 공진 구조를 구성함으로써, CW 광과 CCW광이 공진기내에서 다수 회를 진행된 후 출력된다. 그 결과, 회전을 보다 정밀하게 측정할 수 있으며 항상 높은 감도를 유지할 수 있게 된다. In addition, the sagnac interferometer according to the second and fourth embodiments of the present invention constitute a resonant structure, so that the CW light and the CCW light are output after a plurality of times in the resonator. As a result, the rotation can be measured more precisely and always maintain high sensitivity.
도 1은 종래의 사냑 간섭계를 도시한 구성도이다. 1 is a block diagram showing a conventional Sagnac interferometer.
도 2는 본 발명의 제1 실시예에 따른 사냑 간섭계를 전체적으로 도시한 구성도이다. Figure 2 is a schematic diagram showing the overall Sagnac interferometer according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 사냑 간섭계를 전체적으로 도시한 구성도이다. Figure 3 is a schematic diagram showing the overall Sagnac interferometer according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 사냑 간섭계를 전체적으로 도시한 구성도이다. Figure 4 is a schematic diagram showing the overall Sagnac interferometer according to a third embodiment of the present invention.
도 5는 본 발명의 제4 실시예에 따른 사냑 간섭계를 전체적으로 도시한 구성도이다. 5 is a block diagram showing the overall Sagnac interferometer according to a fourth embodiment of the present invention.
도 6은 본 발명에 따른 사냑 간섭계에 따른 위상차를 이용하여, 회전 각속도를 검출하기 위하여 사용되는 사냑 효과(Sagnac Effect)를 설명하기 위하여 도시한 모식도이다. FIG. 6 is a schematic diagram illustrating a Sagnac Effect used to detect a rotational angular velocity using a phase difference according to a Sagnac interferometer according to the present invention.
도 7은 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 일실시 형태를 도시한 구성도이다. 7 is a block diagram showing an embodiment of a demodulation unit in the sagnac interferometer according to the present invention.
도 8은 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 다른 실시 형태를 도시한 구성도이다. 8 is a block diagram showing another embodiment of the demodulator in the sagnac interferometer according to the present invention.
도 9는 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 또 다른 실시 형태를 도시한 구성도이다. 9 is a block diagram showing another embodiment of the demodulation unit in the sagnac interferometer according to the present invention.
본 발명에 따른 사냑 간섭계(Sagnac Interferometer)는 편광 빛살 가르게 및공진기를 이용하여 구성된 것을 특징으로 한다. Sagnac interferometer according to the present invention is characterized in that it is configured using a polarized light filter and a resonator.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들에 따른 새로운 구조의 사냑 간섭계의 구조 및 동작에 대하여 구체적으로 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the structure and operation of the Sagnac interferometer of the novel structure according to the embodiments of the present invention.
< 제1 실시예 ><First Embodiment>
도 2는 본 발명의 제1 실시예에 따른 개선된 사냑 간섭계를 전체적으로 도시한 구성도이다. Figure 2 is a schematic diagram showing the overall improved Sagnac interferometer according to the first embodiment of the present invention.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 자유 공간 자이로스코프(1)는, 광원(10), 감지부(20) 및 복조부(30)를 구비하며, 제어부(40)를 더 구비할 수 있다. 2, the free space gyroscope 1 according to the first embodiment of the present invention includes a light source 10, a detector 20, and a demodulator 30, and further includes a controller 40. It can be provided.
상기 광원(10)은 45도로 선형 또는 원형 편광된 광을 상기 감지부(20)의 편광 빛살 가르게(200)로 제공한다. 상기 광원은 단일의 레이저 빔 발생장치를 사용하여 45도로 선형 또는 원형 편광된 레이저 빔을 출력하도록 구성하거나, 레이저 빔 발생장치와 편광 회전 장치를 결합하여 구성함으로써 45도로 선형 또는 원형 편광된 레이저 빔을 출력할 수도 있을 것이다. The light source 10 provides 45 degrees linear or circularly polarized light to the polarized light beam 200 of the sensing unit 20. The light source may be configured to output a linear or circularly polarized laser beam by 45 degrees using a single laser beam generator, or may be configured by combining the laser beam generator and a polarization rotating device to produce a linear or circularly polarized laser beam by 45 degrees. You could also print
상기 감지부(20)는 편광 빛살 가르게(200) 및 다수 개의 광경로 변경 소자(211, 212, 213)들로 구성된 폐경로부(210)를 구비하여 하나의 닫힌 경로를 구성하게 된다. 전술한 구조를 갖는 상기 감지부는, 상기 광원으로부터 제공된 광을 이용하여 사냑 간섭계의 회전이나 이동을 감지하고, 회전이나 이동에 의한 회전 각속도에 따른 위상차를 갖는 제1 빔과 제2 빔을 복조부(30)로 출력한다. The sensing unit 20 includes a closed path unit 210 formed of a polarized light beam 200 and a plurality of light path changing elements 211, 212, and 213 to form one closed path. The sensing unit having the above-described structure, detects the rotation or movement of the Sagnac interferometer using the light provided from the light source, and demodulates the first beam and the second beam having a phase difference according to the rotational angular velocity by the rotation or movement ( 30).
상기 폐경로부(210)는 둘 이상의 광경로 변경 소자들로 구성되며, 상기 편광 빛살 가르게(200)와 함께 하나의 닫힌 경로를 구성한다. 상기 광경로 변경 소자들은 반사경 또는 프리즘과 같이 입사된 빔을 반사 또는 전반사시키는 소자들을 사용할 수 있다. 도 2에 도시된 바와 같이, 일 실시형태로는 3개의 반사경(211, 212, 213)을 순차적으로 배치하여 구성할 수 있다.The closed path unit 210 is composed of two or more light path changing elements, and together with the polarized light beam 200 constitutes one closed path. The light path changing devices may use devices that reflect or totally reflect an incident beam, such as a reflector or a prism. As illustrated in FIG. 2, in one embodiment, three reflectors 211, 212, and 213 may be sequentially arranged.
상기 편광 빛살 가르게의 제1 출력 포트 및 제2 출력 포트로부터 각각 출력된 상기 제1 빔과 제2 빔은 폐경로부로 각각 입력되며, 폐경로부로 입력된 제1 빔과 제2 빔은 상기 닫힌 경로를 따라 각각 CCW 방향과 CW 방향으로 이동되어, 제1 빔은 제2 빔의 출력포트로 다시 입력되고 제2 빔은 제1 빔의 출력 포트로 다시 입력된다. 상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 서로 수직으로 편광되어 편광 빛살 가르게로 다시 입력되어 편광 빛살 가르게에서 합쳐진 후 동일한 경로로 출력되어 상기 복조부로 제공된다. The first and second beams respectively output from the first output port and the second output port of the polarized light beam are input to the closed path part, respectively, and the first and second beams input to the closed path part are closed. Moved along the path in the CCW direction and the CW direction, respectively, so that the first beam is input back to the output port of the second beam and the second beam is input back to the output port of the first beam. The first beam and the second beam output from the closed path part are polarized perpendicularly to each other, input back to the polarized light beam, merged in the polarized light beam, and then output through the same path to the demodulator.
특히, 상기 감지부(20)는 광원으로부터 입사된 광을 편광 빛살 가르게(200)에서 편광 방향에 따라 S 편광은 반사되고 P 편광은 투과됨으로써 2개의 빔으로 나누고, 이렇게 나뉘어진 2개의 빔이 하나의 닫힌 경로를 따라 서로 반대 방향으로 진행된 후 편광 빛살 가르게에서 다시 합쳐져 복조부로 출력된다. 상기 복조부는 이렇게 출력된 빔을 복조함으로써, CW 방향과 CCW 방향으로 각각 진행한 제2빔과 제1빔의 위상차를 측정할 수 있게 된다. In particular, the sensing unit 20 divides the light incident from the light source into two beams by reflecting the S-polarized light and transmitting the P-polarized light according to the polarization direction in the polarized light beam 200. It proceeds in opposite directions along one closed path and then merges again in the polarized light beam and outputs to the demodulator. The demodulator demodulates the beam thus output, thereby measuring the phase difference between the second beam and the first beam, which have advanced in the CW and CCW directions, respectively.
상기 편광 빛살 가르게(200)는 상기 광원으로부터 제공된 빔을 편광 방향에 따라 S 편광은 반사시키고 P 편광은 투과시키는 광학 소자로서, 편광 방향에 따라 반사시키거나 투과시킴으로써 편광 방향이 서로 다른 제1빔과 제2빔으로 분리하여 폐경로부(210)로 출력한다. 폐경로부로 출력된 제1빔과 제2빔은 각각 서로 반대 방향으로 회전하여 다시 제1 편광 빛살 가르게로 재입사되며, 재입사된 제1빔과 제2빔은 합쳐져서 복조부로 출력된다. The polarized light beam 200 is an optical element that reflects S-polarized light and transmits P-polarized light according to the polarization direction according to the polarization direction. The first beam having different polarization directions by reflecting or transmitting it according to the polarization direction It is separated into a second beam and output to the closed path portion 210. The first beam and the second beam output to the closed path portion are rotated in opposite directions, respectively, and re-entered again into the first polarized light beam, and the re-entered first beam and the second beam are combined and output to the demodulator.
