WO2018083974A1 - Organic electroluminescent element and light emitting device - Google Patents

Organic electroluminescent element and light emitting device Download PDF

Info

Publication number
WO2018083974A1
WO2018083974A1 PCT/JP2017/037523 JP2017037523W WO2018083974A1 WO 2018083974 A1 WO2018083974 A1 WO 2018083974A1 JP 2017037523 W JP2017037523 W JP 2017037523W WO 2018083974 A1 WO2018083974 A1 WO 2018083974A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting unit
organic
layer
Prior art date
Application number
PCT/JP2017/037523
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 健
中山 知是
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018083974A1 publication Critical patent/WO2018083974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes

Definitions

  • the present invention relates to an organic electroluminescence element and a light-emitting device provided with the organic electroluminescence element.
  • An organic electroluminescence (EL) element is self-luminous and can be reduced in thickness, power consumption is reduced, and response speed is high. In lighting applications, if the light emission color of the organic EL element can be changed, a color effect can be obtained effectively. For this reason, the toning function capable of changing the emission color in the organic EL element is an important function. As one form of such a toning function, an element in which a toning (dimming) unit is provided in an organic EL element has been proposed (see, for example, Patent Document 1 and Patent Document 2).
  • each light emitting unit cannot be driven at the same time.
  • a method of driving a light emitting unit and a method of using an intermediate electrode as a common anode are common. By performing such driving, it is possible to freely combine colors and luminances of the respective light emitting units to express various colors (for example, see Non-Patent Document 1 and Non-Patent Document 2).
  • the half width of the emission spectrum is large in the light emitting unit that emits light with high relative visibility. For this reason, various wavelengths are included in the emission spectrum.
  • the wavelength emphasized by the microcavity effect deviates from the design value.
  • a light emitting unit that emits light with high relative visibility like the above-described organic EL element includes a large amount of light having a wavelength that deviates from the design value emphasized by the microcavity effect. Therefore, the light emission performance such as chromaticity and luminance of the organic EL element greatly varies.
  • an organic electroluminescence element and a light-emitting device that can suppress fluctuations in light emission performance with respect to film thickness fluctuations of each layer constituting the organic electroluminescence element are provided.
  • the organic electroluminescent element of the present invention includes n light emitting units and n + 1 or more electrodes provided on a support substrate, and from the support substrate side, a transparent electrode, a first light emitting unit, ... n
  • An organic electroluminescence element having an electrode, an nth light emitting unit, and an (n + 1) th electrode, and a light emitting unit having a peak wavelength of the emission spectrum closest to 555 nm has the smallest half-value width of the emission spectrum among all the light emitting units.
  • the light-emitting device of this invention is equipped with the said organic electroluminescent element.
  • an organic electroluminescence element and a light emitting device capable of suppressing fluctuations in light emission performance with respect to film thickness fluctuations of each layer constituting the organic electroluminescence element.
  • FIG. 1 shows an element configuration of a general organic EL element.
  • the organic EL element shown in FIG. 1 includes a transparent electrode 11, a first light emitting unit 12, a first intermediate electrode 13, a second light emitting unit 14, a second intermediate electrode 15, a third light emitting unit 16, and a reflective electrode 17 laminated. It has the structure made. That is, the organic EL element has a configuration in which three layers of light emitting units are stacked via the first intermediate electrode 13 and the second intermediate electrode 15. In FIG. 1, only the configuration related to the design method of the organic EL element is shown, and the configuration of the substrate and the like is omitted.
  • the organic EL element shown in FIG. 1 has a configuration in which the first light emitting unit 12 arranged closest to the transparent electrode 11 emits light (L1).
  • the second light emitting unit 14 emits light (L2)
  • the third light emitting unit 16 emits light (L3).
  • an organic EL element a plurality of light emitting units are provided, and white light is obtained by synthesizing light from each light emitting unit. Further, by using time-division driving of each light-emitting unit and using the intermediate electrode as a common anode, it is possible to express various colors by freely combining the colors and luminance of each light-emitting unit.
  • a microcavity (microresonator) structure is incorporated in the organic EL element.
  • the microcavity structure adjusts the thickness of the light emitting unit to resonate and emphasize light of a specific wavelength between the electrodes (cathode / anode), weaken the light of other wavelengths, and extract light to the outside
  • the spectrum can be steep and high intensity.
  • FIG. 2 shows an example of emission spectra of the light L1, L2, and L3 emitted from each light emitting unit of the organic EL element having the configuration shown in FIG.
  • the light L1 from the first light emitting unit 12 has a peak at a wavelength of 475 nm
  • the light L2 from the second light emitting unit 14 has a peak at a wavelength of 560 nm
  • the third light emitting unit 16 This is an example in which the light L3 from the light has a peak at a wavelength of 594 nm.
  • the emission spectrum shown in FIG. 2 is an emission spectrum at the time of making the element which formed each light emission unit independently emit light.
  • the total emission spectrum of the organic EL element is a spectrum obtained by combining the emission spectra of the respective light emitting units.
  • the emission spectra of the light emitting units of three colors, red, green, and blue each have their own peak and spread in a predetermined range, thereby extracting white light from the organic EL element. It is. Further, various colors can be expressed by freely combining the luminances of the emission spectra of the light emitting units of three colors of red, green, and blue.
  • FIG. Visibility represents the degree to which the human eye perceives light at each wavelength. As shown in FIG. 3, in a bright place, the light with a wavelength of 555 nm has the highest visibility, and the light with a wavelength closer to 555 nm has a higher visibility.
  • the light L2 from the second light emitting unit 14 having a peak at a wavelength of 560 nm has a peak at a position closest to the wavelength of 555 nm. Therefore, in the organic EL element, the light L2 from the second light emitting unit 14 has the highest visibility. Further, as shown in FIG. 2, the light L2 from the second light emitting unit 14 has a half-value width of the emission spectrum, compared to the light L1 from the first light emitting unit 12 and the light L3 from the third light emitting unit 16. Large and wide spectrum distribution. For this reason, the light L2 from the second light-emitting unit 14 is contained in a large amount at a wavelength with relatively high visibility.
  • the organic EL element is set so that a specific wavelength is amplified by the microcavity effect by adjusting the thickness of each layer constituting the organic EL element. For example, in the light L1 from the first light emitting unit 12, the thickness of each layer of the organic EL element is set so that light with a wavelength of 475 nm is amplified. Similarly, in the light L2 from the second light emitting unit 14, the thickness of each layer of the organic EL element is set so that light with a wavelength of 560 nm is amplified, and in the light L3 from the third light emitting unit 16, the wavelength of 594 nm is set. The thickness of each layer of the organic EL element is set so that light is amplified.
  • the thickness of each layer constituting the organic EL element varies during film formation.
  • the wavelength amplified by the microcavity effect also deviates from the design value for the light emitted from each light emitting unit. For example, the peak wavelength of the light emitted from each light emitting unit is shifted and an amplified wavelength other than the peak wavelength is generated.
  • the light L1 from the first light-emitting unit 12 and the light L3 from the third light-emitting unit 16 have lower relative visibility than the light L2 from the second light-emitting unit 14, and therefore the half-value width is further reduced. Since the relative intensity of the wavelength that is small and deviated from the peak wavelength is low, even if a wavelength amplified by the microcavity effect other than the peak wavelength is generated, the influence on the light emitted from the organic EL element is small. For this reason, in the light emission of an organic EL element, a color shift and a luminance change are hardly visually recognized.
  • the light L2 from the second light emitting unit 14 has high specific visibility, the half-value width is large, and the wavelength deviated from the peak wavelength has high relative intensity. Therefore, the light L2 is amplified by the microcavity effect in addition to the peak wavelength.
  • a wavelength is generated, a color shift or luminance change of the light L2 due to an amplified wavelength other than the peak wavelength is easily recognized. For this reason, the color shift and the luminance change of the light L2 due to the amplified wavelength other than the peak wavelength are easily visible in the light emitted from the organic EL element.
  • the half-value width of the light emitting unit that emits light with the highest relative visibility among the light emitting units that constitute the organic EL element, such as the light L2 from the second light emitting unit 14 is large, Due to the variation in thickness, the light emission performance such as chromaticity and luminance of the organic EL element greatly varies. When the light emission performance of the organic EL element greatly varies due to such a film thickness variation, the productivity and yield of the organic EL element are greatly decreased.
  • the light emission of the organic EL element can also be applied to the thickness variation during the formation of the organic EL element. It is necessary to suppress fluctuations in performance.
  • the organic EL element it is necessary to reduce the half-value width of the emission spectrum of the light emitted from the light emitting unit having high specific visibility, and to reduce the relative intensity of the wavelength shifted from the peak.
  • the relative intensity of wavelengths other than the peak wavelength is reduced. Can be small. For this reason, even when light having a wavelength that is amplified by a microcavity effect other than the peak wavelength is generated in a light emitting unit with high specific luminous efficiency, the color shift or luminance of light emitted from the light emitting unit with high specific visual sensitivity. Changes are less likely to be recognized. Furthermore, it is possible to reduce the influence of the color shift or luminance change of the light emitted from the light emitting unit having a high specific visibility on the light emitted from the organic EL element.
  • the organic EL element by reducing the half width of the emission spectrum of the light emitting unit having the highest specific luminous efficiency, even if the thickness of each layer varies during film formation, the variation in the light emitting performance is reduced. Is possible. That is, for a light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, the light emitted from the light emitting unit is reduced by making the half width of the emission spectrum smaller than the half width of the emission spectra of all other light emitting units. The color shift and the luminance change are less visible even in the light emitted from the organic EL element. As a result, even in the film thickness fluctuation when forming each layer constituting the organic electroluminescence element, it becomes possible to suppress the fluctuation of the light emission performance, and to suppress the decrease in the productivity and the yield of the organic EL element. Can do.
  • the method for adjusting the half-value width of the emission spectrum is not limited. Any method may be used as long as the half-value width of the emission spectrum of the light emitting unit having high specific visibility can be made smaller than that of other light emitting units.
  • a method for adjusting the half width of the emission spectrum includes a method of selecting a light emitting material to be used in the light emitting layer constituting the light emitting unit. Specifically, the half width of the emission spectrum tends to be smaller when a fluorescent light emitting material is used than when a phosphorescent light emitting material is used as the light emitting material.
  • the light emitting unit having the peak wavelength of the emission spectrum closest to 555 nm includes a fluorescent light emitting material as the light emitting material. Furthermore, it is preferable that this light emitting unit contains only a fluorescent light emitting material as a light emitting material.
  • color shift and luminance fluctuation due to film thickness fluctuation and microcavity effect are likely to occur in a configuration in which the organic EL element has an intermediate electrode, particularly in a configuration in which a metal having a high reflectance is used for the intermediate electrode. This is because reflection at the intermediate electrode is added, and for example, it is more likely to occur more significantly in an organic EL element configured to perform color adjustment using the intermediate electrode.
  • the light emitting unit having the peak wavelength of the emission spectrum closest to 555 nm Is preferably designed so that the half-value width of the emission spectrum is smaller than the half-value widths of the emission spectra of all other light-emitting units.
  • an organic EL element having three layers of light emitting units and capable of emitting three colors is used.
  • the half width of the emission spectrum for a light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, the half width of the emission spectrum.
  • the organic EL element to which the configuration in which the light emission spectrum is smaller than the half-value width of the emission spectrum of all other light emitting units is not limited to the above-described configuration.
  • the above structure can also be applied to an organic EL element having two or four or more light emitting units and capable of emitting light of two colors or four colors.
  • the organic EL element has two layers of light emitting units, and each light emitting unit has two emission colors of blue or yellow, the light emitting unit having a yellow emission color has a peak wavelength of the emission spectrum. It approaches 555 nm. For this reason, the half width of the emission spectrum of the light emitting unit having the yellow emission color is made smaller than the half width of the emission spectrum of the light emitting unit having the blue emission color. As a result, even in an organic EL element having a two-layer light emitting unit, it is possible to suppress variation in light emission performance due to film thickness variation.
  • the configuration in which the half width of the emission spectrum is smaller than the half width of the emission spectra of all other light emitting units is the number of stacked light emitting units. Can be applied regardless.
  • Embodiment of Organic Electroluminescence Device> a configuration of the organic EL element capable of suppressing the variation in the light emission performance due to the above-described film thickness variation will be described.
  • the following description is an example of the component which can comprise the organic electroluminescent light emitting device of embodiment, and it is also possible to apply another structure.
  • FIG. 1 shows an element configuration of an organic EL element having three layers of light emitting units.
  • the organic EL element shown in FIG. 1 is provided on one main surface of a support substrate (unknown), and in order from the support substrate side, a transparent electrode 11 (first electrode), a first light emitting unit 12, and a first intermediate.
  • the electrode 13 (second electrode), the second light emitting unit 14, the second intermediate electrode 15 (third electrode), the third light emitting unit 16, and the reflective electrode 17 (fourth electrode) are stacked. That is, the organic EL element has a configuration in which three layers of light emitting units are stacked via the first intermediate electrode 13 and the second intermediate electrode 15.
  • FIG. 4 shows an element configuration of an organic EL element having two layers of light emitting units.
  • the organic EL element shown in FIG. 4 is provided on one main surface of a support substrate (unknown), and in order from the support substrate side, the transparent electrode 11 (first electrode), the first light emitting unit 12, and the first intermediate.
  • the electrode 13 (second electrode), the second light emitting unit 14, and the reflective electrode 17 (third electrode) are stacked.
  • a power source 18, a power source 19, and a control unit 20 for driving the organic EL element are also shown along with the configuration of the organic EL element.
  • each light emitting unit (the first light emitting unit 12, the second light emitting unit 14, and the third light emitting unit 16) is configured using a material having individual optical characteristics. For this reason, each light emitting unit emits light having a different wavelength.
  • the organic EL element is configured as a bottom emission type in which emitted light obtained by each light emitting unit is extracted from the support substrate side.
  • a power source 18 is connected to the transparent electrode 11 and the first intermediate electrode 13 from the outside, and a power source 19 is connected to the first intermediate electrode 13 and the reflective electrode 17 from the outside.
  • the transparent electrode 11, the first intermediate electrode 13, and the reflective electrode 17 can be independently controlled by the control unit 20 via the power supplies 18 and 19.
  • the support substrate has light transmittance with respect to the emitted light generated by each light emitting unit in the visible light.
  • the transparent substrate material constituting the support substrate include glass, quartz, and a resin substrate.
  • a particularly preferable support substrate is a resin substrate that can give flexibility to the organic EL element.
  • the resin substrate may be configured to have a gas barrier layer as necessary.
  • a conventionally known resin material is used as the resin material constituting the resin substrate.
  • acrylic resin such as acrylic acid ester, methacrylic acid ester, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride ( PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfonate, polyimide, polyether imide, polyolefin, epoxy resin, etc.
  • acrylic resin such as acrylic acid ester, methacrylic acid ester, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride ( PVC), polyethylene (
  • the resin film examples include cycloolefin resins and cellulose ester resins.
  • a heat-resistant transparent film product name: Sila-DEC, manufactured by Chisso Corporation
  • silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton
  • the transparent electrode 11 is in a state of being electrically connected to the first intermediate electrode 13 via the power source 18.
  • the transparent electrode 11 is provided as an anode or a cathode for the first light emitting unit 12.
  • the transparent electrode 11 is used as an anode when the first intermediate electrode 13 is a cathode, and is used as a cathode when the first intermediate electrode 13 is an anode.
  • the transparent electrode 11 has a light transmittance with respect to the emitted light especially generated in each light emitting unit among visible light.
  • the transparent electrode 11 is composed of a conductive material suitable for an anode or a cathode, respectively, using the above-described conductive material having excellent light transmittance.
  • the conductive material suitably used for the transparent electrode 11 include transparent conductive materials such as oxide semiconductors such as ITO, ZnO, TiO 2 , and SnO 2 .
  • the transparent electrode 11 may be composed of a metal thin film mainly composed of metal.
  • the metal thin film is a metal film having a thickness in the range of 8 to 30 nm.
  • the metal contained in the metal thin film is not particularly limited as long as it is a highly conductive metal, and examples thereof include silver, copper, gold, platinum group, titanium, and chromium.
  • the transparent electrode 11 may contain only one kind of these metals or two or more kinds.
  • the transparent electrode 11 is preferably composed of silver as a main component, and is preferably composed of silver or an alloy containing silver as a main component.
  • the alloy mainly composed of silver (Ag) constituting the transparent electrode 11 include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
  • the transparent electrode 11 is composed of a metal thin film
  • the transparent electrode 11 is preferably provided in contact with the underlayer.
  • the foundation layer is a layer provided on the support substrate side of the transparent electrode 11.
  • the material constituting the underlayer is not particularly limited. For example, it preferably has an action of suppressing aggregation of silver when forming the transparent electrode 11 made of silver or an alloy containing silver as a main component. As an example, a nitrogen-containing compound or a sulfur-containing compound may be mentioned.
  • the transparent electrode 11 has a sheet resistance of 30 ⁇ / sq. Or less, preferably 10 ⁇ / sq. The following is more preferable. Further, the transparent electrode 11 preferably has a light transmittance of 30% or more at a wavelength of 550 nm, and more preferably 50% or more.
