WO2018084394A1 - Apparatus for predicting amount of desorption gas in shale gas layer by using geophysical well logging data analysis and method therefor - Google Patents

Apparatus for predicting amount of desorption gas in shale gas layer by using geophysical well logging data analysis and method therefor Download PDF

Info

Publication number
WO2018084394A1
WO2018084394A1 PCT/KR2017/004208 KR2017004208W WO2018084394A1 WO 2018084394 A1 WO2018084394 A1 WO 2018084394A1 KR 2017004208 W KR2017004208 W KR 2017004208W WO 2018084394 A1 WO2018084394 A1 WO 2018084394A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
gas
content
shale
main adsorption
Prior art date
Application number
PCT/KR2017/004208
Other languages
French (fr)
Korean (ko)
Inventor
이현석
양일호
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to CA3011167A priority Critical patent/CA3011167C/en
Publication of WO2018084394A1 publication Critical patent/WO2018084394A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention relates to the desorption gas amount prediction of the shale gas layer, and more specifically, to derive the correlation between the results of the analysis of the physical logging data for each mineral and the canister gas volume measurement value, and selects the highly related major minerals. After deriving the selected main mineral content, the correlation between the derived main mineral content and the mineral and canister gas volume measurement values can be used to predict the desorption gas amount of the shale gas layer. Desorption gas amount prediction apparatus and its method are related.
  • Shale gas is produced from organic matter in the source rock and then transported to reservoir rocks with high porosity and permeability. Shale gas is stored in the remaining gas is adsorbed in the organic pores in the source rock after the gas formed from the organic material of the source rock is moved to the reservoir. Shale gas is stored in shale with low permeability, so unlike conventional gas production methods, horizontal drilling is carried out along the shale layer containing a large amount of gas and then hydraulically crushed to produce gas. Therefore, shale gas development requires the selection of shale layers containing a large amount of gas.
  • shale gas is distributed in very dense shale and has heterogeneous rock physics and geochemical characteristics in the reservoir. Therefore, rock physics and geochemical characterization of the reservoir is important for the efficient and sustainable gas production of shale gas.
  • the gas produced from the shale gas reservoir is derived from free gases trapped in pores or cracks in rocks and desorption gases adsorbed on the surface of organic matter.
  • free gas can be assessed by traditional methods, but desorption gas still lacks standardized evaluation techniques.
  • the present invention is to solve the above-mentioned problems of the prior art, the main adsorption of the highly correlated minerals through the relationship between the mineral and organic content analyzed in the reservoir core of the reservoir and the canister gas volume It is possible to predict the amount of desorbed gas in the shale gas layer quickly and accurately by selecting it as the main adsorbed mineral as a factor, deriving the selected main mineral content, and using the correlation to predict the amount of desorbed gas distributed in the shale reservoir. It is also an object of the present invention to provide an apparatus and method for estimating desorption gas amount of shale gas layer through physical logging data analysis that enables efficient and sustainable gas production of shale gas.
  • Mineral and organic content analysis unit for analyzing the mineral and organic content by thermal analysis on the shale sample collected from the borehole
  • Canister gas volume measurement unit for measuring the gas content by using the gas inside the canister sealed sampled shale:
  • a correlation analysis unit for analyzing the correlation between the minerals and the gas content to extract the highly correlated minerals as the main adsorbed minerals
  • a main adsorption mineral content deriving unit for deriving the extracted main adsorption mineral content
  • a desorption gas content prediction unit for predicting the gas content adsorbed to the shale gas storage layer by using the correlation with the derived main adsorbed mineral content.
  • the mineral and organic content analysis unit may be configured to measure the TOC and mineral components and content for the organic material through XRD analysis.
  • the mineral and organic content analysis unit natural gamma, neutron porosity, density, electrical resistivity, can be configured to perform the analysis of the logging data by the acoustic wave logging.
  • the mineral and organic content analysis unit may be configured to calculate the shale volume using a gamma ray logging and a neutron porosity-density logging combination.
  • the main adsorption mineral content is classified into clay minerals after the collected sample except the main adsorption mineral and the main adsorption mineral.
  • Vmain is the volume of the main adsorbed minerals
  • ⁇ main is the density of the main adsorbed minerals
  • Vclays is the volume of the clay minerals
  • ⁇ clays is the density of the clay minerals
  • Vsh is the volume of the shale
  • ⁇ sh is the density of the shale. It features.
  • Mineral and organic content analysis process for analyzing mineral and organic content by thermal analysis on shale samples collected from boreholes by mineral and organic content analysis unit;
  • Canister gas volume measurement process for measuring the gas content by using the gas inside the canister sealed sample taken by the canister gas volume measurement unit:
  • a main adsorption mineral content derivation process for deriving a content of the main adsorption mineral extracted by the main adsorption mineral content derivation unit;
  • a desorption gas content prediction process for predicting the gas content adsorbed to the shale gas storage layer by using the correlation with the main adsorbed mineral content derived by the desorption gas content prediction unit.
  • the mineral and organic content analysis process may be a process of measuring TOC and mineral components and content of the organic material through XRD analysis.
  • the mineral and organic content analysis process may further include a process of performing analysis of the logging data by natural gamma, neutron porosity, density, electrical resistivity, and sound wave logging.
  • the mineral and organic content analysis process may further include calculating a shale volume using a gamma ray logging and a neutron porosity-density logging combination.
  • the main adsorption mineral content is classified into clay minerals after the collected sample except the main adsorption mineral and the main adsorption mineral.
  • Vmain is the volume of the main adsorbed minerals
  • ⁇ main is the density of the main adsorbed minerals
  • Vclays is the volume of the clay minerals
  • ⁇ clays is the density of the clay minerals
  • Vsh is the volume of the shale
  • ⁇ sh is the density of the shale.
  • the highly correlated minerals are selected as the main adsorption factors as the main adsorption factors through the relational expression utilizing the correlation between mineral and organic content and canister gas volume analyzed in the drilling core of the reservoir.
  • the correlation can be used to predict the amount of desorption gas distributed in the shale reservoir, enabling the rapid and accurate prediction of the amount of desorption gas in the shale gas layer. It provides the effect of enabling possible gas production.
  • FIG. 1 is a block diagram of a desorption gas amount prediction device 1 of a shale gas layer through physical logging data analysis according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing the process of the desorption gas amount prediction method of the shale gas layer through the analysis of physical logging data of the present invention.
  • 3 is a graph showing the correlation with the canister gas volume for each mineral in the sample taken.
  • An embodiment of the present invention is to analyze the correlation between the mineral and organic matter (TOC) content and the canister gas volume analyzed in the drilling core of the Montney shale gas reservoir to derive the main adsorption minerals, the content of the main adsorption minerals The extraction equation was derived to predict the amount of desorption gas in the shale.
  • TOC mineral and organic matter
  • FIG. 1 is a block diagram of a desorption gas amount prediction device 1 of a shale gas layer through physical logging data analysis according to an embodiment of the present invention.
  • the desorption gas amount prediction device 1 of the shale gas layer includes a mineral and organic content analysis unit 10, a canister gas volume measurement unit 20, a correlation analysis unit 30, and main adsorption. And a mineral content extraction unit 40 and a desorption gas amount prediction unit 50.
  • the mineral and organic content analysis unit 10 is configured to analyze the mineral and organic content by thermal analysis on the shale sample collected from the borehole. Specifically, the mineral and organic content analysis unit 10 is configured to analyze the type and content of the TOC and minerals through XRD analysis, natural gamma, neutron porosity, density, electrical resistivity, sound wave logging. The volume of the shale is also configured to calculate using a gamma ray logging and neutron porosity-density logging combination.
  • the canister gas volume measuring unit 20 is configured to measure the gas content by using the gas inside the canister sealing the collected shale sample.
  • the correlation analysis unit 30 is configured to analyze the correlation between the minerals and the gas content to perform a correlation analysis to extract the highly correlated minerals as the main adsorption minerals having a high volume of gas adsorption amount.
  • the main adsorption mineral content extracting unit 40 is configured to derive the content of the extracted main adsorption mineral.
  • the main adsorption mineral content extraction unit 40 classifies the collected sample as clay minerals except the main adsorption mineral and the main adsorption mineral Derived by Where Vmain is the volume of the main adsorbed mineral, ⁇ main is the density of the main adsorbed mineral, Vclays is the volume of the clay mineral, ⁇ clays is the density of the clay mineral, Vsh is the volume of the shale, and ⁇ sh is the density of the shale.
  • the desorption gas amount prediction unit 50 is configured to predict the desorption gas content adsorbed on the shale gas by applying the derived main adsorption mineral content inversely to the correlation.
  • Figure 2 is a flow chart showing the process of the desorption gas amount prediction method of the shale gas layer through the analysis of physical logging data of the present invention.
  • the mineral and organic content analysis process is a process of analyzing the mineral and organic content by thermal analysis on the shale sample collected in the borehole by the mineral and organic content analysis unit.
  • the types and contents of TOC and minerals are analyzed by XRD analysis, natural gamma, neutron porosity, density, electrical resistivity, and sonic logging.
  • the volume of the shale is calculated using the gamma ray logging and the neutron porosity-density logging combination.
  • the canister gas volume measurement process (S20) is a process of measuring the gas content using the gas inside the canister sealed the sample taken by the canister gas volume measurement unit.
  • the correlation analysis process (S30) is a process in which the correlation between the mineral and the gas content is analyzed by the correlation analysis unit 30, and the highly correlated mineral is extracted as the main adsorption mineral having a high volume of the desorbed gas.
  • 3 is a graph showing an example of the correlation with the canister gas volume for each mineral in the sample taken.
  • the canister volume, clay mineral, canister volume, illite / mica and smacktite, canister volume, illite / mica, and canister volume by the correlation analyzer 30.
  • Correlations between canister volumes and minerals, such as elite / smectite, canister volume and kaolinite, canister volume and chlorite, are derived.
  • the correlation analysis result shows that the illite has the highest correlation with the amount of desorption gas.
  • the main adsorption mineral having a high correlation with the desorption gas content is derived by performing the correlation analysis process (S30) as described above, the main adsorption mineral content derivation process (S40).
  • the main adsorbed mineral content is derived.
  • the sample is classified into clay minerals except for the illite and the illite, the main adsorption minerals. And replacing the main adsorbed mineral with illite
  • illite is the volume of illite as the main adsorbed mineral
  • ⁇ illite is the density of illite
  • Vclays is the volume of clay mineral
  • ⁇ clays is the density of clay mineral
  • Vsh is the volume of shale
  • ⁇ sh is the density of shale.
  • the adsorption gas amount of the shale gas reservoir in the exploration area is predicted by applying the correlation with the desorption gas amount of each mineral in reverse.
  • the present invention can be applied to the shale gas resource development industry.

