WO2018084449A2 - Sulfur-carbon composite and lithium-sulfur battery comprising same - Google Patents

Sulfur-carbon composite and lithium-sulfur battery comprising same Download PDF

Info

Publication number
WO2018084449A2
WO2018084449A2 PCT/KR2017/011377 KR2017011377W WO2018084449A2 WO 2018084449 A2 WO2018084449 A2 WO 2018084449A2 KR 2017011377 W KR2017011377 W KR 2017011377W WO 2018084449 A2 WO2018084449 A2 WO 2018084449A2
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
carbon
lithium
carbon composite
carbon material
Prior art date
Application number
PCT/KR2017/011377
Other languages
French (fr)
Korean (ko)
Other versions
WO2018084449A3 (en
Inventor
조은경
양두경
고동욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170132039A external-priority patent/KR102006727B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/099,337 priority Critical patent/US10886530B2/en
Priority to JP2018558121A priority patent/JP6704626B2/en
Priority to EP17868100.3A priority patent/EP3451425A4/en
Priority to CN201780033073.2A priority patent/CN109314228B/en
Publication of WO2018084449A2 publication Critical patent/WO2018084449A2/en
Publication of WO2018084449A3 publication Critical patent/WO2018084449A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite having improved ion conducting properties and a lithium-sulfur battery including the same.
  • the lithium-sulfur battery of the secondary battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and a carbon-based material or an alloy with lithium, in which insertion and deintercalation of alkali metals such as lithium or metal ions such as lithium ions occur. It is a secondary battery using silicon, tin, etc. to form as a negative electrode active material. Specifically, the electrical energy is stored by using an oxidation-reduction reaction in which the sulfur-sulfur bond breaks during discharge, which is a reduction reaction, and the oxidation number of sulfur decreases, and the sulfur-sulfur bond is formed again when the oxidation-count of sulfur increases during charging. And generate
  • sulfur used as a positive electrode active material in a lithium-sulfur battery has a theoretical energy density of 1,675 mAh / g, and has a theoretical energy density of about five times higher than that of a conventional positive electrode active material used in a lithium secondary battery, thereby resulting in high power and high energy density.
  • a battery capable of expression sulfur is attracting attention as an energy source for medium and large devices such as electric vehicles as well as portable electronic devices because of its low cost, rich reserves, and easy supply and environmental friendliness.
  • sulfur has an electrical conductivity of 5 ⁇ 10 ⁇ 30 S / cm and has no electrical conductivity
  • sulfur has a problem in that electrons generated by an electrochemical reaction are difficult to move.
  • an electrically conductive material such as carbon that can provide an electrochemical reaction site is used as a sulfur-carbon composite.
  • Korean Patent Laid-Open No. 2016-0037084 discloses that by coating graphene on a carbon nanotube aggregate including sulfur, the conductivity and sulfur loading amount of the sulfur-carbon nanotube composite can be increased.
  • lithium ion conductivity is required in addition to electrical conductivity. Since lithium ion conductivity is imparted through the electrolyte solution, when the sulfur-carbon composite itself exhibits lithium ion conductivity, lithium ion conductivity by the electrolyte solution is further improved and battery performance can be improved.
  • the Republic of Korea Patent Publication No. 2016-0046775 has a positive electrode coating layer made of an amphiphilic polymer on the surface of the positive electrode active part including a sulfur-carbon composite to facilitate the migration of lithium ions and to prevent the dissolution of polysulfide, thereby It is disclosed that the cycle characteristics can be improved.
  • the present inventors have conducted various studies to solve the above problems. As a result, by introducing a coating layer containing an ion conductive polymer on the surface of the porous carbon material, lithium ions are more easily moved to the inside of the composite, thereby improving lithium ion conductivity. It was confirmed.
  • an object of the present invention is to provide a sulfur-carbon composite having an improved mobility of lithium ions by forming a coating layer containing an ion conductive polymer between the porous carbon material and sulfur.
  • Another object of the present invention is to provide a positive electrode including the sulfur-carbon composite and a lithium-sulfur battery including the same.
  • the present invention is a porous carbon material; And a sulfur-carbon composite including sulfur in at least a portion of the inside and the surface of the porous carbon material, wherein the inside and the outer surface of the porous carbon material include a coating layer including an ion conductive polymer. do.
  • the ion conductive polymers include polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyolefins, polyphosphazenes, polyacrylonitrile polymethylmethacrylates, polyvinylchlorides and polysiloxanes. Characterized in that it comprises one or more selected from the group consisting of.
  • the ion conductive polymer is characterized in that it comprises 0.1 to 50 parts by weight based on 100 parts by weight of the porous carbon material.
  • the present invention also provides a sulfur-carbon composite comprising a carbon material and sulfur whose surface is coated with an ion conductive polymer.
  • the carbon material is at least one member selected from the group consisting of natural graphite, artificial graphite and expanded graphite.
  • the sulfur-carbon composite is characterized in that it further comprises a conductive material.
  • the present invention also provides a cathode for a lithium-sulfur battery comprising the sulfur-carbon composite.
  • the present invention provides a lithium-sulfur battery including the positive electrode.
  • the sulfur-carbon composite according to the present invention includes a coating layer containing an ion conductive polymer on the surface of the porous carbon material to effectively transfer lithium ions to the inside of the composite, thereby improving ion conductivity and reactivity with the positive electrode active material, thereby improving the lithium-sulfur battery. Capacity and lifespan characteristics can be improved.
  • Example 1 is a graph showing charge and discharge characteristics of the lithium-sulfur battery coin cell manufactured by applying Example 1 and Comparative Example 1 of the present invention.
  • composite refers to a substance in which two or more materials are combined to form physically and chemically different phases and express more effective functions.
  • Lithium-sulfur batteries use sulfur as a positive electrode active material and lithium metal as a negative electrode active material. During discharge of the lithium-sulfur battery, an oxidation reaction of lithium occurs at the negative electrode and a sulfur reduction reaction occurs at the positive electrode. In this case, the reduced sulfur is combined with lithium ions transferred from the negative electrode to be converted into lithium polysulfide, followed by a reaction to finally form lithium sulfide.
  • Lithium-sulfur batteries have a much higher theoretical energy density than conventional lithium secondary batteries, and sulfur, which is used as a positive electrode active material, is spotlighted as a next-generation battery due to its rich resources and low price, which can lower the manufacturing cost of the battery. have.
  • a method of forming a composite with a conductive material such as carbon or a polymer, or coating is used.
  • sulfur-carbon composites are most commonly used as positive electrode active materials because they are effective in improving the electrical conductivity of a positive electrode, but are not yet sufficient in terms of charge and discharge capacity and efficiency.
  • the capacity and efficiency of a lithium-sulfur battery may vary depending on the amount of lithium ions delivered to the positive electrode. Therefore, facilitating the transfer of lithium ions into the sulfur-carbon composite is important for high capacity and high efficiency of the battery.
  • a carbon having a coating layer made of an ion conductive polymer to impart lithium ion conductivity to the sulfur-carbon composite to secure reactivity between the sulfur-carbon composite and the electrolyte and to improve the capacity and efficiency characteristics of the lithium-sulfur battery It provides a sulfur-carbon composite comprising a material.
  • Sulfur-carbon composite according to an embodiment of the present invention is a porous carbon material; And a sulfur-carbon composite including sulfur in at least some of the inner and outer surfaces of the porous carbon material, wherein the inner and outer surfaces of the porous carbon material include a coating layer comprising an ion conductive polymer.
  • the porous carbon material comprises a coating layer comprising an ion conductive polymer on the inner and outer surfaces.
  • the ion conductive polymer has a high ion conductivity and a high reactivity with sulfur as a cathode active material by securing a migration path of lithium ions to the inside of the sulfur-carbon composite, that is, into the pores of the porous carbon material. The characteristic can be improved at the same time.
  • the ion conductive polymer is polyethylene oxide (poly (ethylene oxide); PEO), polypropylene oxide (poly (propylene oxide); PPO), polyvinylidene fluoride (poly (vinylidene fluoride); PVDF), polyvinylidene fluoride Hexafluoropropylene (poly (vinylidene fluoride-co-hexafluoropropylene); PVdF-HFP), polyolefin (poly) (PO), polyphosphazene, polyacrylonitrile (poly (acrylonitrile); PAN) , Polymethyl methacrylate (poly (methylmethacrylate); PMMA), polyvinyl chloride (poly (vinyl chloride); PVC) and may include one or more selected from the group consisting of polysiloxane (polysiloxane).
  • the ion conductive polymer may include at least one member selected from the group consisting of polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyvinylidene fluoride-hexafluoropropylene.
  • the weight average molecular weight of the ion conductive polymer is not particularly limited and may be used without limitation as long as it is commonly used in the art.
  • the weight average molecular weight of the ion conductive polymer may be 20,000 to 50,000,000 g / mol.
  • the ion conductive polymer may be used in an amount of 0.1 to 50 parts by weight, preferably 1 to 25 parts by weight, based on 100 parts by weight of the porous carbon material. If the ion conductive polymer is less than the above range, the coating layer may not be sufficiently formed on the porous carbon material, and thus, the desired ion conductivity improvement effect may not be obtained. It may adversely affect.
  • the porous carbon material provides a skeleton in which sulfur, which is a cathode active material, can be uniformly and stably immobilized, and complements the electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material may generally be prepared by carbonizing precursors of various carbon materials.
  • the porous carbon material may include non-uniform pores therein and the average diameter of the pores may range from 1 to 200 nm, and the porosity or porosity may range from 10 to 90% of the total volume of the porous. If the average diameter of the pores is less than the above range, the pore size is only molecular level, so that impregnation of sulfur is impossible. On the contrary, if the average diameter exceeds the above range, the mechanical strength of the porous carbon is weakened, and thus it is preferable to apply to the electrode manufacturing process. Not.
  • the form of the porous carbon material may be used without limitation as long as it is conventionally used in lithium-sulfur batteries in spherical shape, rod shape, needle shape, plate shape, tubular shape or bulk shape.
  • the porous carbon material may have any porous structure or specific surface area as long as it is commonly used in the art.
  • the porous carbon material includes graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And it may be one or more selected from the group consisting of activated carbon, but is not limited thereto.
  • inorganic sulfur (S 8 ) can be used.
  • the weight ratio of the porous carbon material and the sulfur including the coating layer described above may be 1: 9 to 5: 5, preferably 2: 8 to 3: 7. If less than the weight ratio range, as the content of the porous carbonaceous material increases, the amount of binder added required in preparing the positive electrode slurry increases. The increase in the amount of binder added may eventually increase the sheet resistance of the electrode and serve as an insulator that prevents electron pass, thereby degrading cell performance. On the contrary, when the weight ratio exceeds the range, sulfur may be agglomerated among them, and it may be difficult to directly participate in an electrode reaction because it is difficult to receive electrons.
  • the sulfur-carbon composite may include a sulfur: porous carbon material: ion conductive polymer in a weight ratio of 50 to 90: 6 to 45: 0.01 to 15.
  • a sulfur: porous carbon material: ion conductive polymer in a weight ratio of 50 to 90: 6 to 45: 0.01 to 15.
  • the sulfur is located on the surface as well as inside the pores of the porous carbon material, wherein less than 100% of the entire outer surface of the porous carbon material, preferably 1 to 95% More preferably in the 60-90% region.
  • the sulfur is in the above range on the surface of the porous carbon material can exhibit the maximum effect in terms of the electron transfer area and the wettability of the electrolyte.
  • the electron transfer contact area may be increased during the charge and discharge process.
  • the porous carbon material is completely covered with sulfur, so that the wettability of the electrolyte is inferior and the contact with the conductive material included in the electrode is poor, thereby preventing the electron transfer and thus participating in the reaction. It becomes impossible.
  • the sulfur-carbon composite according to another embodiment of the present invention includes a carbon material and sulfur whose surface is coated with an ion conductive polymer.
  • lithium ions are transferred to the inside of the composite by introducing a coating layer containing an ion conductive polymer on the inner and outer surfaces of the carbon material. It can promote smoothness and can improve battery performance and lifespan more.
  • the ion conductive polymer and sulfur are as described in the embodiment of the present invention.
  • the carbon material serves to impart electrical conductivity to sulfur and promote uniform distribution.
  • the carbon material may include at least one selected from the group consisting of natural graphite, artificial graphite, and expanded graphite.
  • the carbon material may be expanded graphite.
  • the expanded graphite is usually prepared from a graphite or partially graphite starting material selected from the group consisting of natural graphite, pyrolytic graphite, kish graphite, compressed expanded graphite, partially oxidized graphite and graphite fibers.
  • the starting material expands after reaction with the intercal material to provide an intercalation compound.
  • the insert may be halogen, SO 3 , NO 3 , alkali metal or other compound.
  • the interlayer compound is obtained by treating the starting material, preferably graphite, with an oxidizing agent with a strong acid such as cyclohexane or concentrated nitric acid. In this case, an organic acid such as formic acid or acetic acid may be used instead of the strong acid.
  • the intercalation compound prepared through reaction with the intercalation material ie intercalated graphite, is washed and / or dried.
  • the intercalating compound can be used directly or purchased commercially available products.
  • the insertion compound can be obtained from Enges Naturgraphit GmbH, Germany, LUH GmbH, Germany, and Technograft GmbH, Germany. Can be.