  • the light emitting units (the first light emitting unit 12, the second light emitting unit 14, and the third light emitting unit 16) have a light emitting layer configured using an organic material.
  • the 1st light emission unit 12 is provided in the transparent electrode 11 side among several light emission units.
  • Each light emitting unit is a laminate including at least a light emitting layer made of an organic material.
  • the laminated structure of each light emitting unit is not limited, and may be any of the common laminated structures as shown in the following examples (i) to (vi), and further, if necessary, a layer is formed. You may have.
  • the detail of each layer which comprises a light emission unit is mentioned later.
  • the intermediate electrode is an electrode provided between the light emitting units, and is provided between the first light emitting unit and the nth light emitting unit.
  • the intermediate electrode is provided as an anode or a cathode for each light emitting unit, and is used as a cathode when the transparent electrode 11 is an anode.
  • the reflective electrode 17 is an anode, it is used as a cathode, and when the reflective electrode is a cathode, it is used as an anode.
  • Each intermediate electrode is electrically connected to the transparent electrode 11 via power sources 18 and 19 and is electrically connected to the reflective electrode 17 via a power source 19.
  • the intermediate electrode is composed of a material suitable for the transparent electrode 11 described above using a conductive material having excellent light transmittance.
  • the intermediate electrode is preferably composed mainly of silver or aluminum.
  • the second intermediate electrode 15 may include a metal oxide such as IZO.
  • the intermediate electrode preferably has the same sheet resistance and light transmittance as the transparent electrode 11.
  • the thickness of the intermediate electrode is preferably 6 nm or more and 25 nm or less. By setting the thickness of the intermediate electrode to 6 nm or more, the intermediate electrode can have sufficient conductivity required for the electrode. Further, by setting the thickness to 25 nm or less, sufficient light transmittance can be ensured.
  • the reflective electrode 17 is provided as an anode or a cathode for the second light emitting unit 14, and is used as an anode when the first intermediate electrode 13 is a cathode, and as a cathode when the first intermediate electrode 13 is an anode.
  • the reflective electrode 17 is in a state of being electrically connected to the first intermediate electrode 13 via the power source 19.
  • the reflective electrode 17 preferably has good reflection characteristics with respect to the emitted light generated by each light emitting unit in the visible light.
  • a reflective electrode 17 is comprised using the metal material excellent in the reflective characteristic from the electroconductive material suitable as a cathode or an anode.
  • the reflective electrode 17 is made of gold, platinum, silver, copper, aluminum or the like.
  • the power source is connected to each electrode of the organic EL element.
  • one power source 18 is connected to the transparent electrode 11 and the first intermediate electrode 13.
  • the power source 18 has a positive electrode connected to the anode side of the first light emitting unit 12 and a negative electrode connected to the cathode side of the transparent electrode 11 and the first intermediate electrode 13.
  • the other power source 19 is connected to the first intermediate electrode 13 and the reflective electrode 17.
  • the power source 19 has a positive electrode connected to the anode side of the second light emitting unit 14 and a negative electrode connected to the cathode side of the first intermediate electrode 13 and the reflective electrode 17.
  • the transparent electrode 11 is connected to the positive electrode of the power source 18 as the anode of the first light emitting unit 12, and the first intermediate electrode 13 is the negative electrode of the power source 18 as the cathode of the first light emitting unit 12.
  • the first intermediate electrode 13 is connected to the positive electrode of the power source 19 as the anode of the second light emitting unit 14, and the reflective electrode 17 is connected to the negative electrode of the power source 19 as the cathode of the second light emitting unit 14.
  • the power sources 18 and 19 are configured such that the voltage and current applied to the transparent electrode 11, the first intermediate electrode 13, and the reflective electrode 17 are controlled by the control unit 20.
  • the control unit 20 can be configured by a computer or the like, for example. Thereby, the light emission ratio and the light emission amount of each light emitting unit can be controlled, and the light control property and the color control property can be improved. It is also possible to individually control the light emission of each light emitting unit.
  • the control unit 20 performs control to make the total current supplied to each light emitting unit constant, and control to make the current of the light emitting unit with high visibility constant. By such control, it is possible to perform effective light adjustment and color adjustment of the organic EL element.
  • the organic EL element only needs to have at least two power supplies, but may have a larger number of power supplies. However, in order not to complicate the apparatus, it is preferable that the number of power sources is smaller than the number of electrodes.
  • the organic EL element preferably has a sealing material that covers from the transparent electrode 11 to the reflective electrode 17 on the support substrate. Furthermore, you may provide the protective member which covers this sealing material.
  • the protective member is for mechanically protecting the organic EL element, and in particular, when the sealing material is a sealing film, mechanical protection for the organic EL element is not sufficient. It is preferable to provide it.
  • As the protective member a glass plate, a polymer plate, a polymer film, a metal plate, a metal film, or a polymer material film or a metal material film is applied. Among these, it is preferable to use a polymer film from the viewpoint of light weight and thinning.
  • the organic EL element may have a light extraction layer for efficiently extracting emitted light generated by each light emitting unit in a necessary portion as necessary.
  • the organic EL element may have an auxiliary electrode with good conductivity connected to the transparent electrode 11, the first intermediate electrode 13, and the second intermediate electrode 15 at a position that does not overlap the light emitting region. Good.
  • the material constituting the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum.
  • the organic EL element configured as described above generates emitted light in the light emitting region of each light emitting unit by applying a voltage in a predetermined state between the electrodes.
  • the emitted light passes through the transparent electrode 11 and the support substrate, and is observed as a light emitting region on the light extraction surface side of the support substrate.
  • the organic EL element may be driven by applying an AC voltage, and the AC waveform to be applied may be arbitrary.
  • the organic EL element described above has a configuration in which three layers of light emitting units of the first light emitting unit 12, the second light emitting unit 14, and the third light emitting unit 16 are stacked, or the first light emitting unit 12 and the first light emitting unit 12.
  • the two light emitting units of the two light emitting units 14 are stacked.
  • the organic EL element may have a configuration in which a plurality of light emitting units are further stacked. Even in this case, for the light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, it is sufficient that the half width of the emission spectrum is smaller than the half widths of the emission spectra of all other light emitting units.
  • each layer constituting light emitting unit Details of the constituent materials of each layer constituting each light emitting unit are shown below.
  • Each light emitting unit is made of a material suitable for the configuration of the organic EL element from the following materials.
  • the light-emitting layer is a layer that emits light by recombination of electrons injected from the cathode side and holes injected from the anode side, and the light-emitting portion is adjacent to the light-emitting layer even in the layer of the light-emitting layer. It may be an interface with the layer to be used.
  • a phosphorescent light emitting material or a fluorescent light emitting material may be used as a light emitting material, or a phosphorescent light emitting material and a fluorescent light emitting material may be used in combination.
  • the light emitting layer may contain a plurality of light emitting materials.
  • a light emitting material having a smaller half width of the emission spectrum than the light emitting materials used in other light emitting units it is preferable to use a light emitting material having a smaller half width of the emission spectrum than the light emitting materials used in other light emitting units.
  • a fluorescent light emitting material having a small half width of the light emission spectrum is used for the light emitting unit whose emission spectrum peak wavelength is closest to 555 nm, and a fluorescent light emitting material having a large full width at half maximum of the light emission spectrum or phosphorescence emission is used for the other light emitting units. It is preferable to use a material.
  • TADF thermally activated delayed fluorescence
  • the light emitting layer is not particularly limited in its configuration as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers.
  • the total film thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 40 nm because a lower driving voltage can be obtained.
  • the total film thickness of the light emitting layer includes the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers.
  • the light emitting layer here is the sum of the light emitting layers in each light emitting unit not including the intermediate connector portion.
  • the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably adjusted within a range of 1 to 20 nm. preferable.
  • the plurality of stacked light emitting layers correspond to blue, green, and red light emitting colors, there is no particular limitation on the relationship between the film thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
  • the structure of the light-emitting layer preferably contains a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant), and emits light from the light-emitting material.
  • a host compound also referred to as a light-emitting host
  • a light-emitting material also referred to as a light-emitting dopant
  • Examples of the host compound include, for example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, JP 2002-334786, JP 2002-8860, JP 2002-334787, JP 2002-15871, 2002-334788, 2002-43056, 2002 -334789, JP 2002-75645, JP 2002-338579, JP 2002-105445, JP 2002-343568, JP 2002-141173, JP 2002-352957. No.
  • the injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (issued by NTS, November 30, 1998) The details are described in Part 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition. In the organic EL element, the injection layer includes a hole injection layer and an electron injection layer.
  • the injection layer is a layer that can be provided as necessary. In the case of a hole injection layer, it is disposed between the anode and the light emitting layer or the hole transport layer, and in the case of an electron injection layer, it is disposed between the cathode and the light emitting layer or the electron transport layer.
  • JP-A-9-45479 JP-A-9-260062, JP-A-8-288069 and the like.
  • a phthalocyanine layer represented by copper phthalocyanine And an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the materials described in JP-T-2003-519432 can be used.
  • a metal layer typified by strontium, aluminum, etc.
  • examples thereof include an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer is preferably a very thin film, and the film thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of the characteristics of hole injection or transport and electron barrier properties.
  • the hole transport material may be either organic or inorganic.
  • triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, and aromatic tertiary amine compounds can be used.
  • aromatic tertiary amine compounds and styrylamine compounds include, for example, N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N '-Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, , 1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di -P-tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. These materials are preferably used because a light emitting element with higher efficiency can be obtained.
  • the hole transport layer is formed by forming a thin film from the hole transport material by using a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be produced.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the hole transport layer material can be doped with impurities to increase transportability.
  • impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), etc. can be applied.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single-layer structure or a multi-layer structure.
  • an electron transport material (also serving as a hole blocking material) constituting a portion adjacent to the light-emitting layer is formed by using electrons injected from the cathode as the light-emitting layer. It suffices to have a function of transmitting to the network.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) ) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes
  • a metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as the material for the electron transport layer.
  • metal-free or metal phthalocyanine or those whose terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer.
  • distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the material for the electron transport layer, and n-type-Si, n-type-SiC, etc. as well as the hole injection layer and the hole transport layer.
  • These inorganic semiconductors can also be used as a material for the electron transport layer.
  • the electron transport layer can be prepared by forming a thin film using the above-described material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. it can.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer can be doped with impurities to increase transportability. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer preferably contains potassium, a potassium compound, or the like.
  • the potassium compound for example, potassium fluoride can be used.
  • the same material as that for the above-described underlayer may be used. This is the same for the electron transport layer that also serves as the electron injection layer, and the same material as that for the above-described underlayer may be used.
  • Electrode blocking layer / hole blocking layer examples include, for example, Japanese Patent Application Laid-Open No. 11-204258, Japanese Patent Application Laid-Open No. 11-204359, and “The Forefront of Organic EL Devices and Their Industrialization (issued by NTT Corporation on November 30, 1998). ”Page 237 and the like, there is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the thickness of the hole blocking layer or electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the transparent electrode 11, the first light emitting unit 12, the first intermediate electrode 13, the second light emitting unit 14, and the reflective electrode 17 are formed in this order on the support substrate.
  • a base layer is formed as necessary.
  • a film formation method suitable for each member may be applied.
  • film formation methods include vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, and laser.
  • film formation methods include vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, and laser.
  • CVD method a thermal CVD method, and a coating method.
  • each member can be patterned into a predetermined shape by performing film formation using a mask as necessary. Each member may be patterned into a predetermined shape after each layer is formed. In addition, before and after the formation of the transparent electrode 11 and the first intermediate electrode 13, an auxiliary electrode pattern may be formed as necessary.
  • the laminating step is preferably performed by a procedure of forming a film from the transparent electrode 11 to the reflective electrode 17 consistently by a single vacuum drawing.
  • sealing process is performed from the reflective electrode 17 side.
  • the transparent electrode 11, the first intermediate electrode 13, and the terminal portions of the reflective electrode 17 are exposed so that the laminate from the transparent electrode 11 to the reflective electrode 17 is covered with the support substrate.
  • a stop material is provided, and a protective member is further bonded through a sealing material as necessary.
  • the organic EL element described above can be used as a planar light emitting device.
  • the light emitting device can increase the light emitting surface area by using a plurality of organic EL elements.
  • the light emitting surface is enlarged by arranging (that is, tiling) a plurality of organic EL elements on the substrate of the light emitting device.
  • the substrate of the light emitting device may also serve as a sealing material, and the organic EL device is sandwiched between the transparent electrode 11 and the reflective electrode 17 between the substrate of the light emitting device and the support substrate of the organic EL element. Tile the element.
  • An adhesive may be filled between the base of the light emitting device and the support substrate of the organic EL element, thereby sealing the transparent electrode 11 to the reflective electrode 17 of the organic EL element.
  • a terminal connected to each electrode of the organic EL element is exposed around the base of the light emitting device.
  • a large-area light-emitting region obtained by connecting light-emitting regions formed in a plurality of organic EL elements can be displayed in a pattern.
  • a non-light emitting region is generated at the joint of each organic EL element.
  • the light extraction member a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • a glass substrate having a thickness of 0.7 mm was prepared as a support substrate.
  • This support substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • Ag silver
  • first light emitting unit EMU1
  • the support substrate on which the transparent electrode was formed was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • material of each layer which comprises a 1st light emission unit (EMU1) was filled with the optimal quantity for element manufacture to each crucible for vapor deposition in a vacuum evaporation system.
  • an evaporation crucible made of a resistance heating material made of molybdenum or tungsten was used as each evaporation crucible made of a resistance heating material made of molybdenum or tungsten was used.
  • HTL1 hole transport layer
  • the following compound 1-B was deposited on the hole transport layer (HTL1) so as to have a thickness of 10 nm to form an electron blocking layer.
  • ETL1 Electrode transport layer: formation of ETL1
  • ETL1 electron transport layer
  • EMU1 light emitting unit
  • the film thickness was set to the following thickness in the same procedure using the same material as the first light emitting unit (EMU1), and the second light emitting unit (EMU2) was formed on the first intermediate electrode. Formed.
  • HAT-CN was deposited to a thickness of 5 nm to form a hole injection layer.
  • HTL2 hole transport layer
  • Compound 1-B was deposited to a thickness of 10 nm to form an electron blocking layer.
  • ETL2 Electrode transporting layer: formation of ETL2
  • ETL2 electron transport layer
  • EMU2 light emitting unit
  • EMU3 Except for the light emitting layer, the film thickness was set to the following thickness in the same procedure using the same material as the first light emitting unit (EMU1) and the second light emitting unit (EMU2), and the second intermediate electrode was A third light emitting unit (EMU3) was formed.
  • HAT-CN was deposited to a thickness of 5 nm to form a hole injection layer.
  • HTL3 hole transport layer
  • ETL3 Electrode transporting layer: formation of ETL3
  • ETL3 electron transport layer
  • EMU3 light emitting unit
  • the laminated body formed from the transparent electrode to the reflective electrode is covered with a glass case from the reflective electrode side, and a sealant with an epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied to the periphery of the glass case. Provided. The glass case and the support substrate were brought into close contact with each other through this sealing agent. Then, the laminated body from a transparent electrode to a reflective electrode was sealed by irradiating UV light from the glass case side, and the sealing agent was hardened, and the organic EL element of the sample 101 was produced.
  • a sealant with an epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.)
  • each electrode was made into the state pulled out from the glass case, and the power supply was connected to these electrodes.
  • the glass case is sealed with a glove box in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the laminate from the transparent electrode to the reflective electrode into contact with the atmosphere. went.
  • emission spectra of the respective light emitting units were obtained.
  • the wavelength that gives the maximum light emission intensity was taken as the peak wavelength.
  • a numerical value was obtained by setting the wavelength difference between the minimum wavelength and the maximum wavelength, which is half the intensity from the emission intensity of the peak wavelength, as a half width (full width at half maximum: FWHM).
  • Table 1 shows the measured peak wavelength and full width at half maximum for the light emitting units (EMU1 to EMU3) of each sample.
  • FIG. 5 shows an emission spectrum when each light emitting unit (EMU1 to EMU3) emits light individually in the organic EL element of the sample 101.
  • the peak wavelength of the third light emitting unit is closer to 555 nm than the peak wavelength of the first light emitting unit and the peak wavelength of the second light emitting unit. For this reason, the light emitting unit whose peak wavelength is closest to 555 nm is the third light emitting unit. And the half value width of the emission spectrum of the 3rd light emission unit whose peak wavelength is the closest to 555 nm is smaller than the half value width of the emission spectrum of the 1st light emission unit and the 2nd light emission unit. Therefore, the organic EL element of the sample 101 has a configuration in which the half width of the emission spectrum of the light emitting unit whose peak wavelength is closest to 555 nm is the smallest among all the light emitting units.
  • the organic EL elements of Samples 102 to 106 have a configuration in which the half width of the emission spectrum of the light emitting unit having the peak wavelength closest to 555 nm is the smallest among all the light emitting units.