상기 폐경로부(210)는 상기 편광 빛살 가르게로부터 출력된 빔들이 상기 닫힌 경로를 따라 서로 반대 방향으로 이동한 후 다시 편광 빛살 가르게로 입사되도록 다수 개의 광경로 변경 소자들이 순차적으로 배치된 것으로서, 닫힌 경로가 자유 공간(Free space)에서 형성되도록 함으로써, 빔들이 자유 공간에서 진행할 수 있게 된다. 상기 폐경로부에 의하여, 상기 편광 빛살 가르게에서 반사되어 출력된 제1빔은 시계 반대 방향으로 진행하여 편광 빛살 가르게로 재입사되며, 편광 빛살 가르게를 투과한 제2빔은 시계 방향으로 진행하여 편광 빛살 가르게로 재입사된다. 따라서, 서로 수직 편광상태인 제1빔과 제2빔이 폐경로부의 닫힌 경로를 따라 서로 반대 방향으로 이동한 후 편광 빛살 가르게로 재입사하여 복조부로 출력된다. The closed path unit 210 includes a plurality of light path changing elements that are sequentially arranged such that beams output from the polarized light beam move in opposite directions along the closed path and then enter the polarized light beam again. By allowing a closed path to be formed in free space, the beams can travel in free space. The first beam reflected from the polarized light beam by the closed path part is output in a counterclockwise direction and re-entered into the polarized light beam, and the second beam transmitted through the polarized light beam is clockwise. Proceed is reincident to the polarized light beam. Accordingly, the first beam and the second beam, which are in the state of perpendicular polarization, move in opposite directions along the closed path of the closed path portion, and are re-entered into the polarized light beam and output to the demodulator.
상기 제1빔과 제2빔이 폐경로부의 자유 공간(Free Space)을 이동하는 동안, 사냑 간섭계가 회전하게 되면, 제1빔과 제2빔은 사냑 간섭계의 회전 각속도에 따라 위상차를 갖게 된다. If the Sagnac interferometer rotates while the first beam and the second beam move through the free space of the closed path portion, the first beam and the second beam have a phase difference according to the rotational angular velocity of the sagnac interferometer.
상기 복조부(30)는 감지부(20)로부터 출력된 제1빔과 제2빔을 간섭시키고, 이들 사이에 유도된 위상차를 측정하여 제공한다. The demodulator 30 interferes with the first beam and the second beam output from the detector 20, and measures and provides a phase difference induced therebetween.
상기 제어부(40)는 상기 복조부로부터 제공된 제1빔과 제2빔의 간섭신호로부터 제1빔과 제2빔 사이의 위상 차이를 산출하고 이를 이용하여 사냑 간섭계의 회전 각속도를 계산하여 출력한다. 본 발명에 따른 사냑 간섭계는 상기 제어부(40)를 내부에 포함할 수도 있으며, 제어부(40) 없이 구성될 수도 있다. 사냑 간섭계를 제어부 없이 구성하는 경우, 사냑 간섭계는 외부의 제어 장치 또는 컴퓨터 등으로 사냑 간섭계에 의해 측정된 제1 빔과 제2 빔의 간섭신호를 외부의 제어 장치 또는 컴퓨터로 제공할 수 있다. 상기 제어 장치 또는 컴퓨터는 제1 빔과 제2 빔의 간섭신호를 이용하여 제1 빔과 제1 빔의 위상차와 사냑 간섭계의 회전 각속도를 계산할 수 있게 된다. The controller 40 calculates a phase difference between the first beam and the second beam from the interference signals of the first beam and the second beam provided from the demodulator, and calculates and outputs a rotational angular velocity of the sagnac interferometer. The sagnac interferometer according to the present invention may include the control unit 40 therein or may be configured without the control unit 40. When the sagnac interferometer is configured without a control unit, the sagnac interferometer may provide an external control device or a computer with an interference signal of the first beam and the second beam measured by the sagnac interferometer using an external control device or a computer. The control device or computer may calculate the phase difference between the first beam and the first beam and the rotational angular velocity of the sagnac interferometer using the interference signals of the first beam and the second beam.
도 6은 본 발명에 따른 사냑 간섭계에 있어서, 제1 빔과 제2 빔의 위상차를 이용하여 회전 각속도를 검출하기 위하여 사용되는 사냑 효과(Sagnac Effect)를 설명하기 위하여 도시한 모식도이다. 도 6에 도시된 바와 같이, 사냑 간섭계가 회전을 하면, 폐경로부에 의해 서로 반대 방향으로 진행하는 제1빔과 제2빔은 회전 각속도에 따라 서로 광경로차(L)가 발생하게 된다. 따라서, 사냑 간섭계에 의해 측정된 제1빔과 제2빔의 위상차를 이용하여 광경로차를 구하고, 상기 광경로차를 기반으로 하여 회전 각속도를 측정할 수 있게 된다. FIG. 6 is a schematic diagram illustrating the Sagnac Effect used to detect the rotational angular velocity using the phase difference between the first beam and the second beam in the Sagnac interferometer according to the present invention. As shown in FIG. 6, when the Sagnac interferometer rotates, the optical path difference ΔL occurs between the first beam and the second beam traveling in opposite directions by the closed path part. . Therefore, the optical path difference is obtained using the phase difference between the first beam and the second beam measured by the Sagnac interferometer, and the rotational angular velocity can be measured based on the optical path difference.
< 제2 실시예 > Second Embodiment
도 3은 본 발명의 제2 실시예에 따른 개선된 사냑 간섭계를 전체적으로 도시한 구성도이다. Figure 3 is a schematic diagram showing the overall improved Sagnac interferometer according to a second embodiment of the present invention.
도 3을 참조하면, 본 발명의 제2 실시예에 따른 자이로스코프(2)는, 광원(12), 감지부(22), 복조부(32) 및 공진기(52)를 구비하며, 제어부(42)를 더 구비할 수 있다. 제2 실시예의 감지부(22)의 구조는 제1 실시예의 그것들의 구조와 동일하므로, 중복되는 설명은 생략한다. Referring to FIG. 3, the gyroscope 2 according to the second embodiment of the present invention includes a light source 12, a detector 22, a demodulator 32, and a resonator 52, and a controller 42. ) May be further provided. Since the structure of the sensing unit 22 of the second embodiment is the same as those of the first embodiment, overlapping description is omitted.
상기 광원(12)은 45도로 선형 편광된 레이저 광원을 사용할 수 있다. The light source 12 may use a laser light source linearly polarized at 45 degrees.
상기 감지부(22)는 공진기(52)의 내부에 배치되며, 상기 광원으로부터 입력된 광을 서로 수직으로 편광된 제1빔과 제2빔으로 나누고, 상기 제1빔과 제2빔을 하나의 닫힌 경로에서 서로 반대 방향을 따라 이동시킨 후 다시 합쳐서 복조부로 출력한다. The detector 22 is disposed inside the resonator 52, and divides the light input from the light source into a first beam and a second beam polarized perpendicularly to each other, and divides the first beam and the second beam into a single beam. In the closed path, move along the opposite direction and then combine again to output to the demodulator.
상기 공진기(52)는 상기 감지부(22)의 입력지점 및 출력지점에 각각 배치된 제1 거울(520) 및 제2 거울(522)로 구성되며, 상기 제1 및 제2 거울에는 제1 사분파장판(Quarter Wave Plate : QWP ; 521) 및 제2 사분파장판(523)이 각각 배치된다. 제1 및 제2 사분파장판은 입력된 빔을 λ/4 만큼 위상 지연시켜 출력하는 위상지연판이다. The resonator 52 includes a first mirror 520 and a second mirror 522 disposed at an input point and an output point of the sensing unit 22, respectively. A quarter wave plate (QWP) 521 and a second quarter wave plate 523 are disposed, respectively. The first and second quarter-wave plates are phase delay plates for delaying and outputting the input beam by? / 4.
상기 제1 및 제2 거울(520, 522)는 반사계수(R)가 큰 거울들로 구성하는 것이 바람직하다. 예를 들어, 제1 및 제2 거울을 반사계수가 98%인 거울들로 구성하는 경우 편광 빛살 가르게에서의 손실이 없다고 가정하면 공진기의 Finesse 가 157이며, 공진기내의 CW 빔 및 CCW 빔은 약 100회 정도 반복하여 돌아 갈 수 있기 때문에 유도되는 위상 값은 약 100배 만큼 증가한다. 편광 빛살 가르게에서의 손실을 고려하더라도 CW 빔 및 CCW 빔이 수십 회 이상 반복하여 돌아 갈 수 있기 때문에 그만큼 간섭계의 성능을 향상시킬 수 있다. Preferably, the first and second mirrors 520 and 522 are composed of mirrors having a large reflection coefficient (R). For example, if the first and second mirrors consist of mirrors with a reflection coefficient of 98%, the finesse of the resonator is 157, assuming there is no loss in the polarized light beam, and the CW and CCW beams in the resonator are approximately Since it can go back 100 times, the induced phase value increases by about 100 times. Even considering the loss in the polarized light beam, the performance of the interferometer can be improved accordingly because the CW beam and the CCW beam can be repeatedly returned several dozen times.
상기 감지부(22)는 제1 실시예의 감지부와 동일한 구조로 이루어지되, 광원과 편광 빛살 가르게(200)의 입사면의 사이에 공진기의 제1 거울(520) 및 제1 사분 파장판(521)이 배치되며, 편광 빛살 가르게의 출사면과 복조부의 사이에 공진기의 제2 거울(522) 및 제2 사분파장판(523)이 배치된다. The detector 22 has the same structure as that of the detector of the first embodiment, but includes a first mirror 520 and a first quarter wave plate of the resonator between the light source and the incident surface of the polarized light beam 200. 521 is disposed, and a second mirror 522 and a second quarter wave plate 523 of the resonator are disposed between the emission surface of the polarized light beam and the demodulator.
이하, 본 발명의 제2 실시예에 따른 사냑 간섭계에 있어서, 상기 감지부(22) 및 공진기(52)에서의 제1빔과 제2빔의 진행 경로를 구체적으로 설명한다. Hereinafter, in the sagnac interferometer according to the second embodiment of the present invention, the paths of the first beam and the second beam in the detector 22 and the resonator 52 will be described in detail.
