WO2018084298A1 - Method for rapidly detecting structural anomaly in chromosome, promoter, and kit including said promoter - Google Patents

Method for rapidly detecting structural anomaly in chromosome, promoter, and kit including said promoter Download PDF

Info

Publication number
WO2018084298A1
WO2018084298A1 PCT/JP2017/039999 JP2017039999W WO2018084298A1 WO 2018084298 A1 WO2018084298 A1 WO 2018084298A1 JP 2017039999 W JP2017039999 W JP 2017039999W WO 2018084298 A1 WO2018084298 A1 WO 2018084298A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybridization
chromosome
betaine
trimethylglycine
carnitine
Prior art date
Application number
PCT/JP2017/039999
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 前川
Original Assignee
株式会社Gsp研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsp研究所 filed Critical 株式会社Gsp研究所
Publication of WO2018084298A1 publication Critical patent/WO2018084298A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials

Definitions

  • the present invention relates to a method for detecting a structural abnormality of a chromosome, an accelerator, and a kit containing the same. More specifically, the present invention relates to a method for rapidly detecting a structural abnormality of a chromosome using a labeled probe that binds to a nucleic acid, a hybridization accelerator, and a kit containing the same.
  • chromosomes that are individually excess or lack, partial excess or lack of one chromosome, breaks, rings and chromosome rearrangements. Also among chromosomal rearrangements are translocations, dicentrics, inversions, insertions, amplifications and deletions. These chromosomal abnormalities can be detected by in situ hybridization.
  • a probe related to a gene translocation associated with a chromosomal structural abnormality was dissolved in a solution based on formamide and dextran sulfate and used for in situ hybridization.
  • the present invention has been made in view of the problems of the conventional examples as described above, and the purpose thereof is a labeled probe that binds to a nucleic acid in order to reduce time so that a genetic structural abnormality can be detected quickly.
  • a method, an accelerator, and a method for detecting a structural abnormality of a chromosome using one or a combination selected from the group consisting of betaine, carnitine and trimethylglycine, ie, two or three simultaneously added hybridization solutions To provide a kit.
  • the present invention relates to a method for detecting a chromosomal abnormality, a hybridization solution in which one or a combination selected from the group consisting of betaine, carnitine and trimethylglycine is added to a mixture of a plurality of nucleic acid probes, that is, two or three at the same time.
  • a hybridization solution in which one or a combination selected from the group consisting of betaine, carnitine and trimethylglycine is added to a mixture of a plurality of nucleic acid probes, that is, two or three at the same time.
  • a method for detecting a genetic abnormality having an abnormal chromosome structure wherein a plurality of nucleic acid probes are dissolved in a hybridization solution containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine.
  • a method for detecting a chromosomal structural abnormality characterized by hybridizing with the mixture obtained.
  • any one of the methods (1) to (3) staining a target chromosomal DNA in an interphase cell and quickly determining whether or not there is a structural abnormality in the chromosome.
  • a method for detecting a structural abnormality of a characteristic chromosome. In in situ hybridization, a method of promoting hybridization by adding one or more selected from the group consisting of betaine, carnitine, and trimethylglycine to a hybridization solution. (6) The method according to (5), wherein polyethylene glycol is further added to the hybridization solution. (7) A hybridization promoter for in situ hybridization, containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine. (8) The hybridization accelerator according to (7), wherein polyethylene glycol is further added to the hybridization solution. (9) A kit comprising the hybridization accelerator according to (7) or (8).
  • the present invention operates as follows. Hybridization is promoted by adding one or more combinations selected from the group consisting of betaine, carnitine, and trimethylglycine to a mixture containing a plurality of nucleic acid probes, that is, two or three types at the same time, and interphase cells
  • the time required for staining the target chromosomal DNA and determining whether or not there is a chromosomal structural abnormality can be greatly reduced. Actually, spots start to appear 15 minutes after the start of hybridization, and then increase after 60 minutes and 90 minutes. After 120 to 240 minutes, spots almost equal to those after 24 hours can be observed. On the other hand, when a control hybridization solution to which none of betaine, carnitine or trimethylglycine was added was used, no spots were observed until 240 minutes, and spots were first observed after 24 hours.
  • the time required to stain a target chromosomal DNA in an interphase cell and determine whether or not a chromosomal structural abnormality exists is reduced.
  • FIG. 1 is a schematic diagram showing a state of hybridization between normal cells and abnormal cells.
  • FIG. 2 is a diagram showing a change with time of the detection result of hybridization when the hybridization method of the present invention is used.
  • FIG. 3 is a diagram showing a change with time of the detection result of hybridization when the control hybridization method is used.
  • the present invention relates to a method for increasing the efficiency of chromosome in situ hybridization, an accelerator, and a kit containing the same.
  • the present invention is characterized in that the time required for hybridization can be shortened by adding one or more selected from the group consisting of betaine, carnitine, and trimethylglycine to a hybridization solution used for in ⁇ situ hybridization. is there.
  • the amount of betaine, carnitine, or trimethylglycine added to the hybridization solution of the present invention is not particularly limited as long as it promotes hybridization, but preferred lower concentrations are 10 ⁇ M or more, 100 ⁇ M or more, 1 mM or more, 10 mM or more, 50 mM or more.
  • the upper limit concentration is preferably 1000 mM or less, 500 mM or less, or 300 mM or less.
  • the hybridization rate can be further improved by adding polyethylene glycol to the hybridization solution of the present invention.
  • the polyethylene glycol is not particularly limited as long as hybridization is promoted.
  • polyethylene glycol 200, polyethylene glycol 4000, polyethylene glycol 6000, polyethylene glycol 8000, and the like are preferably used.
  • the lower limit of the preferred concentration of polyethylene glycol to be added is 0.01% or more, 0.1% or more, 1% or more in terms of weight%, and the upper limit of the preferred concentration is 10% or less, % Or less and 2% or less.
  • polyethylene glycol is added together with betaine to the hybridization solution, it is preferable to add both at the same concentration (% by weight).
  • the hybridization solution used in the present invention is not particularly limited as long as it is a hybridization solution that can be used for in situ hybridization.
  • 50% formamide is often used.
  • one or more selected from the group consisting of betaine, carnitine, and trimethylglycine are added to a standard hybridization solution.
  • polyethylene glycol may be added.
  • the concentration of formamide when formamide is added, it is preferable to use a concentration of 10% to 50%.
  • the optimal formamide concentration to improve the hybridization rate is optimal in in situ hybridization experiments depending on other factors, i.e. the concentration of betaine, carnitine and / or trimethylglycine added, the concentration of polyethylene glycol, etc. The concentration can be determined.
  • the preferred formamide concentration is not particularly limited as long as in situ hybridization is appropriately performed, but the upper limit of the preferred concentration is 50% or less, 40% or less, 35% or less, 30% or less, and the lower limit is 10% or more and 15% or more.
  • the first step in carrying out the method according to the present invention is to isolate chromosome-specific DNA. Isolating a sufficient amount of a particular chromosome type or chromosome subregion from which a staining composition is derived, and then extracting DNA from the isolated chromosome or chromosome subregion. The extracted DNA is used to form a DNA insert by cloning using standard genetic engineering techniques. This step can be performed, for example, by positional cloning.
  • DNA can be isolated from several sources. Chromosome-specific staining reagents can be prepared from plant or animal DNA. Important sources of animal DNA are mammals, particularly primates or rodents, in which primate sources are, for example, humans or monkeys, and rodent sources are, for example, rats or mice is there.
  • the DNA extracted from the selected chromosome type is amplified by cloning the DNA in a vector or growing the DNA in a cell line.
  • a single copy probe consists of a nucleic acid fragment that is complementary to a single copy sequence contained in the target region of the genome.
  • a DNA library formed by cloning a target region may be used.
  • the clones in the library can include those that contain DNA whose entire sequence is a single copy, those that contain repetitive sequences, and those that have single copy sequences and portions of repetitive sequences. By selecting individual clones and pooling these clones containing only a single copy sequence, probes are obtained that specifically hybridize to the target region. For hybridization, a group of probes that bind to a series of continuous regions may be used.
  • hybridization method of the present invention is performed only with the target chromosome, that is, the specificity of the hybridization can be confirmed by testing by in situ hybridization, which is a known method.
  • Clone DNA can be used as a probe if the nucleic acid fragment, dissolved in a solution containing betaine under appropriate hybridization conditions, binds to a specific single copy or repeat sequence as the desired target region.
  • the hybridization rate of the same strand increases as the concentration of the complementary nucleic acid strand increases.
  • sequences present at high concentrations become duplexed more quickly than in other cases.
  • Double-stranded nucleic acids in which probes that have not bound to the chromosomes are hybridized are then removed by washing. The rest can be used as probes.
  • the partially hybridized mixture can be used as a probe, but the duplex sequence cannot bind to the target substance.
  • the following method is a typical method of the population fixing method effective for forming the target-specific staining according to the present invention.
  • the double-stranded probe nucleic acid dissolved in the hybridization solution containing betaine is denatured and then incubated for a sufficient time for high-copy sequence under hybridization conditions to substantially become a double-stranded sequence.
  • a hybridization mixture dissolved in a solution containing betaine is then applied to the sample. Remaining labeled-heavy chain copies of highly repeated sequences bind throughout the sample and form a weak and widely dispersed signal. The diverse binding of specific low copy sequences for the target region of the genome creates a specific signal that can be easily distinguished.
  • This method includes, for example, a probe having a concentration range of 1-10 ng / ⁇ l when a chromosome-specific library for chromosome 17 is used as a chromosome probe.
  • a hybridization mixture obtained by dissolving a probe in a hybridization solution containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine can be used, for example, at 75 ° C. to denature the probe before being applied to the sample. And then incubated at 37 ° C. for 5, 15, 30, 60, 90, 120, 240 minutes and 24 hours.
  • probe labeling is that the probe bound to the target substance can be detected.
  • the probe nucleic acid fragment can incorporate a labeling substance (for example, a labeled nucleotide) into a polynucleotide by a nick translation technique which is a standard genetic engineering technique.
  • the chromosomes are treated with a reagent that removes the protein.
  • proteins can be removed from chromosomes by using FFPE FISH Pretreatment kit 2 (sold by GSP Laboratory) and processing according to the manual attached to the kit.
  • the degeneration factors are typically removed prior to application of the probe mixture.
  • formamide and heat are the main denaturing factors, and their removal is conveniently accomplished by several washes with solvents. Such solvents are often cooled, such as the 70% and 100% cold ethanol series.
  • the composition of the denaturing material can be adjusted as appropriate for in situ hybridization, either by adding other components or washing with an appropriate solvent.
  • the probe and target nucleic acid are denatured simultaneously by application of the hybridization mixture and subsequent appropriate heating.
  • the physicochemical conditions of the chromosomal DNA and probe atmosphere during the time the probe mixture is applied are related to hybridization conditions or annealing conditions.
  • the best conditions for a particular application can be adjusted by controlling a number of factors, including the following: Concentration of components, incubation time of chromosomes in the probe mixture, concentration of nucleic acid fragments that make up the probe mixture, complexity, and length.
  • hybridization conditions should be close enough to the melting temperature (Tm) to minimize non-specific binding.
  • Tm melting temperature
  • such conditions are not as stringent as reducing the exact hybridization of complementary sequences below detection levels or requiring excessive long incubation times.
  • the concentration of nucleic acid in the hybridization mixture is an important factor. Such concentrations must be high enough so that sufficient hybridization of each chromosomal binding locus occurs within a reasonable time (5-240 minutes). Concentrations higher than those required to obtain a sufficient signal should be avoided, thereby minimizing non-specific binding.
  • An important practical constraint on the concentration of nucleic acids in the probe of the probe mixture is solubility. There is an upper limit on fragment concentration, eg, unit length of nucleic acid per unit volume, which can be retained in solution and hybridizes effectively.
  • Selection of a clone library containing the HER2 gene DNA fragments from a human chromosome-specific library can be obtained from an independently constructed BAC library.
  • the present invention overcomes these limitations by allowing rapid detection of specific structural and numerical abnormalities in the interphase nucleus. These anomalies are detected as described above. As the genetic nature of specific malignancies is increasingly well known, interphase assessment analysis can be made more specific by selecting hybridization probes that target genetic disorders. . Specific structural abnormalities on selected chromosomes can be detected by the use of an exact hybridization probe. The use of these probes allows diagnosis of specific disease phenotypes. They can be used to follow the reduction and reappearance of malignant cells during treatment. In such applications, interphase analysis is particularly important because there may be a small number of cells that may be present and they may be difficult or impossible to stimulate and mitose.
  • Processes associated with loss of duplication and deletion, gene amplification and heterozygosity can also be rapidly detected in the metaphase and interphase using the techniques of the present invention. Such a process is associated with an increase in the number of different tumors.
  • Example 1 Breast cancer tissue HER2 gene and chromosome 17 marker probe Probes of HER2 gene (white circle in Fig. 1) and chromosome 17 marker (black circle in Fig. 1) that have been used to analyze gene translocation associated with chromosomal abnormalities (Patent No. 5554008) was used to analyze the genetic structure (numerical) abnormalities of the HER2 gene and chromosome 17 marker produced in breast cancer cells. Normal cells can detect two white signals of the HER2 gene and two black signals of the chromosome 17 marker, but when they become breast cancer cells, the number of both signals changes (Fig. 1).
  • Hybridization solution to which betaine was added (based on betaine 300 mM, dextran sulfate 20%, formamide 30%, sodium chloride 600 mM, trisodium citrate dihydrate 60 mM, 0.1% Tween-20, 0.1% SDS % Means weight%, and so on) and conventional hybridization solutions based on formamide and dextran sulfate (20% dextran sulfate, 30% formamide, 600 mM sodium chloride, trisodium citrate dihydrate) And a solution based on 60 mM, 0.1% Tween-20, and 0.1% SDS).
  • the probe was heated on a hot plate at 75 ° C. for 5 minutes to denature, then incubated at 37 ° C.
  • in-situ hybridization was performed using a hybridization solution obtained by adding polyethylene glycol to the betaine-added hybridization solution, and the hybridization signal was examined by visual inspection. Compared with the case where a hybridization solution containing only betaine was used. In the case of using a hybridization solution to which betaine + polyethylene glycol was added, a stronger signal was obtained in a shorter time. This is considered to mean that the hybridization reaction is further promoted by adding both betaine and polyethylene glycol.
  • the present invention can be used in the medical industry, the inspection industry, and the like.

Abstract

The present invention provides a method for rapidly detecting a structural anomaly in a chromosome. In this method, a mixture is used for a labeled probe that bonds with a nucleic acid. Said mixture is dissolved in a liquid that contains: one type selected from the group consisting of betaine, carnitine, and trimethylglycine; or a combination thereof, i.e., two or three types simultaneously. The present design allows the time required for diagnosis to be markedly reduced because it is possible to stain targeted chromosomal DNA in an interphase cell and to perform detection such that the time required to determine whether or not there is a structural anomaly in a chromosome is reduced from 16-72 hours to within four hours.

Description

染色体の構造異常を迅速に検出するための方法、促進剤およびそれを含むキットMethod for rapidly detecting chromosomal structural abnormality, promoter and kit containing the same
 本発明は、染色体の構造異常を検出するための方法、促進剤及びそれを含むキットに関する。より詳しくは、核酸と結合する標識されたプローブを使用して染色体の構造異常を迅速に検出するための方法、ハイブリダイゼーション促進剤及びそれを含むキットに関するものである。 The present invention relates to a method for detecting a structural abnormality of a chromosome, an accelerator, and a kit containing the same. More specifically, the present invention relates to a method for rapidly detecting a structural abnormality of a chromosome using a labeled probe that binds to a nucleic acid, a hybridization accelerator, and a kit containing the same.
 染色体の構造異常は遺伝性疾患や癌などで起こることが知られている。染色体の構造異常には数種類あり、例えば、個々に過剰または欠如のある染色体、1個の染色体の部分的過剰または欠如、切断、環および染色体再配列などがある。また、染色体再配列の中には、転座、2動原体、逆位、挿入、増幅および欠失がある。これらの染色体異常は、インシトゥ ハイブリダイゼーション(in situ hybridization)により検出することができる。 It is known that structural abnormalities of chromosomes occur due to genetic diseases or cancer. There are several types of chromosomal structural abnormalities, such as chromosomes that are individually excess or lack, partial excess or lack of one chromosome, breaks, rings and chromosome rearrangements. Also among chromosomal rearrangements are translocations, dicentrics, inversions, insertions, amplifications and deletions. These chromosomal abnormalities can be detected by in situ hybridization.
 従来は、例えば下記の文献1にあるように染色体構造異常に伴う遺伝子転座と関連するプローブをホルムアミドおよび硫酸デキストランを基本とした溶液に溶解してin situ hybridizationに使用されていた。しかしながら、間期細胞中の標的となる染色体DNAを染色し、染色体の構造異常が存在するか否かを決定するために16-72時間程度必要としていた。 Conventionally, for example, as described in Reference 1 below, a probe related to a gene translocation associated with a chromosomal structural abnormality was dissolved in a solution based on formamide and dextran sulfate and used for in situ hybridization. However, it took about 16-72 hours to stain the target chromosomal DNA in interphase cells and determine whether or not there is a structural abnormality of the chromosome.
 そこで、in situ hybridizationにより染色体構造異常を検出するまでの時間を短縮する方法、促進剤およびキットが求められていた。 Therefore, there has been a demand for a method, an accelerator, and a kit that can shorten the time required for detecting an abnormal chromosome structure by in situ hybridization.
特願2009-110602Japanese Patent Application No. 2009-110602
 本発明は、上述のような従来例の問題点に鑑みてなされたものであり、その目的は、遺伝子構造異常を迅速に検出できるよう時間を短縮するために、核酸と結合する標識されたプローブにベタイン、カルニチンおよびトリメチルグリシンからなる群から選ばれる1種類またはそれぞれの組み合わせ、すなわち2種類または3種類同時に添加したハイブリダイゼーション溶液を使用して染色体の構造異常を検出するための方法、促進剤およびキットを提供することにある。 The present invention has been made in view of the problems of the conventional examples as described above, and the purpose thereof is a labeled probe that binds to a nucleic acid in order to reduce time so that a genetic structural abnormality can be detected quickly. A method, an accelerator, and a method for detecting a structural abnormality of a chromosome using one or a combination selected from the group consisting of betaine, carnitine and trimethylglycine, ie, two or three simultaneously added hybridization solutions To provide a kit.
 本発明は、染色体異常を検出する方法において、複数の核酸プローブの混合物にベタイン、カルニチンおよびトリメチルグリシンからなる群から選ばれる1種類またはそれぞれの組み合わせ、すなわち2種類または3種類同時に添加したハイブリダイゼーション溶液を使用することにより間期細胞中の標的となる染色体DNAを染色し、染色体の構造異常が存在するか否かを決定するために要する時間を大幅に短縮することにより前記課題を解決するものである。 The present invention relates to a method for detecting a chromosomal abnormality, a hybridization solution in which one or a combination selected from the group consisting of betaine, carnitine and trimethylglycine is added to a mixture of a plurality of nucleic acid probes, that is, two or three at the same time. In order to solve the above-mentioned problem, the time required to stain the target chromosomal DNA in interphase cells and to determine whether or not there is a chromosomal structural abnormality is greatly reduced. is there.
 すなわち、本明細書によれば、以下の発明が提供される。
(1)染色体の構造が異常である遺伝子異常を検出する方法であって、複数の核酸プローブを、ベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上を含むハイブリダイゼーション溶液に溶解した混合物を用いてハイブリダイズさせることを特徴とする、染色体の構造異常を検出する方法。
That is, according to this specification, the following invention is provided.
(1) A method for detecting a genetic abnormality having an abnormal chromosome structure, wherein a plurality of nucleic acid probes are dissolved in a hybridization solution containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine. A method for detecting a chromosomal structural abnormality, characterized by hybridizing with the mixture obtained.
(2)前記ハイブリダイゼーション溶液にさらにポリエチレングリコールを添加することを特徴とする(1)の方法。
(3)(1)または(2)において、間期細胞中の標的となる染色体DNAを染色し、染色体の構造異常が存在するか否かを迅速に決定することを特徴とする染色体の構造異常を検出する方法。
(2) The method according to (1), wherein polyethylene glycol is further added to the hybridization solution.
(3) A chromosomal structural abnormality characterized in that in (1) or (2), a target chromosomal DNA in an interphase cell is stained to quickly determine whether or not a chromosomal structural abnormality exists. How to detect.
(4)(1)~(3)のいずれかの方法において、間期細胞の中の標的となる染色体DNAを染色し、当該染色体に構造異常が存在するか否かを迅速に決定することを特徴とする染色体の構造異常を検出する方法。
(5)in situ hybridizationにおいて、ベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上をハイブリダイゼーション溶液に添加することにより、ハイブリダイゼーションを促進する方法。
(6)前記ハイブリダイゼーション溶液にさらにポリエチレングリコールを添加することを特徴とする(5)の方法。
(7)ベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上を含有する、in situ hybridizationのハイブリダイゼーション促進剤。
(8)前記ハイブリダイゼーション溶液にさらにポリエチレングリコールを添加することを特徴とする(7)のハイブリダイゼーション促進剤。
(9)(7)または(8)に記載のハイブリダイゼーション促進剤を含むキット。
(4) In any one of the methods (1) to (3), staining a target chromosomal DNA in an interphase cell and quickly determining whether or not there is a structural abnormality in the chromosome. A method for detecting a structural abnormality of a characteristic chromosome.
(5) In in situ hybridization, a method of promoting hybridization by adding one or more selected from the group consisting of betaine, carnitine, and trimethylglycine to a hybridization solution.
(6) The method according to (5), wherein polyethylene glycol is further added to the hybridization solution.
(7) A hybridization promoter for in situ hybridization, containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine.
(8) The hybridization accelerator according to (7), wherein polyethylene glycol is further added to the hybridization solution.
(9) A kit comprising the hybridization accelerator according to (7) or (8).
作用Action
 本発明は次のように作用する。
 複数の核酸プローブを含む混合物にベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1種類、またはそれ以上の組み合わせ、すなわち2種類もしくは3種類同時に添加することによりハイブリダイゼーションを促進させ、間期細胞中の標的となる染色体DNAを染色し、染色体の構造異常が存在するか否かを決定するために要する時間を大幅に短縮することができる。実際には、ハイブリダイゼーション開始15分後からスポットが見え始め、その後60分後、90分後でスポットが増え、120~240分後には24時間後とほぼ同等数のスポットが観察できる。これに対し、対照の、ベタイン、カルニチンまたはトリメチルグリシンのいずれも添加していないハイブリダイゼーション溶液を用いた場合は、240分後までスポットは観察されず、24時間後に初めてスポットが観察された。
The present invention operates as follows.
Hybridization is promoted by adding one or more combinations selected from the group consisting of betaine, carnitine, and trimethylglycine to a mixture containing a plurality of nucleic acid probes, that is, two or three types at the same time, and interphase cells The time required for staining the target chromosomal DNA and determining whether or not there is a chromosomal structural abnormality can be greatly reduced. Actually, spots start to appear 15 minutes after the start of hybridization, and then increase after 60 minutes and 90 minutes. After 120 to 240 minutes, spots almost equal to those after 24 hours can be observed. On the other hand, when a control hybridization solution to which none of betaine, carnitine or trimethylglycine was added was used, no spots were observed until 240 minutes, and spots were first observed after 24 hours.
 本発明により間期細胞中の標的となる染色体DNAを染色し、染色体の構造異常が存在するか否かを決定するために要する時間が短縮される。 According to the present invention, the time required to stain a target chromosomal DNA in an interphase cell and determine whether or not a chromosomal structural abnormality exists is reduced.
図1は、正常細胞と異常細胞のハイブリダイゼーションの様子を示す模式図である。FIG. 1 is a schematic diagram showing a state of hybridization between normal cells and abnormal cells. 図2は、本発明のハイブリダイゼーション方法を用いた場合のハイブリダイゼーションの検出結果の経時的変化を示す図である。FIG. 2 is a diagram showing a change with time of the detection result of hybridization when the hybridization method of the present invention is used. 図3は、対照のハイブリダイゼーション方法を用いた場合のハイブリダイゼーションの検出結果の経時的変化を示す図である。FIG. 3 is a diagram showing a change with time of the detection result of hybridization when the control hybridization method is used.
 本発明は、染色体のin situハイブリダイゼーションの効率を上げる方法、促進剤およびそれを含むキットに関する。本発明においては、in situ hybridizationに使用するハイブリダイゼーション溶液に、ベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上を添加することにより、ハイブリダイゼーションに要する時間を短縮できることに特徴がある。 The present invention relates to a method for increasing the efficiency of chromosome in situ hybridization, an accelerator, and a kit containing the same. The present invention is characterized in that the time required for hybridization can be shortened by adding one or more selected from the group consisting of betaine, carnitine, and trimethylglycine to a hybridization solution used for in に situ hybridization. is there.
 本発明の、ベタイン、カルニチン、トリメチルグリシンのハイブリダイゼーション溶液への添加量は、ハイブリダイゼーションを促進する限り特に制限されないが、好ましい下限濃度は、10μM以上、100μM以上、1mM以上、10mM以上、50mM以上、100mM以上であり、好ましい上限濃度は、1000mM以下、500mM以下、300mM以下である。 The amount of betaine, carnitine, or trimethylglycine added to the hybridization solution of the present invention is not particularly limited as long as it promotes hybridization, but preferred lower concentrations are 10 μM or more, 100 μM or more, 1 mM or more, 10 mM or more, 50 mM or more. The upper limit concentration is preferably 1000 mM or less, 500 mM or less, or 300 mM or less.
 本発明のハイブリダイゼーション溶液には、さらにポリエチレングリコールを添加することで、さらにハイブリダイゼーション速度を向上させることができる。ポリエチレングリコールとしては、ハイブリダイゼーションを促進する限り特に制限はないが、例えば、ポリエチレングリコール200、ポリエチレングリコール4000、ポリエチレングリコール6000、ポリエチレングリコール8000などが好ましく用いられる。この場合、添加するポリエチレングリコールの好ましい濃度の下限としては、重量%表記で、0.01%以上、0.1%以上、1%以上であり、好ましい濃度の上限としては、10%以下、5%以下、2%以下である。ベタインとともにポリエチレングリコールをハイブリダイゼーション溶液に添加する場合は、両者を同濃度(重量%)で添加することが好ましい。 The hybridization rate can be further improved by adding polyethylene glycol to the hybridization solution of the present invention. The polyethylene glycol is not particularly limited as long as hybridization is promoted. For example, polyethylene glycol 200, polyethylene glycol 4000, polyethylene glycol 6000, polyethylene glycol 8000, and the like are preferably used. In this case, the lower limit of the preferred concentration of polyethylene glycol to be added is 0.01% or more, 0.1% or more, 1% or more in terms of weight%, and the upper limit of the preferred concentration is 10% or less, % Or less and 2% or less. When polyethylene glycol is added together with betaine to the hybridization solution, it is preferable to add both at the same concentration (% by weight).
 本発明に使用するハイブリダイゼーション溶液としては、in situ hybridizationに使用できるハイブリダイゼーション溶液であれば、特に制限なく使用することができる。例えば、標準的なハイブリダイゼーションでは、ホルムアミド50%のものが多く用いられるが、本願発明についても標準的なハイブリダイゼーション溶液にベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上を添加してもよく、さらに、ポリエチレングリコールを添加してもよい。 The hybridization solution used in the present invention is not particularly limited as long as it is a hybridization solution that can be used for in situ hybridization. For example, in standard hybridization, 50% formamide is often used. In the present invention, one or more selected from the group consisting of betaine, carnitine, and trimethylglycine are added to a standard hybridization solution. Further, polyethylene glycol may be added.
 また、本願発明においては、ホルムアミドを添加する場合、10%~50%までの濃度を用いるのが好ましい。ハイブリダイゼーション速度を向上させるために最適なホルムアミドの濃度は他の要素、すなわち、添加するベタイン、カルニチン、および/またはトリメチルグリシンの濃度、ポリエチレングリコールの濃度などに応じてin situ ハイブリダイゼーション実験により最適な濃度を求めることができる。 In the present invention, when formamide is added, it is preferable to use a concentration of 10% to 50%. The optimal formamide concentration to improve the hybridization rate is optimal in in situ hybridization experiments depending on other factors, i.e. the concentration of betaine, carnitine and / or trimethylglycine added, the concentration of polyethylene glycol, etc. The concentration can be determined.
 ベタイン、カルニチン、および/またはトリメチルグリシンを添加する場合、および、さらにポリエチレングリコールを添加する場合の好ましいホルムアミドの濃度はin situ ハイブリダイゼーションが適切に行われる限り特に制限はないが、好ましい濃度の上限は50%以下、40%以下、35%以下、30%以下であり、下限は10%以上、15%以上である。 When betaine, carnitine, and / or trimethylglycine is added, and when polyethylene glycol is further added, the preferred formamide concentration is not particularly limited as long as in situ hybridization is appropriately performed, but the upper limit of the preferred concentration is 50% or less, 40% or less, 35% or less, 30% or less, and the lower limit is 10% or more and 15% or more.
 本発明に係る方法を実施する第1ステップは、染色体特異的DNAを分離することである。染色組成物が導かれる十分な量の特定の染色体タイプまたは染色体サブリージョンを分離すること、その後分離された染色体または染色体サブリージョンからDNAを抽出する。抽出されたDNAは標準的な遺伝子工学技術を用いてクローニングすることによりDNAインサートを形成するために使用する。このステップは、例えばポジショナル・クローニングなどにより行うことができる。 The first step in carrying out the method according to the present invention is to isolate chromosome-specific DNA. Isolating a sufficient amount of a particular chromosome type or chromosome subregion from which a staining composition is derived, and then extracting DNA from the isolated chromosome or chromosome subregion. The extracted DNA is used to form a DNA insert by cloning using standard genetic engineering techniques. This step can be performed, for example, by positional cloning.
 DNAはいくつかの源から分離できる。染色体特異的染色試薬は、植物または動物いずれかのDNAから調製できる。動物DNAの重要な源は哺乳動物、特に霊長類または齧歯類であり、その中では霊長類の源は例えば、ヒトまたはモンキーなどであり、齧歯類の源は例えば、ラットまたはマウスなどである。 DNA can be isolated from several sources. Chromosome-specific staining reagents can be prepared from plant or animal DNA. Important sources of animal DNA are mammals, particularly primates or rodents, in which primate sources are, for example, humans or monkeys, and rodent sources are, for example, rats or mice is there.
 ヒト染色体のそれぞれのための組換えDNAライブラリーから特定の遺伝子領域を含むクローンを探索するためには、例えば、Human BAC library: construction and rapid screening. Gene 1997; 191:p69-79.に記載の方法を用いることができる。 To search for a clone containing a specific gene region from a recombinant DNA library for each of the human chromosomes, see, for example, Human BAC library: construction and rapid screening. Gene 1997; 191: p69-79. The method can be used.
 選別された染色体タイプから抽出されたDNAは、ベクター中で同DNAをクローニングする、または同DNAを細胞系で増殖することにより増幅する。 The DNA extracted from the selected chromosome type is amplified by cloning the DNA in a vector or growing the DNA in a cell line.
 シングル・コピー・プローブは、ゲノムの標的領域に含まれるシングル・コピー配列に相補的である核酸断片からなる。かかるプローブを作成するには、標的領域をクローニングして形成されたDNAライブラリーを用いればよい。ライブラリーにおけるクローンの中には、全配列がシングル・コピーであるDNAを含むもの、反復配列を含むもの、またシングル・コピー配列および反復配列の部分を持つものが含まれ得る。個々のクローンによる選択、およびシングル・コピー配列のみを含んでいるこれらのクローンをプールすることにより、標的領域に特異的にハイブリダイズするプローブが得られる。ハイブリダイゼーションには一連の連続した領域に結合するプローブ群を用いても良い。 A single copy probe consists of a nucleic acid fragment that is complementary to a single copy sequence contained in the target region of the genome. In order to prepare such a probe, a DNA library formed by cloning a target region may be used. The clones in the library can include those that contain DNA whose entire sequence is a single copy, those that contain repetitive sequences, and those that have single copy sequences and portions of repetitive sequences. By selecting individual clones and pooling these clones containing only a single copy sequence, probes are obtained that specifically hybridize to the target region. For hybridization, a group of probes that bind to a series of continuous regions may be used.
 本発明のハイブリダイゼーション方法が、目的とする染色体との間でのみ行われるかどうか、すなわち、ハイブリダイゼーションの特異性は、公知の方法であるインシトゥ ハイブリダイゼーションにより試験し、確認することができる。適宜のハイブリダイゼーション条件にベタインを含む溶液に溶解した、上記核酸断片が所望の標的領域としての特異的なシングル・コピーまたは反復配列に結合するならば、クローンDNAはプローブとして使用できる。 Whether the hybridization method of the present invention is performed only with the target chromosome, that is, the specificity of the hybridization can be confirmed by testing by in situ hybridization, which is a known method. Clone DNA can be used as a probe if the nucleic acid fragment, dissolved in a solution containing betaine under appropriate hybridization conditions, binds to a specific single copy or repeat sequence as the desired target region.
 これらの方法では、相補的核酸鎖の濃度が増加するほど同鎖のハイブリダイゼーション率が増加する。従って、核酸断片のプローブ混合物がハイブリダイゼーションを許容する条件のもとで変性されかつインキュベートされる場合には、高濃度で存在する配列は他の場合に比較してより早く二重鎖になる。染色体と結合しなかったプローブ同士がハイブリダイズした二重鎖核酸はその後洗浄により除去される。残りのものがプローブとして使用できる。部分的にハイブリダイズした混合物はプローブとして使用できるが、二重鎖配列は標的物質に結合し得ない。次の方法は本発明に係る標的特異的染色を形成するのに有効な集団固定法の典型的な方法である。 In these methods, the hybridization rate of the same strand increases as the concentration of the complementary nucleic acid strand increases. Thus, when a probe mixture of nucleic acid fragments is denatured and incubated under conditions that permit hybridization, sequences present at high concentrations become duplexed more quickly than in other cases. Double-stranded nucleic acids in which probes that have not bound to the chromosomes are hybridized are then removed by washing. The rest can be used as probes. The partially hybridized mixture can be used as a probe, but the duplex sequence cannot bind to the target substance. The following method is a typical method of the population fixing method effective for forming the target-specific staining according to the present invention.
 ベタインを含むハイブリダイゼーション溶液に溶解した二重鎖プローブ核酸は変性され、その後ハイブリダイゼーション条件のもとで高度コピー配列のための十分な時間インキュベートされて、実質的に二重鎖配列となる。ベタインを含む溶液に溶解したハイブリダイゼーション混合物はその後サンプルに適用される。高度に反復された配列の残留している標識されたー重鎖コピーは、サンプルのいたるところに結合し、弱くかつ幅広く分散されたシグナルを形成する。ゲノムの標的領域のための特異的な低度コピー配列の多様な結合は、容易に識別し得る特異的シグナルを形成する。 The double-stranded probe nucleic acid dissolved in the hybridization solution containing betaine is denatured and then incubated for a sufficient time for high-copy sequence under hybridization conditions to substantially become a double-stranded sequence. A hybridization mixture dissolved in a solution containing betaine is then applied to the sample. Remaining labeled-heavy chain copies of highly repeated sequences bind throughout the sample and form a weak and widely dispersed signal. The diverse binding of specific low copy sequences for the target region of the genome creates a specific signal that can be easily distinguished.
 この方法は、例えば、染色体のプローブとして17番染色体のための、染色体-特異的ライブラリーを用いた場合、1-10ng/μlの濃度範囲のプローブを含んでいる。ベタイン、カルニチンおよびトリメチルグリシンからなる群から選ばれる1または2以上を含むハイブリダイゼーション溶液にプローブを溶解したハイブリダイゼーション混合物は、サンプルに適用される以前に、プローブを変性するために、例えば、75℃で5分間加熱され、その後37℃で5、15、30、60、90、120、240分および24時間インキュベートされる。この場合、ベタイン、カルニチンおよびトリメチルグリシンからなる群から選ばれる1または2以上を含むハイブリダイゼーション溶液を用いた場合には、ハイブリダイゼーション開始15分後からハイブリダイゼーションシグナルが見え始め、60分後、90分後ではシグナルの数が増え、240分後では24時間ハイブリダイズさせた場合とほぼ同等のハイブリダイゼーションシグナルが検出された(図2)。これに対し、ベタイン、カルニチンまたはトリメチルグリシンのいずれも含まないハイブリダイゼーション溶液を用いた場合には、ハイブリダイゼーション開始後15分~240分ではハイブリダイゼーションシグナルは検出されず、24時間後に初めてハイブリダイゼーションシグナルが検出された(図3)。 This method includes, for example, a probe having a concentration range of 1-10 ng / μl when a chromosome-specific library for chromosome 17 is used as a chromosome probe. A hybridization mixture obtained by dissolving a probe in a hybridization solution containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine can be used, for example, at 75 ° C. to denature the probe before being applied to the sample. And then incubated at 37 ° C. for 5, 15, 30, 60, 90, 120, 240 minutes and 24 hours. In this case, when a hybridization solution containing one or more selected from the group consisting of betaine, carnitine and trimethylglycine is used, a hybridization signal begins to appear 15 minutes after the start of hybridization, and after 90 minutes, After minutes, the number of signals increased, and after 240 minutes, hybridization signals almost equivalent to those obtained when hybridized for 24 hours were detected (FIG. 2). In contrast, when a hybridization solution containing neither betaine, carnitine, or trimethylglycine was used, no hybridization signal was detected 15 to 240 minutes after the start of hybridization, and the hybridization signal was not detected until 24 hours later. Was detected (FIG. 3).
 「プローブ標識化」(probe labeling)の特徴は、標的物質に結合したプローブが検出できるということである。プローブ核酸断片は、標準的な遺伝子工学技術であるニックトランスレーションの手法でポリヌクレオチドに標識物質(例えば、標識したヌクレオチドなど)を取り込ませることができる。 The characteristic of “probe labeling” is that the probe bound to the target substance can be detected. The probe nucleic acid fragment can incorporate a labeling substance (for example, a labeled nucleotide) into a polynucleotide by a nick translation technique which is a standard genetic engineering technique.
 インシトゥ ハイブリダイゼーションの前に、染色体は蛋白質を除去する試薬で処理する。例えば、FFPE FISH Pretreatment kit 2(株式会社GSP研究所で販売)を使用し、キットに添付されたマニュアルに従って処理を行うことで、染色体から蛋白質を除去することができる。 染色体 Prior to in situ hybridization, the chromosomes are treated with a reagent that removes the protein. For example, proteins can be removed from chromosomes by using FFPE FISH Pretreatment kit 2 (sold by GSP Laboratory) and processing according to the manual attached to the kit.
 染色体DNAが変性された後、変性要因は典型的にはプローブ混合物の適用以前に除去される。ここでホルムアミドと熱は主要な変性要因であり、それらの除去は溶剤による幾度かの洗浄により都合良く遂行される。かかる溶剤は例えば70%,100%冷エタノールシリーズのごとく、しばしば冷却される。変性物質の組成は他の構成物の付加または適宜の溶剤での洗浄のいずれかにより、インシトゥ ハイブリダイゼーションのために適宜に調整できる。プローブおよび標的核酸はハイブリダイゼーション混合物の適用、およびその後の適宜の加熱により同時に変性される。 After the chromosomal DNA has been denatured, the degeneration factors are typically removed prior to application of the probe mixture. Here, formamide and heat are the main denaturing factors, and their removal is conveniently accomplished by several washes with solvents. Such solvents are often cooled, such as the 70% and 100% cold ethanol series. The composition of the denaturing material can be adjusted as appropriate for in situ hybridization, either by adding other components or washing with an appropriate solvent. The probe and target nucleic acid are denatured simultaneously by application of the hybridization mixture and subsequent appropriate heating.
 プローブ混合物が適用される時間の間の、染色体DNAおよびプローブの雰囲気の物理化学的条件はハイブリダイゼーション条件、またはアニーリング条件に関係する。特定の適用における最上の条件は、幾多のファクターをコントロールすることにより調整でき、同ファクターとしては以下のものが含まれる。成分の濃度、プローブ混合物中の染色体のインキュベーション時間、プローブ混合物を構成する核酸断片の濃度、コンプレキシティ、および長さ。概略的には、ハイブリダイゼーション条件は、非特異的結合を最小限にするために溶融温度(melting temperature, Tm)に十分に近づけなければならない。他方、かかる条件は、相補的配列の正確なハイブリダイゼーションを検出レベル以下に低減し、または長いインキュベーション時間を過剰に要求すること程には厳格なものではない。 The physicochemical conditions of the chromosomal DNA and probe atmosphere during the time the probe mixture is applied are related to hybridization conditions or annealing conditions. The best conditions for a particular application can be adjusted by controlling a number of factors, including the following: Concentration of components, incubation time of chromosomes in the probe mixture, concentration of nucleic acid fragments that make up the probe mixture, complexity, and length. In general, hybridization conditions should be close enough to the melting temperature (Tm) to minimize non-specific binding. On the other hand, such conditions are not as stringent as reducing the exact hybridization of complementary sequences below detection levels or requiring excessive long incubation times.
 ハイブリダイゼーション混合物中の核酸の濃度は重要な要因である。かかる濃度は十分に高くなければならず、これによりそれぞれの染色体結合座位の十分なハイブリダイゼーションが適当な時間内(5-240分)に生じる。十分なシグナルを得るのに要する濃度より高い濃度は避けるべきであり、これにより非特異的結合を最小にできる。プローブ混合物のプローブにおける核酸の濃度に関する、重要な実際の拘束は溶解度である。断片濃度、例えば単位体積当りの核酸の単位長さに関しては上限が存在し、それは溶液中で保持できかつ効果的にハイブリダイズする。 The concentration of nucleic acid in the hybridization mixture is an important factor. Such concentrations must be high enough so that sufficient hybridization of each chromosomal binding locus occurs within a reasonable time (5-240 minutes). Concentrations higher than those required to obtain a sufficient signal should be avoided, thereby minimizing non-specific binding. An important practical constraint on the concentration of nucleic acids in the probe of the probe mixture is solubility. There is an upper limit on fragment concentration, eg, unit length of nucleic acid per unit volume, which can be retained in solution and hybridizes effectively.
 HER2遺伝子を含むクローンライブラリーの選択
ヒト染色体-特異的ライブラリーからのDNA断片は、独自に構築したBACライブラリーから入手することができる。
Selection of a clone library containing the HER2 gene DNA fragments from a human chromosome-specific library can be obtained from an independently constructed BAC library.
 近年の多数の研究は、特定の病気の表現型の診断に役立ちまた病気それ自身の遺伝学的性質への手がかりを提供する、構造的および数的染色体の異常の存在を明らかにした。新種の腫瘍の特異的異常を明らかにする今日の進歩は、細胞遺伝学的分析のための代表的な高品質のバンデッド中期スプレッドを造ることの困難性により制限されている。これらの問題は、多くのヒト腫瘍は培養器中で増殖させることが困難または不可能であるという事実に由来する。従って、分裂細胞を得ることは普通は困難である。たとえ細胞が培養器中で増殖できたとしても、増殖する細胞が腫瘍集団を代表するものでないという少なからぬ危険がある。この困難性はまた存在する遺伝学的知識を臨床的診断および予後に応用することを妨げる。 A number of recent studies have revealed the presence of structural and numerical chromosomal abnormalities that are useful in diagnosing the phenotype of a particular disease and provide clues to the genetic nature of the disease itself. Today's progress to reveal specific abnormalities in new types of tumors is limited by the difficulty of creating representative high-quality banded metaphase spreads for cytogenetic analysis. These problems stem from the fact that many human tumors are difficult or impossible to grow in incubators. Therefore, it is usually difficult to obtain dividing cells. Even if the cells can grow in the incubator, there is a considerable risk that the growing cells are not representative of the tumor population. This difficulty also hinders the application of existing genetic knowledge to clinical diagnosis and prognosis.
 本発明はこれらの制限を、間期核内の特定の構造的および数的異常の迅速な検出を可能にすることにより克服する。これらの異常は上に述べたごとく検出される。特定の悪性腫瘍の遺伝学的性質が次第によく知られてきているので、遺伝学的障害を標的とするハイブリダイゼーションプローブを選択することにより、間期評価分析はますます具体的に行うことが出来る。選択された染色体上の特定の構造異常は、ぴったりなハイブリダイゼーションプローブの使用により検出できる。これらのプローブの使用は特定の病気の表現型の診断を可能にする。これらは治療の途中で悪性細胞の減少および再出現をフォローするために使用できる。このような応用では、存在するかも知れない細胞が少数であり、またそれらは刺激して有糸分裂させることが困難または不可能であるかも知れないので、間期分析が特に重要である。 The present invention overcomes these limitations by allowing rapid detection of specific structural and numerical abnormalities in the interphase nucleus. These anomalies are detected as described above. As the genetic nature of specific malignancies is increasingly well known, interphase assessment analysis can be made more specific by selecting hybridization probes that target genetic disorders. . Specific structural abnormalities on selected chromosomes can be detected by the use of an exact hybridization probe. The use of these probes allows diagnosis of specific disease phenotypes. They can be used to follow the reduction and reappearance of malignant cells during treatment. In such applications, interphase analysis is particularly important because there may be a small number of cells that may be present and they may be difficult or impossible to stimulate and mitose.
 重複および欠失、遺伝子増幅およびヘテロ接合度がなくなることに伴うプロセスも、本発明の技法を用いて中期および間期において迅速に検出できる。そのようなプロセスは異なる腫瘍の数の増大に関連している。 Processes associated with loss of duplication and deletion, gene amplification and heterozygosity can also be rapidly detected in the metaphase and interphase using the techniques of the present invention. Such a process is associated with an increase in the number of different tumors.
(実施例1)
 乳がん組織のHER2遺伝子と17番染色体マーカープローブ
 染色体異常に伴う遺伝子転座を解析するために従来から使用されているHER2遺伝子(図1の白丸)と17番染色体マーカー(図1の黒丸)のプローブ(特許第5554008号)を使用し、乳がん細胞で生じるHER2遺伝子と17番染色体マーカーの遺伝子構造(数的)異常を解析した。正常細胞はHER2遺伝子の白色シグナルが2個と17番染色体マーカーの黒色のシグナルが2個検出できるが、乳がん細胞になると両シグナルの数に変化が起こる(図1)。
Example 1
Breast cancer tissue HER2 gene and chromosome 17 marker probe Probes of HER2 gene (white circle in Fig. 1) and chromosome 17 marker (black circle in Fig. 1) that have been used to analyze gene translocation associated with chromosomal abnormalities (Patent No. 5554008) was used to analyze the genetic structure (numerical) abnormalities of the HER2 gene and chromosome 17 marker produced in breast cancer cells. Normal cells can detect two white signals of the HER2 gene and two black signals of the chromosome 17 marker, but when they become breast cancer cells, the number of both signals changes (Fig. 1).
 ベタインを添加したハイブリダイゼーション溶液(ベタイン300mM、硫酸デキストラン20%、ホルムアミド30%、塩化ナトリウム600mM、クエン酸三ナトリウム二水和物60mM、0.1%Tween-20、0.1%SDSを基本とした溶液。%は重量%を意味する。以下同様)および、従来のホルムアミドおよび硫酸デキストランを基本としたハイブリダイゼーション溶液(硫酸デキストラン20%、ホルムアミド30%、塩化ナトリウム600mM、クエン酸三ナトリウム二水和物60mM、0.1%Tween-20、0.1%SDSを基本とした溶液)をそれぞれ用いてハイブリダイゼーションを行った。プローブを変性するためにホットプレートで75℃で5分間加熱し、その後37℃で5、15、30、60、90、120、240分および24時間インキュベートした。洗浄は、2X SSC/0.3% Np-40 室温5分、2X SSC/0.3% Np-40 72℃±1℃ 1-2分、 2X SSC  室温5分の条件で行い、1500ng/ml DAPI Counterstainで対比染色して染色体および核のDNAを染色して観察した。ハイブリダイゼーションシグナルの経時的変化についての比較を図2、3に示す。ベタインを添加した場合、15分後からハイブリダイズするシグナルが見え始め、120分後では、240分後、24時間後と同程度のハイブリダイゼーションシグナルが検出された。これに対し、ベタインを添加していない従来法のホルムアミドおよび硫酸デキストランを基本とした溶液を用いてハイブリダイゼーションを行った場合は、60分後、90分後、120分後、240分後ではハイブリダイゼーションシグナルはほとんど検出されず、24時間後に初めてシグナルが検出された。以上の結果から考えて、ハイブリダイゼーション溶液にベタインを添加することにより、6~12倍程度、ハイブリダイゼーション反応が促進されていることがわかる。
 より詳細には、ベタインを添加しない従来法の場合、プローブを添加してハイブリダイゼーションを開始して24時間後にはハイブリダイゼーションを示す蛍光シグナルが観察されたが、ハイブリダイゼーション開始5分~240分後ではハイブリダイゼーションの蛍光が全く観察できなかった。しかし、ベタインを添加した本発明の方法では、ハイブリダイゼーション開始後5分で蛍光発光が観察され、15分後では、24時間後と同じ程度の強度の蛍光が観察された。ハイブリダイゼーション開始後90分後~120分後では、ほぼ24時間後と同程度の数の蛍光シグナルが観察された。また、ベタインを添加しない区に比べ、蛍光が鮮明で蛍光部分の輪郭も明確に見える部分が多かった。
Hybridization solution to which betaine was added (based on betaine 300 mM, dextran sulfate 20%, formamide 30%, sodium chloride 600 mM, trisodium citrate dihydrate 60 mM, 0.1% Tween-20, 0.1% SDS % Means weight%, and so on) and conventional hybridization solutions based on formamide and dextran sulfate (20% dextran sulfate, 30% formamide, 600 mM sodium chloride, trisodium citrate dihydrate) And a solution based on 60 mM, 0.1% Tween-20, and 0.1% SDS). The probe was heated on a hot plate at 75 ° C. for 5 minutes to denature, then incubated at 37 ° C. for 5, 15, 30, 60, 90, 120, 240 minutes and 24 hours. Wash 2X SSC / 0.3% Np-40 at room temperature for 5 minutes, 2X SSC / 0.3% Np-40 at 72 ° C ± 1 ° C for 1-2 minutes, 2X SSC at room temperature for 5 minutes, and compare with 1500ng / ml DAPI Counterstain Staining was performed by chromosomal and nuclear DNA staining. A comparison of changes over time in the hybridization signal is shown in FIGS. When betaine was added, a hybridizing signal started to appear after 15 minutes, and after 120 minutes, a hybridization signal comparable to that after 240 minutes and 24 hours was detected. On the other hand, when hybridization was performed using a conventional solution based on formamide and dextran sulfate without addition of betaine, it was high after 60 minutes, 90 minutes, 120 minutes, and 240 minutes. The hybridization signal was hardly detected, and the signal was detected for the first time after 24 hours. From the above results, it can be seen that the addition of betaine to the hybridization solution promotes the hybridization reaction about 6 to 12 times.
More specifically, in the case of the conventional method in which betaine is not added, a fluorescence signal indicating hybridization was observed 24 hours after the start of hybridization after the addition of a probe, but 5 to 240 minutes after the start of hybridization. Then, no fluorescence of hybridization was observed. However, in the method of the present invention to which betaine was added, fluorescence emission was observed 5 minutes after the start of hybridization, and fluorescence having the same intensity as that after 24 hours was observed 15 minutes later. From 90 minutes to 120 minutes after the start of hybridization, approximately the same number of fluorescent signals as 24 hours later were observed. In addition, there were many parts where the fluorescence was clear and the outline of the fluorescent part was clearly visible as compared with the group without addition of betaine.
 さらに、上記ベタイン添加ハイブリダイゼーション溶液にポリエチレングリコールを添加したハイブリダイゼーション溶液を用いてin situ hybridizationを行い、目視により、ハイブリダイゼーションシグナルを検討したところ、ベタインのみ添加したハイブリダイゼーション溶液を用いた場合よりも、ベタイン+ポリエチレングリコールを添加したハイブリダイゼーション溶液を用いた場合の方が、より短時間でより強いシグナルが得られた。このことは、ベタインとポリエチレングリコールの両方を添加することにより、ハイブリダイゼーション反応がより促進されることを意味していると考えられる。 Further, in-situ hybridization was performed using a hybridization solution obtained by adding polyethylene glycol to the betaine-added hybridization solution, and the hybridization signal was examined by visual inspection. Compared with the case where a hybridization solution containing only betaine was used. In the case of using a hybridization solution to which betaine + polyethylene glycol was added, a stronger signal was obtained in a shorter time. This is considered to mean that the hybridization reaction is further promoted by adding both betaine and polyethylene glycol.
 本発明は、医療産業、検査産業等に利用できる。 The present invention can be used in the medical industry, the inspection industry, and the like.

Claims (9)

  1.  染色体の構造が異常である遺伝子異常を検出する方法であって
    それぞれ異なる標識物で標識されている複数の核酸プローブを、ベタイン、カルニチンおよびトリメチルグリシンからなる群から選ばれる1または2以上を含むハイブリダイゼーション溶液に溶解した混合物を用いてハイブリダイズさせることを特徴とする染色体の構造異常を検出する方法。
    A method for detecting a genetic abnormality having an abnormal chromosomal structure, wherein a plurality of nucleic acid probes each labeled with a different label are one or more selected from the group consisting of betaine, carnitine, and trimethylglycine. A method for detecting a structural abnormality of a chromosome, wherein hybridization is performed using a mixture dissolved in a hybridization solution.
  2.  前記ハイブリダイゼーション溶液にさらにポリエチレングリコールを添加することを特徴とする、請求項1の方法。 The method according to claim 1, wherein polyethylene glycol is further added to the hybridization solution.
  3.  請求項1または2において、間期細胞中の標的となる染色体DNAを染色し、染色体の構造異常が存在するか否かを迅速に決定することを特徴とする染色体の構造異常を検出する方法。 3. The method for detecting a chromosomal structural abnormality according to claim 1 or 2, wherein the target chromosomal DNA in the interphase cell is stained to quickly determine whether or not a chromosomal structural abnormality exists.
  4.  請求項1~3のいずれかの方法において、間期細胞の中の標的となる染色体DNAを染色し、当該染色体に構造異常が存在するか否かを迅速に決定することを特徴とする染色体の構造異常を検出する方法。 The method according to any one of claims 1 to 3, wherein the target chromosomal DNA in the interphase cells is stained to quickly determine whether or not there is a structural abnormality in the chromosome. A method to detect structural anomalies.
  5.  in situ hybridizationにおいて、ベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上をハイブリダイゼーション溶液に添加することにより、ハイブリダイゼーションを促進する方法。 In in situ hybridization, a method of promoting hybridization by adding one or more selected from the group consisting of betaine, carnitine, and trimethylglycine to a hybridization solution.
  6.  前記ハイブリダイゼーション溶液にさらにポリエチレングリコールを添加することを特徴とする、請求項5の方法。 The method according to claim 5, wherein polyethylene glycol is further added to the hybridization solution.
  7.  ベタイン、カルニチン、およびトリメチルグリシンからなる群から選ばれる1または2以上を含有する、in situ hybridizationのハイブリダイゼーション促進剤。 A hybridization promoter for in situ hybridization containing one or more selected from the group consisting of betaine, carnitine, and trimethylglycine.
  8.  前記ハイブリダイゼーション溶液にさらにポリエチレングリコールを添加することを特徴とする、請求項7のハイブリダイゼーション促進剤。 The hybridization accelerator according to claim 7, wherein polyethylene glycol is further added to the hybridization solution.
  9.  請求項7または8に記載のハイブリダイゼーション促進剤を含むキット。 A kit comprising the hybridization accelerator according to claim 7 or 8.
PCT/JP2017/039999 2016-11-04 2017-11-06 Method for rapidly detecting structural anomaly in chromosome, promoter, and kit including said promoter WO2018084298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-216799 2016-11-04
JP2016216799A JP2018068268A (en) 2016-11-04 2016-11-04 Method of rapidly detecting structural abnormalities in chromosomes, accelerant and kit including the same

Publications (1)

Publication Number Publication Date
WO2018084298A1 true WO2018084298A1 (en) 2018-05-11

Family

ID=62076559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039999 WO2018084298A1 (en) 2016-11-04 2017-11-06 Method for rapidly detecting structural anomaly in chromosome, promoter, and kit including said promoter

Country Status (2)

Country Link
JP (1) JP2018068268A (en)
WO (1) WO2018084298A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114841294B (en) * 2022-07-04 2022-10-28 杭州德适生物科技有限公司 Classifier model training method and device for detecting chromosome structure abnormality

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045996A (en) * 1993-10-26 2000-04-04 Affymetrix, Inc. Hybridization assays on oligonucleotide arrays
JP2000325099A (en) * 1999-05-20 2000-11-28 Toyobo Co Ltd Buffer solution for new nucleic acid hybridization
JP2007275067A (en) * 2006-04-07 2007-10-25 Samsung Electronics Co Ltd Method for hybridization of nucleic acid and method for amplification of target nucleic acid
JP2007289009A (en) * 2006-04-20 2007-11-08 Toyo Kohan Co Ltd Method for improving sensitivity in analysis of polynucleotide sample
JP2008278779A (en) * 2007-05-09 2008-11-20 Asahi Kasei Corp Solution used for nucleic acid hybridization
JP2010011790A (en) * 2008-07-03 2010-01-21 Toppan Printing Co Ltd Method for detecting target nucleic acid in high accuracy, and kit for the method
JP2010259336A (en) * 2009-04-30 2010-11-18 Gsp Kenkyusho:Kk Probe
JP2011200230A (en) * 1999-03-19 2011-10-13 Cornell Research Foundation Inc Detection of nucleic acid sequence difference using ligase detection reaction with addressable array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045996A (en) * 1993-10-26 2000-04-04 Affymetrix, Inc. Hybridization assays on oligonucleotide arrays
JP2011200230A (en) * 1999-03-19 2011-10-13 Cornell Research Foundation Inc Detection of nucleic acid sequence difference using ligase detection reaction with addressable array
JP2000325099A (en) * 1999-05-20 2000-11-28 Toyobo Co Ltd Buffer solution for new nucleic acid hybridization
JP2007275067A (en) * 2006-04-07 2007-10-25 Samsung Electronics Co Ltd Method for hybridization of nucleic acid and method for amplification of target nucleic acid
JP2007289009A (en) * 2006-04-20 2007-11-08 Toyo Kohan Co Ltd Method for improving sensitivity in analysis of polynucleotide sample
JP2008278779A (en) * 2007-05-09 2008-11-20 Asahi Kasei Corp Solution used for nucleic acid hybridization
JP2010011790A (en) * 2008-07-03 2010-01-21 Toppan Printing Co Ltd Method for detecting target nucleic acid in high accuracy, and kit for the method
JP2010259336A (en) * 2009-04-30 2010-11-18 Gsp Kenkyusho:Kk Probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REES, A. W. ET AL.: "Betaine can eliminate the base pair composition dependence of DNA melting", BIOCHEMISTRY, vol. 32, no. 1, 1993, pages 137 - 144, XP002007762 *

Also Published As

Publication number Publication date
JP2018068268A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
EP0760867B1 (en) Compositions and methods relating to dna mismatch repair genes
US6632610B2 (en) Methods of identification and isolation of polynucleotides containing nucleic acid differences
KR100245283B1 (en) In situ hybridization method
EP2691775B1 (en) Telomere length measurement in formalin-fixed, paraffin embedded (ffpe) samples by quantitative pcr
JPH03224499A (en) Method and composition for specific staining of chromosome
KR20030021162A (en) Single copy genomic hybridization probes and method of generating same
JPH08504081A (en) Method for detecting mammalian nucleic acid isolated from fecal sample, and reagent for detecting the same
JP2009148291A (en) Molecular detection of chromosome aberrations
CN104805206B (en) The kit and its detection method of detection TERT gene promoter mutation
AU2001276632A1 (en) Methods of identification and isolation of polynucleotides containing nucleic acid differences
Hamilton et al. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos taurus)
KR102577378B1 (en) Method for evaluating risk of ischemic stroke
WO2018084298A1 (en) Method for rapidly detecting structural anomaly in chromosome, promoter, and kit including said promoter
JP7410023B2 (en) Quantitative PCR probe
JP2001520052A (en) A method for determining coat color genotype in pigs
US20030013671A1 (en) Genomic DNA library
EP0500290A2 (en) Chromosome-specific staining to detect genetic rearrangements
JPH05211897A (en) Nucleotide sequence
CN115678988A (en) Ultra-early screening method for pan-cancerous seeds
CN114075602A (en) Probe, reagent, kit, detection method and application for detecting human CCDC6-RET fusion gene
Vicari et al. Microdissection and chromosome painting
CA2865541A1 (en) Nucleic acid detection method
JP2010136691A (en) Method and device for detecting structural anomaly of chromosome
EA011608B1 (en) Polymorphism in the human nbs1 gene useful in diagnostic of inherited predisposition to cancer
JP4203591B2 (en) Detection method of gene deletion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867821

Country of ref document: EP

Kind code of ref document: A1