  • the peak wavelength of the first light emitting unit is closer to 555 nm than the peak wavelength of the second light emitting unit. For this reason, the light emitting unit whose peak wavelength is closest to 555 nm is the first light emitting unit.
  • the half width of the second light emitting unit is smaller than the half width of the first light emitting unit. Therefore, unlike the samples 101 to 106, the organic EL element of the sample 107 does not have the smallest half-width of the emission spectrum of the light emitting unit whose peak wavelength is closest to 555 nm among all the light emitting units.
  • the organic EL elements of Samples 101 to 106 in the configuration in which the half-value width of the emission spectrum of the light emitting unit whose peak wavelength is closest to 555 nm is the smallest among all the light emitting units, compared to the sample 107 that does not have this configuration.
  • the standard deviation ⁇ of luminance variation and chromaticity variation (the sum of squares of x and y) is small. That is, in the organic EL elements of Samples 101 to 106, luminance variations and color variations are suppressed to be smaller than those of Sample 107 even when variations occur in the thickness of each layer in manufacturing 50 panels.
  • the organic EL elements of the samples 104 to 106 in which the light emitting unit having the peak wavelength closest to 555 nm includes the fluorescent light emitting material as the light emitting material are compared with the organic EL elements of the samples 101 to 103 including the phosphorescent light emitting material as the light emitting material. , Luminance fluctuation and color fluctuation are small. In this way, by using a fluorescent material as the light emitting material, even when variations occur in the thickness of each layer during manufacturing, luminance variations and color variations are suppressed. Therefore, in a light emitting unit having a peak wavelength closest to 555 nm, it is preferable to use a fluorescent light emitting material as the light emitting material.
  • the half width of the emission spectrum of the light emitting unit having a high specific visibility is smaller than the half width of the emission spectrum of the other light emitting units, even when thickness variation occurs during film formation, With respect to the light emitted from the organic EL element, it is possible to reduce the influence of the color shift and the luminance change of the light emitted from the light emitting unit having a high specific visibility. That is, the color shift and the luminance change of the light emitted from the light emitting unit having high specific visibility are not easily recognized even in the light emitted from the organic EL element. As a result, even in the film thickness fluctuation when forming each layer constituting the organic electroluminescence element, it becomes possible to suppress the fluctuation of the light emission performance, and to suppress the decrease in the productivity and the yield of the organic EL element. Can do.
  • SYMBOLS 11 Transparent electrode, 12 ... 1st light emission unit, 13 ... 1st intermediate electrode, 14 ... 2nd light emission unit, 15 ... 2nd intermediate electrode, 16 ... 3rd light emission Unit, 17 ... reflective electrode, 18, 19 ... power supply, 20 ... control unit

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescent element which comprises n light emitting units and (n + 1) or more electrodes on a supporting substrate, while comprising a transparent electrode, the first light emitting unit, -omitted-, the n-th electrode, the n-th light emitting unit and the (n + 1)th electrode sequentially from the supporting substrate side. A light emitting unit that has a peak wavelength of the emission spectrum closest to 555 nm has the smallest half-value width of the emission spectrum among all the light emitting units.

Description

有機エレクトロルミネッセンス素子、及び、発光装置ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHT EMITTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子、及び、この有機エレクトロルミネッセンス素子を備える発光装置に係わる。 The present invention relates to an organic electroluminescence element and a light-emitting device provided with the organic electroluminescence element.
 有機エレクトロルミネッセンス(electroluminescence:EL)素子は、自発光性であることから、薄型化が可能であり、消費電力が抑えられ、且つ応答速度が速いといった特徴を有している。
 照明用途において、有機EL素子の発光色を変化させることができれば、色による演出を効果的に得ることができる。このため、有機EL素子において発光色を変化させることが可能な調色機能は、重要な機能である。このような調色機能の一形態として、有機EL素子に調色(調光)ユニットを設けた素子が提案されている(例えば、特許文献1、特許文献2参照)。
An organic electroluminescence (EL) element is self-luminous and can be reduced in thickness, power consumption is reduced, and response speed is high.
In lighting applications, if the light emission color of the organic EL element can be changed, a color effect can be obtained effectively. For this reason, the toning function capable of changing the emission color in the organic EL element is an important function. As one form of such a toning function, an element in which a toning (dimming) unit is provided in an organic EL element has been proposed (see, for example, Patent Document 1 and Patent Document 2).
 また、このような複数の電極と発光ユニットとが積層された構成有機EL素子において、調色を行なう場合には、各発光ユニットを同時に駆動することができないため、時分割してパルス駆動で各発光ユニットを駆動する方法や、中間電極を共通アノードとして使用する方法が一般的である。このような駆動を行なうことにより、各発光ユニットの色や輝度を自在に組み合わせ、様々な色を表現することができる(例えば、非特許文献1、非特許文献2参照)。 Further, in the configuration organic EL element in which a plurality of electrodes and light emitting units are laminated, when toning, each light emitting unit cannot be driven at the same time. A method of driving a light emitting unit and a method of using an intermediate electrode as a common anode are common. By performing such driving, it is possible to freely combine colors and luminances of the respective light emitting units to express various colors (for example, see Non-Patent Document 1 and Non-Patent Document 2).
特開2009-99400号公報JP 2009-99400 A 特開2014-120334号公報JP 2014-120334 A
 上述の有機EL素子では、比視感度の高い光を放出する発光ユニットにおいて、発光スペクトルの半値幅が大きい。このため、発光スペクトル中に多種の波長を含む。しかしながら、有機EL素子の製造において、成膜のバラツキ等によって発光ユニットの膜厚が変動すると、マイクロキャビティ効果によって強調される波長が、設計値からずれてしまう。このような膜厚変動が起きた場合、上述の有機EL素子のように比視感度の高い光を放出する発光ユニットは、マイクロキャビティ効果によって強調される設計値からずれた波長の光も多く含むため、有機EL素子の色度や輝度等の発光性能が大きく変動してしまう。 In the above-described organic EL element, the half width of the emission spectrum is large in the light emitting unit that emits light with high relative visibility. For this reason, various wavelengths are included in the emission spectrum. However, in the manufacture of an organic EL element, when the film thickness of the light emitting unit varies due to film formation variation or the like, the wavelength emphasized by the microcavity effect deviates from the design value. When such a film thickness variation occurs, a light emitting unit that emits light with high relative visibility like the above-described organic EL element includes a large amount of light having a wavelength that deviates from the design value emphasized by the microcavity effect. Therefore, the light emission performance such as chromaticity and luminance of the organic EL element greatly varies.
 上述のように、膜厚変動によって有機EL素子の発光性能が大きく変動してしまうと、生産性、歩留まり等が低下してしまう。従って、各層を成膜する際の膜厚変動においても、発光性能の変動を抑制することが可能な有機EL素子が求められている。 As described above, when the light emitting performance of the organic EL element greatly varies due to the variation in film thickness, productivity, yield, and the like decrease. Accordingly, there is a demand for an organic EL element that can suppress fluctuations in light emission performance even in film thickness fluctuations when forming each layer.
 上述した問題の解決のため、本発明においては、有機エレクトロルミネッセンス素子を構成する各層の膜厚変動に対して、発光性能の変動を抑制することが可能な有機エレクトロルミネッセンス素子、及び、発光装置を提供する。 In order to solve the above-described problems, in the present invention, an organic electroluminescence element and a light-emitting device that can suppress fluctuations in light emission performance with respect to film thickness fluctuations of each layer constituting the organic electroluminescence element are provided. provide.
 本発明の有機エレクトロルミネッセンス素子は、支持基板上に設けられた、n個の発光ユニットと、n+1個以上の電極とを備え、支持基板側から、透明電極、第1発光ユニット・・・第n電極、第n発光ユニット、第n+1電極を有する有機エレクトロルミネッセンス素子であって、発光スペクトルのピーク波長が最も555nmに近い発光ユニットは、発光スペクトルの半値幅が、全発光ユニット中で最も小さい。
 また、本発明の発光装置は、上記有機エレクトロルミネッセンス素子を備える。
The organic electroluminescent element of the present invention includes n light emitting units and n + 1 or more electrodes provided on a support substrate, and from the support substrate side, a transparent electrode, a first light emitting unit, ... n An organic electroluminescence element having an electrode, an nth light emitting unit, and an (n + 1) th electrode, and a light emitting unit having a peak wavelength of the emission spectrum closest to 555 nm has the smallest half-value width of the emission spectrum among all the light emitting units.
Moreover, the light-emitting device of this invention is equipped with the said organic electroluminescent element.
 本発明によれば、有機エレクトロルミネッセンス素子を構成する各層の膜厚変動に対して、発光性能の変動を抑制することが可能な有機エレクトロルミネッセンス素子、及び、発光装置を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescence element and a light emitting device capable of suppressing fluctuations in light emission performance with respect to film thickness fluctuations of each layer constituting the organic electroluminescence element.
有機EL素子の構成を示す図である。It is a figure which shows the structure of an organic EL element. 有機EL素子の各発光ユニットの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of each light emission unit of an organic EL element. 明所視標準比視感度のグラフである。It is a graph of photopic standard relative luminous sensitivity. 有機EL素子の構成を示す図である。It is a figure which shows the structure of an organic EL element. 実施例の試料101の有機EL素子の各発光ユニットの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of each light emission unit of the organic EL element of the sample 101 of an Example.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.有機エレクトロルミネッセンス素子の概要
2.有機エレクトロルミネッセンス素子の実施形態
3.発光装置の実施形態
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. 1. Outline of organic electroluminescence device 2. Embodiment of organic electroluminescence device Embodiment of light emitting device
〈1.有機エレクトロルミネッセンス素子の概要〉
 有機エレクトロルミネッセンス(EL)素子の具体的な実施形態の説明に先立ち、本発明の有機EL素子の概要について説明する。
<1. Outline of Organic Electroluminescence Device>
Prior to description of specific embodiments of the organic electroluminescence (EL) element, an outline of the organic EL element of the present invention will be described.
 図1に、一般的な有機EL素子の素子構成を示す。図1に示す有機EL素子は、透明電極11、第1発光ユニット12、第1中間電極13、第2発光ユニット14、第2中間電極15、第3発光ユニット16、及び、反射電極17が積層された構成を有する。すなわち、有機EL素子は、第1中間電極13及び第2中間電極15を介して3層の発光ユニットが積層された構成である。なお、図1では、有機EL素子の設計方法に係わる構成のみを記載し、基板等の構成は記載を省略している。 FIG. 1 shows an element configuration of a general organic EL element. The organic EL element shown in FIG. 1 includes a transparent electrode 11, a first light emitting unit 12, a first intermediate electrode 13, a second light emitting unit 14, a second intermediate electrode 15, a third light emitting unit 16, and a reflective electrode 17 laminated. It has the structure made. That is, the organic EL element has a configuration in which three layers of light emitting units are stacked via the first intermediate electrode 13 and the second intermediate electrode 15. In FIG. 1, only the configuration related to the design method of the organic EL element is shown, and the configuration of the substrate and the like is omitted.
 図1に示す有機EL素子は、最も透明電極11側に配置された第1発光ユニット12が光(L1)を放出する構成である。また、第2発光ユニット14が光(L2)を放出し、第3発光ユニット16の光(L3)を放出する構成である。 The organic EL element shown in FIG. 1 has a configuration in which the first light emitting unit 12 arranged closest to the transparent electrode 11 emits light (L1). The second light emitting unit 14 emits light (L2), and the third light emitting unit 16 emits light (L3).
 図1に示すように、有機EL素子においては、複数の発光ユニットを設け、各発光ユニットからの光を合成することで白色光を得る。また、各発光ユニットの時分割駆動や、中間電極を共通アノードとして使用することにより、各発光ユニットの色、輝度を自在に組み合わせ、様々な色を表現することができる。 As shown in FIG. 1, in an organic EL element, a plurality of light emitting units are provided, and white light is obtained by synthesizing light from each light emitting unit. Further, by using time-division driving of each light-emitting unit and using the intermediate electrode as a common anode, it is possible to express various colors by freely combining the colors and luminance of each light-emitting unit.
 また、このような構成の有機EL素子では、有機EL素子にマイクロキャビティ(微小共振器)構造が取り入れられている。マイクロキャビティ構造は、発光ユニットの厚さを調整することにより、特定の波長の光を電極(陰極・陽極)間で共振させて強調し、それ以外の波長の光を弱め、外部に取り出される光のスペクトルを急峻かつ高強度にすることができる。これにより、有機EL素子において、特定の波長の光の輝度と色純度を向上させることができる。 In the organic EL element having such a configuration, a microcavity (microresonator) structure is incorporated in the organic EL element. The microcavity structure adjusts the thickness of the light emitting unit to resonate and emphasize light of a specific wavelength between the electrodes (cathode / anode), weaken the light of other wavelengths, and extract light to the outside The spectrum can be steep and high intensity. Thereby, in an organic EL element, the brightness | luminance and color purity of the light of a specific wavelength can be improved.
 上記図1に示す構成の有機EL素子の各発光ユニットから放出される光L1、L2、L3の発光スペクトルの一例を、図2に示す。図2に示す各発光スペクトルは、第1発光ユニット12からの光L1が波長475nmにピークを有し、第2発光ユニット14からの光L2が波長560nmにピークを有し、第3発光ユニット16からの光L3が波長594nmにピークを有する例である。なお、図2に示す発光スペクトルは、各発光ユニットを単独で形成した素子を発光させた際の発光スペクトルである。有機EL素子の全発光スペクトルは、各発光ユニットの発光スペクトルを総合したスペクトルとなる。 FIG. 2 shows an example of emission spectra of the light L1, L2, and L3 emitted from each light emitting unit of the organic EL element having the configuration shown in FIG. In each emission spectrum shown in FIG. 2, the light L1 from the first light emitting unit 12 has a peak at a wavelength of 475 nm, the light L2 from the second light emitting unit 14 has a peak at a wavelength of 560 nm, and the third light emitting unit 16 This is an example in which the light L3 from the light has a peak at a wavelength of 594 nm. In addition, the emission spectrum shown in FIG. 2 is an emission spectrum at the time of making the element which formed each light emission unit independently emit light. The total emission spectrum of the organic EL element is a spectrum obtained by combining the emission spectra of the respective light emitting units.
 図2に示すように、赤、緑、及び、青の3色の発光ユニットの発光スペクトルが、それぞれに独自のピークを有して所定の範囲に広がり、これにより有機EL素子から白色光が取り出される。また、赤、緑、及び、青の3色の発光ユニットの発光スペクトルの輝度を自在に組み合わせることで、様々な色を表現することができる。 As shown in FIG. 2, the emission spectra of the light emitting units of three colors, red, green, and blue, each have their own peak and spread in a predetermined range, thereby extracting white light from the organic EL element. It is. Further, various colors can be expressed by freely combining the luminances of the emission spectra of the light emitting units of three colors of red, green, and blue.
 次に、図3に明所視標準比視感度のグラフを示す。視感度とは、人間の目が波長ごとに光を感じ取る強さの度合を表すものである。図3に示すように、明所では波長555nmの光の視感度が最も高く、波長555nmに近い光ほど視感度が高い。 Next, a graph of photopic standard relative luminous sensitivity is shown in FIG. Visibility represents the degree to which the human eye perceives light at each wavelength. As shown in FIG. 3, in a bright place, the light with a wavelength of 555 nm has the highest visibility, and the light with a wavelength closer to 555 nm has a higher visibility.
 図2に示すように、上述の有機EL素子では、波長560nmにピークを有する第2発光ユニット14からの光L2が、最も波長555nmに近い位置にピークを有する。従って、有機EL素子において、第2発光ユニット14からの光L2が、最も視感度が高くなる。さらに、図2に示すように、第2発光ユニット14からの光L2は、第1発光ユニット12からの光L1や、第3発光ユニット16からの光L3に比べて、発光スペクトルの半値幅が大きく、スペクトルの分布が幅広くなっている。このため、第2発光ユニット14からの光L2は、相対的に視感度の高い波長が高い強度で多く含まれている。 As shown in FIG. 2, in the organic EL element described above, the light L2 from the second light emitting unit 14 having a peak at a wavelength of 560 nm has a peak at a position closest to the wavelength of 555 nm. Therefore, in the organic EL element, the light L2 from the second light emitting unit 14 has the highest visibility. Further, as shown in FIG. 2, the light L2 from the second light emitting unit 14 has a half-value width of the emission spectrum, compared to the light L1 from the first light emitting unit 12 and the light L3 from the third light emitting unit 16. Large and wide spectrum distribution. For this reason, the light L2 from the second light-emitting unit 14 is contained in a large amount at a wavelength with relatively high visibility.
 また、有機EL素子の設計では、有機EL素子を構成する各層の厚さを調整することにより、マイクロキャビティ効果によって特定の波長が増幅されるように有機EL素子を設定する。例えば、第1発光ユニット12からの光L1において、波長475nmの光が増幅されるように有機EL素子の各層の厚さを設定する。同様に、第2発光ユニット14からの光L2において、波長560nmの光が増幅されるように有機EL素子の各層の厚さを設定し、第3発光ユニット16からの光L3において、波長594nmの光が増幅されるように有機EL素子の各層の厚さを設定する。 In designing the organic EL element, the organic EL element is set so that a specific wavelength is amplified by the microcavity effect by adjusting the thickness of each layer constituting the organic EL element. For example, in the light L1 from the first light emitting unit 12, the thickness of each layer of the organic EL element is set so that light with a wavelength of 475 nm is amplified. Similarly, in the light L2 from the second light emitting unit 14, the thickness of each layer of the organic EL element is set so that light with a wavelength of 560 nm is amplified, and in the light L3 from the third light emitting unit 16, the wavelength of 594 nm is set. The thickness of each layer of the organic EL element is set so that light is amplified.
 しかし、有機EL素子を製造する際には、成膜時に有機EL素子を構成する各層の厚さにバラツキが発生してしまう。この場合、有機EL素子を構成する各層の厚さが設計値からずれることにより、各発光ユニットから放出される光についても、マイクロキャビティ効果によって増幅される波長が、設計値からずれてしまう。例えば、各発光ユニットから放出される光のピーク波長がずれるとともに、ピーク波長以外の増幅される波長が発生してしまう。 However, when manufacturing an organic EL element, the thickness of each layer constituting the organic EL element varies during film formation. In this case, when the thickness of each layer constituting the organic EL element deviates from the design value, the wavelength amplified by the microcavity effect also deviates from the design value for the light emitted from each light emitting unit. For example, the peak wavelength of the light emitted from each light emitting unit is shifted and an amplified wavelength other than the peak wavelength is generated.
 このとき、第1発光ユニット12からの光L1や、第3発光ユニット16からの光L3は、第2発光ユニット14からの光L2に比べて、比視感度が低いため、さらに、半値幅が小さく、ピーク波長からずれた波長の相対強度が低いため、ピーク波長以外にマイクロキャビティ効果によって増幅される波長が発生しても、有機EL素子から放出され光に対する影響が小さい。このため、有機EL素子の発光において、色ずれや輝度変化が視認されにくい。 At this time, the light L1 from the first light-emitting unit 12 and the light L3 from the third light-emitting unit 16 have lower relative visibility than the light L2 from the second light-emitting unit 14, and therefore the half-value width is further reduced. Since the relative intensity of the wavelength that is small and deviated from the peak wavelength is low, even if a wavelength amplified by the microcavity effect other than the peak wavelength is generated, the influence on the light emitted from the organic EL element is small. For this reason, in the light emission of an organic EL element, a color shift and a luminance change are hardly visually recognized.
 しかし、第2発光ユニット14からの光L2は、比視感度が高いため、さらに、半値幅が大きく、ピーク波長からずれた波長も相対強度が高いため、ピーク波長以外にマイクロキャビティ効果によって増幅される波長が発生した場合に、ピーク波長以外の増幅された波長による、光L2の色ずれや輝度変化が認識されやすい。このため、ピーク波長以外の増幅された波長による光L2の色ずれや輝度変化が、有機EL素子から放出される光において視認されやすい。 However, since the light L2 from the second light emitting unit 14 has high specific visibility, the half-value width is large, and the wavelength deviated from the peak wavelength has high relative intensity. Therefore, the light L2 is amplified by the microcavity effect in addition to the peak wavelength. When a wavelength is generated, a color shift or luminance change of the light L2 due to an amplified wavelength other than the peak wavelength is easily recognized. For this reason, the color shift and the luminance change of the light L2 due to the amplified wavelength other than the peak wavelength are easily visible in the light emitted from the organic EL element.
 従って、第2発光ユニット14からの光L2のように、有機EL素子を構成する発光ユニットのうち、最も比視感度が高い光を放出する発光ユニットの半値幅が大きいと、製造時の各層の厚さのバラツキにより、有機EL素子の色度や輝度等の発光性能が大きく変動してしまう。このような膜厚変動によって有機EL素子の発光性能が大きく変動してしまうと、有機EL素子の生産性や歩留まり等が大きく低下してしまう。 Therefore, if the half-value width of the light emitting unit that emits light with the highest relative visibility among the light emitting units that constitute the organic EL element, such as the light L2 from the second light emitting unit 14, is large, Due to the variation in thickness, the light emission performance such as chromaticity and luminance of the organic EL element greatly varies. When the light emission performance of the organic EL element greatly varies due to such a film thickness variation, the productivity and yield of the organic EL element are greatly decreased.
 この課題に対し、有機EL素子の生産性や歩留まり等を向上させるためには、有機EL素子を作製する際に発生する、成膜時の厚さのバラツキに対しても、有機EL素子の発光性能の変動を抑制する必要がある。このためには、有機EL素子において、比視感度が高い発光ユニットから放出される光の発光スペクトルの半値幅を小さくし、ピークからずれた波長の相対強度を低くする必要がある。 In order to improve the productivity and the yield of the organic EL element in response to this problem, the light emission of the organic EL element can also be applied to the thickness variation during the formation of the organic EL element. It is necessary to suppress fluctuations in performance. For this purpose, in the organic EL element, it is necessary to reduce the half-value width of the emission spectrum of the light emitted from the light emitting unit having high specific visibility, and to reduce the relative intensity of the wavelength shifted from the peak.
 比視感度が高い発光ユニットの発光スペクトルの半値幅を小さくすることにより、ピーク波長以外の波長の相対強度が小さくなるため、マイクロキャビティ効果によってピーク波長以外で増幅される波長の光の相対強度を小さくすることができる。このため、比視感度が高い発光ユニットにおいて、マイクロキャビティ効果によってピーク波長以外で増幅される波長の光が発生した場合にも、比視感度が高い発光ユニットから放出される光の色ずれや輝度変化が、認識されにくくなる。さらに、有機EL素子から放出される光に対する、比視感度が高い発光ユニットから放出される光の色ずれや輝度変化による影響を、小さくすることができる。 By reducing the half-value width of the emission spectrum of a light emitting unit with high specific visibility, the relative intensity of wavelengths other than the peak wavelength is reduced. Can be small. For this reason, even when light having a wavelength that is amplified by a microcavity effect other than the peak wavelength is generated in a light emitting unit with high specific luminous efficiency, the color shift or luminance of light emitted from the light emitting unit with high specific visual sensitivity. Changes are less likely to be recognized. Furthermore, it is possible to reduce the influence of the color shift or luminance change of the light emitted from the light emitting unit having a high specific visibility on the light emitted from the organic EL element.
 従って、有機EL素子において、最も比視感度が高い発光ユニットの発光スペクトルの半値幅を小さくすることにより、成膜時に各層の厚さのバラツキが発生しても、発光性能の変動を小さくすることが可能となる。すなわち、発光スペクトルのピーク波長が最も555nmに近い発光ユニットについて、発光スペクトルの半値幅を、他の全ての発光ユニットの発光スペクトルの半値幅よりも小さくすることで、この発光ユニットから放出される光の色ずれや輝度変化が、有機EL素子から放出される光においても視認されにくくなる。この結果、有機エレクトロルミネッセンス素子を構成する各層を成膜する際の膜厚変動においても、発光性能の変動を抑制することが可能となり、有機EL素子の生産性や歩留まり等の低下を抑制することができる。 Therefore, in the organic EL element, by reducing the half width of the emission spectrum of the light emitting unit having the highest specific luminous efficiency, even if the thickness of each layer varies during film formation, the variation in the light emitting performance is reduced. Is possible. That is, for a light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, the light emitted from the light emitting unit is reduced by making the half width of the emission spectrum smaller than the half width of the emission spectra of all other light emitting units. The color shift and the luminance change are less visible even in the light emitted from the organic EL element. As a result, even in the film thickness fluctuation when forming each layer constituting the organic electroluminescence element, it becomes possible to suppress the fluctuation of the light emission performance, and to suppress the decrease in the productivity and the yield of the organic EL element. Can do.
 有機EL素子において、発光スペクトルの半値幅を調整する方法は、限定されない。比視感度の高い発光ユニットの発光スペクトルの半値幅を、他の発光ユニットよりも小さくできれば、どのような方法を用いてもよい。例えば、発光スペクトルの半値幅を調整する方法は、発光ユニットを構成する発光層において、使用する発光材料を選択する方法が挙げられる。具体的には、発光材料としてリン光発光材料を用いるよりも、蛍光発光材料を用いた方が、発光スペクトルの半値幅が小さくなりやすい。このため、発光スペクトルのピーク波長が最も555nmに近い発光ユニットは、発光材料として蛍光発光材料を含むことが好ましい。さらに、この発光ユニットが発光材料として蛍光発光材料のみを含むことが好ましい。 In the organic EL element, the method for adjusting the half-value width of the emission spectrum is not limited. Any method may be used as long as the half-value width of the emission spectrum of the light emitting unit having high specific visibility can be made smaller than that of other light emitting units. For example, a method for adjusting the half width of the emission spectrum includes a method of selecting a light emitting material to be used in the light emitting layer constituting the light emitting unit. Specifically, the half width of the emission spectrum tends to be smaller when a fluorescent light emitting material is used than when a phosphorescent light emitting material is used as the light emitting material. For this reason, it is preferable that the light emitting unit having the peak wavelength of the emission spectrum closest to 555 nm includes a fluorescent light emitting material as the light emitting material. Furthermore, it is preferable that this light emitting unit contains only a fluorescent light emitting material as a light emitting material.
 また、膜厚変動とマイクロキャビティ効果による色ずれや輝度変動は、有機EL素子が中間電極を有する構成、特に、中間電極に反射率の高い金属を用いた構成で発生しやすい。これは、中間電極での反射が加わるためであり、例えば、中間電極を用いて調色を行う構成の有機EL素子においてより顕著に発生しやすい。 Also, color shift and luminance fluctuation due to film thickness fluctuation and microcavity effect are likely to occur in a configuration in which the organic EL element has an intermediate electrode, particularly in a configuration in which a metal having a high reflectance is used for the intermediate electrode. This is because reflection at the intermediate electrode is added, and for example, it is more likely to occur more significantly in an organic EL element configured to perform color adjustment using the intermediate electrode.
 このため、中間電極を有する構成、特に、中間電極として銀やアルミニウム等の反射率の高い金属材料を有する有機EL素子においては、上述のように、発光スペクトルのピーク波長が最も555nmに近い発光ユニットについて、発光スペクトルの半値幅を、他の全ての発光ユニットの発光スペクトルの半値幅よりも小さく設計することが好ましい。 For this reason, in the structure having an intermediate electrode, in particular, in an organic EL element having a metal material having a high reflectance such as silver or aluminum as the intermediate electrode, as described above, the light emitting unit having the peak wavelength of the emission spectrum closest to 555 nm Is preferably designed so that the half-value width of the emission spectrum is smaller than the half-value widths of the emission spectra of all other light-emitting units.
 なお、上述の説明では、発光ユニットを3層有し、3色の発光が可能な有機EL素子を用いているが、発光スペクトルのピーク波長が最も555nmに近い発光ユニットについて、発光スペクトルの半値幅を、他の全ての発光ユニットの発光スペクトルの半値幅よりも小さくする構成が適用可能な有機EL素子は、上述の構成に限られない。発光ユニットを2層又は4層以上有し、2色又は4色以上の発光が可能な有機EL素子にも、上記構成を適用することができる。例えば、有機EL素子が2層の発光ユニットを有し、各発光ユニットが青色又は黄色の2色の発光色を有する場合では、黄色の発光色を有する発光ユニットの方が発光スペクトルのピーク波長が555nmに近くなる。このため、黄色の発光色を有する発光ユニットの発光スペクトルの半値幅を、青色の発光色を有する発光ユニットの発光スペクトルの半値幅よりも小さくする。これにより、2層の発光ユニットを有する有機EL素子においても、膜厚変動による発光性能の変動を抑制することが可能となる。このように、発光スペクトルのピーク波長が最も555nmに近い発光ユニットについて、発光スペクトルの半値幅を、他の全ての発光ユニットの発光スペクトルの半値幅よりも小さくする構成は、発光ユニットの積層数にかかわらず適用することができる。 In the above description, an organic EL element having three layers of light emitting units and capable of emitting three colors is used. However, for a light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, the half width of the emission spectrum. The organic EL element to which the configuration in which the light emission spectrum is smaller than the half-value width of the emission spectrum of all other light emitting units is not limited to the above-described configuration. The above structure can also be applied to an organic EL element having two or four or more light emitting units and capable of emitting light of two colors or four colors. For example, when the organic EL element has two layers of light emitting units, and each light emitting unit has two emission colors of blue or yellow, the light emitting unit having a yellow emission color has a peak wavelength of the emission spectrum. It approaches 555 nm. For this reason, the half width of the emission spectrum of the light emitting unit having the yellow emission color is made smaller than the half width of the emission spectrum of the light emitting unit having the blue emission color. As a result, even in an organic EL element having a two-layer light emitting unit, it is possible to suppress variation in light emission performance due to film thickness variation. Thus, for the light emitting unit whose emission spectrum peak wavelength is closest to 555 nm, the configuration in which the half width of the emission spectrum is smaller than the half width of the emission spectra of all other light emitting units is the number of stacked light emitting units. Can be applied regardless.
〈2.有機エレクトロルミネッセンス素子の実施形態〉
 以下、上述の膜厚変動による発光性能の変動を抑制することが可能な有機EL素子の構成について説明する。なお、以下の説明は、実施形態の有機EL発光装置を構成することが可能な構成要素の一例であり、他の構成を適用することも可能である。
<2. Embodiment of Organic Electroluminescence Device>
Hereinafter, a configuration of the organic EL element capable of suppressing the variation in the light emission performance due to the above-described film thickness variation will be described. In addition, the following description is an example of the component which can comprise the organic electroluminescent light emitting device of embodiment, and it is also possible to apply another structure.
[有機EL素子]
 図1に、発光ユニットを3層有する有機EL素子の素子構成を示す。図1に示す有機EL素子は、支持基板(不明示)の一主面上に設けられており、支持基板側から順に、透明電極11(第1電極)、第1発光ユニット12、第1中間電極13(第2電極)、第2発光ユニット14、第2中間電極15(第3電極)、第3発光ユニット16、及び、反射電極17(第4電極)が積層された構成を有する。すなわち、有機EL素子は、第1中間電極13及び第2中間電極15を介して3層の発光ユニットが積層された構成である。
[Organic EL device]
FIG. 1 shows an element configuration of an organic EL element having three layers of light emitting units. The organic EL element shown in FIG. 1 is provided on one main surface of a support substrate (unknown), and in order from the support substrate side, a transparent electrode 11 (first electrode), a first light emitting unit 12, and a first intermediate. The electrode 13 (second electrode), the second light emitting unit 14, the second intermediate electrode 15 (third electrode), the third light emitting unit 16, and the reflective electrode 17 (fourth electrode) are stacked. That is, the organic EL element has a configuration in which three layers of light emitting units are stacked via the first intermediate electrode 13 and the second intermediate electrode 15.
 また、図4に、発光ユニットを2層有する有機EL素子の素子構成を示す。図4に示す有機EL素子は、支持基板(不明示)の一主面上に設けられており、支持基板側から順に、透明電極11(第1電極)、第1発光ユニット12、第1中間電極13(第2電極)、第2発光ユニット14、及び、反射電極17(第3電極)が積層されている。図4に示す有機EL素子では、有機EL素子の構成とともに、有機EL素子を駆動するための電源18、電源19、及び、制御部20も示している。 FIG. 4 shows an element configuration of an organic EL element having two layers of light emitting units. The organic EL element shown in FIG. 4 is provided on one main surface of a support substrate (unknown), and in order from the support substrate side, the transparent electrode 11 (first electrode), the first light emitting unit 12, and the first intermediate. The electrode 13 (second electrode), the second light emitting unit 14, and the reflective electrode 17 (third electrode) are stacked. In the organic EL element shown in FIG. 4, a power source 18, a power source 19, and a control unit 20 for driving the organic EL element are also shown along with the configuration of the organic EL element.
 上記有機EL素子において、各発光ユニット(第1発光ユニット12、第2発光ユニット14、及び、第3発光ユニット16)は、それぞれ個別の光学特性を有する材料を用いて構成されている。このため、各発光ユニットは、それぞれ波長の異なる光を放出する。また、有機EL素子は、各発光ユニットで得られた発光光が、支持基板側から取り出されるボトムエミッション型として構成されている。 In the organic EL element, each light emitting unit (the first light emitting unit 12, the second light emitting unit 14, and the third light emitting unit 16) is configured using a material having individual optical characteristics. For this reason, each light emitting unit emits light having a different wavelength. The organic EL element is configured as a bottom emission type in which emitted light obtained by each light emitting unit is extracted from the support substrate side.
 また、図4に示す有機EL素子では、透明電極11と第1中間電極13とには外部から電源18が接続され、第1中間電極13と反射電極17とには外部から電源19が接続されている。透明電極11、第1中間電極13、及び、反射電極17は、電源18,19を介して制御部20によってそれぞれ独立に制御可能である。 In the organic EL element shown in FIG. 4, a power source 18 is connected to the transparent electrode 11 and the first intermediate electrode 13 from the outside, and a power source 19 is connected to the first intermediate electrode 13 and the reflective electrode 17 from the outside. ing. The transparent electrode 11, the first intermediate electrode 13, and the reflective electrode 17 can be independently controlled by the control unit 20 via the power supplies 18 and 19.
[支持基板]
 支持基板は、可視光のうち特に各発光ユニットで発生させた発光光に対する光透過性を有する。支持基板を構成する透明な基板材料としては、例えば、ガラス、石英、樹脂基板を挙げることができる。特に好ましい支持基板としては、有機EL素子にフレキシブル性を与えることが可能な樹脂基板である。樹脂基板は、必要に応じてガスバリア層を有する構成であってもよい。
[Support substrate]
The support substrate has light transmittance with respect to the emitted light generated by each light emitting unit in the visible light. Examples of the transparent substrate material constituting the support substrate include glass, quartz, and a resin substrate. A particularly preferable support substrate is a resin substrate that can give flexibility to the organic EL element. The resin substrate may be configured to have a gas barrier layer as necessary.
 樹脂基板を構成する樹脂材料には、従来公知の樹脂材料が用いられる。例えば、アクリル酸エステル、メタクリル酸エステル、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホネート、ポリイミド、ポリエーテルイミド、ポリオレフィン、エポキシ樹脂等の各樹脂フィルムが挙げられ、さらに、シクロオレフィン系やセルロースエステル系の樹脂も用いることができる。また、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、更には樹脂材料を二層以上積層して成る樹脂フィルム等が挙げられる。 A conventionally known resin material is used as the resin material constituting the resin substrate. For example, acrylic resin such as acrylic acid ester, methacrylic acid ester, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride ( PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfonate, polyimide, polyether imide, polyolefin, epoxy resin, etc. Examples of the resin film include cycloolefin resins and cellulose ester resins. In addition, a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton, and a resin film formed by laminating two or more layers of resin materials, etc. It is done.
[透明電極]
 透明電極11は、電源18を介して第1中間電極13と電気的に接続された状態となっている。透明電極11は、第1発光ユニット12に対する陽極又は陰極として設けられる。透明電極11は、第1中間電極13が陰極の場合には陽極として用いられ、第1中間電極13が陽極の場合には陰極として用いられる。また、透明電極11は、可視光のうち、特に各発光ユニットで発生した発光光に対する光透過性を有する。
[Transparent electrode]
The transparent electrode 11 is in a state of being electrically connected to the first intermediate electrode 13 via the power source 18. The transparent electrode 11 is provided as an anode or a cathode for the first light emitting unit 12. The transparent electrode 11 is used as an anode when the first intermediate electrode 13 is a cathode, and is used as a cathode when the first intermediate electrode 13 is an anode. Moreover, the transparent electrode 11 has a light transmittance with respect to the emitted light especially generated in each light emitting unit among visible light.
 透明電極11は、陽極又は陰極としてそれぞれに適切な導電性材料から、上述した光透過性に優れた導電性材料を用いて構成される。透明電極11に好適に用いられる導電性材料としては、例えばITO、ZnO、TiO、SnO等の酸化物半導体等の透明導電性材料が挙げられる。 The transparent electrode 11 is composed of a conductive material suitable for an anode or a cathode, respectively, using the above-described conductive material having excellent light transmittance. Examples of the conductive material suitably used for the transparent electrode 11 include transparent conductive materials such as oxide semiconductors such as ITO, ZnO, TiO 2 , and SnO 2 .
 また、透明電極11は、金属を主成分とした金属薄膜で構成されていてもよい。金属薄膜とは、厚さが8~30nmの範囲内の金属膜である。金属薄膜に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等が例示される。透明電極11には、これらの金属が1種のみ含まれていてもよく、2種以上含まれていてもよい。 Further, the transparent electrode 11 may be composed of a metal thin film mainly composed of metal. The metal thin film is a metal film having a thickness in the range of 8 to 30 nm. The metal contained in the metal thin film is not particularly limited as long as it is a highly conductive metal, and examples thereof include silver, copper, gold, platinum group, titanium, and chromium. The transparent electrode 11 may contain only one kind of these metals or two or more kinds.
 導電性の高さという観点から、透明電極11は、銀を主成分として構成され、銀又は銀を主成分とする合金で構成されていることが好ましい。透明電極11を構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。 From the viewpoint of high conductivity, the transparent electrode 11 is preferably composed of silver as a main component, and is preferably composed of silver or an alloy containing silver as a main component. Examples of the alloy mainly composed of silver (Ag) constituting the transparent electrode 11 include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
 また、透明電極11が金属薄膜から構成される場合、透明電極11が下地層上に接して設けられていることが好ましい。下地層は、透明電極11の支持基板側に設けられる層である。下地層を構成する材料としては、特に限定されるものではなく、例えば、銀又は銀を主成分とする合金からなる透明電極11の成膜に際し、銀の凝集を抑制する作用を有することが好ましく、一例として窒素含有化合物、又は、硫黄含有化合物等が挙げられる。 Further, when the transparent electrode 11 is composed of a metal thin film, the transparent electrode 11 is preferably provided in contact with the underlayer. The foundation layer is a layer provided on the support substrate side of the transparent electrode 11. The material constituting the underlayer is not particularly limited. For example, it preferably has an action of suppressing aggregation of silver when forming the transparent electrode 11 made of silver or an alloy containing silver as a main component. As an example, a nitrogen-containing compound or a sulfur-containing compound may be mentioned.
 透明電極11は、シート抵抗が30Ω/sq.以下であることが好ましく、10Ω/sq.以下であることがより好ましい。また透明電極11は、波長550nmにおける光透過率が30%以上であることが好ましく、50%以上であることがより好ましい。 The transparent electrode 11 has a sheet resistance of 30Ω / sq. Or less, preferably 10 Ω / sq. The following is more preferable. Further, the transparent electrode 11 preferably has a light transmittance of 30% or more at a wavelength of 550 nm, and more preferably 50% or more.
[発光ユニット]
 発光ユニット(第1発光ユニット12、第2発光ユニット14、及び、第3発光ユニット16)は、有機材料を用いて構成された発光層を有する。複数の発光ユニットのうち透明電極11側に、第1発光ユニット12が設けられる。各発光ユニットは、少なくとも有機材料で構成された発光層を含む積層体である。また、各発光ユニットの積層構造が限定されることはなく、下記(i)~(vi)に例を示すような一般的な積層構造の何れかであってよく、さらに必要に応じた層を有していてもよい。なお、発光ユニットを構成する各層の詳細は後述する。
[Light emitting unit]
The light emitting units (the first light emitting unit 12, the second light emitting unit 14, and the third light emitting unit 16) have a light emitting layer configured using an organic material. The 1st light emission unit 12 is provided in the transparent electrode 11 side among several light emission units. Each light emitting unit is a laminate including at least a light emitting layer made of an organic material. Further, the laminated structure of each light emitting unit is not limited, and may be any of the common laminated structures as shown in the following examples (i) to (vi), and further, if necessary, a layer is formed. You may have. In addition, the detail of each layer which comprises a light emission unit is mentioned later.
(i)(陽極)/正孔注入輸送層/発光層/電子注入輸送層/(陰極)
(ii)(陽極)/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/(陰極)
(iii)(陽極)/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/(陰極)
(iv)(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極)
(v)(陽極)/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極)
(vi)(陽極)/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極)
(I) (anode) / hole injection transport layer / light emitting layer / electron injection transport layer / (cathode)
(Ii) (anode) / hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer / (cathode)
(Iii) (anode) / hole injection / transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection / transport layer / (cathode)
(Iv) (anode) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / (cathode)
(V) (anode) / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / (cathode)
(Vi) (anode) / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / (cathode)
[中間電極]
 中間電極とは、各発光ユニット間に設けられる電極であり、第1発光ユニットから第n発光ユニットまでの間に設けられる。中間電極は、各発光ユニットに対する陽極又は陰極として設けられるものであり、透明電極11が陽極の場合には陰極として用いられる。また、反射電極17が陽極の場合には陰極として用いられ、反射電極が陰極の場合には陽極として用いられる。また、各中間電極は、電源18,19を介して透明電極11と電気的に接続され、電源19を介して反射電極17と電気的に接続されている。
[Intermediate electrode]
The intermediate electrode is an electrode provided between the light emitting units, and is provided between the first light emitting unit and the nth light emitting unit. The intermediate electrode is provided as an anode or a cathode for each light emitting unit, and is used as a cathode when the transparent electrode 11 is an anode. Further, when the reflective electrode 17 is an anode, it is used as a cathode, and when the reflective electrode is a cathode, it is used as an anode. Each intermediate electrode is electrically connected to the transparent electrode 11 via power sources 18 and 19 and is electrically connected to the reflective electrode 17 via a power source 19.
 中間電極は、上述の透明電極11に適する材料の中から、光透過性に優れた導電性材料を用いて構成される。特に、中間電極は、銀、又は、アルミニウムを主成分として構成されていることが好ましい。また、第2中間電極15はIZO等の金属酸化物を含む構成であってもよい。中間電極は、透明電極11と同程度のシート抵抗及び光透過率を備えていることが好ましい。 The intermediate electrode is composed of a material suitable for the transparent electrode 11 described above using a conductive material having excellent light transmittance. In particular, the intermediate electrode is preferably composed mainly of silver or aluminum. Further, the second intermediate electrode 15 may include a metal oxide such as IZO. The intermediate electrode preferably has the same sheet resistance and light transmittance as the transparent electrode 11.
 中間電極の厚さは6nm以上25nm以下であることが好ましい。中間電極は、厚さを6nm以上とすることにより、電極として要求される導電性を十分に持たせることができる。また、厚さを25nm以下とすることにより、十分な光透過性を確保することができる。 The thickness of the intermediate electrode is preferably 6 nm or more and 25 nm or less. By setting the thickness of the intermediate electrode to 6 nm or more, the intermediate electrode can have sufficient conductivity required for the electrode. Further, by setting the thickness to 25 nm or less, sufficient light transmittance can be ensured.
[反射電極]
 反射電極17は、第2発光ユニット14に対する陽極又は陰極として設けられ、第1中間電極13が陰極の場合には陽極として用いられ、第1中間電極13が陽極の場合には陰極として用いられる。反射電極17は、電源19を介して第1中間電極13と電気的に接続された状態となっている。
[Reflective electrode]
The reflective electrode 17 is provided as an anode or a cathode for the second light emitting unit 14, and is used as an anode when the first intermediate electrode 13 is a cathode, and as a cathode when the first intermediate electrode 13 is an anode. The reflective electrode 17 is in a state of being electrically connected to the first intermediate electrode 13 via the power source 19.
 反射電極17は、可視光のうち特に各発光ユニットで発生した発光光に対して、良好な反射特性を有していることが好ましい。このような反射電極17は、陰極又は陽極として適切な導電性材料から、反射特性に優れた金属材料を用いて構成される。例えば反射電極17は、金、白金、銀、銅、アルミニウム等から構成される。 The reflective electrode 17 preferably has good reflection characteristics with respect to the emitted light generated by each light emitting unit in the visible light. Such a reflective electrode 17 is comprised using the metal material excellent in the reflective characteristic from the electroconductive material suitable as a cathode or an anode. For example, the reflective electrode 17 is made of gold, platinum, silver, copper, aluminum or the like.
[電源]
 電源は、有機EL素子の各電極に接続されている。例えば、図4に示す有機EL素子では、一方の電源18は、透明電極11と第1中間電極13とに接続されている。この電源18は、透明電極11、及び、第1中間電極13のうち、第1発光ユニット12の陽極側にプラス極が接続され、陰極側にマイナス極を接続されている。また、他方の電源19は、第1中間電極13と反射電極17とに接続されている。この電源19は、第1中間電極13、及び、反射電極17のうち、第2発光ユニット14の陽極側にプラス極が接続され、陰極側にマイナス極が接続されている。
[Power supply]
The power source is connected to each electrode of the organic EL element. For example, in the organic EL element shown in FIG. 4, one power source 18 is connected to the transparent electrode 11 and the first intermediate electrode 13. The power source 18 has a positive electrode connected to the anode side of the first light emitting unit 12 and a negative electrode connected to the cathode side of the transparent electrode 11 and the first intermediate electrode 13. The other power source 19 is connected to the first intermediate electrode 13 and the reflective electrode 17. The power source 19 has a positive electrode connected to the anode side of the second light emitting unit 14 and a negative electrode connected to the cathode side of the first intermediate electrode 13 and the reflective electrode 17.
 図4に示す有機EL素子の構成では、透明電極11が第1発光ユニット12の陽極として電源18のプラス極に接続され、第1中間電極13が第1発光ユニット12の陰極として電源18のマイナス極に接続されている。また、第1中間電極13が第2発光ユニット14の陽極として電源19のプラス極に接続され、反射電極17が第2発光ユニット14の陰極として電源19のマイナス極に接続されている。なお、第1発光ユニット12及び第2発光ユニット14の積層構造が逆の場合は、電源18,19との接続を逆にすればよい。 In the configuration of the organic EL element shown in FIG. 4, the transparent electrode 11 is connected to the positive electrode of the power source 18 as the anode of the first light emitting unit 12, and the first intermediate electrode 13 is the negative electrode of the power source 18 as the cathode of the first light emitting unit 12. Connected to the pole. The first intermediate electrode 13 is connected to the positive electrode of the power source 19 as the anode of the second light emitting unit 14, and the reflective electrode 17 is connected to the negative electrode of the power source 19 as the cathode of the second light emitting unit 14. In addition, what is necessary is just to reverse the connection with the power supplies 18 and 19 when the laminated structure of the 1st light emission unit 12 and the 2nd light emission unit 14 is reverse.
 電源18,19は、制御部20によって透明電極11、第1中間電極13、及び、反射電極17に印加する電圧、及び、電流が制御される構成となっている。制御部20は、例えばコンピュータ等によって構成することができる。これにより、各発光ユニットの発光割合や発光量を制御することができ、調光性・調色性を高めることができる。また、各発光ユニットを個別に発光制御することも可能である。また、制御部20は、各発光ユニットへの供給電流の合計を一定にする制御や、視感度の大きい発光ユニットの電流を一定にする制御を行う。このような制御によって、有機EL素子の効果的な調光・調色を行うことができる。 The power sources 18 and 19 are configured such that the voltage and current applied to the transparent electrode 11, the first intermediate electrode 13, and the reflective electrode 17 are controlled by the control unit 20. The control unit 20 can be configured by a computer or the like, for example. Thereby, the light emission ratio and the light emission amount of each light emitting unit can be controlled, and the light control property and the color control property can be improved. It is also possible to individually control the light emission of each light emitting unit. In addition, the control unit 20 performs control to make the total current supplied to each light emitting unit constant, and control to make the current of the light emitting unit with high visibility constant. By such control, it is possible to perform effective light adjustment and color adjustment of the organic EL element.
 なお、有機EL素子は、少なくとも2つの電源を有していればよいが、さらに多数の電源を有していてもよい。しかしながら、装置を複雑化させないため、電源は電極の数より少ないことが好ましい。 It should be noted that the organic EL element only needs to have at least two power supplies, but may have a larger number of power supplies. However, in order not to complicate the apparatus, it is preferable that the number of power sources is smaller than the number of electrodes.
[その他の構成]
 有機EL素子は、支持基板上において、透明電極11から反射電極17までを覆う封止材を有することが好ましい。さらに、この封止材を覆う保護部材を設けてもよい。保護部材は、有機EL素子を機械的に保護するためのものであり、特に封止材が封止膜である場合には、有機EL素子に対する機械的な保護が十分ではないため、保護部材を設けることが好ましい。保護部材には、ガラス板、ポリマー板、ポリマーフィルム、金属板、金属フィルム、又は、ポリマー材料膜や金属材料膜が適用される。これらのうち、軽量かつ薄膜化という観点からポリマーフィルムを用いることが好ましい。
[Other configurations]
The organic EL element preferably has a sealing material that covers from the transparent electrode 11 to the reflective electrode 17 on the support substrate. Furthermore, you may provide the protective member which covers this sealing material. The protective member is for mechanically protecting the organic EL element, and in particular, when the sealing material is a sealing film, mechanical protection for the organic EL element is not sufficient. It is preferable to provide it. As the protective member, a glass plate, a polymer plate, a polymer film, a metal plate, a metal film, or a polymer material film or a metal material film is applied. Among these, it is preferable to use a polymer film from the viewpoint of light weight and thinning.
 また、有機EL素子は、各発光ユニットで発生させた発光光を効率よく取り出すための光取り出し層を、必要に応じて必要部分に有していてもよい。さらに、有機EL素子は、発光領域と重なることのない位置において、透明電極11、第1中間電極13、及び、第2中間電極15に接続する導電性の良好な補助電極を有していてもよい。補助電極を構成する材料は、金、白金、銀、銅、アルミニウム等の抵抗の低い金属が好ましい。 In addition, the organic EL element may have a light extraction layer for efficiently extracting emitted light generated by each light emitting unit in a necessary portion as necessary. Further, the organic EL element may have an auxiliary electrode with good conductivity connected to the transparent electrode 11, the first intermediate electrode 13, and the second intermediate electrode 15 at a position that does not overlap the light emitting region. Good. The material constituting the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum.
[有機EL素子の駆動]
 以上のように構成された有機EL素子は、各電極間に所定の状態で電圧を印加することにより、各発光ユニットの発光領域に発光光が発生する。発光光は、透明電極11、及び、支持基板を透過し、支持基板の光取り出し面側で発光領域として観察される。なお、有機EL素子の駆動は、交流電圧の印加によって行ってもよく、印加する交流の波形は任意でよい。
[Drive of organic EL element]
The organic EL element configured as described above generates emitted light in the light emitting region of each light emitting unit by applying a voltage in a predetermined state between the electrodes. The emitted light passes through the transparent electrode 11 and the support substrate, and is observed as a light emitting region on the light extraction surface side of the support substrate. The organic EL element may be driven by applying an AC voltage, and the AC waveform to be applied may be arbitrary.
[その他の変形構成]
 以上説明した有機EL素子は、第1発光ユニット12、第2発光ユニット14、及び、第3発光ユニット16の3層の発光ユニットが積層された構成、又は、第1発光ユニット12、及び、第2発光ユニット14の2層の発光ユニットが積層された構成である。しかしながら、有機EL素子は、さらに複数の発光ユニットが積層された構成であってもよい。この場合であっても、発光スペクトルのピーク波長が最も555nmに近い発光ユニットについて、発光スペクトルの半値幅が、他の全ての発光ユニットの発光スペクトルの半値幅よりも小さく構成されていればよい。
[Other modified configurations]
The organic EL element described above has a configuration in which three layers of light emitting units of the first light emitting unit 12, the second light emitting unit 14, and the third light emitting unit 16 are stacked, or the first light emitting unit 12 and the first light emitting unit 12. The two light emitting units of the two light emitting units 14 are stacked. However, the organic EL element may have a configuration in which a plurality of light emitting units are further stacked. Even in this case, for the light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, it is sufficient that the half width of the emission spectrum is smaller than the half widths of the emission spectra of all other light emitting units.
[発光ユニットを構成する各層の材料]
 各発光ユニットを構成する各層の構成材料の詳細を以下に示す。各発光ユニットは、以下に示す材料の中から、有機EL素子の構成に適する材料が用いられる。
[Material of each layer constituting light emitting unit]
Details of the constituent materials of each layer constituting each light emitting unit are shown below. Each light emitting unit is made of a material suitable for the configuration of the organic EL element from the following materials.
[発光層]
 発光層は、陰極側から注入された電子と、陽極側から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。発光層には発光材料としてリン光発光材料、又は、蛍光発光材料が使用されてもよいし、リン光発光材料と蛍光発光材料とを併用してもよい。また、発光層は、複数の発光材料を含有してもよい。
[Light emitting layer]
The light-emitting layer is a layer that emits light by recombination of electrons injected from the cathode side and holes injected from the anode side, and the light-emitting portion is adjacent to the light-emitting layer even in the layer of the light-emitting layer. It may be an interface with the layer to be used. In the light emitting layer, a phosphorescent light emitting material or a fluorescent light emitting material may be used as a light emitting material, or a phosphorescent light emitting material and a fluorescent light emitting material may be used in combination. The light emitting layer may contain a plurality of light emitting materials.
 また、上述のように、発光スペクトルのピーク波長が最も555nmに近い発光ユニットでは、他の発光ユニットに用いられる発光材料よりも発光スペクトルの半値幅が小さい発光材料を用いることが好ましい。例えば、発光スペクトルのピーク波長が最も555nmに近い発光ユニットに、発光スペクトルの半値幅が小さい蛍光発光材料を用い、他の発光ユニットに発光スペクトルの半値幅が大きい蛍光発光材料、又は、リン光発光材料を用いることが好ましい。 In addition, as described above, in the light emitting unit whose peak wavelength of the emission spectrum is closest to 555 nm, it is preferable to use a light emitting material having a smaller half width of the emission spectrum than the light emitting materials used in other light emitting units. For example, a fluorescent light emitting material having a small half width of the light emission spectrum is used for the light emitting unit whose emission spectrum peak wavelength is closest to 555 nm, and a fluorescent light emitting material having a large full width at half maximum of the light emission spectrum or phosphorescence emission is used for the other light emitting units. It is preferable to use a material.
 また、発光材料としては、熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料を用いることもできる。TADF材料としては、下記に示す化合物を例示することができる。 Further, as the luminescent material, a thermally activated delayed fluorescence (TADF) material can also be used. As the TADF material, the following compounds can be exemplified.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には、非発光性の中間層(図示略)を有していることが好ましい。 The light emitting layer is not particularly limited in its configuration as long as the light emitting material included satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers.
 発光層の膜厚の総和は1~100nmの範囲内であることが好ましく、より低い駆動電圧を得ることができることから1~40nmの範囲内であることがより好ましい。発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、中間層も含まれる。但し、中間コネクターを介して複数の発光層ユニットを積層する、いわゆるタンデム型素子の場合には、ここでいう発光層とは中間コネクター部を含まない各発光ユニット内の発光層の総和である。 The total film thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 40 nm because a lower driving voltage can be obtained. The total film thickness of the light emitting layer includes the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers. However, in the case of a so-called tandem element in which a plurality of light emitting layer units are stacked via an intermediate connector, the light emitting layer here is the sum of the light emitting layers in each light emitting unit not including the intermediate connector portion.
 複数の層を積層した構成の発光層の場合、個々の発光層の膜厚としては、1~50nmの範囲内に調整することが好ましく、更に、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の膜厚の関係については、特に制限はない。 In the case of a light emitting layer having a structure in which a plurality of layers are laminated, the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably adjusted within a range of 1 to 20 nm. preferable. When the plurality of stacked light emitting layers correspond to blue, green, and red light emitting colors, there is no particular limitation on the relationship between the film thicknesses of the blue, green, and red light emitting layers.
 以上のような発光層は、公知の発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。 The light emitting layer as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
 発光層の構成としては、ホスト化合物(発光ホスト等ともいう)と、発光材料(発光ドーパントともいう)とを含有し、発光材料から発光することが好ましい。適用可能な発光材料としては、例えば、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011051404号、国際公開第2011/004639号、国際公開第2011073149号、特開2012-069737号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等に記載の化合物を挙げることができる。 The structure of the light-emitting layer preferably contains a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant), and emits light from the light-emitting material. Examples of applicable light emitting materials include International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 20111051404, International Publication No. 2011/004639, International Publication No. 2011073149. And JP-A-2012-069737, JP-A-2009-114086, JP-A-2003-81988, JP-A-2002-302671, JP-A-2002-363552, and the like. it can
 また、ホスト化合物としては、例えば、特開2001-257076号公報、特開2002-308855号公報、特開2001-313179号公報、特開2002-319491号公報、特開2001-357977号公報、特開2002-334786号公報、特開2002-8860号公報、特開2002-334787号公報、特開2002-15871号公報、特開2002-334788号公報、特開2002-43056号公報、特開2002-334789号公報、特開2002-75645号公報、特開2002-338579号公報、特開2002-105445号公報、特開2002-343568号公報、特開2002-141173号公報、特開2002-352957号公報、特開2002-203683号公報、特開2002-363227号公報、特開2002-231453号公報、特開2003-3165号公報、特開2002-234888号公報、特開2003-27048号公報、特開2002-255934号公報、特開2002-260861号公報、特開2002-280183号公報、特開2002-299060号公報、特開2002-302516号公報、特開2002-305083号公報、特開2002-305084号公報、特開2002-308837号公報、米国特許公開第2003/0175553号明細書、米国特許公開第2006/0280965号明細書、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0017330号明細書、米国特許公開第2009/0030202号明細書、米国特許公開第2005/238919号明細書、国際公開第2001039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、EP第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of the host compound include, for example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, JP 2002-334786, JP 2002-8860, JP 2002-334787, JP 2002-15871, 2002-334788, 2002-43056, 2002 -334789, JP 2002-75645, JP 2002-338579, JP 2002-105445, JP 2002-343568, JP 2002-141173, JP 2002-352957. No. 2002-203683 JP, JP 2002-363227, JP 2002-231453, JP 2003-3165, JP 2002-234888, JP 2003-27048, JP 2002-255934, JP 2002-260861, JP 2002-280183, JP 2002-299060, JP 2002-302516, JP 2002-305083, JP 2002-305084, JP 2002-308837, U.S. Patent Publication No. 2003/0175553, U.S. Patent Publication No. 2006/0280965, U.S. Patent Publication No. 2005/0112407, U.S. Patent Publication No. 2009/0017330, US Patent Publication No. 2009/003 202, U.S. Patent Publication No. 2005/238919, International Publication No. WO2001039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005. No. 089025, International Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028. No., International Publication No. 2009/003898, International Publication No. 2012/023947, Japanese Unexamined Patent Application Publication No. 2008-074939, Japanese Unexamined Patent Application Publication No. 2007-254297, EP No. 2034538, and the like. Can The
[正孔注入層/電子注入層]
 注入層は、駆動電圧低下や発光輝度向上のために電極と発光層の間に設けられる層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に、その詳細が記載されている。有機EL素子において、注入層としては正孔注入層と電子注入層とがある。
[Hole injection layer / electron injection layer]
The injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (issued by NTS, November 30, 1998) The details are described in Part 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition. In the organic EL element, the injection layer includes a hole injection layer and an electron injection layer.
 注入層は、必要に応じて設けることができる層である。正孔注入層であれば陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に配置される。 The injection layer is a layer that can be provided as necessary. In the case of a hole injection layer, it is disposed between the anode and the light emitting layer or the hole transport layer, and in the case of an electron injection layer, it is disposed between the cathode and the light emitting layer or the electron transport layer.
 正孔注入層は、特開平9-45479号公報、特開平9-260062号公報、特開平8-288069号公報等にもその詳細が記載され、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。また、特表2003-519432号公報に記載された材料を使用することもできる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, a phthalocyanine layer represented by copper phthalocyanine And an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. In addition, the materials described in JP-T-2003-519432 can be used.
 電子注入層は、特開平6-325871号公報、特開平9-17574号公報、特開平1074586号公報等にもその詳細が記載され、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。電子注入層は、ごく薄い膜であることが望ましく、素材にもよるがその膜厚は1nm~10μmの範囲が好ましい。 The details of the electron injection layer are described in JP-A-6-325871, JP-A-9-17574, JP1074586, and the like. Specifically, a metal layer typified by strontium, aluminum, etc. Examples thereof include an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide. The electron injection layer is preferably a very thin film, and the film thickness is preferably in the range of 1 nm to 10 μm although it depends on the material.
[正孔輸送層]
 正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層や電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかの特性を有する。
[Hole transport layer]
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers. The hole transport material has any of the characteristics of hole injection or transport and electron barrier properties.
 正孔輸送材料は、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、チオフェンオリゴマー等が挙げられる。更に、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、芳香族第3級アミン化合物を用いることができる。 The hole transport material may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers. Furthermore, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, and aromatic tertiary amine compounds can be used.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、例えば、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、さらには米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有する、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(略称:NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(略称:MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include, for example, N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N '-Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, , 1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di -P-tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphe Lu-N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (Diphenylamino) quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4 -N, N-diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole, and further described in US Pat. No. 5,061,569 For example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPD), 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] trimethyl triamine units described in JP-A-4-308688 are linked in a starburst type. And phenylamine (abbreviation: MTDATA).
 さらに、これらの材料を高分子鎖に導入した、又は、これらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. A so-called p-type hole transport material as described in 139 can also be used. These materials are preferably used because a light emitting element with higher efficiency can be obtained.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法を用いて、薄膜を形成することにより作製することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は、上記材料の1種又は2種以上からなる一層構造であってもよい。 The hole transport layer is formed by forming a thin film from the hole transport material by using a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be produced. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープして輸送性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載の構成を適用することができる。 Also, the hole transport layer material can be doped with impurities to increase transportability. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), etc. can be applied.
[電子輸送層]
 電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入層や正孔阻止層も電子輸送層に含まれる。電子輸送層は単層構造又は複数層の積層構造として設けることができる。
[Electron transport layer]
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single-layer structure or a multi-layer structure.
 単層構造の電子輸送層、及び、積層構造の電子輸送層において、発光層に隣接する部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、陰極から注入された電子を発光層に伝達する機能を有していればよい。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a portion adjacent to the light-emitting layer is formed by using electrons injected from the cathode as the light-emitting layer. It suffices to have a function of transmitting to the network. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及び、これらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) ) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes A metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as the material for the electron transport layer.
 その他、メタルフリー若しくはメタルフタロシアニン、又は、それらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層の材料として好ましく用いることができる。また、発光層の材料としても例示されるジスチリルピラジン誘導体も電子輸送層の材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送層の材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those whose terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer. Further, distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the material for the electron transport layer, and n-type-Si, n-type-SiC, etc. as well as the hole injection layer and the hole transport layer. These inorganic semiconductors can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法を用いて、薄膜を形成することにより作製することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。 The electron transport layer can be prepared by forming a thin film using the above-described material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. it can. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、電子輸送層に不純物をドープし、輸送性を高くすることもできる。その例としては、特開平4-297076号公報、特開平10-270172号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層には、カリウムやカリウム化合物等を含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層のn性を高くすると、より低消費電力の素子を作製することができる。 Also, the electron transport layer can be doped with impurities to increase transportability. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like. Further, the electron transport layer preferably contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer is increased, an element with lower power consumption can be manufactured.
 また電子輸送層の材料(電子輸送性化合物)として、上述した下地層を構成する材料と同様のものを用いてもよい。これは、電子注入層を兼ねた電子輸送層であっても同様であり、上述した下地層を構成する材料と同様のものを用いてもよい。 Further, as the material for the electron transport layer (electron transport compound), the same material as that for the above-described underlayer may be used. This is the same for the electron transport layer that also serves as the electron injection layer, and the same material as that for the above-described underlayer may be used.
[電子阻止層/正孔阻止層]
 正孔阻止層としては、例えば、特開平11-204258号公報、特開平11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
[Electron blocking layer / hole blocking layer]
Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open No. 11-204258, Japanese Patent Application Laid-Open No. 11-204359, and “The Forefront of Organic EL Devices and Their Industrialization (issued by NTT Corporation on November 30, 1998). ”Page 237 and the like, there is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を、必要に応じて正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。正孔阻止層や電子阻止層の膜厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The thickness of the hole blocking layer or electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
[有機EL素子の製造方法]
 次に、上記構成の有機EL素子の製造方法について説明する。以下の説明では、上述の図4に示す構成の有機EL素子の製造方法の例を示す。
[Method of manufacturing organic EL element]
Next, a method for manufacturing the organic EL element having the above configuration will be described. In the following description, an example of a method for manufacturing the organic EL element having the configuration shown in FIG. 4 will be described.
(積層工程)
 有機EL素子の製造では、支持基板上に、透明電極11、第1発光ユニット12、第1中間電極13、第2発光ユニット14、及び、反射電極17をこの順に成膜する。また、透明電極11、及び、第1中間電極13の成膜の前には、必要に応じて下地層の成膜を行う。
(Lamination process)
In the manufacture of the organic EL element, the transparent electrode 11, the first light emitting unit 12, the first intermediate electrode 13, the second light emitting unit 14, and the reflective electrode 17 are formed in this order on the support substrate. In addition, before the transparent electrode 11 and the first intermediate electrode 13 are formed, a base layer is formed as necessary.
 これらの各部材の成膜に際しては、各部材に適する成膜方法をそれぞれ適用すればよい。成膜方法としては、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を例示することができる。 In the film formation of each of these members, a film formation method suitable for each member may be applied. Examples of film formation methods include vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, and laser. Examples thereof include a CVD method, a thermal CVD method, and a coating method.
 各部材の成膜に際しては、必要に応じてマスクを用いた成膜を実施することにより、各部材を所定形状にパターニングすることができる。また各部材は、それぞれを成膜した後に、成膜された各層を所定形状にパターニングするようにしてもよい。また、透明電極11、及び、第1中間電極13の成膜の前後には、必要に応じて補助電極のパターン形成を行ってもよい。積層工程は、1回の真空引きで一貫して透明電極11から反射電極17までを成膜する手順で実施することが好ましい。 In film formation of each member, each member can be patterned into a predetermined shape by performing film formation using a mask as necessary. Each member may be patterned into a predetermined shape after each layer is formed. In addition, before and after the formation of the transparent electrode 11 and the first intermediate electrode 13, an auxiliary electrode pattern may be formed as necessary. The laminating step is preferably performed by a procedure of forming a film from the transparent electrode 11 to the reflective electrode 17 consistently by a single vacuum drawing.
(封止工程)
 次に、図示は省略したが、反射電極17側から封止を行う。ここでは、透明電極11、第1中間電極13、及び、反射電極17の端子部分を露出させた状態で、支持基板との間に透明電極11から反射電極17までの積層体を覆うように封止材を設け、さらに必要に応じて封止材を介して保護部材を貼り合わせる。
(Sealing process)
Next, although not shown, sealing is performed from the reflective electrode 17 side. Here, the transparent electrode 11, the first intermediate electrode 13, and the terminal portions of the reflective electrode 17 are exposed so that the laminate from the transparent electrode 11 to the reflective electrode 17 is covered with the support substrate. A stop material is provided, and a protective member is further bonded through a sealing material as necessary.
〈3.発光装置の実施形態〉
 次に、上述の有機EL素子を用いた発光装置の実施形態について説明する。
<3. Embodiment of Light Emitting Device>
Next, an embodiment of a light emitting device using the above-described organic EL element will be described.
[発光装置]
 上述の有機EL素子は、面状の発光装置として利用することができる。発光装置は、複数の有機EL素子を用いることにより、発光面を大面積化することもできる。この場合、複数の有機EL素子を発光装置の基体上に配列する(すなわち、タイリングする)ことによって発光面を大面積化する。発光装置の基体は、封止材を兼ねてもよく、発光装置の基体と有機EL素子の支持基板との間に、透明電極11から反射電極17までの積層体を挟持する状態で、有機EL素子をタイリングする。発光装置の基体と有機EL素子の支持基板との間には接着剤を充填し、これによって有機EL素子の透明電極11から反射電極17までを封止してもよい。なお、発光装置の基体の周囲には、有機EL素子の各電極に接続される端子を露出させておく。
[Light emitting device]
The organic EL element described above can be used as a planar light emitting device. The light emitting device can increase the light emitting surface area by using a plurality of organic EL elements. In this case, the light emitting surface is enlarged by arranging (that is, tiling) a plurality of organic EL elements on the substrate of the light emitting device. The substrate of the light emitting device may also serve as a sealing material, and the organic EL device is sandwiched between the transparent electrode 11 and the reflective electrode 17 between the substrate of the light emitting device and the support substrate of the organic EL element. Tile the element. An adhesive may be filled between the base of the light emitting device and the support substrate of the organic EL element, thereby sealing the transparent electrode 11 to the reflective electrode 17 of the organic EL element. A terminal connected to each electrode of the organic EL element is exposed around the base of the light emitting device.
 このような構成の発光装置では、複数の有機EL素子に形成した発光領域をつなぎ合わせた大面積の発光領域をパターン表示することができる。尚、このような構成においては、各有機EL素子の繋ぎ目に非発光領域が発生する。このため、特に有機EL素子間において発光領域の繋ぎ目となる非発光領域に、光取出し量を増加させるための光取出し部材を設けてもよい。光取出し部材としては、集光シートや光拡散シートを用いることができる。 In the light-emitting device having such a configuration, a large-area light-emitting region obtained by connecting light-emitting regions formed in a plurality of organic EL elements can be displayed in a pattern. In such a configuration, a non-light emitting region is generated at the joint of each organic EL element. For this reason, you may provide the light extraction member for increasing the amount of light extraction especially in the non-light-emission area | region used as the connection of a light emission area | region between organic EL elements. As the light extraction member, a light collecting sheet or a light diffusion sheet can be used.
 実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 The present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
〈試料101の有機EL素子の作製〉
 試料101として、上述の図1に示す構成の有機EL素子を作製した。試料101としては、以下のようにして、1cm×1cmの素子面積を有する有機EL素子を作製した。
<Preparation of Sample 101 Organic EL Element>
As Sample 101, an organic EL element having the configuration shown in FIG. As Sample 101, an organic EL element having an element area of 1 cm × 1 cm was produced as follows.
[透明電極の形成]
 まず支持基板として、厚さ0.7mmのガラス基板を準備した。この支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、この支持基板上に、Ag(銀)を15nmの厚さでマスク蒸着して、陽極となる透明電極を形成した。
[Formation of transparent electrode]
First, a glass substrate having a thickness of 0.7 mm was prepared as a support substrate. This support substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. Then, Ag (silver) was mask-deposited with a thickness of 15 nm on this support substrate to form a transparent electrode serving as an anode.
[第1発光ユニット:EMU1の形成]
 次に、透明電極を形成した支持基板を市販の真空蒸着装置の基板ホルダーに固定した。そして、第1発光ユニット(EMU1)を構成する各層の材料を、真空蒸着装置内の各蒸着用るつぼに、素子作製に最適な量で充填した。各蒸着用るつぼとしては、モリブデン製又はタングステン製の抵抗加熱用材料で作製された蒸着用るつぼを用いた。
[Formation of first light emitting unit: EMU1]
Next, the support substrate on which the transparent electrode was formed was fixed to a substrate holder of a commercially available vacuum deposition apparatus. And the material of each layer which comprises a 1st light emission unit (EMU1) was filled with the optimal quantity for element manufacture to each crucible for vapor deposition in a vacuum evaporation system. As each evaporation crucible, an evaporation crucible made of a resistance heating material made of molybdenum or tungsten was used.
(正孔注入層の形成)
 真空度1×10Paまで減圧した後、HAT-CN(ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明電極上に蒸着し、厚さ5nmの正孔注入層を形成した。
(Formation of hole injection layer)
After reducing the vacuum to 1 × 10 4 Pa, energize and heat the evaporation crucible containing HAT-CN (hexaazatriphenylenehexacarbonitrile), and deposit on the transparent electrode at a deposition rate of 0.1 nm / second. A 5 nm thick hole injection layer was formed.
(正孔輸送層:HTL1の形成)
 次に、下記化合物1-A(ガラス転移点(Tg)=140℃)を厚さ27nmになるように蒸着し、正孔輸送層(HTL1)を形成した。
(Hole transport layer: formation of HTL1)
Next, the following compound 1-A (glass transition point (Tg) = 140 ° C.) was deposited to a thickness of 27 nm to form a hole transport layer (HTL1).
(電子阻止層の形成)
 次に、正孔輸送層(HTL1)上に下記化合物1-Bを、厚さ10nmになるように蒸着し、電子阻止層を形成した。
(Formation of electron blocking layer)
Next, the following compound 1-B was deposited on the hole transport layer (HTL1) so as to have a thickness of 10 nm to form an electron blocking layer.
(発光層:EMT1の形成)
 次に、ホスト化合物として下記化合物2-A(Tg=189℃)が98vol%、青色蛍光発光ドーパントとして下記化合物2-Bが2vol%となるように蒸着し、青色を呈する厚さ20nmの蛍光発光層(EMT1)を形成した。
(Light emitting layer: formation of EMT1)
Next, the following compound 2-A (Tg = 189 ° C.) is deposited as 98 vol% as a host compound, and the following compound 2-B is deposited as 2 vol% as a blue fluorescent light-emitting dopant. A layer (EMT1) was formed.
(電子輸送層:ETL1の形成)
 次に、下記化合物3が86vol%、LiFが14vol%となるように発光層上に蒸着し、厚さ10nmの層を形成した。さらに、化合物3が98vol%、Liが2vol%となるように蒸着し、厚さ12nmの層を形成した。これにより、化合物3及びLiFと、化合物3及びLiとの2層からなる電子注入層を兼ねた電子輸送層(ETL1)を形成し、正孔注入層から電子輸送層までの積層構造の第1発光ユニット(EMU1)を形成した。
(Electron transport layer: formation of ETL1)
Next, it vapor-deposited on the light emitting layer so that the following compound 3 might be 86 vol%, and LiF might be 14 vol%, and the layer of thickness 10nm was formed. Furthermore, it vapor-deposited so that the compound 3 might be 98 vol% and Li might be 2 vol%, and the layer of thickness 12nm was formed. As a result, an electron transport layer (ETL1) also serving as an electron injection layer composed of two layers of the compound 3 and LiF and the compound 3 and Li is formed, and the first stacked structure from the hole injection layer to the electron transport layer is formed. A light emitting unit (EMU1) was formed.
[第1中間電極の形成]
 次に、第1発光ユニット(EMU1)上に、Alを厚さ10nmで成膜し、第1中間電極を形成した。
[Formation of first intermediate electrode]
Next, Al was formed into a film with a thickness of 10 nm on the first light emitting unit (EMU1) to form a first intermediate electrode.
[第2発光ユニット:EMU2の形成]
 発光層以外は、第1発光ユニット(EMU1)と同様の材料を用いた同様の手順で、膜厚をそれぞれ下記の厚さに設定して、第1中間電極上に第2発光ユニット(EMU2)を形成した。
[Formation of second light emitting unit: EMU2]
Except for the light emitting layer, the film thickness was set to the following thickness in the same procedure using the same material as the first light emitting unit (EMU1), and the second light emitting unit (EMU2) was formed on the first intermediate electrode. Formed.
(正孔注入層の形成)
 HAT-CNを厚さ5nmになるように蒸着し、正孔注入層を形成した。
(Formation of hole injection layer)
HAT-CN was deposited to a thickness of 5 nm to form a hole injection layer.
(正孔輸送層:HTL2の形成)
 次に、化合物1-Aを厚さ55nmになるように蒸着し、正孔輸送層(HTL2)を形成した。
(Hole transport layer: formation of HTL2)
Next, Compound 1-A was deposited to a thickness of 55 nm to form a hole transport layer (HTL2).
(電子阻止層の形成)
 次に、化合物1-Bを厚さ10nmになるように蒸着し、電子阻止層を形成した。
(Formation of electron blocking layer)
Next, Compound 1-B was deposited to a thickness of 10 nm to form an electron blocking layer.
(発光層:EMT2の形成)
 次に、ホスト化合物として下記化合物4-A(Tg=143℃)が80vol%、緑色リン光発光ドーパントとして化合物(Ir(ppy)3)が10vol%、赤色リン光発光ドーパントとして、化合物(btp2Ir(acac))が10vol%となるように蒸着し、赤色発光を呈する厚さ25nmのリン光発光層(EMT2)を形成した。
(Light emitting layer: formation of EMT2)
Next, the following compound 4-A (Tg = 143 ° C.) is 80 vol% as the host compound, the compound (Ir (ppy) 3) is 10 vol% as the green phosphorescent dopant, and the compound (btp2Ir ( The acac)) was vapor-deposited so that it might become 10 vol%, and the 25-nm-thick phosphorescence-emitting layer (EMT2) which exhibits red light emission was formed.
(電子輸送性層:ETL2の形成)
 次に、化合物3が86vol%、LiFが14vol%となるように発光層上に蒸着し、厚さ15nmの層を形成した。さらに、化合物3が98vol%、Liが2vol%となるように蒸着し、厚さ10nmの層を形成した。これにより、化合物3及びLiFと、化合物3及びLiとの2層からなる電子注入層を兼ねた電子輸送層を(ETL2)形成し、正孔注入層から電子輸送層までの積層構造の第2発光ユニット(EMU2)を形成した。
(Electron transporting layer: formation of ETL2)
Next, it vapor-deposited on the light emitting layer so that the compound 3 might be 86 vol% and LiF might be 14 vol%, and the 15-nm-thick layer was formed. Furthermore, it vapor-deposited so that the compound 3 might be 98 vol% and Li might be 2 vol%, and the layer of thickness 10nm was formed. As a result, an electron transport layer (ETL2) that also serves as an electron injection layer composed of two layers of the compound 3 and LiF and the compound 3 and Li is formed, and the second layered structure from the hole injection layer to the electron transport layer is formed. A light emitting unit (EMU2) was formed.
[第2中間電極の形成]
 次に、第2発光ユニット(EMU2)上に、Alを厚さ10nmで成膜し、第2中間電極を形成した。
[Formation of second intermediate electrode]
Next, Al was deposited to a thickness of 10 nm on the second light emitting unit (EMU2) to form a second intermediate electrode.
[第3発光ユニット:EMU3の形成]
 発光層以外は、第1発光ユニット(EMU1)及び第2発光ユニット(EMU2)と同様の材料を用いた同様の手順で、膜厚をそれぞれ下記の厚さに設定して、第2中間電極上に第3発光ユニット(EMU3)を形成した。
[Formation of third light emitting unit: EMU3]
Except for the light emitting layer, the film thickness was set to the following thickness in the same procedure using the same material as the first light emitting unit (EMU1) and the second light emitting unit (EMU2), and the second intermediate electrode was A third light emitting unit (EMU3) was formed.
(正孔注入層の形成)
 HAT-CNを厚さ5nmになるように蒸着し、正孔注入層を形成した。
(Formation of hole injection layer)
HAT-CN was deposited to a thickness of 5 nm to form a hole injection layer.
(正孔輸送層:HTL3の形成)
 次に、化合物1-Aを厚さ40nmになるように蒸着し、正孔輸送層(HTL3)を形成した。
(Hole transport layer: formation of HTL3)
Next, Compound 1-A was deposited to a thickness of 40 nm to form a hole transport layer (HTL3).
(発光層:EMT3の形成)
 次に、ホスト化合物として下記化合物4-A(Tg=143℃)が85vol%、緑色リン光発光ドーパントとして化合物(Ir(ppy)3)が15vol%となるように蒸着し、緑色発光を呈する厚さ25nmのリン光発光層(EMT3)を形成した。
(Light emitting layer: formation of EMT3)
Next, the following compound 4-A (Tg = 143 ° C.) as a host compound is vapor-deposited so that 85 vol% and the compound (Ir (ppy) 3) as a green phosphorescent light emitting dopant is 15 vol%, and a thickness exhibiting green light emission is obtained. A phosphorescent layer (EMT3) having a thickness of 25 nm was formed.
(電子輸送性層:ETL3の形成)
 次に、化合物3が86vol%、LiFが14vol%となるように発光層上に蒸着し、厚さ20nmの層を形成した。さらに、化合物3が98vol%、Liが2vol%となるように蒸着し、厚さ22nmの層を形成した。これにより、化合物3及びLiFと、化合物3及びLiとの2層からなる電子注入層を兼ねた電子輸送層(ETL3)を形成し、正孔注入層から電子輸送層までの積層構造の第3発光ユニット(EMU3)を形成した。
(Electron transporting layer: formation of ETL3)
Next, it vapor-deposited on the light emitting layer so that the compound 3 might be 86 vol% and LiF might be 14 vol%, and the 20-nm-thick layer was formed. Furthermore, it vapor-deposited so that the compound 3 might be 98 vol% and Li might be 2 vol%, and the 22-nm-thick layer was formed. As a result, an electron transport layer (ETL3) that also serves as an electron injection layer composed of two layers of the compound 3 and LiF and the compound 3 and Li is formed, and the third layered structure from the hole injection layer to the electron transport layer is formed. A light emitting unit (EMU3) was formed.
[反射電極の形成]
 次に、第3発光ユニット(EMU3)上に、Alを厚さ150nmに蒸着して、陰極となる反射電極を形成した。
[Formation of reflective electrode]
Next, on the third light emitting unit (EMU3), Al was evaporated to a thickness of 150 nm to form a reflective electrode serving as a cathode.
[封止及び電源の接続]
 次に、透明電極から反射電極まで形成した積層体を、反射電極側からガラスケースで覆い、ガラスケースの周辺部にエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)によるシール剤を設けた。このシール剤を介してガラスケースと支持基板とを密着させた。その後、ガラスケース側からUV光を照射してシール剤を硬化させることで、透明電極から反射電極までの積層体を封止して、試料101の有機EL素子を作製した。ただし、各電極の端子は、ガラスケースから外側に引き出された状態とし、これらの電極に電源を接続させた。なお、ガラスケースでの封止作業は、透明電極から反射電極までの積層体を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。
[Sealing and power connection]
Next, the laminated body formed from the transparent electrode to the reflective electrode is covered with a glass case from the reflective electrode side, and a sealant with an epoxy-based photocurable adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied to the periphery of the glass case. Provided. The glass case and the support substrate were brought into close contact with each other through this sealing agent. Then, the laminated body from a transparent electrode to a reflective electrode was sealed by irradiating UV light from the glass case side, and the sealing agent was hardened, and the organic EL element of the sample 101 was produced. However, the terminal of each electrode was made into the state pulled out from the glass case, and the power supply was connected to these electrodes. The glass case is sealed with a glove box in a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the laminate from the transparent electrode to the reflective electrode into contact with the atmosphere. went.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〈試料102~107の有機EL素子の作製〉
 上述の試料101の有機EL素子の作製方法において、発光材料、正孔輸送層(HTL1、HTL2、HTL3)の厚さ、及び、電子輸送層(ETL1、ETL2、ETL3)の厚さを、下記表1に示すように変更した以外は、試料101と同様の方法で試料102~107の有機EL素子を作製した。なお、試料105~107は、上述の図4に示す、第1発光ユニット(EMU1)と第2発光ユニット(EMU2)のみを有する構成とした。
<Preparation of organic EL elements of samples 102 to 107>
In the method for manufacturing the organic EL element of Sample 101 described above, the light emitting material, the thickness of the hole transport layer (HTL1, HTL2, HTL3), and the thickness of the electron transport layer (ETL1, ETL2, ETL3) are shown in the following table. The organic EL elements of Samples 102 to 107 were produced in the same manner as Sample 101, except for the changes shown in 1. Samples 105 to 107 have only the first light emitting unit (EMU1) and the second light emitting unit (EMU2) shown in FIG. 4 described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〈評価〉
[発光ピーク波長・半値幅]
 試料101~107の有機EL素子において、各発光ユニット(EMU1~3)を個別に発光させた際の発光スペクトルのピーク波長と半値幅を測定した。各発光ユニットの発光スペクトルの測定は、コニカミノルタ製CS-2000輝度計を用いて、5mA/cmの印加条件で行った。具体的には、有機EL素子の各発光ユニット(EMU1~3)に対して4本以上の取出し電極部を設け、各取出し電極部から発光ユニットを挟持する電極対に上記条件で電流を印加して、各発光ユニット(EMU1~3)の発光スペクトルを得た。得られた各発光ユニット(EMU1~3)の発光スペクトルにおいて、最大発光強度となる波長をピーク波長とした。また、ピーク波長の発光強度から半分の強度となる最小波長と最大波長間の波長差異を、半値幅(半値全幅:FWHM)として数値を得た。
 各試料の発光ユニット(EMU1~3)について、測定したピーク波長と半値幅を表1に示す。また、試料101の有機EL素子において、各発光ユニット(EMU1~3)を個別に発光させた際の発光スペクトルを図5に示す。
<Evaluation>
[Luminescent peak wavelength and half-value width]
In the organic EL elements of Samples 101 to 107, the peak wavelength and the half value width of the emission spectrum when each light emitting unit (EMU1 to EMU3) was caused to emit light individually were measured. The emission spectrum of each light emitting unit was measured using a CS-2000 luminance meter manufactured by Konica Minolta under an application condition of 5 mA / cm 2 . Specifically, four or more extraction electrode portions are provided for each light emitting unit (EMU1 to EMU3) of the organic EL element, and current is applied under the above conditions from each extraction electrode portion to the electrode pair sandwiching the light emitting unit. Thus, emission spectra of the respective light emitting units (EMU1 to EMU3) were obtained. In the emission spectrum of each of the obtained light emitting units (EMU1 to EMU3), the wavelength that gives the maximum light emission intensity was taken as the peak wavelength. Further, a numerical value was obtained by setting the wavelength difference between the minimum wavelength and the maximum wavelength, which is half the intensity from the emission intensity of the peak wavelength, as a half width (full width at half maximum: FWHM).
Table 1 shows the measured peak wavelength and full width at half maximum for the light emitting units (EMU1 to EMU3) of each sample. Further, FIG. 5 shows an emission spectrum when each light emitting unit (EMU1 to EMU3) emits light individually in the organic EL element of the sample 101.
[輝度変動・色度変動]
 測定したピーク波長と半値幅とから、試料101~107の有機EL素子において、各発光ユニット(EMU1~3)のうち、ピーク波長が最も555nmに近い発光ユニット(EMUNo.)を求めた。さらに、ピーク波長が最も555nmに近い発光ユニットに対し、輝度変動、及び、色度変動(x,yの2乗和)を求めた。輝度変動、及び、色度変動(x,yの2乗和)は、上述の製法で50枚の有機EL素子のパネルを作製し、この50枚のパネルにおけるバラツキから標準偏差σを求めた。なお、試料101~107の輝度変動、及び、色度変動(x,yの2乗和)の標準偏差σは、試料107の標準偏差σを基準とした相対値で求めた。
[Brightness fluctuation / chromaticity fluctuation]
From the measured peak wavelength and half width, in the organic EL elements of Samples 101 to 107, among the light emitting units (EMU1 to 3), the light emitting unit (EMUNo.) Having the peak wavelength closest to 555 nm was obtained. Furthermore, the luminance variation and the chromaticity variation (the sum of squares of x and y) were obtained for the light emitting unit whose peak wavelength was closest to 555 nm. As for the luminance variation and chromaticity variation (the sum of squares of x and y), 50 panels of organic EL elements were produced by the above-described manufacturing method, and the standard deviation σ was obtained from the variation in the 50 panels. Note that the standard deviation σ of the luminance fluctuation and chromaticity fluctuation (the sum of squares of x and y) of the samples 101 to 107 was obtained as a relative value based on the standard deviation σ of the sample 107.
 発光ピーク波長、半値幅、ピーク波長が最も555nmに近い発光ユニット(EMUNo.)、輝度変動、及び、色度変動(x,yの2乗和)の標準偏差σの結果(相対値)を、下記表2に示す。 The result (relative value) of the standard deviation σ of the emission peak wavelength, the half width, the light emitting unit (EMU No.) whose peak wavelength is closest to 555 nm, the luminance fluctuation, and the chromaticity fluctuation (the sum of squares of x and y), It is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、試料101の有機EL素子は、第3発光ユニットのピーク波長が、第1発光ユニットのピーク波長、及び、第2発光ユニットのピーク波長よりも、555nmに近い。このため、ピーク波長が最も555nmに近い発光ユニットは第3発光ユニットである。そして、ピーク波長が最も555nmに近い第3発光ユニットの発光スペクトルの半値幅が、第1発光ユニット、及び、第2発光ユニットの発光スペクトルの半値幅よりも小さい。従って、試料101の有機EL素子は、ピーク波長が最も555nmに近い発光ユニットの発光スペクトルの半値幅が、全発光ユニット中で最も小さい構成である。 As shown in Table 2, in the organic EL element of Sample 101, the peak wavelength of the third light emitting unit is closer to 555 nm than the peak wavelength of the first light emitting unit and the peak wavelength of the second light emitting unit. For this reason, the light emitting unit whose peak wavelength is closest to 555 nm is the third light emitting unit. And the half value width of the emission spectrum of the 3rd light emission unit whose peak wavelength is the closest to 555 nm is smaller than the half value width of the emission spectrum of the 1st light emission unit and the 2nd light emission unit. Therefore, the organic EL element of the sample 101 has a configuration in which the half width of the emission spectrum of the light emitting unit whose peak wavelength is closest to 555 nm is the smallest among all the light emitting units.
 同様に、試料102~106の有機EL素子は、ピーク波長が最も555nmに近い発光ユニットの発光スペクトルの半値幅が、全発光ユニット中で最も小さい構成である。 Similarly, the organic EL elements of Samples 102 to 106 have a configuration in which the half width of the emission spectrum of the light emitting unit having the peak wavelength closest to 555 nm is the smallest among all the light emitting units.
 試料107の有機EL素子は、第1発光ユニットのピーク波長の方が第2発光ユニットのピーク波長よりも、555nmに近い。このため、ピーク波長が最も555nmに近い発光ユニットは、第1発光ユニットである。しかし、試料107の有機EL素子では、第1発光ユニットの半値幅よりも、第2発光ユニットの半値幅の方が小さい。従って、試料107の有機EL素子は、上記試料101~106と異なり、ピーク波長が最も555nmに近い発光ユニットの発光スペクトルの半値幅が、全発光ユニット中で最も小さい構成ではない。 In the organic EL element of sample 107, the peak wavelength of the first light emitting unit is closer to 555 nm than the peak wavelength of the second light emitting unit. For this reason, the light emitting unit whose peak wavelength is closest to 555 nm is the first light emitting unit. However, in the organic EL element of the sample 107, the half width of the second light emitting unit is smaller than the half width of the first light emitting unit. Therefore, unlike the samples 101 to 106, the organic EL element of the sample 107 does not have the smallest half-width of the emission spectrum of the light emitting unit whose peak wavelength is closest to 555 nm among all the light emitting units.
 試料101~106の有機EL素子のように、ピーク波長が最も555nmに近い発光ユニットの発光スペクトルの半値幅が全発光ユニット中で最も小さい構成では、この構成を有していない試料107に比べて、輝度変動、及び、色度変動(x,yの2乗和)の標準偏差σが小さい。すなわち、試料101~106の有機EL素子は、50個のパネルにおいて製造時に各層の厚さにバラツキが発生した場合にも、輝度変動や色変動が、試料107よりも小さく抑えられている。 As in the organic EL elements of Samples 101 to 106, in the configuration in which the half-value width of the emission spectrum of the light emitting unit whose peak wavelength is closest to 555 nm is the smallest among all the light emitting units, compared to the sample 107 that does not have this configuration. The standard deviation σ of luminance variation and chromaticity variation (the sum of squares of x and y) is small. That is, in the organic EL elements of Samples 101 to 106, luminance variations and color variations are suppressed to be smaller than those of Sample 107 even when variations occur in the thickness of each layer in manufacturing 50 panels.
 また、ピーク波長が最も555nmに近い発光ユニットが発光材料として蛍光発光材料を含む試料104~106の有機EL素子は、発光材料としてリン光発光材料を含む試料101~103の有機EL素子に比べて、輝度変動や色変動が小さい。このように、発光材料として蛍光材料を用いることにより、製造時に各層の厚さにバラツキが発生した場合にも、輝度変動や色変動が抑制される。従って、ピーク波長が最も555nmに近い発光ユニットにおいては、発光材料として蛍光発光材料を用いることが好ましい。 In addition, the organic EL elements of the samples 104 to 106 in which the light emitting unit having the peak wavelength closest to 555 nm includes the fluorescent light emitting material as the light emitting material are compared with the organic EL elements of the samples 101 to 103 including the phosphorescent light emitting material as the light emitting material. , Luminance fluctuation and color fluctuation are small. In this way, by using a fluorescent material as the light emitting material, even when variations occur in the thickness of each layer during manufacturing, luminance variations and color variations are suppressed. Therefore, in a light emitting unit having a peak wavelength closest to 555 nm, it is preferable to use a fluorescent light emitting material as the light emitting material.
 上述のように、比視感度が高い発光ユニットの発光スペクトルの半値幅が、他の発光ユニットの発光スペクトルの半値幅よりも小さい構成では、成膜時に厚さのバラツキが発生した場合にも、有機EL素子から放出される光に対して、比視感度が高い発光ユニットから放出される光の色ずれや輝度変化による影響を、小さくすることができる。すなわち、比視感度が高い発光ユニットから放出される光の色ずれや輝度変化が、有機EL素子から放出される光においても視認されにくくなる。この結果、有機エレクトロルミネッセンス素子を構成する各層を成膜する際の膜厚変動においても、発光性能の変動を抑制することが可能となり、有機EL素子の生産性や歩留まり等の低下を抑制することができる。 As described above, in the configuration in which the half width of the emission spectrum of the light emitting unit having a high specific visibility is smaller than the half width of the emission spectrum of the other light emitting units, even when thickness variation occurs during film formation, With respect to the light emitted from the organic EL element, it is possible to reduce the influence of the color shift and the luminance change of the light emitted from the light emitting unit having a high specific visibility. That is, the color shift and the luminance change of the light emitted from the light emitting unit having high specific visibility are not easily recognized even in the light emitted from the organic EL element. As a result, even in the film thickness fluctuation when forming each layer constituting the organic electroluminescence element, it becomes possible to suppress the fluctuation of the light emission performance, and to suppress the decrease in the productivity and the yield of the organic EL element. Can do.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 11・・・透明電極、12・・・第1発光ユニット、13・・・第1中間電極、14・・・第2発光ユニット、15・・・第2中間電極、16・・・第3発光ユニット、17・・・反射電極、18,19・・・電源、20・・・制御部 DESCRIPTION OF SYMBOLS 11 ... Transparent electrode, 12 ... 1st light emission unit, 13 ... 1st intermediate electrode, 14 ... 2nd light emission unit, 15 ... 2nd intermediate electrode, 16 ... 3rd light emission Unit, 17 ... reflective electrode, 18, 19 ... power supply, 20 ... control unit

Claims (5)

  1.  支持基板上に設けられた、n個の発光ユニットと、n+1個以上の電極とを備え、前記支持基板側から、透明電極、第1発光ユニット・・・第n電極、第n発光ユニット、第n+1電極を有する有機エレクトロルミネッセンス素子であって、
     発光スペクトルのピーク波長が最も555nmに近い発光ユニットは、発光スペクトルの半値幅が、全発光ユニット中で最も小さい
     有機エレクトロルミネッセンス素子。
    Provided with n light emitting units and n + 1 or more electrodes provided on the support substrate, from the support substrate side, transparent electrode, first light emitting unit ... nth electrode, nth light emitting unit, An organic electroluminescence device having n + 1 electrodes,
    A light emitting unit having a peak wavelength of the emission spectrum closest to 555 nm is an organic electroluminescence device in which the half width of the emission spectrum is the smallest among all the light emitting units.
  2.  前記第1発光ユニットから前記第n発光ユニットまでの間に設けられる中間電極の内、少なくとも1つが、銀、又は、アルミニウムを主成分として含有する請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein at least one of the intermediate electrodes provided between the first light emitting unit and the nth light emitting unit contains silver or aluminum as a main component.
  3.  銀、又は、アルミニウムを主成分として含有する前記中間電極の厚さが6nm以上25nm以下である請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 2, wherein the thickness of the intermediate electrode containing silver or aluminum as a main component is 6 nm or more and 25 nm or less.
  4.  前記発光スペクトルのピーク波長が最も555nmに近い発光ユニットが、蛍光発光材料を含有する請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein the light emitting unit having a peak wavelength of the emission spectrum closest to 555 nm contains a fluorescent light emitting material.
  5.  請求項1に記載の有機エレクトロルミネッセンス素子を備える発光装置。 A light emitting device comprising the organic electroluminescence element according to claim 1.
PCT/JP2017/037523 2016-11-04 2017-10-17 Organic electroluminescent element and light emitting device WO2018083974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016215988 2016-11-04
JP2016-215988 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018083974A1 true WO2018083974A1 (en) 2018-05-11

Family

ID=62076457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037523 WO2018083974A1 (en) 2016-11-04 2017-10-17 Organic electroluminescent element and light emitting device

Country Status (1)

Country Link
WO (1) WO2018083974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080507A (en) * 2020-11-18 2022-05-30 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589190A (en) * 1981-07-10 1983-01-19 日本電信電話株式会社 Multicolor display electroluminescence element
JPH11111456A (en) * 1997-09-29 1999-04-23 Nippon Steel Chem Co Ltd Multiple type multicolor-emitting organic electroluminescent element
JP2007012370A (en) * 2005-06-29 2007-01-18 Sony Corp Organic luminescent element and organic luminescent device
JP2009500794A (en) * 2005-06-29 2009-01-08 イーストマン コダック カンパニー Broadband optical tandem OLED display
JP2011028878A (en) * 2009-07-22 2011-02-10 Canon Inc Organic light-emitting device
JP2013509670A (en) * 2009-10-05 2013-03-14 トルン ライティング リミテッド Multi-layer organic element
JP2013231961A (en) * 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd Display device and electronic device
WO2014200034A1 (en) * 2013-06-13 2014-12-18 コニカミノルタ株式会社 Method for driving organic electroluminescent element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589190A (en) * 1981-07-10 1983-01-19 日本電信電話株式会社 Multicolor display electroluminescence element
JPH11111456A (en) * 1997-09-29 1999-04-23 Nippon Steel Chem Co Ltd Multiple type multicolor-emitting organic electroluminescent element
JP2007012370A (en) * 2005-06-29 2007-01-18 Sony Corp Organic luminescent element and organic luminescent device
JP2009500794A (en) * 2005-06-29 2009-01-08 イーストマン コダック カンパニー Broadband optical tandem OLED display
JP2011028878A (en) * 2009-07-22 2011-02-10 Canon Inc Organic light-emitting device
JP2013509670A (en) * 2009-10-05 2013-03-14 トルン ライティング リミテッド Multi-layer organic element
JP2013231961A (en) * 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd Display device and electronic device
WO2014200034A1 (en) * 2013-06-13 2014-12-18 コニカミノルタ株式会社 Method for driving organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080507A (en) * 2020-11-18 2022-05-30 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4904821B2 (en) Organic electroluminescence device and organic electroluminescence display
JP4830374B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP6337883B2 (en) Electronic devices
JP2007180277A (en) Organic electroluminescent device, display and illuminator
JP5664715B2 (en) Organic electroluminescence device
WO2011132550A1 (en) Organic electroluminescent element, display device, and illumination device
JPWO2007077715A1 (en) Bottom emission type organic electroluminescence panel
JP4978034B2 (en) Organic electroluminescence device
JP2017033849A (en) Organic electroluminescent element, manufacturing method of organic electroluminescent element, and illumination device
JP6119606B2 (en) Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
JP5673335B2 (en) Organic electroluminescence device
WO2018083974A1 (en) Organic electroluminescent element and light emitting device
JP6330803B2 (en) Method for manufacturing organic electroluminescence element
WO2014200067A1 (en) Organic electroluminescent element and electronic device
WO2018116923A1 (en) Transparent electrode and electronic device
JP2017112011A (en) Organic electroluminescent element, and light-emitting device
WO2014181695A1 (en) Organic electroluminescent element
WO2017104175A1 (en) Organic electroluminescence element, and light emitting device
WO2017104174A1 (en) Organic electroluminescence element, and light emitting device
JP2007221028A (en) Organic electroluminescence element, display, and illumination device
JP6252590B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5895699B2 (en) Organic electroluminescence device
JP2012234972A (en) Organic electroluminescent element and method for manufacturing the same
WO2014189094A1 (en) Device for manufacturing transparent electrode and device for manufacturing electronic device
JP2012190742A (en) Organic electroluminescent element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP