WO2018084371A1 - Iot-based agricultural water monitoring system - Google Patents

Iot-based agricultural water monitoring system Download PDF

Info

Publication number
WO2018084371A1
WO2018084371A1 PCT/KR2016/015321 KR2016015321W WO2018084371A1 WO 2018084371 A1 WO2018084371 A1 WO 2018084371A1 KR 2016015321 W KR2016015321 W KR 2016015321W WO 2018084371 A1 WO2018084371 A1 WO 2018084371A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
sensor
water
data
iot
Prior art date
Application number
PCT/KR2016/015321
Other languages
French (fr)
Korean (ko)
Inventor
이명훈
여현
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Publication of WO2018084371A1 publication Critical patent/WO2018084371A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an IoT-based agricultural water monitoring system.
  • WSN wireless sensor network
  • Embodiment of the present invention by developing an automated system technology for agricultural water management for the cultivation of paddy fields and field crops, to reduce the effort required for water management, to overcome the damage of drought through the efficient use of agricultural water, furthermore all weather It aims to contribute to the achievement of farming.
  • An embodiment of the present invention is to provide a method for evaluating the reliability of the IoT-based agricultural water monitoring system that can monitor the water quality of remote agricultural water in real time by combining a multi-item water quality measurement integrated system and IoT technology.
  • IoT-based agricultural water monitoring system to evaluate the reliability of the IoT-based agricultural water monitoring system using MTTF, MTTR, MTBF as measurement data for life expectancy.
  • IoT-based agricultural water monitoring system to determine the maximum value, minimum value, average value for each sensor, to determine whether the system malfunctions.
  • the IoT-based agricultural water monitoring system by selecting the measurement items for IoT-based agricultural water monitoring to analyze the water management characteristics, by measuring and analyzing the elements necessary for agricultural water management agricultural water management Can be provided as a basis for the development of automation systems.
  • FIG. 1 is a view showing an IoT-based agricultural water monitoring system according to an embodiment of the present invention.
  • a plurality of water quality information data are installed at a predetermined range for measuring water quality and are formed to receive and process water quality information data from a multi-item water quality measuring instrument forming a sensor node, and transmit the data to the integrated control means through the Internet network.
  • the IoT-based agricultural water monitoring system comprising a means, the mean time of operation from the start of the use of the system to the failure as the measurement data to perform the failure rate evaluation for predicting the life of the multi-item water meter 100 MTTF; MTTR, which means the average time from system failure to restart after repair; MTBF is expressed by the sum of the MTTF, MTTR is achieved by the reliability evaluation method of the IoT-based agricultural water monitoring system.
  • the MTBF is preferably used as data for measuring the availability of the system to be used as a performance measure of the system in the case of a reuse system.
  • the present invention to perform the failure rate evaluation for predicting the life of the multi-item water quality meter 100, by collecting the sensor value of each water node station to determine the maximum value, minimum value, average value for each sensor of the system It is desirable to check for malfunctions.
  • the multi-item water quality measuring instrument has conductivity (EC) sensor, salinity sensor, temperature sensor, dissolved oxygen (DO) sensor, dissolved hydrogen (pH) sensor, turbidity sensor, depth measurement sensor, ammonia and nitrogen measurement It is desirable to measure water quality data from at least one of the sensors.
  • FIG. 1 is a view showing an IoT-based agricultural water monitoring system according to an embodiment of the present invention.
  • the IoT-based agricultural water monitoring system according to the present invention is installed in a certain range to collect various information of the water quality using at least one sensor, and transmits the sensed water quality information data to the integrated gateway 200.
  • At least one water quality measuring means 100 for receiving, and at least one integration for receiving and processing the water quality information data from the water quality measuring means 100 to be transmitted to the integrated control means 400 through the Internet network 300
  • the water quality data is analyzed by using the gateway 200 and the water quality data information received from the integrated gateway 200, and the water quality information according to the depth sensed by the water quality measuring means 100 is analyzed to obtain geographical water quality information.
  • the normal user (600) includes a web server for the Web service so that you can check the water quality on the web page through the site emergency response unit to ever check the sources 500 and Internet network 300.
  • the water quality measuring means 100 is installed in a plurality of ranges for measuring the water quality to form a sensor node.
  • the network method of the water quality measuring means 100 is preferably a local area network of the IEEE 802.15.4 radio type, and all local area communication methods capable of transmitting and receiving data over IP may be applied.
  • the water quality measuring means 100 transmits the water quality data through the sensor node capable of data transmission to be delivered to the integrated gateway 200.
  • the water quality monitoring system of the present invention may be divided into a non-IP method and an IP method.
  • the water quality measuring means 100 which is a primary sensor node
  • the integrated gateway 200 which is a secondary sensor node
  • the internet network 300 and the integrated control means 400 are configured in an IP manner.
  • the sensor node forms a topology using a local area network, the cost of IP allocation is reduced, and thus, a plurality of water quality measuring means 100 can be installed even with a small budget.
  • the integrated gateway 200 is a secondary sensor node, receives the water quality data from the water quality measuring means 100 and transmits the water quality data to the integrated control means 400 through the Internet network 300 including WCDMA. .
  • the integrated control means 400 is a control room for the integrated management of the water quality, may be composed of a data collection server and a database server, by analyzing the water quality data received from the integrated gateway 200 to accurately determine the pollution source
  • a computer for locating the location may be included and configured.
  • the IoT-based agricultural water monitoring system is a sensor node level 2, which is the water quality measuring means 100, and a sensor node level 1, which is an integrated gateway 200, and a third layer, WCDMA or the Internet network, as the first layer. It is formed in a hierarchical structure with a sink node (300), a wired / wireless network network as a fourth step layer and an integrated control means 400 as a fifth step layer.
  • the multi-item water quality meter 100 must be evaluated for failure rate in order to predict the service life.
  • the lifetime value of the entire system is measured.
  • measurement data for predicting the lifetime are MTTF, MTTR, MTBF.
  • MTBF mean time between failures