Abstract

The present invention relates to an apparatus for predicting the amount of desorption gas in a shale gas layer through geophysical well logging data analysis and a method therefor, the apparatus allowing the amount of desorption gas in the shale gas layer to be predicted. The apparatus for predicting the amount of the desorption gas in the shale gas layer, comprises: a mineral and organic matter amount analysis part for analyzing the amounts of minerals and organic matters by means of thermal analysis on a shale sample collected from a borehole; a canister gas volume measurement part for measuring a gas amount by using gas inside a canister having the collected shale sample sealed therein; a correlation analysis part for extracting, as a main adsorption mineral, minerals having high correlation with the minerals with respect to the gas amount; a main adsorption mineral amount deriving part for deriving the amount of the main adsorption mineral; and a desorption gas amount prediction part for predicting the amount of the gas adsorbed onto a shale gas reservoir layer, by using the derived amount of the main adsorption mineral and the correlation.

Description

물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 장치 및 그 방법Desorption gas amount prediction device of shale gas layer through analysis of physical logging data and its method
본 발명은 셰일 가스층의 탈착 가스량 예측에 관한 것으로서, 더욱 상세하게는, 광물별 물리검층자료 해석 결과와 캐니스터(canister) 가스체적 측정값과의 상관관계를 도출하여 상관성이 높은 주요 광물을 선택하고, 선택된 주요 광물의 함량을 도출한 후, 도출된 주요 광물의 함량과 광물과 캐니스터 가스체적 측정값과의 상관관계를 이용하여 셰일 가스층의 탈착 가스량을 예측할 수 있도록 하는 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 장치 및 그 방법에 관한 것이다. The present invention relates to the desorption gas amount prediction of the shale gas layer, and more specifically, to derive the correlation between the results of the analysis of the physical logging data for each mineral and the canister gas volume measurement value, and selects the highly related major minerals. After deriving the selected main mineral content, the correlation between the derived main mineral content and the mineral and canister gas volume measurement values can be used to predict the desorption gas amount of the shale gas layer. Desorption gas amount prediction apparatus and its method are related.
전통적인 가스는 근원암(source rock) 내의 유기물로부터 생성된 후 공극률과 투수율이 높은 저류암(reservoir rocks)으로 이동되어 저장된다. 셰일가스는 근원암의 유기물로부터 형성된 가스들이 저류암으로 이동된 후 잔류한 가스들이 근원암내의 유기공극에 흡착되어 저장된다. 셰일가스는 투수율이 낮은 셰일에 저장되므로 전통적인 가스 생산 방식과 달리 가스를 다량 포함하는 셰일층을 따라 수평시추한 후 수압 파쇄하여 가스를 생산한다. 따라서 셰일가스 개발 성공을 위해서는 가스를 다량 포함하는 셰일층 선택이 필요하다.Traditional gas is produced from organic matter in the source rock and then transported to reservoir rocks with high porosity and permeability. Shale gas is stored in the remaining gas is adsorbed in the organic pores in the source rock after the gas formed from the organic material of the source rock is moved to the reservoir. Shale gas is stored in shale with low permeability, so unlike conventional gas production methods, horizontal drilling is carried out along the shale layer containing a large amount of gas and then hydraulically crushed to produce gas. Therefore, shale gas development requires the selection of shale layers containing a large amount of gas.
또한, 셰일가스는 전통적인 가스자원과는 달리 매우 치밀한 셰일내에 분포하고 저류층내 암석물리 및 지화학적 특성이 불균질한 특징을 보인다. 따라서 셰일가스의 효과적이고 지속 가능한 가스 생산을 위해서는 저류층의 암석물리 및 지화학적 특성 분석이 중요하다. 특히 셰일가스 저류층으로부터 생산되는 가스는 암석내 공극 또는 균열에 갇혀있는 자유가스와 유기물 표면에 흡착된 탈착 가스에서 기원한다. 하지만 자유가스의 경우 전통적인 방법으로 평가할 수 있지만, 탈착 가스의 경우 아직 표준화된 평가기법이 부재하다.In addition, unlike traditional gas resources, shale gas is distributed in very dense shale and has heterogeneous rock physics and geochemical characteristics in the reservoir. Therefore, rock physics and geochemical characterization of the reservoir is important for the efficient and sustainable gas production of shale gas. In particular, the gas produced from the shale gas reservoir is derived from free gases trapped in pores or cracks in rocks and desorption gases adsorbed on the surface of organic matter. However, free gas can be assessed by traditional methods, but desorption gas still lacks standardized evaluation techniques.
따라서 본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 저류층의 시추코어에서 분석한 광물 및 유기물 함량과 캐니스터(canister) 가스체적 간의 상관관계를 활용한 관계식을 통하여 상관성이 높은 광물을 주요 흡착인자로서의 주요흡착광물로 선택하고, 선택된 주요 광물의 함량을 도출한 후 상관관계를 이용하여 셰일 저류층 내에 분포하는 탈착 가스량을 예측할 수 있도록 하는 것에 의해 신속하고 정확하게 셰일가스 층 내의 탈착 가스량을 예측할 수 있도록 하고, 셰일가스의 효과적이고 지속 가능한 가스 생산을 가능하게 하는 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 장치 및 그 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the above-mentioned problems of the prior art, the main adsorption of the highly correlated minerals through the relationship between the mineral and organic content analyzed in the reservoir core of the reservoir and the canister gas volume It is possible to predict the amount of desorbed gas in the shale gas layer quickly and accurately by selecting it as the main adsorbed mineral as a factor, deriving the selected main mineral content, and using the correlation to predict the amount of desorbed gas distributed in the shale reservoir. It is also an object of the present invention to provide an apparatus and method for estimating desorption gas amount of shale gas layer through physical logging data analysis that enables efficient and sustainable gas production of shale gas.
상술한 목적을 달성하기 위한 본 발명의 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 장치는,Desorption gas amount prediction device of the shale gas layer through the physical logging data analysis of the present invention for achieving the above object,
시추공에서 채취된 셰일 시료에 대한 열분석에 의해 광물 및 유기물 함량을 분석하는 광물 및 유기물 함량분석부;Mineral and organic content analysis unit for analyzing the mineral and organic content by thermal analysis on the shale sample collected from the borehole;
채취된 셰일 시료를 밀봉한 캐니스터 내부의 가스를 이용하여 가스함량을 측정하는 캐니스터가스체적측정부:Canister gas volume measurement unit for measuring the gas content by using the gas inside the canister sealed sampled shale:
상기 광물들과 가스함량의 상관관계를 분석하여 상관관계가 높은 광물을 주요흡착광물로 추출하는 상관관계분석부;A correlation analysis unit for analyzing the correlation between the minerals and the gas content to extract the highly correlated minerals as the main adsorbed minerals;
상기 추출된 주요흡착광물의 함량을 도출하는 주요흡착광물함량도출부; 및A main adsorption mineral content deriving unit for deriving the extracted main adsorption mineral content; And
도출된 상기 주요흡착광물함량과 상기 상관관계를 이용하여 셰일가스 저류층에 흡착된 가스함량을 예측하는 탈착 가스량예측부;를 포함하여 구성된다.And a desorption gas content prediction unit for predicting the gas content adsorbed to the shale gas storage layer by using the correlation with the derived main adsorbed mineral content.
상기 광물 및 유기물 함량분석부는, XRD 분석을 통해 유기물에 대한 TOC와 광물 성분 및 함량을 측정하도록 구성될 수 있다.The mineral and organic content analysis unit may be configured to measure the TOC and mineral components and content for the organic material through XRD analysis.
상기 광물 및 유기물 함량분석부, 자연감마, 중성자 공극률, 밀도, 전기비저항, 음파 검층에 의한 검층자료의 분석을 수행하도록 구성될 수 있다.The mineral and organic content analysis unit, natural gamma, neutron porosity, density, electrical resistivity, can be configured to perform the analysis of the logging data by the acoustic wave logging.
상기 광물 및 유기물 함량분석부는, 감마선 검층과 중성자 공극률-밀도 검층 조합을 이용하여 셰일체적을 계산하도록 구성될 수 있다.The mineral and organic content analysis unit may be configured to calculate the shale volume using a gamma ray logging and a neutron porosity-density logging combination.
상기 주요흡착광물함량은, 채취된 시료를 주요흡착광물과 주요흡착광물을 제외한 나머지를 점토광물로 분류한 후
Figure PCTKR2017004208-appb-I000001
에 의해 도출되며, 여기서, Vmain은 주요흡착광물의 체적, ρmain은 주요흡착광물의 밀도, Vclays는 점토광물의 체적, ρclays는 점토광물의 밀도, Vsh은 셰일의 체적, ρsh는 셰일의 밀도인 것을 특징으로 한다.
The main adsorption mineral content is classified into clay minerals after the collected sample except the main adsorption mineral and the main adsorption mineral.
Figure PCTKR2017004208-appb-I000001
Where Vmain is the volume of the main adsorbed minerals, ρmain is the density of the main adsorbed minerals, Vclays is the volume of the clay minerals, ρclays is the density of the clay minerals, Vsh is the volume of the shale, and ρsh is the density of the shale. It features.
상술한 목적을 달성하기 위한 본 발명의 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 방법은, Desorption gas amount prediction method of the shale gas layer through the physical logging data analysis of the present invention for achieving the above object,
광물 및 유기물 함량분석부에 의해 시추공에서 채취된 셰일 시료에 대한 열분석에 의해 광물 및 유기물 함량을 분석하는 광물 및 유기물 함량분석과정;Mineral and organic content analysis process for analyzing mineral and organic content by thermal analysis on shale samples collected from boreholes by mineral and organic content analysis unit;
캐니스터가스체적측정부에 의해 채취된 시료를 밀봉한 캐니스터 내부의 가스를 이용하여 가스함량을 측정하는 캐니스터가스체적측정과정:Canister gas volume measurement process for measuring the gas content by using the gas inside the canister sealed sample taken by the canister gas volume measurement unit:
상관관계분석부에 의해 상기 광물과 가스함량의 상관관계를 분석하여 상관관계가 높은 광물을 가스 체적이 높은 주요흡착광물로 추출하는 상관관계분석과정;A correlation analysis process of analyzing the correlation between the mineral and the gas content by a correlation analysis unit to extract the highly correlated minerals into the main adsorption minerals having a high gas volume;
주요흡착광물함량도출부에 의해 상기 추출된 주요흡착광물의 함량을 도출하는 주요흡착광물함량도출과정; 및A main adsorption mineral content derivation process for deriving a content of the main adsorption mineral extracted by the main adsorption mineral content derivation unit; And
탈착 가스량예측부에 의해 도출된 상기 주요흡착광물함량과 상기 상관관계를 이용하여 셰일가스 저류층에 흡착된 가스함량을 예측하는 탈착 가스량예측과정;을 포함하여 구성된다.And a desorption gas content prediction process for predicting the gas content adsorbed to the shale gas storage layer by using the correlation with the main adsorbed mineral content derived by the desorption gas content prediction unit.
상기 광물 및 유기물 함량분석과정은, XRD 분석을 통해 유기물에 대한 TOC와 광물 성분 및 함량을 측정하는 과정일 수 있다.The mineral and organic content analysis process may be a process of measuring TOC and mineral components and content of the organic material through XRD analysis.
상기 광물 및 유기물 함량분석과정은, 자연감마, 중성자 공극률, 밀도, 전기비저항, 음파 검층에 의한 검층자료의 분석을 수행하는 과정을 더 포함할 수 있다.The mineral and organic content analysis process may further include a process of performing analysis of the logging data by natural gamma, neutron porosity, density, electrical resistivity, and sound wave logging.
상기 광물 및 유기물 함량분석과정은, 감마선 검층과 중성자 공극률-밀도 검층 조합을 이용하여 셰일체적을 계산하는 과정을 더 포함할 수 있다.The mineral and organic content analysis process may further include calculating a shale volume using a gamma ray logging and a neutron porosity-density logging combination.
상기 주요흡착광물함량은, 채취된 시료를 주요흡착광물과 주요흡착광물을 제외한 나머지를 점토광물로 분류한 후 The main adsorption mineral content is classified into clay minerals after the collected sample except the main adsorption mineral and the main adsorption mineral.
Figure PCTKR2017004208-appb-I000002
에 의해 도출되며, 여기서, Vmain은 주요흡착광물의 체적, ρmain은 주요흡착광물의 밀도, Vclays는 점토광물의 체적, ρclays는 점토광물의 밀도, Vsh은 셰일의 체적, ρsh는 셰일의 밀도인 것을 특징으로 한다.
Figure PCTKR2017004208-appb-I000002
Where Vmain is the volume of the main adsorbed minerals, ρmain is the density of the main adsorbed minerals, Vclays is the volume of the clay minerals, ρclays is the density of the clay minerals, Vsh is the volume of the shale, and ρsh is the density of the shale. It features.
상술한 구성의 본 발명은, 저류층의 시추코어에서 분석한 광물 및 유기물 함량과 캐니스터(canister) 가스체적 간의 상관관계를 활용한 관계식을 통하여 상관성이 높은 광물을 주요 흡착인자로서의 주요흡착광물로 선택하고, 선택된 주요 광물의 함량을 도출한 후 상관관계를 이용하여 셰일 저류층 내에 분포하는 탈착 가스량을 예측할 수 있도록 하는 것에 의해 신속하고 정확하게 셰일가스 층 내의 탈착 가스량을 예측할 수 있도록 하고, 셰일가스의 효과적이고 지속 가능한 가스 생산을 가능하게 하는 효과를 제공한다.According to the present invention, the highly correlated minerals are selected as the main adsorption factors as the main adsorption factors through the relational expression utilizing the correlation between mineral and organic content and canister gas volume analyzed in the drilling core of the reservoir. By deriving the content of the selected major minerals, the correlation can be used to predict the amount of desorption gas distributed in the shale reservoir, enabling the rapid and accurate prediction of the amount of desorption gas in the shale gas layer. It provides the effect of enabling possible gas production.
도 1은 본 발명의 실시예에 따르는 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 장치(1)의 블록 구성도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of a desorption gas amount prediction device 1 of a shale gas layer through physical logging data analysis according to an embodiment of the present invention.
도 2는 본 발명의 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 방법의 처리과정을 나타내는 순서도.Figure 2 is a flow chart showing the process of the desorption gas amount prediction method of the shale gas layer through the analysis of physical logging data of the present invention.
도 3는 채취된 시료 내의 광물질별 캐니스터 가스 체적과의 상관관계를 나타내는 그래프.3 is a graph showing the correlation with the canister gas volume for each mineral in the sample taken.
하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In the following description of the present invention, detailed descriptions of well-known functions or configurations will be omitted when it is deemed that they may unnecessarily obscure the subject matter of the present invention.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원서에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 또한, 본 명세서에서 단어 "예시적인" 은 "예로서, 일례로서, 또는 예증으로서 역할을 한다."라는 것을 의미하기 위해 이용된다. "예시적"으로서 본 명세서에서 설명된 임의의 양태들은 다른 양태들에 비해 반드시 선호되거나 또는 유리하다는 것으로서 해석되어야 하는 것만은 아니다.Since embodiments according to the concept of the present invention can be variously modified and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it is to be understood that the present invention includes all changes, equivalents, and substitutes included in the spirit and scope of the present invention. In addition, the word "exemplary" is used herein to mean "serves as an example, as an example, or as an illustration." Any aspects described herein as "exemplary" are not necessarily to be construed as preferred or advantageous over other aspects.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between. Other expressions describing the relationship between components, such as "between" and "immediately between," or "neighboring to," and "directly neighboring to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof that is described, and that one or more other features or numbers are present. It should be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings showing an embodiment of the present invention will be described in more detail the present invention.
본 발명의 실시예는 몬트니 셰일가스 저류층의 시추코어에서 분석된 광물 및 유기물(TOC) 함량과 캐니스터(canister) 가스체적 간의 상관관계를 분석하여 주요흡착 광물을 도출하고, 주요흡착광물의 함량을 추출하는 관계식을 도출하여, 셰일 내 탈착 가스량을 예측하였다.An embodiment of the present invention is to analyze the correlation between the mineral and organic matter (TOC) content and the canister gas volume analyzed in the drilling core of the Montney shale gas reservoir to derive the main adsorption minerals, the content of the main adsorption minerals The extraction equation was derived to predict the amount of desorption gas in the shale.
도 1은 본 발명의 실시예에 따르는 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 장치(1)의 블록 구성도이다.1 is a block diagram of a desorption gas amount prediction device 1 of a shale gas layer through physical logging data analysis according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 상기 셰일 가스층의 탈착 가스량 예측 장치(1)는, 광물 및 유기물 함량분석부(10), 캐니스터가스체적측정부(20), 상관관계분석부(30), 주요흡착광물함량도출부(40) 및 탈착 가스량예측부(50)를 포함하여 구성된다.As shown in FIG. 1, the desorption gas amount prediction device 1 of the shale gas layer includes a mineral and organic content analysis unit 10, a canister gas volume measurement unit 20, a correlation analysis unit 30, and main adsorption. And a mineral content extraction unit 40 and a desorption gas amount prediction unit 50.
상기 광물 및 유기물 함량분석부(10)는, 시추공에서 채취된 셰일 시료에 대한 열분석에 의해 광물 및 유기물 함량을 분석하도록 구성된다. 구체적으로, 상기 광물 및 유기물 함량분석부(10)는 XRD 분석, 자연감마, 중성자 공극률, 밀도, 전기비저항, 음파 검층을 통해 TOC와 광물의 종류 및 함량을 분석하도록 구성된다. 또한, 셰일의 체적은 감마선 검층과 중성자 공극률-밀도 검층 조합을 이용하여 산출하도록 구성된다.The mineral and organic content analysis unit 10 is configured to analyze the mineral and organic content by thermal analysis on the shale sample collected from the borehole. Specifically, the mineral and organic content analysis unit 10 is configured to analyze the type and content of the TOC and minerals through XRD analysis, natural gamma, neutron porosity, density, electrical resistivity, sound wave logging. The volume of the shale is also configured to calculate using a gamma ray logging and neutron porosity-density logging combination.
상기 캐니스터가스체적측정부(20)는 채취된 셰일 시료를 밀봉한 캐니스터 내부의 가스를 이용하여 가스함량을 측정하도록 구성된다.The canister gas volume measuring unit 20 is configured to measure the gas content by using the gas inside the canister sealing the collected shale sample.
상기 상관관계분석부(30)는 상기 광물과 가스함량의 상관관계를 분석하여 상관관계가 높은 광물을 가스 흡착량의 체적이 높은 주요흡착광물로 추출하는 상관관계분석을 수행하도록 구성된다.The correlation analysis unit 30 is configured to analyze the correlation between the minerals and the gas content to perform a correlation analysis to extract the highly correlated minerals as the main adsorption minerals having a high volume of gas adsorption amount.
상기 주요흡착광물함량도출부(40)는 상기 추출된 주요흡착광물의 함량을 도출하도록 구성된다. 상기 주요흡착광물함량도출부(40)는 채취된 시료를 주요흡착광물과 주요흡착광물을 제외한 나머지를 점토광물로 분류한 후
Figure PCTKR2017004208-appb-I000003
에 의해 도출한다. 이때, Vmain은 주요흡착광물의 체적, ρmain은 주요흡착광물의 밀도, Vclays는 점토광물의 체적, ρclays는 점토광물의 밀도, Vsh은 셰일의 체적, ρsh는 셰일의 밀도이다.
The main adsorption mineral content extracting unit 40 is configured to derive the content of the extracted main adsorption mineral. The main adsorption mineral content extraction unit 40 classifies the collected sample as clay minerals except the main adsorption mineral and the main adsorption mineral
Figure PCTKR2017004208-appb-I000003
Derived by Where Vmain is the volume of the main adsorbed mineral, ρmain is the density of the main adsorbed mineral, Vclays is the volume of the clay mineral, ρclays is the density of the clay mineral, Vsh is the volume of the shale, and ρsh is the density of the shale.