먼저, 광원으로부터 제공된 선형 편광된 빛의 일부가 거울을 거쳐 제1 QWP(521)에 입사되는데, 이때 입사된 빛의 편광 방향이 제1 QWP의 주축과 평행하기 때문에 제1 QWP를 거치면서 편광상태는 입사된 빛과 같은 상태로 유지된다. 제1 QWP의 주축, 즉 입사된 빛의 편광 방향이 편광 빛살 가르게의 주축과 45도의 각을 이루기 때문에 입사된 빔의 P 편광 성분은 편광 빛살 가르게(200)를 투과하여 제1 빔을 이루고 S 성분은 반사되어 제2 빔을 이룬다. 편광 빛살 가르게를 투과한 제1 빔은 폐경로부에 의해 형성된 경로를 CCW 방향으로 진행하며, 편광 빛살 가르게에서 반사된 제2 빔은 폐경로부에 의해 형성된 경로를 CW 방향으로 진행하게 된다. 폐경로부를 따라 CCW 방향으로 진행한 제1빔은 P 편광으로서 편광 빛살 가르게로 재입사되어 다시 투과되어 제2 QWP, 제2 거울, 제2 QWP를 투과한 후 편광 빛살 가르게로 다시 입사하게 된다. 이때, 제1 빔은 제2 QWP를 두번 투과하게 되어 편광 방향이 90도 회전하며, 그 결과 다시 입사한 편광 빛살 가르게에서 반사되어 폐경로부를 CCW 방향으로 다시 진행하게 된다. 이러한 과정이 반복됨으로써, 제1 빔은 CCW 방향으로 반복해서 돌아가게 된다. 따라서 공진기가 정상파 조건을 만족하면 제1 거울을 통해 입사되는 빛이 증강간섭을 일으켜 공진기 내부에서 빛의 세기는 점점 커지고 이들 중 일부가 제2 거울(522)를 통해 출력된다. 이 때 제1 빔이 닫힌 경로를 따라 돌아가는 횟수는 거울의 반사율에 의해 주어진다. 한편, 제2 빔은, 제1 빔과 마찬가지로 CW 방향으로 같은 횟수만큼 돌아가며 제2 거울(522)를 통해 출력된다. First, a part of the linearly polarized light provided from the light source is incident on the first QWP 521 through the mirror, and the polarization state is passed through the first QWP since the polarization direction of the incident light is parallel to the main axis of the first QWP. Is kept in the same state as the incident light. Since the main axis of the first QWP, that is, the polarization direction of the incident light forms an angle of 45 degrees with the main axis of the polarized light beam, the P polarized light component of the incident beam passes through the polarized light beam 200 to form the first beam. The S component is reflected to form a second beam. The first beam transmitted through the polarized light beam goes along the path formed by the closed path part in the CCW direction, and the second beam reflected from the polarized light beam goes along the path formed by the closed path part in the CW direction. . The first beam traveling in the CCW direction along the closed path part is re-entered into the polarized light beam as P-polarized light and transmitted again to transmit the second QWP, the second mirror, and the second QWP, and then enter the polarized light beam again. do. At this time, the first beam is transmitted through the second QWP twice and the polarization direction is rotated by 90 degrees. As a result, the first beam is reflected in the polarized light beam which is incident again, and then proceeds to the closed path part again in the CCW direction. By repeating this process, the first beam is repeatedly returned in the CCW direction. Therefore, when the resonator satisfies the standing wave condition, the light incident through the first mirror causes augmented interference, and the intensity of the light is gradually increased in the resonator, and some of them are output through the second mirror 522. The number of times the first beam returns along the closed path is given by the reflectivity of the mirror. On the other hand, like the first beam, the second beam is output through the second mirror 522 while rotating the same number of times in the CW direction.
예를 들어, 상기 공진기를 구성하는 제1 및 제2 거울의 반사 계수(R)가 98% 인 경우 공진기의 finesse가 157이 되며 제1 빔과 제2 빔은 편광 빛살 가르게 등 다른 소자에서의 손실을 고려하지 않을 경우 약 100회 돌아간 후에 출력된다. For example, when the reflection coefficients (R) of the first and second mirrors constituting the resonator are 98%, the finesse of the resonator is 157, and the first and second beams are separated from other elements such as polarized light. If the loss is not considered, it will be printed after about 100 times.
상기 공진기로부터 발진되어 출력된 제1 빔과 제2 빔은 복조부(32)로 제공된다. 상기 복조부(32)는 상기 공진기(52)로부터 출력된 제1 빔과 제2 빔을 복조하여, 제1 빔과 제2 빔 사이의 위상차를 검출하여 출력한다. The first beam and the second beam oscillated from the resonator are provided to the demodulator 32. The demodulator 32 demodulates the first beam and the second beam output from the resonator 52, detects and outputs a phase difference between the first beam and the second beam.
제2 실시예에 따른 사냑 간섭계는 공진기에 의해 빔이 다수 회 돌아가게 함으로써, 빔이 감지부의 폐경로부를 따라 1회 돌아가는 제1 실시예에 따른 사냑 간섭계에 비하여 돌아간 횟수만큼 감도를 향상시킬 수 있다. The sagnac interferometer according to the second embodiment may improve the sensitivity by the number of times the beam is returned by the resonator as compared with the sagnac interferometer according to the first embodiment in which the beam is rotated once along the closed path part of the sensing unit. .
< 제3 실시예 >Third Embodiment
도 4는 본 발명의 제3 실시예에 따른 개선된 사냑 간섭계를 전체적으로 도시한 구성도이다. Figure 4 is a schematic diagram showing the overall improved Sagnac interferometer according to a third embodiment of the present invention.
도 4를 참조하면, 본 발명의 제3 실시예에 따른 사냑 간섭계(3)는, 광원(10), 빛살 가르게(250), 감지부(23) 및 복조부(30)를 구비하며, 제어부(40)를 더 구비할 수 있다. Referring to FIG. 4, a sagnac interferometer 3 according to a third embodiment of the present invention includes a light source 10, a light beam 250, a detector 23, and a demodulator 30. 40 may be further provided.
상기 광원(10)은 45도로 선형 또는 원형 편광된 광을 빛살 가르게(250)를 통해 감지부(23)로 제공한다. 상기 광원은 단일의 레이저 빔 발생장치를 사용하여 45도로 선형 또는 원형 편광된 레이저 빔을 출력하도록 구성하거나, 레이저 빔 발생장치와 편광 회전 장치를 결합하여 구성함으로써 45도로 선형 또는 원형 편광된 레이저 빔을 출력할 수도 있을 것이다. The light source 10 provides 45 degrees linear or circularly polarized light to the detector 23 through the light beam 250. The light source may be configured to output a linear or circularly polarized laser beam by 45 degrees using a single laser beam generator, or may be configured by combining the laser beam generator and a polarization rotating device to produce a linear or circularly polarized laser beam by 45 degrees. You could also print
상기 빛살 가르게(250)는 상기 광원(10)과 감지부(23)의 사이에 배치되어, 광원으로부터 제공된 빔의 일부는 투과시키고 감지부로 출력하고, 감지부로부터 제공된 빔의 일부는 반사시켜 복조부로 출력한다.The light beam 250 is disposed between the light source 10 and the sensing unit 23 to transmit a part of the beam provided from the light source and output it to the sensing unit, and reflect and demodulate a part of the beam provided from the sensing unit. Output as negative.
상기 감지부(23)는 편광 빛살 가르게(200), 다수 개의 광경로 변경 소자(211, 212, 213)들로 구성된 폐경로부(210) 및 반파장판(240)을 구비하여, 상기 광원으로부터 제공된 광을 이용하여 사냑 간섭계의 회전이나 이동을 감지하고, 회전이나 이동에 의한 회전 각속도에 따른 위상차를 갖는 제1 빔과 제2 빔을 빛살 가르게(250)를 통해 복조부(30)로 출력한다. The sensing unit 23 includes a polarization light path 200, a closed path unit 210 composed of a plurality of light path changing elements 211, 212, and 213, and a half wave plate 240. Detects the rotation or movement of the Sagnac interferometer using the provided light, and outputs the first beam and the second beam having a phase difference according to the rotational angular velocity by the rotation or movement to the demodulator 30 through the light beam 250. do.
상기 편광 빛살 가르게(200)는 빛살 가르게를 통해 상기 광원으로부터 제공된 광을 서로 수직으로 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력한다.The polarized light beam 200 divides the light provided from the light source through the light beam and divides the first beam and the second beam polarized perpendicularly to each other and outputs them to different output ports.
상기 폐경로부(210)는 둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키게 된다. The closed path unit 210 constitutes one closed path using two or more mirrors, and changes the first and second beams output from the polarized light beam to move along the closed path. The first beam is input to the output port of the second beam and the second beam is input to the output port of the first beam.
상기 반파장판(240)은 상기 폐경로부의 닫힌 경로상에서 편광 빛살 가르게 (200)과 붙어서, 혹은 바로 뒤에 배치되어 상기 닫힌 경로를 투과하는 빔의 편광방향을 90도 회전시킨다. 따라서 닫힌 경로를 따라 CW 방향과 CCW 방향으로 진행하는 빛의 편광상태가 동일하기 때문에 공기의 비등방적인 흐름 등에 인가될 수 있는 복굴절 잡음에 영향을 받지 않는다. The half-wave plate 240 is attached to, or immediately behind, the polarized light beam 200 on the closed path of the closed path part to rotate the polarization direction of the beam transmitted through the closed path by 90 degrees. Therefore, since the polarization state of the light traveling in the CW direction and the CCW direction along the closed path is the same, it is not affected by the birefringence noise that may be applied to an anisotropic flow of air.
상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 서로 수직으로 편광되어 편광 빛살 가르게에서 합쳐져 동일한 경로를 따라 빛살 가르게(200)로부터 출력되어 상기 복조부로 제공된다. The first beam and the second beam output from the closed path part are polarized perpendicularly to each other, merged in the polarized light beam, and output from the light beam 200 along the same path to the demodulator.
이하, 본 발명의 제3 실시예에 따른 사냑 간섭계에 있어서, 상기 감지부(23)에서의 제1빔과 제2빔의 진행 경로를 구체적으로 설명한다. Hereinafter, in the sagnac interferometer according to the third embodiment of the present invention, the paths of the first beam and the second beam in the detector 23 will be described in detail.
먼저, 광원으로부터 입사된 광을 빛살 가르게(250)를 통해 편광 빛살 가르게(200)로 입사되며, 편광 빛살 가르게에서 편광 방향에 따라 S 편광빔은 반사되고 P 편광빔은 투과됨으로써 2개의 빔으로 나누고, 이렇게 나뉘어진 2개의 빔이 하나의 닫힌 경로를 따라 서로 반대 방향으로 진행된 후 편광 빛살 가르게에서 다시 합쳐져 출력된다. First, the light incident from the light source is incident to the polarized light beam 200 through the light beam 250, in which the S polarized beam is reflected and the P polarized beam is transmitted according to the polarization direction. The beam is divided into two beams, and the two beams are divided in a direction opposite to each other along one closed path, and are then combined and output again in the polarized light beam.
한편, 편광 빛살 가르게(200)와 붙어서 반파장판(240)을 배치함으로써, 상기 폐경로부의 닫힌 경로를 투과하는 빔은 반파장판에 의해 90도만큼 편광이 회전한다. 그 결과, 편광 빛살 가르게를 투과한 P 편광인 제1빔은 폐경로부의 닫힌 경로를 시계 반대 방향을 따라 이동하여 편광 빛살 가르게로 재입사하게 되며, 이때 반파장판(240)에 의해 편광 방향이 90도 회전함에 따라 재입사된 편광 빛살 가르게(200)에서 반사되어 빛살 가르게로 진행하게 된다. 한편, 편광 빛살 가르게에서 반사된 S 편광인 제2빔은 반파장판에 의해 편광방향이 90도 회전하여 폐경로부의 닫힌 경로를 시계 방향으로 이동하여 재입사된 편광 빛살 가르게를 투과하여 빛살 가르게로 진행하게 된다. 따라서 시계방향과 반시계 방향으로 진행하는 빛이 닫힌 경로에서 동일한 편광상태를 가짐으로써 완전히 가역적인 사냑 간섭계를 구성할 수 있으며, 이렇게 진행하여 재입사된 편광 빛살 가르게를 투과하거나 반사된 제1빔과 제2빔은 편광 빛살 가르게에서 합쳐져 빛살 가르게로 진행된 후 빛살 가르게에서 일부가 복조부(30)로 출력된다. On the other hand, by arranging the half-wave plate 240 in contact with the polarized light beam 200, the beam passing through the closed path of the closed path portion is rotated by 90 degrees by the half-wave plate. As a result, the first beam, which is P-polarized light transmitted through the polarized light beam, moves the closed path of the closed path portion in a counterclockwise direction and reenters the polarized light beam, wherein the polarization direction is caused by the half-wave plate 240. As it is rotated by 90 degrees, it is reflected from the re-incident polarized light beam 200 and proceeds to the light beam. On the other hand, the second beam of S polarized light reflected by the polarized light beam is rotated 90 degrees by the half-wave plate to move the closed path portion clockwise in the clockwise direction to pass through the reentrant polarized light beam You will proceed to crab. Therefore, the light that proceeds clockwise and counterclockwise has the same polarization state in a closed path, thereby constructing a completely reversible sagnac interferometer, and the first beam transmitted or reflected through the reentrant polarized light beam And the second beam is combined in the polarized light beam and proceeds to the light beam, and a part of the beam is output to the demodulator 30.
상기 복조부는 이렇게 빛살 가르게로부터 입력된 빔을 복조함으로써, CW 방향과 CCW 방향으로 각각 진행한 제2빔과 제1빔의 위상차를 측정할 수 있게 된다. The demodulator demodulates the beam inputted from the light beam, thereby measuring the phase difference between the second beam and the first beam, which have advanced in the CW and CCW directions, respectively.
상기 제1빔과 제2빔이 폐경로부의 자유 공간(Free Space)을 이동하는 동안, 사냑 간섭계가 회전하게 되면, 제1빔과 제2빔은 사냑 간섭계의 회전 각속도에 따라 위상차를 갖게 된다. If the Sagnac interferometer rotates while the first beam and the second beam move through the free space of the closed path portion, the first beam and the second beam have a phase difference according to the rotational angular velocity of the sagnac interferometer.
상기 복조부(30)는 감지부(20)로부터 출력된 제1빔과 제2빔을 간섭시키고, 이들 사이에 유도된 위상 변화를 측정하여 제공한다. The demodulator 30 interferes with the first beam and the second beam output from the detector 20, and measures and provides a phase change induced therebetween.
상기 제어부(40)는 상기 복조부로부터 제공된 제1빔과 제2빔의 위상차를 이용하여, 사냑 간섭계의 회전 각속도를 계산하여 출력한다. The controller 40 calculates and outputs a rotational angular velocity of the Sagnac interferometer using the phase difference between the first beam and the second beam provided from the demodulator.
< 제4 실시예 >Fourth Embodiment
도 5는 본 발명의 제4 실시예에 따른 개선된 사냑 간섭계를 전체적으로 도시한 구성도이다. FIG. 5 is a schematic diagram showing an overall improved sagnac interferometer according to a fourth embodiment of the present invention.
도 5를 참조하면, 본 발명의 제4 실시예에 따른 사냑 간섭계(4)는, 광원(10), 빛살 가르게(250), 감지부(23), 복조부(30) 및 공진기(54)를 구비하며, 제어부(40)를 더 구비할 수 있다. 본 실시예에 따른 사냑 간섭계(4)는 전술한 제3 실시예에 따른 사냑 간섭계의 빛살 가르게(250)와 감지부의 편광 빛살 가르게(200)의 사이에 공진기(54)가 더 배치된 것을 특징으로 한다.Referring to FIG. 5, the Sagnac interferometer 4 according to the fourth embodiment of the present invention includes a light source 10, a light beam 250, a detector 23, a demodulator 30, and a resonator 54. Is provided, and may further include a control unit 40. In the sagnac interferometer 4 according to the present embodiment, the resonator 54 is further disposed between the light beam 250 of the sagnac interferometer according to the third embodiment and the polarization light beam 200 of the sensing unit. It features.
상기 공진기(54)는 빛살 가르게(250)와 감지부의 편광 빛살 가르게(200)의 사이에 배치되며, 거울(530) 및 사분파장판(QWP; 531)으로 이루어진다. 사분파장판은 입력된 빛의 주 편광성분들(principal polarization components) 사이의 위상 차이를 λ/4 만큼 지연시켜 출력하는 위상지연판이다. 상기 거울(530)은 반사계수(R)가 큰 거울들로 구성하는 것이 바람직하다. 예를 들어, 반사계수가 98%인 거울로 구성하는 경우 편광 빛살 가르게에서의 손실이 없다고 가정하면 공진기의 Finesse 가 157이며, 공진기내의 CW 빔 및 CCW 빔은 약 100회 정도 반복하여 돌아 갈 수 있기 때문에 유도되는 위상 값은 약 100배 만큼 증가한다. 편광 빛살 가르게에서의 손실을 고려하더라도 CW 빔 및 CCW 빔이 수십 회 이상 반복하여 돌아 갈 수 있기 때문에 그만큼 간섭계의 성능을 향상시킬 수 있다. The resonator 54 is disposed between the light beam 250 and the polarizing light beam 200 of the sensing unit, and comprises a mirror 530 and a quarter-wave plate (QWP) 531. The quarter wave plate is a phase delay plate which delays the phase difference between principal polarization components of the input light by λ / 4 and outputs the delayed phase difference. The mirror 530 is preferably composed of mirrors having a large reflection coefficient (R). For example, in the case of a mirror having a reflection coefficient of 98%, the finesse of the resonator is 157, assuming that there is no loss in the polarized light, and the CW and CCW beams in the resonator can be repeated about 100 times. In this case, the induced phase value increases by about 100 times. Even considering the loss in the polarized light beam, the performance of the interferometer can be improved accordingly because the CW beam and the CCW beam can be repeatedly returned several dozen times.
상기 공진기(54)의 구동 방식은 제2 실시예에 따른 공진기와 동일하다. The driving method of the resonator 54 is the same as the resonator according to the second embodiment.
상기 감지부(23)의 구성 및 동작은 제3 실시예에 따른 감지부(23)의 구성 및 동작과 동일하다. The configuration and operation of the detector 23 are the same as the configuration and operation of the detector 23 according to the third embodiment.
전술한 구성을 갖는 본 실시예에 따른 사냑 간섭계(4)는 감지부와 공진기에 의하여 제1 빔과 제2 빔이 공진 조건을 만족할 때까지 폐경로부의 자유 공간을 회전한 후 복조부로 출력하게 되며, 복조부 및 제어부에 의해 제1 빔과 제2 빔의 간섭 신호에 유도된 위상차 및 회전 각속도를 구하게 된다. The Sagnac interferometer 4 according to the present embodiment having the above-described configuration rotates the free space of the closed path part until the first beam and the second beam satisfy the resonance condition by the detector and the resonator, and then outputs the demodulator. The phase difference and the rotational angular velocity induced by the interference signals of the first beam and the second beam are calculated by the demodulator and the controller.
이하, 전술한 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 다양한 실시 형태들에 대하여 설명한다. Hereinafter, various embodiments of the demodulator in the sagnac interferometer according to the present invention described above will be described.
도 7은 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 일 실시형태를 도시한 구성도이다. 도 7을 참조하면, 복조부(30)는 위상 지연 장치(372), 편광자(375) 및 광 검출소자(PD)를 구비한다. 7 is a block diagram showing an embodiment of a demodulation unit in the sagnac interferometer according to the present invention. Referring to FIG. 7, the demodulator 30 includes a phase delay device 372, a polarizer 375, and a photodetector PD.
상기 위상 지연 장치(372)는 상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔 사이에 바이어스 위상을 인가시키기 위한 것이다. 제1 빔과 제2 빔의 최적의 복조를 위하여, 제1 빔과 제2 빔 사이의 위상 바이어스를 90도의 홀수 배로 만들기 위하여 위상 지연 장치를 사용하는 것이 바람직하다. 따라서, 제1빔과 제2빔의 편광 상태에 따라 다양하게 선택하여 사용될 수 있으며, 그 일예로 주 편광성분 사이에 사분파장을 위상지연시키는 사분파장판(QWP)을 사용할 수 있으며, 만약 제1 빔과 제2 빔의 위상이 편광 빛살 가르게에서의 반사 등에 의해 바뀌는 경우, QWP 가 아닌 다른 위상 지연 장치를 사용하여 제1 빔과 제2 빔의 위상차를 90도의 홀수 배로 만드는 것이 바람직하다. The phase delay device 372 is for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit. For optimal demodulation of the first and second beams, it is desirable to use a phase delay device to make the phase bias between the first and second beams an odd multiple of 90 degrees. Therefore, it can be used in various ways according to the polarization state of the first beam and the second beam, for example, can be used a quarter wave plate (QWP) that phase-delays the quadrant wavelength between the main polarization component, if the first When the phases of the beam and the second beam are changed by reflection in polarized light and the like, it is preferable to use a phase delay device other than QWP to make the phase difference between the first beam and the second beam an odd multiple of 90 degrees.
상기 편광자(Polarizer; 375)는 상기 위상지연 장치에 의해 위상 지연된 제1빔과 제2빔에 45도로 정렬시켜 제1 빔과 제2 빔 사이의 간섭신호를 출력한다. The polarizer 375 outputs an interference signal between the first beam and the second beam by aligning the first and second beams phase-delayed by the phase delay device at 45 degrees.
상기 광 검출소자(PD)는 상기 편광자로부터 출력된 빔을 검출한 검출 신호를 출력하며, 제1 빔과 제2 빔 사이의 바이어스 위상이 90도인 경우 다음과 같은 수학식 1로 주어진다.The photodetector PD outputs a detection signal that detects a beam output from the polarizer, and is given by Equation 1 below when the bias phase between the first beam and the second beam is 90 degrees.
Figure PCTKR2017012218-appb-M000001
Figure PCTKR2017012218-appb-M000001
여기서 R은 광검출기의 감응도(responsivity), I0는 제1 빔과 제2 빔의 총 세기, 그리고 △φ는 간섭계의 회전 등에 의해 제1 빔과 제2 빔에 유도된 위상차이이며 일상적인 경우 매우 작은 값을 갖는다. Where R is the response of the photodetector, I 0 is the total intensity of the first beam and the second beam, and Δφ is the phase difference induced in the first beam and the second beam by the rotation of the interferometer and the like and has a very small value in ordinary cases.
도 8은 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 다른 실시형태를 도시한 구성도이다. 도 8을 참조하면, 복조부(31)는 위상 지연 장치(398), 편광 빛살 가르게(392), 제1 및 제2 광 검출소자(PD1, PD2) 및 차동 증폭기(395)를 구비한다. 8 is a block diagram showing another embodiment of the demodulation unit in the sagnac interferometer according to the present invention. Referring to FIG. 8, the demodulator 31 includes a phase delay device 398, polarized light beams 392, first and second photodetectors PD1 and PD2, and a differential amplifier 395.
상기 위상 지연 장치(398)는 상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔 사이에 90도 혹은 90도의 홀수 배에 해당하는 바이어스 위상을 인가시키기 위한 것으로서, 편광빛살 가르게, 거울에서의 반사 등에 의해 주어진 제1빔과 제2빔의 위상 값에 따라 다양하게 선택하여 사용될 수 있으며, 그 일 예로 주 편광 성분 사이에 사분파장을 위상지연시키는 사분파장판(QWP)을 사용할 수도 있다. The phase delay device 398 is for applying a bias phase corresponding to an odd multiple of 90 degrees or 90 degrees between the first beam and the second beam, which are provided from the sensing unit, in a vertical polarization state. It can be used in various ways according to the phase values of the first and second beams given by the reflection in the mirror. For example, a quarter wave plate (QWP) which phase-delays quadrant wavelengths between the main polarization components can be used. have.
상기 편광 빛살 가르게(392)는 상기 위상 지연 장치로부터 출력된 제1빔과 제2빔의 편광방향에 대하여 45도로 정렬시키며, 따라서 제1 빔과 제2 빔의 s성분이 합쳐져서 간섭이 일어나며 편광 빛살 가르게에서 반사하고, 제1 빔과 제2 빔의 p 성분은 합쳐져서 간섭이 일어나며 편광 빛살 가르게를 투과한다. The polarized light beams 392 are aligned at 45 degrees with respect to the polarization directions of the first beam and the second beam output from the phase delay device. Therefore, the s-components of the first and second beams are combined to cause interference and polarization. Reflected at the light beam, the p components of the first and second beams combine to cause interference and to pass through the polarized light beam.
상기 제1 광 검출소자(PD1)는 상기 편광 빛살 가르게로부터 반사된 제3 빔을 검출하여 제1 검출신호를 출력하며, 상기 제2 광 검출소자(PD2)는 상기 편광 빛살 가르게를 투과한 제4 빔을 검출하여 제2 검출신호를 출력한다. 제1 빔과 제2 빔 사이의 위상 바이어스가 90도인 경우 PD1과 PD2로부터 출력된 광신호는 각각 다음과 같은 수학식 2 및 수학식 3으로 주어진다.The first photodetector PD1 detects a third beam reflected from the polarized light beam and outputs a first detection signal, and the second photodetector PD2 transmits the polarized light beam. The fourth beam is detected and a second detection signal is output. When the phase bias between the first beam and the second beam is 90 degrees, the optical signals output from PD1 and PD2 are given by Equations 2 and 3, respectively.
Figure PCTKR2017012218-appb-M000002
Figure PCTKR2017012218-appb-M000002
Figure PCTKR2017012218-appb-M000003
Figure PCTKR2017012218-appb-M000003
상기 차동 증폭기(395)는 상기 제1 및 제2 검출신호의 차를 출력하며 출력신호는 다음과 같은 수학식 4로 주어진다.The differential amplifier 395 outputs a difference between the first and second detection signals, and an output signal is given by Equation 4 below.
Figure PCTKR2017012218-appb-M000004
Figure PCTKR2017012218-appb-M000004
따라서, 전술한 구조의 복조부는 제3 빔과 제4빔으로부터 검출된 간섭신호를 차동 증폭기로 빼어 줌으로써 각각의 광신호에 실려있는 서로 상관된 잡음은 제거되고 광신호는 두 배로 커지게 되어 신호 대 잡음비를 높일 수 있게 된다. 이와 같은 측정 방법을 Balanced Detection 방법이라고 한다. Therefore, the demodulator of the above-described structure subtracts the interference signals detected from the third and fourth beams by the differential amplifier, thereby eliminating mutually correlated noise contained in each optical signal and doubling the optical signal. The noise ratio can be increased. Such a measurement method is called a balanced detection method.
도 9는 본 발명에 따른 사냑 간섭계에 있어서, 복조부의 또 다른 실시형태를 도시한 구성도이다. 도 9를 참조하면, 상기 복조부(32)는, 위상 지연 장치(300), 빛살 가르게(310), I 신호 출력부(320) 및 Q 신호 출력부(330)를 구비하며, I 신호 출력부 및 Q 신호 출력부로부터 각각 서로 위상차가 90°인 I 출력 신호(In-phase Signal ; VI) 및 Q 출력 신호(Quadrature-phase Signal :VQ) 를 생성하여 출력한다. I 출력 신호 (In-phase Signal ; V I)는 cos △φ 에 비례하고, Q 출력 신호(Quadrature-phase Signal :V Q)는 sin △φ에 비례한다.9 is a block diagram showing another embodiment of the demodulation unit in the sagnac interferometer according to the present invention. Referring to FIG. 9, the demodulator 32 includes a phase delay device 300, a light beam 310, an I signal output unit 320, and a Q signal output unit 330, and outputs an I signal. An I-output signal (In-phase Signal; V I ) and a Q-output signal (Quadrature-phase Signal: V Q ) having a phase difference of 90 ° from each other are generated and output from the negative and Q signal output units, respectively. The I output signal (In-phase Signal; V I ) is proportional to cos Δφ and the Q output signal (Quadrature-phase Signal: V Q ) is proportional to sin Δφ .
상기 복조부(32)는 상기 감지부로부터 출력된 제1 빔과 제2 빔을 복조하여, 제1 빔과 제2 빔에 대한 I 출력 신호 (In-phase Signal ; V I) 신호 및 Q 출력 신호(Quadrature-phase Signal :V Q) 를 검출하여 출력한다. 상기 I 출력 신호 및 Q 출력 신호로부터 회전 각속도에 따른 위상차를 검출할 수 있게 된다. The demodulator 32 demodulates the first beam and the second beam output from the detector, and outputs an I-output signal ( V I ) signal and a Q output signal for the first beam and the second beam. (Quadrature-phase Signal: V Q ) is detected and output. The phase difference according to the rotational angular velocity can be detected from the I output signal and the Q output signal.
상기 위상 지연 장치(300)는 상기 감지부로부터 서로 수직 편광상태인 제1빔과 제2빔 사이에 바이어스 위상을 인가시키기 위한 것으로서, 제1빔과 제2빔의 편광 상태에 따라 다양하게 선택하여 사용될 수 있으며, 그 일 예로 상기 제1빔과 제2빔을 45도 편광 회전시켜 빛살 가르게(310)로 출력하는 반파장판을 사용할 수 있다. The phase delay device 300 is for applying a bias phase between the first beam and the second beam that are perpendicular to each other from the sensing unit, and variously selected according to the polarization states of the first and second beams. For example, a half-wave plate that rotates the first beam and the second beam by 45 degrees and outputs the light beam 310 may be used.
상기 빛살 가르게(310)는 상기 위상 지연 장치로부터 45도 편광 회전된 제1빔과 제2빔을 제공받고, 상기 제1빔과 제2빔을 50:50으로 제3빔 및 제4빔으로 나누어 각각 투과 및 반사시켜 출력한다. 빛살 가르게를 투과한 제3빔은 I 신호 출력부로 제공되고, 빛살 가르게에서 반사된 제4빔은 Q 신호 출력부로 제공된다.The light beam 310 is provided with a first beam and a second beam rotated by 45 degrees from the phase delay device, and the first and second beams are 50:50 to the third and fourth beams. Divided and transmitted respectively. The third beam transmitted through the light beam is provided to the I signal output unit, and the fourth beam reflected from the light beam is provided to the Q signal output unit.
상기 I 신호 출력부(320)는 상기 빛살 가르게를 투과한 제3빔으로부터 I 출력신호를 검출하여 출력하도록 구성된다. 상기 I 신호 출력부(320)는 빛살 가르게를 투과한 제3빔의 진행 경로상에 배치된 제2 편광 빛살 가르게(322), 제2 편광 빛살 가르게로부터 반사되어 출력된 빔을 검출하는 제1 검출소자(323), 제2 편광 빛살 가르게를 투과하여 출력된 빔을 검출하는 제2 검출소자(324), 및 상기 제1 검출소자 및 제2 검출소자로부터 출력된 빔들의 차이를 검출하여 증폭시켜 출력하는 제1 차동증폭기(325)를 구비한다. 제1 및 제2 검출소자는 포토 다이오드로 구성될 수 있다. The I signal output unit 320 is configured to detect and output an I output signal from the third beam transmitted through the light beam. The I signal output unit 320 detects the beam reflected from the second polarized light beam 322 and the second polarized light beam disposed on the traveling path of the third beam passing through the light beam. Detects the difference between the first detection element 323, the second detection element 324 for detecting the beam transmitted through the second polarized light beam, and the beams output from the first detection element and the second detection element And a first differential amplifier 325 for amplifying and outputting the same. The first and second detection elements may be composed of photodiodes.
상기 Q 신호 출력부(330)는 상기 빛살 가르게를 투과한 제4빔으로부터 Q 출력신호를 검출하여 출력하도록 구성된다. 상기 Q 신호 출력부(330)는 상기 빛살 가르게에서 반사된 제4빔으로부터 Q 출력신호를 검출하여 출력하도록 구성된다. 상기 Q 신호 출력부(330)는, 빛살 가르게에서 반사된 제4빔을 45도 편광회전시켜 출력하는 QWP(Quarter Wave Plate;331), 상기 QWP를 투과하여 45도 편광 회전된 제4빔의 진행 경로상에 배치된 제3 편광 빛살 가르게(332), 제3 편광 빛살 가르게에서 반사되어 출력된 빔을 검출하는 제3 검출소자(333), 제3 편광 빛살 가르게를 투과하여 출력된 빔을 검출하는 제4 검출소자(334), 및 상기 제3 검출소자 및 제4 검출소자로부터 출력된 빔들의 차이를 검출하여 증폭시켜 출력하는 제2 차동증폭기(335)를 구비한다. The Q signal output unit 330 is configured to detect and output a Q output signal from the fourth beam passing through the light beam. The Q signal output unit 330 is configured to detect and output a Q output signal from the fourth beam reflected by the light beam. The Q signal output unit 330 may be a QWP (Quarter Wave Plate) 331 for rotating the fourth beam reflected by the light beam by 45 degrees and outputting the fourth beam. A third polarized light beam 332 disposed on a traveling path, a third detection element 333 for detecting a beam reflected by the third polarized light beam, and a third polarized light beam A fourth detection element 334 for detecting the beam, and a second differential amplifier 335 for detecting, amplifying and outputting a difference between the beams output from the third and fourth detection elements.
전술한 구성을 갖는 I 신호 출력부의 제1 차동 증폭기 및 Q 신호 출력부의 제2 차동 증폭기는 각각 제1 빔과 제2 빔에 대한 I 출력 신호 (In-phase Signal ; V I) 신호 및 Q 출력 신호(Quadrature-phase Signal :V Q) 를 출력한다. The first differential amplifier of the I-signal output section and the second differential amplifier of the Q-signal output section having the above-described configuration are respectively an in-phase signal ( V I ) signal and a Q output signal for the first beam and the second beam. Outputs (Quadrature-phase Signal: V Q ).
상기 제어부(40)는 복조부로부터 I 출력 신호 및 Q 출력 신호를 제공받고, 상기 I 출력 신호 및 Q 출력 신호를 이용하여, 회전 각속도를 검출하여 출력한다. 이하, 본 실시 형태에 따른 복조부의 출력 신호를 이용하여, 제어부(40)가 회전 각속도(Ω)를 검출하는 과정을 구체적으로 설명한다. The controller 40 receives an I output signal and a Q output signal from a demodulator, and detects and outputs a rotational angular velocity using the I output signal and the Q output signal. Hereinafter, the process of the control part 40 detecting rotation angular velocity (ohm) using the output signal of the demodulation part which concerns on this embodiment is demonstrated concretely.
먼저, 복조부(32)로부터 얻은 I 출력 신호 (In-phase Signal ; V I)는 cos △φ 에 비례하고, Q 출력 신호(Quadrature-phase Signal :V Q)는 sin △φ 에 비례하므로, I 출력 신호(V I) 및 Q 출력 신호(V Q) 를 이용하여 물체의 회전에 따른 위상차(△φ)를 수학식 5에 의해 구할 수 있다.First, I output signal obtained from the demodulator (32) (In-phase Signal ; V I) is proportional to cos △ φ, and the Q output signal: it (Quadrature-phase Signal V Q) is proportional to sin △ φ, I Using the output signal V I and the Q output signal V Q , the phase difference Δφ according to the rotation of the object can be calculated by Equation 5.
Figure PCTKR2017012218-appb-M000005
Figure PCTKR2017012218-appb-M000005
감지부에서 시계 방향으로 회전하는 제2빔이 광 회전부를 일주하는데 걸리는 시간(t+)는 수학식 6에 의해 구할 수 있으며, 시계 반대 방향으로 회전하는 제1빔이 광 회전부를 일주하는데 걸리는 시간(t-)는 수학식 7에 의해 구할 수 있다. The time ( t +) for the second beam rotating clockwise in the sensing unit to circulate the optical rotating unit can be obtained by Equation 6, and the time taken for the first beam rotating in the counterclockwise direction to circling the optical rotating unit. ( t- ) can be obtained by Equation 7.
Figure PCTKR2017012218-appb-M000006
Figure PCTKR2017012218-appb-M000006
Figure PCTKR2017012218-appb-M000007
Figure PCTKR2017012218-appb-M000007
물체의 회전에 따른 제1빔과 제2빔의 광 경로차(△L )는 수학식 8에 구할 수 있다. The optical path difference ΔL between the first beam and the second beam according to the rotation of the object may be obtained from Equation 8.
Figure PCTKR2017012218-appb-M000008
Figure PCTKR2017012218-appb-M000008
물체의 회전에 의해, 서로 반대 방향으로 진행하는 제1빔과 제2빔의 사이에 광 경로차(△L )가 발생하게 된다. 이러한 제1빔과 제2빔을 간섭시켜 간섭 신호를 얻을 수 있는데, 간섭신호에서의 위상 변화는 회전 각속도의 선형적인 함수로 주어지게 되므로, 위상 변화를 측정하고 이를 이용하여 회전 각속도를 정확하게 측정할 수 있게 된다. By the rotation of the object, an optical path difference ΔL is generated between the first beam and the second beam that travel in opposite directions. The interference signal can be obtained by interfering the first beam and the second beam. Since the phase change in the interference signal is given as a linear function of the rotational angular velocity, the phase angular velocity can be measured and the rotational angular velocity can be accurately measured using this. It becomes possible.
물체의 회전에 따른 제1빔과 제2빔의 광 경로차(△L )를 이용하여 제1빔과 제2빔의 위상차(△φ)는 수학식 9에 구할 수 있다. A phase difference (△ φ) of the first beam with a first beam and a second beam using the optical path difference (△ L) of the second beam in accordance with the rotation of the object can be determined in Equation (9).
Figure PCTKR2017012218-appb-M000009
Figure PCTKR2017012218-appb-M000009
수학식 9로부터 물체의 회전에 따른 회전 각속도(Ω)는 수학식 10로 표현될 수 있으며, 수학식 4을 통해 I 출력 신호(V I) 및 Q 출력 신호(V Q)를 이용하여 구한 제1빔과 제2빔의 위상차(△φ)를 이용하여 물체의 회전에 따른 회전 각속도(Ω)를 구할 수 있게 된다. Rotational angular velocity (Ω) according to the rotation of the object from Equation (9) can be represented by Equation 10, the first obtained by using the I output signal ( V I ) and Q output signal ( V Q ) through the equation (4) by using the phase difference (△ φ) of the beam and the second beam it is able to obtain the rotational angular velocity (Ω) according to the rotation of the object.
Figure PCTKR2017012218-appb-M000010
Figure PCTKR2017012218-appb-M000010
여기서, λ는 빛의 파장이며, t-는 반시계 방향으로 회전하는 제1빔이 고리를 일주하는 데 걸리는 시간이며, t+는 시계 방향으로 회전하는 제2빔이 고리를 일주하는 데 걸리는 시간이며, Ω는 회전 각속도이며, C 는 빛의 속도이며, R은 광 회전부를 구성하는 고리의 반경이며, A 는 고리의 면적이며, △L 은 서로 반대방향으로 진행하는 제1빔과 제2빔의 광 경로차이며, △φ 는 각속도에 의해 유도되는 위상변화값이다.Where λ is the wavelength of light, t- is the time it takes for the first beam to rotate in the counterclockwise direction, and t + is the time it takes for the second beam to rotate in the clockwise direction, , Ω is the rotational angular velocity, C is the speed of light, R is the radius of the ring constituting the optical rotation, A is the area of the ring, ΔL is the first and second beams traveling in opposite directions Δφ is a phase change value induced by the angular velocity.
전술한 구성을 갖는 본 발명에 따른 샤냑 간섭계는 편광 빛살 가르게를 이용하여 새로운 구조로 구성함으로써, 서로 수직 편광 상태인 2개의 빔을 닫힌 경로를 따라 서로 반대 방향으로 진행시킨 후 위상차를 구하고, 이를 이용하여 물체의 회전에 따른 회전 각속도를 측정할 수 있게 된다. The chagnac interferometer according to the present invention having the above-described configuration is constructed in a new structure using polarized light beams, and then, after two beams in a vertical polarization state are advanced in opposite directions along a closed path, the phase difference is obtained. By using the rotation angle of the object can be measured by the rotation.
본 발명에 따른 사냑 간섭계는 자이로스코프 등과 같이 회전 역학 정보를 측정하는 장비에 널리 사용될 수 있다. The sagnac interferometer according to the present invention can be widely used in equipment for measuring rotational dynamic information, such as a gyroscope.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. Although the present invention has been described above with reference to preferred embodiments thereof, this is merely an example and is not intended to limit the present invention, and those skilled in the art do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and applications which are not illustrated above in the scope are possible. And differences relating to such modifications and applications should be construed as being included in the scope of the invention as defined in the appended claims.

Claims (10)

  1. 선형 또는 원형 편광된 광을 제공하는 광원;A light source providing linear or circularly polarized light;
    상기 광원으로부터 입력된 광을 서로 수직 편광된 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 반대 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부;A detector for dividing the light input from the light source into vertically polarized first and second beams, and moving the first and second beams in a closed path in opposite directions to each other and then combining and outputting the first and second beams together;
    상기 감지부로부터 출력된 제1 빔과 제2 빔을 간섭시켜 이들 사이에 유도된 위상 변화를 측정하는 복조부;A demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween;
    를 구비하며, 상기 감지부는, Is provided, the detection unit,
    상기 광원으로부터 45도로 선형 또는 원형 편광된 광을 입력받고, 상기 입력된 광을 서로 수직 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게;Receiving polarized light linearly or circularly polarized by 45 degrees from the light source, dividing the input light into vertically polarized first beams and second beams and outputting the polarized light to different output ports;
    둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부;를 구비하며,Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. And a closed path unit configured to input the output port and the second beam to the output port of the first beam.
    상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 서로 수직으로 편광되어 편광 빛살 가르게에서 합쳐져 동일한 경로로 출력되어 상기 복조부로 제공되는 것을 특징으로 하는 자유 공간 사냑 간섭계.And a first beam and a second beam output from the menopausal path part are vertically polarized, merged in a polarized light beam, and output in the same path to be provided to the demodulator.
  2. 선형 편광된 광을 제공하는 광원;A light source for providing linearly polarized light;
    상기 광원으로부터 입력된 광을 서로 수직 편광된 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 반대 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부;A detector for dividing the light input from the light source into vertically polarized first and second beams, and moving the first and second beams in a closed path in opposite directions to each other and then combining and outputting the first and second beams together;
    상기 감지부의 입력지점 및 출력지점에 형성되어 감지부의 제1 빔과 제2 빔을 공진시키는 공진기; 및A resonator formed at an input point and an output point of the detector to resonate the first beam and the second beam of the detector; And
    상기 공진기로부터 출력된 제1 빔과 제2 빔을 간섭시켜 제1 빔과 제2 빔의 사이에 유도된 위상 차이를 측정하는 복조부;A demodulator for interfering a first beam and a second beam output from the resonator to measure a phase difference induced between the first beam and the second beam;
    를 구비하며, 상기 감지부는 Is provided, the detection unit
    상기 광원으로부터 45도로 선형 편광된 광을 입력받고, 상기 입력된 광을 서로 수직으로 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게;Receiving polarized light at 45 degrees from the light source, dividing the input light into vertically polarized first beams and second beams and outputting the polarized light to different output ports;
    둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부;를 구비하며,Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. And a closed path unit configured to input the output port and the second beam to the output port of the first beam.
    상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 편광 빛살 가르게에서 합쳐져 동일한 경로로 출력되며, 상기 편광 빛살 가르게로부터 출력된 제1 빔과 제2 빔은 공진기를 통해 공진되어 상기 복조부로 제공되는 것을 특징으로 하는 자유 공간 사냑 간섭계.The first beam and the second beam output from the closed path unit are combined in the polarized light beam and output in the same path, and the first beam and the second beam output from the polarized light beam are resonated through a resonator to demodulate the demodulated signal. Free space Sagnac interferometer, characterized in that provided in wealth.
  3. 제2항에 있어서, 상기 공진기는 The method of claim 2, wherein the resonator
    상기 감지부의 입력지점 및 출력지점에 각각 배치된 제1 및 제2 거울; First and second mirrors disposed at an input point and an output point of the sensing unit, respectively;
    상기 제1 거울과 상기 감지부의 사이에 배치된 제1 사분파장판(Quarter Wave Plate : QWP); 및 A first quarter wave plate (QWP) disposed between the first mirror and the sensing unit; And
    상기 제2 거울과 상기 감지부의 사이에 배치된 제2 사분파장판;A second quarter wave plate disposed between the second mirror and the sensing unit;
    을 구비하는 것을 특징으로 하는 자유공간 사냑 간섭계.Free space Sagnac interferometer comprising the.
  4. 편광된 광을 제공하는 광원;A light source for providing polarized light;
    상기 광원으로부터 제공된 광을 편광 방향에 따라 제1 빔과 제2 빔으로 나누고, 상기 제1 빔과 제2 빔을 하나의 닫힌 경로에서 서로 다른 방향을 따라 이동시킨 후 다시 합쳐서 출력하는 감지부;A detector which divides the light provided from the light source into a first beam and a second beam according to a polarization direction, moves the first beam and the second beam in different directions in one closed path, and then combines and outputs the combined light;
    상기 감지부로부터 출력된 제1 빔과 제2 빔을 간섭시켜 이들 사이에 유도된 위상 변화를 측정하는 복조부; A demodulator for interfering a first beam and a second beam output from the detector to measure a phase change induced therebetween;
    상기 광원과 감지부의 사이에 배치되어, 광원으로부터 제공된 빔의 일부는 투과시키고 감지부로 출력하고, 감지부로부터 제공된 빔의 일부는 반사시켜 복조부로 출력하는 빛살 가르게;A light beam disposed between the light source and the sensing unit to transmit a part of the beam provided from the light source and output to the sensing unit, and reflect a part of the beam provided from the sensing unit to output to the demodulator;
    를 구비하며, 상기 감지부는 Is provided, the detection unit
    빛살 가르게를 통해 상기 광원으로부터 제공된 광을 서로 수직으로 편광된 제1 빔과 제2 빔으로 나누어 서로 다른 출력 포트로 각각 출력하는 편광 빛살 가르게;Polarizing light beams, which divide the light provided from the light source through the light beams into vertically polarized first and second beams and output the light beams to different output ports;
    둘 이상의 거울을 이용하여 하나의 닫힌 경로를 구성하며, 상기 편광 빛살 가르게로부터 출력된 상기 제1 빔과 제2 빔의 방향을 전환시켜 상기 닫힌 경로를 따라 이동시켜 제1 빔은 제2 빔의 출력포트로 입력시키고 제2 빔은 제1 빔의 출력 포트로 입력시키는 폐경로부; 및Two or more mirrors are used to form one closed path, and the first beam and the second beam that are output from the polarized light beam are redirected and moved along the closed path, so that the first beam is formed of the second beam. A closed path unit configured to input an output port and input the second beam to an output port of the first beam; And
    상기 폐경로부의 닫힌 경로상의 임의의 위치에 배치되어 상기 닫힌 경로를 투과하는 광의 편광 방향을 90도 회전시키는 반파장판(Half Wave Plate; HWP);A half wave plate (HWP) disposed at an arbitrary position on a closed path of the closed path part to rotate a polarization direction of light transmitted through the closed path by 90 degrees;
    를 구비하며, 상기 폐경로부로부터 출력된 제1 빔과 제2 빔은 편광 빛살 가르게에서 합쳐져 출력된 후 상기 빛살 가르게에 의해 반사되거나 투과되어 상기 복조부로 제공되는 것을 특징으로 하는 자유 공간 사냑 간섭계.And a first beam and a second beam output from the closed path part are combined in the polarized light beam and output and then reflected or transmitted by the light beam and provided to the demodulator. interferometer.
  5. 제4항에 있어서, 상기 자유 공간 사냑 간섭계는 상기 빛살 가르게와 상기 감지부의 편광 빛살 가르게의 사이에 공진기를 더 구비하는 것을 특징으로 하는 자유 공간 사냑 간섭계.The free space sagnac interferometer of claim 4, wherein the free space sagnac interferometer further comprises a resonator between the light beam and the polarizing light beam of the sensing unit.
  6. 제5항에 있어서, 상기 공진기는 The method of claim 5, wherein the resonator
    상기 빛살 가르게와 감지부의 편광 빛살 가르게의 사이에 배치된 거울; 및A mirror disposed between the light beam and the polarizing light beam of the sensing unit; And
    상기 거울과 상기 감지부의 사이에 배치된 사분파장판(Quarter Wave Plate : QWP); A quarter wave plate (QWP) disposed between the mirror and the sensing unit;
    을 구비하는 것을 특징으로 하는 자유공간 사냑 간섭계.Free space Sagnac interferometer comprising the.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 자유 공간 사냑 간섭계는, The free space sagnac interferometer according to any one of claims 1 to 6,
    복조부로부터 제1 빔과 제2 빔의 위상 변화에 따른 위상차(△φ)를 제공받고, 상기 위상차를 이용하여 회전 각속도(Ω)를 측정하여 제공하는 제어부를 더 구비하는 것을 특징으로 하는 자유 공간 사냑 간섭계. Receiving from the demodulator providing a first phase difference (△ φ) of the phase change of the first beam and the second beam, a free space, characterized in that by using the phase difference further comprising a controller that provides to measure the rotation angular velocity (Ω) Sagnac interferometer.
  8. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 복조부는,The demodulation unit according to any one of claims 1 to 6, wherein
    상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔의 사이에 바이어스 위상을 인가시키기 위한 위상 지연 장치;A phase delay device for applying a bias phase between the first beam and the second beam which are perpendicular to each other provided from the sensing unit;
    상기 위상 지연 장치로부터 출력된 빔을 제3빔과 제4빔으로 나누어 각각 출력하는 빛살 가르게;Dividing the beam output from the phase delay device into a third beam and a fourth beam, respectively and outputting light;
    상기 빛살 가르게를 투과한 제3빔으로부터 I 출력신호를 검출하여 출력하는 I 신호 출력부;An I signal output unit for detecting and outputting an I output signal from the third beam passing through the light beam;
    상기 빛살 가르게에서 반사된 제4빔으로부터 Q 출력신호를 검출하여 출력하는 Q 신호 출력부;A Q signal output unit for detecting and outputting a Q output signal from the fourth beam reflected by the light beam;
    를 구비하는 것을 특징으로 하는 자유 공간 사냑 간섭계. A free space Sagnac interferometer comprising: a.
  9. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 복조부는,The demodulation unit according to any one of claims 1 to 6, wherein
    상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔의 사이에 바이어스 위상을 인가시키기 위한 위상 지연 장치;A phase delay device for applying a bias phase between the first beam and the second beam which are perpendicular to each other provided from the sensing unit;
    상기 위상 지연 장치에 의해 위상 지연된 제1빔과 제2빔을 45도로 정렬시켜 제1빔과 제2빔의 간섭 신호를 출력하는 편광자(Polarizer); 및A polarizer for aligning the first beam and the second beam delayed by the phase delay device by 45 degrees to output an interference signal of the first beam and the second beam; And
    상기 편광자로부터 출력된 빔을 검출한 검출 신호를 출력하는 광검출소자;A photodetector for outputting a detection signal detecting a beam output from the polarizer;
    를 구비하는 것을 특징으로 하는 자유 공간 사냑 간섭계. A free space Sagnac interferometer comprising: a.
  10. 제1항 및 제6항 중 어느 한 항에 있어서, 상기 복조부는,The demodulator according to any one of claims 1 to 6, wherein
    상기 감지부로부터 제공된 서로 수직 편광상태인 제1빔과 제2빔 사이에 바이어스 위상을 인가시키기 위한 위상 지연 장치;A phase delay device for applying a bias phase between the first beam and the second beam that are perpendicular to each other provided from the sensing unit;
    상기 위상 지연 장치로부터 출력된 제1빔과 제2빔을 간섭시키고 편광 상태에 따라 나누어 출력하는 편광 빛살 가르게;A polarized light beam that interferes with the first beam and the second beam output from the phase delay device and outputs the divided light according to the polarization state;
    상기 편광 빛살 가르게로부터 반사된 제3 빔을 검출하여 제1 검출신호를 출력하는 제1 광검출소자;A first photodetector for detecting a third beam reflected from the polarized light beam and outputting a first detection signal;
    상기 편광 빛살 가르게를 투과한 제4 빔을 검출하여 제2 검출신호를 출력하는 제2 광검출소자;A second photodetector for detecting a fourth beam transmitted through the polarized light beam and outputting a second detection signal;
    상기 제1 및 제2 검출신호의 차를 검출하여 출력하는 차동 증폭기; A differential amplifier detecting and outputting a difference between the first and second detection signals;
    를 구비하는 것을 특징으로 하는 자유 공간 사냑 간섭계. A free space Sagnac interferometer comprising: a.
PCT/KR2017/012218 2016-11-07 2017-11-01 Free-space sagnac interferometer using polarizing beam splitter WO2018084552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160147522A KR101981707B1 (en) 2016-11-07 2016-11-07 Free space Sagnac interferometer using a polarizing beam splitter
KR10-2016-0147522 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018084552A1 true WO2018084552A1 (en) 2018-05-11

Family

ID=62076275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012218 WO2018084552A1 (en) 2016-11-07 2017-11-01 Free-space sagnac interferometer using polarizing beam splitter

Country Status (2)

Country Link
KR (1) KR101981707B1 (en)
WO (1) WO2018084552A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048968A (en) * 2020-11-11 2021-06-29 中山大学 Polarization state control system and method of non-polarization-maintaining Sagnac interferometer
CN114353778A (en) * 2021-05-17 2022-04-15 中山大学 Method and device for realizing pi/2 initial phase locking in non-polarization-maintaining Sagnac type interferometer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102286261B1 (en) * 2020-09-14 2021-08-04 이재철 Lock-in Zero Ring Laser Gyroscope System, and the Operating Method thereof
KR102527425B1 (en) * 2020-12-30 2023-05-02 서울과학기술대학교 산학협력단 Optical inspection system comprising interferometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246583A1 (en) * 2001-12-14 2004-12-09 Emmerich Mueller Retro-reflecting device in particular for tunable lasers
KR100721497B1 (en) * 2000-03-06 2007-05-23 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 주니어 유니버시티 Folded sagnac sensor array
WO2009025195A1 (en) * 2007-08-18 2009-02-26 The Gakushuin School Corporation Quantum entanglement generating device and method, and quantum entanglement generation detecting device and method
KR20140033817A (en) * 2012-09-10 2014-03-19 울산대학교 산학협력단 A sagnac-type mach-zehnder interferometer and apparatus for measurement of an optical pulse
KR20140050660A (en) * 2011-07-11 2014-04-29 에꼴레 폴리테크닉 Device and passive method for the coherent combination of two amplified and/or spectrally broadened optical beams

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000073036A (en) 1999-05-04 2000-12-05 윤덕용 Fiber laser gyroscope with phase sensitive detection
JP4184265B2 (en) * 2001-08-10 2008-11-19 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Apparatus and method for processing the optical signals from two delay coils to increase the dynamic range of a Sagnac based fiber optic sensor array
KR101078387B1 (en) 2009-05-06 2011-11-01 국방과학연구소 Simulator of sagnac interferometer of fiber optic gyroscope and method of simulation of sagnac interferometer
JP5645374B2 (en) * 2009-06-30 2014-12-24 日本オクラロ株式会社 Interferometer, demodulator and optical communication module
KR101121879B1 (en) 2009-12-22 2012-03-19 주식회사 한화 Method and apparatus for compensating phase error of ring laser gyro
US9823075B2 (en) * 2013-01-10 2017-11-21 Xiaotian Steve Yao Non-interferometric optical gyroscope based on polarization sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721497B1 (en) * 2000-03-06 2007-05-23 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 주니어 유니버시티 Folded sagnac sensor array
US20040246583A1 (en) * 2001-12-14 2004-12-09 Emmerich Mueller Retro-reflecting device in particular for tunable lasers
WO2009025195A1 (en) * 2007-08-18 2009-02-26 The Gakushuin School Corporation Quantum entanglement generating device and method, and quantum entanglement generation detecting device and method
KR20140050660A (en) * 2011-07-11 2014-04-29 에꼴레 폴리테크닉 Device and passive method for the coherent combination of two amplified and/or spectrally broadened optical beams
KR20140033817A (en) * 2012-09-10 2014-03-19 울산대학교 산학협력단 A sagnac-type mach-zehnder interferometer and apparatus for measurement of an optical pulse

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048968A (en) * 2020-11-11 2021-06-29 中山大学 Polarization state control system and method of non-polarization-maintaining Sagnac interferometer
CN113048968B (en) * 2020-11-11 2022-08-19 中山大学 Polarization state control system and method of non-polarization-maintaining Sagnac interferometer
CN114353778A (en) * 2021-05-17 2022-04-15 中山大学 Method and device for realizing pi/2 initial phase locking in non-polarization-maintaining Sagnac type interferometer
CN114353778B (en) * 2021-05-17 2022-11-29 中山大学 Method and device for realizing pi/2 initial phase locking in non-polarization-maintaining Sagnac type interferometer

Also Published As

Publication number Publication date
KR20180051694A (en) 2018-05-17
KR101981707B1 (en) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2018169165A1 (en) Optical fiber sagnac interferometer using polarizing beam splitter
US11268811B2 (en) Non-interferometric optical gyroscope based on polarization sensing
WO2018084552A1 (en) Free-space sagnac interferometer using polarizing beam splitter
Culshaw The optical fibre Sagnac interferometer: an overview of its principles and applications
US4420258A (en) Dual input gyroscope
US20190234739A1 (en) Non-interferometric optical gyroscope based on polarization sensing and implementations of closed loop control
AU2002364176A1 (en) Symmetrical depolarized fiber optic gyroscope
US5099690A (en) Fiber-optic gyroscope accelerometer
KR101910084B1 (en) A novel optical device outputting two parallel beams and an interferometer using the optical device
CA1189725A (en) Dual-polarization interferometer with a single-mode waveguide
JP3687971B2 (en) Method and apparatus for compensating residual birefringence in an interferometric fiber optic gyro
US5044749A (en) Fiber-optic bender beam interferometer rate sensor
US4786172A (en) Fiber-optic angular rates sensor having enhanced reliability
JPH0447214A (en) Optical fiber gyroscope
US4003658A (en) Triangular interferometric light-source tracker
GB2068108A (en) Measurement of rotation rate using sagnac effect
JPS63150615A (en) Optical resonator
WO2017155244A1 (en) Tilt measurement sensor using interferometer
JPH01209316A (en) Azimuth signal outputting device
JPS62123310A (en) Rotation angular velocity detector
JPH04364420A (en) Light phase modulator and interference sensor using it
JPH0135284B2 (en)
Chang A Tutorial Review on Fiber-Optic Sensors
JPS6344174B2 (en)
JPS59128409A (en) Optical fiber gyroscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866411

Country of ref document: EP

Kind code of ref document: A1