WO2018083746A1 - Facility diagnostic apparatus and facility diagnostic method - Google Patents

Facility diagnostic apparatus and facility diagnostic method Download PDF

Info

Publication number
WO2018083746A1
WO2018083746A1 PCT/JP2016/082537 JP2016082537W WO2018083746A1 WO 2018083746 A1 WO2018083746 A1 WO 2018083746A1 JP 2016082537 W JP2016082537 W JP 2016082537W WO 2018083746 A1 WO2018083746 A1 WO 2018083746A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
abnormality
detection
value
facility
Prior art date
Application number
PCT/JP2016/082537
Other languages
French (fr)
Japanese (ja)
Inventor
一夫 伊藤
Original Assignee
愛知機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知機械工業株式会社 filed Critical 愛知機械工業株式会社
Priority to JP2018548493A priority Critical patent/JP6786181B2/en
Priority to PCT/JP2016/082537 priority patent/WO2018083746A1/en
Publication of WO2018083746A1 publication Critical patent/WO2018083746A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a facility diagnosis apparatus and a facility diagnosis method for diagnosing a facility abnormality including a first device capable of detecting an abnormality with a first feature amount and a second device capable of detecting an abnormality with a second feature amount.
  • Patent Document 1 discloses a diagnosis for diagnosing abnormality of a rotating device including a motor and a pump having a rotating body supported by a rotating shaft of the motor via a bearing. An apparatus is described.
  • vibration waveform data is detected by a vibration meter attached to the bearing, and the detected vibration waveform data is directly detected, vibration waveform data obtained by subjecting the detected vibration waveform data to envelope processing, and detected vibration waveform data.
  • Each of the vibration waveform data after the predetermined number of data is thinned out is subjected to FFT analysis to detect which component of the rotating device has an abnormality. That is, by detecting one feature quantity of the vibration waveform data of the bearing, applying various processes to the feature quantity and performing FFT analysis, it is specified which component has an abnormality.
  • the present invention has been made in view of the above, and in equipment including a plurality of devices or component parts having different feature amounts suitable for abnormality detection, it is possible to reliably identify the device / component part in which the abnormality has occurred.
  • An object of the present invention is to provide a facility diagnosis apparatus that can perform such a process.
  • the equipment diagnostic apparatus and method of the present invention employ the following means in order to achieve the above-described object.
  • an abnormality of equipment comprising a first device capable of detecting an abnormality with the first feature quantity and a second device capable of detecting an abnormality with the second feature quantity is diagnosed.
  • An equipment diagnostic device is configured.
  • the facility diagnosis apparatus includes a first detection unit that detects a first feature amount, a second detection unit that detects a second feature amount, and a first feature amount and a second detection unit that are detected by the first detection unit.
  • Frequency analysis means for analyzing the frequency of the detected second feature value, and device specifying means for specifying a device in which an abnormality has occurred based on an analysis result by the frequency analysis means.
  • apparatus in the present invention is defined as a concept including components constituting the facility.
  • each feature quantity is detected separately and frequency analysis is performed separately, and the analysis result is based on the analysis result. Therefore, it is possible to reliably identify which device / component is abnormal.
  • the device since it is possible to perform a single device from detection of multiple feature values to identification of devices / components in which an abnormality has occurred, the device is simplified and costs are reduced compared to the case where a device is provided for each feature value. Can be achieved.
  • the facility diagnosis apparatus further includes instruction means for instructing start of detection of the first and second feature values by the first and second detection means.
  • the instruction means controls the first detection means so as to start the detection of the first feature value at the first timing and to continue the detection of the first feature value for the first time.
  • the detection of the second feature value is started at the timing, and the second detection unit is controlled so as to continue the detection of the second feature value for the second time.
  • each feature amount can be detected at a timing and detection section suitable for abnormality detection, so that abnormality diagnosis can be performed after eliminating unnecessary data for abnormality diagnosis, and the diagnosis speed is improved.
  • the instruction means is configured to set the first and second timings based on the third feature amount.
  • the third feature value different from the first and second feature values suitable for detecting an abnormality of each device / component for example, the operating state of the equipment (the equipment is executing a predetermined process)
  • the detection start timing of the first and second feature amounts based on the feature amount suitable for detecting whether the facility is in the idle state before the execution of the predetermined process, or the like.
  • the detection sensitivity of the first and second feature amounts depends on the third feature amount, for example, when the detection sensitivity depends on the operating state of the equipment, the first and second timings have good detection sensitivity.
  • the feature amount can be detected. As a result, it is possible to perform abnormality diagnosis after eliminating data unnecessary for abnormality diagnosis, to improve the diagnosis speed, and to detect an abnormality of a device / component more accurately.
  • the third feature amount is an amount calculated based on at least one of the first and second feature amounts.
  • the detection start timing of the first and second feature values can be easily set.
  • the facility diagnosis apparatus further comprises storage means for storing the first and second feature quantities detected by the first and second detection means.
  • the first and second detection means are configured to detect the first and second feature amounts every first predetermined time.
  • the frequency analysis means is configured to perform frequency analysis after extracting at least one of the stored first and second feature quantities at a second predetermined time interval longer than the first predetermined time.
  • the first and second feature quantities are detected at the same time interval, control can be facilitated, and when performing frequency analysis, abnormalities are detected from the detected feature quantities. Since only the value (number of data) suitable for detection is extracted and frequency analysis is performed, abnormality diagnosis can be performed after removing low-sensitivity data unnecessary for abnormality diagnosis, and diagnostic speed can be improved. Can be planned.
  • the second predetermined time is set as a value that is an integer multiple of the first predetermined time.
  • an abnormality of a facility comprising a first device capable of detecting an abnormality with a first feature amount and a second device capable of detecting an abnormality with a second feature amount is diagnosed.
  • a facility diagnosis method is configured. In the equipment diagnosis method, (a) the first and second feature values are detected, (b) the detected first and second feature values are frequency-analyzed, and (c) the abnormality is based on the result of the frequency analysis. Identify the device where the problem occurred.
  • apparatus in the present invention is defined as a concept including components constituting the facility.
  • each feature quantity is detected separately and frequency analysis is performed separately, and the analysis result is based on the analysis result. Therefore, it is possible to reliably identify which device / component is abnormal.
  • it is possible to perform detection from multiple feature quantities to identification of abnormal devices / components with a single device it is possible to simplify the device and reduce costs compared to the case where a device is provided for each feature amount. Can do.
  • the method further comprises (d) a step of instructing start of detection of the first and second feature values.
  • step (d) the detection of the first feature value is started at the first timing, the detection of the first feature value is continued for the first time, and the second feature value is detected at the second timing.
  • the detection of the second feature amount is continued for the second time after the detection is started.
  • detection can be performed at a timing and detection interval suitable for abnormality detection, so that abnormality diagnosis can be performed after eliminating data unnecessary for abnormality diagnosis, and the diagnosis speed can be improved.
  • detection speed can be improved.
  • step (d) is a step of setting the first and second timings based on the third feature amount.
  • the third feature value different from the first and second feature values suitable for detecting an abnormality of each device / component for example, the operating state of the equipment (the equipment is executing a predetermined process)
  • the detection start timing of the first and second feature amounts based on the feature amount suitable for detecting whether the facility is in the idle state before the execution of the predetermined process, or the like.
  • the detection sensitivity of the first and second feature amounts depends on the third feature amount, for example, when the detection sensitivity depends on the operating state of the equipment, the first and second timings have good detection sensitivity.
  • the feature amount can be detected. As a result, it is possible to perform abnormality diagnosis after eliminating data unnecessary for abnormality diagnosis, to improve the diagnosis speed, and to detect an abnormality of a device / component more accurately.
  • step (d) is a step of calculating a third feature quantity based on at least one of the first and second feature quantities.
  • the detection start timing of the first and second feature values can be easily set.
  • the method further comprises the step of (e) storing the detected first and second feature quantities.
  • Step (a) is a step of detecting the first and second feature values every first predetermined time.
  • Step (b) is a step of performing frequency analysis after extracting at least one of the stored first and second feature quantities at a second predetermined time interval longer than the first predetermined time.
  • the first and second feature quantities are detected at the same time interval, control can be facilitated, and when performing frequency analysis, abnormalities are detected from the detected feature quantities. Since only the value (number of data) suitable for detection is extracted and frequency analysis is performed, abnormality diagnosis can be performed after removing low-sensitivity data unnecessary for abnormality diagnosis, and diagnostic speed can be improved. Can be planned.
  • step (b) is a step of setting the second predetermined time as a value that is an integer multiple of the first predetermined time.
  • an equipment diagnosis apparatus that can reliably identify equipment / components in which an abnormality has occurred in equipment comprising a plurality of equipment / components having different feature quantities suitable for abnormality detection. Can do.
  • FIG. 5 is a flowchart illustrating an example of an abnormal device identification process executed by the abnormality determination device 2.
  • the time change of the power value P calculated from the current value I and the voltage value V extracted at 20 msec intervals, and the current value I, vibration value fa, extracted at each extraction interval (0.25 msec, 0.5 msec, 20 msec) It is explanatory drawing which shows the time change of fb and stress ST. It is explanatory drawing which shows the frequency analysis result of the extracted electric current value I, vibration value fa, fb, and stress ST.
  • the facility diagnosis apparatus 1 includes an abnormality determination device 2 that is electrically connected to a processing facility 10 that performs processing on a workpiece W.
  • the apparatus is configured as a device for diagnosing whether or not an abnormality has occurred in a component.
  • the facility diagnosis apparatus 1 corresponds to the “diagnosis apparatus” in the present invention
  • the processing facility 10 is an example of an implementation configuration corresponding to the “equipment” in the present invention.
  • the processing facility 10 includes a fixed base 12 that fixes the workpiece W, a slide table 14 that is slidably attached to the fixed base 12, and a gear box GB that is fixed to the slide table 14.
  • the blade BLD attached to the gear box GB via the tool holder 15, the spindle motor M1 connected to the gear box GB via the belt BLT, and the ball screw for sliding the slide table 14 relative to the fixed base 12.
  • an AC servo amplifier 18 electrically connected to the spindle motor M1
  • an AC servo amplifier 19 electrically connected to the drive motor M2, and each AC servo
  • a control device 20 that outputs a command signal to the amplifiers 18 and 19.
  • the AC servo amplifier 18 corresponds to the “first device” in the present invention
  • the fixed base 12, the slide table 14, and the spindle motor M1 are an example of an implementation configuration corresponding to the “second device” in the present invention.
  • the spindle motor M1 and the drive motor M2 are configured as synchronous AC servomotors.
  • the main shaft motor M1 and the drive motor M2 are provided with a detector (not shown) such as a rotary encoder that can detect the rotation speed and rotation angle (position) of a rotation shaft (not shown).
  • the ball screw 16 is mainly composed of a screw shaft 17a connected to the rotation shaft of the drive motor M2 and a nut member 17b fixed to the screw shaft 17a.
  • the nut member 17b is fixed to the slide table 14. Accordingly, when the drive motor M2 is driven, the screw shaft 17a is rotated together with the rotation shaft of the drive motor M2, and the slide table is reciprocated in the axial direction (left and right direction in FIG. 1) together with the nut portion 32b.
  • the AC servo amplifiers 18 and 19 are composed of a main circuit unit and a control circuit unit, and the main circuit unit controls the frequency, voltage, current, phase, etc. of AC power from a power source (not shown).
  • the power form is converted into a form suitable for driving the spindle motor M1 and the drive motor M2, and the spindle motor M1 and the drive motor are utilized by using signals from detectors (rotary encoders) of the spindle motor M1 and the drive motor M2. Feedback control is performed so that M2 is driven in accordance with a command signal from the control device 20.
  • the control device 20 includes a microprocessor centered on a CPU (not shown).
  • the control device 20 includes a ROM (not shown) for storing a processing program, an input / output port, a communication port (all not shown), and the like.
  • a command signal or the like corresponding to the machining program stored in advance in the ROM is output to the AC servo amplifiers 18 and 19 via the output port.
  • the abnormality determination device 2 includes a microprocessor centered on the CPU 52.
  • the abnormality determination device 2 includes a ROM 56 that stores a processing program, a RAM 54 that temporarily stores data, and an input / output port and a communication port (not shown). ing.
  • the abnormality determination device 2 includes devices / parts constituting the processing equipment 10, specifically, the fixed base 12, the slide table 14, the ball screw 16, the AC servo amplifiers 18, 19, the spindle motor M1, the drive motor M2, and the cutting tool.
  • a signal necessary for determining whether or not an abnormality has occurred in the BLD or the like for example, an XYZ accelerometer that detects vibration from the XYZ accelerometer 62 that detects vibration of the fixed base 12 or vibration of the slide table 14 64, the stress from the stress sensor 66 for detecting the stress acting on the tool holder 15, the current and voltage supplied to the spindle motor M1 and the drive motor M2, and the like are input.
  • the abnormality determination device 2 is connected to the control device 20 through a communication port, and exchanges various control signals and data with the control device 20 as necessary.
  • the abnormality determination device 2 to which the current supplied to the spindle motor M1 is input corresponds to the “first detection means” in the present invention, and the XYZ accelerometers 62 and 64 and the stress sensor 66 are the “second detection in the present invention. It is an example of the implementation structure corresponding to a means.
  • FIG. 2 is a flowchart showing an example of abnormal device / component identification processing executed by the abnormality determination device 2. This process is performed from the time when the processing facility 10 starts operating.
  • the CPU 52 of the abnormality determination device 2 first inputs the current value I and the voltage value V input to the AC servo amplifier 18 (step S100), and the input current value I and A process of storing the voltage value V in the current value buffer and the voltage value buffer set in a predetermined area of the RAM 54 is executed (step S102).
  • the current value I and the voltage value V are input at intervals of 0.125 msec.
  • a process of calculating the power value P using the stored current value I and voltage value V is executed (step S104), and it is determined whether or not the processing of the workpiece W by the cutting tool BLD of the processing equipment 10 has started. Is performed (step S106).
  • the processing start determination is performed based on the calculated power value P.
  • the machining start determination based on the power value P is performed, for example, by detecting the rate of change of the power value P using the fact that the power value P varies greatly before and after the cutting tool BLD contacts the workpiece W. Can do.
  • the vibration values fa and fb of the fixed base 12 and the slide table 14 are input (step S108), and the input vibration value fa , Fb are respectively stored in the fixed table vibration value buffer and the slide table vibration value buffer set in a predetermined area of the RAM 54 (step S110).
  • the vibration values fa and fb are input at intervals of 0.125 msec, similar to the input of the current value I and the voltage value V.
  • the abnormality determination device 2 that determines whether or not the processing of the workpiece W by the blade BLD has started and executes the processing of steps S106 and S108 that inputs the vibration values fa and fb corresponds to the “instruction means” in the present invention. It is an example of the implementation structure to do.
  • step S112 it is determined whether or not the processing of the workpiece W by the processing equipment 10 has been completed.
  • the determination of the end of processing is configured based on the power value P, similar to the determination of the start of processing described above.
  • the determination of the end of machining based on the power value P is similar to the above-described determination of machining start. This can be done by detecting the rate of change.
  • step S112 If it is determined in step S112 that the processing of the workpiece W by the processing facility 10 has not been completed, the processing of steps S108 to S112 is repeated until the processing of the workpiece W by the processing facility 10 is completed. That is, the vibration values fa and fb are input until the processing of the workpiece W by the processing equipment 10 is completed (step S108), and the input vibration values fa and fb are respectively input to the fixed base vibration value buffer and the slide table vibration value buffer. The storing process (step S110) is repeatedly executed.
  • the vibration value fa and the current value I (0%) Stored in the fixed base vibration value buffer and the current value buffer, respectively.
  • the vibration value fa and current value I) input at intervals of 125 msec are extracted at intervals of 0.25 msec, and the vibration value fb (vibration value fb input at intervals of 0.125 msec) stored in the slide table vibration value buffer is 0. Extraction is performed at intervals of .5 msec, and processing for performing frequency analysis is performed on each of the extracted vibration value fa, current value I, and vibration value fb every 0.5 msec (step S114).
  • the extraction interval of the vibration value fa and the current value I is set to 0.25 msec and the extraction interval of the vibration value fb is set to 0.5 msec.
  • the extraction interval of the vibration values fa and fb and the current value I) can be set to a specific value at which an abnormality is easily found in each device / component.
  • the abnormality determination device 2 that executes the process of step S114 for performing frequency analysis on the extracted vibration value fa every 0.25 msec, current value I and vibration value fb every 0.5 msec is the “frequency analysis means of the present invention. ".
  • step S116 it is determined whether or not an abnormal value has occurred in the vibration values fa and fb and the current value I (step S116). If no abnormal value has occurred, nothing is done.
  • the process ends, and an abnormal value has occurred the devices and components related to the vibration values fa and fb and the current value I where the abnormal value has occurred are displayed (step S118), and this process ends. .
  • the abnormality determination device 2 that executes the process of step S118 for displaying the devices / components related to the vibration values fa and fb and the current value I in which the abnormal value has occurred is an implementation configuration corresponding to the “device specifying means” in the present invention. It is an example.
  • whether or not an abnormal value has occurred in the vibration values fa and fb and the current value I is determined according to the vibration values fa and fb and the current value I in a normal state of the device / component. Is obtained in advance and stored in the ROM 56 as a reference value, and is compared with the frequency analysis results of the vibration values fa and fb and the current value I detected when the workpiece W is machined by the machining equipment 10. The configuration.
  • an abnormal value is detected in the frequency analysis of the vibration value fa, it can be detected that an abnormality has occurred in the fixed base 12, and if an abnormal value is detected in the frequency analysis of the vibration value fb, the slide
  • an abnormal value is detected in the table 14 and an abnormal value has been detected in the frequency analysis of the current value I, it is detected that an abnormality has occurred in the AC servo amplifier 18. it can.
  • step S120 the stress ST of the tool holder 15 is input (step S120).
  • the input stress ST is stored in a stress buffer set in a predetermined area of the RAM 54 (step S122).
  • the input of the stress ST is executed at intervals of 0.125 msec, similar to the input of the vibration values fa and fb, the current value I, and the voltage value V.
  • step S124 it is determined whether or not the processing of the workpiece W by the processing equipment 10 has been started.
  • the process start determination is performed based on the power value P, similar to the process start determination described above. If it is determined in step S124 that the processing of the workpiece W by the processing facility 10 has not started, the processing of steps S120 to S124 is repeated until the processing of the workpiece W by the processing facility 10 is started. That is, the stress ST is input until processing of the workpiece W by the processing equipment 10 is started (step S120), and the input stress ST is stored in the stress buffer (step S122), and the process is repeatedly executed.
  • the stress ST stored in the stress buffer (stress ST input at intervals of 0.125 msec) is extracted at intervals of 20 msec. Then, a frequency analysis process is executed for the extracted stress ST every 20 msec (step S126).
  • the stress ST extraction interval is set to 20 msec.
  • the stress ST extraction interval may be set to a specific value at which an abnormality is easily found in each device / component. it can.
  • step S116 it is determined whether or not an abnormal value has occurred in the stress ST (step S116). If no abnormal value has occurred, the process is terminated without doing anything. If the error occurs, the device / part in which an abnormality has occurred, for example, the spindle motor M1, the blade tool BLD, the gear box GB, etc. is displayed (step S118), and this process is terminated.
  • the determination as to which device / part has an abnormality is made by previously obtaining a specific frequency component generated when an abnormality has occurred in each device / part. When a frequency component exceeding the reference value is found, the device / part in which an abnormality has occurred is identified from the frequency component.
  • FIG. 3 shows the time change of the power value P calculated from the current value I and the voltage value V extracted at 20 msec intervals, and the current value I extracted at each extraction interval (0.25 msec, 0.5 msec, 20 msec)
  • FIG. 4 is an explanatory diagram showing temporal changes in vibration values fa, fb and stress ST
  • FIG. 4 is an explanatory diagram showing frequency analysis results of the extracted current value I, vibration values fa, fb and stress ST.
  • the current value I and the voltage value V are input every 0.125 msec (step S100), and the input current value I and voltage value V are the current value buffer and voltage.
  • the current value I and voltage value V are extracted from the stored current value I and voltage value V at intervals of 20 msec from the stored current value I and voltage value V to calculate the power value P (step S104).
  • step S106 determines whether it is medium (section MAC in FIG. 3A) (step S106), and if it is determined that it is in the idle state, as shown in FIG. 3E, an input is made every 0.125 msec.
  • the stress ST is extracted at intervals of 20 msec from the stress ST of the spindle motor M1 stored in the stress buffer (steps S120 and S122), and the frequency analysis of the extracted stress ST is performed as shown in FIG. (Step S126).
  • the data is inputted every 0.125 msec and stored in the current value buffer and the fixed base vibration value degree buffer.
  • the current value I and vibration value fa are extracted from the measured current value I and vibration value fa at intervals of 0.25 msec (steps S108 and S110), and are input every 0.125 msec as shown in FIG.
  • Vibration values fb are extracted at intervals of 0.5 msec from vibration values fb stored in the slide table vibration value degree buffer (steps S108 and S110).
  • frequency analysis of the extracted current value I and vibration values fa and fb is performed (step S114).
  • each frequency band (Ha, Hb, Hc, Hd, He, Hf) suitable for abnormality determination in each feature amount (current value I, vibration value fa, fb, and stress ST). ) Is compared with a reference value (two-dot chain line in FIG. 4), and devices / components related to a feature amount indicating an amplitude larger than the reference value are determined to be abnormal and displayed (step S116). , S118).
  • Hd is a frequency band suitable for the abnormality determination of the spindle motor M1
  • He is a frequency band suitable for the abnormality determination of the cutting tool BLD
  • Hf is a frequency band suitable for the abnormality determination of the gear box GB.
  • the fixed base 12, the slide table 14, the spindle motor M1, and the AC servo amplifier 18, which are a plurality of devices and components constituting the processing equipment 10, are provided.
  • a plurality of (suitable) feature quantities (current value I, vibration values fa, fb, stress ST) useful for detecting an abnormality are detected, and each detected feature quantity (current value I, vibration values fa, fb) is detected.
  • Stress ST and frequency / frequency analysis can be performed to identify the device / component in which an abnormality has occurred based on the frequency analysis result.
  • one device can perform from the detection of a plurality of feature values (current value I, vibration values fa, fb, stress ST) to the identification of the device / component in which an abnormality has occurred, each feature value ( Compared with the case where a device is provided for each of the current value I, the vibration values fa and fb, and the stress ST), the device can be simplified and the cost can be reduced.
  • each feature amount (current value I, vibration value fa, fb, stress ST) is detected at a timing and detection section suitable for abnormality detection, and the frequency is detected.
  • the analysis is performed, that is, the vibration values fa and fb and the current value I are subjected to frequency analysis using values detected during the processing of the workpiece W by the cutting tool BLD, and the stress ST is determined by the cutting tool BLD. Since it is configured to perform frequency analysis using the value detected in the idle state before processing, it is possible to perform abnormality diagnosis after eliminating unnecessary data for abnormality diagnosis, and it is possible to improve the diagnosis speed Therefore, it is possible to detect the abnormality of the device / component more accurately.
  • each feature amount (current value I, vibration value fa, fb, stress ST) is detected only in a predetermined detection section, and each feature amount (current value I, vibration value fa, fb, stress ST) can be frequency-analyzed to identify the device / component in which an abnormality has occurred, so that the occurrence of abnormality of the device / component can be diagnosed in real time while the facility is operating. it can.
  • the operating status of the processing equipment 10 based on the value of the power value P calculated using the current value I that is one of the feature values, that is, Since it is configured to determine whether the workpiece W is being machined by the blade BLD or whether the workpiece W is in an idle state before machining by the blade BLD, the timing and detection interval suitable for detecting an abnormality can be easily set. can do.
  • all the feature quantities (current value I, vibration values fa, fb, stress ST) to which the voltage value V is added are detected every 0.125 msec.
  • the stored feature values (current value I, vibration values fa, fb, stress ST) are necessary intervals (0.25 msec, (5 msec, 20 msec), that is, a configuration in which a predetermined number of data is thinned out from stored data and a power value P is calculated and a frequency analysis is performed.
  • each feature amount (current value I, vibration) Compared to a configuration in which the values fa, fb, and stress ST) are detected at different timings, control can be facilitated, and abnormality diagnosis can be performed after eliminating unnecessary data, thereby improving the diagnostic speed. It is possible .
  • each feature amount current value I, vibration value fa, fb, stress ST
  • each feature amount current value I, vibration value fa, fb, stress. Since it is set to an integral multiple of the detection time (0.125 msec) of ST), only the number of data suitable for abnormality detection is extracted from each stored feature quantity (current value I, vibration value fa, fb, stress ST). Can be easily performed.
  • the present invention is applied to the processing equipment 10 that processes the workpiece W, but is not limited thereto.
  • the abnormality such as the spindle motor M1, the cutting tool BLD, and the gear box GB is determined based on the stress ST of the tool holder 15, but the abnormality such as the spindle motor M1, the cutting tool BLD, and the gear box GB is determined as follows. It is good also as a structure determined based on the electric current value I. Also in this case, any device / part can be detected by detecting whether the amplitude value exceeds the reference value in the specific frequency band generated when an abnormality occurs in each device / part from the frequency analysis result of the current value I. It is possible to identify whether an abnormality has occurred.
  • the determination as to whether or not the workpiece W is being processed by the cutting tool BLD is made based on the power value P.
  • the present invention is not limited to this.
  • the determination as to whether or not the workpiece W is being machined by the cutting tool BLD may be performed, for example, based on a machining program that has been programmed in advance and stored in the ROM 56. good.
  • each feature amount (current value I, vibration values fa, fb, and stress ST) is extracted from each feature amount (current value I, vibration values fa, fb, and stress ST) stored in RAM 54. (0.25 msec, 0.5 msec, 20 msec) is set to an integral multiple of the detection interval (0.125 msec) of each feature amount (current value I, vibration value fa, fb, and stress ST), but is not limited thereto. .
  • This embodiment shows an example of a form for carrying out the present invention. Therefore, the present invention is not limited to the configuration of the present embodiment.
  • Equipment abnormality diagnosis device (diagnosis device) 2 Abnormality determination device (first detection means, frequency analysis means, device identification means, instruction means) 10 Processing equipment (equipment) 12 Fixed base (second equipment) 14 Slide table (second device) 15 Tool holder 16 Ball screw 17a Screw shaft 17b Nut member 18 AC servo amplifier (first device) 19 AC servo amplifier 20 Control device 52 CPU 54 RAM (storage means) 56 ROM 62 XYZ accelerometer (second detection means) 64 XYZ accelerometer (second detection means) 66 Stress sensor (second detection means) M1 spindle motor (second device) M2 Drive motor GB Gearbox BLT Belt BLD Cutting tool I Current value (first feature) V Voltage value fa Vibration value (second feature value) fb Vibration value (second feature value) ST stress (second feature) P Power value (third feature value)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

[Problem] To provide a facility diagnostic apparatus whereby a device in which an abnormality has occurred can be reliably specified in a facility provided with a plurality of devices having different feature quantities suitable for abnormality detection. [Solution] A plurality of feature quantities (current value I, vibration values fa, fb, stress ST) suitable for sensing an abnormality in a plurality of devices/constituent components constituting a processing facility 10 are detected (steps S102, S108, S120), frequency analysis is performed for the detected feature quantities (steps S114, S126), and a device/constituent component in which an abnormality has occurred is specified on the basis of the result of the frequency analysis (step S118). It is thereby possible for a device/constituent component in which an abnormality has occurred to be specified from detection of a plurality of feature quantities even by a single apparatus, and the apparatus can therefore be simplified and reduced in cost relative to a case in which an apparatus is provided for each feature quantity.

Description

設備診断装置および設備診断方法Equipment diagnostic device and equipment diagnostic method
 本発明は、第1特徴量によって異常検出が可能な第1機器と、第2特徴量によって異常検出可能な第2機器と、を備える設備の異常を診断する設備診断装置および設備診断方法に関する。 The present invention relates to a facility diagnosis apparatus and a facility diagnosis method for diagnosing a facility abnormality including a first device capable of detecting an abnormality with a first feature amount and a second device capable of detecting an abnormality with a second feature amount.
 特開2012-8030号公報(特許文献1)には、モータと、当該モータの回転軸に軸受を介して支持された回転体を有するポンプと、から構成された回転機器の異常を診断する診断装置が記載されている。 Japanese Patent Laid-Open No. 2012-8030 (Patent Document 1) discloses a diagnosis for diagnosing abnormality of a rotating device including a motor and a pump having a rotating body supported by a rotating shaft of the motor via a bearing. An apparatus is described.
 当該診断装置では、軸受に取り付けた振動計によって振動波形データを検出し、検出したそのままの振動波形データ、検出した振動波形データに包絡線処理を施した振動波形データ、および、検出した振動波形データから所定個数のデータを間引き処理した後の振動波形データのそれぞれをFFT解析することによって、回転機器のどの構成部品に異常が発生しているのかを検知している。即ち、軸受の振動波形データという一つの特徴量を検出し、当該特徴量に様々な処理を施してFFT解析することによって、どの構成部品に異常が生じたのかを特定している。 In the diagnostic device, vibration waveform data is detected by a vibration meter attached to the bearing, and the detected vibration waveform data is directly detected, vibration waveform data obtained by subjecting the detected vibration waveform data to envelope processing, and detected vibration waveform data. Each of the vibration waveform data after the predetermined number of data is thinned out is subjected to FFT analysis to detect which component of the rotating device has an abnormality. That is, by detecting one feature quantity of the vibration waveform data of the bearing, applying various processes to the feature quantity and performing FFT analysis, it is specified which component has an abnormality.
特開2012-8030号公報JP 2012-8030 A
 ところで、近年、設備のオートメーション化や安全性向上、安定した作動性の確保などの観点から複数の機器や構成部品を備える設備が増加しているが、異常検出に適した特徴量が機器類あるいは構成部品によって異なる場合がある。即ち、ある機器・構成部品では異常検出に適した特徴量は電流、ある機器・構成部品では当該特徴量が振動、また、ある機器・構成部品では当該特徴量が応力であるという場合があり、上述した公報に記載の診断装置では、どの機器あるいはどの構成部品に異常が生じたのかを確実に特定できない。 By the way, in recent years, facilities equipped with a plurality of devices and components have been increasing from the viewpoint of automation of facilities, improved safety, and ensuring stable operability. May vary by component. That is, in some devices / components, the feature value suitable for detecting an abnormality is current, in some device / component parts, the feature value is vibration, and in some device / component parts, the feature value is stress. In the diagnostic apparatus described in the above-mentioned publication, it is impossible to reliably identify which device or which component has an abnormality.
 本発明は、上記に鑑みてなされたものであり、異常検出に適した特徴量が異なる複数の機器あるいは構成部品を備える設備において、異常が生じた機器・構成部品の特定を確実に行うことができる設備診断装置を提供することを目的とする。 The present invention has been made in view of the above, and in equipment including a plurality of devices or component parts having different feature amounts suitable for abnormality detection, it is possible to reliably identify the device / component part in which the abnormality has occurred. An object of the present invention is to provide a facility diagnosis apparatus that can perform such a process.
 本発明の設備診断装置およびその方法は、上述の目的を達成するために以下の手段を採った。 The equipment diagnostic apparatus and method of the present invention employ the following means in order to achieve the above-described object.
 本発明に係る設備診断装置の好ましい形態によれば、第1特徴量によって異常検出が可能な第1機器と、第2特徴量によって異常検出可能な第2機器と、を備える設備の異常を診断する設備診断装置が構成される。当該設備診断装置は、第1特徴量を検出する第1検出手段と、第2特徴量を検出する第2検出手段と、第1検出手段によって検出された第1特徴量および第2検出手段によって検出された第2特徴量を周波数解析する周波数解析手段と、当該周波数解析手段による解析結果に基づいて異常が生じた機器を特定する機器特定手段と、を備えている。ここで、本発明における「機器」は、設備を構成する構成部品を含む概念として規定される。 According to a preferred form of the equipment diagnosis apparatus according to the present invention, an abnormality of equipment comprising a first device capable of detecting an abnormality with the first feature quantity and a second device capable of detecting an abnormality with the second feature quantity is diagnosed. An equipment diagnostic device is configured. The facility diagnosis apparatus includes a first detection unit that detects a first feature amount, a second detection unit that detects a second feature amount, and a first feature amount and a second detection unit that are detected by the first detection unit. Frequency analysis means for analyzing the frequency of the detected second feature value, and device specifying means for specifying a device in which an abnormality has occurred based on an analysis result by the frequency analysis means. Here, “apparatus” in the present invention is defined as a concept including components constituting the facility.
 本発明によれば、異常検出に適した特徴量が異なる複数の機器・構成部品を備える設備であっても、各特徴量を各別に検出すると共に各別に周波数解析を行い、当該解析結果に基づいて異常が生じた機器・構成部品を特定する構成であるため、いずれの機器・構成部品に異常が生じたのかを確実に特定することができる。なお、複数の特徴量の検出から異常が生じた機器・構成部品の特定までを一つの装置で行うことができるため、各特徴量毎に装置を設ける場合に比べて装置の簡素化およびコスト低減を図ることができる。 According to the present invention, even in a facility including a plurality of devices / components having different feature quantities suitable for abnormality detection, each feature quantity is detected separately and frequency analysis is performed separately, and the analysis result is based on the analysis result. Therefore, it is possible to reliably identify which device / component is abnormal. In addition, since it is possible to perform a single device from detection of multiple feature values to identification of devices / components in which an abnormality has occurred, the device is simplified and costs are reduced compared to the case where a device is provided for each feature value. Can be achieved.
 本発明に係る設備診断装置の更なる形態によれば、第1および第2検出手段による第1および第2特徴量の検出開始を指示する指示手段をさらに備えている。そして、当該指示手段は、第1のタイミングで第1特徴量の検出を開始して第1時間の間第1特徴量の検出を継続するように第1検出手段を制御すると共に、第2のタイミングで第2特徴量の検出を開始して第2時間の間第2特徴量の検出を継続するように第2検出手段を制御する。 According to a further aspect of the facility diagnosis apparatus according to the present invention, the facility diagnosis apparatus further includes instruction means for instructing start of detection of the first and second feature values by the first and second detection means. The instruction means controls the first detection means so as to start the detection of the first feature value at the first timing and to continue the detection of the first feature value for the first time. The detection of the second feature value is started at the timing, and the second detection unit is controlled so as to continue the detection of the second feature value for the second time.
 本形態によれば、異常検出に適したタイミングおよび検出区間で各特徴量を検出することができるため、異常診断に不要なデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができると共に、より正確に機器の異常を検出することができる。 According to this embodiment, each feature amount can be detected at a timing and detection section suitable for abnormality detection, so that abnormality diagnosis can be performed after eliminating unnecessary data for abnormality diagnosis, and the diagnosis speed is improved. In addition, it is possible to detect an abnormality of the device more accurately.
 本発明に係る設備診断装置の更なる形態によれば、指示手段は、第3特徴量に基づいて第1および第2のタイミングを設定するように構成されている。 According to a further aspect of the facility diagnosis apparatus according to the present invention, the instruction means is configured to set the first and second timings based on the third feature amount.
 本形態によれば、各機器・構成部品の異常を検出するために適した第1および第2特徴量とは異なる第3特徴量、例えば、設備の稼働状態(設備が所定の処理を実行中の状態であるのか、あるいは、設備が所定の処理を実行する前のアイドル状態であるのか、など)を検出するために適した特徴量に基づいて第1および第2特徴量の検出開始タイミングを設定することができる。これにより、第1および第2特徴量の検出感度が第3特徴量に依存するような場合、例えば、設備の稼働状態に依存するような場合に、検出感度の良いタイミングで第1および第2特徴量の検出を行うことができる。この結果、異常診断に不要なデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができると共に、より一層正確に機器・構成部品の異常を検出することができる。 According to the present embodiment, the third feature value different from the first and second feature values suitable for detecting an abnormality of each device / component, for example, the operating state of the equipment (the equipment is executing a predetermined process) The detection start timing of the first and second feature amounts based on the feature amount suitable for detecting whether the facility is in the idle state before the execution of the predetermined process, or the like. Can be set. Thereby, when the detection sensitivity of the first and second feature amounts depends on the third feature amount, for example, when the detection sensitivity depends on the operating state of the equipment, the first and second timings have good detection sensitivity. The feature amount can be detected. As a result, it is possible to perform abnormality diagnosis after eliminating data unnecessary for abnormality diagnosis, to improve the diagnosis speed, and to detect an abnormality of a device / component more accurately.
 本発明に係る設備診断装置の更なる形態によれば、第3特徴量は、第1および第2特徴量の少なくとも一方に基づいて算出される量である。 According to a further aspect of the equipment diagnosis apparatus according to the present invention, the third feature amount is an amount calculated based on at least one of the first and second feature amounts.
 本形態によれば、第1および第2特徴量の少なくとも一方に基づいて第3特徴量を算出することができるため、第1および第2特徴量の検出開始タイミングを容易に設定することができる。 According to this embodiment, since the third feature value can be calculated based on at least one of the first and second feature values, the detection start timing of the first and second feature values can be easily set. .
 本発明に係る設備診断装置の更なる形態によれば、第1および第2検出手段によって検出された第1および第2特徴量を記憶する記憶手段をさらに備えている。また、第1および第2検出手段は、第1所定時間毎に第1および第2特徴量を検出するよう構成されている。そして、周波数解析手段は、記憶された第1および第2特徴量の少なくとも一方を第1所定時間よりも長い第2所定時間間隔で抽出した後に周波数解析するように構成されている。 According to a further aspect of the facility diagnosis apparatus according to the present invention, the facility diagnosis apparatus further comprises storage means for storing the first and second feature quantities detected by the first and second detection means. The first and second detection means are configured to detect the first and second feature amounts every first predetermined time. The frequency analysis means is configured to perform frequency analysis after extracting at least one of the stored first and second feature quantities at a second predetermined time interval longer than the first predetermined time.
 本形態によれば、第1および第2特徴量を同じ時間間隔で検出する構成であるため、制御を容易にすることができると共に、周波数解析を行う際には、検出した各特徴量から異常検出に適した値(データ数)のみを抽出して周波数解析を行う構成であるため、異常診断に不要な感度の低いデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができる。また、第1および第2特徴量を所定時間の間のみ検出する態様においては、当該所定時間の間に検出し記憶した第1および第2特徴量を周波数解析して異常が生じた機器・構成部品の特定を行うことができるため、設備が稼働している最中にリアルタイムに機器・構成部品の異常発生診断を行うことができる。これにより、設備の稼働が停止してから機器・構成部品の異常発生を診断する従来の構成に比べて、機器・構成部品の異常発生に迅速に対処することができる。 According to this embodiment, since the first and second feature quantities are detected at the same time interval, control can be facilitated, and when performing frequency analysis, abnormalities are detected from the detected feature quantities. Since only the value (number of data) suitable for detection is extracted and frequency analysis is performed, abnormality diagnosis can be performed after removing low-sensitivity data unnecessary for abnormality diagnosis, and diagnostic speed can be improved. Can be planned. In the aspect in which the first and second feature quantities are detected only for a predetermined time, the device / configuration in which an abnormality has occurred by frequency analysis of the first and second feature quantities detected and stored during the predetermined time period. Since the parts can be specified, it is possible to diagnose the occurrence of abnormality of the device / component in real time while the equipment is operating. Thereby, compared with the conventional configuration in which the occurrence of abnormality of the device / component is diagnosed after the operation of the facility is stopped, the occurrence of abnormality of the device / component can be dealt with quickly.
 本発明に係る設備診断装置の更なる形態によれば、第2所定時間は、第1所定時間の整数倍の値として設定されている。 According to a further aspect of the facility diagnostic apparatus according to the present invention, the second predetermined time is set as a value that is an integer multiple of the first predetermined time.
 本形態によれば、記憶した各特徴量から異常検出に適した値(データ数)を抽出する処理を容易に行うことができる。 According to this embodiment, it is possible to easily perform processing for extracting a value (number of data) suitable for abnormality detection from each stored feature amount.
 本発明に係る設備診断方法の好ましい形態によれば、第1特徴量によって異常検出が可能な第1機器と、第2特徴量によって異常検出可能な第2機器と、を備える設備の異常を診断する設備診断方法が構成される。当該設備診断方法では、(a)第1および第2特徴量を検出し、 (b)検出された第1および第2特徴量を周波数解析し、(c)当該周波数解析の結果に基づいて異常が生じた機器を特定する。ここで、本発明における「機器」は、設備を構成する構成部品を含む概念として規定される。 According to a preferred form of the facility diagnosis method according to the present invention, an abnormality of a facility comprising a first device capable of detecting an abnormality with a first feature amount and a second device capable of detecting an abnormality with a second feature amount is diagnosed. A facility diagnosis method is configured. In the equipment diagnosis method, (a) the first and second feature values are detected, (b) the detected first and second feature values are frequency-analyzed, and (c) the abnormality is based on the result of the frequency analysis. Identify the device where the problem occurred. Here, “apparatus” in the present invention is defined as a concept including components constituting the facility.
 本発明によれば、異常検出に適した特徴量が異なる複数の機器・構成部品を備える設備であっても、各特徴量を各別に検出すると共に各別に周波数解析を行い、当該解析結果に基づいて異常が生じた機器・構成部品を特定する構成であるため、いずれの機器・構成部品に異常が生じたのかを確実に特定することができる。なお、複数の特徴量の検出から異常機器・構成部品の特定までを一つの装置で行うことができるため、各特徴量毎に装置を設ける場合に比べて装置の簡素化およびコスト低減を図ることができる。 According to the present invention, even in a facility including a plurality of devices / components having different feature quantities suitable for abnormality detection, each feature quantity is detected separately and frequency analysis is performed separately, and the analysis result is based on the analysis result. Therefore, it is possible to reliably identify which device / component is abnormal. In addition, since it is possible to perform detection from multiple feature quantities to identification of abnormal devices / components with a single device, it is possible to simplify the device and reduce costs compared to the case where a device is provided for each feature amount. Can do.
 本発明に係る設備診断方法の更なる形態によれば、(d)第1および第2特徴量の検出開始を指示するステップをさらに備えている。そして、当該ステップ(d)は、第1のタイミングで第1特徴量の検出を開始して第1時間の間第1特徴量の検出を継続すると共に、第2のタイミングで第2特徴量の検出を開始して第2時間の間第2特徴量の検出を継続するステップである。 According to a further aspect of the facility diagnosis method according to the present invention, the method further comprises (d) a step of instructing start of detection of the first and second feature values. In step (d), the detection of the first feature value is started at the first timing, the detection of the first feature value is continued for the first time, and the second feature value is detected at the second timing. In this step, the detection of the second feature amount is continued for the second time after the detection is started.
 本形態によれば、異常検出に適したタイミングおよび検出区間で検出することができるため、異常診断に不要なデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができると共に、より正確に機器・構成部品の異常を検出することができる。 According to the present embodiment, detection can be performed at a timing and detection interval suitable for abnormality detection, so that abnormality diagnosis can be performed after eliminating data unnecessary for abnormality diagnosis, and the diagnosis speed can be improved. In addition, it is possible to detect an abnormality of the device / component more accurately.
 本発明に係る設備診断方法の更なる形態によれば、ステップ(d)は、第3特徴量に基づいて第1および第2のタイミングを設定するステップである。 According to a further aspect of the facility diagnosis method according to the present invention, step (d) is a step of setting the first and second timings based on the third feature amount.
 本形態によれば、各機器・構成部品の異常を検出するために適した第1および第2特徴量とは異なる第3特徴量、例えば、設備の稼働状態(設備が所定の処理を実行中の状態であるのか、あるいは、設備が所定の処理を実行する前のアイドル状態であるのか、など)を検出するために適した特徴量に基づいて第1および第2特徴量の検出開始タイミングを設定することができる。これにより、第1および第2特徴量の検出感度が第3特徴量に依存するような場合、例えば、設備の稼働状態に依存するような場合に、検出感度の良いタイミングで第1および第2特徴量の検出を行うことができる。この結果、異常診断に不要なデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができると共に、より一層正確に機器・構成部品の異常を検出することができる。 According to the present embodiment, the third feature value different from the first and second feature values suitable for detecting an abnormality of each device / component, for example, the operating state of the equipment (the equipment is executing a predetermined process) The detection start timing of the first and second feature amounts based on the feature amount suitable for detecting whether the facility is in the idle state before the execution of the predetermined process, or the like. Can be set. Thereby, when the detection sensitivity of the first and second feature amounts depends on the third feature amount, for example, when the detection sensitivity depends on the operating state of the equipment, the first and second timings have good detection sensitivity. The feature amount can be detected. As a result, it is possible to perform abnormality diagnosis after eliminating data unnecessary for abnormality diagnosis, to improve the diagnosis speed, and to detect an abnormality of a device / component more accurately.
 本発明に係る設備診断方法の更なる形態によれば、ステップ(d)は、第1および第2特徴量の少なくとも一方に基づいて第3特徴量を算出するステップである。 According to a further aspect of the facility diagnosis method according to the present invention, step (d) is a step of calculating a third feature quantity based on at least one of the first and second feature quantities.
 本形態によれば、第1および第2特徴量の少なくとも一方に基づいて第3特徴量を算出することができるため、第1および第2特徴量の検出開始タイミングを容易に設定することができる。 According to this embodiment, since the third feature value can be calculated based on at least one of the first and second feature values, the detection start timing of the first and second feature values can be easily set. .
 本発明に係る設備診断方法の更なる形態によれば、(e)検出された第1および第2特徴量を記憶するステップをさらに備えている。ステップ(a)は、第1所定時間毎に第1および第2特徴量を検出するステップである。そして、ステップ(b)は、記憶された第1および第2特徴量の少なくとも一方を第1所定時間よりも長い第2所定時間間隔で抽出した後に周波数解析するステップである。 According to a further aspect of the facility diagnosis method according to the present invention, the method further comprises the step of (e) storing the detected first and second feature quantities. Step (a) is a step of detecting the first and second feature values every first predetermined time. Step (b) is a step of performing frequency analysis after extracting at least one of the stored first and second feature quantities at a second predetermined time interval longer than the first predetermined time.
 本形態によれば、第1および第2特徴量を同じ時間間隔で検出する構成であるため、制御を容易にすることができると共に、周波数解析を行う際には、検出した各特徴量から異常検出に適した値(データ数)のみを抽出して周波数解析を行う構成であるため、異常診断に不要な感度の低いデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができる。また、第1および第2特徴量を所定時間の間のみ検出する態様においては、当該所定時間の間に検出し記憶した第1および第2特徴量を周波数解析して異常が生じた機器・構成部品の特定を行うことができるため、設備が稼働している最中にリアルタイムに機器・構成部品の異常発生診断を行うことができる。これにより、設備の稼働が停止してから機器・構成部品の異常発生を診断する従来の構成に比べて、機器・構成部品の異常発生に迅速に対処することができる。 According to this embodiment, since the first and second feature quantities are detected at the same time interval, control can be facilitated, and when performing frequency analysis, abnormalities are detected from the detected feature quantities. Since only the value (number of data) suitable for detection is extracted and frequency analysis is performed, abnormality diagnosis can be performed after removing low-sensitivity data unnecessary for abnormality diagnosis, and diagnostic speed can be improved. Can be planned. In the aspect in which the first and second feature quantities are detected only for a predetermined time, the device / configuration in which an abnormality has occurred by frequency analysis of the first and second feature quantities detected and stored during the predetermined time period. Since the parts can be specified, it is possible to diagnose the occurrence of abnormality of the device / component in real time while the equipment is operating. Thereby, compared with the conventional configuration in which the occurrence of abnormality of the device / component is diagnosed after the operation of the facility is stopped, the occurrence of abnormality of the device / component can be dealt with quickly.
 本発明に係る設備診断方法の更なる形態によれば、ステップ(b)は、第1所定時間の整数倍の値として第2所定時間を設定するステップである。 According to a further aspect of the facility diagnosis method according to the present invention, step (b) is a step of setting the second predetermined time as a value that is an integer multiple of the first predetermined time.
 本形態によれば、検出した各特徴量から異常検出に適した値(データ数)のみの抽出処理を容易に行うことができる。 According to this embodiment, it is possible to easily perform extraction processing of only a value (number of data) suitable for abnormality detection from each detected feature amount.
 本発明によれば、異常検出に適した特徴量が異なる複数の機器・構成部品を備える設備において、異常が生じた機器・構成部品の特定を確実に行うことができる設備診断装置を提供することができる。 According to the present invention, it is possible to provide an equipment diagnosis apparatus that can reliably identify equipment / components in which an abnormality has occurred in equipment comprising a plurality of equipment / components having different feature quantities suitable for abnormality detection. Can do.
本実施の形態に係る設備診断装置1の構成の概略を示す概略構成図である。It is a schematic block diagram which shows the outline of a structure of the equipment diagnostic apparatus 1 which concerns on this Embodiment. 異常判定装置2により実行される異常機器特定処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of an abnormal device identification process executed by the abnormality determination device 2. 20msec間隔で抽出した電流値Iおよび電圧値Vから算出される電力値Pの時間変化、および、各抽出間隔(0.25msec、0.5msec、20msec)で抽出した電流値I、振動値fa,fbおよび応力STの時間変化を示す説明図である。The time change of the power value P calculated from the current value I and the voltage value V extracted at 20 msec intervals, and the current value I, vibration value fa, extracted at each extraction interval (0.25 msec, 0.5 msec, 20 msec) It is explanatory drawing which shows the time change of fb and stress ST. 抽出した電流値I、振動値fa,fbおよび応力STの周波数解析結果を示す説明図である。It is explanatory drawing which shows the frequency analysis result of the extracted electric current value I, vibration value fa, fb, and stress ST.
 次に、本発明を実施するための最良の形態を実施例を用いて説明する。 Next, the best mode for carrying out the present invention will be described using examples.
 本実施の形態に係る設備診断装置1は、図1に示すように、ワークWに加工を施す加工設備10に電気的に接続された異常判定装置2を備え、当該加工設備10の構成機器・構成部品に異常が発生していないか否かを診断する装置として構成されている。設備診断装置1は、本発明における「診断装置」に対応し、加工設備10は、本発明における「設備」に対応する実施構成の一例である。 As shown in FIG. 1, the facility diagnosis apparatus 1 according to the present embodiment includes an abnormality determination device 2 that is electrically connected to a processing facility 10 that performs processing on a workpiece W. The apparatus is configured as a device for diagnosing whether or not an abnormality has occurred in a component. The facility diagnosis apparatus 1 corresponds to the “diagnosis apparatus” in the present invention, and the processing facility 10 is an example of an implementation configuration corresponding to the “equipment” in the present invention.
 加工設備10は、図1に示すように、ワークWを固定する固定台12と、当該固定台12にスライド可能に取り付けられたスライドテーブル14と、当該スライドテーブル14に固定されたギヤボックスGBと、当該ギヤボックスGBにツールホルダー15を介して取り付けられた刃具BLDと、ギヤボックスGBにベルトBLTを介して接続された主軸モータM1と、スライドテーブル14を固定台12に対してスライドさせるボールスクリュー16と、当該ボールスクリュー16を駆動する駆動モータM2と、主軸モータM1に電気的に接続されたACサーボアンプ18と、駆動モータM2に電気的に接続されたACサーボアンプ19と、各ACサーボアンプ18,19に指令信号を出力する制御装置20と、を備えている。ACサーボアンプ18は、本発明における「第1機器」に対応し、固定台12、スライドテーブル14および主軸モータM1は、本発明における「第2機器」に対応する実施構成の一例である。 As shown in FIG. 1, the processing facility 10 includes a fixed base 12 that fixes the workpiece W, a slide table 14 that is slidably attached to the fixed base 12, and a gear box GB that is fixed to the slide table 14. The blade BLD attached to the gear box GB via the tool holder 15, the spindle motor M1 connected to the gear box GB via the belt BLT, and the ball screw for sliding the slide table 14 relative to the fixed base 12. 16, a drive motor M2 for driving the ball screw 16, an AC servo amplifier 18 electrically connected to the spindle motor M1, an AC servo amplifier 19 electrically connected to the drive motor M2, and each AC servo And a control device 20 that outputs a command signal to the amplifiers 18 and 19. The AC servo amplifier 18 corresponds to the “first device” in the present invention, and the fixed base 12, the slide table 14, and the spindle motor M1 are an example of an implementation configuration corresponding to the “second device” in the present invention.
 主軸モータM1および駆動モータM2は、同期型ACサーボモータとして構成されている。主軸モータM1および駆動モータM2には、図示しない回転軸の回転速度および回転角度(位置)を検出可能な図示しない検出器、例えば、ロータリーエンコーダが設けられている。 The spindle motor M1 and the drive motor M2 are configured as synchronous AC servomotors. The main shaft motor M1 and the drive motor M2 are provided with a detector (not shown) such as a rotary encoder that can detect the rotation speed and rotation angle (position) of a rotation shaft (not shown).
 ボールスクリュー16は、図1に示すように、主に、駆動モータM2の回転軸に接続されたネジ軸17aと、ネジ軸17aに固定されたナット部材17bと、から構成されている。ナット部材17bは、スライドテーブル14に固定されている。これにより、駆動モータM2が駆動されると、ネジ軸17aが駆動モータM2の回転軸と共に回転されて、ナット部32bと共にスライドテーブルが軸方向(図1の左右方向)に往復移動される。 As shown in FIG. 1, the ball screw 16 is mainly composed of a screw shaft 17a connected to the rotation shaft of the drive motor M2 and a nut member 17b fixed to the screw shaft 17a. The nut member 17b is fixed to the slide table 14. Accordingly, when the drive motor M2 is driven, the screw shaft 17a is rotated together with the rotation shaft of the drive motor M2, and the slide table is reciprocated in the axial direction (left and right direction in FIG. 1) together with the nut portion 32b.
 ACサーボアンプ18,19は、図示はしないが、主回路部と、制御回路部と、から構成されており、主回路部によって図示しない電源からの交流電力の周波数、電圧、電流、位相などを制御して主軸モータM1および駆動モータM2の駆動にふさわしい形に電力形態を変換すると共に、主軸モータM1および駆動モータM2の検出器(ロータリーエンコーダ)からの信号を利用して主軸モータM1および駆動モータM2が制御装置20からの指令信号通りに駆動されるようにフィードバック制御する。 Although not shown, the AC servo amplifiers 18 and 19 are composed of a main circuit unit and a control circuit unit, and the main circuit unit controls the frequency, voltage, current, phase, etc. of AC power from a power source (not shown). The power form is converted into a form suitable for driving the spindle motor M1 and the drive motor M2, and the spindle motor M1 and the drive motor are utilized by using signals from detectors (rotary encoders) of the spindle motor M1 and the drive motor M2. Feedback control is performed so that M2 is driven in accordance with a command signal from the control device 20.
 制御装置20は、図示しないCPUを中心とするマイクロプロセッサを備え、CPUの他に処理プログラムを記憶するROM(図示せず)や、入出力ポート、通信ポート(いずれも図示せず)などを備えており、予めROMに記憶された加工処理プログラムに応じた指令信号などが出力ポートを介してACサーボアンプ18,19に出力されている。 The control device 20 includes a microprocessor centered on a CPU (not shown). In addition to the CPU, the control device 20 includes a ROM (not shown) for storing a processing program, an input / output port, a communication port (all not shown), and the like. A command signal or the like corresponding to the machining program stored in advance in the ROM is output to the AC servo amplifiers 18 and 19 via the output port.
 異常判定装置2は、CPU52を中心とするマイクロプロセッサを備え、CPU52の他に処理プログラムを記憶するROM56と、データを一時的に記憶するRAM54と、図示しない入出力ポートおよび通信ポートと、を備えている。異常判定装置2には、加工設備10を構成する機器・部品、具体的には、固定台12やスライドテーブル14、ボールスクリュー16、ACサーボアンプ18,19、主軸モータM1、駆動モータM2、刃具BLDなどに異常が発生しているか否かを判定するために必要な信号、例えば、固定台12の振動を検出するXYZ加速度計62からの振動や、スライドテーブル14の振動を検出するXYZ加速度計64、ツールホルダー15に作用する応力を検出する応力センサ66からの応力、主軸モータM1および駆動モータM2に供給される電流および電圧などが入力されている。また、異常判定装置2は、通信ポートを介して制御装置20と接続されており、必要に応じて当該制御装置20と各種制御信号やデータのやりとりを行っている。主軸モータM1に供給される電流が入力される異常判定装置2は、本発明における「第1検出手段」に対応し、XYZ加速度計62,64および応力センサ66は、本発明における「第2検出手段」に対応する実施構成の一例である。 The abnormality determination device 2 includes a microprocessor centered on the CPU 52. In addition to the CPU 52, the abnormality determination device 2 includes a ROM 56 that stores a processing program, a RAM 54 that temporarily stores data, and an input / output port and a communication port (not shown). ing. The abnormality determination device 2 includes devices / parts constituting the processing equipment 10, specifically, the fixed base 12, the slide table 14, the ball screw 16, the AC servo amplifiers 18, 19, the spindle motor M1, the drive motor M2, and the cutting tool. A signal necessary for determining whether or not an abnormality has occurred in the BLD or the like, for example, an XYZ accelerometer that detects vibration from the XYZ accelerometer 62 that detects vibration of the fixed base 12 or vibration of the slide table 14 64, the stress from the stress sensor 66 for detecting the stress acting on the tool holder 15, the current and voltage supplied to the spindle motor M1 and the drive motor M2, and the like are input. The abnormality determination device 2 is connected to the control device 20 through a communication port, and exchanges various control signals and data with the control device 20 as necessary. The abnormality determination device 2 to which the current supplied to the spindle motor M1 is input corresponds to the “first detection means” in the present invention, and the XYZ accelerometers 62 and 64 and the stress sensor 66 are the “second detection in the present invention. It is an example of the implementation structure corresponding to a means.
 次に、こうして構成された設備診断装置1の動作、特に、加工設備10を構成する機器・構成部品のうち固定台12やスライドテーブル14、ACサーボアンプ18および主軸モータM1のどの機器・構成部品に異常が発生しているのかを異常判定装置2が診断する際の動作について説明する。図2は、異常判定装置2により実行される異常機器・構成部品特定処理の一例を示すフローチャートである。この処理は、加工設備10の運転が開始されたときから実行される。 Next, the operation of the equipment diagnosis apparatus 1 configured as described above, in particular, the equipment / components of the fixed base 12, the slide table 14, the AC servo amplifier 18 and the spindle motor M1 among the equipment / components constituting the processing equipment 10. The operation when the abnormality determination device 2 diagnoses whether or not an abnormality has occurred will be described. FIG. 2 is a flowchart showing an example of abnormal device / component identification processing executed by the abnormality determination device 2. This process is performed from the time when the processing facility 10 starts operating.
 異常機器特定処理が実行されると、異常判定装置2のCPU52は、まず、ACサーボアンプ18に入力される電流値Iおよび電圧値Vを入力すると共に(ステップS100)、入力した電流値Iおよび電圧値VをRAM54の所定領域に設定された電流値用バッファおよび電圧値用バッファに格納する処理を実行する(ステップS102)。ここで、本実施の形態では、電流値Iおよび電圧値Vの入力は0.125msec間隔で実行される構成とした。 When the abnormal device specifying process is executed, the CPU 52 of the abnormality determination device 2 first inputs the current value I and the voltage value V input to the AC servo amplifier 18 (step S100), and the input current value I and A process of storing the voltage value V in the current value buffer and the voltage value buffer set in a predetermined area of the RAM 54 is executed (step S102). Here, in this embodiment, the current value I and the voltage value V are input at intervals of 0.125 msec.
 続いて、記憶した電流値Iおよび電圧値Vを用いて電力値Pを算出する処理を実行すると共に(ステップS104)、加工設備10の刃具BLDによるワークWの加工が開始したか否かの判定を行う(ステップS106)。本実施の形態では、電力値Pの算出は、電流値用バッファおよび電圧値用バッファに格納された電流値Iおよび電圧値V(0.125msec間隔で入力した電流値Iおよび電圧値V)を20msec間隔で抽出し(読み込み)、抽出した(読み込んだ)20msec毎の電流値Iおよび電圧値Vを用いて算出する構成とした(P=√3×V×I×cosθ)。また、加工開始の判定は、算出した電力値Pに基づいて行う構成とした。なお、電力値Pに基づく加工開始判定は、例えば、刃具BLDがワークWに接触する前後において電力値Pが大きく変動することを利用して電力値Pの変化率などを検知することによって行うことができる。 Subsequently, a process of calculating the power value P using the stored current value I and voltage value V is executed (step S104), and it is determined whether or not the processing of the workpiece W by the cutting tool BLD of the processing equipment 10 has started. Is performed (step S106). In the present embodiment, the power value P is calculated by using the current value I and the voltage value V (current value I and voltage value V input at intervals of 0.125 msec) stored in the current value buffer and the voltage value buffer. Extraction was performed at intervals of 20 msec (reading), and the current value I and the voltage value V were extracted (read) every 20 msec (P = √3 × V × I × cos θ). Further, the processing start determination is performed based on the calculated power value P. Note that the machining start determination based on the power value P is performed, for example, by detecting the rate of change of the power value P using the fact that the power value P varies greatly before and after the cutting tool BLD contacts the workpiece W. Can do.
 ステップ106において加工設備10によるワークWの加工が実行が開始されたと判定された場合には、固定台12およびスライドテーブル14の振動値fa,fbを入力し(ステップS108)、入力した振動値fa,fbをRAM54の所定領域に設定された固定台振動値用バッファおよびスライドテーブル振動値用バッファにそれぞれ格納する(ステップS110)。ここで、本実施の形態では、振動値fa,fbの入力は電流値Iおよび電圧値Vの入力と同様、0.125msec間隔で実行される構成とした。刃具BLDによるワークWの加工が開始したか否かの判定を行い、振動値fa,fbを入力するステップS106およびS108の処理を実行する異常判定装置2は、本発明における「指示手段」に対応する実施構成の一例である。 When it is determined in step 106 that the processing of the workpiece W by the processing equipment 10 has started, the vibration values fa and fb of the fixed base 12 and the slide table 14 are input (step S108), and the input vibration value fa , Fb are respectively stored in the fixed table vibration value buffer and the slide table vibration value buffer set in a predetermined area of the RAM 54 (step S110). Here, in the present embodiment, the vibration values fa and fb are input at intervals of 0.125 msec, similar to the input of the current value I and the voltage value V. The abnormality determination device 2 that determines whether or not the processing of the workpiece W by the blade BLD has started and executes the processing of steps S106 and S108 that inputs the vibration values fa and fb corresponds to the “instruction means” in the present invention. It is an example of the implementation structure to do.
 続いて、加工設備10によるワークWの加工が終了したか否かの判定を行う(ステップS112)。加工終了の判定は、上述した加工開始の判定と同様、電力値Pに基づいて行う構成とした。なお、電力値Pに基づく加工終了の判定は、上述した加工開始の判定と同様、例えば、刃具BLDがワークWに接触する前後において電力値Pが大きく変動することを利用して電力値Pの変化率などを検知することによって行うことができる。 Subsequently, it is determined whether or not the processing of the workpiece W by the processing equipment 10 has been completed (step S112). The determination of the end of processing is configured based on the power value P, similar to the determination of the start of processing described above. The determination of the end of machining based on the power value P is similar to the above-described determination of machining start. This can be done by detecting the rate of change.
 ステップS112において加工設備10によるワークWの加工が終了していないと判定された場合には、加工設備10によるワークWの加工が終了するまでステップS108~S112の処理を繰り返し行う。即ち、加工設備10によるワークWの加工が終了するまで振動値fa,fbを入力し(ステップS108)、入力した振動値fa,fbを固定台振動値用バッファおよびスライドテーブル振動値用バッファにそれぞれ格納する(ステップS110)処理を繰り返し実行する。 If it is determined in step S112 that the processing of the workpiece W by the processing facility 10 has not been completed, the processing of steps S108 to S112 is repeated until the processing of the workpiece W by the processing facility 10 is completed. That is, the vibration values fa and fb are input until the processing of the workpiece W by the processing equipment 10 is completed (step S108), and the input vibration values fa and fb are respectively input to the fixed base vibration value buffer and the slide table vibration value buffer. The storing process (step S110) is repeatedly executed.
 そして、ステップS112において加工設備10によるワークWの加工が終了したと判定された場合には、固定台振動値用バッファおよび電流値用バッファそれぞれに格納された振動値faおよび電流値I(0.125msec間隔で入力した振動値faおよび電流値I)を0.25msec間隔で抽出すると共に、スライドテーブル振動値用バッファに格納された振動値fb(0.125msec間隔で入力した振動値fb)を0.5msec間隔で抽出し、当該抽出した0.25msec毎の振動値fa、電流値Iおよび0.5msec毎の振動値fbのそれぞれについて周波数解析を行う処理を実行する(ステップS114)。ここで、本実施の形態では、振動値faおよび電流値Iの抽出間隔を0.25msecに設定すると共に、振動値fbの抽出間隔を0.5msecに設定する構成としたが、各特徴量(振動値fa,fbや電流値I)の抽出間隔は、各機器・構成部品において異常を発見し易い特有の値に設定することができる。抽出した0.25msec毎の振動値fa、電流値Iおよび0.5msec毎の振動値fbのそれぞれについて周波数解析を行うステップS114の処理を実行する異常判定装置2は、本発明の「周波数解析手段」に対応する。 If it is determined in step S112 that the machining of the workpiece W by the machining facility 10 has been completed, the vibration value fa and the current value I (0...) Stored in the fixed base vibration value buffer and the current value buffer, respectively. The vibration value fa and current value I) input at intervals of 125 msec are extracted at intervals of 0.25 msec, and the vibration value fb (vibration value fb input at intervals of 0.125 msec) stored in the slide table vibration value buffer is 0. Extraction is performed at intervals of .5 msec, and processing for performing frequency analysis is performed on each of the extracted vibration value fa, current value I, and vibration value fb every 0.5 msec (step S114). Here, in the present embodiment, the extraction interval of the vibration value fa and the current value I is set to 0.25 msec and the extraction interval of the vibration value fb is set to 0.5 msec. The extraction interval of the vibration values fa and fb and the current value I) can be set to a specific value at which an abnormality is easily found in each device / component. The abnormality determination device 2 that executes the process of step S114 for performing frequency analysis on the extracted vibration value fa every 0.25 msec, current value I and vibration value fb every 0.5 msec is the “frequency analysis means of the present invention. ".
 そして、周波数解析の結果に基づいて振動値fa,fbおよび電流値Iに異常値が発生しているか否かを判定し(ステップS116)、異常値が発生していない場合には何もせず本処理を終了し、異常値が発生している場合には異常値が発生した振動値fa,fbおよび電流値Iに関連する機器・構成部品を表示して(ステップS118)、本処理を終了する。異常値が発生した振動値fa,fbおよび電流値Iに関連する機器・構成部品を表示するステップS118の処理を実行する異常判定装置2は、本発明における「機器特定手段」に対応する実施構成の一例である。 Based on the result of the frequency analysis, it is determined whether or not an abnormal value has occurred in the vibration values fa and fb and the current value I (step S116). If no abnormal value has occurred, nothing is done. When the process ends, and an abnormal value has occurred, the devices and components related to the vibration values fa and fb and the current value I where the abnormal value has occurred are displayed (step S118), and this process ends. . The abnormality determination device 2 that executes the process of step S118 for displaying the devices / components related to the vibration values fa and fb and the current value I in which the abnormal value has occurred is an implementation configuration corresponding to the “device specifying means” in the present invention. It is an example.
 ここで、振動値fa,fbおよび電流値Iに異常値が発生しているか否かの判定は、本実施の形態では、機器・構成部品が正常な状態における振動値fa,fbおよび電流値Iの周波数解析結果を予め求めて基準値としてROM56に記憶しておき、加工設備10によるワークWの加工の際に検出した振動値fa,fbおよび電流値Iの周波数解析結果と比較することにより行う構成とした。 Here, in the present embodiment, whether or not an abnormal value has occurred in the vibration values fa and fb and the current value I is determined according to the vibration values fa and fb and the current value I in a normal state of the device / component. Is obtained in advance and stored in the ROM 56 as a reference value, and is compared with the frequency analysis results of the vibration values fa and fb and the current value I detected when the workpiece W is machined by the machining equipment 10. The configuration.
 なお、振動値faの周波数解析において異常値を検知した場合には、固定台12に異常が発生していることを検知でき、振動値fbの周波数解析において異常値を検知した場合には、スライドテーブル14に異常が発生していることを検知でき、電流値Iの周波数解析において異常値が発生していることを検知した場合には、ACサーボアンプ18に異常が発生していることを検知できる。 If an abnormal value is detected in the frequency analysis of the vibration value fa, it can be detected that an abnormality has occurred in the fixed base 12, and if an abnormal value is detected in the frequency analysis of the vibration value fb, the slide When it is detected that an abnormality has occurred in the table 14 and an abnormal value has been detected in the frequency analysis of the current value I, it is detected that an abnormality has occurred in the AC servo amplifier 18. it can.
 一方、ステップ106において加工中でない、即ち、刃具BLDがワークWに接触していない加工前のアイドル状態であると判定された場合には、ツールホルダー15の応力STを入力すると共に(ステップS120)、入力した応力STをRAM54の所定領域に設定された応力用バッファに格納する(ステップS122)。ここで、本実施の形態では、応力STの入力は振動値fa,fb、電流値Iおよび電圧値Vの入力と同様、0.125msec間隔で実行される構成とした。 On the other hand, if it is determined in step 106 that machining is not being performed, that is, it is determined that the cutting tool BLD is not in contact with the workpiece W and is in an idle state before machining, the stress ST of the tool holder 15 is input (step S120). The input stress ST is stored in a stress buffer set in a predetermined area of the RAM 54 (step S122). Here, in the present embodiment, the input of the stress ST is executed at intervals of 0.125 msec, similar to the input of the vibration values fa and fb, the current value I, and the voltage value V.
 続いて、加工設備10によるワークWの加工が開始されたか否かの判定を行う(ステップS124)。加工開始の判定は、上述した加工開始の判定と同様、電力値Pに基づいて行う。ステップS124において加工設備10によるワークWの加工が開始されていないと判定された場合には、加工設備10によるワークWの加工が開始されるまでステップS120~S124の処理を繰り返し行う。即ち、加工設備10によるワークWの加工が開始されるまで応力STを入力し(ステップS120)、入力した応力STを応力用バッファに格納する(ステップS122)処理を繰り返し実行する。 Subsequently, it is determined whether or not the processing of the workpiece W by the processing equipment 10 has been started (step S124). The process start determination is performed based on the power value P, similar to the process start determination described above. If it is determined in step S124 that the processing of the workpiece W by the processing facility 10 has not started, the processing of steps S120 to S124 is repeated until the processing of the workpiece W by the processing facility 10 is started. That is, the stress ST is input until processing of the workpiece W by the processing equipment 10 is started (step S120), and the input stress ST is stored in the stress buffer (step S122), and the process is repeatedly executed.
 そして、ステップS124において加工設備10によるワークWの加工が開始されたと判定された場合には、応力用バッファに格納された応力ST(0.125msec間隔で入力した応力ST)を20msec間隔で抽出し、当該抽出した20msec毎の応力STについて周波数解析を行う処理を実行する(ステップS126)。ここで、本実施の形態では、応力STの抽出間隔を20msecに設定する構成としたが、応力STの抽出間隔は、各機器・構成部品において異常を発見し易い特有の値に設定することができる。 If it is determined in step S124 that machining of the workpiece W by the machining equipment 10 has started, the stress ST stored in the stress buffer (stress ST input at intervals of 0.125 msec) is extracted at intervals of 20 msec. Then, a frequency analysis process is executed for the extracted stress ST every 20 msec (step S126). Here, in the present embodiment, the stress ST extraction interval is set to 20 msec. However, the stress ST extraction interval may be set to a specific value at which an abnormality is easily found in each device / component. it can.
 そして、周波数解析の結果に基づいて応力STに異常値が発生しているか否かを判定し(ステップS116)、異常値が発生していない場合には何もせず本処理を終了し、異常値が発生している場合には異常が発生している機器・部品、例えば、主軸モータM1や刃具BLD、ギヤボックスGBなどを表示して(ステップS118)、本処理を終了する。なお、いずれの機器・部品に異常が発生しているのかの判定は、本実施の形態では、各機器・部品に異常が生じた際に発生する特有の周波数成分を予め実験などによって求めておき、基準値を超えた周波数成分が分かると、当該周波数成分から異常が発生した機器・部品を特定する構成とした。 Then, based on the result of the frequency analysis, it is determined whether or not an abnormal value has occurred in the stress ST (step S116). If no abnormal value has occurred, the process is terminated without doing anything. If the error occurs, the device / part in which an abnormality has occurred, for example, the spindle motor M1, the blade tool BLD, the gear box GB, etc. is displayed (step S118), and this process is terminated. In this embodiment, the determination as to which device / part has an abnormality is made by previously obtaining a specific frequency component generated when an abnormality has occurred in each device / part. When a frequency component exceeding the reference value is found, the device / part in which an abnormality has occurred is identified from the frequency component.
 図3は、20msec間隔で抽出した電流値Iおよび電圧値Vから算出される電力値Pの時間変化、および、各抽出間隔(0.25msec、0.5msec、20msec)で抽出した電流値I、振動値fa,fbおよび応力STの時間変化を示す説明図であり、図4は、抽出した電流値I、振動値fa,fbおよび応力STの周波数解析結果を示す説明図である。 FIG. 3 shows the time change of the power value P calculated from the current value I and the voltage value V extracted at 20 msec intervals, and the current value I extracted at each extraction interval (0.25 msec, 0.5 msec, 20 msec), FIG. 4 is an explanatory diagram showing temporal changes in vibration values fa, fb and stress ST, and FIG. 4 is an explanatory diagram showing frequency analysis results of the extracted current value I, vibration values fa, fb and stress ST.
 加工設備10の運転が開始されると、0.125msec毎に電流値Iおよび電圧値Vが入力されると共に(ステップS100)、入力された電流値Iおよび電圧値Vが電流値用バッファおよび電圧値用バッファに格納され(ステップS102)、格納された電流値Iおよび電圧値Vから20msec間隔で電流値Iおよび電圧値Vを抽出して電力値Pを算出する(ステップS104)。 When the operation of the processing facility 10 is started, the current value I and the voltage value V are input every 0.125 msec (step S100), and the input current value I and voltage value V are the current value buffer and voltage. The current value I and voltage value V are extracted from the stored current value I and voltage value V at intervals of 20 msec from the stored current value I and voltage value V to calculate the power value P (step S104).
 そして、当該電力値Pの値に基づいて、刃具BLDによるワークWの加工が開始されるまでのアイドル状態(図3(a)の区間IDL)であるのか、あるいは、刃具BLDによりワークWが加工中(図3(a)の区間MAC)であるのかを判定し(ステップS106)、アイドル状態であると判定された場合には、図3(e)に示すように、0.125msec毎に入力され応力用バッファに格納された主軸モータM1の応力STから20msec間隔で応力STを抽出すると共に(ステップS120、S122)、図4(d)に示すように、抽出した応力STの周波数解析を実施する(ステップS126)。 Then, based on the value of the power value P, whether the workpiece W is in an idle state (section IDL in FIG. 3A) until the machining of the workpiece W by the blade BLD is started, or the workpiece W is machined by the blade BLD. It is determined whether it is medium (section MAC in FIG. 3A) (step S106), and if it is determined that it is in the idle state, as shown in FIG. 3E, an input is made every 0.125 msec. The stress ST is extracted at intervals of 20 msec from the stress ST of the spindle motor M1 stored in the stress buffer (steps S120 and S122), and the frequency analysis of the extracted stress ST is performed as shown in FIG. (Step S126).
 一方、加工中であると判定された場合には、図3(b),(c)に示すように、0.125msec毎に入力され電流値用バッファおよび固定台振動値度用バッファにそれぞれ格納された電流値Iおよび振動値faから0.25msec間隔で電流値Iおよび振動値faを抽出すると共に(ステップS108、S110)、図3(d)に示すように、0.125msec毎に入力されスライドテーブル振動値度用バッファに格納された振動値fbから0.5msec間隔で振動値fbを抽出する(ステップS108、S110)。そして、図4(a),(b),(c)に示すように、抽出した電流値Iおよび振動値fa,fbの周波数解析を実施する(ステップS114)。 On the other hand, when it is determined that machining is in progress, as shown in FIGS. 3B and 3C, the data is inputted every 0.125 msec and stored in the current value buffer and the fixed base vibration value degree buffer. The current value I and vibration value fa are extracted from the measured current value I and vibration value fa at intervals of 0.25 msec (steps S108 and S110), and are input every 0.125 msec as shown in FIG. Vibration values fb are extracted at intervals of 0.5 msec from vibration values fb stored in the slide table vibration value degree buffer (steps S108 and S110). Then, as shown in FIGS. 4A, 4B, and 4C, frequency analysis of the extracted current value I and vibration values fa and fb is performed (step S114).
 周波数解析の結果、図4に示すように、各特徴量(電流値I、振動値fa,fbおよび応力ST)において異常判定に適した各周波数帯域(Ha,Hb,Hc,Hd,He,Hf)の振幅値を基準値(図4中の二点鎖線)と比較して、当該基準値よりも大きい振幅を示す特徴量に関連する機器・構成部品を異常と判定して表示する(ステップS116、S118)。ここで、本実施の形態では、Hdは主軸モータM1の異常判定に適した周波数帯域、Heは刃具BLDの異常判定に適した周波数帯域、HfはギヤボックスGBの異常判定に適した周波数帯域とした。図4では、周波数帯域Hc,Hdにおいて、振動値faおよび応力STの振幅が基準値を超えているため、スライドテーブル14および主軸モータM1に異常が生じているものとして、スライドテーブル14および主軸モータM1が表示される。 As a result of the frequency analysis, as shown in FIG. 4, each frequency band (Ha, Hb, Hc, Hd, He, Hf) suitable for abnormality determination in each feature amount (current value I, vibration value fa, fb, and stress ST). ) Is compared with a reference value (two-dot chain line in FIG. 4), and devices / components related to a feature amount indicating an amplitude larger than the reference value are determined to be abnormal and displayed (step S116). , S118). Here, in the present embodiment, Hd is a frequency band suitable for the abnormality determination of the spindle motor M1, He is a frequency band suitable for the abnormality determination of the cutting tool BLD, and Hf is a frequency band suitable for the abnormality determination of the gear box GB. did. In FIG. 4, in the frequency bands Hc and Hd, since the amplitudes of the vibration value fa and the stress ST exceed the reference values, it is assumed that the slide table 14 and the spindle motor M1 are abnormal. The slide table 14 and the spindle motor M1 is displayed.
 以上説明した本発明の実施の形態に係る設備診断装置1によれば、加工設備10を構成する複数の機器・構成部品である固定台12やスライドテーブル14、主軸モータM1、ACサーボアンプ18の異常を検知するために有用な(適した)複数の特徴量(電流値I、振動値fa,fb、応力ST)を検出すると共に、検出した各特徴量(電流値I、振動値fa,fb、応力ST)に関して周波数解析を行い、当該周波数解析結果に基づいて異常が発生した機器・構成部品を特定することができる。これにより、複数の特徴量(電流値I、振動値fa,fb、応力ST)の検出から異常が発生した機器・構成部品の特定までを一つの装置で行うことができるため、各特徴量(電流値I、振動値fa,fb、応力ST)毎に装置を設ける場合に比べて装置の簡素化およびコスト低減を図ることができる。 According to the equipment diagnosis apparatus 1 according to the embodiment of the present invention described above, the fixed base 12, the slide table 14, the spindle motor M1, and the AC servo amplifier 18, which are a plurality of devices and components constituting the processing equipment 10, are provided. A plurality of (suitable) feature quantities (current value I, vibration values fa, fb, stress ST) useful for detecting an abnormality are detected, and each detected feature quantity (current value I, vibration values fa, fb) is detected. , Stress ST), and frequency / frequency analysis can be performed to identify the device / component in which an abnormality has occurred based on the frequency analysis result. Thereby, since one device can perform from the detection of a plurality of feature values (current value I, vibration values fa, fb, stress ST) to the identification of the device / component in which an abnormality has occurred, each feature value ( Compared with the case where a device is provided for each of the current value I, the vibration values fa and fb, and the stress ST), the device can be simplified and the cost can be reduced.
 また、本発明の実施の形態に係る設備診断装置1によれば、異常検出に適したタイミングおよび検出区間で各特徴量(電流値I、振動値fa,fb、応力ST)を検出して周波数解析を行う構成、即ち、振動値fa,fbや電流値Iについては、刃具BLDによるワークWの加工中に検出した値を用いて周波数解析を行い、応力STについては、刃具BLDによるワークWの加工前のアイドル状態において検出した値を用いて周波数解析を行う構成であるため、異常診断に不要なデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができると共に、より正確に機器・構成部品の異常を検出することができる。 In addition, according to the equipment diagnosis apparatus 1 according to the embodiment of the present invention, each feature amount (current value I, vibration value fa, fb, stress ST) is detected at a timing and detection section suitable for abnormality detection, and the frequency is detected. The analysis is performed, that is, the vibration values fa and fb and the current value I are subjected to frequency analysis using values detected during the processing of the workpiece W by the cutting tool BLD, and the stress ST is determined by the cutting tool BLD. Since it is configured to perform frequency analysis using the value detected in the idle state before processing, it is possible to perform abnormality diagnosis after eliminating unnecessary data for abnormality diagnosis, and it is possible to improve the diagnosis speed Therefore, it is possible to detect the abnormality of the device / component more accurately.
 なお、所定の検出区間のみ各特徴量(電流値I、振動値fa,fb、応力ST)を検出し、当該所定の検出区間に検出し記憶した各特徴量(電流値I、振動値fa,fb、応力ST)を周波数解析して異常が生じた機器・構成部品の特定を行うことができるため、設備が稼働している最中にリアルタイムに機器・構成部品の異常発生診断を行うことができる。 It should be noted that each feature amount (current value I, vibration value fa, fb, stress ST) is detected only in a predetermined detection section, and each feature amount (current value I, vibration value fa, fb, stress ST) can be frequency-analyzed to identify the device / component in which an abnormality has occurred, so that the occurrence of abnormality of the device / component can be diagnosed in real time while the facility is operating. it can.
 また、本発明の実施の形態に係る設備診断装置1によれば、特徴量の一つである電流値Iを用いて算出される電力値Pの値に基づいて加工設備10の稼働状況、即ち、刃具BLDによるワークWの加工中であるのか、あるいは、刃具BLDによるワークWの加工前のアイドル状態であるのかを判定する構成であるため、異常検出に適したタイミングおよび検出区間を容易に設定することができる。 In addition, according to the equipment diagnosis apparatus 1 according to the embodiment of the present invention, the operating status of the processing equipment 10 based on the value of the power value P calculated using the current value I that is one of the feature values, that is, Since it is configured to determine whether the workpiece W is being machined by the blade BLD or whether the workpiece W is in an idle state before machining by the blade BLD, the timing and detection interval suitable for detecting an abnormality can be easily set. can do.
 さらに、本発明の実施の形態に係る設備診断装置1によれば、電圧値Vを加えた各特徴量(電流値I、振動値fa,fb、応力ST)全てを0.125msec毎に検出すると共にRAM54に記憶し、電力値Pを算出する際や周波数解析する際には、記憶された各特徴量(電流値I、振動値fa,fb、応力ST)を必要な間隔(0.25msec、0.5msec、20msec)で抽出する構成、即ち、記憶したデータから所定個のデータを間引いた上で電力値Pの算出や周波数解析を行う構成であるため、各特徴量(電流値I、振動値fa,fb、応力ST)を異なるタイミングで検出する構成に比べて制御を容易にすることができると共に、不要なデータを排除した上で異常診断を行うことができ、診断速度の向上を図ることができる。 Furthermore, according to the equipment diagnosis apparatus 1 according to the embodiment of the present invention, all the feature quantities (current value I, vibration values fa, fb, stress ST) to which the voltage value V is added are detected every 0.125 msec. In addition, when the power value P is calculated or the frequency analysis is stored in the RAM 54, the stored feature values (current value I, vibration values fa, fb, stress ST) are necessary intervals (0.25 msec, (5 msec, 20 msec), that is, a configuration in which a predetermined number of data is thinned out from stored data and a power value P is calculated and a frequency analysis is performed. Therefore, each feature amount (current value I, vibration) Compared to a configuration in which the values fa, fb, and stress ST) are detected at different timings, control can be facilitated, and abnormality diagnosis can be performed after eliminating unnecessary data, thereby improving the diagnostic speed. It is possible .
 なお、各特徴量(電流値I、振動値fa,fb、応力ST)の抽出間隔(0.25msec、0.5msec、20msec)は、各特徴量(電流値I、振動値fa,fb、応力ST)の検出時間(0.125msec)の整数倍に設定されているため、記憶した各特徴量(電流値I、振動値fa,fb、応力ST)から異常検出に適したデータ数のみを抽出する処理を容易に行うことができる。 Note that the extraction intervals (0.25 msec, 0.5 msec, and 20 msec) of each feature amount (current value I, vibration value fa, fb, stress ST) are the same as each feature amount (current value I, vibration value fa, fb, stress). Since it is set to an integral multiple of the detection time (0.125 msec) of ST), only the number of data suitable for abnormality detection is extracted from each stored feature quantity (current value I, vibration value fa, fb, stress ST). Can be easily performed.
 本実施の形態では、ワークWに加工を施す加工設備10に適用したが、これに限らない。例えば、ワークWに熱処理を施す熱処理炉設備に適用しても良い。 In the present embodiment, the present invention is applied to the processing equipment 10 that processes the workpiece W, but is not limited thereto. For example, you may apply to the heat processing furnace equipment which heat-processes to the workpiece | work W.
 本実施の形態では、主軸モータM1や刃具BLD、ギヤボックスGBなどの異常をツールホルダー15の応力STに基づき判定する構成としたが、主軸モータM1や刃具BLD、ギヤボックスGBなどの異常は、電流値Iに基づき判定する構成としても良い。この場合も、電流値Iの周波数解析結果から各機器・部品に異常発生した際に発生する特有の周波数帯域において振幅値が基準値を超えたか否かを検知することにより、いずれの機器・部品に異常が発生しているのかを特定することができる。 In the present embodiment, the abnormality such as the spindle motor M1, the cutting tool BLD, and the gear box GB is determined based on the stress ST of the tool holder 15, but the abnormality such as the spindle motor M1, the cutting tool BLD, and the gear box GB is determined as follows. It is good also as a structure determined based on the electric current value I. Also in this case, any device / part can be detected by detecting whether the amplitude value exceeds the reference value in the specific frequency band generated when an abnormality occurs in each device / part from the frequency analysis result of the current value I. It is possible to identify whether an abnormality has occurred.
 本実施の形態では、刃具BLDによりワークWが加工中であるのか否かの判定は、電力値Pに基づき行う構成としたが、これに限らない。刃具BLDによりワークWが加工中であるのか否かの判定は、例えば、予めプログラミングされROM56に記憶された加工処理プラグラムに基づいて行う構成、具体的には、プログラムに基づく時間によって行う構成としても良い。 In the present embodiment, the determination as to whether or not the workpiece W is being processed by the cutting tool BLD is made based on the power value P. However, the present invention is not limited to this. The determination as to whether or not the workpiece W is being machined by the cutting tool BLD may be performed, for example, based on a machining program that has been programmed in advance and stored in the ROM 56. good.
 本実施の形態では、RAM54に記憶された各特徴量(電流値I、振動値fa,fbおよび応力ST)から各特徴量(電流値I、振動値fa,fbおよび応力ST)を抽出する間隔(0.25msec、0.5msec、20msec)は、各特徴量(電流値I、振動値fa,fbおよび応力ST)の検出間隔(0.125msec)の整数倍に設定したが、これに限らない。 In the present embodiment, each feature amount (current value I, vibration values fa, fb, and stress ST) is extracted from each feature amount (current value I, vibration values fa, fb, and stress ST) stored in RAM 54. (0.25 msec, 0.5 msec, 20 msec) is set to an integral multiple of the detection interval (0.125 msec) of each feature amount (current value I, vibration value fa, fb, and stress ST), but is not limited thereto. .
 本実施形態は、本発明を実施するための形態の一例を示すものである。したがって、本発明は、本実施形態の構成に限定されるものではない。 This embodiment shows an example of a form for carrying out the present invention. Therefore, the present invention is not limited to the configuration of the present embodiment.
 1     設備異常診断装置(診断装置)
 2     異常判定装置(第1検出手段、周波数解析手段、機器特定手段、指示手段)
 10    加工設備(設備)
 12    固定台(第2機器)
 14    スライドテーブル(第2機器)
 15    ツールホルダー
 16    ボールスクリュー
 17a   ネジ軸
 17b   ナット部材
 18    ACサーボアンプ(第1機器)
 19    ACサーボアンプ
 20    制御装置
 52    CPU
 54    RAM(記憶手段)
 56    ROM
 62    XYZ加速度計(第2検出手段)
 64    XYZ加速度計(第2検出手段)
 66    応力センサ(第2検出手段)
 M1    主軸モータ(第2機器)
 M2    駆動モータ
 GB    ギヤボックス
 BLT   ベルト
 BLD     刃具
 I     電流値(第1特徴量)
 V     電圧値
 fa    振動値(第2特徴量)
 fb    振動値(第2特徴量)
 ST     応力(第2特徴量)
 P     電力値(第3特徴量)
1 Equipment abnormality diagnosis device (diagnosis device)
2 Abnormality determination device (first detection means, frequency analysis means, device identification means, instruction means)
10 Processing equipment (equipment)
12 Fixed base (second equipment)
14 Slide table (second device)
15 Tool holder 16 Ball screw 17a Screw shaft 17b Nut member 18 AC servo amplifier (first device)
19 AC servo amplifier 20 Control device 52 CPU
54 RAM (storage means)
56 ROM
62 XYZ accelerometer (second detection means)
64 XYZ accelerometer (second detection means)
66 Stress sensor (second detection means)
M1 spindle motor (second device)
M2 Drive motor GB Gearbox BLT Belt BLD Cutting tool I Current value (first feature)
V Voltage value fa Vibration value (second feature value)
fb Vibration value (second feature value)
ST stress (second feature)
P Power value (third feature value)

Claims (12)

  1.  第1特徴量によって異常検出が可能な第1機器と、第2特徴量によって異常検出可能な第2機器と、を備える設備の異常を診断する診断装置であって、
     前記第1特徴量を検出する第1検出手段と、
     前記第2特徴量を検出する第2検出手段と、
     前記第1検出手段によって検出された前記第1特徴量および前記第2検出手段によって検出された前記第2特徴量を周波数解析する周波数解析手段と、
     該周波数解析手段による解析結果に基づいて異常が生じた機器を特定する機器特定手段と、
     を備える設備診断装置。 
    A diagnostic apparatus for diagnosing an abnormality of a facility comprising a first device capable of detecting an abnormality with a first feature quantity and a second device capable of detecting an abnormality with a second feature quantity,
    First detection means for detecting the first feature amount;
    Second detection means for detecting the second feature amount;
    Frequency analysis means for performing frequency analysis on the first feature value detected by the first detection means and the second feature value detected by the second detection means;
    Device identifying means for identifying a device in which an abnormality has occurred based on the analysis result by the frequency analyzing means;
    A facility diagnostic apparatus comprising:
  2.  前記第1および第2検出手段による前記第1および第2特徴量の検出開始を指示する指示手段をさらに備え、
     該指示手段は、第1のタイミングで前記第1特徴量の検出を開始して第1時間の間前記第1特徴量の検出を継続するよう前記第1検出手段を制御すると共に、第2のタイミングで前記第2特徴量の検出を開始して第2時間の間前記第2特徴量の検出を継続するよう前記第2検出手段を制御する
     請求項1に記載の設備診断装置。
    An instruction means for instructing start of detection of the first and second feature values by the first and second detection means;
    The instruction unit controls the first detection unit to start the detection of the first feature amount at a first timing and to continue the detection of the first feature amount for a first time. The facility diagnosis apparatus according to claim 1, wherein the second detection unit is controlled to start detection of the second feature amount at a timing and to continue detection of the second feature amount for a second time.
  3.  前記指示手段は、第3特徴量に基づいて前記第1および第2のタイミングを設定するよう構成されている
     請求項2に記載の設備診断装置。
    The facility diagnosis apparatus according to claim 2, wherein the instruction unit is configured to set the first and second timings based on a third feature amount.
  4.  前記第3特徴量は、前記第1および第2特徴量の少なくとも一方に基づいて算出される量である
     請求項3に記載の設備診断装置。
    The facility diagnosis apparatus according to claim 3, wherein the third feature amount is an amount calculated based on at least one of the first and second feature amounts.
  5.  前記第1および第2検出手段によって検出された前記第1および第2特徴量を記憶する記憶手段をさらに備え、
     前記第1および第2検出手段は、第1所定時間毎に前記第1および第2特徴量を検出するよう構成されており
     前記周波数解析手段は、記憶された前記第1および第2特徴量の少なくとも一方を前記第1所定時間よりも長い第2所定時間間隔で抽出した後に周波数解析するよう構成されている
     請求項1ないし4のいずれか1項に記載の設備診断装置。
    Storage means for storing the first and second feature quantities detected by the first and second detection means;
    The first and second detection means are configured to detect the first and second feature quantities every first predetermined time period, and the frequency analysis means is configured to store the stored first and second feature quantities. The equipment diagnosis apparatus according to any one of claims 1 to 4, wherein the facility diagnosis apparatus is configured to perform frequency analysis after extracting at least one at a second predetermined time interval longer than the first predetermined time.
  6.  前記第2所定時間は、前記第1所定時間の整数倍の値として設定されている
     請求項5に記載の設備診断装置。
    The facility diagnosis apparatus according to claim 5, wherein the second predetermined time is set as a value that is an integral multiple of the first predetermined time.
  7.  第1特徴量によって異常検出が可能な第1機器と、第2特徴量によって異常検出可能な第2機器と、を備える設備の異常を診断する設備診断方法であって、
     (a)前記第1および第2特徴量を検出し、
     (b)検出された前記第1および第2特徴量を周波数解析し、
     (c)該周波数解析の結果に基づいて異常が生じた機器を特定する
     設備診断方法。
    A facility diagnosis method for diagnosing an abnormality of a facility comprising a first device capable of detecting an abnormality with a first feature amount and a second device capable of detecting an abnormality with a second feature amount,
    (A) detecting the first and second feature quantities;
    (B) frequency-analyzing the detected first and second feature values;
    (C) A facility diagnosis method for identifying a device in which an abnormality has occurred based on the result of the frequency analysis.
  8.  (d)前記第1および第2特徴量の検出開始を指示するステップをさらに備え、
     該ステップ(d)は、第1のタイミングで前記第1特徴量の検出を開始して第1時間の間前記第1特徴量の検出を継続すると共に、第2のタイミングで前記第2特徴量の検出を開始して第2時間の間前記第2特徴量の検出を継続するステップである
     請求項7に記載の設備診断方法。
    (D) further comprising a step of instructing start of detection of the first and second feature values;
    In the step (d), the detection of the first feature value is started at a first timing, the detection of the first feature value is continued for a first time, and the second feature value is detected at a second timing. The facility diagnosis method according to claim 7, wherein the detection of the second feature value is continued for a second time after the start of detection.
  9.  前記ステップ(d)は、第3特徴量に基づいて前記第1および第2のタイミングを設定するステップである
     請求項8に記載の設備診断方法。
    The facility diagnosis method according to claim 8, wherein the step (d) is a step of setting the first and second timings based on a third feature amount.
  10.  前記ステップ(d)は、前記第1および第2特徴量の少なくとも一方に基づいて前記第3特徴量を算出するステップである
     請求項9に記載の設備診断方法。
    The facility diagnosis method according to claim 9, wherein the step (d) is a step of calculating the third feature amount based on at least one of the first and second feature amounts.
  11.  (e)検出された前記第1および第2特徴量を記憶するステップをさらに備え、
     前記ステップ(a)は、第1所定時間毎に前記第1および第2特徴量を検出するステップであり、
     前記ステップ(b)は、記憶された前記第1および第2特徴量の少なくとも一方を前記第1所定時間よりも長い第2所定時間間隔で抽出した後に周波数解析するステップである
     請求項7ないし10のいずれか1項に記載の設備診断方法。
    (E) further comprising the step of storing the detected first and second feature quantities;
    The step (a) is a step of detecting the first and second feature quantities every first predetermined time,
    11. The step (b) is a step of performing frequency analysis after extracting at least one of the stored first and second feature quantities at a second predetermined time interval longer than the first predetermined time. The facility diagnostic method according to any one of the above.
  12.  前記ステップ(b)は、前記第1所定時間の整数倍の値として前記第2所定時間を設定するステップである
     請求項11に記載の設備診断方法。
    The facility diagnosis method according to claim 11, wherein the step (b) is a step of setting the second predetermined time as a value that is an integral multiple of the first predetermined time.
PCT/JP2016/082537 2016-11-02 2016-11-02 Facility diagnostic apparatus and facility diagnostic method WO2018083746A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018548493A JP6786181B2 (en) 2016-11-02 2016-11-02 Equipment diagnostic equipment and equipment diagnostic method
PCT/JP2016/082537 WO2018083746A1 (en) 2016-11-02 2016-11-02 Facility diagnostic apparatus and facility diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082537 WO2018083746A1 (en) 2016-11-02 2016-11-02 Facility diagnostic apparatus and facility diagnostic method

Publications (1)

Publication Number Publication Date
WO2018083746A1 true WO2018083746A1 (en) 2018-05-11

Family

ID=62075888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082537 WO2018083746A1 (en) 2016-11-02 2016-11-02 Facility diagnostic apparatus and facility diagnostic method

Country Status (2)

Country Link
JP (1) JP6786181B2 (en)
WO (1) WO2018083746A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012032A (en) * 2019-07-03 2021-02-04 三菱電機株式会社 Abnormality diagnosis device and robot controller
CN113155435A (en) * 2021-04-30 2021-07-23 深圳素士科技股份有限公司 Ceramic blade detection method, shaver detection device and shaver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273036A (en) * 1991-02-28 1992-09-29 Toshiba Corp Analysis device for signal feature component
JP2000314686A (en) * 1999-05-06 2000-11-14 Saginomiya Seisakusho Inc Optimum parameter deciding method for pseudodynamic test, and method and device for pseudodynamic test
JP2006161677A (en) * 2004-12-07 2006-06-22 Mitsubishi Electric Corp Compressor inspection device
JP2014002003A (en) * 2012-06-18 2014-01-09 Canon Inc Electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273036A (en) * 1991-02-28 1992-09-29 Toshiba Corp Analysis device for signal feature component
JP2000314686A (en) * 1999-05-06 2000-11-14 Saginomiya Seisakusho Inc Optimum parameter deciding method for pseudodynamic test, and method and device for pseudodynamic test
JP2006161677A (en) * 2004-12-07 2006-06-22 Mitsubishi Electric Corp Compressor inspection device
JP2014002003A (en) * 2012-06-18 2014-01-09 Canon Inc Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012032A (en) * 2019-07-03 2021-02-04 三菱電機株式会社 Abnormality diagnosis device and robot controller
CN113155435A (en) * 2021-04-30 2021-07-23 深圳素士科技股份有限公司 Ceramic blade detection method, shaver detection device and shaver

Also Published As

Publication number Publication date
JPWO2018083746A1 (en) 2019-06-24
JP6786181B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP5536611B2 (en) Method and apparatus for monitoring machine tool, machine tool
US11003162B2 (en) Data collection device
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
JP7193599B2 (en) Analysis device, analysis method and analysis program
JP7000135B2 (en) Feed shaft abnormality diagnosis method and abnormality diagnosis device
WO2018083746A1 (en) Facility diagnostic apparatus and facility diagnostic method
JP2016215333A (en) Tool wear evaluation device
KR102491716B1 (en) Machining environment estimation device
CN107817760B (en) Machine tool
JP6354349B2 (en) Vibration detector and machine tool
EP3647891A1 (en) Feed shaft and worm gear abnormality determination system
JP2018065199A (en) Machine tool
JP3759881B2 (en) Process diagnosis monitoring system
KR101986230B1 (en) Diagnostic system for motor of wafer robot
US11237213B2 (en) Motor information acquisition system
JP2004130512A (en) Method of measuring parameter on surface to be machined simultaneously with machining
CN111752215B (en) Diagnostic device, diagnostic system, and computer-readable medium
JP7281264B2 (en) Machine tool and its operating method
JP4396100B2 (en) Resonance frequency detector for multi-axis motor controller
US9772357B1 (en) Diagnostic apparatus
US20220050016A1 (en) Method and Device for Diagnosing a Robot
JP6348934B2 (en) Abnormality diagnosis system and abnormality diagnosis method
JP4196975B2 (en) Crack detection method for drive mechanism
JP2016535336A (en) How to monitor industrial systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920798

Country of ref document: EP

Kind code of ref document: A1