Abstract

The present invention is to contribute to reducing the effort necessary for water management, to overcoming the damage of drought by efficient use of agricultural water, and to achieving "all-weather farming", by developing an automated system technology for managing agricultural water for growing farmland crops. Water quality condition is analyzed by using: at least one integrated gateway for receiving water quality information data from a plurality of multiparameter water quality probes which are installed across a predetermined range for measuring water quality and form sensor nodes, and then processing the data and transmitting same to an integrated control means via an internet network; and water quality data information received from the integrated gateway. Also, water quality information obtained by the sensing of the multiparameter water quality probes according to a water depth is analyzed. Thus, geographical water quality information is generated.

Description

IoT 기반 농업 용수 모니터링 시스템IOT-based agricultural water monitoring system
본 발명은 IoT 기반 농업 용수 모니터링 시스템에 관한 것이다.The present invention relates to an IoT-based agricultural water monitoring system.
현재 효율적인 물관리를 위해서는 작물별, 품종별, 생육 단계별 필요수량의 정확한 추정하고, 각 단계별 물 부족에 따른 생육 장애 및 수량에 미치는 영향을 규명해야 한다. 이와 같은 연구의 결과에 근거한 물관리를 통하여 필요한 양을 필요한 시기에 공급하고, 작물 수확량을 극대화할 수 있는 물관리를 실현할 수 있는 것이다. 따라서 논과 밭작물의 필요수량 자료를 수집 데이타베이스화 하고, 논과 밭작물의 필요수량과 기상자료와의 관계를 바탕으로 지역별, 시기별 농업용수의 관리를 위한 정보의 생성이 필요하다.For efficient water management, it is necessary to accurately estimate the required quantity of crops, varieties, and stages of growth, and to investigate the effects of growth deficiency and yield on each stage of water shortage. Through water management based on the results of these studies, it is possible to realize the water management to supply the required amount at the required time and to maximize the crop yield. Therefore, it is necessary to create a data base for collecting required data of paddy fields and field crops, and to generate information for management of agricultural water by region and season based on the relationship between the required quantity of paddy fields and field crops and weather data.
기존에는 환경 자료에 대한 데이터를 수집하기 위하여 사용자가 직접 측정장치를 가지고 매번 측정장소로 이동하여야 하였고, 또한 여러 항목을 측정하기 위해서는 각 측정 항목별로 사용되는 여러 종류의 계측기기를 사용하여야 하였다. 이렇게 측정된 데이터들을 수집하여 분석하는데 많은 시간과 인력이 소모되고 있다.In the past, in order to collect data on environmental data, the user had to go directly to the measurement site every time with a measuring device, and to measure several items, various types of measuring devices used for each measurement item had to be used. Much time and manpower are consumed in collecting and analyzing the measured data.
IoT 기술을 통해 수질 모니터링을 위한 무선 센서 네트워크(WSN)를 기반으로 다항목 수질측정 장치들의 센스노드와 데이터 전달을 위한 싱크 노드를 이용하여 모든 원격지의 수질을 실시간으로 감시하므로, 워크 스테이션 시스템을 효과적으로 관리하고, 유지보수 하기 위해서는 각 수질측정기의 신뢰도를 명확히 파악하고 있어야 한다.Based on the wireless sensor network (WSN) for water quality monitoring through IoT technology, it monitors the water quality of all remote locations in real time by using the sense node of multi-item water quality measurement devices and sink node for data transmission. In order to manage and maintain, the reliability of each water quality meter must be clearly understood.
본 발명의 실시예는 논·밭작물의 재배를 위한 농업용수 관리를 위한 자동화 시스템 기술을 개발함으로써, 물관리에 필요한 노력을 경감하고, 농업용수의 효율적인 이용을 통하여 가뭄의 피해를 극복하고, 나아가 전천후 영농을 달성하는 데 기여하는 것을 목적으로 한다.Embodiment of the present invention by developing an automated system technology for agricultural water management for the cultivation of paddy fields and field crops, to reduce the effort required for water management, to overcome the damage of drought through the efficient use of agricultural water, furthermore all weather It aims to contribute to the achievement of farming.
본 발명의 실시예는 다항목 수질측정 통합 시스템과 IoT 기술을 접목하여 실시간으로 원격지의 농업용수의 수질을 감시할 수 있는 IoT 기반 농업 용수 모니터링 시스템의 신뢰성 평가 방법을 제공하는 것을 목적으로 한다.An embodiment of the present invention is to provide a method for evaluating the reliability of the IoT-based agricultural water monitoring system that can monitor the water quality of remote agricultural water in real time by combining a multi-item water quality measurement integrated system and IoT technology.
본 발명의 실시예에 따른 IoT 기반 농업 용수 모니터링 시스템은 수명예측을 위한 측정 데이터로 MTTF, MTTR, MTBF를 사용하여 IoT 기반 농업 용수 모니터링 시스템의 신뢰성을 평가하도록 한다.IoT-based agricultural water monitoring system according to an embodiment of the present invention to evaluate the reliability of the IoT-based agricultural water monitoring system using MTTF, MTTR, MTBF as measurement data for life expectancy.
본 발명의 실시예에 따른 IoT 기반 농업 용수 모니터링 시스템은 각 센서별 최대값, 최소값, 평균값을 확인하여, 시스템의 오동작 여부를 확인할 수 있도록 한다.IoT-based agricultural water monitoring system according to an embodiment of the present invention to determine the maximum value, minimum value, average value for each sensor, to determine whether the system malfunctions.
본 발명의 실시예에 따른 IoT 기반 농업 용수 모니터링 시스템에 의하면, 물관리 특성 분석을 위하여 IoT기반 농업 용수 모니터링을 위한 측정항목을 선정하여, 농업 용수 관리에 필요한 제요소들을 측정하고 분석하여 농업용수 관리 자동화 시스템의 개발에 기초자료로 제공할 수 있다.According to the IoT-based agricultural water monitoring system according to an embodiment of the present invention, by selecting the measurement items for IoT-based agricultural water monitoring to analyze the water management characteristics, by measuring and analyzing the elements necessary for agricultural water management agricultural water management Can be provided as a basis for the development of automation systems.
또한, 본 발명의 실시예에 따른 IoT 기반 농업 용수 모니터링 시스템 및 방법에 의하면, 수질 측정기의 수명을 예측하여 신뢰도를 정확히 파악할 수 있게 된다.In addition, according to the IoT-based agricultural water monitoring system and method according to an embodiment of the present invention, it is possible to accurately predict the reliability by predicting the life of the water quality measuring instrument.
도 1 은 본 발명의 실시예에 따른 IoT 기반 농업 용수 모니터링 시스템을 나타낸 도면이다.1 is a view showing an IoT-based agricultural water monitoring system according to an embodiment of the present invention.
본 발명에 따르면, 수질을 측정하기 위한 일정 범위에 다수 설치되어 센서 노드(Sensor Node)를 형성하는 다항목 수질측정기로부터 수질 정보 데이터를 수신받아 가공하여 인터넷망을 통해 통합 관제 수단으로 전송하기 위한 적어도 하나의 통합 게이트웨이와, 상기 통합 게이트웨이로부터 수신된 수질 데이터 정보를 활용하여 수질 상태를 분석하고, 상기 다항목 수질측정기를 통해 센싱된 수심에 따른 수질정보를 분석하여 지리적 수질 정보를 생성하기 위한 통합 관제 수단를 포함하는 IoT기반 농업 용수 모니터링 시스템에 있어서, 상기 다항목 수질측정기(100)의 수명을 예측하기 위한 고장률 평가를 수행하도록, 측정 데이터로 시스템을 사용 시작시점에서 고장까지의 동작 평균시간을 의미하는 MTTF와; 시스템이 고장에서부터 수리 이후에 재 가동 되기까지의 평균시간을 의미하는 MTTR와; 상기 MTTF, MTTR의 합으로 표현되는 MTBF가 사용되는 것을 특징으로 하는 IoT기반 농업 용수 모니터링 시스템의 신뢰성 평가 방법에 의해 달성된다.According to the present invention, a plurality of water quality information data are installed at a predetermined range for measuring water quality and are formed to receive and process water quality information data from a multi-item water quality measuring instrument forming a sensor node, and transmit the data to the integrated control means through the Internet network. Integrated control for analyzing the water quality using one integrated gateway and the water quality data information received from the integrated gateway, and analyzing the water quality information according to the sensed depth through the multi-item water quality meter to generate geographic water quality information In the IoT-based agricultural water monitoring system comprising a means, the mean time of operation from the start of the use of the system to the failure as the measurement data to perform the failure rate evaluation for predicting the life of the multi-item water meter 100 MTTF; MTTR, which means the average time from system failure to restart after repair; MTBF is expressed by the sum of the MTTF, MTTR is achieved by the reliability evaluation method of the IoT-based agricultural water monitoring system.
또한 본 발명에 따르면, 상기 MTTF는 N개의 시스템을 동작 시작 시간 T=0에서 구동하여, 각 시스템 별로 처음 고장을 일으키는 시간의 평균을 산출하는 것이 바람직하다.According to the present invention, it is preferable that the MTTF drives N systems at an operation start time T = 0 to calculate an average of the times of first failure for each system.
또한 본 발명에 따르면, 상기 MTTR은 N개의 시스템을 고장 시작 시간 T=0에서 수리를 시작하여, 각 시스템 별로 수리 완료 후 재 가동되는 시간의 평균을 산출하는 것이 바람직하다.In addition, according to the present invention, it is preferable that the MTTR starts repairing N systems at a failure start time T = 0, and calculates an average of restart times after the repair is completed for each system.
또한 본 발명에 따르면, 상기 MTBF는 재사용 시스템의 경우 시스템의 성능 척도로 사용되도록, 시스템의 가용도를 측정하기 위한 데이터로 사용되는 것이 바람직하다.In addition, according to the present invention, the MTBF is preferably used as data for measuring the availability of the system to be used as a performance measure of the system in the case of a reuse system.
또한 본 발명에 따르면, 상기 다항목 수질측정기(100)의 수명을 예측하기 위한 고장률 평가를 수행하도록, 각워터노드 스테이션의 센서 값을 수집하여 각 센서별 최대값, 최소값, 평균값을 확인하여 시스템의 오동작 여부를 확인하는 것이 바람직하다.In addition, according to the present invention, to perform the failure rate evaluation for predicting the life of the multi-item water quality meter 100, by collecting the sensor value of each water node station to determine the maximum value, minimum value, average value for each sensor of the system It is desirable to check for malfunctions.
또한 본 발명에 따르면, 상기 다항목 수질측정기는 전도도(EC) 센서, 염도 센서, 온도 센서, 용존산소(DO)센서, 용존수소(pH) 센서, 탁도 센서, 수심 측정 센서, 암모니암 및 질소 측정 센서 중 적어도 어느 하나로부터 수질 데이터를 측정하는 것이 바람직하다.In addition, according to the present invention, the multi-item water quality measuring instrument has conductivity (EC) sensor, salinity sensor, temperature sensor, dissolved oxygen (DO) sensor, dissolved hydrogen (pH) sensor, turbidity sensor, depth measurement sensor, ammonia and nitrogen measurement It is desirable to measure water quality data from at least one of the sensors.
이하, 이 발명이 속하는 기술분야에서 통상의 지식을 갖는 자가 이 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 이 발명의 가장 바람직한 실시예를 첨부된 도면을 참조로 하여 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention. .
이 발명의 목적, 작용 효과를 포함하여 기타 다른 목적들, 특징점들, 그리고 동작상의 이점들이 바람직한 실시예의 설명에 의해서 보다 명확해질 것이다.Other objects, features, and operational advantages, including the object, operational effects of the present invention, will become more apparent from the description of the preferred embodiment.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.
도 1 은 본 발명의 실시예에 따른 IoT 기반 농업 용수 모니터링 시스템을 나타낸 도면이다. 도시된 바와 같이, 본 발명에 따른 IoT 기반 농업 용수 모니터링 시스템은 적어도 하나의 센서를 이용하여 수질의 다양한 정보를 수집하기 위해 일정 범위에 설치되고, 센싱된 수질 정보 데이터를 통합 게이트웨이(200)로 전송하기 위한 적어도 하나의 수질 측정 수단(100)과, 상기 수질 측정 수단(100)으로부터 수질 정보 데이터를 수신받아 가공하여 인터넷망(300)을 통해 통합 관제 수단(400)로 전송하기 위한 적어도 하나의 통합 게이트웨이(200)와, 상기 통합 게이트웨이(200)로부터 수신된 수질 데이터 정보를 활용하여 수질 상태를 분석하고, 상기 수질 측정 수단(100)을 통해 센싱된 수심에 따른 수질정보를 분석하여 지리적 수질 정보를 생성하기 위한 통합 관제 수단(400), 수질 데이터 허용치 초과시 경고음을 출력하거나 관리 담당자에게 SMS로 통보하여 현장의 오염원을 확인토록 하려는 현장 긴급 출동 수단(500), 및 인터넷망(300)을 통해 일반 사용자(600)가 웹페이지에서 수질 상태를 확인할 수 있도록 웹서비스가 제공을 위한 웹서버를 포함한다.1 is a view showing an IoT-based agricultural water monitoring system according to an embodiment of the present invention. As shown, the IoT-based agricultural water monitoring system according to the present invention is installed in a certain range to collect various information of the water quality using at least one sensor, and transmits the sensed water quality information data to the integrated gateway 200. At least one water quality measuring means 100 for receiving, and at least one integration for receiving and processing the water quality information data from the water quality measuring means 100 to be transmitted to the integrated control means 400 through the Internet network 300 The water quality data is analyzed by using the gateway 200 and the water quality data information received from the integrated gateway 200, and the water quality information according to the depth sensed by the water quality measuring means 100 is analyzed to obtain geographical water quality information. Integrated control means 400 for generating, output a beep when the water quality data allowance is exceeded or notify the management personnel by SMS The normal user (600) includes a web server for the Web service so that you can check the water quality on the web page through the site emergency response unit to ever check the sources 500 and Internet network 300.
상기 수질 측정 수단(100)은 수질을 측정하기 위한 일정 범위에 다수 설치되어 센서 노드(Sensor Node)를 형성한다. 상기 수질 측정 수단(100)의 네트워크 방식은 IEEE 802.15.4 무선 형태의 근거리 통신망이 활용되는 것이 바람직하며, IP로 데이터를 송수신할 수 있는 모든 근거리 통신 방법이 적용될 수 있다. 상기 수질 측정 수단(100)은 데이터 전송이 가능한 센서 노드를 통해 수질 데이터를 전송하여 통합 게이트 웨이(200)로 전달되도록 한다.The water quality measuring means 100 is installed in a plurality of ranges for measuring the water quality to form a sensor node. The network method of the water quality measuring means 100 is preferably a local area network of the IEEE 802.15.4 radio type, and all local area communication methods capable of transmitting and receiving data over IP may be applied. The water quality measuring means 100 transmits the water quality data through the sensor node capable of data transmission to be delivered to the integrated gateway 200.
본 발명의 수질 모니터링 시스템은 Non-IP 방식과 IP 방식으로 구분될 수 있는데, 1차 센서 노드인 수질 측정 수단(100)과 2차 센서 노드인 통합 게이트웨이(200)는 Non-IP 방식으로 구성되고, 인터넷망(300)과 통합 관제 수단(400)은 IP 방식으로 구성된다.The water quality monitoring system of the present invention may be divided into a non-IP method and an IP method. The water quality measuring means 100, which is a primary sensor node, and the integrated gateway 200, which is a secondary sensor node, are configured in a non-IP method. The internet network 300 and the integrated control means 400 are configured in an IP manner.
상기 센서 노드는 근거리 통신망을 이용하여 토폴로지를 구성함으로써, IP 할당에 따른 비용이 절감되기 때문에, 적은 예산으로도 다수의 수질 측정 수단(100)을 설치할 수 있다.Since the sensor node forms a topology using a local area network, the cost of IP allocation is reduced, and thus, a plurality of water quality measuring means 100 can be installed even with a small budget.
상기 통합 게이트웨이(200)는 2차 센서 노드로써, 상기 수질 측정 수단(100)으로부터 수질 데이터를 수신받아 WCDMA를 포함하는 인터넷망(300)을 통해 상기 통합 관제 수단(400)으로 수질 데이터를 전송한다.The integrated gateway 200 is a secondary sensor node, receives the water quality data from the water quality measuring means 100 and transmits the water quality data to the integrated control means 400 through the Internet network 300 including WCDMA. .
상기 통합 관제 수단(400)은 수질에 대한 통합적인 관리를 하기 위한 관제실로써, 데이터 수집서버 및 데이터베이스 서버로 구성될 수 있으며, 상기 통합 게이트 웨이(200)로부터 수신된 수질 데이터를 분석하여 오염원의 정확한 위치를 파악하기 위한 컴퓨터가 포함되어 구성될 수 있다.The integrated control means 400 is a control room for the integrated management of the water quality, may be composed of a data collection server and a database server, by analyzing the water quality data received from the integrated gateway 200 to accurately determine the pollution source A computer for locating the location may be included and configured.
IoT기반 농업 용수 모니터링 시스템은 제 1 단계층으로 상기 수질 측정 수단(100)인 센서노드 레벨 2와 제 2 단계층으로 통합 게이트웨이(200)인 센서노드 레벨 1과 제 3 단계층으로 WCDMA 또는 인터넷망(300)인 싱크노드와 제 4 단계층인 유/무선 네트워크망과 제 5 단계층인 통합 관제 수단(400)으로 계층적 구조로 형성되어있다.The IoT-based agricultural water monitoring system is a sensor node level 2, which is the water quality measuring means 100, and a sensor node level 1, which is an integrated gateway 200, and a third layer, WCDMA or the Internet network, as the first layer. It is formed in a hierarchical structure with a sink node (300), a wired / wireless network network as a fourth step layer and an integrated control means 400 as a fifth step layer.
상기 다항목 수질측정기(100)는 수명을 예측하기 위해서 고장률 평가가 수행 되어야 한다.The multi-item water quality meter 100 must be evaluated for failure rate in order to predict the service life.
따라서 본 발명의 수질 측정기를 동작시켜, 전체 시스템의 수명 값을 측정하게 되며, 이때 수명을 예측하기 위한 측정 데이터로는 MTTF, MTTR, MTBF가 있다.Therefore, by operating the water quality meter of the present invention, the lifetime value of the entire system is measured. At this time, measurement data for predicting the lifetime are MTTF, MTTR, MTBF.
상기 Mean time to failures(MTTF)는 시스템을 사용 시작 시점에서 고장까지의 동작 평균시간을 의미한다. 즉, N개의 시스템을 동작 시작 시간 T=0에서 구동하여, 각 시스템 별로 처음 고장을 일으키는 시간의 평균을 구하는 것이다. MTTF는 계산을 통해 고장률을 산출 할 수 있다. 식 1은 MTTF의 식을 보여주고 있다.Mean time to failures (MTTF) means the average operation time from the start of use of the system to the failure. In other words, N systems are driven at operation start time T = 0, and the average of the times of first failure for each system is calculated. MTTF can calculate the failure rate through calculation. Equation 1 shows the equation for MTTF.
상기 Mean time to repair (MTTR)은 시스템이 고장에서부터 수리 이후에 재 가동 되기까지의 평균시간을 의미한다. 즉, N개의 시스템을 고장 시작 시간 T=0에서 수리를 시작하여, 각 시스템 별로 수리 완료 후 재 가동되는시간의 평균을 구하는 것이다. MTTR는 수리율(repair rate)을 구할 수 있다. 식 2는 MTTR의 식을 보여주고 있다.Mean time to repair (MTTR) means the average time from the failure of the system to restart after repair. In other words, N systems are repaired at the failure start time T = 0, and the average of the restart time after each repair is completed for each system. MTTR can find the repair rate. Equation 2 shows the equation of MTTR.
상기 Mean time between failures (MTBF)는 앞서 설명한 MTTF, MTTR의 합으로 표현된다. 한 번의 고장으로 시스템을 대체 할 경우 MTTF와 MTBF의 차이는 없다. 그러나 재사용 시스템의 경우 MTBF를 통해 시스템의 성능 척도로 사용 할 수 있다. 특히 MTBF는 시스템의 가용도를 측정하기 위한 중요한 자료를 제시한다.The mean time between failures (MTBF) is expressed as the sum of the MTTF and MTTR described above. There is no difference between MTTF and MTBF when replacing a system in one failure. However, for reusable systems, MTBF can be used as a performance measure of the system. In particular, MTBF provides important data for measuring the availability of a system.
또한, 각 센서 값을 수집하여 온도, 전도도, pH, DO, 탁도, CL, NO3, NO3를 측정하는 각 센서별 최대값, 최소값, 평균값을 확인함으로써, 시스템의 오동작 여부를 확인 할 수 있다.In addition, by collecting the values of each sensor to check the maximum value, minimum value, average value for each sensor measuring temperature, conductivity, pH, DO, turbidity, CL, NO3, NO3, it is possible to determine whether the system malfunctions.

Claims (3)

  1. 수질을 측정하기 위한 일정 범위에 다수 설치되어 센서 노드(Sensor Node)를 형성하는 다항목 수질측정기로부터 수질 정보 데이터를 수신받아 가공하여 인터넷망을 통해 통합 관제 수단으로 전송하기 위한 적어도 하나의 통합 게이트웨이와, 상기 통합 게이트웨이로부터 수신된 수질 데이터 정보를 활용하여 수질 상태를 분석하고, 상기 다항목 수질측정기를 통해 센싱된 수심에 따른 수질정보를 분석하여 지리적 수질 정보를 생성하기 위한 통합 관제 수단를 포함하는 IoT기반 농업 용수 모니터링 시스템에,At least one integrated gateway for receiving and processing water quality information data from a multi-item water quality measuring instrument that is installed in a certain range for measuring water quality and forms a sensor node, and transmitted to the integrated control means through the Internet network; IoT based, including an integrated control means for analyzing the water quality state using the water quality data information received from the integrated gateway, and analyzing the water quality information according to the sensed depth through the multi-item water quality meter to generate geographic water quality information Agricultural water monitoring system,
    상기 다항목 수질측정기(100)의 수명을 예측하기 위한 고장률 평가를 수행하도록, 측정 데이터로 시스템을 사용 시작 시점에서 고장까지의 동작 평균시간을 의미하는 MTTF와;MTTF, which means an average time of operation from a start point of use of the system to failure as measurement data, so as to perform failure rate estimation for predicting the life of the multi-item water quality meter 100;
    시스템이 고장에서부터 수리 이후에 재 가동 되기까지의 평균시간을 의미하는 MTTR와;MTTR, which means the average time from system failure to restart after repair;
    상기 MTTF, MTTR의 합으로 표현되는 MTBF가 사용되는 것을 특징으로 하는 IoT기반 농업 용수 모니터링 시스템.IoT-based agricultural water monitoring system, characterized in that the MTBF expressed as the sum of the MTTF, MTTR is used.
  2. 제 1항에 있어서,The method of claim 1,
    상기 다항목 수질측정기(100)의 수명을 예측하기 위한 고장률 평가를 수행하도록, 각 센서 노드 스테이션의 센서 값을 수집하여 각 센서별 최대값, 최소값, 평균값을 확인하여 시스템의 오동작 여부를 확인하는 것을 특징으로 하는 IoT기반 농업 용수 모니터링 시스템.In order to perform failure rate estimation for predicting the life of the multi-item water quality meter 100, the sensor values of each sensor node station are collected and the maximum, minimum and average values for each sensor are checked to determine whether the system is malfunctioning. IoT based agricultural water monitoring system.
  3. 제 2항에 있어서,The method of claim 2,
    상기 다항목 수질측정기는 전도도(EC) 센서, 염도 센서, 온도 센서, 용존산소(DO) 센서, 용존수소(pH) 센서, 탁도 센서, 수심 측정 센서, 암모니암 및 질소 측정 센서 중 적어도 어느 하나로부터 수질 데이터를 측정하는 것을 특징으로 하는 IoT기반 농업 용수 모니터링 시스템.The multi-item water quality meter is selected from at least one of a conductivity (EC) sensor, a salinity sensor, a temperature sensor, a dissolved oxygen (DO) sensor, a dissolved hydrogen (pH) sensor, a turbidity sensor, a depth measurement sensor, an ammonia arm, and a nitrogen measurement sensor. IoT-based agricultural water monitoring system, characterized in that to measure the water quality data.
PCT/KR2016/015321 2016-11-01 2016-12-27 Iot-based agricultural water monitoring system WO2018084371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160144596 2016-11-01
KR10-2016-0144596 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018084371A1 true WO2018084371A1 (en) 2018-05-11

Family

ID=62076914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015321 WO2018084371A1 (en) 2016-11-01 2016-12-27 Iot-based agricultural water monitoring system

Country Status (1)

Country Link
WO (1) WO2018084371A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879908A (en) * 2020-08-13 2020-11-03 江苏华东新能源勘探有限公司(江苏省有色金属华东地质勘查局八一三队) Agricultural sewage real-time monitoring processing system
CN112463591A (en) * 2020-11-12 2021-03-09 武汉市农业科学院 Agricultural Internet of things system evaluation method, device, equipment and storage medium
CN112700453A (en) * 2020-12-14 2021-04-23 山东贵合信息科技有限公司 Agricultural water quality supervision method, equipment and medium based on Internet of things

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195979B1 (en) * 2010-07-07 2012-11-01 한국바이오시스템(주) Method and system for managing water
KR20130017996A (en) * 2011-08-12 2013-02-20 주식회사 정림 Method for verifying reliability for monitoring in real time the water quality according to usn
KR20140128543A (en) * 2013-04-26 2014-11-06 (주)에코코 Monitoring system for apparatus improving water quality and method for processing of the same
KR20140147621A (en) * 2013-06-20 2014-12-30 한국전자통신연구원 Apparatus and Method for Fault Control of Water Quality Sensor
KR20160096327A (en) * 2015-02-05 2016-08-16 주식회사 텔레웍스 Accurate data collection method using a data signal processing of the water composite sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195979B1 (en) * 2010-07-07 2012-11-01 한국바이오시스템(주) Method and system for managing water
KR20130017996A (en) * 2011-08-12 2013-02-20 주식회사 정림 Method for verifying reliability for monitoring in real time the water quality according to usn
KR20140128543A (en) * 2013-04-26 2014-11-06 (주)에코코 Monitoring system for apparatus improving water quality and method for processing of the same
KR20140147621A (en) * 2013-06-20 2014-12-30 한국전자통신연구원 Apparatus and Method for Fault Control of Water Quality Sensor
KR20160096327A (en) * 2015-02-05 2016-08-16 주식회사 텔레웍스 Accurate data collection method using a data signal processing of the water composite sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879908A (en) * 2020-08-13 2020-11-03 江苏华东新能源勘探有限公司(江苏省有色金属华东地质勘查局八一三队) Agricultural sewage real-time monitoring processing system
CN111879908B (en) * 2020-08-13 2023-08-22 江苏华东新能源勘探有限公司(江苏省有色金属华东地质勘查局八一三队) Agricultural sewage real-time monitoring processing system
CN112463591A (en) * 2020-11-12 2021-03-09 武汉市农业科学院 Agricultural Internet of things system evaluation method, device, equipment and storage medium
CN112463591B (en) * 2020-11-12 2023-03-21 武汉市农业科学院 Agricultural Internet of things system evaluation method, device, equipment and storage medium
CN112700453A (en) * 2020-12-14 2021-04-23 山东贵合信息科技有限公司 Agricultural water quality supervision method, equipment and medium based on Internet of things
CN112700453B (en) * 2020-12-14 2023-04-07 山东贵合信息科技有限公司 Agricultural water quality supervision method, equipment and medium based on Internet of things

Similar Documents

Publication Publication Date Title
JP6641893B2 (en) How to manage sensor networks
US20180213304A1 (en) Automatic network topology detection and fraud detection
JP5420245B2 (en) Client device auxiliary location data acquisition method
Baccour et al. Radiale: A framework for designing and assessing link quality estimators in wireless sensor networks
AU2019200073B2 (en) Automatic network topology detection and fraud detection
WO2018084371A1 (en) Iot-based agricultural water monitoring system
KR20180060980A (en) Method and apparatus for diagnosing error of operating equipment in smart farm
CN101213421A (en) Automated integration of data in utility monitoring systems
KR102034082B1 (en) Positioning environment analysis apparatus, positioning performance projection method and system of terminal using the same
KR20150014616A (en) Web and mobile management system for management of temperature estimate/ index of cattle shed environment based on Ubiquitous Sensor Network
Fang et al. Issues of using wireless sensor network to monitor urban air quality
Kulau et al. Undervolting in real world wsn applications: A long-term study
CN110177005A (en) Public utility distributes network analysis
KR20130017996A (en) Method for verifying reliability for monitoring in real time the water quality according to usn
JP6624780B2 (en) Positioning method, server and program
CN103020721B (en) A kind of method assessing automation system for the power network dispatching real time data processing efficiency
Lay-Ekuakille et al. Supervised and characterized smart monitoring network for sensing environmental quantities
JP6025692B2 (en) Area quality degradation estimation apparatus and method
WO2018061326A1 (en) Automatic inspection system, object to be inspected reading device for automatic inspection system, and automatic inspection system control method
Dias et al. A self-managed architecture for sensor networks based on real time data analysis
US20140301276A1 (en) Method and system for evaluation of sensor observations
CN117114365A (en) Inspection task management method, equipment and readable storage medium
Park et al. CROOD: Estimating crude building occupancy from mobile device connections without ground-truth calibration
US10203231B2 (en) Sonde
Shi et al. A web-based monitoring system as a measurement tool in greenhouses using wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920690

Country of ref document: EP

Kind code of ref document: A1