상기 탈착 가스량예측부(50)는 도출된 상기 주요흡착광물함량과 상기 상관관계를 역으로 적용하여 셰일가스에 흡착된 탈착 가스함량을 예측하도록 구성된다.The desorption gas amount prediction unit 50 is configured to predict the desorption gas content adsorbed on the shale gas by applying the derived main adsorption mineral content inversely to the correlation.
도 2는 본 발명의 물리검층자료 해석을 통한 셰일 가스층의 탈착 가스량 예측 방법의 처리과정을 나타내는 순서도이다.Figure 2 is a flow chart showing the process of the desorption gas amount prediction method of the shale gas layer through the analysis of physical logging data of the present invention.
도 2와 같이, 상기 셰일 가스층의 탈착 가스량 예측 방법은, 광물 및 유기물 함량 분석과정(S10), 캐니스터가스체적측정과정(S20), 상관관계분석과정(S30), 주요흡착광물함량도출과정(S40), 셰일가스 내 탈착 가스량 예측과정(S50)을 포함하여 이루어진다.As shown in Figure 2, the desorption gas amount prediction method of the shale gas layer, mineral and organic content analysis process (S10), canister gas volume measurement process (S20), correlation analysis process (S30), the main adsorption mineral content derivation process (S40) ), The desorption gas amount prediction process in the shale gas (S50) is made.
상기 광물 및 유기물 함량 분석과정(S10)은 광물 및 유기물 함량분석부에 의해 시추공에서 채취된 셰일 시료에 대한 열분석에 의해 광물 및 유기물 함량을 분석하는 과정이다. 이 과정에서, XRD 분석, 자연감마, 중성자 공극률, 밀도, 전기비저항, 음파 검층을 통해 TOC와 광물의 종류 및 함량이 분석된다. 또한, 감마선 검층과 중성자 공극률-밀도 검층 조합을 이용하여 셰일의 체적이 산출된다.The mineral and organic content analysis process (S10) is a process of analyzing the mineral and organic content by thermal analysis on the shale sample collected in the borehole by the mineral and organic content analysis unit. In this process, the types and contents of TOC and minerals are analyzed by XRD analysis, natural gamma, neutron porosity, density, electrical resistivity, and sonic logging. In addition, the volume of the shale is calculated using the gamma ray logging and the neutron porosity-density logging combination.
상기 캐니스터가스체적측정과정(S20)은 캐니스터가스체적측정부에 의해 채취된 시료를 밀봉한 캐니스터 내부의 가스를 이용하여 가스함량을 측정하는 과정이다.The canister gas volume measurement process (S20) is a process of measuring the gas content using the gas inside the canister sealed the sample taken by the canister gas volume measurement unit.
상기 상관관계분석과정(S30)은 상관관계분석부(30)에 의해 광물과 가스함량의 상관관계가 분석되고, 상관관계가 높은 광물이 탈착 가스의 체적이 높은 주요흡착광물로 추출되는 과정이다.The correlation analysis process (S30) is a process in which the correlation between the mineral and the gas content is analyzed by the correlation analysis unit 30, and the highly correlated mineral is extracted as the main adsorption mineral having a high volume of the desorbed gas.
도 3는 채취된 시료 내의 광물질별 캐니스터 가스 체적과의 상관관계의 예를 나타내는 그래프이다.3 is a graph showing an example of the correlation with the canister gas volume for each mineral in the sample taken.
도 3과 같이, 상기 상관관계분석과정(S30)에는 상관관계분석부(30)에 의해 캐니스터 체적과 점토광물, 캐니스터 체적과 일라이트/마이카 및 스맥타이트, 캐니스터 체적과 일라이트/마이카, 캐니스터 체적과 일라이트/스멕타이트, 캐니스터 체적과 카올리나이트, 캐니스터 체적과 클로라이트 등 캐니스터 체적과 광물질별 상관관계가 도출된다. As shown in FIG. 3, in the correlation analysis process (S30), the canister volume, clay mineral, canister volume, illite / mica and smacktite, canister volume, illite / mica, and canister volume by the correlation analyzer 30. Correlations between canister volumes and minerals, such as elite / smectite, canister volume and kaolinite, canister volume and chlorite, are derived.
도 3의 경우 각 광물에 대한 탈착 가스 함량 및 상관관계는 다음과 같다.In the case of Figure 3 desorption gas content and correlation for each mineral is as follows.
8.966 + 0.743*Volume of Clay minerals R2 = 0.4428.966 + 0.743 * Volume of Clay minerals R 2 = 0.442
7.748 + 0.971*Volume of Illit/Smectite/Mica R2 = 0.5377.748 + 0.971 * Volume of Illit / Smectite / Mica R 2 = 0.537
6.317 + 8.534*Volume of Illit/Smectite R2 = 0.6826.317 + 8.534 * Volume of Illit / Smectite R 2 = 0.682
8.150 + 1.079*Volume of Illite/Mica R2 = 0.5108.150 + 1.079 * Volume of Illite / Mica R 2 = 0.510
19.47 + 0.982*Volume of Chlorite R2 = 0.03419.47 + 0.982 * Volume of Chlorite R 2 = 0.034
20.90 + 7.996*Volume of Kaolinite R2 = 0.05020.90 + 7.996 * Volume of Kaolinite R 2 = 0.050
도 3의 경우, 상관관계 분석 결과 일라이트가 탈착 가스량과 상관관계가 가장 높은 것으로 도출되었다.In the case of FIG. 3, the correlation analysis result shows that the illite has the highest correlation with the amount of desorption gas.
다시, 도 2를 참조하면, 상술한 바와 같은 상관관계분석과정(S30)의 수행에 의해 탈착 가스함량과 상관관계가 높은 주요흡착광물이 도출된 후에는 주요흡착광물함량도출과정(S40)에 의해 주요흡착광물의 함량이 도출된다. 이때, 주요 흡착광물인 일라이트의 함량을 도출하기 위하여 채취된 시료를 주요흡착광물인 일라이트와 일라이트를 제외한 나머지를 점토광물로 분류한다. 그리고 주요흡착광물을 일라이트로 대체한 다음의 식Referring back to FIG. 2, after the main adsorption mineral having a high correlation with the desorption gas content is derived by performing the correlation analysis process (S30) as described above, the main adsorption mineral content derivation process (S40). The main adsorbed mineral content is derived. At this time, in order to derive the content of the illite, the main adsorption minerals, the sample is classified into clay minerals except for the illite and the illite, the main adsorption minerals. And replacing the main adsorbed mineral with illite
Figure PCTKR2017004208-appb-I000004
에 의해 일라이트의 함량을 도출한다. 여기서, Villite는 주요흡착광물로서의 일라이트의 체적, ρillite는 일라이트의 밀도, Vclays는 점토광물의 체적, ρclays는 점토광물의 밀도, Vsh은 셰일의 체적, ρsh는 셰일의 밀도이다.
Figure PCTKR2017004208-appb-I000004
Derive the content of illite. Where Villite is the volume of illite as the main adsorbed mineral, ρillite is the density of illite, Vclays is the volume of clay mineral, ρclays is the density of clay mineral, Vsh is the volume of shale, and ρsh is the density of shale.
다음으로, 탈착 가스량 예측과정(S50)에서는 주요흡착광물로서의 일라이트의 함량이 도출된 후에는 광물별 탈착 가스량과의 상관관계를 역으로 적용하여 탐사 지역의 셰일가스 저류층의 흡착 가스량이 예측된다.Next, in the desorption gas amount prediction process (S50), after the content of the illite as the main adsorption mineral is derived, the adsorption gas amount of the shale gas reservoir in the exploration area is predicted by applying the correlation with the desorption gas amount of each mineral in reverse.
본 발명은 셰일가스 자원 개발 산업에 적용될 수 있다.The present invention can be applied to the shale gas resource development industry.

Claims (10)

  1. 시추공에서 채취된 셰일 시료에 대한 열분석에 의해 광물 및 유기물 함량을 분석하는 광물 및 유기물 함량분석부;Mineral and organic content analysis unit for analyzing the mineral and organic content by thermal analysis on the shale sample collected from the borehole;
    채취된 셰일 시료를 밀봉한 캐니스터 내부의 가스를 이용하여 가스함량을 측정하는 캐니스터가스체적측정부:Canister gas volume measurement unit for measuring the gas content by using the gas inside the canister sealed sampled shale:
    상기 광물들과 가스함량의 상관관계를 분석하여 상관관계가 높은 광물을 주요흡착광물로 추출하는 상관관계분석부;A correlation analysis unit for analyzing the correlation between the minerals and the gas content to extract the highly correlated minerals as the main adsorbed minerals;
    상기 추출된 주요흡착광물의 함량을 도출하는 주요흡착광물함량도출부; 및A main adsorption mineral content deriving unit for deriving the extracted main adsorption mineral content; And
    도출된 상기 주요흡착광물함량과 상기 상관관계를 이용하여 셰일가스 저류층에 흡착된 가스함량을 예측하는 탈착 가스량예측부;를 포함하여 구성되는 셰일 가스층의 탈착 가스량 예측 장치.Desorption gas amount prediction device comprising a; desorption gas content prediction unit for predicting the gas content adsorbed in the shale gas storage layer by using the correlation with the derived main adsorption mineral content.
  2. 청구항 1에 있어서, 상기 광물 및 유기물 함량분석부는,The method of claim 1, wherein the mineral and organic content analysis unit,
    XRD 분석을 통해 유기물에 대한 TOC와 광물 성분 및 함량을 측정하도록 구성되는 셰일 가스층의 탈착 가스량 예측 장치.Desorption gas amount prediction device of the shale gas layer configured to measure the TOC and mineral components and content for the organic matter through XRD analysis.
  3. 청구항 2에 있어서, 상기 광물 및 유기물 함량분석부,The method of claim 2, wherein the mineral and organic content analysis unit,
    자연감마, 중성자 공극률, 밀도, 전기비저항, 음파 검층에 의한 검층자료의 분석을 수행하도록 구성되는 셰일 가스층의 탈착 가스량 예측 장치.Desorption gas amount prediction device of the shale gas layer configured to perform analysis of the logging data by natural gamma, neutron porosity, density, electrical resistivity, and sonic logging.
  4. 청구항 2에 있어서, 상기 광물 및 유기물 함량분석부는,The method of claim 2, wherein the mineral and organic content analysis unit,
    감마선 검층과 중성자 공극률-밀도 검층 조합을 이용하여 셰일체적을 계산하도록 구성되는 셰일 가스층의 탈착 가스량 예측 장치.A desorption gas amount prediction device of a shale gas layer configured to calculate a shale volume using a gamma ray logging and a neutron porosity-density logging combination.
  5. 청구항 1에 있어서, 상기 주요흡착광물함량은.The method according to claim 1, wherein the main adsorption mineral content is.
    채취된 시료를 주요흡착광물과 주요흡착광물을 제외한 나머지를 점토광물로 분류한 후
    Figure PCTKR2017004208-appb-I000005
    에 의해 도출되며, 여기서, Vmain은 주요흡착광물의 체적, ρmain은 주요흡착광물의 밀도, Vclays는 점토광물의 체적, ρclays는 점토광물의 밀도, Vsh은 셰일의 체적, ρsh는 셰일의 밀도인 것을 특징으로 하는 셰일 가스층의 탈착 가스량 예측 장치.
    After classifying the collected sample as clay mineral except the main adsorption mineral and main adsorption mineral
    Figure PCTKR2017004208-appb-I000005
    Where Vmain is the volume of the main adsorbed minerals, ρmain is the density of the main adsorbed minerals, Vclays is the volume of the clay minerals, ρclays is the density of the clay minerals, Vsh is the volume of the shale, and ρsh is the density of the shale. Desorption gas amount prediction device of a shale gas layer characterized by the above-mentioned.
  6. 광물 및 유기물 함량분석부에 의해 시추공에서 채취된 셰일 시료에 대한 열분석에 의해 광물 및 유기물 함량을 분석하는 광물 및 유기물 함량분석과정;Mineral and organic content analysis process for analyzing mineral and organic content by thermal analysis on shale samples collected from boreholes by mineral and organic content analysis unit;
    캐니스터가스체적측정부에 의해 채취된 시료를 밀봉한 캐니스터 내부의 가스를 이용하여 가스함량을 측정하는 캐니스터가스체적측정과정:Canister gas volume measurement process for measuring the gas content by using the gas inside the canister sealed sample taken by the canister gas volume measurement unit:
    상관관계분석부에 의해 상기 광물과 가스함량의 상관관계를 분석하여 상관관계가 높은 광물을 가스 체적이 높은 주요흡착광물로 추출하는 상관관계분석과정;A correlation analysis process of analyzing the correlation between the mineral and the gas content by a correlation analysis unit to extract the highly correlated minerals into the main adsorption minerals having a high gas volume;
    주요흡착광물함량도출부에 의해 상기 추출된 주요흡착광물의 함량을 도출하는 주요흡착광물함량도출과정; 및A main adsorption mineral content derivation process for deriving a content of the main adsorption mineral extracted by the main adsorption mineral content derivation unit; And
    탈착 가스량예측부에 의해 도출된 상기 주요흡착광물함량과 상기 상관관계를 이용하여 셰일가스 저류층에 흡착된 가스함량을 예측하는 탈착 가스량예측과정;을 포함하여 구성되는 셰일 가스층의 탈착 가스량 예측 방법.Desorption gas amount prediction method comprising a; desorption gas content prediction process for predicting the gas content adsorbed in the shale gas storage layer by using the correlation with the main adsorption mineral content derived by the desorption gas content prediction unit.
  7. 청구항 6에 있어서, 상기 광물 및 유기물 함량분석과정은,The method of claim 6, wherein the mineral and organic content analysis process,
    XRD 분석을 통해 유기물에 대한 TOC와 광물 성분 및 함량을 측정하는 과정인 셰일 가스층의 탈착 가스량 예측 방법.A method of predicting the amount of desorption gas in the shale gas layer, which is a process of measuring TOC, mineral components and contents of organic matter through XRD analysis.
  8. 청구항 7에 있어서, 상기 광물 및 유기물 함량분석과정은,The method of claim 7, wherein the mineral and organic content analysis process,
    자연감마, 중성자 공극률, 밀도, 전기비저항, 음파 검층에 의한 검층자료의 분석을 수행하는 과정을 더 포함하는 셰일 가스층의 탈착 가스량 예측 방법.A method for predicting the desorption gas amount of the shale gas layer further comprising analyzing the logging data by natural gamma, neutron porosity, density, electrical resistivity, and sonic logging.
  9. 청구항 7에 있어서, 상기 광물 및 유기물 함량분석과정은,The method of claim 7, wherein the mineral and organic content analysis process,
    감마선 검층과 중성자 공극률-밀도 검층 조합을 이용하여 셰일체적을 계산하는 과정을 더 포함하는 셰일 가스층의 탈착 가스량 예측 방법.A method of estimating desorption gas content of a shale gas layer further comprising calculating a shale volume using a gamma ray logging and a neutron porosity-density logging combination.
  10. 청구항 1에 있어서, 상기 주요흡착광물함량은,The method according to claim 1, wherein the main adsorption mineral content,
    채취된 시료를 주요흡착광물과 주요흡착광물을 제외한 나머지를 점토광물로 분류한 후
    Figure PCTKR2017004208-appb-I000006
    에 의해 도출되며, 여기서, Vmain은 주요흡착광물의 체적, ρmain은 주요흡착광물의 밀도, Vclays는 점토광물의 체적, ρclays는 점토광물의 밀도, Vsh은 셰일의 체적, ρsh는 셰일의 밀도인 셰일 가스층의 탈착 가스량 예측 방법.
    After classifying the collected sample as clay mineral except the main adsorption mineral and main adsorption mineral
    Figure PCTKR2017004208-appb-I000006
    Where Vmain is the volume of the main adsorbed mineral, ρmain is the density of the main adsorbed mineral, Vclays is the volume of the clay mineral, ρclays is the density of the clay mineral, Vsh is the volume of the shale, ρsh is the density of the shale Method for predicting the amount of desorption gas in the gas layer.
PCT/KR2017/004208 2016-11-01 2017-04-19 Apparatus for predicting amount of desorption gas in shale gas layer by using geophysical well logging data analysis and method therefor WO2018084394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3011167A CA3011167C (en) 2016-11-01 2017-04-19 Prediction apparatus and method of predicting desorbed gas volume of shale gas reservoir using geophysical logging data analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160144505A KR101826132B1 (en) 2016-11-01 2016-11-01 Prediction apparatus and the method of desorbed gas volume of shale using geophysical logging data
KR10-2016-0144505 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018084394A1 true WO2018084394A1 (en) 2018-05-11

Family

ID=61901172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004208 WO2018084394A1 (en) 2016-11-01 2017-04-19 Apparatus for predicting amount of desorption gas in shale gas layer by using geophysical well logging data analysis and method therefor

Country Status (3)

Country Link
KR (1) KR101826132B1 (en)
CA (1) CA3011167C (en)
WO (1) WO2018084394A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175471A (en) * 2018-11-12 2020-05-19 中石化石油工程技术服务有限公司 Rock debris logging method
CN111749677A (en) * 2020-06-30 2020-10-09 宋立才 Logging information processing method and device, electronic equipment and storage medium
CN112031740A (en) * 2019-05-15 2020-12-04 中国石油化工股份有限公司 Shale gas geological dessert evaluation method and device based on stratum elements
CN112858638A (en) * 2021-03-04 2021-05-28 长江大学 Method and device for detecting content of shale gas reservoir adsorbed gas
CN114060025A (en) * 2021-10-26 2022-02-18 中煤科工集团西安研究院有限公司 Low-coal-rank coalbed methane mining property evaluation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672813B (en) * 2018-07-02 2021-09-14 中国石油化工股份有限公司 Shale gas content calculation method
CN108896509A (en) * 2018-07-30 2018-11-27 中国华能集团有限公司 In-site measurement collects shale gas desorption quantity and the integrated experimental system of component analysis
KR101993344B1 (en) * 2018-12-19 2019-06-26 한국지질자원연구원 Method for assessing original total organic carbon using molybdenum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080162056A1 (en) * 2006-12-29 2008-07-03 Keith Howarth Greaves Method and apparatus for determination of gas in place
WO2011060494A1 (en) * 2009-11-19 2011-05-26 Ian Gray System for analysing gas from strata being drilled under high mud flows
US20140300895A1 (en) * 2005-03-14 2014-10-09 Gas Sensing Technology Corp In situ evaluation of unconventional natural gas reservoirs
US20140366621A1 (en) * 2011-01-27 2014-12-18 Schlumberger Technology Corporation Gas Sorption Analysis Of Unconventional Rock Samples

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300895A1 (en) * 2005-03-14 2014-10-09 Gas Sensing Technology Corp In situ evaluation of unconventional natural gas reservoirs
US20080162056A1 (en) * 2006-12-29 2008-07-03 Keith Howarth Greaves Method and apparatus for determination of gas in place
WO2011060494A1 (en) * 2009-11-19 2011-05-26 Ian Gray System for analysing gas from strata being drilled under high mud flows
US20140366621A1 (en) * 2011-01-27 2014-12-18 Schlumberger Technology Corporation Gas Sorption Analysis Of Unconventional Rock Samples

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, 11 HO ET AL.: "Absorbed Gas Prediction of Montney Shale Gas Layers in Canada , Using Geophysical Well Log Interpretation", PROCEEDINGS OF 2016 JOINT CONFERENCE OF THE GEOLOGICAL SCIENCE & TECHNOLOGY OF KOREA, 20 April 2016 (2016-04-20) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175471A (en) * 2018-11-12 2020-05-19 中石化石油工程技术服务有限公司 Rock debris logging method
CN111175471B (en) * 2018-11-12 2022-06-24 中石化石油工程技术服务有限公司 Rock debris logging method
CN112031740A (en) * 2019-05-15 2020-12-04 中国石油化工股份有限公司 Shale gas geological dessert evaluation method and device based on stratum elements
CN112031740B (en) * 2019-05-15 2024-02-02 中国石油化工股份有限公司 Shale gas geological dessert evaluation method and device based on stratum elements
CN111749677A (en) * 2020-06-30 2020-10-09 宋立才 Logging information processing method and device, electronic equipment and storage medium
CN112858638A (en) * 2021-03-04 2021-05-28 长江大学 Method and device for detecting content of shale gas reservoir adsorbed gas
CN112858638B (en) * 2021-03-04 2022-12-13 长江大学 Method and device for detecting content of shale gas reservoir adsorbed gas
CN114060025A (en) * 2021-10-26 2022-02-18 中煤科工集团西安研究院有限公司 Low-coal-rank coalbed methane mining property evaluation method
CN114060025B (en) * 2021-10-26 2023-11-21 中煤科工集团西安研究院有限公司 Low-rank coalbed methane mining performance evaluation method

Also Published As

Publication number Publication date
KR101826132B1 (en) 2018-03-22
CA3011167C (en) 2021-03-09
CA3011167A1 (en) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018084394A1 (en) Apparatus for predicting amount of desorption gas in shale gas layer by using geophysical well logging data analysis and method therefor
SA109300222B1 (en) Apparatus for Continuous Measurement of Heterogeneity of Geomaterials
Mowers et al. Quantification of porosity and permeability reduction due to calcite cementation using computer-assisted petrographic image analysis techniques
CA2509107C (en) Log permeability model calibration using reservoir fluid flow measurements
EP3513225A1 (en) Method for measurement of hydrocarbon content of tight gas reservoirs
CA2652336A1 (en) Methods and apparatus for analysis of downhole asphaltene gradients and applications thereof
CN113419284B (en) Method for identifying physical facies double desserts of well logging rock based on cluster analysis
WO2020101128A1 (en) Method for predicting shale gas production by using deep learning
CN109025961B (en) Shale reservoir gas saturation calculation method and device and electronic equipment
CN105866293A (en) Method for identifying coal-formed gas and oil type gas by combining He and N2 and application of method
CN111028095A (en) Method for quantitatively identifying shale lithofacies based on well logging curve
CN110529106B (en) Method for determining content of coal seam micro-components by using logging information
SE8205319D0 (en) METHOD AND APPARATUS FOR SURVIVAL AND DEVELOPMENT OF CELLS
CN116821786A (en) Hypotonic reservoir classification method, device and medium
KR101175072B1 (en) Estimation system and method for pore fluids, including hydrocarbon and non-hydrocarbon, in oil sands reservoir using statistical analysis of well logging data
CN110939428B (en) Identification method for tight sandstone oil and gas reservoir cracks
CN112528106A (en) Volcanic lithology identification method
Shin et al. Development of a new equivalent circuit model for spectral induced polarization data analysis of ore samples
CN110132971B (en) Method for quantitatively distinguishing contact argillaceous substances and dispersed argillaceous substances in laboratory
Bhattad et al. X-ray micro-CT assisted drainage rock typing for characterization of flow behaviour of laminated sandstone reservoirs
Wang et al. Quantitative identification of microfractures in the marine shale reservoir of the Wufeng-Longmaxi Formation using water immersion tests and image characterization
CN201428453Y (en) Underground artificial radioactivity reservoir fluid analyzer
RU132484U1 (en) SYSTEM OF CONTROL OF TECHNICAL CONDITION OF EXISTING WELLS
CN112443321B (en) Reservoir quality index-based oil layer identification method and device
CN117348070A (en) Qualitative identification method for thin mudstone interlayer in volcanic rock

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3011167

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866663

Country of ref document: EP

Kind code of ref document: A1