WO2018083927A1 - Weather information processing device, weather radar device, and weather information processing method - Google Patents

Weather information processing device, weather radar device, and weather information processing method Download PDF

Info

Publication number
WO2018083927A1
WO2018083927A1 PCT/JP2017/035902 JP2017035902W WO2018083927A1 WO 2018083927 A1 WO2018083927 A1 WO 2018083927A1 JP 2017035902 W JP2017035902 W JP 2017035902W WO 2018083927 A1 WO2018083927 A1 WO 2018083927A1
Authority
WO
WIPO (PCT)
Prior art keywords
weather information
weather
region
area
information processing
Prior art date
Application number
PCT/JP2017/035902
Other languages
French (fr)
Japanese (ja)
Inventor
高木 敏明
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2018083927A1 publication Critical patent/WO2018083927A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a weather information processing apparatus for processing weather information, a weather radar apparatus including the weather information processing apparatus, and a weather information processing method.
  • paragraph 0002 of Patent Document 1 describes that the accuracy of a predicted value can be improved by assimilating the observed value in a simulation based on a weather prediction model and matching the predicted value.
  • accurate weather information may not be obtained only by assimilation of data as described above.
  • the precipitation area flowing into the observation area from the outside cannot be taken into account, so accurate precipitation intensity may not be obtained.
  • accurate precipitation intensity may not be obtained.
  • rapid development of cumulonimbus clouds in the observation region cannot be predicted, and in this case, accurate weather information may not be obtained.
  • the present invention is for solving the above-mentioned problems, and its purpose is to obtain accurate weather information.
  • a weather information processing apparatus is weather information of each first small region based on a reception signal obtained from each first small region included in the first region.
  • the weather information of each second small area included in the first weather information calculation unit for calculating the first weather information and the second area including the first area and wider than the first area is used as the second weather information.
  • a weather radar apparatus transmits a transmission wave to each first small area included in the first area and uses a reflected wave of the transmission wave as a reception wave.
  • An antenna for receiving waves and the weather information processing apparatus described above are provided.
  • the weather observation method which concerns on a situation with this invention is the weather information of each 1st small area
  • Calculating a certain first weather information obtaining weather information of each second small area included in the second area including the first area and wider than the first area as second weather information from the outside, Integrated weather information is generated based on the first weather information and the second weather information.
  • FIG. 2 (A) is a plan view, FIG. 2 (B) side It is the figure seen from.
  • the present invention can be widely applied to a weather information processing apparatus that processes weather information, a weather radar apparatus that includes the weather information processing apparatus, and a weather information processing method.
  • FIG. 1 is a block diagram showing a configuration of a weather radar apparatus 1 including a weather information processing unit 3 as a weather information processing apparatus according to an embodiment of the present invention.
  • the weather radar device 1 which will be described in detail below, not only weather information (first weather information) such as precipitation intensity observed by the weather radar device 1, but also the weather radar device 1
  • first weather information such as precipitation intensity observed by the weather radar device 1
  • second weather information By using weather information (second weather information) from an external system (for example, XRAIN, which is a weather radar network operated by the Ministry of Land, Infrastructure, Transport and Tourism, Japan), it is possible to perform more accurate weather prediction .
  • XRAIN which is a weather radar network operated by the Ministry of Land, Infrastructure, Transport and Tourism, Japan
  • the weather radar apparatus 1 includes an antenna 2, a weather information processing unit 3, and a display 4 with reference to FIG.
  • the antenna 2 is a radar antenna that can transmit and receive electromagnetic waves with strong directivity.
  • Antenna 2 be rotatably constructed mechanically, thereby scanning the observation area Z own in the transmission wave and can be reception of a reflected wave as a reception wave.
  • the antenna 2 repeatedly transmits and receives transmission and reception waves while changing the direction in which the transmission and reception waves are transmitted and received.
  • the antenna 2 outputs a reception signal obtained from the received reception wave to the weather information calculation unit 5.
  • the antenna 2 it is preferable to use an antenna capable of transmitting and receiving dual polarized waves. Thereby, weather information, such as precipitation intensity, can be calculated more accurately.
  • Figure 2 is a is an area where weather information is observed meteorological radar device 1 itself region Z own (first region) and the free-space Z own constitute a self-grating region SZ own (first small region), the Other area Z ext (second area), which is an area where weather information is observed or analyzed by an external system different from weather radar apparatus 1, and other lattice area SZ ext (second small area) constituting the other area Z ext
  • FIG. 2A is a plan view
  • FIG. 2B is a side view.
  • FIG. 2 the outer periphery Cf of the own region Zown is indicated by a bold line, and the other region Zext is shown only in the vicinity of the own region Zown , and the outer portion is not shown.
  • the own region Zown is shown above the other region Zext , but the actual position of the own region Zown and the other region Zext in the vertical direction (vertical direction). Are the same.
  • FIG. 2B schematically shows the thickness in the vertical direction of the local area Zown and the other area Zext .
  • weather information in a relatively narrow observation region centered on the antenna 2 is observed at every predetermined timing.
  • the weather information observed by the weather radar device 1 is precipitation intensity
  • the present invention is not limited to this, and the weather information observed by the weather radar device 1 is other weather information. (For example, wind speed) may be used. Own region Z own is narrower region than other regions Z ext where rainfall intensity is observed or analyzed by an external weather radar network described above XRAIN.
  • the weather information processing unit 3 has a weather information calculation unit 5 as a first weather information calculation unit, an external weather information acquisition unit 6 as a second weather information acquisition unit, and an arithmetic processing unit 7.
  • the weather information processing unit 3 is composed of devices such as a hardware processor 8 (for example, a CPU, FPGA, etc.) and a nonvolatile memory.
  • the hardware processor 8 functions as the weather information calculation unit 5, the external weather information acquisition unit 6, and the arithmetic processing unit 7 by the CPU reading and executing the program from the nonvolatile memory.
  • the meteorological information calculation unit 5 calculates, as the first meteorological information, the precipitation intensity observation value in each own lattice area SZ own (see FIG. 2) in the own area Z own based on the received signal output from the antenna 2. Specifically, the meteorological information calculation unit 5 calculates the time from when the transmission wave is transmitted until the reflected wave of the transmission wave is received as the reception wave, and the reflection of the transmission wave transmitted from the antenna 2. based on the strength of the received signals obtained from the waves, and calculates the precipitation intensity observations in their grid area SZ own.
  • the external weather information acquisition unit 6 uses the XRAIN, which is an external system different from the weather radar apparatus 1 according to the present embodiment, to obtain the second observed value or the analyzed value of the weather information at each point observed or analyzed by the XRAIN. Obtained as weather information.
  • XRAIN radar stations are arranged at various points in Japan, and each radar station can observe weather information within a radius of about 60 km with the arrangement point as the center.
  • External weather information acquisition unit 6 as weather information in another region Z ext, to obtain the observed value or the analysis value of the precipitation intensity of each other grating regions SZ ext which is a plurality of small regions constituting the said other region Z ext .
  • the observation value of precipitation intensity described here is the value of precipitation intensity observed by a radar device included in an external system such as XRAIN, and the analysis value of precipitation intensity is only the above-described observation value of precipitation intensity. It is a value calculated using other values as well.
  • the observation value and the analysis value of the precipitation intensity by the external system are referred to as the precipitation intensity calculation value by the external system. That is, the calculated value of precipitation intensity by the external system includes at least one of the observed value and the analyzed value.
  • the arithmetic processing unit 7 includes an assimilation processing unit 10, an initial value calculation unit 11, and a weather prediction unit 12.
  • the assimilation processing unit 10 corrects the first weather information of each of the lattice areas SZ own calculated by the weather information calculation unit 5 with the second weather information of each of the lattice areas SZ ext obtained from the external weather information acquisition unit 6. Te by assimilating two information, calculates their assimilation after rainfall intensity grating areas SZ own (the integrated weather information). That is, according to this embodiment, it is possible to calculate the precipitation intensity in each of the lattice areas based not only on the precipitation intensity calculated by the own apparatus but also on the precipitation intensity obtained from the external system.
  • the assimilation processing unit 10 includes an outer lattice region data correction unit 15 and an inner lattice region data correction unit 16.
  • FIG. 3 is a schematic diagram for explaining a method of correcting the precipitation intensity observation value R1 own (x, y, z, t) in the outer lattice area SZ os (outer small area).
  • Self grating region SZ own has an outer grid area SZ os adjacent the outer periphery Cf of the free-space Z own (shown in FIGS. 2 and dot hatching in FIG. 3), inside the grating region than the outer grating region SZ own A certain inner lattice region SZ is (inner small region, shown by hatching in FIGS. 2 and 3).
  • the other lattice area SZ ext and the self-lattice area SZ own have the same size and overlap each other in the vertical direction (vertical direction).
  • a lattice region (another lattice region SZ ext ) in which precipitation intensity is observed or analyzed by an external system such as XRAIN is larger than the self-lattice region SZ own .
  • the size of the other lattice area SZ ext is adjusted to the size of the self-lattice area SZ own , and data correction processing described later is performed.
  • the outer lattice area data correction unit 15 corrects the precipitation intensity observation value R1 own (x, y, z, t) of the outer lattice area SZ os to obtain an assimilated precipitation intensity R1 corr (x, y, z, t). Is calculated. Specifically, referring to FIG. 3, outer lattice area data correction unit 15 sets a preset correction period, for example, initial time t 0 (time step one time before the time at which precipitation prediction is started). time) from a predetermined time (e.g.
  • the precipitation intensity observation value R1 own (x, y, z, t) in the outer grid area SZ os is used as the precipitation intensity calculation value R1 ext (x, y, z, t) in the other grid area SZ ext that satisfies a predetermined condition.
  • the outer lattice area data correction unit 15 calculates the assimilated precipitation intensity R1 corr (x, y, z, t) by performing correction processing based on the following equation (1).
  • x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the time included in the correction period described above. Note that the position of each lattice region is, for example, the center point of each lattice region.
  • ⁇ 1 (r1, ⁇ t1) is a coefficient (first correction coefficient) determined according to a spatial distance and a temporal distance between the outer lattice area SZ os and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient ⁇ 1 (r1, ⁇ t1) decreases as the spatial distance between the outer lattice region SZ os and the other lattice region SZ ext on which correction processing is performed increases, and temporally. It is set so that the value decreases as the distance increases. That is, the value of the coefficient ⁇ 1 (r1, ⁇ t1) increases when the positional and temporal relation between the two lattices is high, and decreases when the positional and temporal relation between the two lattices is low.
  • the outer lattice area data correction unit 15 is another lattice area SZ ext in which the spatial distance from the outer lattice area SZ os to be corrected is equal to or less than the predetermined distance r1, and the outer lattice area SZ to be corrected.
  • the precipitation intensity calculation value in the other grid area SZ ext calculated at a time within ⁇ t1 from the time when the precipitation intensity observation value of os is calculated, the precipitation intensity observation value of the outer grid area SZ os is corrected. . This fact is explained with reference to FIG.
  • FIG. 4 is a schematic diagram for explaining a method of correcting the precipitation intensity observation value R2 own (x, y, z, t) in the inner lattice area SZ is .
  • the inner grid area data correction unit 16 precipitation intensity observed value R2 own inner grid area SZ is (x, y, z , t) by correcting the, assimilation after rainfall intensity R2 corr (x, y, z , t) Is calculated. Specifically, the inner lattice area data correction unit 16 sets each time t ⁇ 30 ,..., T ⁇ n ⁇ 1 , t ⁇ n , t in the time from a preset correction period to a time that is a predetermined time backward. ⁇ n + 1 ,..., T 0 (see FIG.
  • the observed precipitation intensity value R2 own (x, y, z, t) of each inner lattice region SZ is set as the precipitation of the other lattice region SZ ext satisfying a predetermined condition. Correction is performed using the calculated intensity value R1 ext (x, y, z, t). Specifically, the inner lattice area data correction unit 16 calculates the assimilated precipitation intensity R2 corr (x, y, z, t) by performing correction processing based on the following equation (2).
  • x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the time included in the correction period described above.
  • ⁇ 2 (r2, ⁇ t2) is a coefficient (second correction coefficient) determined in accordance with the spatial distance and the temporal distance between the inner lattice area SZ is and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient ⁇ 2 (r2, ⁇ t2) decreases as the spatial distance between the outer lattice region SZ os and the other lattice region SZ ext on which correction processing is performed increases, and the time It is set so that the value decreases as the distance increases. That is, the value of the coefficient ⁇ 2 (r2, ⁇ t2) increases when the positional and temporal relationships between the two lattices are high, and decreases when the positional and temporal relationships between the two lattices are low.
  • the inner lattice area data correction unit 16 is another lattice area SZ ext in which the spatial distance from the inner lattice area SZ is to be corrected is equal to or less than the predetermined distance r2, and the inner lattice area SZ to be corrected.
  • the initial value calculation unit 11 is generated by the assimilation processor 10, based on past their assimilation after rainfall intensity grating areas SZ own R1 corr, at each time of R2 corr, their predictive value of precipitation intensity in the lattice region SZ own The initial value of the precipitation intensity required when starting the calculation of is calculated.
  • Weather forecast unit 12 each time t -30 included in the correction period, ..., based on their assimilation after rainfall intensity grating areas SZ own R1 corr, R2 corr at t 0, precipitation upcoming their grating region SZ own Predict strength. Specifically, the weather prediction unit 12 calculates a precipitation intensity prediction value for each grid area SZ own based on the advection equation represented by the following expression (3).
  • R (x, y, t) is the precipitation intensity at time t at the point (x, y).
  • U and v are advection vectors, and w is a developmental debilitating term, which can be expressed by the following equations (4) to (6), respectively.
  • C 1 to c 9 in the equations (4) to (6) are parameters to be estimated. Since the estimation method of these parameters and the precipitation intensity prediction method using the advection equation are the same as the conventionally known method, the description thereof is omitted.
  • the display device 4 for example, distribution of a precipitation intensity prediction value of each calculated grating region SZ own meteorological prediction unit 12 is displayed.
  • FIG. 5 is a flowchart for explaining a weather information processing method performed using the weather radar apparatus 1. Below, with reference to FIG. 5, the weather information processing method performed using the weather radar apparatus 1 is demonstrated.
  • step S1 the meteorological information calculation unit 5 performs precipitation intensity observation values R1 own (x, y, z, t) and R2 own (x, y, z, t) in each of the self-lattice areas SZ own at predetermined timings. t) is calculated.
  • step S2 the external weather information acquisition unit 6 acquires the precipitation intensity calculation values of each other lattice area SZ ext observed by XRAIN.
  • step S3 the precipitation intensity calculation value R1 of the other grid area SZ ext satisfying a predetermined condition, where the precipitation intensity observation value R1 awn (x, y, z, t) of each outer grid area SZ os at each time satisfies the predetermined condition. It is assimilated by correcting using the equation (1) by ext (x, y, z, t). Thereby, the assimilated precipitation intensity R1 corr (x, y, z, t) of each outer lattice area SZ os at each time is calculated.
  • step S4 the precipitation intensity observation value R2own (x, y, z, t) of each inner lattice region SZ is at a predetermined time is determined in advance. It is assimilated by correcting using the formula (2) with the precipitation intensity calculated value R2 ext (x, y, z, t) of the other lattice area SZ ext that satisfies the condition. Thereby, the assimilated precipitation intensity R2 corr (x, y, z, t) of each inner lattice area SZ is at each time is calculated.
  • step S5 assimilated precipitation intensity R1 corr (x, y, z, t) and R2 corr (x, y, z, t) at each time within the correction period calculated in steps S3 and S4. based on), the initial value of the precipitation intensity grating region SZ own Your own is calculated.
  • step S6 by using the initial value of the precipitation intensity of each grid area SZ own calculated in step S5, the prediction value of future precipitation intensity is calculated.
  • the weather information processing unit 3 of the weather radar apparatus 1 the first weather information observed by the weather radar apparatus 1 and an external system such as XRAIN different from the weather radar apparatus 1 Integrated weather information is generated based on the second weather information calculated by. In this way, by assimilating and integrating the weather information obtained by each of two different devices or systems, it is based on more information than when weather information is obtained using only one device or system. Weather information.
  • the first weather information obtained from the own area Zown which is an area that can be observed by the weather radar apparatus 1 is transmitted to an external system different from the weather radar apparatus 1 (in the case of the present embodiment, Integrated weather information is generated by correcting with the second weather information calculated by (XRAIN).
  • the other area Z ext that is an area that can be observed by the external system includes the own area Z own that is an area that can be observed by the weather radar apparatus 1, and is larger than the own area Z own . Therefore, the first meteorological information obtained from each point in the relatively narrow local area Zown is the second meteorological information obtained from each point in the relatively wide other area Zext including the local area Zown.
  • the weather information processing unit 3 corrects the first weather information of the outer lattice area SZ os with at least the second weather information of the other lattice area SZ ext adjacent to the outside of the outer lattice area SZ os .
  • This makes it possible to incorporate in the weather information of the outer grid area SZ positional highly relevant other grid area SZ ext with os, it is assimilated into weather information SZ os outer grid area.
  • the weather information processing unit 3 corrects the first weather information using a value obtained by multiplying the value based on the second weather information by the coefficient ⁇ 1.
  • the coefficient ⁇ 1 is determined according to the distance and time between the outer grid area SZ os and the other grid area SZ ext where the first weather information to be corrected is calculated. Accordingly, since the coefficient ⁇ 1 can be determined according to the positional relationship and temporal relationship between the outer lattice region SZ os and the other lattice region SZ ext , the first weather information of the outer lattice region SZ os is appropriately Can be corrected.
  • the smaller the distance between the outer lattice area SZ os and the other lattice area SZ ext the more the precipitation intensity of the outer lattice area SZ os is calculated and the other lattice area SZ ext.
  • a larger value is set as the coefficient ⁇ 1.
  • the weather information processing unit 3 the first weather information of the inner grid area SZ IS is corrected by the second weather information for other grid area SZ ext which overlaps at least the inner grating region SZ IS and vertically.
  • the weather information processing unit 3 corrects the first weather information using a value obtained by multiplying the value based on the second weather information by the coefficient ⁇ 2.
  • the coefficient ⁇ 2 is determined according to the distance and time between the inner lattice area SZ is and the other lattice area SZ ext where the first weather information to be corrected is calculated.
  • the coefficient ⁇ 2 can be determined according to the positional relationship and the temporal relationship between the inner lattice region SZ is and the other lattice region SZ ext , so that the first weather information of the inner lattice region SZ is appropriately Can be corrected.
  • the weather information processing unit 3 As the distance between the inner lattice area SZ is and the other lattice area SZ ext is smaller, the time when the precipitation intensity of the inner lattice area SZ is is calculated and the other lattice area SZ ext. As the time from the time when the precipitation intensity is calculated is shorter, a larger value is set as the coefficient ⁇ 2.
  • the weather information obtained in each of the inner lattice region SZ is and the other lattice region SZ ext that are close to each other in the position and observation time is highly relevant.
  • the weather information processing unit 3 based on the first weather information is accurate value as described above was determined, since the predicted value of the precipitation intensity is calculated in the future each grating region SZ own, precipitation intensity Can be calculated more accurately.
  • a weather radar apparatus capable of obtaining accurate weather information can be provided.
  • the weather radar apparatus 1 is a dual polarization radar apparatus, more accurate weather information can be obtained as compared with a radar apparatus capable of transmitting and receiving only horizontal polarization. .
  • integrated weather information is generated based on the first weather information and the second weather information calculated by an external system such as XRAIN.
  • an external system such as XRAIN.
  • FIG. 6 is a block diagram showing a configuration of a weather radar apparatus 1a according to a modification.
  • the weather radar apparatus 1 corrected by the meteorological radar apparatus precipitation intensity observations R1 own, R2 obtained an own external system precipitation intensity calculated value calculated by 1, its assimilation after rainfall intensity R1
  • the present invention is not limited to this.
  • a weather radar apparatus 1a own grid area SZ own precipitation intensity prediction value R3 own calculated by, R4 own, obtained from an external system
  • the accuracy of the predicted value of the precipitation intensity can be improved by correcting with the precipitation intensity predicted value of each other grid area SZ ext .
  • the weather radar apparatus 1a includes an antenna 2, a weather information processing unit 3a, and a display 4.
  • the antenna 2 and the display device 4 are the same as those in the above-described embodiment, and thus description thereof is omitted.
  • the weather information processing unit 3a includes a weather information calculation unit 5, an external weather information acquisition unit 6a, and an arithmetic processing unit 7a. Among these, since the weather information calculation part 5 is the same as that of the said embodiment, the description is abbreviate
  • the external weather information acquisition part 6a acquires the following weather information from an external system. Specifically, external weather information acquiring unit 6a, a predictive value for future precipitation intensity in each other grating regions SZ ext calculated by an external system, and acquires the second weather information.
  • the arithmetic processing unit 7a includes a weather prediction unit 12a and an assimilation processing unit 10a.
  • Weather forecast unit 12a based on the precipitation intensity observed value of the own grid area SZ own in the past each time calculated by the weather information calculating section 5 calculates a future precipitation intensity prediction value as the first weather information. That is, the weather prediction unit 12a is provided as a first weather information calculation unit that calculates a precipitation intensity prediction value as first weather information. For example, the weather prediction unit 12a calculates a predicted precipitation intensity value in the future using an advection equation, for example.
  • the assimilation processing unit 10a includes an outer lattice region data correction unit 15a and an inner lattice region data correction unit 16a.
  • FIG. 7 is a schematic diagram for explaining a method of correcting the precipitation intensity predicted value R3 own (x, y, z, t) of the outer lattice area SZ os .
  • the outer grid area data correction unit 15a corrects the precipitation intensity predicted value R3 own (x, y, z, t) of the outer grid area SZ os to obtain an assimilated precipitation intensity predicted value R3 corr (x, y, z, t). t) is calculated. Specifically, with reference to FIG. 7, the outer grid area data correction unit 15a predicts the precipitation intensity predicted value R3 own (x of each outer grid area SZ os at a future time t n at which precipitation intensity is to be predicted.
  • the outer lattice area data correction unit 15a calculates the assimilated precipitation intensity predicted value R3 corr (x, y, z, t) by performing correction processing based on the following equation (7). .
  • x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the future time.
  • ⁇ 3 (r3, ⁇ t3) is a coefficient (first correction coefficient) determined according to the spatial distance and the temporal distance between the outer lattice area SZ os and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient ⁇ 3 (r3, ⁇ t3) decreases as the spatial distance between the outer lattice region SZ os and the other lattice region SZ ext on which correction processing is performed increases, and the time It is set so that the value decreases as the distance increases. That is, the value of the coefficient ⁇ 3 (r3, ⁇ t3) increases when the positional and temporal relationships between the two lattices are high, and decreases when the positional and temporal relationships between the two lattices are low.
  • the outer lattice area data correction unit 15a is another lattice area SZ ext in which the spatial distance from the outer lattice area SZ os to be corrected is equal to or less than the predetermined distance r3, and the time when precipitation intensity is to be predicted. Is used to correct the precipitation intensity predicted value of the outer grid area SZ os using the precipitation intensity predicted value of the other grid area SZ ext at a time within ⁇ t3 from This will be described with reference to FIG. 7.
  • FIG. 8 is a schematic diagram for explaining a method of correcting the precipitation intensity prediction value R4 own (x, y, z, t) of the inner lattice area SZ is .
  • the inner lattice area data correction unit 16a corrects the precipitation intensity predicted value R4 own (x, y, z, t) of the inner lattice area SZ is to obtain an assimilated precipitation intensity predicted value R4 corr (x, y, z, t). t) is calculated. Specifically, referring to FIG. 8, the inner lattice area data correction unit 16a predicts the precipitation intensity predicted value R4 own (x of each inner lattice area SZ is at a future time t n at which precipitation intensity is to be predicted.
  • the inner lattice area data correction unit 16a calculates the assimilated precipitation intensity predicted value R4 corr (x, y, z, t) by performing correction processing based on the following equation (8). .
  • x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the future time.
  • ⁇ 4 (r4, ⁇ t4) is a coefficient (second correction coefficient) determined according to the spatial distance and the temporal distance between the inner lattice area SZ is and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient ⁇ 4 (r4, ⁇ t4) decreases as the spatial distance between the inner lattice region SZ is and the other lattice region SZ ext on which correction processing is performed increases, and the time It is set so that the value decreases as the distance increases. That is, the value of the coefficient ⁇ 4 (r4, ⁇ t4) increases when the positional and temporal relationships between the two lattices are high, and decreases when the distance and temporal relationships between the two lattices are low.
  • the inner lattice area data correction unit 16a is another lattice area SZ ext in which the spatial distance from the inner lattice area SZ is to be corrected is equal to or less than the predetermined distance r4 and the time when precipitation intensity is to be predicted. Is used to correct the predicted precipitation intensity value in the inner grid area SZ is using the precipitation intensity predicted value in the other grid area SZ ext at the time within ⁇ t4 from the current time. This will be described with reference to FIG. 8.
  • the predicted value of precipitation intensity can be accurately calculated by another approach different from the weather information processing unit 3 according to the above embodiment.
  • XRAIN has been described as an example of an external system in which the external weather information acquisition unit 6 of the weather radar apparatus 1 acquires weather information
  • the present invention is not limited to this.
  • weather information obtained from a system using a C-band radar by the Japan Meteorological Agency or meteorological satellites may be acquired and used as weather information from an external system.
  • the weather information used as the external data may not be the weather information from the publicly available system as described above.
  • an external weather radar device that includes an observation region of the weather radar device 1 and that can observe weather information in a region wider than the observation region is provided, and the weather information observed by the external weather radar device is externally It may be used as data.
  • the weather radar apparatus may perform only one of the correction of the precipitation intensity of the outer lattice area SZ os and the correction of the inner lattice area SZ is .
  • the precipitation intensity is described as an example of the weather information, but the present invention is not limited to this.
  • the weather information observed by the weather radar device may be the wind speed or the type of precipitation particles.
  • a so-called dual-polarization radar device is used as a weather radar device, and based on the phase difference between the horizontal and vertical polarizations transmitted from the antenna, The type can be determined.
  • FIG. 9 is a block diagram showing a configuration of a weather information processing apparatus 3b according to a modification.
  • the weather information processing unit 3 of the weather radar apparatus 1 according to the embodiment described above has the weather prediction unit 12, but the present invention is not limited to this, and the weather without the weather prediction unit 12 as shown in FIG.
  • the information processing apparatus 3b can also be configured. According to this weather information processing apparatus 3b, it is possible to form an initial field of weather information (for example, precipitation intensity) at each point in its own area Zown .
  • an initial field of weather information for example, precipitation intensity
  • the second weather information is assimilated into the first weather information to correct the first weather information of the self-lattice area SZ own .
  • the present invention is not limited to this.
  • the second weather information may be assimilated into the second weather information to correct the second weather information in the other lattice area SZ ext . It Thereby, the second weather information of each other grating regions SZ ext, because can be corrected by the first weather information observed by the own apparatus, to obtain a more accurate weather information in the region outside the observation area of the device itself Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

[Problem] To obtain accurate weather information. [Solution] A weather information processing device 3 provided with a first weather information calculation unit 5 for calculating first weather information that is weather information for each first subregion included in a first region on the basis of reception signals obtained from each first subregion; a second weather information acquisition unit 6 for acquiring, from the outside and as second weather information, weather information for each second subregion included in a second region that includes the first region and is wider than the first region; and an assimilation processing unit 10 for generating integrated weather information on the basis of the first weather information and second weather information.

Description

気象情報処理装置、気象レーダ装置、及び気象情報処理方法Weather information processing apparatus, weather radar apparatus, and weather information processing method
 本発明は、気象情報を処理する気象情報処理装置、気象情報処理装置を備えた気象レーダ装置、及び気象情報処理方法に関する。 The present invention relates to a weather information processing apparatus for processing weather information, a weather radar apparatus including the weather information processing apparatus, and a weather information processing method.
 例えば特許文献1の段落0002には、気象予測モデルによるシミュレーションに観測値を同化させて予測値と整合をとることにより、予測値の精度を向上することができる旨が記載されている。 For example, paragraph 0002 of Patent Document 1 describes that the accuracy of a predicted value can be improved by assimilating the observed value in a simulation based on a weather prediction model and matching the predicted value.
特許第4509947号公報Japanese Patent No. 4509947
 ところで、上述のようなデータの同化だけでは、正確な気象情報が得られない場合がある。例えば、比較的狭い観測領域内において降水強度の観測を行うシステムの場合、外部から観測領域内へ流入する降水域については考慮することができないため、正確な降水強度を得ることができない場合がある。また、初期時刻において存在していない降水域についても考慮することができないため、観測領域内における積乱雲の急速な発達を予測できず、この場合も正確な気象情報が得られない場合がある。 By the way, accurate weather information may not be obtained only by assimilation of data as described above. For example, in the case of a system that observes precipitation intensity in a relatively narrow observation area, the precipitation area flowing into the observation area from the outside cannot be taken into account, so accurate precipitation intensity may not be obtained. . In addition, since it is not possible to consider a precipitation region that does not exist at the initial time, rapid development of cumulonimbus clouds in the observation region cannot be predicted, and in this case, accurate weather information may not be obtained.
 本発明は、上記課題を解決するためのものであり、その目的は、正確な気象情報を得ることである。 The present invention is for solving the above-mentioned problems, and its purpose is to obtain accurate weather information.
 上記課題を解決するため、本発明のある局面に係る気象情報処理装置は、第1領域に含まれる各第1小領域から得られた受信信号に基づいて各第1小領域の気象情報である第1気象情報を算出する第1気象情報算出部と、前記第1領域を含み且つ該第1領域よりも広い第2領域、に含まれる各第2小領域の気象情報を第2気象情報として外部から取得する第2気象情報取得部と、前記第1気象情報と前記第2気象情報とに基づいて統合気象情報を生成する同化処理部と、を備えている。 In order to solve the above-described problem, a weather information processing apparatus according to an aspect of the present invention is weather information of each first small region based on a reception signal obtained from each first small region included in the first region. The weather information of each second small area included in the first weather information calculation unit for calculating the first weather information and the second area including the first area and wider than the first area is used as the second weather information. A second weather information acquisition unit acquired from the outside, and an assimilation processing unit that generates integrated weather information based on the first weather information and the second weather information.
 また、上記課題を解決するため、本発明のある局面に係る気象レーダ装置は、第1領域に含まれる各第1小領域へ送信波を送波するとともに該送信波の反射波を受信波として受波するアンテナと、上述した気象情報処理装置と、を備えている。 In order to solve the above-described problem, a weather radar apparatus according to an aspect of the present invention transmits a transmission wave to each first small area included in the first area and uses a reflected wave of the transmission wave as a reception wave. An antenna for receiving waves and the weather information processing apparatus described above are provided.
 また、上記課題を解決するため、本発明のある局面に係る気象観測方法は、第1領域に含まれる各第1小領域から得られた受信信号に基づいて各第1小領域の気象情報である第1気象情報を算出し、前記第1領域を含み且つ該第1領域よりも広い第2領域、に含まれる各第2小領域の気象情報を第2気象情報として外部から取得し、前記第1気象情報と前記第2気象情報とに基づいて統合気象情報を生成する。 Moreover, in order to solve the said subject, the weather observation method which concerns on a situation with this invention is the weather information of each 1st small area | region based on the received signal obtained from each 1st small area | region contained in a 1st area | region. Calculating a certain first weather information, obtaining weather information of each second small area included in the second area including the first area and wider than the first area as second weather information from the outside, Integrated weather information is generated based on the first weather information and the second weather information.
 本発明によれば、正確な気象情報を得ることができる。 According to the present invention, accurate weather information can be obtained.
本発明の実施形態に係る気象レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the weather radar apparatus which concerns on embodiment of this invention. 自領域Zown及び自格子領域SZownと、他領域Zext及び他格子領域SZextとを模式的に示す図であって、図2(A)は平面図、図2(B)は側方から視た図である。A diagram schematically illustrating a self-region Z own and self grating region SZ own, and other regions Z ext and other grating regions SZ ext, 2 (A) is a plan view, FIG. 2 (B) side It is the figure seen from. 外側格子領域の降水強度観測値を補正する手法を説明するための模式図である。It is a schematic diagram for demonstrating the method of correct | amending the precipitation intensity observation value of an outer side grid | lattice area | region. 内側格子領域の降水強度観測値を補正する手法を説明するための模式図である。It is a schematic diagram for demonstrating the method of correct | amending the precipitation intensity observation value of an inner side grid | lattice area | region. 気象レーダ装置を用いて行う気象情報処理方法を説明するためのフローチャートである。It is a flowchart for demonstrating the weather information processing method performed using a weather radar apparatus. 変形例に係る気象レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the weather radar apparatus which concerns on a modification. 外側格子領域の降水強度予測値を補正する手法を説明するための模式図である。It is a schematic diagram for demonstrating the method of correct | amending the precipitation intensity prediction value of an outer side grid | lattice area | region. 内側格子領域の降水強度予測値を補正する手法を説明するための模式図である。It is a schematic diagram for demonstrating the method of correct | amending the precipitation intensity predicted value of an inner side grid | lattice area | region. 変形例に係る気象情報処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the weather information processing apparatus which concerns on a modification.
 以下、本発明を実施するための形態について、図面を参照しつつ説明する。本発明は、気象情報を処理する気象情報処理装置、気象情報処理装置を備えた気象レーダ装置、及び気象情報処理方法に広く適用できる。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The present invention can be widely applied to a weather information processing apparatus that processes weather information, a weather radar apparatus that includes the weather information processing apparatus, and a weather information processing method.
 図1は、本発明の実施形態に係る気象情報処理装置としての気象情報処理部3を備えた気象レーダ装置1の構成を示すブロック図である。本実施形態に係る気象レーダ装置1によれば、以下で詳しく説明するが、本気象レーダ装置1によって観測された降水強度等の気象情報(第1気象情報)だけでなく、該気象レーダ装置1とは異なる外部システム(例えば日本国の国土交通省が運用する気象レーダネットワークであるXRAIN)からの気象情報(第2気象情報)を利用することにより、より精度の高い気象予測を行うことができる。 FIG. 1 is a block diagram showing a configuration of a weather radar apparatus 1 including a weather information processing unit 3 as a weather information processing apparatus according to an embodiment of the present invention. According to the weather radar device 1 according to the present embodiment, which will be described in detail below, not only weather information (first weather information) such as precipitation intensity observed by the weather radar device 1, but also the weather radar device 1 By using weather information (second weather information) from an external system (for example, XRAIN, which is a weather radar network operated by the Ministry of Land, Infrastructure, Transport and Tourism, Japan), it is possible to perform more accurate weather prediction .
 気象レーダ装置1は、図1を参照して、アンテナ2と、気象情報処理部3と、表示器4とを備えている。 The weather radar apparatus 1 includes an antenna 2, a weather information processing unit 3, and a display 4 with reference to FIG.
 アンテナ2は、指向性の強い電磁波を送受波可能なレーダアンテナである。アンテナ2は、機械的に回転可能に構成されていて、これにより、観測領域Zownを送信波で走査し且つその反射波を受信波として受波することができる。アンテナ2は、送信波及び受信波を送受信する方位を変えながら、送信波及び受信波の送受波を繰り返し行う。アンテナ2は、受波した受信波から得られた受信信号を、気象情報算出部5へ出力する。なお、アンテナ2としては、二重偏波を送受波可能なアンテナを用いる方が好ましい。これにより、降水強度等の気象情報をより正確に算出することができる。 The antenna 2 is a radar antenna that can transmit and receive electromagnetic waves with strong directivity. Antenna 2, be rotatably constructed mechanically, thereby scanning the observation area Z own in the transmission wave and can be reception of a reflected wave as a reception wave. The antenna 2 repeatedly transmits and receives transmission and reception waves while changing the direction in which the transmission and reception waves are transmitted and received. The antenna 2 outputs a reception signal obtained from the received reception wave to the weather information calculation unit 5. As the antenna 2, it is preferable to use an antenna capable of transmitting and receiving dual polarized waves. Thereby, weather information, such as precipitation intensity, can be calculated more accurately.
 図2は、気象レーダ装置1で気象情報が観測される領域である自領域Zown(第1領域)及び該自領域Zownを構成する自格子領域SZown(第1小領域)と、該気象レーダ装置1とは異なる外部システムで気象情報が観測又は解析される領域である他領域Zext(第2領域)及び該他領域Zextを構成する他格子領域SZext(第2小領域)とを模式的に示す図であって、図2(A)は平面図、図2(B)は側方から視た図である。 Figure 2 is a is an area where weather information is observed meteorological radar device 1 itself region Z own (first region) and the free-space Z own constitute a self-grating region SZ own (first small region), the Other area Z ext (second area), which is an area where weather information is observed or analyzed by an external system different from weather radar apparatus 1, and other lattice area SZ ext (second small area) constituting the other area Z ext FIG. 2A is a plan view, and FIG. 2B is a side view.
 図2では、自領域Zownの外周Cfを太線で示し、他領域Zextについては、自領域Zown付近の部分のみを示し、外側の部分の図示を省略している。なお、図2(B)では、便宜上、他領域Zextの上方に自領域Zownを重ねて示しているが、実際の自領域Zown及び他領域Zextの上下方向(鉛直方向)における位置は同じである。また、図2(B)では、自領域Zown及び他領域Zextの上下方向における厚さについて、模式的に示している。 In FIG. 2, the outer periphery Cf of the own region Zown is indicated by a bold line, and the other region Zext is shown only in the vicinity of the own region Zown , and the outer portion is not shown. In FIG. 2B, for the sake of convenience, the own region Zown is shown above the other region Zext , but the actual position of the own region Zown and the other region Zext in the vertical direction (vertical direction). Are the same. FIG. 2B schematically shows the thickness in the vertical direction of the local area Zown and the other area Zext .
 本実施形態の気象レーダ装置1では、アンテナ2を中心とした比較的狭い観測領域における気象情報が、所定のタイミング毎に観測される。なお、以下では、本気象レーダ装置1によって観測される気象情報が降水強度である例を挙げて説明するが、これに限らず、気象レーダ装置1によって観測される気象情報は、その他の気象情報(例えば風速)であってもよい。自領域Zownは、上述した外部の気象レーダネットワークであるXRAINによって降水強度が観測又は解析される他領域Zextよりも狭い領域である。 In the weather radar apparatus 1 of the present embodiment, weather information in a relatively narrow observation region centered on the antenna 2 is observed at every predetermined timing. In the following, an example in which the weather information observed by the weather radar device 1 is precipitation intensity will be described. However, the present invention is not limited to this, and the weather information observed by the weather radar device 1 is other weather information. (For example, wind speed) may be used. Own region Z own is narrower region than other regions Z ext where rainfall intensity is observed or analyzed by an external weather radar network described above XRAIN.
 気象情報処理部3は、第1気象情報算出部としての気象情報算出部5と、第2気象情報取得部としての外部気象情報取得部6と、演算処理部7とを有している。気象情報処理部3は、ハードウェア・プロセッサ8(例えば、CPU、FPGA等)及び不揮発性メモリ等のデバイスで構成される。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、ハードウェア・プロセッサ8が、気象情報算出部5、外部気象情報取得部6、及び演算処理部7として機能する。 The weather information processing unit 3 has a weather information calculation unit 5 as a first weather information calculation unit, an external weather information acquisition unit 6 as a second weather information acquisition unit, and an arithmetic processing unit 7. The weather information processing unit 3 is composed of devices such as a hardware processor 8 (for example, a CPU, FPGA, etc.) and a nonvolatile memory. For example, the hardware processor 8 functions as the weather information calculation unit 5, the external weather information acquisition unit 6, and the arithmetic processing unit 7 by the CPU reading and executing the program from the nonvolatile memory.
 気象情報算出部5は、アンテナ2から出力された受信信号に基づき、自領域Zown内の各自格子領域SZown(図2参照)における降水強度観測値を、第1気象情報として算出する。具体的には、気象情報算出部5は、送信波が送波されてからその送信波の反射波が受信波として受波されるまでの時間と、アンテナ2から送波された送信波の反射波から得られた受信信号の強度とに基づき、各自格子領域SZownにおける降水強度観測値を算出する。 The meteorological information calculation unit 5 calculates, as the first meteorological information, the precipitation intensity observation value in each own lattice area SZ own (see FIG. 2) in the own area Z own based on the received signal output from the antenna 2. Specifically, the meteorological information calculation unit 5 calculates the time from when the transmission wave is transmitted until the reflected wave of the transmission wave is received as the reception wave, and the reflection of the transmission wave transmitted from the antenna 2. based on the strength of the received signals obtained from the waves, and calculates the precipitation intensity observations in their grid area SZ own.
 外部気象情報取得部6は、本実施形態に係る気象レーダ装置1とは異なる外部システムであるXRAINから、当該XRAINによって観測又は解析された各地点における気象情報の観測値又は解析値を、第2気象情報として取得する。XRAINでは、日本国の各地点にレーダ局が配置されていて、各レーダ局は、その配置地点を中心とした半径60km程度の範囲内の気象情報を観測することができる。外部気象情報取得部6は、図2を参照して、これらの複数のレーダ局によって気象情報を観測又は解析可能な領域のうち、自領域Zownを含み且つ該自領域Zownよりも広い領域Zext、の気象情報を取得する。この領域Zextは、上述した他領域Zextである。外部気象情報取得部6は、他領域Zext内の気象情報として、該他領域Zextを構成する複数の小領域である各他格子領域SZextの降水強度の観測値又は解析値を取得する。なお、ここで説明した降水強度の観測値とは、XRAIN等の外部システムが有するレーダ装置によって観測された降水強度の値であり、降水強度の解析値とは、上述した降水強度の観測値だけでなく他の値も用いて算出された値である。以下では、外部システムによる降水強度の観測値及び解析値を、外部システムによる降水強度の算出値と称する。すなわち、外部システムによる降水強度の算出値には、観測値及び解析値の少なくとも一方が含まれる。 The external weather information acquisition unit 6 uses the XRAIN, which is an external system different from the weather radar apparatus 1 according to the present embodiment, to obtain the second observed value or the analyzed value of the weather information at each point observed or analyzed by the XRAIN. Obtained as weather information. In XRAIN, radar stations are arranged at various points in Japan, and each radar station can observe weather information within a radius of about 60 km with the arrangement point as the center. External weather information acquisition unit 6, with reference to FIG. 2, among the observed or analyzable area weather information by the plurality of radar stations, a region wider than and the free-space Z own include self region Z own Get weather information of Zext . This region Z ext is the other region Z ext described above. External weather information acquisition unit 6, as weather information in another region Z ext, to obtain the observed value or the analysis value of the precipitation intensity of each other grating regions SZ ext which is a plurality of small regions constituting the said other region Z ext . The observation value of precipitation intensity described here is the value of precipitation intensity observed by a radar device included in an external system such as XRAIN, and the analysis value of precipitation intensity is only the above-described observation value of precipitation intensity. It is a value calculated using other values as well. Hereinafter, the observation value and the analysis value of the precipitation intensity by the external system are referred to as the precipitation intensity calculation value by the external system. That is, the calculated value of precipitation intensity by the external system includes at least one of the observed value and the analyzed value.
 演算処理部7は、同化処理部10と、初期値算出部11と、気象予測部12とを有している。 The arithmetic processing unit 7 includes an assimilation processing unit 10, an initial value calculation unit 11, and a weather prediction unit 12.
 同化処理部10は、気象情報算出部5によって算出された各自格子領域SZownの第1気象情報を、外部気象情報取得部6から得られた各格子領域SZextの第2気象情報で補正して2つの情報を同化することにより、各自格子領域SZownの同化後降水強度(統合気象情報)を算出する。すなわち、本実施形態によれば、自装置によって算出した降水強度だけでなく、外部システムから得られた降水強度にも基づいて、各自格子領域における降水強度を算出することができる。これにより、本実施形態に係る気象レーダ装置1によれば、多くの情報に基づいて降水強度を算出できるため、より正確な降水強度を得ることができ、そのようにして得られた正確な降水強度に基づき、正確な降水予測を行うことができる。なお、本明細書では、一方の情報を他方の情報で補正することによる2つの情報を統合する処理を、同化と称する。 The assimilation processing unit 10 corrects the first weather information of each of the lattice areas SZ own calculated by the weather information calculation unit 5 with the second weather information of each of the lattice areas SZ ext obtained from the external weather information acquisition unit 6. Te by assimilating two information, calculates their assimilation after rainfall intensity grating areas SZ own (the integrated weather information). That is, according to this embodiment, it is possible to calculate the precipitation intensity in each of the lattice areas based not only on the precipitation intensity calculated by the own apparatus but also on the precipitation intensity obtained from the external system. Thereby, according to the weather radar apparatus 1 which concerns on this embodiment, since precipitation intensity can be calculated based on much information, more exact precipitation intensity can be obtained and the exact precipitation obtained in that way Precise precipitation prediction can be performed based on intensity. In this specification, the process of integrating two pieces of information by correcting one piece of information with the other piece of information is called assimilation.
 同化処理部10は、外側格子領域データ補正部15及び内側格子領域データ補正部16を有している。 The assimilation processing unit 10 includes an outer lattice region data correction unit 15 and an inner lattice region data correction unit 16.
 図3は、外側格子領域SZos(外側小領域)の降水強度観測値R1own(x,y,z,t)を補正する手法を説明するための模式図である。 FIG. 3 is a schematic diagram for explaining a method of correcting the precipitation intensity observation value R1 own (x, y, z, t) in the outer lattice area SZ os (outer small area).
 自格子領域SZownは、該自領域Zownの外周Cfに隣接する外側格子領域SZos(図2及び図3ではドットハッチングで図示)と、該外側格子領域SZownよりも内側の格子領域である内側格子領域SZis(内側小領域、図2及び図3では斜線で図示)とで構成される。なお、図2及び図3に示す例では、他格子領域SZextと自格子領域SZownとが同じ大きさを有し且つそれぞれが上下方向(鉛直方向)に重なっている例を示しているが、一般的には、XRAIN等の外部システムで降水強度が観測又は解析される格子領域(他格子領域SZext)は、自格子領域SZownより大きい。この場合、他格子領域SZextの大きさが自格子領域SZownの大きさに揃えられた上で、後述するデータの補正処理が行われる。 Self grating region SZ own has an outer grid area SZ os adjacent the outer periphery Cf of the free-space Z own (shown in FIGS. 2 and dot hatching in FIG. 3), inside the grating region than the outer grating region SZ own A certain inner lattice region SZ is (inner small region, shown by hatching in FIGS. 2 and 3). In the example shown in FIGS. 2 and 3, the other lattice area SZ ext and the self-lattice area SZ own have the same size and overlap each other in the vertical direction (vertical direction). In general, a lattice region (another lattice region SZ ext ) in which precipitation intensity is observed or analyzed by an external system such as XRAIN is larger than the self-lattice region SZ own . In this case, the size of the other lattice area SZ ext is adjusted to the size of the self-lattice area SZ own , and data correction processing described later is performed.
 外側格子領域データ補正部15は、外側格子領域SZosの降水強度観測値R1own(x,y,z,t)を補正して、同化後降水強度R1corr(x,y,z,t)を算出する。具体的には、図3を参照して、外側格子領域データ補正部15は、予め設定されている補正期間、例えば、初期時刻t(降水予測を開始する時刻よりも1つ前のタイムステップの時刻)から所定時間(例えば30分)遡った時刻t-30までの時間における各時刻t-30,…,t-n-1,t-n,t-n+1,…,tでの各外側格子領域SZosの降水強度観測値R1own(x,y,z,t)を、所定の条件を満たす他格子領域SZextの降水強度算出値R1ext(x,y,z,t)を用いて補正する。具体的には、外側格子領域データ補正部15は、以下の式(1)に基づいて補正処理を行うことにより、同化後降水強度R1corr(x,y,z,t)を算出する。 The outer lattice area data correction unit 15 corrects the precipitation intensity observation value R1 own (x, y, z, t) of the outer lattice area SZ os to obtain an assimilated precipitation intensity R1 corr (x, y, z, t). Is calculated. Specifically, referring to FIG. 3, outer lattice area data correction unit 15 sets a preset correction period, for example, initial time t 0 (time step one time before the time at which precipitation prediction is started). time) from a predetermined time (e.g. 30 minutes) the time t -30 in time until t -30 traced back, ..., t -n-1, t -n, t -n + 1, ..., each at t 0 The precipitation intensity observation value R1 own (x, y, z, t) in the outer grid area SZ os is used as the precipitation intensity calculation value R1 ext (x, y, z, t) in the other grid area SZ ext that satisfies a predetermined condition. Use to correct. Specifically, the outer lattice area data correction unit 15 calculates the assimilated precipitation intensity R1 corr (x, y, z, t) by performing correction processing based on the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上述した式(1)において、x、y、zは、各格子領域SZown、SZextの空間的な位置を示す座標位置であり、tは上述した補正期間に含まれる各時刻である。なお、各格子領域の位置は、例えば一例として、各格子領域の中心点である。 In equation (1) above, x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the time included in the correction period described above. Note that the position of each lattice region is, for example, the center point of each lattice region.
 また、α1(r1,Δt1)は、補正処理が行われる外側格子領域SZosと他格子領域SZextとの間の空間的距離及び時間的距離に応じて決定される係数(第1補正係数)である。具体的には、当該係数α1(r1,Δt1)は、補正処理が行われる外側格子領域SZosと他格子領域SZextとの間の空間的距離が大きいほど値が小さくなり、且つ、時間的距離が大きくなるほど値が小さくなるように設定される。すなわち、係数α1(r1,Δt1)の値は、両格子間の位置的及び時間的関連性が高い場合に大きくなり、両格子間の位置的及び時間的関連性が低い場合に小さくなる。 Α1 (r1, Δt1) is a coefficient (first correction coefficient) determined according to a spatial distance and a temporal distance between the outer lattice area SZ os and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient α1 (r1, Δt1) decreases as the spatial distance between the outer lattice region SZ os and the other lattice region SZ ext on which correction processing is performed increases, and temporally. It is set so that the value decreases as the distance increases. That is, the value of the coefficient α1 (r1, Δt1) increases when the positional and temporal relation between the two lattices is high, and decreases when the positional and temporal relation between the two lattices is low.
 また、外側格子領域データ補正部15は、補正対象となる外側格子領域SZosとの空間的距離が所定距離r1以下となる他格子領域SZextであって、且つ補正対象となる外側格子領域SZosの降水強度観測値が算出された時刻からΔt1以内の時刻で算出された他格子領域SZextでの降水強度算出値を用いて、外側格子領域SZosの降水強度観測値の補正処理を行う。このことを、図3を用いて説明すると、他格子領域SZext1~SZext9の降水強度算出値によって、外側格子領域SZos1の降水強度観測値が補正されることにより、外側格子領域SZos1の同化後降水強度R1corr(x,y,z,t)が算出される。 The outer lattice area data correction unit 15 is another lattice area SZ ext in which the spatial distance from the outer lattice area SZ os to be corrected is equal to or less than the predetermined distance r1, and the outer lattice area SZ to be corrected. Using the precipitation intensity calculation value in the other grid area SZ ext calculated at a time within Δt1 from the time when the precipitation intensity observation value of os is calculated, the precipitation intensity observation value of the outer grid area SZ os is corrected. . This fact is explained with reference to FIG. 3, by precipitation intensity calculated value of the other grid area SZ ext1 ~ SZ ext9, by precipitation intensity observed value of the outer grid area SZ os1 is corrected, the outer grid area SZ os1 Assimilated precipitation intensity R1 corr (x, y, z, t) is calculated.
 なお、気象レーダ装置1が起動された直後に(すなわち、気象レーダ装置1による降水強度の算出が行われる前に)、外部システムから他領域Zextの降水強度算出値が得られた場合、式(1)におけるR1ownが0として、同化後降水強度R1corrが算出される。そして、そのようにして算出された同化後降水強度R1corrによって、気象レーダ装置1による気象予測が開始される時点での各自格子領域SZownの降水強度の初期値を得ることができる。これにより、適切な降水強度の初期値を得られていない状態で気象予測を行う場合と比べて、精度のよい気象予測値を得ることができる。 In addition, immediately after the weather radar apparatus 1 is activated (that is, before the precipitation intensity is calculated by the meteorological radar apparatus 1), when the precipitation intensity calculation value of the other area Z ext is obtained from the external system, Assume that R1 own in (1) is 0, and the assimilated precipitation intensity R1 corr is calculated. And the initial value of the precipitation intensity | strength of each self-grid area | region SZown at the time of the weather prediction by the weather radar apparatus 1 being started can be obtained by the assimilated precipitation intensity | strength R1 corr calculated in this way. Thereby, compared with the case where a weather prediction is performed in the state where the initial value of appropriate precipitation intensity is not obtained, a weather prediction value with a high precision can be obtained.
 図4は、内側格子領域SZisの降水強度観測値R2own(x,y,z,t)を補正する手法を説明するための模式図である。 FIG. 4 is a schematic diagram for explaining a method of correcting the precipitation intensity observation value R2 own (x, y, z, t) in the inner lattice area SZ is .
 内側格子領域データ補正部16は、内側格子領域SZisの降水強度観測値R2own(x,y,z,t)を補正して、同化後降水強度R2corr(x,y,z,t)を算出する。具体的には、内側格子領域データ補正部16は、予め設定されている補正期間から所定時間遡った時刻までの時間における各時刻t-30,…,t-n-1,t-n,t-n+1,…,t(図4参照)での各内側格子領域SZisの降水強度観測値R2own(x,y,z,t)を、所定の条件を満たす他格子領域SZextの降水強度算出値R1ext(x,y,z,t)を用いて補正する。具体的には、内側格子領域データ補正部16は、以下の式(2)に基づいて補正処理を行うことにより、同化後降水強度R2corr(x,y,z,t)を算出する。 The inner grid area data correction unit 16, precipitation intensity observed value R2 own inner grid area SZ is (x, y, z , t) by correcting the, assimilation after rainfall intensity R2 corr (x, y, z , t) Is calculated. Specifically, the inner lattice area data correction unit 16 sets each time t −30 ,..., T −n−1 , t −n , t in the time from a preset correction period to a time that is a predetermined time backward. −n + 1 ,..., T 0 (see FIG. 4), the observed precipitation intensity value R2 own (x, y, z, t) of each inner lattice region SZ is is set as the precipitation of the other lattice region SZ ext satisfying a predetermined condition. Correction is performed using the calculated intensity value R1 ext (x, y, z, t). Specifically, the inner lattice area data correction unit 16 calculates the assimilated precipitation intensity R2 corr (x, y, z, t) by performing correction processing based on the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上述した式(2)において、x、y、zは、各格子領域SZown、SZextの空間的な位置を示す座標位置であり、tは上述した補正期間に含まれる各時刻である。 In the formula (2) above, x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the time included in the correction period described above.
 また、α2(r2,Δt2)は、補正処理が行われる内側格子領域SZisと他格子領域SZextとの間の空間的距離及び時間的距離に応じて決定される係数(第2補正係数)である。具体的には、当該係数α2(r2,Δt2)は、補正処理が行われる外側格子領域SZosと他格子領域SZextとの間の空間的距離が大きいほど値が小さくなり、且つ、時間的距離が大きくなるほど値が小さくなるように設定される。すなわち、係数α2(r2,Δt2)の値は、両格子間の位置的及び時間的関連性が高い場合に大きくなり、両格子間の位置的及び時間的関連性が低い場合に小さくなる。 Α2 (r2, Δt2) is a coefficient (second correction coefficient) determined in accordance with the spatial distance and the temporal distance between the inner lattice area SZ is and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient α2 (r2, Δt2) decreases as the spatial distance between the outer lattice region SZ os and the other lattice region SZ ext on which correction processing is performed increases, and the time It is set so that the value decreases as the distance increases. That is, the value of the coefficient α2 (r2, Δt2) increases when the positional and temporal relationships between the two lattices are high, and decreases when the positional and temporal relationships between the two lattices are low.
 また、内側格子領域データ補正部16は、補正対象となる内側格子領域SZisとの空間的距離が所定距離r2以下となる他格子領域SZextであって、且つ補正対象となる内側格子領域SZisの降水強度観測値が算出された時刻からΔt2以内の時刻で算出された他格子領域SZextでの降水強度算出値を用いて、内側格子領域SZisの降水強度観測値の補正処理を行う。このことを、図4を用いて説明すると、他格子領域SZext10~SZext18の降水強度算出値によって、内側格子領域SZis1の降水強度観測値が補正されることにより、内側格子領域SZis1の同化後降水強度R2corr(x,y,z,t)が算出される。 The inner lattice area data correction unit 16 is another lattice area SZ ext in which the spatial distance from the inner lattice area SZ is to be corrected is equal to or less than the predetermined distance r2, and the inner lattice area SZ to be corrected. using precipitation intensity calculated value in other grid area SZ ext where precipitation intensity observed value calculated at the time within Δt2 from the time calculated in iS, performs correction processing of the precipitation intensity observations of the inner grid area SZ iS . This fact is explained with reference to FIG. 4, the precipitation intensity calculated value of the other grid area SZ ext10 ~ SZ ext18, by precipitation intensity observed value of the inner grid area SZ is1 is corrected, the inner grid area SZ is1 Assimilated precipitation intensity R2 corr (x, y, z, t) is calculated.
 初期値算出部11は、同化処理部10によって生成された、過去の各時刻における各自格子領域SZownの同化後降水強度R1corr,R2corrに基づき、各自格子領域SZownにおける降水強度の予測値の算出を開始する際に必要となる降水強度の初期値を算出する。 The initial value calculation unit 11, is generated by the assimilation processor 10, based on past their assimilation after rainfall intensity grating areas SZ own R1 corr, at each time of R2 corr, their predictive value of precipitation intensity in the lattice region SZ own The initial value of the precipitation intensity required when starting the calculation of is calculated.
 気象予測部12は、補正期間に含まれる各時刻t-30,…,tでの各自格子領域SZownの同化後降水強度R1corr,R2corrに基づき、今後の各自格子領域SZownの降水強度を予測する。具体的には、気象予測部12は、以下の式(3)で示す移流方程式に基づいて、各自格子領域SZownの降水強度予測値を算出する。 Weather forecast unit 12, each time t -30 included in the correction period, ..., based on their assimilation after rainfall intensity grating areas SZ own R1 corr, R2 corr at t 0, precipitation upcoming their grating region SZ own Predict strength. Specifically, the weather prediction unit 12 calculates a precipitation intensity prediction value for each grid area SZ own based on the advection equation represented by the following expression (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上述した式(3)において、R(x,y,t)は、地点(x,y)における時刻tでの降水強度である。また、u,vは移流ベクトル、wは発達衰弱項であって、それぞれ以下の式(4)~(6)で表すことができる。 In the above equation (3), R (x, y, t) is the precipitation intensity at time t at the point (x, y). U and v are advection vectors, and w is a developmental debilitating term, which can be expressed by the following equations (4) to (6), respectively.
 [数4]
 u(x,y)=cx+cy+c …(4)
[Equation 4]
u (x, y) = c 1 x + c 2 y + c 3 (4)
 [数5]
 v(x,y)=cx+cy+c …(5)
[Equation 5]
v (x, y) = c 4 x + c 5 y + c 6 (5)
 [数6]
 w(x,y)=cx+cy+c …(6)
[Equation 6]
w (x, y) = c 7 x + c 8 y + c 9 (6)
 式(4)から式(6)におけるc~cは、推定されるべきパラメータである。これらのパラメータの推定手法、及び移流方程式を用いた降水強度の予測手法は、従来から知られている手法と同じであるため、その説明を省略する。 C 1 to c 9 in the equations (4) to (6) are parameters to be estimated. Since the estimation method of these parameters and the precipitation intensity prediction method using the advection equation are the same as the conventionally known method, the description thereof is omitted.
 表示器4には、例えば、気象予測部12で算出された各自格子領域SZownの降水強度予測値の分布図が表示される。 The display device 4, for example, distribution of a precipitation intensity prediction value of each calculated grating region SZ own meteorological prediction unit 12 is displayed.
 [気象情報処理方法]
 図5は、気象レーダ装置1を用いて行う気象情報処理方法を説明するためのフローチャートである。以下では、図5を参照して、気象レーダ装置1を用いて行われる気象情報処理方法について説明する。
[Meteorological information processing method]
FIG. 5 is a flowchart for explaining a weather information processing method performed using the weather radar apparatus 1. Below, with reference to FIG. 5, the weather information processing method performed using the weather radar apparatus 1 is demonstrated.
 まず、ステップS1では、気象情報算出部5が、所定のタイミング毎に、各自格子領域SZownにおける降水強度観測値R1own(x,y,z,t),R2own(x,y,z,t)を算出する。 First, in step S1, the meteorological information calculation unit 5 performs precipitation intensity observation values R1 own (x, y, z, t) and R2 own (x, y, z, t) in each of the self-lattice areas SZ own at predetermined timings. t) is calculated.
 一方、ステップS1の前若しくは後に、又はステップS1と平行して、ステップS2では、外部気象情報取得部6が、XRAINによって観測された各他格子領域SZextの降水強度算出値を取得する。 On the other hand, before or after step S1 or in parallel with step S1, in step S2, the external weather information acquisition unit 6 acquires the precipitation intensity calculation values of each other lattice area SZ ext observed by XRAIN.
 次に、ステップS3では、各時刻での各外側格子領域SZosの降水強度観測値R1own(x,y,z,t)が、所定条件を満たす他格子領域SZextの降水強度算出値R1ext(x,y,z,t)によって、式(1)を用いて補正されることで同化される。これにより、各時刻における各外側格子領域SZosの同化後降水強度R1corr(x,y,z,t)が算出される。 Next, in step S3, the precipitation intensity calculation value R1 of the other grid area SZ ext satisfying a predetermined condition, where the precipitation intensity observation value R1 awn (x, y, z, t) of each outer grid area SZ os at each time satisfies the predetermined condition. It is assimilated by correcting using the equation (1) by ext (x, y, z, t). Thereby, the assimilated precipitation intensity R1 corr (x, y, z, t) of each outer lattice area SZ os at each time is calculated.
 一方、ステップS3の前若しくは後に、又はステップS3と平行して、ステップS4では、各時刻での各内側格子領域SZisの降水強度観測値R2own(x,y,z,t)が、所定条件を満たす他格子領域SZextの降水強度算出値R2ext(x,y,z,t)によって、式(2)を用いて補正されることで同化される。これにより、各時刻における各内側格子領域SZisの同化後降水強度R2corr(x,y,z,t)が算出される。 On the other hand, before or after step S3, or in parallel with step S3, in step S4, the precipitation intensity observation value R2own (x, y, z, t) of each inner lattice region SZ is at a predetermined time is determined in advance. It is assimilated by correcting using the formula (2) with the precipitation intensity calculated value R2 ext (x, y, z, t) of the other lattice area SZ ext that satisfies the condition. Thereby, the assimilated precipitation intensity R2 corr (x, y, z, t) of each inner lattice area SZ is at each time is calculated.
 次に、ステップS5では、ステップS3及びステップS4で算出された補正期間内の各時刻での同化後降水強度R1corr(x,y,z,t),R2corr(x,y,z,t)に基づき、各自格子領域SZownの降水強度の初期値が算出される。 Next, in step S5, assimilated precipitation intensity R1 corr (x, y, z, t) and R2 corr (x, y, z, t) at each time within the correction period calculated in steps S3 and S4. based on), the initial value of the precipitation intensity grating region SZ own Your own is calculated.
 最後に、ステップS6では、ステップS5で算出された各自格子領域SZownの降水強度の初期値を用いて、今後の降水強度の予測値が算出される。 Finally, in step S6, by using the initial value of the precipitation intensity of each grid area SZ own calculated in step S5, the prediction value of future precipitation intensity is calculated.
 [効果]
 以上のように、本実施形態に係る気象レーダ装置1の気象情報処理部3によれば、気象レーダ装置1によって観測された第1気象情報と、気象レーダ装置1とは異なるXRAIN等の外部システムによって算出された第2気象情報とに基づいて、統合気象情報が生成される。このように、異なる2つの装置又はシステムのそれぞれによって得られた気象情報を同化して統合することにより、1つの装置又はシステムのみを用いて気象情報を得る場合と比べて、多くの情報に基づいて気象情報を得ることができる。
[effect]
As described above, according to the weather information processing unit 3 of the weather radar apparatus 1 according to the present embodiment, the first weather information observed by the weather radar apparatus 1 and an external system such as XRAIN different from the weather radar apparatus 1 Integrated weather information is generated based on the second weather information calculated by. In this way, by assimilating and integrating the weather information obtained by each of two different devices or systems, it is based on more information than when weather information is obtained using only one device or system. Weather information.
 従って、気象情報処理部3によれば、正確な気象情報を得ることができる。 Therefore, according to the weather information processing unit 3, accurate weather information can be obtained.