  • the intercalation compound When the intercalation compound is rapidly heated to 200 to about 1000 ° C., a reaction occurs by thermal decomposition of the intercalation material such as N- or S-compound, and the crystal layer of graphite is exfoliated to release the gas decomposition product.
  • the heat treatment can be carried out, for example, through an expansion oven, a plasma oven or a microwave.
  • the volume of the expanded graphite can reach up to 280 times the volume of the starting material. In this case, the volume change may vary depending on the particle size of the graphite used, the type of starting material (for example, natural graphite or artificial graphite), heating form, speed, and the like.
  • the sulfur-carbon composite may further include a conductive material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the conductive material may be carbon black such as super-P, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, or summer black; Carbon derivatives such as carbon nanotubes and fullerenes; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Or conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
  • the present invention also provides a method for producing the sulfur-carbon composite.
  • the method for producing the sulfur-carbon composite according to the present invention is not particularly limited and may be prepared by methods commonly known in the art.
  • Method for producing a sulfur-carbon composite comprises the steps of forming a coating layer containing an ion conductive polymer on the inner and outer surfaces of the porous carbon material; Mixing the porous conductive material, sulfur, and an organic solvent in which the coating layer is formed; And melting the sulfur by heating the mixture to be supported on at least a portion of the inner and outer surfaces of the porous carbon material to form a sulfur-carbon composite.
  • a method of manufacturing a sulfur-carbon composite includes forming a coating layer including an ion conductive polymer on a surface of a carbon material, and mixing the carbon material and sulfur on which the coating layer is formed to form a sulfur-carbon composite. It may include the step.
  • Forming the coating layer of the ion conductive polymer on the porous conductive material or the carbon material may be carried out by adding a porous conductive material or carbon material to the solution in which the ion conductive polymer is dissolved, stirring, filtering, and drying.
  • any method known in the art may be used.
  • the mixing is to increase the degree of mixing between the above-described materials can be carried out using a stirring device commonly used in the art.
  • the mixing time and speed may also be selectively adjusted according to the content and conditions of the raw materials.
  • the heating temperature may be any temperature at which sulfur is melted, and may be specifically 120 to 180 ° C., preferably 150 to 180 ° C. When the heating temperature is less than 120 °C sulfur may not be sufficiently melted structure of the sulfur-carbon composite is not properly formed, if it exceeds 180 °C coated polymer does not remain difficult to obtain the desired effect. In addition, the heating time may be adjusted according to the content of sulfur.
  • a sulfur-carbon composite in which a coating layer including an ion conductive polymer is formed between the porous carbon material or the carbon material and the sulfur may be manufactured, and the sulfur-carbon composite may be formed of the porous carbon material or the carbon material.
  • the sulfur-carbon composite By coating the surface with an ion conductive polymer, lithium ions can be easily moved into the composite. This increases the reactivity with the electrolyte when introduced into the battery as a positive electrode active material, which may exhibit an effect of improving the capacity and life of the battery.
  • the present invention also provides a cathode for a lithium-sulfur battery comprising the sulfur-carbon composite.
  • the sulfur-carbon composite may be included as a cathode active material in a cathode.
  • the positive electrode may further include one or more additives selected from transition metal elements, group IIIA elements, group IVA elements, sulfur compounds of these elements, and alloys of these elements and sulfur, in addition to the positive electrode active material.
  • the transition metal element may be Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like
  • the Group IIIA element may include Al, Ga, In, Ti, and the like
  • the Group IVA element may include Ge, Sn, Pb and the like.
  • the positive electrode may further include a positive electrode active material, or optionally an additive, an electrically conductive conductive material for allowing electrons to move smoothly in the positive electrode, and a binder for attaching the positive electrode active material to the current collector.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes to the battery, but is not limited to super-P, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon black such as summer black and carbon black; Carbon derivatives such as carbon nanotubes and fullerenes; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Or conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
  • the conductive material may be added in an amount of 0.01 to 30 wt% based on the total weight of the mixture including the cathode active material.
  • the binder has a function of maintaining the positive electrode active material in the positive electrode current collector and organically connecting the positive electrode active materials, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, starch, hydroxypropyl cellulose, Regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene propylene diene rubber (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various of these And copolymers.
  • the positive electrode active materials such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, starch, hydroxypropyl cellulose, Regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene propylene diene rubber (EPDM), sulfonated-EPDM, styrene-butad
  • the binder may be added in an amount of 0.5 to 30 wt% based on the total weight of the mixture including the cathode active material. If the content of the binder is less than 0.5% by weight, the physical properties of the positive electrode may be degraded to cause the active material and the conductive material to fall off. If the content is more than 30% by weight, the ratio of the active material and the conductive material to the positive electrode is relatively decreased, thereby reducing battery capacity. can do.
  • the binder is dissolved in a solvent for preparing a slurry, and then the conductive material is dispersed.
  • a solvent for preparing the slurry a positive electrode active material, a binder, and a conductive material can be uniformly dispersed, and it is preferable to use one that is easily evaporated.
  • the positive electrode active material, or optionally together with an additive is uniformly dispersed again in a solvent in which the conductive material is dispersed to prepare a positive electrode slurry.
  • the amount of solvent, positive electrode active material, or optionally additives included in the slurry does not have a particularly important meaning in the present application, and it is sufficient only to have an appropriate viscosity to facilitate the coating of the slurry.
  • the slurry thus prepared is applied to a current collector and vacuum dried to form a positive electrode.
  • the slurry may be coated on the current collector in an appropriate thickness depending on the viscosity of the slurry and the thickness of the positive electrode to be formed.
  • the current collector can be generally made to a thickness of 3 to 500 ⁇ m, and is not particularly limited as long as it has a high conductivity without causing chemical changes in the battery.
  • a conductive material such as stainless steel, aluminum, copper, titanium, or the like may be used, and more specifically, a carbon-coated aluminum current collector may be used.
  • the use of an aluminum substrate coated with carbon has an advantage in that the adhesion to the active material is excellent, the contact resistance is low, and the corrosion of polysulfide of aluminum is prevented, compared with the non-carbon coated aluminum substrate.
  • the current collector may be in various forms such as a film, sheet, foil, net, porous body, foam or nonwoven fabric.
  • the present invention is a positive electrode comprising a sulfur-carbon composite described above; cathode; And it provides a lithium-sulfur battery comprising an electrolyte interposed between the positive electrode and the negative electrode.
  • the anode is according to the present invention and follows the foregoing.
  • the negative electrode may include a current collector and a negative electrode active material layer formed on one or both surfaces thereof.
  • the negative electrode active material may be a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal or a lithium alloy.
  • Materials capable of reversibly intercalating or deintercalating the lithium ions may be, for example, crystalline carbon, amorphous carbon or mixtures thereof.
  • the material capable of reacting with the lithium ions to reversibly form a lithium-containing compound may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy may be, for example, an alloy of lithium with a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn.
  • the separator may be additionally included between the positive electrode and the negative electrode.
  • the separator may be made of a porous non-conductive or insulating material to separate or insulate the positive electrode and the negative electrode from each other, and to enable lithium ion transport between the positive electrode and the negative electrode.
  • the separator may be an independent member such as a film, or may be a coating layer added to the anode and / or the cathode.
  • the material constituting the separator includes, for example, polyolefins such as polyethylene and polypropylene, glass fiber filter paper, and ceramic materials, but is not limited thereto, and the thickness thereof is about 5 to about 50 ⁇ m, preferably about 5 to about 25 May be ⁇ m.
  • the electrolyte is located between the positive electrode and the negative electrode and includes a lithium salt and an electrolyte solvent.
  • the concentration of the lithium salt is 0.2 to 2 M, depending on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art, Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M.
  • concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered.
  • the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions.
  • the lithium salt may be used without limitation as long as it is conventionally used in a lithium-sulfur battery electrolyte.
  • LiAsF 6, LiSbF 6, LiAlCl 4 may be included are one or more from LiFSI, chloro group consisting of borane lithium, lower aliphatic carboxylic acid lithium or the like.
  • the electrolyte solvent is a non-aqueous organic solvent, a single solvent may be used, or two or more mixed organic solvents may be used. When using two or more mixed organic solvents, it is preferable to use one or more solvents selected from two or more groups of a weak polar solvent group, a strong polar solvent group, and a lithium metal protective solvent group.
  • the weak polar solvent is defined as a solvent having a dielectric constant of less than 15 which is capable of dissolving elemental sulfur among aryl compounds, bicyclic ethers, and acyclic carbonates, and strong polar solvents include acyclic carbonates, sulfoxide compounds, and lactone compounds.
  • the lithium metal protective solvent is a saturated ether compound, unsaturated ether compound, N, It is defined as a solvent having a charge / discharge cycle efficiency of 50% or more that forms a stable solid interface (SEI) on a lithium metal such as a heterocyclic compound including O, S, or a combination thereof.
  • the weak polar solvent examples include xylene, dimethoxyethane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, toluene, dimethyl ether, diethyl ether, diglyme or tetraglyme. .
  • the strong polar solvent examples include hexamethyl phosphoric triamide, ⁇ -butyrolactone, acetonitrile, ethylene carbonate, propylene carbonate, N-methylpyrrolidone, 3-methyl-2-oxazoli Don, dimethyl formamide, sulfolane, dimethyl acetamide, dimethyl sulfoxide, dimethyl sulfate, ethylene glycol diacetate, dimethyl sulfite, or ethylene glycol sulfite.
  • lithium protective solvent examples include tetrahydrofuran, ethylene oxide, dioxolane, 3,5-dimethylisoxazole, furan, 2-methylfuran, 1,4-oxane or 4-methyldioxolane.
  • the electrolyte may include one or more selected from the group consisting of a liquid electrolyte, a gel polymer electrolyte and a solid polymer electrolyte. It may be preferably an electrolyte in a liquid state.
  • the present invention provides a battery module including the lithium-sulfur battery as a unit cell.
  • the battery module may be used as a power source for medium and large devices requiring high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • carbon black was used as the conductive material
  • styrene butadiene rubber and carboxymethyl cellulose were used as the binder.
  • An electrode was manufactured in the same manner as in Example 1, except that expanded graphite was used instead of carbon nanotubes.
  • An electrode was manufactured in the same manner as in Example 1, except that carbon nanotubes without a polyethylene oxide coating layer were used.
  • the carbon nanotubes, sulfur and polyethylene glycol were simultaneously mixed in a 25: 75: 6.25 weight ratio. This mixture was carried out in the same manner as in Example 1 to prepare an electrode.
  • an electrode prepared in Examples and Comparative Examples was used as a positive electrode, polyethylene was used as a separator, and a lithium-sulfur battery coin cell was manufactured using a lithium foil having a thickness of 150 ⁇ m as a negative electrode.
  • the manufactured coin cell was measured for a capacity from 1.5 to 2.7 V using a charge and discharge measuring device. Specifically, charging and discharging efficiency was measured by repeating 30 cycles of charging at 0.1 C rate CC / CV and discharging at 0.1 C rate CC (CC: Constant Current, CV: Constant Voltage). The results obtained at this time are shown in Table 1 and FIG.
  • Example 1 is superior to the initial charge and discharge capacity and after 30 times the charge and discharge efficiency compared to the comparative example.
  • the initial capacity of Comparative Example 1 without a coating layer was 1,120 mAh / g, but when the sulfur-carbon composite of Example 1 was used as the positive electrode active material, the initial capacity was 1,220 mAh / g. It can be seen that the charge and discharge efficiency is also excellent after 30 times.
  • the sulfur-carbon composite according to the present invention is effective in improving initial charge and discharge capacity and efficiency.
  • the sulfur-carbon composite of the present invention includes the ion conductive polymer coating layer on the surface of the porous carbon material, thereby improving lithium ion conductivity to the positive electrode, thereby enabling high capacity, high stability, and long life of the lithium-sulfur battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a sulfur-carbon composite and a lithium-sulfur battery comprising the same and, more particularly, to a sulfur-carbon composite and a lithium-sulfur battery comprising the same, the composite comprising: a porous carbon material; and sulfur at at least a part of the surface and the inside of the porous carbon material, wherein the porous carbon material includes ion conductive polymer-containing coating layers on the inner and the outer surface thereof. The present invention includes the ion conductive polymer coating layers on the surfaces of the porous carbon material to improve the conduction of lithium ion to the cathode, thereby enhancing the capacity and lifespan characteristics of the lithium-sulfur battery.

Description

황-탄소 복합체 및 이를 포함하는 리튬-황 전지Sulfur-carbon composites and lithium-sulfur batteries comprising the same
본 출원은 2016년 11월 2일자 한국 특허 출원 제10-2016-0145193호 및 2017년 10월 12일자 한국 특허 출원 제10-2017-0132039호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0145193 filed on November 2, 2016 and Korean Patent Application No. 10-2017-0132039 filed on October 12, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 이온 전도 특성이 개선된 황-탄소 복합체 및 이를 포함하는 리튬-황 전지에 관한 것이다.The present invention relates to a sulfur-carbon composite having improved ion conducting properties and a lithium-sulfur battery including the same.
최근 전자기기 분야와 전기 자동차 분야의 급속한 발전에 따라 이차 전지의 수요가 증가하고 있다. 특히, 휴대용 전자기기의 소형화 및 경량화 추세에 따라 그에 부응할 수 있는 고에너지 밀도를 갖는 이차 전지에 대한 요구가 커지고 있다.Recently, with the rapid development of electronics and electric vehicles, the demand for secondary batteries is increasing. In particular, according to the trend toward miniaturization and light weight of portable electronic devices, there is a growing demand for a secondary battery having a high energy density capable of responding thereto.
이차 전지 중 리튬-황 전지는 황-황 결합을 갖는 황계 화합물을 양극 활물질로 사용하고, 리튬과 같은 알칼리 금속 또는 리튬 이온과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 이차 전지이다. 구체적으로, 환원 반응인 방전시 황-황 결합이 끊어지면서 황의 산화수가 감소하고, 산화 반응인 충전시 황의 산화수가 증가하면서 황-황 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장하고 생성한다.The lithium-sulfur battery of the secondary battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and a carbon-based material or an alloy with lithium, in which insertion and deintercalation of alkali metals such as lithium or metal ions such as lithium ions occur. It is a secondary battery using silicon, tin, etc. to form as a negative electrode active material. Specifically, the electrical energy is stored by using an oxidation-reduction reaction in which the sulfur-sulfur bond breaks during discharge, which is a reduction reaction, and the oxidation number of sulfur decreases, and the sulfur-sulfur bond is formed again when the oxidation-count of sulfur increases during charging. And generate
특히, 리튬-황 전지에 양극 활물질로 사용되는 황은 이론 에너지 밀도가 1,675 mAh/g으로, 기존의 리튬 이차 전지에 사용되는 양극 활물질에 비해 5배 정도 높은 이론 에너지 밀도를 가지고 있어 고출력, 고에너지 밀도의 발현이 가능한 전지이다. 이에 더해서 황은 값이 저렴하고 매장량이 풍부해 수급이 용이하며 환경친화적이라는 이점 때문에 휴대용 전자기기뿐만 아니라 전기 자동차와 같은 중대형 장치의 에너지원으로 주목받고 있다.In particular, sulfur used as a positive electrode active material in a lithium-sulfur battery has a theoretical energy density of 1,675 mAh / g, and has a theoretical energy density of about five times higher than that of a conventional positive electrode active material used in a lithium secondary battery, thereby resulting in high power and high energy density. Is a battery capable of expression. In addition, sulfur is attracting attention as an energy source for medium and large devices such as electric vehicles as well as portable electronic devices because of its low cost, rich reserves, and easy supply and environmental friendliness.
그러나, 황은 전기 전도도가 5×10-30 S/㎝로 전기 전도성이 없는 부도체이므로 전기화학 반응으로 생성된 전자의 이동이 어려운 문제가 있다. 이에 전기화학적 반응 사이트를 제공할 수 있는 탄소와 같은 전기적 도전재와 함께 복합화되어 황-탄소 복합체로 사용되고 있다.However, since sulfur has an electrical conductivity of 5 × 10 −30 S / cm and has no electrical conductivity, sulfur has a problem in that electrons generated by an electrochemical reaction are difficult to move. Thus it is complexed with an electrically conductive material such as carbon that can provide an electrochemical reaction site is used as a sulfur-carbon composite.
기존의 황-탄소 복합체는 산화-환원 반응시에 황이 전해질로 유출되어 전지 수명이 열화될 뿐 아니라, 황의 환원 물질인 리튬 폴리설파이드가 용출되어 더 이상 전기화학 반응에 참여하지 못하게 되는 문제점이 있었다. 또한, 전극 내 황이 과량으로 로딩(loading)되는 경우 용량이 감소하는 문제점도 있다. 이에 도전재와 황의 혼합 품질을 개선을 위한 다양한 기술이 제안되었다.Conventional sulfur-carbon composites have a problem in that sulfur is leaked into the electrolyte during the oxidation-reduction reaction to degrade battery life, and lithium polysulfide, which is a reducing substance of sulfur, is eluted and no longer participates in the electrochemical reaction. In addition, there is a problem in that the capacity decreases when sulfur in the electrode is excessively loaded. Accordingly, various techniques have been proposed to improve the mixing quality of the conductive material and sulfur.
일례로, 대한민국 공개특허 제2016-0037084호는 황을 포함하는 탄소나노튜브 응집체에 그래핀을 코팅함으로써 황-탄소나노튜브 복합체의 도전성 및 황 로딩양을 증가시킬 수 있음을 개시하고 있다.For example, Korean Patent Laid-Open No. 2016-0037084 discloses that by coating graphene on a carbon nanotube aggregate including sulfur, the conductivity and sulfur loading amount of the sulfur-carbon nanotube composite can be increased.
그러나, 황이 리튬-황 전지에서 충분한 성능을 발휘하기 위해서는 전기 전도성과 함께 리튬 이온 전도성이 요구된다. 리튬 이온 전도성은 전해액을 통해 부여되기 때문에 황-탄소 복합체 자체가 리튬 이온 전도성을 나타내는 경우 전해액에 의한 리튬 이온 전도성이 보다 향상되며 전지 성능 개선을 도모할 수 있다.However, in order for sulfur to exhibit sufficient performance in lithium-sulfur batteries, lithium ion conductivity is required in addition to electrical conductivity. Since lithium ion conductivity is imparted through the electrolyte solution, when the sulfur-carbon composite itself exhibits lithium ion conductivity, lithium ion conductivity by the electrolyte solution is further improved and battery performance can be improved.
이에 대한민국 공개특허 제2016-0046775호는 황-탄소 복합체를 포함하는 양극 활성부의 일부 표면에 양친매성 고분자로 이루어진 양극 코팅층을 구비하여 폴리설파이드의 용출 억제와 함께 리튬 이온의 이동을 용이하게 하여 전지의 사이클 특성을 향상시킬 수 있음을 개시하고 있다.Accordingly, the Republic of Korea Patent Publication No. 2016-0046775 has a positive electrode coating layer made of an amphiphilic polymer on the surface of the positive electrode active part including a sulfur-carbon composite to facilitate the migration of lithium ions and to prevent the dissolution of polysulfide, thereby It is disclosed that the cycle characteristics can be improved.
이들 특허에서 제시하는 황-탄소 복합체는 제조방법 또는 조성 등을 변경하여 전기 전도성은 어느 정도 개선하였으나 리튬 이온 전도성 측면에서는 그 효과가 충분치 않다. 따라서, 우수한 리튬 이온 전도성을 가지는 황-탄소 복합체에 대한 연구가 더욱 필요한 실정이다.The sulfur-carbon composites proposed in these patents have improved the electrical conductivity to some extent by changing the manufacturing method or composition, but the effect is not sufficient in terms of lithium ion conductivity. Therefore, further studies on sulfur-carbon composites having excellent lithium ion conductivity are needed.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허 제2016-0037084호(2016.04.05), 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지Republic of Korea Patent Publication No. 2016-0037084 (2016.04.05), sulfur-carbon nanotube composite, a method for manufacturing the same, a cathode active material for a lithium-sulfur battery including the same and a lithium-sulfur battery including the same
대한민국 공개특허 제2016-0046775호(2016.04.29), 리튬-황 전지용 양극 및 이의 제조방법Republic of Korea Patent Publication No. 2016-0046775 (2016.04.29), a positive electrode for a lithium-sulfur battery and a manufacturing method thereof
이에 본 발명자들은 상기한 문제점을 해결하고자 다각적으로 연구를 수행한 결과, 다공성 탄소재 표면에 이온 전도성 고분자를 포함하는 코팅층을 도입함으로써 리튬 이온의 이동이 복합체 내부까지 보다 용이하게 이루어져 리튬 이온 전도성이 향상됨을 확인하였다.Accordingly, the present inventors have conducted various studies to solve the above problems. As a result, by introducing a coating layer containing an ion conductive polymer on the surface of the porous carbon material, lithium ions are more easily moved to the inside of the composite, thereby improving lithium ion conductivity. It was confirmed.
이에 본 발명의 목적은 이온 전도성 고분자를 포함하는 코팅층을 다공성 탄소재와 황 사이에 형성하여 향상된 리튬 이온의 이동 특성을 갖는 황-탄소 복합체를 제공하는 것이다.Accordingly, an object of the present invention is to provide a sulfur-carbon composite having an improved mobility of lithium ions by forming a coating layer containing an ion conductive polymer between the porous carbon material and sulfur.
또한, 본 발명의 다른 목적은 상기 황-탄소 복합체를 포함하는 양극 및 이를 포함하는 리튬-황 전지를 제공하는 것이다.Another object of the present invention is to provide a positive electrode including the sulfur-carbon composite and a lithium-sulfur battery including the same.
상기 목적을 달성하기 위해, 본 발명은 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체에 있어서, 상기 다공성 탄소재의 내부 및 외부 표면은 이온 전도성 고분자를 포함하는 코팅층을 포함하는 황-탄소 복합체를 제공한다.In order to achieve the above object, the present invention is a porous carbon material; And a sulfur-carbon composite including sulfur in at least a portion of the inside and the surface of the porous carbon material, wherein the inside and the outer surface of the porous carbon material include a coating layer including an ion conductive polymer. do.
상기 이온 전도성 고분자는 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 폴리올레핀, 폴리포스파젠, 폴리아크릴로니트릴 폴리메틸메타크릴레이트, 폴리비닐클로라이드 및 폴리실록산으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 한다.The ion conductive polymers include polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyolefins, polyphosphazenes, polyacrylonitrile polymethylmethacrylates, polyvinylchlorides and polysiloxanes. Characterized in that it comprises one or more selected from the group consisting of.
상기 이온 전도성 고분자는 다공성 탄소재 100 중량부에 대해 0.1 내지 50 중량부로 포함되는 것을 특징으로 한다.The ion conductive polymer is characterized in that it comprises 0.1 to 50 parts by weight based on 100 parts by weight of the porous carbon material.
또한, 본 발명은 표면이 이온 전도성 고분자로 코팅된 탄소재 및 황을 포함하는 황-탄소 복합체를 제공한다.The present invention also provides a sulfur-carbon composite comprising a carbon material and sulfur whose surface is coated with an ion conductive polymer.
상기 탄소재는 천연 흑연, 인조 흑연 및 팽창 흑연으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 한다.The carbon material is at least one member selected from the group consisting of natural graphite, artificial graphite and expanded graphite.
상기 황-탄소 복합체는 도전재를 추가로 포함하는 것을 특징으로 한다.The sulfur-carbon composite is characterized in that it further comprises a conductive material.
또한, 본 발명은 상기 황-탄소 복합체를 포함하는 리튬-황 전지용 양극을 제공한다.The present invention also provides a cathode for a lithium-sulfur battery comprising the sulfur-carbon composite.
아울러, 본 발명은 상기 양극을 포함하는 리튬-황 전지를 제공한다.In addition, the present invention provides a lithium-sulfur battery including the positive electrode.
본 발명에 따른 황-탄소 복합체는 다공성 탄소재 표면에 이온 전도성 고분자를 포함하는 코팅층을 구비하여 복합체 내부까지 리튬 이온을 효과적으로 전달할 수 있어 이온 전도성과 양극 활물질과의 반응성이 개선되어 리튬-황 전지의 용량 및 수명 특성을 향상시킬 수 있다.The sulfur-carbon composite according to the present invention includes a coating layer containing an ion conductive polymer on the surface of the porous carbon material to effectively transfer lithium ions to the inside of the composite, thereby improving ion conductivity and reactivity with the positive electrode active material, thereby improving the lithium-sulfur battery. Capacity and lifespan characteristics can be improved.
도 1은 본 발명의 실시예1 및 비교예 1을 적용하여 제조한 리튬-황 전지 코인 셀의 충방전 특성 결과를 나타낸 그래프이다.1 is a graph showing charge and discharge characteristics of the lithium-sulfur battery coin cell manufactured by applying Example 1 and Comparative Example 1 of the present invention.
이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.As used herein, the term “composite” refers to a substance in which two or more materials are combined to form physically and chemically different phases and express more effective functions.
리튬-황 전지는 양극 활물질로 황을, 음극 활물질로 리튬 금속을 사용한다. 리튬-황 전지의 방전시 음극에서는 리튬의 산화 반응이 일어나고, 양극에서는 황의 환원 반응이 발생한다. 이때 환원된 황은 음극으로부터 이동되어 온 리튬 이온과 결합하여 리튬 폴리설파이드로 변환되고 최종적으로 리튬 설파이드를 형성하는 반응을 수반한다.Lithium-sulfur batteries use sulfur as a positive electrode active material and lithium metal as a negative electrode active material. During discharge of the lithium-sulfur battery, an oxidation reaction of lithium occurs at the negative electrode and a sulfur reduction reaction occurs at the positive electrode. In this case, the reduced sulfur is combined with lithium ions transferred from the negative electrode to be converted into lithium polysulfide, followed by a reaction to finally form lithium sulfide.
리튬-황 전지는 기존의 리튬 이차 전지에 비해 월등히 높은 이론 에너지 밀도를 가지며, 양극 활물질로 사용되는 황은 자원이 풍부하여 가격이 저렴하므로 전지의 제조단가를 낮출 수 있다는 장점으로 인해 차세대 전지로 각광받고 있다.Lithium-sulfur batteries have a much higher theoretical energy density than conventional lithium secondary batteries, and sulfur, which is used as a positive electrode active material, is spotlighted as a next-generation battery due to its rich resources and low price, which can lower the manufacturing cost of the battery. have.
이러한 장점에도 불구하고 양극 활물질인 황의 낮은 전기 전도도 및 리튬 이온 전도 특성으로 인해 실제 구동에 있어서는 이론적 에너지 밀도 전부를 구현하는데 어려움이 있다.Despite these advantages, due to the low electrical conductivity and lithium ion conductivity of sulfur, the positive electrode active material, it is difficult to realize all theoretical energy density in actual driving.
황의 전기 전도도를 개선하기 위해 탄소, 고분자 등 전도성 소재와의 복합체 형성, 코팅 등의 방법이 사용되고 있다. 여러 방법 중 황-탄소 복합체가 양극의 전기 전도성을 개선에 효과적이기 때문에 양극 활물질로 가장 많이 사용되고 있지만, 충방전 용량 및 효율 측면에서는 아직 충분치 않다. 리튬-황 전지의 용량과 효율은 양극으로 전달되는 리튬 이온의 양에 따라 달라질 수 있다. 따라서, 황-탄소 복합체 내부로 리튬 이온의 전달이 용이하게 하는 것이 전지의 고용량 및 고효율화에 중요하다.In order to improve the electrical conductivity of sulfur, a method of forming a composite with a conductive material such as carbon or a polymer, or coating is used. Among various methods, sulfur-carbon composites are most commonly used as positive electrode active materials because they are effective in improving the electrical conductivity of a positive electrode, but are not yet sufficient in terms of charge and discharge capacity and efficiency. The capacity and efficiency of a lithium-sulfur battery may vary depending on the amount of lithium ions delivered to the positive electrode. Therefore, facilitating the transfer of lithium ions into the sulfur-carbon composite is important for high capacity and high efficiency of the battery.
이에 본 발명에서는 황-탄소 복합체 내부에 리튬 이온 전도성을 부여하여 황-탄소 복합체와 전해액과의 반응성 및 리튬-황 전지의 용량 및 효율 특성 개선 효과를 확보하기 위해 이온 전도성 고분자로 이루어진 코팅층을 갖는 탄소재를 포함하는 황-탄소 복합체를 제공한다.Accordingly, in the present invention, a carbon having a coating layer made of an ion conductive polymer to impart lithium ion conductivity to the sulfur-carbon composite to secure reactivity between the sulfur-carbon composite and the electrolyte and to improve the capacity and efficiency characteristics of the lithium-sulfur battery It provides a sulfur-carbon composite comprising a material.
본 발명의 일 구현예에 따른 황-탄소 복합체는 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 외부 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체에 있어서, 상기 다공성 탄소재의 내부 및 외부 표면은 이온 전도성 고분자를 포함하는 코팅층을 포함한다.Sulfur-carbon composite according to an embodiment of the present invention is a porous carbon material; And a sulfur-carbon composite including sulfur in at least some of the inner and outer surfaces of the porous carbon material, wherein the inner and outer surfaces of the porous carbon material include a coating layer comprising an ion conductive polymer.
본 발명의 일 구현예에 따르면, 상기 다공성 탄소재는 내부 및 외부 표면에 이온 전도성 고분자를 포함하는 코팅층을 포함한다. 상기 이온 전도성 고분자는 황-탄소 복합체의 내부, 즉 다공성 탄소재의 기공 내부까지 리튬 이온의 이동 경로를 확보함으로써 높은 이온 전도성과 함께 양극 활물질인 황과의 반응성을 높여 리튬-황 전지의 용량 및 수명 특성을 동시에 향상시킬 수 있다.According to one embodiment of the invention, the porous carbon material comprises a coating layer comprising an ion conductive polymer on the inner and outer surfaces. The ion conductive polymer has a high ion conductivity and a high reactivity with sulfur as a cathode active material by securing a migration path of lithium ions to the inside of the sulfur-carbon composite, that is, into the pores of the porous carbon material. The characteristic can be improved at the same time.
상기 이온 전도성 고분자는 폴리에틸렌 옥사이드(poly(ethylene oxide); PEO), 폴리프로필렌 옥사이드(poly(propylene oxide); PPO), 폴리비닐리덴 플루오라이드(poly(vinylidene fluoride); PVDF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(poly(vinylidene fluoride-co-hexafluoropropylene); PVdF-HFP), 폴리올레핀(poly(olefin); PO), 폴리포스파젠(polyphosphazene), 폴리아크릴로니트릴(poly(acrylonitrile); PAN), 폴리메틸메타크릴레이트 (poly(methylmethacrylate); PMMA), 폴리비닐클로라이드(poly(vinyl chloride); PVC) 및 폴리실록산(polysiloxane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 바람직하게 상기 이온 전도성 고분자는 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리비닐리덴 플루오라이드 및 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.The ion conductive polymer is polyethylene oxide (poly (ethylene oxide); PEO), polypropylene oxide (poly (propylene oxide); PPO), polyvinylidene fluoride (poly (vinylidene fluoride); PVDF), polyvinylidene fluoride Hexafluoropropylene (poly (vinylidene fluoride-co-hexafluoropropylene); PVdF-HFP), polyolefin (poly) (PO), polyphosphazene, polyacrylonitrile (poly (acrylonitrile); PAN) , Polymethyl methacrylate (poly (methylmethacrylate); PMMA), polyvinyl chloride (poly (vinyl chloride); PVC) and may include one or more selected from the group consisting of polysiloxane (polysiloxane). Preferably, the ion conductive polymer may include at least one member selected from the group consisting of polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyvinylidene fluoride-hexafluoropropylene.
상기 이온 전도성 고분자의 중량평균 분자량은 특별히 한정하지 않으며, 해당 기술분야에서 통상적으로 사용 가능한 것이라면 제한없이 사용될 수 있다. 일례로, 상기 이온 전도성 고분자의 중량평균 분자량은 20,000 내지 50,000,000 g/mol 일 수 있다.The weight average molecular weight of the ion conductive polymer is not particularly limited and may be used without limitation as long as it is commonly used in the art. For example, the weight average molecular weight of the ion conductive polymer may be 20,000 to 50,000,000 g / mol.
상기 이온 전도성 고분자는 다공성 탄소재 100 중량부에 대해 0.1 내지 50 중량부, 바람직하게는 1 내지 25 중량부로 사용할 수 있다. 상기 이온 전도성 고분자의 상기 범위 미만인 경우 다공성 탄소재 상에 코팅층 형성이 불충분하여 목적한 이온 전도성 개선 효과를 얻을 수 없으며, 이와 반대로 상기 범위를 초과하는 경우 슬러리 제조 공정, 양극 활물질로서의 기능 및 전지 성능에 악영향을 줄 수 있다.The ion conductive polymer may be used in an amount of 0.1 to 50 parts by weight, preferably 1 to 25 parts by weight, based on 100 parts by weight of the porous carbon material. If the ion conductive polymer is less than the above range, the coating layer may not be sufficiently formed on the porous carbon material, and thus, the desired ion conductivity improvement effect may not be obtained. It may adversely affect.
상기 다공성 탄소재는 양극 활물질인 황이 균일하고 안정적으로 고정화될 수 있는 골격을 제공하고 황의 전기 전도도를 보완하여 전기화학 반응이 원활하게 진행될 수 있도록 한다.The porous carbon material provides a skeleton in which sulfur, which is a cathode active material, can be uniformly and stably immobilized, and complements the electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.The porous carbon material may generally be prepared by carbonizing precursors of various carbon materials. The porous carbon material may include non-uniform pores therein and the average diameter of the pores may range from 1 to 200 nm, and the porosity or porosity may range from 10 to 90% of the total volume of the porous. If the average diameter of the pores is less than the above range, the pore size is only molecular level, so that impregnation of sulfur is impossible. On the contrary, if the average diameter exceeds the above range, the mechanical strength of the porous carbon is weakened, and thus it is preferable to apply to the electrode manufacturing process. Not.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.The form of the porous carbon material may be used without limitation as long as it is conventionally used in lithium-sulfur batteries in spherical shape, rod shape, needle shape, plate shape, tubular shape or bulk shape.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않는다.The porous carbon material may have any porous structure or specific surface area as long as it is commonly used in the art. For example, the porous carbon material includes graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And it may be one or more selected from the group consisting of activated carbon, but is not limited thereto.
상기 황은 무기 황(S8), Li2Sn(n ≥ 1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x=2.5 내지 50, n ≥ 2]로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.The sulfur is from the group consisting of inorganic sulfur (S 8 ), Li 2 S n (n ≥ 1), an organic sulfur compound and a carbon-sulfur polymer [(C 2 S x ) n , x = 2.5 to 50, n ≥ 2] It may be one or more selected. Preferably inorganic sulfur (S 8 ) can be used.
본 발명에 따른 황-탄소 복합체에서 전술한 코팅층을 포함하는 다공성 탄소재와 황의 중량비는 1:9 내지 5:5, 바람직하게는 2:8 내지 3:7일 수 있다. 만약 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있다.In the sulfur-carbon composite according to the present invention, the weight ratio of the porous carbon material and the sulfur including the coating layer described above may be 1: 9 to 5: 5, preferably 2: 8 to 3: 7. If less than the weight ratio range, as the content of the porous carbonaceous material increases, the amount of binder added required in preparing the positive electrode slurry increases. The increase in the amount of binder added may eventually increase the sheet resistance of the electrode and serve as an insulator that prevents electron pass, thereby degrading cell performance. On the contrary, when the weight ratio exceeds the range, sulfur may be agglomerated among them, and it may be difficult to directly participate in an electrode reaction because it is difficult to receive electrons.
또한, 본 발명에 있어서, 상기 황-탄소 복합체는 황:다공성 탄소재:이온 전도성 고분자를 50 내지 90:6 내지 45:0.01 내지 15 중량비로 포함할 수 있다. 상기 황-탄소 복합체 내 조성 비율이 상기 범위 내에 해당하는 경우 앞서 설명한 리튬 이온 이동 특성 및 반응성 개선 효과를 확보할 수 있다.In addition, in the present invention, the sulfur-carbon composite may include a sulfur: porous carbon material: ion conductive polymer in a weight ratio of 50 to 90: 6 to 45: 0.01 to 15. When the composition ratio in the sulfur-carbon composite falls within the above range, the lithium ion migration characteristics and reactivity improvement effects may be secured.
또한, 본 발명의 일 구현예 따른 황-탄소 복합체에서 상기 황은 상기 다공성 탄소재의 기공 내부 뿐만 아니라 표면에 위치하며 이때 상기 다공성 탄소재의 외부 전체 표면의 100% 미만, 바람직하게는 1 내지 95 %, 더욱 바람직하게는 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 표면에 상기 범위 내에 있을 때 전자 전달 면적 및 전해액의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 표면에 얇고 고르게 함침되므로 충방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 표면의 100% 영역에 위치하는 경우, 상기 다공성 탄소재가 완전히 황으로 덮여 전해액의 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 떨어져 전자 전달을 받지 못해 반응에 참여할 수 없게 된다.In addition, in the sulfur-carbon composite according to one embodiment of the present invention, the sulfur is located on the surface as well as inside the pores of the porous carbon material, wherein less than 100% of the entire outer surface of the porous carbon material, preferably 1 to 95% More preferably in the 60-90% region. When the sulfur is in the above range on the surface of the porous carbon material can exhibit the maximum effect in terms of the electron transfer area and the wettability of the electrolyte. Specifically, since the sulfur is thinly and evenly impregnated on the surface of the porous carbon material in the above range region, the electron transfer contact area may be increased during the charge and discharge process. If the sulfur is located at 100% of the surface of the porous carbon material, the porous carbon material is completely covered with sulfur, so that the wettability of the electrolyte is inferior and the contact with the conductive material included in the electrode is poor, thereby preventing the electron transfer and thus participating in the reaction. It becomes impossible.
또한, 본 발명의 다른 일 구현예에 따른 황-탄소 복합체는 표면이 이온 전도성 고분자로 코팅된 탄소재 및 황을 포함한다.In addition, the sulfur-carbon composite according to another embodiment of the present invention includes a carbon material and sulfur whose surface is coated with an ion conductive polymer.
본 발명의 다른 일 구현예에 따르면, 탄소재와 황이 단순혼합된 황-탄소 복 합체에 있어서 탄소재의 내부 및 외부 표면에 이온 전도성 고분자를 포함하는 코팅층을 도입하여 복합체 내부까지 리튬 이온의 전달이 원활하도록 도모하며 전지의 성능 및 수명을 보다 향상시킬 수 있다.According to another embodiment of the present invention, in a sulfur-carbon composite in which carbon material and sulfur are simply mixed, lithium ions are transferred to the inside of the composite by introducing a coating layer containing an ion conductive polymer on the inner and outer surfaces of the carbon material. It can promote smoothness and can improve battery performance and lifespan more.
상기 이온 전도성 고분자 및 황은 본 발명의 일 구현예에서 기재한 바와 같다.The ion conductive polymer and sulfur are as described in the embodiment of the present invention.
상기 탄소재는 황에 전기전도성을 부여하고 균일한 분포를 도모하는 역할을 한다. 상기 탄소재는 천연 흑연, 인조 흑연 및 팽창 흑연으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 바람직하게, 상기 탄소재는 팽창 흑연일 수 있다.The carbon material serves to impart electrical conductivity to sulfur and promote uniform distribution. The carbon material may include at least one selected from the group consisting of natural graphite, artificial graphite, and expanded graphite. Preferably, the carbon material may be expanded graphite.
상기 팽창 흑연은 보통 천연 흑연, 열분해 흑연, 키시(kish) 흑연, 압축 팽창 흑연, 부분 산화된 흑연 및 흑연 섬유로 구성된 군에서 선택되는 흑연성 또는 부분 흑연성 출발물질로부터 제조된다. 상기 출발물질은 삽입물질과 반응하여 층간 화합물을 제공한 후 팽창된다. 상기 삽입물질은 할로겐, SO3, NO3, 알칼리 금속 또는 기타 화합물일 수 있다. 바람직하게, 상기 층간 화합물은 출발물질, 바람직하게는 흑연을 산화제와 함께 진환 황산 또는 진한 질산 등의 강산으로 처리하여 수득된다. 이때 상기 강산 대신 포름산 또는 아세트산 등의 유기산을 사용할 수 있다. 상기 삽입물질과의 반응을 통해 제조된 삽입 화합물, 즉, 삽입된 흑연을 세척 및/또는 건조한다. 상기 삽입 화합물은 직접 제조하거나 시판되는 제품을 구매하여 사용할 수 있다. 예를 들어, 상기 삽입 화합물은 엔게에스 나투르그라피트 게엠베하(NGS Naturgraphit GmbH, 독일), 엘유하 게엠베하(LUH GmbH, 독일) 및 테크노그라피트 게엠베하((TECHNOGRAFIT GmbH, 독일)로부터 입수할 수 있다.The expanded graphite is usually prepared from a graphite or partially graphite starting material selected from the group consisting of natural graphite, pyrolytic graphite, kish graphite, compressed expanded graphite, partially oxidized graphite and graphite fibers. The starting material expands after reaction with the intercal material to provide an intercalation compound. The insert may be halogen, SO 3 , NO 3 , alkali metal or other compound. Preferably, the interlayer compound is obtained by treating the starting material, preferably graphite, with an oxidizing agent with a strong acid such as cyclohexane or concentrated nitric acid. In this case, an organic acid such as formic acid or acetic acid may be used instead of the strong acid. The intercalation compound prepared through reaction with the intercalation material, ie intercalated graphite, is washed and / or dried. The intercalating compound can be used directly or purchased commercially available products. For example, the insertion compound can be obtained from Enges Naturgraphit GmbH, Germany, LUH GmbH, Germany, and Technograft GmbH, Germany. Can be.
상기 삽입 화합물을 200 내지 약 1000 ℃로 급속 가열하면, N- 또는 S-화합물과 같은 삽입물질의 열분해로 반응이 일어나며, 흑연의 결정층이 박리되어 가스 분해 산물을 방출한다. 상기 열처리는 예를 들면 팽창 오븐, 플라즈마 오븐 또는 마이크로웨이브를 통해 수행될 수 있다. 상기 팽창 흑연의 부피는 출발물질 부피의 최대 280배에 이를 수 있다. 이때 부피 변화는 사용된 흑연의 입자 크기, 출발물질의 종류(예를 들어 천연 흑연 또는 인조 흑연), 가열 형태, 속도 등에 따라 달라질 수 있다.When the intercalation compound is rapidly heated to 200 to about 1000 ° C., a reaction occurs by thermal decomposition of the intercalation material such as N- or S-compound, and the crystal layer of graphite is exfoliated to release the gas decomposition product. The heat treatment can be carried out, for example, through an expansion oven, a plasma oven or a microwave. The volume of the expanded graphite can reach up to 280 times the volume of the starting material. In this case, the volume change may vary depending on the particle size of the graphite used, the type of starting material (for example, natural graphite or artificial graphite), heating form, speed, and the like.
상기 팽창 흑연의 제조는 당업자들에게 공지되었으며, 예를 들어 유럽특허 등록 제1,491,497호에 개시된 제조방법을 이용할 수 있다.The production of the expanded graphite is known to those skilled in the art, and for example, the production method disclosed in EP 1,491,497 can be used.
상기 황-탄소 복합체는 도전재를 추가로 포함할 수 있다.The sulfur-carbon composite may further include a conductive material.
상기 도전재는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 한정하지 않는다. 예를 들어, 상기 도전재는 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the conductive material may be carbon black such as super-P, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, or summer black; Carbon derivatives such as carbon nanotubes and fullerenes; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Or conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
또한, 본 발명은 상기 황-탄소 복합체의 제조방법을 제공한다.The present invention also provides a method for producing the sulfur-carbon composite.
본 발명에 따른 황-탄소 복합체의 제조방법은 특별히 한정되지 않고 당업계에서 통상적으로 알려진 방법에 의해 제조될 수 있다.The method for producing the sulfur-carbon composite according to the present invention is not particularly limited and may be prepared by methods commonly known in the art.
본 발명의 일 구현예에 따른 황-탄소 복합체의 제조방법은 다공성 탄소재의 내부 및 외부 표면에 이온 전도성 고분자를 포함하는 코팅층을 형성하는 단계; 상기 코팅층이 형성된 다공성 도전재, 황 및 유기 용매를 혼합하는 단계; 및 상기 혼합물을 가열하여 황을 용융시켜 상기 다공성 탄소재의 내부 및 외부 표면 중 적어도 일부에 담지하여 황-탄소 복합체를 형성하는 단계를 포함할 수 있다.Method for producing a sulfur-carbon composite according to an embodiment of the present invention comprises the steps of forming a coating layer containing an ion conductive polymer on the inner and outer surfaces of the porous carbon material; Mixing the porous conductive material, sulfur, and an organic solvent in which the coating layer is formed; And melting the sulfur by heating the mixture to be supported on at least a portion of the inner and outer surfaces of the porous carbon material to form a sulfur-carbon composite.
본 발명의 다른 일 구현예에 따른 황-탄소 복합체의 제조방법은 탄소재 표면에 이온 전도성 고분자를 포함하는 코팅층을 형성하는 단계 및 상기 코팅층이 형성된 탄소재 및 황을 혼합하여 황-탄소 복합체를 형성하는 단계를 포함할 수 있다.According to another aspect of the present invention, a method of manufacturing a sulfur-carbon composite includes forming a coating layer including an ion conductive polymer on a surface of a carbon material, and mixing the carbon material and sulfur on which the coating layer is formed to form a sulfur-carbon composite. It may include the step.
상기 다공성 도전재 또는 탄소재 상에 이온 전도성 고분자로 코팅층을 형성하는 단계는 이온 전도성 고분자가 용해된 용액에 다공성 도전재 또는 탄소재를 투입하고 교반한 후, 필터링, 건조하는 공정을 통하여 수행될 수 있으나, 해당 기술분야에 알려진 방법이면 어느 방법이든 무방하다.Forming the coating layer of the ion conductive polymer on the porous conductive material or the carbon material may be carried out by adding a porous conductive material or carbon material to the solution in which the ion conductive polymer is dissolved, stirring, filtering, and drying. However, any method known in the art may be used.
상기 혼합은 전술한 재료 간의 혼합도를 높이기 위한 것으로 당업계에서 통상적으로 사용되는 교반 장치를 이용하여 수행할 수 있다. 이때 혼합 시간 및 속도 또한 원료의 함량 및 조건에 따라 선택적으로 조절될 수 있다.The mixing is to increase the degree of mixing between the above-described materials can be carried out using a stirring device commonly used in the art. In this case, the mixing time and speed may also be selectively adjusted according to the content and conditions of the raw materials.
상기 가열 온도는 황이 용융되는 온도이면 무방하고 구체적으로 120 내지 180 ℃, 바람직하게는 150 내지 180 ℃ 일 수 있다. 상기 가열 온도가 120 ℃ 미만인 경우 황이 충분히 용융되지 않아 황-탄소 복합체의 구조가 제대로 형성되지 않을 수 있고, 180 ℃를 초과하는 경우 코팅된 고분자가 잔류하지 못해 목적한 효과를 얻기 어렵다. 이에 더해서, 상기 가열 시간은 황의 함량에 따라 조절될 수 있다.The heating temperature may be any temperature at which sulfur is melted, and may be specifically 120 to 180 ° C., preferably 150 to 180 ° C. When the heating temperature is less than 120 ℃ sulfur may not be sufficiently melted structure of the sulfur-carbon composite is not properly formed, if it exceeds 180 ℃ coated polymer does not remain difficult to obtain the desired effect. In addition, the heating time may be adjusted according to the content of sulfur.
전술한 제조방법을 통해 다공성 탄소재 또는 탄소재와 황 사이에 이온 전도성 고분자를 포함하는 코팅층이 형성되어 있는 황-탄소 복합체가 제조될 수 있으며, 상기 황-탄소 복합체는 다공성 탄소재 또는 탄소재의 표면을 이온 전도성 고분자로 코팅해줌으로써 리튬 이온이 복합체 내부로 용이하게 이동할 수 있다. 이로 인하여 전지에 양극 활물질로 도입시 전해액과의 반응성이 증대되며 이는 전지의 용량 및 수명 개선 효과를 나타낼 수 있다.Through the above-described manufacturing method, a sulfur-carbon composite in which a coating layer including an ion conductive polymer is formed between the porous carbon material or the carbon material and the sulfur may be manufactured, and the sulfur-carbon composite may be formed of the porous carbon material or the carbon material. By coating the surface with an ion conductive polymer, lithium ions can be easily moved into the composite. This increases the reactivity with the electrolyte when introduced into the battery as a positive electrode active material, which may exhibit an effect of improving the capacity and life of the battery.
또한, 본 발명은 상기 황-탄소 복합체를 포함하는 리튬-황 전지용 양극을 제공한다. 상기 황-탄소 복합체는 양극 내에서 양극 활물질로 포함될 수 있다.The present invention also provides a cathode for a lithium-sulfur battery comprising the sulfur-carbon composite. The sulfur-carbon composite may be included as a cathode active material in a cathode.
상기 양극은 상기 양극 활물질 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.The positive electrode may further include one or more additives selected from transition metal elements, group IIIA elements, group IVA elements, sulfur compounds of these elements, and alloys of these elements and sulfur, in addition to the positive electrode active material.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.The transition metal element may be Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like, the Group IIIA element may include Al, Ga, In, Ti, and the like, and the Group IVA element may include Ge, Sn, Pb and the like.
상기 양극은 양극 활물질, 또는 선택적으로 첨가제와 함께, 전자가 양극 내에서 원활하게 이동하도록 하기 위한 전기전도성 도전재 및 양극 활물질을 집전체에 잘 부착시키기 위한 바인더를 더 포함할 수 있다.The positive electrode may further include a positive electrode active material, or optionally an additive, an electrically conductive conductive material for allowing electrons to move smoothly in the positive electrode, and a binder for attaching the positive electrode active material to the current collector.
상기 도전재로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 한정하지 않으나, 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 카본 블랙 등의 카본 블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical changes to the battery, but is not limited to super-P, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon black such as summer black and carbon black; Carbon derivatives such as carbon nanotubes and fullerenes; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Or conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
상기 도전재의 함량은 상기 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.01 내지 30 중량%로 첨가될 수 있다.The conductive material may be added in an amount of 0.01 to 30 wt% based on the total weight of the mixture including the cathode active material.
상기 바인더로는 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질들 사이를 유기적으로 연결해주는 기능을 가지는 것으로서, 예컨대 폴리비닐리덴 플로라이드, 폴리비닐알코올, 카르복시메틸셀룰로오즈, 전분, 히드록시프로필셀룰로오즈, 재생 셀룰로오즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 고무(ethylene propylene diene rubber; EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder has a function of maintaining the positive electrode active material in the positive electrode current collector and organically connecting the positive electrode active materials, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, starch, hydroxypropyl cellulose, Regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene propylene diene rubber (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various of these And copolymers.
상기 바인더의 함량은 상기 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.5 내지 30 중량%로 첨가될 수 있다. 바인더의 함량이 0.5 중량% 미만이면, 양극의 물리적 성질이 저하되어 양극 내 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하면 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소할 수 있다.The binder may be added in an amount of 0.5 to 30 wt% based on the total weight of the mixture including the cathode active material. If the content of the binder is less than 0.5% by weight, the physical properties of the positive electrode may be degraded to cause the active material and the conductive material to fall off. If the content is more than 30% by weight, the ratio of the active material and the conductive material to the positive electrode is relatively decreased, thereby reducing battery capacity. can do.
본 발명의 양극을 제조하는 방법을 구체적으로 살펴보면, 먼저, 슬러리를 제조하기 위한 용매에 상기 바인더를 용해시킨 다음, 도전재를 분산시킨다. 슬러리를 제조하기 위한 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하고, 대표적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알콜 등을 사용할 수 있다. 다음으로 양극 활물질을, 또는 선택적으로 첨가제와 함께, 상기 도전재가 분산된 용매에 다시 균일하게 분산시켜 양극 슬러리를 제조한다. 슬러리에 포함되는 용매, 양극 활물질, 또는 선택적으로 첨가제의 양은 본 출원에 있어서 특별히 중요한 의미를 가지지 않으며, 단지 슬러리의 코팅이 용이하도록 적절한 점도를 가지면 충분하다.Looking at the method of manufacturing the positive electrode of the present invention in detail, first, the binder is dissolved in a solvent for preparing a slurry, and then the conductive material is dispersed. As a solvent for preparing the slurry, a positive electrode active material, a binder, and a conductive material can be uniformly dispersed, and it is preferable to use one that is easily evaporated. Typically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, iso Propyl alcohol and the like. Next, the positive electrode active material, or optionally together with an additive, is uniformly dispersed again in a solvent in which the conductive material is dispersed to prepare a positive electrode slurry. The amount of solvent, positive electrode active material, or optionally additives included in the slurry does not have a particularly important meaning in the present application, and it is sufficient only to have an appropriate viscosity to facilitate the coating of the slurry.
이와 같이 제조된 슬러리를 집전체에 도포하고, 진공 건조하여 양극을 형성한다. 상기 슬러리는 슬러리의 점도 및 형성하고자 하는 양극의 두께에 따라 적절한 두께로 집전체에 코팅할 수 있다.The slurry thus prepared is applied to a current collector and vacuum dried to form a positive electrode. The slurry may be coated on the current collector in an appropriate thickness depending on the viscosity of the slurry and the thickness of the positive electrode to be formed.
상기 집전체로는 일반적으로 3 내지 500 ㎛의 두께로 만들 수 있고, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않는다. 구체적으로 스테인레스 스틸, 알루미늄, 구리, 티타늄 등의 도전성 물질을 사용할 수 있고, 더욱 구체적으로 카본-코팅된 알루미늄 집전체를 사용할 수 있다. 탄소가 코팅된 알루미늄 기판을 사용하는 것이 탄소가 코팅되지 않은 것에 비해 활물질에 대한 접착력이 우수하고, 접촉 저항이 낮으며, 알루미늄의 폴리설파이드에 의한 부식을 방지할 수 있는 장점이 있다. 또한, 상기 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등 다양한 형태가 가능하다.The current collector can be generally made to a thickness of 3 to 500 ㎛, and is not particularly limited as long as it has a high conductivity without causing chemical changes in the battery. Specifically, a conductive material such as stainless steel, aluminum, copper, titanium, or the like may be used, and more specifically, a carbon-coated aluminum current collector may be used. The use of an aluminum substrate coated with carbon has an advantage in that the adhesion to the active material is excellent, the contact resistance is low, and the corrosion of polysulfide of aluminum is prevented, compared with the non-carbon coated aluminum substrate. In addition, the current collector may be in various forms such as a film, sheet, foil, net, porous body, foam or nonwoven fabric.
또한, 본 발명은 전술한 황-탄소 복합체를 포함하는 양극; 음극; 및 상기 양극과 음극 사이에 개재된 전해질을 포함하는 리튬-황 전지를 제공한다.In addition, the present invention is a positive electrode comprising a sulfur-carbon composite described above; cathode; And it provides a lithium-sulfur battery comprising an electrolyte interposed between the positive electrode and the negative electrode.
상기 양극은 본 발명에 의한 것으로 앞서 언급한 바를 따른다.The anode is according to the present invention and follows the foregoing.
상기 음극은 집전체와 그의 일면 또는 양면에 형성된 음극 활물질층으로 구성될 수 있다. 상기 음극 활물질은 리튬이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다.The negative electrode may include a current collector and a negative electrode active material layer formed on one or both surfaces thereof. The negative electrode active material may be a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal or a lithium alloy.
상기 리튬이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질은 예를 들어, 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다.Materials capable of reversibly intercalating or deintercalating the lithium ions may be, for example, crystalline carbon, amorphous carbon or mixtures thereof.
상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트, 또는 실리콘일 수 있다.The material capable of reacting with the lithium ions to reversibly form a lithium-containing compound may be, for example, tin oxide, titanium nitrate, or silicon.
상기 리튬 합금은 예를 들어, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 금속과의 합금일 수 있다.The lithium alloy may be, for example, an alloy of lithium with a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn.
전술한 양극과 음극 사이에는 추가적으로 분리막이 포함될 수 있다. 상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 이러한 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.The separator may be additionally included between the positive electrode and the negative electrode. The separator may be made of a porous non-conductive or insulating material to separate or insulate the positive electrode and the negative electrode from each other, and to enable lithium ion transport between the positive electrode and the negative electrode. The separator may be an independent member such as a film, or may be a coating layer added to the anode and / or the cathode.
상기 분리막을 이루는 물질은 예를 들어 폴리에틸렌 및 폴리프로필렌 등의 폴리올레핀, 유리 섬유 여과지 및 세라믹 물질이 포함되나, 이에 한정되지 않고, 그 두께는 약 5 내지 약 50 ㎛, 바람직하게는 약 5 내지 약 25 ㎛일 수 있다.The material constituting the separator includes, for example, polyolefins such as polyethylene and polypropylene, glass fiber filter paper, and ceramic materials, but is not limited thereto, and the thickness thereof is about 5 to about 50 μm, preferably about 5 to about 25 May be μm.
상기 전해질은 양극과 음극 사이에 위치하며 리튬염 및 전해질 용매를 포함한다.The electrolyte is located between the positive electrode and the negative electrode and includes a lithium salt and an electrolyte solvent.
상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.6 내지 2 M, 더욱 구체적으로 0.7 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M 을 초과하여 사용하면 전해질의 점도가 증가하여 리튬이온의 이동성이 감소될 수 있다. The concentration of the lithium salt is 0.2 to 2 M, depending on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art, Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. When the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. When the lithium salt is used, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions.
상기 리튬염은 리튬-황 전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiSCN, LiBr, LiI, LiPF6, LiBF4, LiB10Cl10, LiSO3CF3, LiCl, LiClO4, LiSO3CH3, LiB(Ph)4, LiC(SO2CF3)3, LiN(SO2CF3)2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiFSI, 클로로 보란 리튬, 저급 지방족 카르본산 리튬 등으로 이루어진 군으로부터 1종 이상이 포함될 수 있다.The lithium salt may be used without limitation as long as it is conventionally used in a lithium-sulfur battery electrolyte. For example, LiSCN, LiBr, LiI, LiPF 6 , LiBF 4 , LiB 10 Cl 10 , LiSO 3 CF 3 , LiCl, LiClO 4 , LiSO 3 CH 3 , LiB (Ph) 4 , LiC (SO 2 CF 3 ) 3 , LiN (SO 2 CF 3) 2, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, may be included are one or more from LiFSI, chloro group consisting of borane lithium, lower aliphatic carboxylic acid lithium or the like.
상기 전해질 용매는 비수계 유기 용매로, 단일 용매를 사용할 수도 있고 둘 이상의 혼합 유기 용매를 사용할 수도 있다. 둘 이상의 혼합 유기 용매를 사용하는 경우 약한 극성 용매 그룹, 강한 극성 용매 그룹, 및 리튬 메탈 보호 용매 그룹 중 두 개 이상의 그룹에서 하나 이상의 용매를 선택하여 사용하는 것이 바람직하다.The electrolyte solvent is a non-aqueous organic solvent, a single solvent may be used, or two or more mixed organic solvents may be used. When using two or more mixed organic solvents, it is preferable to use one or more solvents selected from two or more groups of a weak polar solvent group, a strong polar solvent group, and a lithium metal protective solvent group.
상기 약한 극성 용매는 아릴 화합물, 바이사이클릭 에테르, 비환형 카보네이트 중에서 황 원소를 용해시킬 수 있는 유전 상수가 15보다 작은 용매로 정의되고, 강한 극성 용매는 비사이클릭 카보네이트, 설폭사이드 화합물, 락톤 화합물, 케톤 화합물, 에스테르 화합물, 설페이트 화합물, 설파이트 화합물 중에서 리튬 폴리설파이드를 용해시킬 수 있는 유전 상수가 15보다 큰 용매로 정의되며, 리튬 메탈 보호 용매는 포화된 에테르 화합물, 불포화된 에테르 화합물, N, O, S 또는 이들의 조합이 포함된 헤테로 고리 화합물과 같은 리튬 금속에 안정한 SEI(Solid Electrolyte Interface)를 형성하는 충방전 사이클 효율(cycle efficiency)이 50% 이상인 용매로 정의된다.The weak polar solvent is defined as a solvent having a dielectric constant of less than 15 which is capable of dissolving elemental sulfur among aryl compounds, bicyclic ethers, and acyclic carbonates, and strong polar solvents include acyclic carbonates, sulfoxide compounds, and lactone compounds. In the ketone compound, ester compound, sulfate compound, sulfite compound, a dielectric constant capable of dissolving lithium polysulfide is defined as greater than 15, and the lithium metal protective solvent is a saturated ether compound, unsaturated ether compound, N, It is defined as a solvent having a charge / discharge cycle efficiency of 50% or more that forms a stable solid interface (SEI) on a lithium metal such as a heterocyclic compound including O, S, or a combination thereof.
상기 약한 극성 용매의 구체적인 예로는 자일렌(xylene), 디메톡시에탄, 2-메틸테트라하이드로퓨란, 디에틸 카보네이트, 디메틸 카보네이트, 톨루엔, 디메틸 에테르, 디에틸 에테르, 디글라임 또는 테트라글라임 등이 있다.Specific examples of the weak polar solvent include xylene, dimethoxyethane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, toluene, dimethyl ether, diethyl ether, diglyme or tetraglyme. .
상기 강한 극성 용매의 구체적인 예로는 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), γ-부티로락톤, 아세토니트릴, 에틸렌 카보네이트, 프로필렌 카보네이트, N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 디메틸 포름아마이드, 설포란, 디메틸 아세트아마이드, 디메틸 설폭사이드, 디메틸 설페이트, 에틸렌 글리콜 디아세테이트, 디메틸 설파이트, 또는 에틸렌 글리콜 설파이트 등이 있다.Specific examples of the strong polar solvent include hexamethyl phosphoric triamide, γ-butyrolactone, acetonitrile, ethylene carbonate, propylene carbonate, N-methylpyrrolidone, 3-methyl-2-oxazoli Don, dimethyl formamide, sulfolane, dimethyl acetamide, dimethyl sulfoxide, dimethyl sulfate, ethylene glycol diacetate, dimethyl sulfite, or ethylene glycol sulfite.
상기 리튬 보호용매의 구체적인 예로는 테트라하이드로 퓨란, 에틸렌 옥사이드, 디옥솔란, 3,5-디메틸이속사졸, 퓨란, 2-메틸 퓨란, 1,4-옥산 또는 4-메틸디옥솔란 등이 있다.Specific examples of the lithium protective solvent include tetrahydrofuran, ethylene oxide, dioxolane, 3,5-dimethylisoxazole, furan, 2-methylfuran, 1,4-oxane or 4-methyldioxolane.
상기 전해질은 액체 전해질, 겔 중합체 전해질 및 고체 중합체 전해질로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 액체 상태의 전해질일 수 있다.The electrolyte may include one or more selected from the group consisting of a liquid electrolyte, a gel polymer electrolyte and a solid polymer electrolyte. It may be preferably an electrolyte in a liquid state.
또한, 본 발명은 상기 리튬-황 전지를 단위전지로 포함하는 전지모듈을 제공한다.In addition, the present invention provides a battery module including the lithium-sulfur battery as a unit cell.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery module may be used as a power source for medium and large devices requiring high temperature stability, long cycle characteristics, and high capacity characteristics.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle; EV), 하이브리드 전기자동차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle; PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예Example  And 비교예Comparative example
[실시예 1]Example 1
폴리에틸렌 옥사이드를 포함하는 용액에 탄소나노튜브 1 g을 투입한 후 80 ℃ 에서 12 시간동안 교반하고 세척 및 건조하여 다공성 탄소재의 표면에 폴리에틸렌 옥사이드 코팅층을 형성하였다. 이때 다공성 탄소재의 폴리에틸렌 옥사이드:탄소의 중량비는 2:8이었다. 이때 탄소는 탄소나노튜브의 전체 중량을 의미한다.1 g of carbon nanotubes were added to a solution containing polyethylene oxide, stirred at 80 ° C. for 12 hours, washed, and dried to form a polyethylene oxide coating layer on the surface of the porous carbon material. At this time, the weight ratio of polyethylene oxide: carbon of the porous carbon material was 2: 8. In this case, carbon refers to the total weight of carbon nanotubes.
제조된 폴리에틸렌 옥사이드가 코팅된 다공성 탄소재 1.25 g, 황 3 g을 고르게 혼합한 후, 155 ℃에서 30 분 동안 열처리하여 황:다공성 탄소재: 폴리에틸렌 옥사이드=70.6:23.5:5.9 중량비로 포함된 황-탄소 복합체를 제조하였다.1.25 g of the polyethylene oxide-coated porous carbon material and 3 g of sulfur were evenly mixed, followed by heat treatment at 155 ° C. for 30 minutes, and sulfur: porous carbon material: polyethylene oxide = 70.6: 23.5: 5.9 Carbon composites were prepared.
제조된 황-탄소 복합체를 이용하여 황-탄소 복합체:도전재:바인더=90:5:5의 중량비로 슬러리를 제조한 후 20 ㎛ 두께의 알루미늄 호일의 집전체에 코팅하여 전극을 제조하였다. 이때 도전재는 카본블랙을, 바인더로는 스티렌부타디엔 고무, 카르복시메틸 셀룰로오스를 사용하였다.The slurry was prepared in a weight ratio of sulfur-carbon composite: conductive material: binder = 90: 5: 5 using the prepared sulfur-carbon composite, and then coated on a current collector of 20 μm thick aluminum foil to prepare an electrode. In this case, carbon black was used as the conductive material, and styrene butadiene rubber and carboxymethyl cellulose were used as the binder.
[실시예 2]Example 2
탄소나노튜브 대신 팽창 흑연을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전극을 제조하였다.An electrode was manufactured in the same manner as in Example 1, except that expanded graphite was used instead of carbon nanotubes.
[비교예 1]Comparative Example 1
폴리에틸렌 옥사이드 코팅층을 형성하지 않은 탄소나노튜브를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 전극을 제조하였다.An electrode was manufactured in the same manner as in Example 1, except that carbon nanotubes without a polyethylene oxide coating layer were used.
[비교예 2]Comparative Example 2
상기 탄소나노튜브, 황, 폴리에틸렌 글리콜을 25:75:6.25 중량비로 동시에 혼합하였다. 이 혼합물을 상기 실시예 1과 동일하게 수행하여 전극을 제조하였다.The carbon nanotubes, sulfur and polyethylene glycol were simultaneously mixed in a 25: 75: 6.25 weight ratio. This mixture was carried out in the same manner as in Example 1 to prepare an electrode.
실험예Experimental Example 1.  One. 충방전Charging and discharging 특성 평가 Property evaluation
실시예 및 비교예에서 제조된 전극을 양극으로 사용하며, 분리막으로 폴리에틸렌을 사용하고, 음극으로서 150 ㎛ 두께의 리튬 호일을 사용하여 리튬-황 전지 코인 셀을 제조하였다. 이때, 상기 코인 셀은 디에틸렌글리콜 디메틸에테르과 1,3-디옥솔란(DECDME:DOL=6:4(부피비)로 이루어진 유기 용매에 1 M LiFSI, 1 % LiNO3을 용해시켜 제조된 전해질을 사용했다.An electrode prepared in Examples and Comparative Examples was used as a positive electrode, polyethylene was used as a separator, and a lithium-sulfur battery coin cell was manufactured using a lithium foil having a thickness of 150 μm as a negative electrode. In this case, the coin cell was an electrolyte prepared by dissolving 1 M LiFSI, 1% LiNO 3 in an organic solvent consisting of diethylene glycol dimethyl ether and 1,3-dioxolane (DECDME: DOL = 6: 4 (volume ratio)). .
제조된 코인 셀을 충방전 측정 장치를 이용하여 1.5에서 2.7 V까지의 용량을 측정했다. 구체적으로, 0.1C rate CC/CV로 충전하고, 0.1C rate CC로 방전하는 사이클을 30 회 반복하여 충방전 효율을 측정했다(CC: Constant Current, CV: Constant Voltage). 이때 얻어진 결과는 하기 표 1 및 도 1에 나타내었다.The manufactured coin cell was measured for a capacity from 1.5 to 2.7 V using a charge and discharge measuring device. Specifically, charging and discharging efficiency was measured by repeating 30 cycles of charging at 0.1 C rate CC / CV and discharging at 0.1 C rate CC (CC: Constant Current, CV: Constant Voltage). The results obtained at this time are shown in Table 1 and FIG.
초기 충방전 용량(mAh/g)Initial charge and discharge capacity (mAh / g) 30회 이후 충방전 효율(%)Charge and discharge efficiency (%) after 30 times
실시예 1Example 1 12201220 100.2100.2
실시예 2Example 2 11001100 99.799.7
비교예 1Comparative Example 1 11201120 99.399.3
비교예 2Comparative Example 2 11501150 99.599.5
상기 표 1을 통해, 실시예가 비교예에 비해 초기 충방전 용량 및 30 회 이후 충방전 효율이 우수함을 확인할 수 있다. 특히, 도 1에 나타낸 바와 같이, 코팅층을 형성하지 않은 비교예 1의 경우 초기 용량이 1,120 mAh/g이나, 실시예 1의 황-탄소 복합체를 양극 활물질로 사용하는 경우 1,220 mAh/g로 초기 용량이 향상되며 30회 이후 충방전 효율도 우수함을 확인할 수 있다. 또한, 별도의 이온 전도성 고분자 코팅층 없이 팽창 흑연을 포함하는 종래 황-탄소 복합체의 초기 용량이 1,000 mAh/g 수준인 것과 비교하여 실시예 2의 경우, 이온 전도성 고분자 코팅층을 구비함으로써 개선된 충방전 용량 및 효율을 나타냄을 확인할 수 있다. 이를 통해 본 발명에 따른 황-탄소 복합체가 초기 충방전 용량 및 효율 향상에 효과적임을 확인할 수 있다.Through Table 1, it can be seen that the Example is superior to the initial charge and discharge capacity and after 30 times the charge and discharge efficiency compared to the comparative example. In particular, as shown in FIG. 1, the initial capacity of Comparative Example 1 without a coating layer was 1,120 mAh / g, but when the sulfur-carbon composite of Example 1 was used as the positive electrode active material, the initial capacity was 1,220 mAh / g. It can be seen that the charge and discharge efficiency is also excellent after 30 times. In addition, compared to the initial capacity of the conventional sulfur-carbon composite containing expanded graphite without a separate ion conductive polymer coating layer is 1,000 mAh / g level, in Example 2, improved charge and discharge capacity by having an ion conductive polymer coating layer And it can be seen that the efficiency. Through this, it can be confirmed that the sulfur-carbon composite according to the present invention is effective in improving initial charge and discharge capacity and efficiency.
본 발명의 황-탄소 복합체는 다공성 탄소재 표면에 이온 전도성 고분자 코팅층을 포함함으로써 양극으로의 리튬 이온 전도 특성이 개선되어 리튬-황 전지의 고용량화, 고안정화 및 장수명화를 가능하게 한다.The sulfur-carbon composite of the present invention includes the ion conductive polymer coating layer on the surface of the porous carbon material, thereby improving lithium ion conductivity to the positive electrode, thereby enabling high capacity, high stability, and long life of the lithium-sulfur battery.

Claims (14)

  1. 다공성 탄소재; 및Porous carbon material; And
    상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체에 있어서,In the sulfur-carbon composite comprising sulfur in at least a portion of the inside and the surface of the porous carbon material,
    상기 다공성 탄소재의 내부 및 외부 표면은 이온 전도성 고분자를 포함하는 코팅층을 포함하는 황-탄소 복합체.Sulfur-carbon composite, wherein the inner and outer surfaces of the porous carbon material comprises a coating layer containing an ion conductive polymer.
  2. 제1항에 있어서,The method of claim 1,
    상기 이온 전도성 고분자는 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 폴리올레핀, 폴리포스파젠, 폴리아크릴로니트릴 폴리메틸메타크릴레이트, 폴리비닐클로라이드 및 폴리실록산으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 황-탄소 복합체.The ion conductive polymers include polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyolefins, polyphosphazenes, polyacrylonitrile polymethylmethacrylates, polyvinylchlorides and polysiloxanes. Sulfur-carbon composite, characterized in that it comprises one or more selected from the group consisting of.
  3. 제1항에 있어서,The method of claim 1,
    상기 이온 전도성 고분자는 다공성 탄소재 100 중량부에 대해 0.1 내지 50 중량부로 포함되는 것을 특징으로 하는 황-탄소 복합체.The ion-conducting polymer is sulfur-carbon composite, characterized in that contained in 0.1 to 50 parts by weight based on 100 parts by weight of the porous carbon material.
  4. 제1항에 있어서,The method of claim 1,
    상기 다공성 탄소재는 그래파이트, 그래핀, 카본 블랙, 탄소나노튜브, 탄소 섬유 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 황-탄소 복합체.The porous carbon material is sulfur, carbon composites, characterized in that at least one selected from the group consisting of graphite, graphene, carbon black, carbon nanotubes, carbon fibers and activated carbon.
  5. 제1항에 있어서,The method of claim 1,
    상기 다공성 탄소재의 기공의 평균 직경은 1 내지 200 ㎚인 것을 특징으로 하는 황-탄소 복합체.Sulfur-carbon composite, characterized in that the average diameter of the pores of the porous carbon material is 1 to 200 nm.
  6. 제1항에 있어서,The method of claim 1,
    상기 다공성 탄소재의 기공도는 다공성 탄소재의 전체 체적의 10 내지 90 %인 것을 특징으로 하는 황-탄소 복합체.The porosity of the porous carbon material is sulfur-carbon composite, characterized in that 10 to 90% of the total volume of the porous carbon material.
  7. 제1항에 있어서,The method of claim 1,
    상기 황은 무기 황(S8), Li2Sn(n ≥ 1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x=2.5 내지 50, n ≥ 2]로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 황-탄소 복합체.The sulfur is from the group consisting of inorganic sulfur (S 8 ), Li 2 S n (n ≥ 1), an organic sulfur compound and a carbon-sulfur polymer [(C 2 S x ) n , x = 2.5 to 50, n ≥ 2] Sulfur-carbon composite, characterized in that at least one selected.
  8. 제1항에 있어서,The method of claim 1,
    상기 다공성 탄소재와 황의 중량비는 1:9 내지 5:5인 것을 특징으로 하는 황-탄소 복합체.Sulfur-carbon composite, characterized in that the weight ratio of the porous carbon material and sulfur is 1: 9 to 5: 5.
  9. 표면이 이온 전도성 고분자로 코팅된 탄소재 및 황을 포함하는 것을 특징으로 하는 황-탄소 복합체.Sulfur-carbon composite, characterized in that the surface comprises a carbon material and sulfur coated with an ion conductive polymer.
  10. 제9항에 있어서,The method of claim 9,
    상기 이온 전도성 고분자는 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체, 폴리올레핀, 폴리포스파젠, 폴리아크릴로니트릴 폴리메틸메타크릴레이트, 폴리비닐클로라이드 및 폴리실록산으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 황-탄소 복합체.The ion conductive polymer may be polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, copolymer of polyhexafluoropropylene-polyvinylidene fluoride, polyolefin, polyphosphazene, polyacrylonitrile polymethyl methacrylate, poly Sulfur-carbon composite, characterized in that it comprises one or more selected from the group consisting of vinyl chloride and polysiloxane.
  11. 제9항에 있어서,The method of claim 9,
    상기 탄소재는 천연 흑연, 인조 흑연 및 팽창 흑연으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 황-탄소 복합체.The carbon material is sulfur-carbon composite, characterized in that at least one selected from the group consisting of natural graphite, artificial graphite and expanded graphite.
  12. 제9항에 있어서,The method of claim 9,
    상기 황-탄소 복합체는 도전재를 추가로 포함하는 것을 특징으로 하는 황-탄소 복합체.The sulfur-carbon composite is characterized in that it further comprises a conductive material.
  13. 제1항 또는 제9항 중 어느 한 항에 따른 황-탄소 복합체를 포함하는 리튬-황 전지용 양극.A cathode for a lithium-sulfur battery comprising the sulfur-carbon composite according to claim 1.
  14. 제13항에 따른 양극을 포함하는 리튬-황 전지.A lithium-sulfur battery comprising the positive electrode according to claim 13.
PCT/KR2017/011377 2016-11-02 2017-10-16 Sulfur-carbon composite and lithium-sulfur battery comprising same WO2018084449A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/099,337 US10886530B2 (en) 2016-11-02 2017-10-16 Sulfur-carbon composite and lithium-sulfur battery comprising same
JP2018558121A JP6704626B2 (en) 2016-11-02 2017-10-16 Sulfur-carbon composite and lithium-sulfur battery containing the same
EP17868100.3A EP3451425A4 (en) 2016-11-02 2017-10-16 Sulfur-carbon composite and lithium-sulfur battery comprising same
CN201780033073.2A CN109314228B (en) 2016-11-02 2017-10-16 Sulfur-carbon composite and lithium-sulfur battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0145193 2016-11-02
KR20160145193 2016-11-02
KR1020170132039A KR102006727B1 (en) 2016-11-02 2017-10-12 Sulfur-carbon composite and lithium-sulfur battery including the same
KR10-2017-0132039 2017-10-12

Publications (2)

Publication Number Publication Date
WO2018084449A2 true WO2018084449A2 (en) 2018-05-11
WO2018084449A3 WO2018084449A3 (en) 2018-07-12

Family

ID=62075624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011377 WO2018084449A2 (en) 2016-11-02 2017-10-16 Sulfur-carbon composite and lithium-sulfur battery comprising same

Country Status (1)

Country Link
WO (1) WO2018084449A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803685A (en) * 2019-11-13 2020-02-18 南方科技大学 Graphitized carbon foam support carbon material/molybdenum carbide composite material and preparation method and application thereof
WO2020091478A1 (en) * 2018-10-31 2020-05-07 주식회사 엘지화학 Sulfur-carbon composite, method for preparing same, and lithium secondary battery comprising same
CN112204772A (en) * 2018-08-08 2021-01-08 株式会社Lg化学 Sulfur-carbon composite, method for preparing same, and positive electrode and lithium secondary battery comprising sulfur-carbon composite
CN112243546A (en) * 2019-05-03 2021-01-19 株式会社Lg化学 Functional separator, method for manufacturing same, and lithium secondary battery comprising same
CN112385061A (en) * 2018-09-18 2021-02-19 株式会社Lg化学 Method for producing iron sulfide, positive electrode for lithium secondary battery comprising iron sulfide produced thereby, and lithium secondary battery comprising said positive electrode
CN112470309A (en) * 2018-10-31 2021-03-09 株式会社Lg化学 Sulfur-carbon composite, method for preparing the same, and lithium secondary battery comprising the same
CN112823138A (en) * 2018-11-14 2021-05-18 株式会社Lg化学 Thermal expansion reduction type graphene oxide, method for producing same, sulfur-carbon composite containing same, and lithium secondary battery
CN112993220A (en) * 2019-12-17 2021-06-18 山东海科创新研究院有限公司 Functional coating slurry for positive and negative pole pieces of lithium ion battery, preparation method of functional coating slurry and lithium ion battery
CN113795946A (en) * 2019-06-14 2021-12-14 株式会社Lg新能源 Sulfur-carbon composite, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP2022521178A (en) * 2019-05-08 2022-04-06 エルジー エナジー ソリューション リミテッド Manufacturing method of positive electrode of all-solid-state battery and positive electrode of all-solid-state battery manufactured by this method
US20220216476A1 (en) * 2019-07-02 2022-07-07 Lg Energy Solution, Ltd. Sulfur-carbon composite, positive electrode for lithium secondary battery including same, and lithium secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463437B1 (en) * 2002-04-12 2004-12-23 조수연 A Carbon-Sulfur composite for the anode of Lithium Sulfur Battery and the method thereof
US20130164625A1 (en) * 2011-12-22 2013-06-27 Arumugam Manthiram Sulfur-carbon composite cathodes for rechargeable lithium-sulfur batteries and methods of making the same
KR101488244B1 (en) * 2012-12-27 2015-01-30 부산대학교 산학협력단 Method for manufacturing positive electrode for lithium-sulfur battery and lithium-sulfur battery
WO2015016496A1 (en) * 2013-08-01 2015-02-05 주식회사 엘지화학 Anode for lithium-sulfur battery and manufacturing method therefor
WO2015190898A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Lithium electrode and lithium secondary battery comprising same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517108A (en) * 2018-08-08 2021-07-15 エルジー・ケム・リミテッド Sulfur-carbon complex, this manufacturing method, positive electrode and lithium secondary battery containing it
CN112204772A (en) * 2018-08-08 2021-01-08 株式会社Lg化学 Sulfur-carbon composite, method for preparing same, and positive electrode and lithium secondary battery comprising sulfur-carbon composite
CN112204772B (en) * 2018-08-08 2024-05-28 株式会社Lg新能源 Sulfur-carbon composite, method for preparing same, and positive electrode and lithium secondary battery comprising same
JP7084493B2 (en) 2018-08-08 2022-06-14 エルジー エナジー ソリューション リミテッド Sulfur-carbon composite, this manufacturing method, positive electrode and lithium secondary battery containing it
EP3764439A4 (en) * 2018-08-08 2021-06-16 Lg Chem, Ltd. Sulfur-carbon composite, preparation method therefor, and positive electrode and lithium secondary battery comprising same
CN112385061B (en) * 2018-09-18 2024-08-16 株式会社Lg新能源 Method for producing iron sulfide, positive electrode for lithium secondary battery comprising iron sulfide produced therefrom, and lithium secondary battery comprising said positive electrode
CN112385061A (en) * 2018-09-18 2021-02-19 株式会社Lg化学 Method for producing iron sulfide, positive electrode for lithium secondary battery comprising iron sulfide produced thereby, and lithium secondary battery comprising said positive electrode
JP7098043B2 (en) 2018-09-18 2022-07-08 エルジー エナジー ソリューション リミテッド A method for producing iron sulfide, a positive electrode for a lithium secondary battery containing iron sulfide produced from the method, and a lithium secondary battery provided with the positive electrode.
JP2021531228A (en) * 2018-09-18 2021-11-18 エルジー・ケム・リミテッド A method for producing iron sulfide, a positive electrode for a lithium secondary battery containing iron sulfide produced from the method, and a lithium secondary battery provided with the positive electrode.
JP2021528825A (en) * 2018-10-31 2021-10-21 エルジー・ケム・リミテッド Sulfur-carbon complex, this manufacturing method and lithium secondary battery containing it
CN112470309A (en) * 2018-10-31 2021-03-09 株式会社Lg化学 Sulfur-carbon composite, method for preparing the same, and lithium secondary battery comprising the same
WO2020091478A1 (en) * 2018-10-31 2020-05-07 주식회사 엘지화학 Sulfur-carbon composite, method for preparing same, and lithium secondary battery comprising same
CN112823138A (en) * 2018-11-14 2021-05-18 株式会社Lg化学 Thermal expansion reduction type graphene oxide, method for producing same, sulfur-carbon composite containing same, and lithium secondary battery
CN112243546A (en) * 2019-05-03 2021-01-19 株式会社Lg化学 Functional separator, method for manufacturing same, and lithium secondary battery comprising same
US11862811B2 (en) 2019-05-03 2024-01-02 Lg Energy Solution, Ltd. Separator including polyethylene oxide-conductive carbon composite layer on base separator, method for manufacturing the same, and lithium secondary battery comprising the same
CN112243546B (en) * 2019-05-03 2022-12-13 株式会社Lg新能源 Functional separator, method for manufacturing same, and lithium secondary battery comprising same
JP2022521178A (en) * 2019-05-08 2022-04-06 エルジー エナジー ソリューション リミテッド Manufacturing method of positive electrode of all-solid-state battery and positive electrode of all-solid-state battery manufactured by this method
JP7265023B2 (en) 2019-05-08 2023-04-25 エルジー エナジー ソリューション リミテッド Method for manufacturing positive electrode for all-solid-state battery and positive electrode for all-solid-state battery manufactured by the method
CN113795946A (en) * 2019-06-14 2021-12-14 株式会社Lg新能源 Sulfur-carbon composite, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
US20220216476A1 (en) * 2019-07-02 2022-07-07 Lg Energy Solution, Ltd. Sulfur-carbon composite, positive electrode for lithium secondary battery including same, and lithium secondary battery
CN110803685B (en) * 2019-11-13 2023-05-05 南方科技大学 Graphitized carbon foam support carbon material/molybdenum carbide composite material and preparation method and application thereof
CN110803685A (en) * 2019-11-13 2020-02-18 南方科技大学 Graphitized carbon foam support carbon material/molybdenum carbide composite material and preparation method and application thereof
CN112993220A (en) * 2019-12-17 2021-06-18 山东海科创新研究院有限公司 Functional coating slurry for positive and negative pole pieces of lithium ion battery, preparation method of functional coating slurry and lithium ion battery

Also Published As

Publication number Publication date
WO2018084449A3 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
KR102006727B1 (en) Sulfur-carbon composite and lithium-sulfur battery including the same
WO2018084449A2 (en) Sulfur-carbon composite and lithium-sulfur battery comprising same
JP7300393B2 (en) Lithium metal secondary battery containing anode protective polymer layer and manufacturing method
WO2018030616A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
WO2017131377A1 (en) Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same
US9373846B2 (en) Negative electrode active material and method for producing the same
WO2016204565A1 (en) Silicon oxide-carbon-polymer composite, and anode active material comprising same
WO2015056925A1 (en) Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
WO2019088475A1 (en) Sulfur-carbon composite and lithium-sulfur battery including same
KR20170032190A (en) Positive electrode for lithium sulfur battery, method for manufacturing the same and lithium sulfur battery comprising the same
WO2019132394A1 (en) Binder for lithium-sulfur battery, positive electrode comprising same, and lithium-sulfur battery
KR20180017975A (en) Sulfur-carbon composite and lithium-sulfur battery including the same
KR102207525B1 (en) A carbon -surfur complex, manufacturing method thereof and lithium secondary battery comprising the same
WO2020130434A1 (en) Anode active material, preparation method therefor, and lithium secondary battery comprising same
KR20200049685A (en) Carbon -surfur complex, method for manufacturing the same and lithium secondary battery comprising the same
WO2017052246A1 (en) Cathode active material and cathode comprising metal nano particles, and lithium-sulfur battery comprising same
KR102690260B1 (en) Sulfur-carbon composite and lithium-sulfur battery comprising the same
KR102543246B1 (en) Sulfur-carbon complex, positive eletrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
WO2018097695A1 (en) Cathode active material for lithium-sulfur battery, comprising metal sulfide nanoparticles, and method for producing same
WO2018135929A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2020009333A1 (en) Sulfur-carbon composite, method for producing same, and positive electrode for lithium-sulfur battery and lithium-sulfur battery which comprise same
WO2020060132A1 (en) Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
WO2019198949A1 (en) Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
WO2019212161A1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
WO2023008783A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558121

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868100

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2017868100

Country of ref document: EP

Effective date: 20181129

NENP Non-entry into the national phase

Ref country code: DE