 また、気象情報処理部3では、気象レーダ装置1によって観測可能な領域である自領域Zownから得られた第1気象情報を、気象レーダ装置1とは異なる外部システム(本実施形態の場合、XRAIN)によって算出された第2気象情報で補正することにより、統合気象情報が生成される。外部システムによって観測可能な領域である他領域Zextは、気象レーダ装置1によって観測可能な領域である自領域Zownを含み且つ自領域Zownよりも大きい。よって、比較的狭い自領域Zown内の各地点から得られた第1気象情報を、当該自領域Zownを含む比較的広い他領域Zext内の各地点から得られた第2気象情報で補正して同化することにより、より正確な第1気象情報を得ることができる。 In the weather information processing unit 3, the first weather information obtained from the own area Zown, which is an area that can be observed by the weather radar apparatus 1, is transmitted to an external system different from the weather radar apparatus 1 (in the case of the present embodiment, Integrated weather information is generated by correcting with the second weather information calculated by (XRAIN). The other area Z ext that is an area that can be observed by the external system includes the own area Z own that is an area that can be observed by the weather radar apparatus 1, and is larger than the own area Z own . Therefore, the first meteorological information obtained from each point in the relatively narrow local area Zown is the second meteorological information obtained from each point in the relatively wide other area Zext including the local area Zown. By correcting and assimilating, more accurate first weather information can be obtained.
 また、気象情報処理部3では、外側格子領域SZosの第1気象情報が、少なくとも該外側格子領域SZosの外側に隣接する他格子領域SZextの第2気象情報で補正される。これにより、外側格子領域SZosとの位置的関連性が高い他格子領域SZextの気象情報を、外側格子領域のSZosの気象情報に同化させて取り込むことができる。これにより、外側格子領域SZosの気象情報をより正確に算出することができ、例えば、自領域Zownの外部から自領域Zown内に流入する降水域についても考慮することができる。 Further, the weather information processing unit 3 corrects the first weather information of the outer lattice area SZ os with at least the second weather information of the other lattice area SZ ext adjacent to the outside of the outer lattice area SZ os . This makes it possible to incorporate in the weather information of the outer grid area SZ positional highly relevant other grid area SZ ext with os, it is assimilated into weather information SZ os outer grid area. Thus, it is possible to calculate the weather information outside the grating region SZ os more accurately, for example, it may also be considered for precipitation area flowing from the outside of the own region Z own in its own region Z own.
 また、気象情報処理部3では、第2気象情報に基づく値に係数α1を乗算して得られた値を用いて、第1気象情報が補正される。そして、この係数α1は、補正対象となる第1気象情報が算出された外側格子領域SZosと他格子領域SZextとの間の距離及び時間に応じて決定されている。これにより、外側格子領域SZosと他格子領域SZextとの位置的関連性及び時間的関連性に応じて係数α1を決定することができるため、外側格子領域SZosの第1気象情報を適切に補正することができる。 Further, the weather information processing unit 3 corrects the first weather information using a value obtained by multiplying the value based on the second weather information by the coefficient α1. The coefficient α1 is determined according to the distance and time between the outer grid area SZ os and the other grid area SZ ext where the first weather information to be corrected is calculated. Accordingly, since the coefficient α1 can be determined according to the positional relationship and temporal relationship between the outer lattice region SZ os and the other lattice region SZ ext , the first weather information of the outer lattice region SZ os is appropriately Can be corrected.
 更に、気象情報処理部3では、外側格子領域SZosと他格子領域SZextとの間の距離が小さいほど、また、外側格子領域SZosの降水強度が算出された時刻と他格子領域SZextの降水強度が算出された時刻との間の時間が短いほど、係数α1として大きな値が設定される。互いの位置及び観測時刻が近い外側格子領域SZosと他格子領域SZextとのそれぞれで得られた気象情報は、関連性が高い。よって、補正対象となる外側格子領域SZosの降水強度を、関連性が高い他格子領域SZextの降水強度に基づく値に比較的大きな補正係数を乗算した値で補正することにより、補正対象となる外側格子領域SZosの降水強度をより適切に補正できる。 Furthermore, in the weather information processing unit 3, the smaller the distance between the outer lattice area SZ os and the other lattice area SZ ext , the more the precipitation intensity of the outer lattice area SZ os is calculated and the other lattice area SZ ext. As the time from the time when the precipitation intensity is calculated is shorter, a larger value is set as the coefficient α1. The weather information obtained in the outer lattice region SZ os and the other lattice region SZ ext that are close to each other in position and observation time are highly relevant. Therefore, by correcting the precipitation intensity of the outer lattice area SZ os to be corrected by a value obtained by multiplying the value based on the precipitation intensity of the other highly related grid area SZ ext by a relatively large correction coefficient, The precipitation intensity of the outer grid area SZ os can be corrected more appropriately.
 また、気象情報処理部3では、内側格子領域SZisの第1気象情報が、少なくとも該内側格子領域SZisと鉛直方向に重なる他格子領域SZextの第2気象情報で補正される。これにより、内側格子領域SZisとの位置的関連性が高い他格子領域SZextの気象情報を、内側格子領域SZisの気象情報に同化させて取り込むことができる。これにより、内側格子領域SZisの気象情報をより正確に算出することができる。 Moreover, the weather information processing unit 3, the first weather information of the inner grid area SZ IS is corrected by the second weather information for other grid area SZ ext which overlaps at least the inner grating region SZ IS and vertically. This makes it possible to incorporate in the weather information of the other grid area SZ ext is high positional relationship between the inner grid area SZ IS, is assimilated into weather information of the inner grid area SZ IS. Thereby, the weather information of the inner lattice area SZ is can be calculated more accurately.
 また、気象情報処理部3では、第2気象情報に基づく値に係数α2を乗算して得られた値を用いて、第1気象情報が補正される。そして、この係数α2は、補正対象となる第1気象情報が算出された内側格子領域SZisと他格子領域SZextとの間の距離及び時間に応じて決定されている。これにより、内側格子領域SZisと他格子領域SZextとの位置的関連性及び時間的関連性に応じて係数α2を決定することができるため、内側格子領域SZisの第1気象情報を適切に補正することができる。 Further, the weather information processing unit 3 corrects the first weather information using a value obtained by multiplying the value based on the second weather information by the coefficient α2. The coefficient α2 is determined according to the distance and time between the inner lattice area SZ is and the other lattice area SZ ext where the first weather information to be corrected is calculated. As a result, the coefficient α2 can be determined according to the positional relationship and the temporal relationship between the inner lattice region SZ is and the other lattice region SZ ext , so that the first weather information of the inner lattice region SZ is appropriately Can be corrected.
 更に、気象情報処理部3では、内側格子領域SZisと他格子領域SZextとの間の距離が小さいほど、また、内側格子領域SZisの降水強度が算出された時刻と他格子領域SZextの降水強度が算出された時刻との間の時間が短いほど、係数α2として大きな値が設定される。互いの位置及び観測時刻が近い内側格子領域SZisと他格子領域SZextとのそれぞれで得られた気象情報は、関連性が高い。よって、補正対象となる内側格子領域SZisの降水強度を、関連性が高い他格子領域SZextの降水強度に基づく値に比較的大きな補正係数を乗算した値で補正することにより、補正対象となる内側格子領域SZisの降水強度をより適切に補正できる。 Furthermore, in the weather information processing unit 3, as the distance between the inner lattice area SZ is and the other lattice area SZ ext is smaller, the time when the precipitation intensity of the inner lattice area SZ is is calculated and the other lattice area SZ ext. As the time from the time when the precipitation intensity is calculated is shorter, a larger value is set as the coefficient α2. The weather information obtained in each of the inner lattice region SZ is and the other lattice region SZ ext that are close to each other in the position and observation time is highly relevant. Therefore, by correcting the precipitation intensity of the inner lattice area SZ is to be corrected by a value obtained by multiplying the value based on the precipitation intensity of the other highly related grid area SZ ext by a relatively large correction coefficient, The precipitation intensity of the inner lattice area SZ is can be corrected more appropriately.
 また、気象情報処理部3では、上述のようにして正確な値が求められた第1気象情報に基づいて、今後の各自格子領域SZownにおける降水強度の予測値が算出されるため、降水強度の予測値をより正確に算出できる。 Moreover, the weather information processing unit 3, based on the first weather information is accurate value as described above was determined, since the predicted value of the precipitation intensity is calculated in the future each grating region SZ own, precipitation intensity Can be calculated more accurately.
 また、本実施形態に係る気象情報処理部3を有する気象レーダ装置1によれば、正確な気象情報を得ることが可能な気象レーダ装置を提供できる。 Moreover, according to the weather radar apparatus 1 having the weather information processing unit 3 according to the present embodiment, a weather radar apparatus capable of obtaining accurate weather information can be provided.
 また、本実施形態に係る気象レーダ装置1は、二重偏波レーダ装置であるため、水平偏波のみを送受波可能なレーダ装置の場合と比べて、より正確な気象情報を得ることができる。 Further, since the weather radar apparatus 1 according to the present embodiment is a dual polarization radar apparatus, more accurate weather information can be obtained as compared with a radar apparatus capable of transmitting and receiving only horizontal polarization. .
 また、上述した気象情報処理方法によれば、第1気象情報と、XRAIN等の外部システムによって算出された第2気象情報とに基づいて、統合気象情報が生成される。このように、異なる2つの装置又はシステムのそれぞれによって得られた気象情報を同化して統合することにより、1つの装置又はシステムのみを用いて気象情報を得る場合と比べて、多くの情報に基づいて気象情報を得ることができる。 Further, according to the weather information processing method described above, integrated weather information is generated based on the first weather information and the second weather information calculated by an external system such as XRAIN. In this way, by assimilating and integrating the weather information obtained by each of two different devices or systems, it is based on more information than when weather information is obtained using only one device or system. Weather information.
 従って、気象情報処理方法によれば、正確な気象情報を得ることができる。 Therefore, accurate weather information can be obtained according to the weather information processing method.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 (1)図6は、変形例に係る気象レーダ装置1aの構成を示すブロック図である。上記実施形態では、気象レーダ装置1が、該気象レーダ装置1によって算出された降水強度観測値R1own,R2ownを外部システムから得られた降水強度算出値によって補正し、その同化後降水強度R1corr,R2corrに基づいて今後の降水強度を予測する例を挙げて説明したが、これに限らない。本変形例に係る気象レーダ装置1aによれば、以下で詳しく説明するが、気象レーダ装置1aによって算出された各自格子領域SZownの降水強度予測値R3own,R4ownを、外部システムから得られた各他格子領域SZextの降水強度予測値によって補正することにより、降水強度の予測値の精度を上げることができる。 (1) FIG. 6 is a block diagram showing a configuration of a weather radar apparatus 1a according to a modification. In the above embodiment, the weather radar apparatus 1, corrected by the meteorological radar apparatus precipitation intensity observations R1 own, R2 obtained an own external system precipitation intensity calculated value calculated by 1, its assimilation after rainfall intensity R1 Although an example of predicting future precipitation intensity based on corr and R2 corr has been described, the present invention is not limited to this. According to the weather radar system 1a according to this modification, described in detail below, a weather radar apparatus 1a own grid area SZ own precipitation intensity prediction value R3 own calculated by, R4 own, obtained from an external system In addition, the accuracy of the predicted value of the precipitation intensity can be improved by correcting with the precipitation intensity predicted value of each other grid area SZ ext .
 本変形例に係る気象レーダ装置1aは、アンテナ2と、気象情報処理部3aと、表示器4とを備えている。これらのうち、アンテナ2及び表示器4については、上記実施形態の場合と同じであるため、その説明を省略する。 The weather radar apparatus 1a according to this modification includes an antenna 2, a weather information processing unit 3a, and a display 4. Among these, the antenna 2 and the display device 4 are the same as those in the above-described embodiment, and thus description thereof is omitted.
 気象情報処理部3aは、気象情報算出部5と、外部気象情報取得部6aと、演算処理部
7aとを備えている。これらのうち、気象情報算出部5については、上記実施形態の場合
と同じであるため、その説明を省略する。
The weather information processing unit 3a includes a weather information calculation unit 5, an external weather information acquisition unit 6a, and an arithmetic processing unit 7a. Among these, since the weather information calculation part 5 is the same as that of the said embodiment, the description is abbreviate | omitted.
 外部気象情報取得部6aは、上記実施形態の場合と異なり、外部システムから以下の気象情報を取得する。具体的には、外部気象情報取得部6aは、外部システムによって算出された各他格子領域SZextにおける今後の降水強度の予測値を、第2気象情報として取得する。 Unlike the case of the said embodiment, the external weather information acquisition part 6a acquires the following weather information from an external system. Specifically, external weather information acquiring unit 6a, a predictive value for future precipitation intensity in each other grating regions SZ ext calculated by an external system, and acquires the second weather information.
 演算処理部7aは、気象予測部12aと、同化処理部10aとを備えている。 The arithmetic processing unit 7a includes a weather prediction unit 12a and an assimilation processing unit 10a.
 気象予測部12aは、気象情報算出部5によって算出された過去の各時刻での自格子領域SZownの降水強度観測値に基づき、今後の降水強度予測値を第1気象情報として算出する。すなわち、気象予測部12aは、降水強度の予測値を第1気象情報として算出する第1気象情報算出部として設けられている。気象予測部12aは、例えば一例として、移流方程式を用いて、今後の降水強度予測値を算出する。 Weather forecast unit 12a, based on the precipitation intensity observed value of the own grid area SZ own in the past each time calculated by the weather information calculating section 5 calculates a future precipitation intensity prediction value as the first weather information. That is, the weather prediction unit 12a is provided as a first weather information calculation unit that calculates a precipitation intensity prediction value as first weather information. For example, the weather prediction unit 12a calculates a predicted precipitation intensity value in the future using an advection equation, for example.
 同化処理部10aは、外側格子領域データ補正部15aと、内側格子領域データ補正部16aとを備えている。 The assimilation processing unit 10a includes an outer lattice region data correction unit 15a and an inner lattice region data correction unit 16a.
 図7は、外側格子領域SZosの降水強度予測値R3own(x,y,z,t)を補正する手法を説明するための模式図である。 FIG. 7 is a schematic diagram for explaining a method of correcting the precipitation intensity predicted value R3 own (x, y, z, t) of the outer lattice area SZ os .
 外側格子領域データ補正部15aは、外側格子領域SZosの降水強度予測値R3own(x,y,z,t)を補正して、同化後降水強度予測値R3corr(x,y,z,t)を算出する。具体的には、図7を参照して、外側格子領域データ補正部15aは、降水強度の予測を行いたい将来の時刻tでの各外側格子領域SZosの降水強度予測値R3own(x,y,z,t)を、所定の条件を満たす他格子領域SZextの降水強度予測値R3ext(x,y,z,t)を用いて補正する。具体的には、外側格子領域データ補正部15aは、以下の式(7)に基づいて補正処理を行うことにより、同化後降水強度予測値R3corr(x,y,z,t)を算出する。 The outer grid area data correction unit 15a corrects the precipitation intensity predicted value R3 own (x, y, z, t) of the outer grid area SZ os to obtain an assimilated precipitation intensity predicted value R3 corr (x, y, z, t). t) is calculated. Specifically, with reference to FIG. 7, the outer grid area data correction unit 15a predicts the precipitation intensity predicted value R3 own (x of each outer grid area SZ os at a future time t n at which precipitation intensity is to be predicted. , Y, z, t) is corrected using the precipitation intensity predicted value R3 ext (x, y, z, t) of the other lattice area SZ ext that satisfies a predetermined condition. Specifically, the outer lattice area data correction unit 15a calculates the assimilated precipitation intensity predicted value R3 corr (x, y, z, t) by performing correction processing based on the following equation (7). .
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上述した式(7)において、x、y、zは、各格子領域SZown、SZextの空間的な位置を示す座標位置であり、tは将来の時刻である。 In the formula (7) above, x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the future time.
 また、α3(r3,Δt3)は、補正処理が行われる外側格子領域SZosと他格子領域SZextとの間の空間的距離及び時間的距離に応じて決定される係数(第1補正係数)である。具体的には、当該係数α3(r3,Δt3)は、補正処理が行われる外側格子領域SZosと他格子領域SZextとの間の空間的距離が大きいほど値が小さくなり、且つ、時間的距離が大きくなるほど値が小さくなるように設定される。すなわち、係数α3(r3,Δt3)の値は、両格子間の位置的及び時間的関連性が高い場合に大きくなり、両格子間の位置的及び時間的関連性が低い場合に小さくなる。 Α3 (r3, Δt3) is a coefficient (first correction coefficient) determined according to the spatial distance and the temporal distance between the outer lattice area SZ os and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient α3 (r3, Δt3) decreases as the spatial distance between the outer lattice region SZ os and the other lattice region SZ ext on which correction processing is performed increases, and the time It is set so that the value decreases as the distance increases. That is, the value of the coefficient α3 (r3, Δt3) increases when the positional and temporal relationships between the two lattices are high, and decreases when the positional and temporal relationships between the two lattices are low.
 また、外側格子領域データ補正部15aは、補正対象となる外側格子領域SZosとの空間的距離が所定距離r3以下となる他格子領域SZextであって、且つ降水強度の予測を行いたい時刻からΔt3以内の時刻における他格子領域SZextでの降水強度予測値を用いて、外側格子領域SZosの降水強度予測値の補正処理を行う。このことを、図7を用いて説明すると、他格子領域SZext20~SZext28の降水強度予測値によって、外側格子領域SZos2の降水強度予測値が補正されることにより、外側格子領域SZos2の同化後降水強度予測値R3corr(x,y,z,t)が算出される。 Further, the outer lattice area data correction unit 15a is another lattice area SZ ext in which the spatial distance from the outer lattice area SZ os to be corrected is equal to or less than the predetermined distance r3, and the time when precipitation intensity is to be predicted. Is used to correct the precipitation intensity predicted value of the outer grid area SZ os using the precipitation intensity predicted value of the other grid area SZ ext at a time within Δt3 from This will be described with reference to FIG. 7. By correcting the precipitation intensity predicted values of the outer grid area SZ os2 by the precipitation intensity predicted values of the other grid areas SZ ext20 to SZ ext28 , The assimilated precipitation intensity prediction value R3 corr (x, y, z, t) is calculated.
 図8は、内側格子領域SZisの降水強度予測値R4own(x,y,z,t)を補正する手法を説明するための模式図である。 FIG. 8 is a schematic diagram for explaining a method of correcting the precipitation intensity prediction value R4 own (x, y, z, t) of the inner lattice area SZ is .
 内側格子領域データ補正部16aは、内側格子領域SZisの降水強度予測値R4own(x,y,z,t)を補正して、同化後降水強度予測値R4corr(x,y,z,t)を算出する。具体的には、図8を参照して、内側格子領域データ補正部16aは、降水強度の予測を行いたい将来の時刻tでの各内側格子領域SZisの降水強度予測値R4own(x,y,z,t)を、所定の条件を満たす他格子領域SZextの降水強度予測値R4ext(x,y,z,t)を用いて補正する。具体的には、内側格子領域データ補正部16aは、以下の式(8)に基づいて補正処理を行うことにより、同化後降水強度予測値R4corr(x,y,z,t)を算出する。 The inner lattice area data correction unit 16a corrects the precipitation intensity predicted value R4 own (x, y, z, t) of the inner lattice area SZ is to obtain an assimilated precipitation intensity predicted value R4 corr (x, y, z, t). t) is calculated. Specifically, referring to FIG. 8, the inner lattice area data correction unit 16a predicts the precipitation intensity predicted value R4 own (x of each inner lattice area SZ is at a future time t n at which precipitation intensity is to be predicted. , Y, z, t) is corrected using the precipitation intensity predicted value R4 ext (x, y, z, t) of the other lattice region SZ ext satisfying a predetermined condition. Specifically, the inner lattice area data correction unit 16a calculates the assimilated precipitation intensity predicted value R4 corr (x, y, z, t) by performing correction processing based on the following equation (8). .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上述した式(8)において、x、y、zは、各格子領域SZown、SZextの空間的な位置を示す座標位置であり、tは将来の時刻である。 In the formula (8) described above, x, y, z are each grid area SZ own, a coordinate position indicating the spatial position of the SZ ext, t is the future time.
 また、α4(r4,Δt4)は、補正処理が行われる内側格子領域SZisと他格子領域SZextとの間の空間的距離及び時間的距離に応じて決定される係数(第2補正係数)である。具体的には、当該係数α4(r4,Δt4)は、補正処理が行われる内側格子領域SZisと他格子領域SZextとの間の空間的距離が大きいほど値が小さくなり、且つ、時間的距離が大きくなるほど値が小さくなるように設定される。すなわち、係数α4(r4,Δt4)の値は、両格子間の位置的及び時間的関連性が高い場合に大きくなり、両格子間の距離的及び時間的関連性が低い場合に小さくなる。 Α4 (r4, Δt4) is a coefficient (second correction coefficient) determined according to the spatial distance and the temporal distance between the inner lattice area SZ is and the other lattice area SZ ext on which the correction process is performed. It is. Specifically, the coefficient α4 (r4, Δt4) decreases as the spatial distance between the inner lattice region SZ is and the other lattice region SZ ext on which correction processing is performed increases, and the time It is set so that the value decreases as the distance increases. That is, the value of the coefficient α4 (r4, Δt4) increases when the positional and temporal relationships between the two lattices are high, and decreases when the distance and temporal relationships between the two lattices are low.
 また、内側格子領域データ補正部16aは、補正対象となる内側格子領域SZisとの空間的距離が所定距離r4以下となる他格子領域SZextであって、且つ降水強度の予測を行いたい時刻からΔt4以内の時刻における他格子領域SZextでの降水強度予測値を用いて、内側格子領域SZisの降水強度予測値の補正処理を行う。このことを、図8を用いて説明すると、他格子領域SZext30~SZext38の降水強度予測値によって、内側格子領域SZis2の降水強度予測値が補正されることにより、内側格子領域SZis2の同化後降水強度予測値R4corr(x,y,z,t)が算出される。 The inner lattice area data correction unit 16a is another lattice area SZ ext in which the spatial distance from the inner lattice area SZ is to be corrected is equal to or less than the predetermined distance r4 and the time when precipitation intensity is to be predicted. Is used to correct the predicted precipitation intensity value in the inner grid area SZ is using the precipitation intensity predicted value in the other grid area SZ ext at the time within Δt4 from the current time. This will be described with reference to FIG. 8. By correcting the precipitation intensity prediction values of the inner lattice area SZ is2 with the precipitation intensity prediction values of the other lattice areas SZ ext30 to SZ ext38 , The assimilated precipitation intensity prediction value R4 corr (x, y, z, t) is calculated.
 以上のように、本変形例によれば、上記実施形態の場合と同様、正確な気象情報(本変形例の場合、降水強度の予測値)を得ることができる。 As described above, according to the present modification, accurate weather information (predicted value of precipitation intensity in the present modification) can be obtained as in the case of the above embodiment.
 また、本変形例によれば、上記実施形態に係る気象情報処理部3とはまた別のアプローチによって、降水強度の予測値を正確に算出することができる。 Moreover, according to this modification, the predicted value of precipitation intensity can be accurately calculated by another approach different from the weather information processing unit 3 according to the above embodiment.
 (2)上述した実施形態では、気象レーダ装置1の外部気象情報取得部6が気象情報を取得する外部システムの一例としてXRAINを挙げて説明したが、これに限らない。例えば、気象庁によるCバンドレーダを用いたシステム、或いは気象衛星から得られる気象情報を、外部システムからの気象情報として取得し、利用してもよい。更には、外部データとして利用する気象情報は、上述したような公に利用可能なシステムからの気象情報でなくてもよい。具体的には、気象レーダ装置1の観測領域を含み且つ該観測領域よりも広い領域の気象情報を観測可能な外部気象レーダ装置を設け、当該外部気象レーダ装置によって観測された気象情報を、外部データとして利用してもよい。 (2) In the embodiment described above, XRAIN has been described as an example of an external system in which the external weather information acquisition unit 6 of the weather radar apparatus 1 acquires weather information, but the present invention is not limited to this. For example, weather information obtained from a system using a C-band radar by the Japan Meteorological Agency or meteorological satellites may be acquired and used as weather information from an external system. Furthermore, the weather information used as the external data may not be the weather information from the publicly available system as described above. Specifically, an external weather radar device that includes an observation region of the weather radar device 1 and that can observe weather information in a region wider than the observation region is provided, and the weather information observed by the external weather radar device is externally It may be used as data.
 (3)上述した実施形態では、図3及び図4を参照して、補正処理として、外側格子領域SZosの降水強度の補正、及び内側格子領域SZisの補正、の双方を行う例を挙げて説明したが、これに限らない。具体的には、気象レーダ装置は、外側格子領域SZosの降水強度の補正、及び内側格子領域SZisの補正、のうちのいずれか一方のみを行ってもよい。 (3) In the above-described embodiment, with reference to FIGS. 3 and 4, an example of performing both the correction of the precipitation intensity of the outer lattice area SZ os and the correction of the inner lattice area SZ is as the correction process is given. However, this is not restrictive. Specifically, the weather radar apparatus may perform only one of the correction of the precipitation intensity of the outer lattice area SZ os and the correction of the inner lattice area SZ is .
 (4)上述した実施形態では、気象情報として、降水強度を例に挙げて説明したが、これに限らない。具体的には、気象レーダ装置によって観測される気象情報は、風速、或いは降水粒子の種類であってもよい。気象情報として降水粒子の種類を取り扱う場合、気象レーダ装置としていわゆる二重偏波レーダ装置を用いて、アンテナから送波される水平偏波と垂直偏波との位相差に基づいて、降水粒子の種類を判別できる。 (4) In the embodiment described above, the precipitation intensity is described as an example of the weather information, but the present invention is not limited to this. Specifically, the weather information observed by the weather radar device may be the wind speed or the type of precipitation particles. When handling the types of precipitation particles as weather information, a so-called dual-polarization radar device is used as a weather radar device, and based on the phase difference between the horizontal and vertical polarizations transmitted from the antenna, The type can be determined.
 (5)図9は、変形例に係る気象情報処理装置3bの構成を示すブロック図である。上述した実施形態に係る気象レーダ装置1の気象情報処理部3は、気象予測部12を有していたが、これに限らず、図9に示すように、気象予測部12を有さない気象情報処理装置3bを構成することもできる。この気象情報処理装置3bによれば、自領域Zown内の各地点における気象情報(例えば降水強度)の初期場を形成することができる。 (5) FIG. 9 is a block diagram showing a configuration of a weather information processing apparatus 3b according to a modification. The weather information processing unit 3 of the weather radar apparatus 1 according to the embodiment described above has the weather prediction unit 12, but the present invention is not limited to this, and the weather without the weather prediction unit 12 as shown in FIG. The information processing apparatus 3b can also be configured. According to this weather information processing apparatus 3b, it is possible to form an initial field of weather information (for example, precipitation intensity) at each point in its own area Zown .
 (6)上述した実施形態では、第1気象情報に第2気象情報を同化させて、自格子領域SZownの第1気象情報を補正する例を挙げて説明したが、これに限らない。具体的には、第2気象情報に第1気象情報を同化させて、他格子領域SZextの第2気象情報を補正してもよい。これにより、各他格子領域SZextの第2気象情報を、自装置で観測された第1気象情報で補正できるため、自装置の観測領域よりも外側の領域においてより正確な気象情報を得ることができる。 (6) In the above-described embodiment, the second weather information is assimilated into the first weather information to correct the first weather information of the self-lattice area SZ own . However, the present invention is not limited to this. Specifically, the second weather information may be assimilated into the second weather information to correct the second weather information in the other lattice area SZ ext . It Thereby, the second weather information of each other grating regions SZ ext, because can be corrected by the first weather information observed by the own apparatus, to obtain a more accurate weather information in the region outside the observation area of the device itself Can do.
 1,1a         気象レーダ装置
 3,3a         気象情報処理部(気象情報処理装置)
 3b           気象情報処理装置
 5            気象情報算出部(第1気象情報算出部)
 6,6a         外部気象情報取得部(第2気象情報取得部)
 10,10a       同化処理部
 12a          気象予測部(第1気象情報算出部)
 SZext         他格子領域(第2小領域)
 SZown         自格子領域(第1小領域)
 Zext          他領域(第2領域)
 Zown          自領域(第1領域)
1,1a Weather radar device 3,3a Weather information processing unit (meteorological information processing device)
3b Meteorological information processing device 5 Meteorological information calculator (first meteorological information calculator)
6, 6a External weather information acquisition unit (second weather information acquisition unit)
10, 10a Assimilation processing unit 12a Weather prediction unit (first weather information calculation unit)
SZ ext other lattice region (second small region)
SZ own self-lattice region (first small region)
Z ext other area (second area)
Zown own region (first region)

Claims (12)

  1.  第1領域に含まれる各第1小領域から得られた受信信号に基づいて各第1小領域の気象情報である第1気象情報を算出する第1気象情報算出部と、
     前記第1領域を含み且つ該第1領域よりも広い第2領域、に含まれる各第2小領域の気象情報を第2気象情報として外部から取得する第2気象情報取得部と、
     前記第1気象情報と前記第2気象情報とに基づいて統合気象情報を生成する同化処理部と、
     を備えていることを特徴とする、気象情報処理装置。
    A first weather information calculation unit that calculates first weather information that is weather information of each first small region based on a reception signal obtained from each first small region included in the first region;
    A second weather information acquisition unit for acquiring weather information of each second small area included in the second area including the first area and wider than the first area as second weather information;
    An assimilation processing unit that generates integrated weather information based on the first weather information and the second weather information;
    A meteorological information processing apparatus comprising:
  2.  請求項1に記載の気象情報処理装置において、
     前記同化処理部は、前記第1気象情報を前記第2気象情報で補正することにより、前記統合気象情報を生成することを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to claim 1,
    The assimilation processing unit generates the integrated weather information by correcting the first weather information with the second weather information, a weather information processing apparatus.
  3.  請求項2に記載の気象情報処理装置において、
     複数の前記第1小領域は、前記第1領域の外周に隣接する外側小領域と、該外側小領域の内側に配置された内側小領域と、を含み、
     前記同化処理部は、前記外側小領域の前記第1気象情報を、少なくとも、該外側小領域の外側に隣接する前記第2小領域の前記第2気象情報で補正することを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to claim 2,
    The plurality of first small regions include an outer small region adjacent to the outer periphery of the first region, and an inner small region disposed inside the outer small region,
    The assimilation processing unit corrects the first weather information of the outer small area with at least the second weather information of the second small area adjacent to the outside of the outer small area. Information processing device.
  4.  請求項3に記載の気象情報処理装置において、
     前記同化処理部は、前記第2小領域の前記第2気象情報に基づく値に第1補正係数を乗算して得られた値を用いて前記統合気象情報を生成し、
     前記第1補正係数は、補正対象となる前記第1気象情報が観測された前記外側小領域から前記第2小領域までの距離、及び、補正対象となる前記第1気象情報が観測された前記外側小領域において前記第1気象情報が観測された時刻と前記第2小領域において前記第2気象情報が観測された時刻との間の時間、の少なくとも一方に応じて決定されることを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to claim 3,
    The assimilation processing unit generates the integrated weather information using a value obtained by multiplying a value based on the second weather information of the second small area by a first correction coefficient,
    The first correction coefficient includes a distance from the outer small area where the first weather information to be corrected is observed to the second small area, and the first weather information to be corrected is observed. It is determined according to at least one of the time between the time when the first weather information is observed in the outer small area and the time when the second weather information is observed in the second small area. A weather information processing device.
  5.  請求項2から請求項4のいずれか1項に記載の気象情報処理装置において、
     複数の前記第1小領域は、前記第1領域の外周に隣接する外側小領域と、該外側小領域の内側に配置された内側小領域と、を含み、
     前記同化処理部は、前記内側小領域の前記第1気象情報を、少なくとも、該内側小領域と鉛直方向に重なる前記第2小領域の前記第2気象情報で補正することを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to any one of claims 2 to 4,
    The plurality of first small regions include an outer small region adjacent to the outer periphery of the first region, and an inner small region disposed inside the outer small region,
    The assimilation processing unit corrects the first weather information of the inner small area with at least the second weather information of the second small area overlapping with the inner small area in a vertical direction. Information processing device.
  6.  請求項5に記載の気象情報処理装置において、
     前記同化処理部は、前記第2小領域の前記第2気象情報に基づく値に第2補正係数を乗算して得られた値を用いて前記統合気象情報を生成し、
     前記第2補正係数は、補正対象となる前記第1気象情報が観測された前記内側小領域から前記第2小領域までの距離、及び、補正対象となる前記第1気象情報が観測された前記内側小領域において前記第1気象情報が観測された時刻と前記第2小領域において前記第2気象情報が観測された時刻との間の時間、の少なくとも一方に応じて決定されることを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to claim 5,
    The assimilation processing unit generates the integrated weather information using a value obtained by multiplying a value based on the second weather information of the second small area by a second correction coefficient,
    The second correction coefficient includes a distance from the inner small area where the first weather information to be corrected is observed to the second small area, and the first weather information to be corrected is observed. It is determined according to at least one of the time between the time when the first weather information is observed in the inner small area and the time when the second weather information is observed in the second small area. A weather information processing device.
  7.  請求項1から請求項6のいずれか1項に記載の気象情報処理装置において、
     前記統合気象情報に基づいて前記第1領域内の気象予測を行う気象予測部、を更に備えていることを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to any one of claims 1 to 6,
    A weather information processing apparatus, further comprising: a weather prediction unit that performs weather prediction in the first region based on the integrated weather information.
  8.  請求項1から請求項7のいずれか1項に記載の気象情報処理装置において、
     前記第1気象情報は、降水強度の観測値、又は風速の観測値であり、
     前記第2気象情報は、降水強度の観測値、降水強度の解析値、風速の観測値、又は風速の解析値であることを特徴とする、気象情報処理装置。
    In the weather information processing apparatus according to any one of claims 1 to 7,
    The first weather information is an observation value of precipitation intensity or an observation value of wind speed,
    The weather information processing apparatus, wherein the second weather information is an observation value of precipitation intensity, an analysis value of precipitation intensity, an observation value of wind speed, or an analysis value of wind speed.
  9.  請求項1から請求項8のいずれか1項に記載の気象情報処理装置において、
     前記第1気象情報は、降水強度の予測値、又は風速の予測値であり、
     前記第2気象情報は、降水強度の予測値、又は風速の予測値であることを特徴とする、気象情報処理装置。
    The weather information processing apparatus according to any one of claims 1 to 8,
    The first weather information is a predicted value of precipitation intensity or a predicted value of wind speed,
    The weather information processing apparatus, wherein the second weather information is a predicted value of precipitation intensity or a predicted value of wind speed.
  10.  第1領域に含まれる各第1小領域へ送信波を送波するとともに該送信波の反射波を受信波として受波するアンテナと、
     請求項1から請求項9のいずれか1項に記載の気象情報処理装置と、
     を備えていることを特徴とする、気象レーダ装置。
    An antenna for transmitting a transmission wave to each first small area included in the first area and receiving a reflected wave of the transmission wave as a reception wave;
    The weather information processing apparatus according to any one of claims 1 to 9,
    A weather radar apparatus comprising:
  11.  請求項10に記載の気象レーダ装置であって、二重偏波レーダ装置であることを特徴とする、気象レーダ装置。 11. The weather radar apparatus according to claim 10, wherein the weather radar apparatus is a dual polarization radar apparatus.
  12.  第1領域に含まれる各第1小領域から得られた受信信号に基づいて各第1小領域の気象情報である第1気象情報を算出し、前記第1領域を含み且つ該第1領域よりも広い第2領域、に含まれる各第2小領域の気象情報を第2気象情報として外部から取得し、前記第1気象情報と前記第2気象情報とに基づいて統合気象情報を生成する、気象情報処理方法。 First weather information, which is weather information of each first small region, is calculated based on a received signal obtained from each first small region included in the first region, and includes the first region and includes the first region. Weather information of each second small area included in the second wide area is acquired from the outside as second weather information, and integrated weather information is generated based on the first weather information and the second weather information, Weather information processing method.
PCT/JP2017/035902 2016-11-01 2017-10-03 Weather information processing device, weather radar device, and weather information processing method WO2018083927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214395 2016-11-01
JP2016-214395 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018083927A1 true WO2018083927A1 (en) 2018-05-11

Family

ID=62076034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035902 WO2018083927A1 (en) 2016-11-01 2017-10-03 Weather information processing device, weather radar device, and weather information processing method

Country Status (1)

Country Link
WO (1) WO2018083927A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328178A (en) * 2001-04-27 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> Weather forecasting method, device, program and program recording medium
JP2003021687A (en) * 2001-07-06 2003-01-24 Digital Weather Platform Kk Method for weather forecasting for narrow area, method for distribution of weather forecast for narrow area, method for commodity sales promotion, weather forecasting device, and weather forecasting information providing system
JP2005106601A (en) * 2003-09-30 2005-04-21 Mitsubishi Electric Corp Device for predicting travel of rainfall and method for predicting travel of rainfall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328178A (en) * 2001-04-27 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> Weather forecasting method, device, program and program recording medium
JP2003021687A (en) * 2001-07-06 2003-01-24 Digital Weather Platform Kk Method for weather forecasting for narrow area, method for distribution of weather forecast for narrow area, method for commodity sales promotion, weather forecasting device, and weather forecasting information providing system
JP2005106601A (en) * 2003-09-30 2005-04-21 Mitsubishi Electric Corp Device for predicting travel of rainfall and method for predicting travel of rainfall

Similar Documents

Publication Publication Date Title
US20180299273A1 (en) Method and apparatus for positioning vehicle
EP3480623B1 (en) Synthetic-aperture radar device
US20180088228A1 (en) Obstacle detection method and apparatus for vehicle-mounted radar system
US10948584B2 (en) Latent oscillator frequency estimation for ranging measurements
JP4592506B2 (en) Uplink interference source locating apparatus and method
CN114371182B (en) Satellite-borne GNSS-R high-precision soil moisture estimation method based on CYGNSS data
JP5352422B2 (en) Positioning device and program
US20150302622A1 (en) Weather information display system, human navigation device, and method of displaying weather information
KR102151362B1 (en) Image decoding apparatus based on airborn using polar coordinates transformation and method of decoding image using the same
WO2022142834A1 (en) Self-differential positioning method and apparatus, and mobile device and storage medium
EP2818899B1 (en) Meteorological forecasting device and meteorological forecasting method
CN113378443B (en) Ground wave radar data fusion assimilation method and computer equipment
KR20130068399A (en) Apparatus and method for error compensation for radar system
US20140286537A1 (en) Measurement device, measurement method, and computer program product
JP2017003416A (en) Rainfall prediction system
CN114488766B (en) Clock time service method, device and medium
CN106374224A (en) Electromagnetic wave imaging system and antenna array signal correction method
Crapolicchio et al. ERS-2 scatterometer: Mission performances and current reprocessing achievements
CN117998568A (en) Clock synchronization method and clock synchronization system
JP2006090912A (en) Positioning device, information distributing device, positioning method, and information distributing method
EP3388859A1 (en) Synthetic aperture radar device
WO2018083927A1 (en) Weather information processing device, weather radar device, and weather information processing method
JP2009236545A (en) Image processing apparatus, image processing system, image processing method, and image processing program
US20160223675A1 (en) Mobile terminal, position identification method, and position identification device
US20230128046A1 (en) Detection method and computer-readable recording medium storing detection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP