WO2018083357A1 - Organocatalysts for the production of cyclic carbonates - Google Patents

Organocatalysts for the production of cyclic carbonates Download PDF

Info

Publication number
WO2018083357A1
WO2018083357A1 PCT/ES2017/070681 ES2017070681W WO2018083357A1 WO 2018083357 A1 WO2018083357 A1 WO 2018083357A1 ES 2017070681 W ES2017070681 W ES 2017070681W WO 2018083357 A1 WO2018083357 A1 WO 2018083357A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sec
chch
cho
heterocyclyl
Prior art date
Application number
PCT/ES2017/070681
Other languages
Spanish (es)
French (fr)
Inventor
Antonio Leandro OTERO MONTERO
Juan FERNANDEZ BAEZA
Juan TEJEDA SOJO
Agustín LARA SÁNCHEZ
José Antonio CASTRO OSMA
Original Assignee
Universidad De Castilla La Mancha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Castilla La Mancha filed Critical Universidad De Castilla La Mancha
Publication of WO2018083357A1 publication Critical patent/WO2018083357A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine

Definitions

  • the present invention belongs to the technical field of chemistry.
  • the invention relates in particular to an efficient process for synthesizing cyclic carbonates from epoxides and carbon dioxide, using organocatalysts derived from imidazole. In addition, the synthesis of these organocatalysts is reported.
  • Carbon dioxide (C0 2 ) is the most abundant renewable source of carbon in nature. Therefore, the chemical fixation of C0 2 is one of the most important topics in organic synthesis. Several methods for fixing C0 2 have been developed despite low reactivity. Catalytic reactions are considered essential for the expansion and deepening of the synthetic utility of C0 2 . A large number of inorganic and organic metal catalysts has been developed for various chemical conversions of C0 2 . The synthesis of carbonates or polycarbonates from C0 2 and epoxides, carboxylation reactions with C0 2 , the reduction of C0 2 , and other reactions have been developed and studied extensively and intensively.
  • cyclic carbonates normally involves the reaction of epoxides with carbon dioxide, and therefore could be used to capture carbon dioxide, thus reducing greenhouse gas emissions in the atmosphere.
  • cyclic carbonates have been widely used as raw materials for the preparation of polycarbonates, as electrolytes in secondary lithium-ion batteries, as aprotic polar solvents and as fuel additives.
  • cyclic carbonates have been synthesized by the phosgene method, which presents some drawbacks, such as the use of a highly toxic gas (phosgene), the formation of hydrogen chloride (byproduct) and the generation of wastewater containing dichloromethane (solvent) and salts.
  • phosgene highly toxic gas
  • the phosgene method cyclic carbonates can produce profitably on a large scale, the development of environmentally benign methods such as catalytic methods using C0 2 and epoxides under mild reaction conditions required. These criteria should reduce the carbon footprint as much as possible, to meet the sustainable conditions of conversion of C0 2 , including easy recycling of the catalyst for reuse.
  • Catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide are already known in the state of the art, although high reaction temperatures and / or high pressures of carbon dioxide are required, the reaction being frequently carried out in supercritical carbon dioxide (Lu, et al., App. Cat. A, 234 (2002), 25-33).
  • a wide variety of catalysts for the synthesis of cyclic carbonates has been developed.
  • the most commonly used catalyst systems that operate at room temperature are combinations of Lewis acids and nucleophiles.
  • metal halides such as ZnBr 2 (Wu et al., Synth.
  • WO2008132474A1 describes the use of aluminum catalysts (exits) dimers and a cocatalyst, the reaction of different epoxides being carried out with carbon dioxide at room temperature, atmospheric pressure and reaction times between 3 and 24 hours using 0.1 at 10 mol% of catalyst and obtaining yields greater than 50%.
  • the reference reaction conditions should be based on a low temperature and low C0 2 pressure process, as well as a short reaction time. However, so far, the reaction time is still too long for these catalysts and has to be further reduced.
  • the present invention provides the use of organocatalysts derived from imidazole, to synthesize cyclic carbonates from epoxides and carbon dioxide. These organocatalysts have a greater catalytic activity, with a shorter reaction time, lower catalyst load, lower reaction temperatures and low C0 2 pressures, compared to that described in the state of the art.
  • organocatalysts allows a large number of cyclic carbonates to be synthesized, thanks to their reaction with epoxides, as well as epoxides derived from products of natural origin.
  • the present invention provides a method of synthesis of these organocatalysts, which are very active for the reaction of epoxides with carbon dioxide, to produce cyclic carbonates and allow the reaction to be carried out under mild conditions.
  • the organocatalysts have the formula I or II:
  • a second aspect of the invention provides a process for producing cyclic carbonates (IV) comprising contacting an epoxide (III) with carbon dioxide in the presence of an organocatalyst of formula (I) in combination with a cocatalyst that supplies X n_ , by the following reaction:
  • R 10 , R 1 1 and R 12 are independently selected from H, C 2 -C or optionally substituted alkyl, optionally substituted C 3-20 heterocycle and optionally substituted C 5-20 aryl, or R 10 and R 12 or R 1 1 and R 12 form an optionally substituted linker group, between the two carbon atoms to which they are attached respectively.
  • the connecting group, together with the carbon atoms to which they are attached, can form an optionally substituted C5-20 cycloalkyl or C5-20 heterocycle.
  • the C5-20 cycloalkyl group C5-20 heterocycle may be substituted only at a ring position, for example, adjacent to the epoxide.
  • Suitable substituents include optionally substituted CM O alkyl, optionally substituted C3-20 heterocycle and optionally substituted C5-20 aryl.
  • a possible substituent for the CMO alkyl group is a C5-20 aryl group.
  • Another possible group of substituents include, without limitation, a C aryl group 5-2 or (.. Eg, phenyl, 4-methoxyphenyl), a hydroxy group, a halogen (.. Eg, Cl), an acetyl group , an ester group, or a C5-20 aryloxy group (eg phenoxy).
  • Optional substituents can be selected from: CM O alkyl, C3-20 heterocyclyl, C5-20 aryl, halogen, hydroxy, ether, cyano, nitro, carboxy, ester, amido, amino, acylamido, ureido, acyloxy, thiol, thioether, sulfoxide, sulfonyl, thioamido and sulfonamino.
  • optionally substituted C1-4 alkyl and optionally substituted C5-7 aryl are selected. In some of these embodiments R 10 is not substituted.
  • a third aspect of the invention provides a process for producing cyclic carbonates (IV) comprising contacting an epoxide (III) with carbon dioxide in the presence of an organocatalyst of formula (II), by the following reaction:
  • R 10 , R 11 and R 12 have been defined above.
  • the concentration of the organocatalyst of formula (I) or (II) is 0.01 to 1 mol%.
  • Epoxide may refer to a compound of the formula:
  • Cyclic carbonate the term "cyclic carbonate”, as used herein, may refer to a compound of the formula:
  • Alkyl refers to a monovalent moiety obtained by removing a hydrogen atom from a carbon atom of a hydrocarbon having 1 to 20 carbon atoms (unless specified otherwise), which can be aliphatic or alicyclic and which can be saturated or unsaturated (partially or totally unsaturated). Therefore, the term “alkyl” includes the alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, etc. subclasses, as discussed below.
  • the prefixes indicate the number of carbon atoms or the range of the number of carbon atoms.
  • C1-4 alkyl refers to an alkyl group having 1 to 4 carbon atoms.
  • alkyl groups include C1-4alkyl ⁇ "lower alkyl") alkyl , Ci- 7 and C1-20alkyl.
  • the first prefix may vary according to other limitations; for example, for unsaturated alkyl groups, the first prefix must be at least 2; for cyclic groups, the first prefix must be at least 3; etc.
  • saturated alkyl groups include, but not limited to , methyl (C1), ethyl (C 2), propyl (C 3), butyl (C 4), pentyl (C 5), hexyl (C 6) and heptyl (C 7 ).
  • saturated (unsubstituted) branched alkyl groups include isopropyl (C 3 ), isobutyl (C 4 ), sec-butyl (C), ferc-butyl (C), isopentyl (C 5 ) and neopentyl (C 5 ).
  • Alkenyl refers to an alkyl group having one or more carbon-carbon double bonds. Examples of alkenyl groups include alkenyl C 2-4, C2-7 alkenyl, C2-20 alkenyl.
  • Alkynyl refers to an alkyl group having one or more triple bonds. Examples of alkynyl groups include C2-4 alkynyl, C 2 -7 alkynyl, alkynyl C 2-20. Examples of alkynyl groups (unsubstituted) include, but are not limited to, ethynyl (-C ⁇ CH), 2-propynyl (propargyl, -CH 2 -C ⁇ CH).
  • Cycloalkyl refers to a cyclic alkyl; that is, a monovalent moiety obtained by removing a hydrogen atom from a carbocycle that can be saturated or unsaturated, the rest of which has 3-20 carbon atoms (unless otherwise specified), including 3 to 20 atoms in the ring. Therefore, the term “cycloalkyl” ' includes the cycloalkenyl and cycloalkynyl subclasses. Preferably, each ring has 3 to 7 atoms in the ring. Examples of cycloalkyl groups include cycloalkyl C 3-2 or C 3-15 cycloalkyl, C3-10 cycloalkyl, C3-7 cycloalkyl.
  • Cyclic alkylene refers to a divalent moiety obtained by removing two hydrogen atoms from two different atoms from a saturated or unsaturated carbocyclic ring, the rest of which has 3 to 20 atoms carbon (unless otherwise specified), including 3 to 20 atoms in the ring. Preferably each ring has 5 to 7 atoms.
  • Examples of cyclic alkylene groups include alkylene cyclic C 3-20 alkylene, C 3-15 cyclic, cyclic C3-10 alkylene, C3-7 alkylene cyclic.
  • alkyl and cyclic alkylene include, but are not limited to, those derived from saturated monocyclic hydrocarbon compounds derived from: cyclopropane (C 3 ), cyclobutane (C 4 ), cyclopentane (C 5 ), cyclohexane (Ce), cycloheptane (C 7 ), methylcyclopropane (C 4 ), dimethylcyclopropane (C 5 ), methylcyclobutane (C 5 ), dimethylcyclobutane (Ce), methylcyclopentane (C 6 ), dimethylcyclopentane (C 7 ), methylcyclohexane (C 7 ), dimethylcyclohexane (Ce), mint C10); unsaturated monocyclic hydrocarbon compounds: cyclopropene (C 3 ), cyclobutene (C 4 ), cyclopentene (C 5 ), cyclohexene (C 6 ), methylcyclopropene (C 4
  • Heterocyclyl refers to a monovalent moiety obtained by removing a hydrogen atom from a ring atom of a heterocyclic compound, the rest of which has 3 to 20 atoms (except otherwise specified), of which 1 to 10 are heteroatoms.
  • each ring has 3 to 7 atoms, of which 1 to 4 are heteroatoms.
  • Heterocyclylene refers to a divalent moiety obtained by removing two hydrogen atoms from two different atoms from the ring of a heterocyclic compound, the rest of which has 3 to 20 atoms in the ring (unless otherwise specified), of which 1 to 10 are heteroatoms.
  • each ring has 3 to 7 atoms, of which 1 to 4 are heteroatoms.
  • the heterocyclyl or heterocyclylene group may be linked by carbon atoms or ring heteroatoms.
  • the heterocyclylene group is linked by two carbon atoms.
  • heterocyclyl or heterocyclylene groups the prefixes (e.g., C3-20, C 3 -.. 7 C 5 -e, etc.) denote the number of ring atoms, or range of number of atoms ring, whether carbon atoms or heteroatoms.
  • Cs-e heterocyclyl refers to a heterocyclyl group having 5 or 6 ring atoms.
  • heterocyclyl groups include C3-20 heterocyclyl, C5-20 heterocyclyl, C3-15 heterocyclyl, C5-15 heterocyclyl, C3-12 heterocyclyl, C5-12 heterocyclyl, C3-10 heterocyclyl, C5-10 heterocyclyl, heterocyclyl C 3 - 7, heterocyclyl C 5-7 heterocyclyl C 5-6 -
  • heterocyclylene C 5-6 refers to a heterocyclylene group having 5 or 6 ring atoms.
  • heterocyclylene groups include C3-20 heterocyclylene, C5-20 heterocyclylene, C3-15 heterocyclylene, C5-15 heterocyclylene, C3-12 heterocyclylene, eterociclileno C5-12, C3-10 heterocyclylene, C5-10 heterocyclylene, heterocyclylene C3-7, C5-7 heterocyclylene, and heterocyclylene C 5 - 6 -
  • Examples of monocyclic heterocyclyl and heterocyclylene groups include, but are not limited to, those derived from: Ni: aziridine (C 3 ), azetidine (C 4 ), pyrrolidine (tetrahydropyrrole) (C 5 ), pyrroline (e.g., 3- pyrroline, 2,5-dihydropyrrole) (C 5 ), 2H-pyrrole or 3H-pyrrole (isopyrrole, isoazole) (C 5 ), piperidine (Ce), dihydropyridine (C 6 ), tetrahydropyridine (Ce), azepine (C 7 );
  • oxirane C 3
  • oxetane C 4
  • oxolane tetrahydrofuran
  • oxol dihydrofuran
  • oxano tetrahydropyran
  • Si thiran (C 3 ), thiethane (C 4 ), thiolane (tetrahydrothiophene) (C 5 ), thiano (tetrahydrothiopyran) (Ce), thiepane (C 7 );
  • N 2 imidazolidine (C 5 ), pyrazolidine (diazolidine) (C 5 ), imidazoline (C 5 ), pyrazoline (dihydropyrazole) (C 5 ), piperazine (Ce);
  • N1O1 tetrahydrooxazol (C 5 ), dihydrooxazol (C 5 ), tetrahydroisoxazol (C 5 ), dihydroisoxazol (C 5 ), morpholine (Ce), tetrahydrooxazine (Ce), dihydrooxazine (Ce), oxazine (Ce);
  • N1S1 thiazoline (C 5 ), thiazolidine (C 5 ), thiomorpholine (Ce);
  • N2O1 oxadiazine (Ce)
  • O1S1 oxatiol (C 5 ) and oxathiano (thioxane) (Ce);
  • Y oxadiazine (Ce)
  • O1S1 oxatiol (C 5 ) and oxathiano (thioxane) (Ce);
  • N1O1S1 oxathiazine (Ce).
  • substituted (non-aromatic) monocyclic heterocyclyl and heterocyclylene groups include saccharide derivatives, in cyclic form, for example, furanoses (Ce), such as arabinofuranose, lixofuranose, ribofuranose and xylofuran, and pyranous (Ce), such as allopurranose , altropiranosa, glucopiranosa, manopiranosa, gulopiranosa, idopiranosa, galactopiranosa, and talopiranosa.
  • furanoses such as arabinofuranose, lixofuranose, ribofuranose and xylofuran
  • Ce pyranous
  • C5-20 aryl refers to a monovalent moiety obtained by removing a hydrogen atom from a C5-20 aromatic ring atom, said compound having one , two or more rings and 5 to 20 atoms with at least one of said rings, aromatic.
  • each ring has 5 to 7 carbon atoms.
  • the ring atoms may all be carbon atoms, as in the "carboaryl groups", in which case the group may conveniently be referred to as a "C 5 -2o carboaryl” group -
  • C5-20 arylene refers to a divalent moiety, obtained by removing two hydrogen atoms from a C5-20 aromatic ring, said compound having one, or two or more rings, and 5 to 20 atoms in the ring, with at least one of said rings, aromatic.
  • each ring has 5 to 7 carbon atoms.
  • the ring atoms can all be carbon atoms, as in the "carboarylene groups” in which case the group may conveniently be referred to as a “carboarylene group”
  • aryl groups C 5 - C 2 o arylene 5-2 or have no ring heteroatoms include, but not limited to , those derived from benzene (that is, phenyl) (Ce), naphthalene (C10), anthracene (C14), phenanthrene (C14), and pyrene
  • the ring atoms may include one or more heteroatoms, including, but not limited to, oxygen, nitrogen and sulfur, as in the "heteroaryl groups” or “heteroarylene groups.”
  • the group may be referred to conveniently as “heteroaryl C 5 -2nd” or “C5-20 heteroarylene", wherein “C5-20” denotes ring atoms, whether carbon atoms or heteroatoms.
  • each ring has 5 to 7 ring atoms, of which 0 to 4 are heteroatoms.
  • the heteroaryl or heteroarylene group may be linked by carbon atoms or ring heteroatoms.
  • the heteroarylene group is linked by two carbon atoms.
  • heteroaryl groups include C5-20 and C5-20 heteroarylene, but not limited to , heteroaryl groups C 5 and C 5 heteroarylene furan derivatives (oxole), thiophene (thiole), pyrrole (azole), imidazole (1, 3- diazol), pyrazole (1,2-diazol), 1,3,3-triazole, 1,4,4-triazole, oxazole, isoxazole, thiazole, isothiazole, oxadiazole, tetrazole and oxatriazole; and C 6 heteroaryl groups derived from isoxazine, pyridine (azine), pyridazine (1,2-diazine), pyrimidine (1,3-diazine; e.g., cytosine, thymine, uracil), pyrazine (1,4-diazine) and 1,3,5-triazine.
  • heteroaryl groups C
  • C5-20 heteroaryl groups heteroarylene and C5-20 comprising fused rings include, but are not limited to , heteroaryl groups C 9 and C 9 heteroarylene benzofuran derivatives, isobenzofuran, benzothiophene, indole, isoindole; C10 heteroaryl and C10 heteroarylene groups derived from quinoline, isoquinoline, benzodiazine, pyridopyridine; C14 heteroaryl and C14 heteroarylene groups derived from acridine and xanthene.
  • alkyl, cyclic alkylene, heterocyclyl, heterocyclylene, aryl and arylene groups which have been indicated, either alone or as part of another substituent, may themselves be substituted with one or more groups selected from them and the additional substituents listed below.
  • Halogen -F, -Cl, -Br, and -I.
  • Ether -OR, where R is a substituent of the ether, for example a C1-7 alkyl group (also called C1-7 alkoxy group), a C3-20 heterocyclyl group (also called C3-20 heterocyclyloxy group), or a C5-20 aryl group (also called a C5-20 aryloxy group), preferably a C1-7 alkyl group.
  • R is a substituent of the ether, for example a C1-7 alkyl group (also called C1-7 alkoxy group), a C3-20 heterocyclyl group (also called C3-20 heterocyclyloxy group), or a C5-20 aryl group (also called a C5-20 aryloxy group), preferably a C1-7 alkyl group.
  • Acyl (keto): -C (0) R wherein R is an acyl substituent, for example, H, a C1-7 alkyl group (also referred to as (C1-7) alkyl-acyl or C1-7 alkanoyl), a C3-20 heterocyclyl group (also called heterocyclyl (C3-20) acyl), or a C5-20 aryl group (also called aryl (C5-20) acyl), preferably a C1-7 alkyl group.
  • R is an acyl substituent, for example, H, a C1-7 alkyl group (also referred to as (C1-7) alkyl-acyl or C1-7 alkanoyl), a C3-20 heterocyclyl group (also called heterocyclyl (C3-20) acyl), or a C5-20 aryl group (also called aryl (C5-20) acyl), preferably a
  • acyl groups include, but are not limited to, -C (0) CH 3 (acetyl), -C (0) CH 2 CH 3 (propionyl), -C (0) C (CH 3 ) 3 (pivaloyl), and -C (0) Ph (benzoyl, fenone).
  • Ester (carboxylate, carboxylic acid ester, oxycarbonyl): -C (0) OR, wherein R is an ester substituent, for example, a C1-7 alkyl group, a heterocyclyl group C 3-2 or, or C5-20 aryl group, preferably a C1-7 alkyl group.
  • ester groups include, but not limited to, -C (0) OCH 3 , -C (0) OCH 2 CH 3 , -C (0) OC (CH 3 ) 3, and -C (0) OPh.
  • Amido (carbamoyl, carbamyl, aminocarbonyl, carboxamide): -C (0) NR 1 R 2 , in which R 1 and R 2 are independently substituents of the amino group.
  • amido groups include, but are not limited to, -C (0) NH 2 , -C (0) NHCH 3 , -C (0) N (CH 3 ) 2 , -C (0) NHCH 2 CH 3 and - C (0) N (CH 2 CH 3 ) 2 , as well as amido groups in which R 1 and R 2 , together with the nitrogen atom to which they are attached, form a heterocyclic structure as in, for example, piperidinocarbonyl, morpholinocarbonyl , thiomorpholinocarbonyl, and piperazinylcarbonyl.
  • R 1 and R 2 are independently amino substituent, for example hydrogen, a C 1-7 alkyl group (also referred to as C 1-7 alkylamino or C 1-7 alkylamino), a heterocyclyl group C 3-20, or an aryl group C 5 - 2 or, preferably H or a C1-7 alkyl group, or in the case of a "cyclic", R 1 and R 2 amino group, taken together with the Nitrogen atom to which they are attached, form a heterocyclic ring having 4 to 8 atoms in the ring.
  • R 1 and R 2 are independently amino substituent, for example hydrogen, a C 1-7 alkyl group (also referred to as C 1-7 alkylamino or C 1-7 alkylamino), a heterocyclyl group C 3-20, or an aryl group C 5 - 2 or, preferably H or a C1-7 alkyl group, or in the case of a "cyclic", R 1 and R 2 amino group, taken together with the Nitrogen atom
  • amino groups include, but are not limited to, -NH 2 , -NHCH 3 , -NHCH (CH 3 ) 2 -N (CH 3 ) 3 , -N (CH 3 CH 2 ) 2 , and -NHPh.
  • cyclic amino groups include, but are not limited to, aziridinyl, azetidinyl, pyrrolidinyl, piperidino, piperazinyl, perhydrodiazepinyl, morpholino, and thiomorpholino.
  • the cyclic amino groups may be substituted on their ring with any of the substituents defined herein for example carboxy, carboxylate and amido.
  • Ammonium -NH 3 + , Z, in which Z is a suitable counterion, such as halide (eg Cl ⁇ , Br), nitrate, perchlorate.
  • Z is a suitable counterion, such as halide (eg Cl ⁇ , Br), nitrate, perchlorate.
  • Examples of acylamido groups include, but are not limited to, -NHC (0) CH 3 , C (0) NHC (0) CH 2 CH 3 and -NHC (0) Ph.
  • R 1 and R 2 together can form a cyclic structure, such as succinimidyl, maleimidyl and phthalimidyl, for example:
  • Ureido -N (R 1) CONR 2 R 3 wherein R 1, R 2 and R 3 are independently amino substituents, for example, hydrogen, Ci- 7, a heterocyclyl group C 3 a - 20 or an aryl group C 5 - 2 or preferably hydrogen or an alkyl group Ci- 7.
  • R 1, R 2 and R 3 are independently amino substituents, for example, hydrogen, Ci- 7, a heterocyclyl group C 3 a - 20 or an aryl group C 5 - 2 or preferably hydrogen or an alkyl group Ci- 7.
  • Examples of ureido groups include, but are not limited to, -NHCONH 2 , -NHCONHMe, -NHCONHEt, -NHCONMe 2 , -NHCONEt 2 , -NMeCONH 2 , -NMeCONHMe, -NMeCONHEt, -NMeCONMe 2 , -NMeCONEt 2 and -NHCONHPh.
  • R may be, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group OR a C5-20 aryl group, preferably a C1-7 alkyl group.
  • acyloxy groups include, but are not limited to -OC (0) CH 3
  • C1-7 alkylthio groups include, but are not limited to, -SCH 3 and -SCH 2 CH 3 .
  • R is a sulfoxide substituent, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group OR a C5-20 aryl group, preferably an alkyl group C1-7.
  • Examples of sulfoxide groups include, but are not limited to -S (0) CH 3 and -S (0) CH 2 CH 3 .
  • R is a sulfone substituent, for example, a C1-7 alkyl group, a heterocyclyl group C 3-2 O or a C 5-20 aryl group, preferably a C1-7 alkyl group.
  • sulfonyl groups include, but are not limited to -S (0) 2 CH 3 (methanesulfonyl, mesyl), -S (0) 2 CF 3 , -S (0) 2 CH 2 CH 3 and -S (0) 2 C 6 H 4 CH 3 (4-methylphenylsulfonyl, tosyl).
  • R 1 and R 2 are independently amino substituents, as defined for the amino groups.
  • Examples of thioamido groups include, but are not limited to, -C (S) NH 2 , -C (S) NHCH 3 , -C (S) N (CH 3 ) 2 , and -C (S) NHCH 2 CH 3 .
  • R 1 is an amino substituent, as defined for the amino groups
  • R is a sulfonyl substituent, for example, a C 1-7 alkyl group, a heterocyclyl group C 3-2 aryl group oo a C 5-20, preferably a C1-7 alkyl group.
  • sulfonamido groups include, but are not limited to, -NHS (0) 2 CH 3 , -NHS (0) 2 Ph
  • the elemental analysis was carried out using the Perkin-Elmer 2400 carbon, hydrogen and nitrogen (CHN) analyzer.
  • IR spectroscopy IR spectra of pure solids were recorded on a Shimadzu IRPrestige-21 FTIR spectrometer equipped with an attenuated total reflectance (ATR) accessory.
  • the spectra by MALDI-TOF were recorded on a Bruker Autoflex II TOF / TOF mass spectrometer using anthralin (1,8,9-Trihydroxyanthracene) as matrix and sodium acetate as additive.
  • the samples were co-crystallized with the matrix and the additive in a 5: 250: 1 ratio in the probe and were ionized with a positive mode reflector.
  • External calibration was performed using Bruker Peptide Calibration Standard II (mass range: 700-3,200 Da) and Protein Calibration Standard I (mass range: 5000-17,500 Da).
  • the catalyst (Ha) was synthesized according to the following reaction:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to organocatalysts for producing cyclic carbonates. More specifically, the invention relates to imidazole-derived organocatalysts and to the use thereof for the production of cyclic carbonates from epoxides and carbon dioxide, carried out at a carbon dioxide pressure of 10 bar, at a temperature of 90º C, for reaction times of between 1 and 24 hours and with an organocatalyst concentration of 1 mol.-%, with high yields being produced.

Description

ORGANOCATALIZADORES PARA LA OBTENCIÓN DE CARBONATOS CÍCLICOS  ORGANOCATALIZERS FOR OBTAINING CYCLIC CARBONATES
DESCRIPCIÓN DESCRIPTION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención pertenece al campo técnico de la química. La invención se refiere en particular a un procedimiento eficiente para sintetizar carbonatos cíclicos a partir de epóxidos y dióxido de carbono, usando organocatalizadores derivados de imidazol. Además, se reporta la síntesis de estos organocatalizadores. The present invention belongs to the technical field of chemistry. The invention relates in particular to an efficient process for synthesizing cyclic carbonates from epoxides and carbon dioxide, using organocatalysts derived from imidazole. In addition, the synthesis of these organocatalysts is reported.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El dióxido de carbono (C02) es la fuente de carbono renovable más abundante en la naturaleza. Por lo tanto, la fijación química del C02 es uno de los temas más importantes en la síntesis orgánica. Varios métodos para la fijación de C02 se han desarrollado a pesar de la baja reactividad. Las reacciones catalíticas se consideran esenciales para la ampliación y profundización de la utilidad sintética del C02. Un gran número de catalizadores metálicos inorgánicos y orgánicos ha sido desarrollado para varias conversiones químicas de C02. La síntesis de carbonatos o policarbonatos a partir de C02 y epóxidos, reacciones de carboxilación con C02, la reducción de C02, y otras reacciones se han desarrollado y estudiado extensa e intensamente. La síntesis de carbonatos cíclicos normalmente implica la reacción de epóxidos con dióxido de carbono, y por lo tanto se podría usar para capturar dióxido de carbono, reduciendo así las emisiones de gases de efecto invernadero en la atmósfera. Además, los carbonatos cíclicos se han usado ampliamente como materias primas para la preparación de policarbonatos, como electrolitos en baterías secundarias de iones de litio, como disolventes polares apróticos y como aditivos de combustibles. Carbon dioxide (C0 2 ) is the most abundant renewable source of carbon in nature. Therefore, the chemical fixation of C0 2 is one of the most important topics in organic synthesis. Several methods for fixing C0 2 have been developed despite low reactivity. Catalytic reactions are considered essential for the expansion and deepening of the synthetic utility of C0 2 . A large number of inorganic and organic metal catalysts has been developed for various chemical conversions of C0 2 . The synthesis of carbonates or polycarbonates from C0 2 and epoxides, carboxylation reactions with C0 2 , the reduction of C0 2 , and other reactions have been developed and studied extensively and intensively. The synthesis of cyclic carbonates normally involves the reaction of epoxides with carbon dioxide, and therefore could be used to capture carbon dioxide, thus reducing greenhouse gas emissions in the atmosphere. In addition, cyclic carbonates have been widely used as raw materials for the preparation of polycarbonates, as electrolytes in secondary lithium-ion batteries, as aprotic polar solvents and as fuel additives.
Comúnmente, los carbonatos cíclicos se han sintetizado por el método del fosgeno, presentando éste algunos inconvenientes, tales como el uso de un gas altamente tóxico (fosgeno), la formación de cloruro de hidrógeno (subproducto) y la generación de aguas residuales que contienen diclorometano (disolvente) y sales. Aunque el método del fosgeno puede producir carbonatos cíclicos de forma rentable a gran escala, se requiere el desarrollo de métodos ambientalmente benignos, tales como métodos catalíticos usando C02 y epóxidos bajo condiciones suaves de reacción. Estos criterios deben reducir la huella de carbono tanto como sea posible, para satisfacer las condiciones sostenibles de conversión de C02, incluyendo un fácil reciclaje del catalizador para su reutilización. Commonly, cyclic carbonates have been synthesized by the phosgene method, which presents some drawbacks, such as the use of a highly toxic gas (phosgene), the formation of hydrogen chloride (byproduct) and the generation of wastewater containing dichloromethane (solvent) and salts. Although the phosgene method cyclic carbonates can produce profitably on a large scale, the development of environmentally benign methods such as catalytic methods using C0 2 and epoxides under mild reaction conditions required. These criteria should reduce the carbon footprint as much as possible, to meet the sustainable conditions of conversion of C0 2 , including easy recycling of the catalyst for reuse.
Los catalizadores para la síntesis de carbonatos cíclicos a partir de epóxidos y dióxido de carbono se conocen ya en el estado del arte, aunque se requieren temperaturas de reacción elevadas y/o presiones altas de dióxido de carbono, llevándose a cabo la reacción con frecuencia en dióxido de carbono supercrítico (Lu, et al., App. Cat. A, 234 (2002), 25 - 33). Para optimizar las condiciones de reacción, se ha desarrollado una gran variedad de catalizadores para la síntesis de carbonatos cíclicos. Los sistemas de catalizadores más comúnmente utilizados que operan a temperatura ambiente son combinaciones de ácidos de Lewis y nucleófilos. Por ejemplo, haluros metálicos como el ZnBr2 (Wu et al., Synth. Commun, 42 (2012), 2564 - 2573), NbCI5 (Wilhelm et al., Catal. Sci. Technol., 4 (2014), 1638 - 1643) o CoCI2 (Sibaouih et al., Appl. Catal. A, 365 (2009), 1638 - 1643), así como óxidos metálicos (Yano et al., Chem. Commun., (1997), 1 129 - 1 130), sílice modificada (Srivastava et al., Tetrahedron Lett. 47 (2006), 4213-4217) y zeolitas (Tu et al., J. Catal., 199 (2001 ), 85-91 ), pueden ser utilizados como catalizadores. Lo más común es utilizarlos en combinación con un nucleófilo adecuado. Catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide are already known in the state of the art, although high reaction temperatures and / or high pressures of carbon dioxide are required, the reaction being frequently carried out in supercritical carbon dioxide (Lu, et al., App. Cat. A, 234 (2002), 25-33). To optimize the reaction conditions, a wide variety of catalysts for the synthesis of cyclic carbonates has been developed. The most commonly used catalyst systems that operate at room temperature are combinations of Lewis acids and nucleophiles. For example, metal halides such as ZnBr 2 (Wu et al., Synth. Commun, 42 (2012), 2564-2573), NbCI 5 (Wilhelm et al., Catal. Sci. Technol., 4 (2014), 1638 - 1643) or CoCI 2 (Sibaouih et al., Appl. Catal. A, 365 (2009), 1638-1643), as well as metal oxides (Yano et al., Chem. Commun., (1997), 1 129 - 1 130), modified silica (Srivastava et al., Tetrahedron Lett. 47 (2006), 4213-4217) and zeolites (Tu et al., J. Catal., 199 (2001), 85-91), can be used as catalysts The most common is to use them in combination with a suitable nucleophile.
Además, en la literatura se ha descrito una amplia gama de complejos metálicos que actúan como catalizadores para la obtención de carbonatos cíclicos. Complejos de Cr, Co, Al mono- y bimetálicos, complejos de Co-porfirina y complejos Cr-salen (salen = ¡mina derivada de salicilaldehído y etilendiamina) han surgido como sistemas catalíticos altamente activos en combinación con co-catalizadores nucleófilos. In addition, a wide range of metal complexes that act as catalysts for obtaining cyclic carbonates have been described in the literature. Complexes of Cr, Co, Al mono- and bimetallic, Co-porphyrin complexes and Cr-sale complexes (exit = mine derived from salicylaldehyde and ethylenediamine) have emerged as highly active catalyst systems in combination with nucleophilic co-catalysts.
En la patente WO2008132474A1 se describe el uso de catalizadores de aluminio (salen) dímeros y un cocatalizador, llevándose a cabo la reacción de diferentes epóxidos con dióxido de carbono a temperatura ambiente, presión atmosférica y tiempos de reacción entre 3 y 24 horas usando de 0.1 a 10% en moles de catalizador y obteniendo rendimientos superiores al 50%. WO2008132474A1 describes the use of aluminum catalysts (exits) dimers and a cocatalyst, the reaction of different epoxides being carried out with carbon dioxide at room temperature, atmospheric pressure and reaction times between 3 and 24 hours using 0.1 at 10 mol% of catalyst and obtaining yields greater than 50%.
Por otra parte, los catalizadores libres de metal para la cicloadición de C02 con epóxidos podrían representar una alternativa atractiva, ya que son por lo general significativamente más rentables, fácilmente disponibles, y menos tóxicos. La sostenibilidad de la reacción de acoplamiento de C02 con epóxidos a carbonatos cíclicos podría ser optimizada (Cokoja et al, ChemSusChem 8 (2015) 2436 - 2454). Este documento presenta una revisión de una amplia gama de organocatalizadores que se pueden utilizar para la conversión de C02 y epóxidos en carbonatos cíclicos. Sin embargo, una comparación y evaluación directa es difícil. En casi todos los casos, se aplican diferentes condiciones de reacción, lo cual tiene, en cierta medida, enormes efectos sobre el rendimiento catalítico. Moreover, metal free catalysts for cycloaddition of C0 2 with epoxides could represent an attractive alternative because they are generally significantly more cost effective, readily available, and less toxic. The sustainability of the reaction of Coupling of C0 2 with cyclic carbonate epoxies could be optimized (Cokoja et al, ChemSusChem 8 (2015) 2436-2454). This document presents a review of a wide range of organocatalysts that can be used for the conversion of C0 2 and epoxides into cyclic carbonates. However, a comparison and direct evaluation is difficult. In almost all cases, different reaction conditions apply, which has, to some extent, enormous effects on catalytic performance.
Idealmente, las condiciones de reacción de referencia deben basarse en un proceso de baja temperatura y baja presión de C02, así como un tiempo de reacción corto. Sin embargo, hasta el momento, el tiempo de reacción es todavía demasiado largo para estos catalizadores y tiene que ser reducido aún más. Ideally, the reference reaction conditions should be based on a low temperature and low C0 2 pressure process, as well as a short reaction time. However, so far, the reaction time is still too long for these catalysts and has to be further reduced.
Según una de las conclusiones del documento ChemSusChem 8 (2015) 2436 - 2454, las investigaciones futuras deberían centrarse en organocatalizadores que puedan competir con catalizadores metálicos conocidos. El objetivo es desarrollar un catalizador libre de metal que opere a temperatura ambiente, bajo presión atmosférica de C02, y con una carga baja de catalizador. Este debe ser fácilmente reciclable debido a la perspectiva a largo plazo de convertir el dióxido de carbono a una escala mucho más grande de lo que se realiza actualmente. According to one of the conclusions of ChemSusChem 8 (2015) 2436-2454, future research should focus on organocatalysts that can compete with known metal catalysts. The objective is to develop a metal-free catalyst that operates at room temperature, under atmospheric pressure of C0 2 , and with a low catalyst charge. This must be easily recyclable due to the long-term perspective of converting carbon dioxide to a much larger scale than is currently done.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención proporciona el uso de organocatalizadores derivados de imidazol, para sintetizar carbonatos cíclicos a partir de epóxidos y dióxido de carbono. Estos organocatalizadores presentan una mayor actividad catalítica, con un menor tiempo de reacción, menor carga del catalizador, temperaturas de reacción menores y bajas presiones de C02, frente a lo descrito en el estado del arte. The present invention provides the use of organocatalysts derived from imidazole, to synthesize cyclic carbonates from epoxides and carbon dioxide. These organocatalysts have a greater catalytic activity, with a shorter reaction time, lower catalyst load, lower reaction temperatures and low C0 2 pressures, compared to that described in the state of the art.
El uso de los organocatalizadores permite sintetizar un gran número de carbonatos cíclicos, gracias a la reacción de estos con epóxidos, así como epóxidos derivados de productos de origen natural. The use of organocatalysts allows a large number of cyclic carbonates to be synthesized, thanks to their reaction with epoxides, as well as epoxides derived from products of natural origin.
De acuerdo con un primer aspecto, la presente invención proporciona un método de síntesis de estos organocatalizadores, los cuales son muy activos para la reacción de epóxidos con dióxido de carbono, para producir carbonatos cíclicos y permiten llevar a cabo la reacción en condiciones suaves. Los organocatalizadores tienen la fórmula I o II: According to a first aspect, the present invention provides a method of synthesis of these organocatalysts, which are very active for the reaction of epoxides with carbon dioxide, to produce cyclic carbonates and allow the reaction to be carried out under mild conditions. The organocatalysts have the formula I or II:
Figure imgf000005_0001
Figure imgf000005_0001
en la que X"" : Cr, Br, I", -CH3C6H4SO3-, CH3S03-, CF3S03-, (C6H5) B-, F B~, CI4B", F6P-, HSCv, S04 2-, NO3 , C03 2", CH3(CH2)nC02- (n=0-20), C6H5-C02-, CF3CO2 . R2, R4, R5, R6, R7, R8 y R9 pueden ser iguales o distintos entre sí e igual a: H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, OH, CH3(CH2)nO (n=0-18), (CH3)2N, CH2=CHCH2, CH3CH=CHCH2, F, Cl, Br, I, CHO, CN, N02, C02H, CH3(CH2)nCO (n=0-18), CH3(CH2)n02C (n=0-18), o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-CH3(CH2)nCO-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-, p-H03S-C6H4, o-, m-, p-H02C-C6H4, o-, m-, p-CH3(CH2)n02C-C6H4 (n=0-18). where X "" : Cr, Br, I " , -CH3C6H4SO3-, CH 3 S0 3 -, CF 3 S0 3 -, (C 6 H 5 ) B-, FB ~ , CI 4 B " , F 6 P -, HSCv, S0 4 2 -, NO3, C0 3 2 " , CH 3 (CH 2 ) nC0 2 - (n = 0-20), C 6 H 5 -C0 2 -, CF3CO2. R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 can be the same or different from each other and equal to: H, CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2 CH, ( CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , OH, CH 3 (CH 2 ) n O (n = 0-18), (CH 3 ) 2 N, CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , F, Cl, Br, I, CHO, CN, N0 2 , C0 2 H, CH 3 (CH 2 ) n CO (n = 0-18), CH 3 (CH 2 ) n 0 2 C (n = 0-18), o-, m-, p- [CH 3 (CH 2 ) n] -C 6 H 4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m-, p - [(CH 3 ) 3 C] -C 6 H 4 , o-, m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n O] -C 6 H 4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , o-, m-, p-CF 3 -C 6 H 4 , o-, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m-, p-Br-C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p- CHO-C 6 H 4 , o-, m-, p-CH 3 (CH 2 ) n CO-C 6 H 4 (n = 0-18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o-, m-, p-H0 3 SC 6 H 4 , o-, m-, p-H0 2 CC 6 H 4 , o- , m-, p-CH 3 (CH 2 ) n 0 2 CC 6 H 4 (n = 0-18).
R1 y R3 pueden ser iguales o distintos entre sí e igual a: H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, CH3(CH2)nO (n=0-18), CH2=CHCH2, CH3CH=CHCH2, o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-[CH3(CH2)nCO]-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-, p-CH3(CH2)n02C-C6H4 (n=0-18). R 1 and R 3 can be the same or different from each other and equal to: H, CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2 CH, (CH 3 ) 3 C, sec-Bu , C 6 H 5 , C 6 H 5 CH 2 , CH 3 (CH 2 ) n O (n = 0-18), CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , o-, m-, p- [CH 3 (CH 2 ) n ] -C 6 H 4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m-, p - [(CH 3 ) 3 C] -C 6 H 4 , o-, m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n O] -C 6 H 4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , o-, m-, p-CF 3 -C 6 H 4 , o-, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m- , p-Br-C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n CO] -C 6 H 4 (n = 0-18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o- , m-, p-CH 3 (CH 2 ) n 0 2 CC 6 H 4 (n = 0-18).
Un segundo aspecto de la invención proporciona un procedimiento para producir carbonatos cíclicos (IV) que comprende poner en contacto un epóxido (III) con dióxido de carbono en presencia de un organocatalizador de fórmula (I) en combinación con un cocatalizador que suministra Xn_, mediante la siguiente reacción:
Figure imgf000006_0001
A second aspect of the invention provides a process for producing cyclic carbonates (IV) comprising contacting an epoxide (III) with carbon dioxide in the presence of an organocatalyst of formula (I) in combination with a cocatalyst that supplies X n_ , by the following reaction:
Figure imgf000006_0001
En la que R10, R1 1 y R12 se seleccionan independientemente de H, alquilo Ci-2o opcionalmente sustituido, heterociclo C3-20 opcionalmente sustituido y arilo C5-20 opcionalmente sustituido, o R10 y R12 o R1 1 y R12 forman un grupo conector opcionalmente sustituido, entre los dos átomos de carbono a los que están unidos respectivamente. El grupo conector, junto con los átomos de carbono a los que están unidos, puede formar un cicloalquilo C5-20 o heterociclo C5-20 opcionalmente sustituidos. El grupo cicloalquilo C5-20 O heterociclo C5-20 puede estar sustituido solo en una posición del anillo, por ejemplo, adyacente al epóxido. Los sustituyentes adecuados incluyen alquilo CM O opcionalmente sustituido, heterociclo C3-20 opcionalmente sustituido y arilo C5-20 opcionalmente sustituido. Where R 10 , R 1 1 and R 12 are independently selected from H, C 2 -C or optionally substituted alkyl, optionally substituted C 3-20 heterocycle and optionally substituted C 5-20 aryl, or R 10 and R 12 or R 1 1 and R 12 form an optionally substituted linker group, between the two carbon atoms to which they are attached respectively. The connecting group, together with the carbon atoms to which they are attached, can form an optionally substituted C5-20 cycloalkyl or C5-20 heterocycle. The C5-20 cycloalkyl group C5-20 heterocycle may be substituted only at a ring position, for example, adjacent to the epoxide. Suitable substituents include optionally substituted CM O alkyl, optionally substituted C3-20 heterocycle and optionally substituted C5-20 aryl.
Un posible sustituyente para el grupo alquilo CMO es un grupo arilo C5-20. Otro posible grupo de sustituyentes incluyen, pero sin limitar, un grupo arilo C5-2o (p. ej., fenilo, 4-metoxifenilo), un grupo hidroxi, un halógeno (p. ej., Cl), un grupo acetilo, un grupo éster, o un grupo ariloxi C5-20 (p. ej. fenoxi). A possible substituent for the CMO alkyl group is a C5-20 aryl group. Another possible group of substituents include, without limitation, a C aryl group 5-2 or (.. Eg, phenyl, 4-methoxyphenyl), a hydroxy group, a halogen (.. Eg, Cl), an acetyl group , an ester group, or a C5-20 aryloxy group (eg phenoxy).
Los sustituyentes opcionales se pueden seleccionar de: alquilo CM O, heterociclilo C3-20, arilo C5-20, halógeno, hidroxi, éter, ciano, nitro, carboxi, éster, amido, amino, acilamido, ureido, aciloxi, tiol, tioéter, sulfóxido, sulfonilo, tioamido y sulfonamino. Preferiblemente, el epóxido es terminal, es decir R11 y R12 = H. Optional substituents can be selected from: CM O alkyl, C3-20 heterocyclyl, C5-20 aryl, halogen, hydroxy, ether, cyano, nitro, carboxy, ester, amido, amino, acylamido, ureido, acyloxy, thiol, thioether, sulfoxide, sulfonyl, thioamido and sulfonamino. Preferably, the epoxide is terminal, ie R 11 and R 12 = H.
En algunas realizaciones se selecciona el alquilo C1-4 opcionalmente sustituido y el arilo C5-7 opcionalmente sustituido. En algunas de estas realizaciones R10 no está sustituido. In some embodiments, optionally substituted C1-4 alkyl and optionally substituted C5-7 aryl are selected. In some of these embodiments R 10 is not substituted.
Los epóxidos preferidos son óxido de etileno (R10 = R11 = R12 = H), óxido de propileno (R10 = metilo, R11 = R12 = H), óxido de 1 ,2-butileno (R10 = etilo, R11 = R12 = H), y óxido de estireno (R10 = fenilo, R11 = R12 = H). Otros epóxidos de interés incluyen óxido de 3-hidroxipropileno (R10 = CH2OH, R11 = R12 = H), óxido de 3-cloropropileno (R10 = CH2CI, R11 = R12 = H), óxido de 3- acetiloxipropileno (R10 = CH2OAc, R11 = R12 = H), óxido de 3-(fenilcarboniloxi)propileno (R10 = CH2OCOPh, R11 = R12 = H), óxido de 3-fenoxipropileno (R10 = CH2OPh, R11 = R12 = H) y óxido de 4-metoxiestireno (R10 = 4-MeOC6H4, R11 = R12 = H) . Un tercer aspecto de la invención proporciona un procedimiento para producir carbonatos cíclicos (IV) que comprende poner en contacto un epoxido (III) con dióxido de carbono en presencia de un organocatalizador de fórmula (II), mediante la siguiente reacción: Preferred epoxides are ethylene oxide (R 10 = R 11 = R 12 = H), propylene oxide (R 10 = methyl, R 11 = R 12 = H), 1,2-butylene oxide (R 10 = ethyl , R 11 = R 12 = H), and styrene oxide (R 10 = phenyl, R 11 = R 12 = H). Other epoxides of interest include oxide, 3-hydroxypropylene (R 10 = CH 2 OH, R 11 = R 12 = H) oxide, 3-chloropropylene (R 10 = CH 2 Cl, R 11 = R 12 = H) oxide, 3 - acetyloxypropylene (R 10 = CH 2 OAc, R 11 = R 12 = H), 3- (phenylcarbonyloxy) propylene oxide (R 10 = CH 2 OCOPh, R 11 = R 12 = H), 3-phenoxypropylene oxide ( R 10 = CH 2 OPh, R 11 = R 12 = H) and 4-methoxystyrene oxide (R 10 = 4-MeOC 6 H 4 , R 11 = R 12 = H). A third aspect of the invention provides a process for producing cyclic carbonates (IV) comprising contacting an epoxide (III) with carbon dioxide in the presence of an organocatalyst of formula (II), by the following reaction:
Figure imgf000007_0001
Figure imgf000007_0001
En la que R10, R11 y R12 se han definido anteriormente. In which R 10 , R 11 and R 12 have been defined above.
En otro aspecto de la invención, el procedimiento para producir carbonatos cíclicos (IV) que comprende poner en contacto un epoxido (III) con dióxido de carbono a una presión de 1 a 10 bares, en presencia de un organocatalizador de fórmula (I) en combinación con un cocatalizador que suministra Xn , siendo Xn : Cr, Br, I", p-CF CeFUSC , CH3SO3", CF3SO3", (06Η5)4Β-, F4B", CUB-, F6P", HSO4-, S04 2-, NO3 , C03 2", CH3(CH2)nC02- (n=0-20), C6H5-C02-, CF3CO2" o un organocatalizador de fórmula (II), a un rango de temperatura de 20eC a 100eC. In another aspect of the invention, the process for producing cyclic carbonates (IV) comprising contacting an epoxide (III) with carbon dioxide at a pressure of 1 to 10 bar, in the presence of an organocatalyst of formula (I) in combination with a cocatalyst that supplies X n , where X n : Cr, Br, I " , p-CF CeFUSC, CH3SO3 " , CF3SO3 " , (0 6 Η 5 ) 4 Β-, F 4 B " , CUB-, F 6 P " , HSO4-, S0 4 2 -, NO3, C0 3 2" , CH 3 (CH 2 ) nC02- (n = 0-20), C 6 H 5 -C0 2 -, CF3CO2 " or an organocatalyst of formula (II), at a temperature range of 20 e C to 100 e C.
El procedimiento para producir carbonatos cíclicos de fórmula (IV) que comprende poner en contacto un epoxido de fórmula (III) con dióxido de carbono en presencia de un organocatalizador de fórmula (I) en combinación con un cocatalizador que suministra Xn , siendo Xn : Cr, Br, I", p-CF CeFUSOs", CH3SO3-, CF3SO3-, (06Η5)4Β-, F4B~, CUB", F6P", HSC , S04 2", N03 ", C03 2", CH3(CH2)nC02" (n=0-20), C6H5-C02 ", CF3CO2", se lleva a cabo de 30 min a 26h. The process for producing cyclic carbonates of formula (IV) comprising contacting an epoxide of formula (III) with carbon dioxide in the presence of an organocatalyst of formula (I) in combination with a cocatalyst that supplies X n , where X n : Cr, Br, I " , p-CF CeFUSOs " , CH3SO3-, CF3SO3-, (0 6 Η 5 ) 4 Β-, F 4 B ~ , CUB " , F 6 P " , HSC, S0 4 2 " , N0 3 " , C0 3 2" , CH 3 (CH 2 ) nC02 " (n = 0-20), C 6 H 5 -C0 2 " , CF3CO2 " , is carried out from 30 min to 26h.
Por otra parte, el procedimiento para producir carbonatos cíclicos de fórmula (IV) que comprende poner en contacto un epoxido de fórmula (III) con dióxido de carbono en presencia de un organocatalizador de fórmula (II), se lleva a cabo de 30 min a 26h. On the other hand, the process for producing cyclic carbonates of formula (IV) comprising contacting an epoxide of formula (III) with carbon dioxide in the presence of an organocatalyst of formula (II), is carried out for 30 min at 26h
La concentración del organocatalizador de fórmula (I) o (II) es de 0,01 a 1% en moles. The concentration of the organocatalyst of formula (I) or (II) is 0.01 to 1 mol%.
Definiciones Definitions
Epoxido: El término "epoxido", como se usa en el presente documento, puede referirse a un compuesto de fórmula:
Figure imgf000008_0001
Epoxide: The term "epoxide", as used herein, may refer to a compound of the formula:
Figure imgf000008_0001
en la que R10, R11 y R12 se han definido anteriormente. in which R 10 , R 11 and R 12 have been defined above.
Carbonato cíclico: la expresión "carbonato cíclico", como se usa en el presente documento, puede referirse a un compuesto de fórmula: Cyclic carbonate: the term "cyclic carbonate", as used herein, may refer to a compound of the formula:
Figure imgf000008_0002
Figure imgf000008_0002
(IV)  (IV)
en la que R10, R11 y R12 se han definido anteriormente. in which R 10 , R 11 and R 12 have been defined above.
Alquilo: el término "alquilo", como se usa en el presente documento, se refiere a un resto monovalente obtenido eliminando un átomo de hidrógeno de un átomo de carbono de un hidrocarburo que tiene de 1 a 20 átomos de carbono (salvo que se especifique otra cosa), que puede ser alifático o alicíclico y que puede ser saturado o insaturado (parcial o totalmente insaturado). Por lo tanto, el término "alquilo" incluye las subclases alquenilo, alquinilo, cicloalquilo, cicloalquenilo, cicloalquinilo, etc., como se discute a continuación. Alkyl: The term "alkyl", as used herein, refers to a monovalent moiety obtained by removing a hydrogen atom from a carbon atom of a hydrocarbon having 1 to 20 carbon atoms (unless specified otherwise), which can be aliphatic or alicyclic and which can be saturated or unsaturated (partially or totally unsaturated). Therefore, the term "alkyl" includes the alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, etc. subclasses, as discussed below.
En el contexto de los grupos alquilo, los prefijos (p. ej., Ci-4, C1-7, C1-20, C2-7, C3-7, etc.) indican el número de átomos de carbono o el intervalo del número de átomos de carbono. Por ejemplo, la expresión "alquilo C1-4 ", como se usa en el presente documento, se refiere a un grupo alquilo que tiene de 1 a 4 átomos de carbono. Los ejemplos de grupos alquilo incluyen alquilo C1-4 {"alquilo inferior"), alquilo Ci-7 y alquilo C1-20. Obsérvese que el primer prefijo puede variar de acuerdo con otras limitaciones; por ejemplo, para grupo alquilo insaturados, el primer prefijo debe ser al menos 2; para grupos cíclicos, el primer prefijo debe ser al menos 3; etc. In the context of the alkyl groups, the prefixes (eg, Ci- 4 , C1-7, C1-20, C2-7, C3-7, etc.) indicate the number of carbon atoms or the range of the number of carbon atoms. For example, the term "C1-4 alkyl", as used herein, refers to an alkyl group having 1 to 4 carbon atoms. Examples of alkyl groups include C1-4alkyl { "lower alkyl") alkyl , Ci- 7 and C1-20alkyl. Note that the first prefix may vary according to other limitations; for example, for unsaturated alkyl groups, the first prefix must be at least 2; for cyclic groups, the first prefix must be at least 3; etc.
Los ejemplos de grupos alquilo saturados (no sustituidos) incluyen, pero sin limitar, metilo (C1), etilo (C2), propilo (C3), butilo (C4), pentilo (C5), hexilo (C6) y heptilo (C7). Los ejemplos de grupos alquilo ramificados saturados (no sustituidos) incluyen isopropilo (C3), isobutilo (C4), sec-butilo (C ), ferc-butilo (C ), isopentilo (C5) y neopentilo (C5). Alquenilo: el término "alquenilo", como se usa en el presente documento, se refiere a un grupo alquilo que tiene uno o más dobles enlaces carbono-carbono. Los ejemplos de grupos alquenilo incluyen alquenilo C2-4, alquenilo C2-7, alquenilo C2-20. Examples of saturated alkyl groups (unsubstituted) include, but not limited to , methyl (C1), ethyl (C 2), propyl (C 3), butyl (C 4), pentyl (C 5), hexyl (C 6) and heptyl (C 7 ). Examples of saturated (unsubstituted) branched alkyl groups include isopropyl (C 3 ), isobutyl (C 4 ), sec-butyl (C), ferc-butyl (C), isopentyl (C 5 ) and neopentyl (C 5 ). Alkenyl: the term "alkenyl", as used herein, refers to an alkyl group having one or more carbon-carbon double bonds. Examples of alkenyl groups include alkenyl C 2-4, C2-7 alkenyl, C2-20 alkenyl.
Los ejemplos de grupos alquenilo (no sustituidos) incluyen, pero sin limitar, etenilo (vinilo, -CH=CH2), 1 -propenilo (-CH=CH-CH3), 2-propenilo (alilo, -CH2-CH=CH2), isopropenilo (1 -metilvinilo, -C(CH3)=CH2), butenilo (C4), pentenilo (C5) y hexenilo (Ce) . Examples of alkenyl (unsubstituted) groups include, but are not limited to, ethenyl (vinyl, -CH = CH 2 ), 1-propenyl (-CH = CH-CH 3 ), 2-propenyl (allyl, -CH 2 -CH = CH 2 ), isopropenyl (1-methylvinyl, -C (CH 3 ) = CH 2 ), butenyl (C 4 ), pentenyl (C 5 ) and hexenyl (Ce).
Alquinilo: el término "alquinilo", como se usa en el presente documento, se refiere a un grupo alquilo que tiene uno o más triples enlaces. Los ejemplos de grupos alquinilo incluyen alquinilo C2-4, alquinilo C2-7, alquinilo C2-20. Los ejemplos de grupos alquinilo (no sustituidos) incluyen, pero sin limitar, etinilo (-C≡CH), 2-propinilo (propargilo, -CH2-C≡CH). Alkynyl: The term "alkynyl," as used herein, refers to an alkyl group having one or more triple bonds. Examples of alkynyl groups include C2-4 alkynyl, C 2 -7 alkynyl, alkynyl C 2-20. Examples of alkynyl groups (unsubstituted) include, but are not limited to, ethynyl (-C≡CH), 2-propynyl (propargyl, -CH 2 -C≡CH).
Cicloalquilo: el término "cicloalquilo", como se usa en el presente documento, se refiere a un alquilo cíclico; es decir, un resto monovalente obtenido por eliminación de un átomo de hidrógeno de un carbociclo que puede ser saturado o insaturado, cuyo resto tiene de 3-20 átomos de carbono (salvo que se especifique otra cosa), incluyendo de 3 a 20 átomos en el anillo. Por lo tanto, el término "cicloalquilo" 'incluye las subclases cicloalquenilo y cicloalquinilo. Preferiblemente, cada anillo tiene de 3 a 7 átomos en el anillo. Los ejemplos de grupos cicloalquilo incluyen cicloalquilo C3-2o, cicloalquilo C3-15, cicloalquilo C3-10, cicloalquilo C3-7. Cycloalkyl: the term "cycloalkyl", as used herein, refers to a cyclic alkyl; that is, a monovalent moiety obtained by removing a hydrogen atom from a carbocycle that can be saturated or unsaturated, the rest of which has 3-20 carbon atoms (unless otherwise specified), including 3 to 20 atoms in the ring. Therefore, the term "cycloalkyl"' includes the cycloalkenyl and cycloalkynyl subclasses. Preferably, each ring has 3 to 7 atoms in the ring. Examples of cycloalkyl groups include cycloalkyl C 3-2 or C 3-15 cycloalkyl, C3-10 cycloalkyl, C3-7 cycloalkyl.
Alquileno cíclico: la expresión "alquileno cíclico" como se usa en el presente documento se refiere a un resto divalente obtenido por eliminación de dos átomos de hidrógeno de dos átomos diferentes de un anillo carbocíclico saturado o insaturado, cuyo resto tiene de 3 a 20 átomos de carbono (salvo que se especifique otra cosa), incluyendo de 3 a 20 átomos en el anillo. Preferiblemente cada anillo tiene de 5 a 7 átomos. Los ejemplos de grupos alquileno cíclicos incluyen alquileno cíclicos C3-20, alquileno cíclicos C3-15, alquileno cíclicos C3-10, alquileno cíclicos C3-7. Cyclic alkylene: the term "cyclic alkylene" as used herein refers to a divalent moiety obtained by removing two hydrogen atoms from two different atoms from a saturated or unsaturated carbocyclic ring, the rest of which has 3 to 20 atoms carbon (unless otherwise specified), including 3 to 20 atoms in the ring. Preferably each ring has 5 to 7 atoms. Examples of cyclic alkylene groups include alkylene cyclic C 3-20 alkylene, C 3-15 cyclic, cyclic C3-10 alkylene, C3-7 alkylene cyclic.
Los ejemplos de alquilo y alquileno cíclico incluyen, pero sin limitar, los derivados de compuestos hidrocarburos monocíclicos saturados derivados de: ciclopropano (C3), ciclobutano (C4), ciclopentano (C5), ciclohexano (Ce), cicloheptano (C7), metilciclopropano (C4), dimetilciclopropano (C5), metilciclobutano (C5), dimetilciclobutano (Ce), metilciclopentano (C6), dimetilciclopentano (C7), metilciclohexano (C7), dimetilciclohexano (Ce), mentano (C10) ; compuestos hidrocarburos monocíclicos insaturados: ciclopropeno (C3), ciclobuteno (C4), ciclopenteno (C5), ciclohexeno (C6) , metilciclopropeno (C4) , dimetilciclopropeno (C5), metilciclobuteno (C5), dimetilciclobuteno (C6) , metilciclopenteno (C6), dimetilciclopenteno (C7), metilciclohexeno (C7) , dimetilciclohexeno (C8) ; compuestos hidrocarburos policíclicos saturados: tuyano (C10) , carano (C10) , pinano (C10), bornano (C10), norcarano (C7), norpinano (C7) , norbornano (C7) , adamantano (Cío), decalina (decahidronaftaleno) (Cío) ; compuestos hidrocarburos policíclicos insaturados: canfeno (Cío), limoneno (Cío) , pineno (Cío) ; compuestos hidrocarburos policíclicos que tienen un anillo aromático: indeno (C9), indano (p. ej., 2,3-dihidro-1 H-indeno) (C9) , tetralina (1 ,2,3,4-tetrahidronaftaleno) (Cío), acenafteno (C12) , fluoreno (C13), fenaleno (C13), acefenantreno (C15), aceantreno (Ci6) , colantreno (C2o) . Heterociclilo: el término "heterociclilo", como se usa en el presente documento, se refiere a un resto monovalente obtenido por eliminación de un átomo de hidrógeno de un átomo del anillo de un compuesto heterocíclico, cuyo resto tiene de 3 a 20 átomos (salvo que se especifique otra cosa), de los cuales de 1 a 10 son heteroátomos. Preferiblemente, cada anillo tiene de 3 a 7 átomos, de los cuales de 1 a 4 son heteroátomos. Heterociclileno: el término "heterociclileno", como se usa en el presente documento, se refiere a un resto divalente obtenido por eliminación de dos átomos de hidrógeno de dos átomos diferentes del anillo de un compuesto heterocíclico, cuyo resto tiene de 3 a 20 átomos en el anillo (salvo que se especifique otra cosa), de los cuales de 1 a 10 son heteroátomos. Preferiblemente, cada anillo tiene de 3 a 7 átomos, de los cuales de 1 a 4 son heteroátomos. El grupo heterociclilo o heterociclileno puede estar unido por átomos de carbono o heteroátomos del anillo. Preferiblemente el grupo heterociclileno está unido por dos átomos de carbono. Examples of alkyl and cyclic alkylene include, but are not limited to, those derived from saturated monocyclic hydrocarbon compounds derived from: cyclopropane (C 3 ), cyclobutane (C 4 ), cyclopentane (C 5 ), cyclohexane (Ce), cycloheptane (C 7 ), methylcyclopropane (C 4 ), dimethylcyclopropane (C 5 ), methylcyclobutane (C 5 ), dimethylcyclobutane (Ce), methylcyclopentane (C 6 ), dimethylcyclopentane (C 7 ), methylcyclohexane (C 7 ), dimethylcyclohexane (Ce), mint C10); unsaturated monocyclic hydrocarbon compounds: cyclopropene (C 3 ), cyclobutene (C 4 ), cyclopentene (C 5 ), cyclohexene (C 6 ), methylcyclopropene (C 4 ), dimethylcyclopropene (C 5 ), methylcyclobutene (C 5 ), dimethylcyclobutene (C 6 ), methylcyclopentene (C 6 ), dimethylcyclopentene (C 7 ), methylcyclohexene C 7 ), dimethylcyclohexene (C 8 ); saturated polycyclic hydrocarbon compounds: tuyano (C10), carano (C10), pinano (C10), bornano (C10), norcarano (C 7 ), norpinano (C 7 ), norbornano (C 7 ), adamantano (Cío), decalina ( decahydronaphthalene) (Cio); unsaturated polycyclic hydrocarbon compounds: canphene (Cío), limonene (Cío), pinene (Cío); polycyclic hydrocarbon compounds having an aromatic ring: indene (C 9 ), indane (eg, 2,3-dihydro-1 H-indene) (C 9 ), tetralin (1, 2,3,4-tetrahydronaphthalene) (Cio), acenaphthene (C12), fluorene (C13), phenalene (C13), acefenanthrene (C15), aceantrene (Ci 6 ), collantrene (C 2 o). Heterocyclyl: The term "heterocyclyl", as used herein, refers to a monovalent moiety obtained by removing a hydrogen atom from a ring atom of a heterocyclic compound, the rest of which has 3 to 20 atoms (except otherwise specified), of which 1 to 10 are heteroatoms. Preferably, each ring has 3 to 7 atoms, of which 1 to 4 are heteroatoms. Heterocyclylene: the term "heterocyclylene", as used herein, refers to a divalent moiety obtained by removing two hydrogen atoms from two different atoms from the ring of a heterocyclic compound, the rest of which has 3 to 20 atoms in the ring (unless otherwise specified), of which 1 to 10 are heteroatoms. Preferably, each ring has 3 to 7 atoms, of which 1 to 4 are heteroatoms. The heterocyclyl or heterocyclylene group may be linked by carbon atoms or ring heteroatoms. Preferably the heterocyclylene group is linked by two carbon atoms.
En relación con los grupos heterociclilo o heterociclileno, los prefijos (p. ej., C3-20, C3-7, C5-e, etc.) indican el número de átomos del anillo, o el intervalo del número de átomos del anillo, sean átomos de carbono o heteroátomos. Por ejemplo, la expresión "heterociclilo Cs-e", como se usa en el presente documento, se refiere a un grupo heterociclilo que tiene 5 o 6 átomos en el anillo. Los ejemplos de grupos heterociclilo incluyen heterociclilo C3-20, heterociclilo C5-20, heterociclilo C3-15, heterociclilo C5-15, heterociclilo C3-12, heterociclilo C5-12, heterociclilo C3-10, heterociclilo C5-10, heterociclilo C3-7, heterociclilo C5-7 y heterociclilo C5-6- Igualmente, la expresión "heterociclileno C5-6", como se usa en el presente documento, se refiere a un grupo heterociclileno que tiene 5 o 6 átomos en el anillo. Los ejemplos de grupos heterociclileno incluyen heterociclileno C3-20, heterociclileno C5-20, heterociclileno C3-15, heterociclileno C5-15, heterociclileno C3-12, eterociclileno C5-12, heterociclileno C3-10, heterociclileno C5-10, heterociclileno C3-7, heterociclileno C5-7, y heterociclileno C5-6- Regarding the heterocyclyl or heterocyclylene groups, the prefixes (e.g., C3-20, C 3 -.. 7 C 5 -e, etc.) denote the number of ring atoms, or range of number of atoms ring, whether carbon atoms or heteroatoms. For example, the term "Cs-e heterocyclyl," as used herein, refers to a heterocyclyl group having 5 or 6 ring atoms. Examples of heterocyclyl groups include C3-20 heterocyclyl, C5-20 heterocyclyl, C3-15 heterocyclyl, C5-15 heterocyclyl, C3-12 heterocyclyl, C5-12 heterocyclyl, C3-10 heterocyclyl, C5-10 heterocyclyl, heterocyclyl C 3 - 7, heterocyclyl C 5-7 heterocyclyl C 5-6 - Likewise, the "heterocyclylene C 5-6" expression, as used herein, refers to a heterocyclylene group having 5 or 6 ring atoms. Examples of heterocyclylene groups include C3-20 heterocyclylene, C5-20 heterocyclylene, C3-15 heterocyclylene, C5-15 heterocyclylene, C3-12 heterocyclylene, eterociclileno C5-12, C3-10 heterocyclylene, C5-10 heterocyclylene, heterocyclylene C3-7, C5-7 heterocyclylene, and heterocyclylene C 5 - 6 -
Los ejemplos de grupos heterociclilo y heterociclileno monocíclicos incluyen, pero sin limitar, los derivados de: Ni : aziridina (C3), azetidina (C4), pirrolidina (tetrahidropirrol) (C5), pirrolina (p. ej., 3-pirrolina, 2, 5-dihidropirrol) (C5), 2H-pirrol o 3H-pirrol (isopirrol, isoazol) (C5), piperidina (Ce) , dihidropiridina (C6), tetrahidropiridina (Ce), azepina (C7); Examples of monocyclic heterocyclyl and heterocyclylene groups include, but are not limited to, those derived from: Ni: aziridine (C 3 ), azetidine (C 4 ), pyrrolidine (tetrahydropyrrole) (C 5 ), pyrroline (e.g., 3- pyrroline, 2,5-dihydropyrrole) (C 5 ), 2H-pyrrole or 3H-pyrrole (isopyrrole, isoazole) (C 5 ), piperidine (Ce), dihydropyridine (C 6 ), tetrahydropyridine (Ce), azepine (C 7 );
Oí : oxirano (C3), oxetano (C4), oxolano (tetrahidrofurano) (C5), oxol (dihidrofurano) (C5), oxano (tetrahidropirano) (Ce), dihidropirano (Ce), pirano (Ce) , oxepina (C7) ; Si : tiirano (C3), tietano (C4), tiolano (tetrahidrotiofeno) (C5), tiano (tetrahidrotiopirano) (Ce), tiepano (C7); I heard: oxirane (C 3 ), oxetane (C 4 ), oxolane (tetrahydrofuran) (C 5 ), oxol (dihydrofuran) (C 5 ), oxano (tetrahydropyran) (Ce), dihydropyran (Ce), pyrano (Ce), oxepine (C 7 ); Si: thiran (C 3 ), thiethane (C 4 ), thiolane (tetrahydrothiophene) (C 5 ), thiano (tetrahydrothiopyran) (Ce), thiepane (C 7 );
02: dioxolano (C5), dioxano (Ce) , y dioxepano (C7) ; 03: trioxano (Ce) ; 0 2 : dioxolane (C 5 ), dioxane (Ce), and dioxepane (C 7 ); 0 3 : trioxane (Ce);
N2: imidazolidina (C5), pirazolidina (diazolidina) (C5), imidazolina (C5), pirazolina (dihidropirazol) (C5), piperazina (Ce) ; N 2 : imidazolidine (C 5 ), pyrazolidine (diazolidine) (C 5 ), imidazoline (C 5 ), pyrazoline (dihydropyrazole) (C 5 ), piperazine (Ce);
N1O1 : tetrahidrooxazol (C5), dihidrooxazol (C5), tetrahidroisoxazol (C5), dihidroisoxazol (C5), morfolina (Ce), tetrahidrooxazina (Ce), dihidrooxazina (Ce), oxazina (Ce) ; N1O1: tetrahydrooxazol (C 5 ), dihydrooxazol (C 5 ), tetrahydroisoxazol (C 5 ), dihydroisoxazol (C 5 ), morpholine (Ce), tetrahydrooxazine (Ce), dihydrooxazine (Ce), oxazine (Ce);
N1S1 : tiazolina (C5), tiazolidina (C5), tiomorfolina (Ce) ; N1S1: thiazoline (C 5 ), thiazolidine (C 5 ), thiomorpholine (Ce);
N2O1 : oxadiazina (Ce) O1S1 : oxatiol (C5) y oxatiano (tioxano) (Ce) ; y, N2O1: oxadiazine (Ce) O1S1: oxatiol (C 5 ) and oxathiano (thioxane) (Ce); Y,
N1O1S1 : oxatiazina (Ce). N1O1S1: oxathiazine (Ce).
Los ejemplos de grupos heterociclilo y heterociclileno monocíclicos (no aromáticos) sustituidos incluyen los derivados de sacáridos, en forma cíclica, por ejemplo, furanosas (Ce) , tales como arabinofuranosa, lixofuranosa, ribofuranosa y xilofuransa, y piranosas (Ce), tales como alopiranosa, altropiranosa, glucopiranosa, manopiranosa, gulopiranosa, idopiranosa, galactopiranosa, y talopiranosa. Arilo C5-20: la expresión "arílo C5-20", como se usa en el presente documento, se refiere a un resto monovalente obtenido por eliminación de un átomo de hidrógeno de un átomo del anillo aromático C5-20, teniendo dicho compuesto uno, dos o más anillos y de 5 a 20 átomos con al menos uno de dichos anillos, aromático. Preferiblemente, cada anillo tiene de 5 a 7 átomos de carbono. Examples of substituted (non-aromatic) monocyclic heterocyclyl and heterocyclylene groups include saccharide derivatives, in cyclic form, for example, furanoses (Ce), such as arabinofuranose, lixofuranose, ribofuranose and xylofuran, and pyranous (Ce), such as allopurranose , altropiranosa, glucopiranosa, manopiranosa, gulopiranosa, idopiranosa, galactopiranosa, and talopiranosa. C5-20 aryl: the term "C5-20 aryl", as used herein, refers to a monovalent moiety obtained by removing a hydrogen atom from a C5-20 aromatic ring atom, said compound having one , two or more rings and 5 to 20 atoms with at least one of said rings, aromatic. Preferably, each ring has 5 to 7 carbon atoms.
Los átomos del anillo pueden ser todos átomos de carbono, como en los "grupos carboarilo", en cuyo caso el grupo se puede denominar de modo conveniente un grupo "carboarilo C5-2o"- The ring atoms may all be carbon atoms, as in the "carboaryl groups", in which case the group may conveniently be referred to as a "C 5 -2o carboaryl" group -
Arileno C5-20: la expresión "arileno C5-20", como se usa en el presente documento, se refiere a un resto divalente, obtenido por eliminación de dos átomos de hidrógeno de un anillo aromático C5-20, teniendo dicho compuesto uno, o dos o más anillos, y de 5 a 20 átomos en el anillo, con al menos uno de dichos anillos, aromático. Preferiblemente, cada anillo tiene de 5 a 7 átomos de carbono. C5-20 arylene: the term "C5-20 arylene", as used herein, refers to a divalent moiety, obtained by removing two hydrogen atoms from a C5-20 aromatic ring, said compound having one, or two or more rings, and 5 to 20 atoms in the ring, with at least one of said rings, aromatic. Preferably, each ring has 5 to 7 carbon atoms.
Los átomos del anillo pueden ser todos átomos de carbono, como en los "grupos carboarileno" en cuyo caso el grupo se puede denominar de forma conveniente un grupo "carboarileno The ring atoms can all be carbon atoms, as in the "carboarylene groups" in which case the group may conveniently be referred to as a "carboarylene group"
Los ejemplos de grupos arilo C5-2o y arileno C5-2o que no tienen heteroátomos en el anillo (es decir, grupos carboarilo C5-2o y carboarileno C5-20) incluyen, pero sin limitar, los derivados de benceno (es decir, fenilo) (Ce), naftaleno (C10), antraceno (C14), fenantreno (C14) , y pireno Examples of aryl groups C 5 - C 2 o arylene 5-2 or have no ring heteroatoms (i.e., carboaryl groups C 5-2 carboarylene oy C5-20) include, but not limited to , those derived from benzene ( that is, phenyl) (Ce), naphthalene (C10), anthracene (C14), phenanthrene (C14), and pyrene
Alternativamente, los átomos del anillo pueden incluir uno o más heteroátomos, incluyendo, pero sin limitar, oxígeno, nitrógeno y azufre, como en los "grupos heteroarilo" o "grupos heteroarileno". En este caso, el grupo se puede denominar de forma conveniente como "heteroarilo C5-2o"o "heteroarileno C5-20", en los que "C5-20" indica los átomos en el anillo, sean átomos de carbono o heteroátomos. Preferiblemente, cada anillo tiene de 5 a 7 átomos en el anillo, de los cuales de 0 a 4 son heteroátomos. Alternatively, the ring atoms may include one or more heteroatoms, including, but not limited to, oxygen, nitrogen and sulfur, as in the "heteroaryl groups" or "heteroarylene groups." In this case, the group may be referred to conveniently as "heteroaryl C 5 -2nd" or "C5-20 heteroarylene", wherein "C5-20" denotes ring atoms, whether carbon atoms or heteroatoms. Preferably, each ring has 5 to 7 ring atoms, of which 0 to 4 are heteroatoms.
El grupo heteroarilo o heteroarileno puede estar unido por átomos de carbono o heteroátomos del anillo. Preferiblemente, el grupo heteroarileno está unido por dos átomos de carbono. The heteroaryl or heteroarylene group may be linked by carbon atoms or ring heteroatoms. Preferably, the heteroarylene group is linked by two carbon atoms.
Los ejemplos de grupos heteroarilo C5-20 y heteroarileno C5-20 incluyen, pero sin limitar, grupos heteroarilo C5 y heteroarileno C5 derivados de furano (oxol), tiofeno (tiol), pirrol (azol), imidazol (1 ,3-diazol), pirazol (1 ,2-diazol), 1 ,2,3-triazol, 1 ,2,4-triazol, oxazol, isoxazol, tiazol, isotiazol, oxadiazol, tetrazol y oxatriazol; y grupos heteroarilo C6 derivados de isoxazina, piridina (azina), piridazina (1 ,2-diazina), pirimidina (1 ,3-diazina; p. ej., citosina, timina, uracilo), pirazina (1 ,4-diazina) y 1 ,3,5-triazina. Examples of heteroaryl groups include C5-20 and C5-20 heteroarylene, but not limited to , heteroaryl groups C 5 and C 5 heteroarylene furan derivatives (oxole), thiophene (thiole), pyrrole (azole), imidazole (1, 3- diazol), pyrazole (1,2-diazol), 1,3,3-triazole, 1,4,4-triazole, oxazole, isoxazole, thiazole, isothiazole, oxadiazole, tetrazole and oxatriazole; and C 6 heteroaryl groups derived from isoxazine, pyridine (azine), pyridazine (1,2-diazine), pyrimidine (1,3-diazine; e.g., cytosine, thymine, uracil), pyrazine (1,4-diazine) and 1,3,5-triazine.
Los ejemplos de grupos heteroarilo C5-20 y heteroarileno C5-20 que comprenden anillos condensados incluyen, pero sin limitar, grupos heteroarilo C9 y heteroarileno C9 derivados de benzofurano, isobenzofurano, benzotiofeno, indol, isoindol; grupos heteroarilo C10 y heteroarileno C10 derivados de quinolina, isoquinolina, benzodiazina, piridopiridina; grupos heteroarilo C14 y heteroarileno C14 derivados de acridina y xanteno. Examples of C5-20 heteroaryl groups heteroarylene and C5-20 comprising fused rings include, but are not limited to , heteroaryl groups C 9 and C 9 heteroarylene benzofuran derivatives, isobenzofuran, benzothiophene, indole, isoindole; C10 heteroaryl and C10 heteroarylene groups derived from quinoline, isoquinoline, benzodiazine, pyridopyridine; C14 heteroaryl and C14 heteroarylene groups derived from acridine and xanthene.
Los grupos alquilo, alquileno cíclico, heterociclilo, heterociclileno, arilo y arileno que se han indicado, bien solos o como parte de otro sustituyente, pueden estar ellos mismos sustituidos con uno o más grupos seleccionados de ellos mismos y los sustituyentes adicionales listados a continuación. The alkyl, cyclic alkylene, heterocyclyl, heterocyclylene, aryl and arylene groups which have been indicated, either alone or as part of another substituent, may themselves be substituted with one or more groups selected from them and the additional substituents listed below.
Halógeno: -F, -Cl, -Br, y -I. Halogen: -F, -Cl, -Br, and -I.
Hidroxi: -OH. Hydroxy: -OH.
Éter: -OR, en el que R es un sustituyente del éter, por ejemplo un grupo alquilo C1-7 (denominado también grupo alcoxi C1-7), un grupo heterociclilo C3-20 (denominado también grupo heterocicliloxi C3-20) , o un grupo arilo C5-20 (también denominado un grupo ariloxi C5-20) , preferiblemente un grupo alquilo C1-7. Ether: -OR, where R is a substituent of the ether, for example a C1-7 alkyl group (also called C1-7 alkoxy group), a C3-20 heterocyclyl group (also called C3-20 heterocyclyloxy group), or a C5-20 aryl group (also called a C5-20 aryloxy group), preferably a C1-7 alkyl group.
Nitro: -NO2. Nitro: -NO2.
Ciano (nitrilo, carbonitrilo): -CN. Acilo (ceto): -C(0)R, en el que R es un sustituyente acilo, por ejemplo, H, un grupo alquilo C1 -7 (también denominado alquil (C1-7) -acilo o alcanoilo C1-7) , un grupo heterociclilo C3-20 (también denominado heterociclil (C3-20) acilo), o un grupo arilo C5-20 (también denominado aril (C5-20) acilo), preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos acilo incluyen, pero sin limitar, -C(0)CH3 (acetilo), -C(0)CH2CH3 (propionilo), -C(0)C(CH3)3 (pivaloílo), y -C(0)Ph (benzoílo, fenona). Cyano (nitrile, carbonitrile): -CN. Acyl (keto): -C (0) R, wherein R is an acyl substituent, for example, H, a C1-7 alkyl group (also referred to as (C1-7) alkyl-acyl or C1-7 alkanoyl), a C3-20 heterocyclyl group (also called heterocyclyl (C3-20) acyl), or a C5-20 aryl group (also called aryl (C5-20) acyl), preferably a C1-7 alkyl group. Examples of acyl groups include, but are not limited to, -C (0) CH 3 (acetyl), -C (0) CH 2 CH 3 (propionyl), -C (0) C (CH 3 ) 3 (pivaloyl), and -C (0) Ph (benzoyl, fenone).
Carboxi (ácido carboxílico): -COOH. Carboxy (carboxylic acid): -COOH.
Ester (carboxilato, éster de ácido carboxílico, oxicarbonilo): -C(0)OR, en el que R es un sustituyente del éster, por ejemplo, un grupo alquilo C1-7, un grupo heterociclilo C3-2o, o un grupo arilo C5-20, preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos éster incluyen, pero sin limitar, -C(0)OCH3, -C(0)OCH2CH3, -C(0)OC(CH3)3, y -C(0)OPh. Amido (carbamoilo, carbamilo, aminocarbonilo, carboxamida): -C(0)NR1 R2, en el que R1 y R2 son independientemente sustituyentes del grupo amino. Los ejemplos de grupos amido incluyen, pero sin limitar, -C(0)NH2, -C(0)NHCH3, -C(0)N(CH3)2, -C(0)NHCH2CH3 y -C(0)N(CH2CH3)2, así como grupos amido en los que R1 y R2, junto con el átomo de nitrógeno al que están unidos, forman una estructura heterocíclica como en, por ejemplo, piperidinocarbonilo, morfolinocarbonilo, tiomorfolinocarbonilo, y piperazinilcarbonilo. Ester (carboxylate, carboxylic acid ester, oxycarbonyl): -C (0) OR, wherein R is an ester substituent, for example, a C1-7 alkyl group, a heterocyclyl group C 3-2 or, or C5-20 aryl group, preferably a C1-7 alkyl group. Examples of ester groups include, but not limited to, -C (0) OCH 3 , -C (0) OCH 2 CH 3 , -C (0) OC (CH 3 ) 3, and -C (0) OPh. Amido (carbamoyl, carbamyl, aminocarbonyl, carboxamide): -C (0) NR 1 R 2 , in which R 1 and R 2 are independently substituents of the amino group. Examples of amido groups include, but are not limited to, -C (0) NH 2 , -C (0) NHCH 3 , -C (0) N (CH 3 ) 2 , -C (0) NHCH 2 CH 3 and - C (0) N (CH 2 CH 3 ) 2 , as well as amido groups in which R 1 and R 2 , together with the nitrogen atom to which they are attached, form a heterocyclic structure as in, for example, piperidinocarbonyl, morpholinocarbonyl , thiomorpholinocarbonyl, and piperazinylcarbonyl.
Amino: -NR1 R2, en el que R1 y R2 son independientemente sustituyente de amino, por ejemplo, hidrógeno, un grupo alquilo C1-7 (denominado también alquilamino C1-7 o dialquil (C1-7) amino), un grupo heterociclilo C3-20, o un grupo arilo C5-2o, preferiblemente H o un grupo alquilo C1-7, o en el caso de un grupo amino "cíclico", R1 y R2, considerados junto con el átomo de nitrógeno al que están unidos, forman un anillo heterocíclico que tiene de 4 a 8 átomos en el anillo. Los ejemplos de grupos amino incluyen, pero sin limitar, -NH2, -NHCH3, -NHCH(CH3)2 -N(CH3)3, -N(CH3CH2)2, y -NHPh. Los ejemplos de grupos amino cíclicos incluyen, pero sin limitar, aziridinilo, azetidinilo, pirrolidinilo, piperidino, piperazinilo, perhidrodiazepinilo, morfolino, y tiomorfolino. En particular, los grupos amino cíclicos pueden estar sustituidos en su anillo con cualquiera de los sustituyentes definidos en el presente documento por ejemplo carboxi, carboxilato y amido. Amino: -NR 1 R 2 , wherein R 1 and R 2 are independently amino substituent, for example hydrogen, a C 1-7 alkyl group (also referred to as C 1-7 alkylamino or C 1-7 alkylamino), a heterocyclyl group C 3-20, or an aryl group C 5 - 2 or, preferably H or a C1-7 alkyl group, or in the case of a "cyclic", R 1 and R 2 amino group, taken together with the Nitrogen atom to which they are attached, form a heterocyclic ring having 4 to 8 atoms in the ring. Examples of amino groups include, but are not limited to, -NH 2 , -NHCH 3 , -NHCH (CH 3 ) 2 -N (CH 3 ) 3 , -N (CH 3 CH 2 ) 2 , and -NHPh. Examples of cyclic amino groups include, but are not limited to, aziridinyl, azetidinyl, pyrrolidinyl, piperidino, piperazinyl, perhydrodiazepinyl, morpholino, and thiomorpholino. In particular, the cyclic amino groups may be substituted on their ring with any of the substituents defined herein for example carboxy, carboxylate and amido.
Amonio: -NH3 +, Z , en el que Z es un contraión adecuado, tal como haluro (p. ej. Cl~, Br), nitrato, perclorato. Ammonium: -NH 3 + , Z, in which Z is a suitable counterion, such as halide (eg Cl ~ , Br), nitrate, perchlorate.
Amido (acilamino): -N(R1)C(0)R2, en el que R1 es un sustituyente del amino, por ejemplo, hidrógeno, un grupo alquilo Ci-7, un grupo heterociclilo C3-20, o un grupo arilo C5-2o, preferiblemente H o un grupo alquilo Ci-7, lo más preferiblemente H, y R2 es un sustituyente acilo, por ejemplo, un grupo alquilo Ci-7, un grupo heterociclilo C3-20 o un grupo arilo C5-2o, preferiblemente un grupo alquilo Ci-7. Los ejemplos de grupos acilamido incluyen, pero sin limitar, -NHC(0)CH3, C(0)NHC(0)CH2CH3 y -NHC(0)Ph. R1 y R2 juntos pueden formar una estructura cíclica, como por ejemplo en succinimidilo, maleimidilo y ftalimidilo: Amido (acylamino): -N (R 1) C (0) R 2, wherein R 1 is a substituent of amino, for example, hydrogen, an alkyl group Ci- 7, a heterocyclyl group C 3-20, or one aryl group C 5-2 or, preferably H or an alkyl group Ci- 7, most preferably H, and R 2 is an acyl substituent, for example, an alkyl group Ci- 7, a heterocyclyl group C 3-20 or one aryl group C 5 - 2 or, preferably an alkyl group Ci- 7. Examples of acylamido groups include, but are not limited to, -NHC (0) CH 3 , C (0) NHC (0) CH 2 CH 3 and -NHC (0) Ph. R 1 and R 2 together can form a cyclic structure, such as succinimidyl, maleimidyl and phthalimidyl, for example:
Ureido: -N(R1)CONR2R3 en el que R1 , R2 y R3 son independientemente sustituyentes de los grupos amino, por ejemplo, hidrógeno, un grupo alquilo Ci-7, un grupo heterociclilo C3-20 o un grupo arilo C5-2o, preferiblemente hidrógeno o un grupo alquilo Ci-7. Los ejemplos de grupos ureido incluyen, pero sin limitar, -NHCONH2, -NHCONHMe, -NHCONHEt, -NHCONMe2, -NHCONEt2, -NMeCONH2, -NMeCONHMe, -NMeCONHEt, -NMeCONMe2, -NMeCONEt2 y -NHCONHPh. Aciloxi: -OC(0)R en el que R puede ser, por ejemplo, un grupo alquilo C1-7, un grupo heterociclilo C3-20 O un grupo arilo C5-20, preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos aciloxi incluyen, pero sin limitar, -OC(0)CH3 Ureido: -N (R 1) CONR 2 R 3 wherein R 1, R 2 and R 3 are independently amino substituents, for example, hydrogen, Ci- 7, a heterocyclyl group C 3 a - 20 or an aryl group C 5 - 2 or preferably hydrogen or an alkyl group Ci- 7. Examples of ureido groups include, but are not limited to, -NHCONH 2 , -NHCONHMe, -NHCONHEt, -NHCONMe 2 , -NHCONEt 2 , -NMeCONH 2 , -NMeCONHMe, -NMeCONHEt, -NMeCONMe 2 , -NMeCONEt 2 and -NHCONHPh. Acyloxy: -OC (0) R wherein R may be, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group OR a C5-20 aryl group, preferably a C1-7 alkyl group. Examples of acyloxy groups include, but are not limited to -OC (0) CH 3
(acetoxi), -OC(0)CH2CH3, -OC(0)C(CH3)3, -OC(0)Ph, -OC(0)C6H4F y -OC(0)CH2Ph. Tiol: -SH. (acetoxy), -OC (0) CH 2 CH 3 , -OC (0) C (CH 3 ) 3, -OC (0) Ph, -OC (0) C 6 H 4 F and -OC (0) CH 2 Ph. Tiol: -SH.
Tioéter (sulfuro): -SR, en el que R es un sustituyente de tioéter, por ejemplo, un grupo alquilo C1-7 (denominado también un grupo alquiltio C1-7), un grupo heterociclilo C3-20 O un grupo arilo C5-20, preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos alquiltio C1-7 incluyen, pero sin limitar, -SCH3 y -SCH2CH3. Sulfoxido (sulfinilo): -S(0)R, en el que R es un sustituyente de sulfoxido, por ejemplo, un grupo alquilo C1-7, un grupo heterociclilo C3-20 O un grupo arilo C5-20, preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos sulfoxido incluyen, pero sin limitar -S(0)CH3 y -S(0)CH2CH3. Thioether (sulfide): -SR, in which R is a thioether substituent, for example, a C1-7 alkyl group (also called a C1-7 alkylthio group), a C3-20 heterocyclyl group OR a C5- aryl group 20, preferably a C1-7 alkyl group. Examples of C1-7 alkylthio groups include, but are not limited to, -SCH 3 and -SCH 2 CH 3 . Sulfoxide (sulfinyl): -S (0) R, wherein R is a sulfoxide substituent, for example, a C1-7 alkyl group, a C3-20 heterocyclyl group OR a C5-20 aryl group, preferably an alkyl group C1-7. Examples of sulfoxide groups include, but are not limited to -S (0) CH 3 and -S (0) CH 2 CH 3 .
Sulfonilo (sulfona): -S(0)2R en el que R es un sustituyente de sulfona, por ejemplo, un grupo alquilo C1-7, un grupo heterociclilo C3-2o O un grupo arilo C5-20, preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos sulfonilo incluyen, pero sin limitar -S(0)2CH3 (metanosulfonilo, mesilo), -S(0)2CF3, -S(0)2CH2CH3 y -S(0)2C6H4CH3 (4-metilfenilsulfonilo, tosilo). Sulfonyl (sulfone): -S (0) 2 R wherein R is a sulfone substituent, for example, a C1-7 alkyl group, a heterocyclyl group C 3-2 O or a C 5-20 aryl group, preferably a C1-7 alkyl group. Examples of sulfonyl groups include, but are not limited to -S (0) 2 CH 3 (methanesulfonyl, mesyl), -S (0) 2 CF 3 , -S (0) 2 CH 2 CH 3 and -S (0) 2 C 6 H 4 CH 3 (4-methylphenylsulfonyl, tosyl).
Tioamido (tiocarbamilo): -C(S)NR1 R2, en el que R1 y R2 son independientemente sustituyentes de amino, como se ha definido para los grupos amino. Los ejemplos de grupos tioamido, incluyen, pero sin limitar, -C(S)NH2, -C(S)NHCH3, -C(S)N(CH3)2, y -C(S)NHCH2CH3. Thioamido (thiocarbamyl): -C (S) NR 1 R 2 , in which R 1 and R 2 are independently amino substituents, as defined for the amino groups. Examples of thioamido groups include, but are not limited to, -C (S) NH 2 , -C (S) NHCH 3 , -C (S) N (CH 3 ) 2 , and -C (S) NHCH 2 CH 3 .
Sulfonamido: -NR1S(0)2R, en el que R1 es un sustituyente de amino, como se ha definido para los grupos amino, y R es un sustituyente del sulfonilo, por ejemplo, un grupo alquilo C1-7, un grupo heterociclilo C3-2o o un grupo arilo C5-20, preferiblemente un grupo alquilo C1-7. Los ejemplos de grupos sulfonamido incluyen, pero sin limitar, -NHS(0)2CH3, -NHS(0)2Ph
Figure imgf000015_0001
Sulfonamido: -NR 1 S (0) 2 R, in which R 1 is an amino substituent, as defined for the amino groups, and R is a sulfonyl substituent, for example, a C 1-7 alkyl group, a heterocyclyl group C 3-2 aryl group oo a C 5-20, preferably a C1-7 alkyl group. Examples of sulfonamido groups include, but are not limited to, -NHS (0) 2 CH 3 , -NHS (0) 2 Ph
Figure imgf000015_0001
Como se ha mencionado antes, los grupos que forman los grupos sustituyente listados antes, p. ej., alquilo C1-7, heterociclilo C3-2o y arilo C5-20, pueden estar ellos mismos sustituidos. Por lo tanto, las definiciones anteriores se aplican a grupos sustituyentes que están sustituidos. DESCRIPCIÓN DE MODOS DE REALIZACIÓN Procedimiento experimental general Análisis elemental As mentioned before, the groups that form the substituent groups listed above, e.g. g., C1-7 alkyl, heterocyclyl C 3-2 aryl C5-20 oy, may themselves be substituted. Therefore, the above definitions apply to substituent groups that are substituted. DESCRIPTION OF EMBODIMENTS General experimental procedure Elemental analysis
El análisis elemental se llevó a cabo utilizando el analizador de carbono, hidrógeno y nitrógeno (CHN) Perkin-Elmer 2400.  The elemental analysis was carried out using the Perkin-Elmer 2400 carbon, hydrogen and nitrogen (CHN) analyzer.
Puntos de fusión Melting points
Los puntos de fusión se registraron utilizando el Stuart Scientific Melting Point Apparatus (SMP10). Melting points were recorded using the Stuart Scientific Melting Point Apparatus (SMP10).
Espectroscopia de IR Los espectros de IR de sólidos puros se registraron en un espectrómetro FTIR Shimadzu IRPrestige-21 equipado con un accesorio de reflectancia total atenuada ("attenuated total reflectance" (ATR)). IR spectroscopy IR spectra of pure solids were recorded on a Shimadzu IRPrestige-21 FTIR spectrometer equipped with an attenuated total reflectance (ATR) accessory.
RMN NMR
Todos los espectros de RMN se registraron a temperatura ambiente en un espectrómetro Varían. Los espectros de 1 H RMN se registraron a 500MHz y los de 13C RMN a 100-125MHz. Las constantes de acoplamiento (J) se expresan en Hertzios. Las abreviaturas empleadas son: s=singlete, d=doblete, t=triplete, dt= doblete de tripletes, m=multiplete y bs=singlete ancho. Los desplazamientos químicos se dan en ppm con respecto a TMS usando las señales de los protones residuales o núcleos de carbono del disolvente deuterado. All NMR spectra were recorded at room temperature on a Varian spectrometer. The 1 H NMR spectra were recorded at 500 MHz and those of 13 C NMR at 100-125 MHz. Coupling constants (J) are expressed in Hertz. The abbreviations used are: s = singlet, d = doublet, t = triplet, dt = triplet doublet, m = multiplet and bs = wide singlet. Chemical shifts are given in ppm relative to TMS using the signals from the residual protons or carbon nuclei of the deuterated solvent.
Espectroscopia de masas Mass spectroscopy
Los espectros por MALDI-TOF se registraron en un espectrómetro de masas Bruker Autoflex II TOF/TOF utilizando antralina (1 ,8,9-Trihidroxiantraceno) como matriz y acetato sódico como aditivo. Las muestras fueron co-cristalizadas con la matriz y el aditivo en una proporción 5:250:1 en la sonda y fueron ionizadas con un reflector con modo positivo. La calibración externa se llevó a cabo utilizando Bruker Peptide Calibration Standard II (rango de masa: 700- 3.200 Da) y Protein Calibration Standard I (rango de masa: 5000-17.500 Da). The spectra by MALDI-TOF were recorded on a Bruker Autoflex II TOF / TOF mass spectrometer using anthralin (1,8,9-Trihydroxyanthracene) as matrix and sodium acetate as additive. The samples were co-crystallized with the matrix and the additive in a 5: 250: 1 ratio in the probe and were ionized with a positive mode reflector. External calibration was performed using Bruker Peptide Calibration Standard II (mass range: 700-3,200 Da) and Protein Calibration Standard I (mass range: 5000-17,500 Da).
Ejemplo 1 : Procedimiento para la síntesis del catalizador (la) Según la fórmula general (I)
Figure imgf000017_0001
Example 1: Procedure for catalyst synthesis (la) According to the general formula (I)
Figure imgf000017_0001
Donde R1=C6H5, R5=OH, R2=R4=R6=R7=R8=R9=H. El catalizador (la) se sintetizó según la si uiente reacción Where R 1 = C 6 H 5 , R 5 = OH, R 2 = R 4 = R 6 = R 7 = R 8 = R 9 = H. The catalyst (la) was synthesized according to the following reaction
Figure imgf000017_0002
Figure imgf000017_0002
(la)  (the)
, siguiendo las condiciones descritas en Douthwaite et al., Organometallics, 22 (2003), 4187- 4189; Tejeda, et al., Chem. Commun., 50 (2014), 15313-15315). Una mezcla de salicidenanilina (3,02 g, 15,3 mmol), p-tosilmetilisonitrilo (3,87 g, 19,82 mmol), K2C03 (6,32 g,, following the conditions described in Douthwaite et al., Organometallics, 22 (2003), 4187-4189; Tejeda, et al., Chem. Commun., 50 (2014), 15313-15315). A mixture of salicidenaniline (3.02 g, 15.3 mmol), p-tosylmethylisonitrile (3.87 g, 19.82 mmol), K 2 C0 3 (6.32 g,
45,73 mmol) y metanol (60 mL) fue refluida bajo agitación vigorosa durante 3 horas.45.73 mmol) and methanol (60 mL) was refluxed under vigorous stirring for 3 hours.
Terminada la reacción, se dejó enfriar la mezcla hasta temperatura ambiente y se concentró a presión reducida hasta la cuarta parte de su volumen inicial, obteniendo así una pasta de color marrón. Esta pasta se lavó con agua (3X60 mL) formándose un sólido marrón. El producto se purificó por medio de lavados con CH2CI2 (3x20 mL). Rendimiento 85%. Los datos analíticos se presentan a continuación. After the reaction was over, the mixture was allowed to cool to room temperature and concentrated under reduced pressure to a quarter of its initial volume, thus obtaining a brown paste. This paste was washed with water (3X60 mL) forming a brown solid. The product was purified by washing with CH2CI2 (3x20 mL). 85% yield. The analytical data are presented below.
Datos para el catalizador (la): Sólido anaranjado. Punto de fusión 223-224 eC. IR 3059 cnr1. 1 H RMN (CDCI3, 500 MHz) δ (ppm) = 6,20-6,60 (OH), 6,79 (t, J=7,7 Hz, 1 H, Ar), 6,91 (dd, J=7,2 Hz, J=1 ,8 Hz, 1 H, Ar), 6,94 (d, J=8 Hz, 1 H, Ar), 7,15-7,17 (m, 2H, Ar), 7,22 (dt, J=7,7 Hz, 1 ,3 Hz, 1 H, Ar), 7,28 (s, 1 H, H5lm), 7,33-7,37 (m, 3H, Ar), 7,79 (s, 1 H, H2lm). 13C NMR (CDCI3, 125 MHz) 6 (ppm) = 1 15,6, 1 16,0, 120,2, 124,9, 127,6, 128,1 , 129,4, 129,8, 130,3, 131 ,3, 136,2, 138,9, 154,2. Data for the catalyst (la): Orange solid. Melting point 223-224 e C. IR 3059 cnr 1 . 1 H NMR (CDCI3, 500 MHz) δ (ppm) = 6.20-6.60 (OH), 6.79 (t, J = 7.7 Hz, 1 H, Ar), 6.91 (dd, J = 7.2 Hz, J = 1.8 Hz, 1 H, Ar), 6.94 (d, J = 8 Hz, 1 H, Ar), 7.15-7.17 (m, 2H, Ar ), 7.22 (dt, J = 7.7 Hz, 1, 3 Hz, 1 H, Ar), 7.28 (s, 1 H, H5 lm ), 7.33-7.37 (m, 3H , Ar), 7.79 (s, 1 H, H2 lm ). 13C NMR (CDCI3, 125 MHz) 6 (ppm) = 1 15.6, 1 16.0, 120.2, 124.9, 127.6, 128.1, 129.4, 129.8, 130.3 , 131, 3, 136.2, 138.9, 154.2.
Ejemplo 2: Procedimiento para la síntesis del catalizador (Ha) Según la fórmula general (II)
Figure imgf000018_0001
Example 2: Procedure for catalyst synthesis (Ha) According to the general formula (II)
Figure imgf000018_0001
(II)  (II)
Donde Xn
Figure imgf000018_0002
Where X n
Figure imgf000018_0002
El catalizador (Ha) se sintetizó según la siguiente reacción: The catalyst (Ha) was synthesized according to the following reaction:
Figure imgf000018_0003
Figure imgf000018_0003
(lia)  (lia)
Una mezcla de 5-hidroxifeni-1 -fenilimidazol, la, (544 mg, 2,30 mmol) y 1 -Yodobutano (10 mi) se calentó a 100eC bajo agitación vigorosa durante 7 h. Después de enfriamiento de la mezcla de reacción a temperatura ambiente, se filtró la mezcla obteniendo un residuo. El producto se purificó por lavado con acetato de etilo y secado a vacío. Rendimiento: 94%. Los datos de los análisis se presentan a continuación. Datos para el catalizador (Ha): Sólido de color marrón claro. Punto de fusión: 179-181 eC. IR 3100 cnr1 1 H RMN (500 MHz, CDCI3) (ppm) = 1 ,02 (t, J=7,5 Hz, 3H, CH3), 1 ,50 (sext, J=7,6, 2H, CH2), 2,02 (qint, J=7,6 Hz, 2H, CH2), 4,44 (t, J=7,5 Hz, 2H, CH2), 6,82 (dt, J=7,5 Hz, J=1 ,2 Hz, 1 H, Ar), 6,98 (dd, J=7,7 Hz, J=1 ,8 Hz, 1 H, Ar), 7,16 (d, J=7,5 Hz, 1 H, Ar), 7,26-7,29 (m, 1 H, Ar), 7,34-7,38 (m, 2H, Ar), 7,42-7,45 (m, 3H, Ar), 7,47 (d, J=1 ,5 Hz, 1 H, Ar), 7,49 (d, J=1 Hz, 1 H, Ar), 9,38 (d, J=1 ,5 Hz, 1 H, H2lm). 13C NMR (125 MHz, CDCI3) (ppm) 13,8, 19,4, 31 ,6, 49,5, 1 12,7, 1 16,9, 1 17,4, 121 ,6, 125,6, 129,9, 130,2, 131 ,8, 132,1 , 132,9, 135,1 , 136,8, 158,8. A mixture of 5-hydroxypheny-1-phenylimidazole, la, (544 mg, 2.30 mmol) and 1-Iodobutane (10 mL) was heated at 100 e C under vigorous stirring for 7 h. After cooling the reaction mixture to room temperature, the mixture was filtered to obtain a residue. The product was purified by washing with ethyl acetate and drying under vacuum. Yield: 94%. The analysis data are presented below. Data for the catalyst (Ha): Light brown solid. Melting point: 179-181 e C. IR 3100 cnr 1 1 H NMR (500 MHz, CDCI 3 ) (ppm) = 1, 02 (t, J = 7.5 Hz, 3H, CH 3 ), 1, 50 (sext, J = 7.6, 2H, CH 2 ), 2.02 (qint, J = 7.6 Hz, 2H, CH 2 ), 4.44 (t, J = 7.5 Hz, 2H, CH 2 ), 6.82 (dt, J = 7.5 Hz, J = 1, 2 Hz, 1 H, Ar), 6.98 (dd, J = 7.7 Hz, J = 1, 8 Hz, 1 H, Ar), 7.16 (d, J = 7.5 Hz, 1 H, Ar), 7.26-7.29 (m, 1 H, Ar), 7.34-7.38 (m, 2H, Ar), 7.42-7.45 (m, 3H, Ar), 7.47 (d, J = 1.5 Hz, 1 H, Ar), 7.49 (d, J = 1 Hz, 1 H, Ar), 9.38 (d, J = 1.5 Hz, 1 H, H2 lm ). 13 C NMR (125 MHz, CDCI 3 ) (ppm) 13.8, 19.4, 31, 6, 49.5, 1 12.7, 1 16.9, 1 17.4, 121, 6, 125, 6, 129.9, 130.2, 131, 8, 132.1, 132.9, 135.1, 136.8, 158.8.
Ejemplo 3. Procedimiento para la síntesis de carbonatos cíclicos IV 1-16 a partir de epóxidosExample 3. Procedure for the synthesis of cyclic carbonates IV 1-16 from epoxides
III 1-16. III 1-16.
Figure imgf000018_0004
Figure imgf000018_0004
lll,IV 1 : R10= C6H5, R11= R12=H; ,ιν 2: R10= CH3, R11= R12=H;
Figure imgf000019_0001
lll, IV 1: R 10 = C 6 H 5 , R 11 = R 12 = H; , ιν 2: R 10 = CH 3 , R 11 = R 12 = H;
Figure imgf000019_0001
,ιν 6: R10= C6H4CI, R11= R12= H; , ιν 6: R 10 = C 6 H 4 CI, R 11 = R 12 = H;
,ιν 7: R10= C6H4Br, R11= R12= H;
Figure imgf000019_0002
, ιν 7: R 10 = C 6 H 4 Br, R 11 = R 12 = H;
Figure imgf000019_0002
,ιν 10: R10 = CH2OC6H4, R = R12= , ιν 10: R 10 = CH 2 OC 6 H 4 , R = R 12 =
,ιν 11 : R10 - R12=(CH2)4, R11=H i; , ιν 11: R 10 - R 12 = (CH 2 ) 4 , R 11 = H i;
,ιν 12: R10 - R12=(CH2)3, R11=H i; , ιν 12: R 10 - R 12 = (CH 2 ) 3 , R 11 = H i;
,ιν 13: R10 = R12=CH3, R11=H; , ιν 13: R 10 = R 12 = CH 3 , R 11 = H;
,ιν 14: R10 =H, R11= R12=CH3; , ιν 14: R 10 = H, R 11 = R 12 = CH 3 ;
,ιν 15: R10 =H, R11= R12=C6H5 , ιν 15: R 10 = H, R 11 = R 12 = C 6 H 5
,ιν 16: R10 =H, R =C6H5, R12= CH3 , ιν 16: R 10 = H, R = C 6 H 5 , R 12 = CH 3
Un epóxido (III) (10,0 mmol), y una combinación de un catalizador (la) y yoduro de tetrabutilamonio (0,01 -0,1 mmol) o un catalizador (Ha) (0,01-0,1 mmol) se introdujeron en un reactor de acero inoxidable con una barra de agitador magnético. Se selló la autoclave, se presurizó a 5 bar con C02, se calentó a la temperatura deseada y luego se presurizó a 10 bar con C02. La mezcla de reacción se agitó a 90 eC durante 24h. An epoxide (III) (10.0 mmol), and a combination of a catalyst (la) and tetrabutylammonium iodide (0.01-0.1 mmol) or a catalyst (Ha) (0.01-0.1 mmol ) were introduced into a stainless steel reactor with a magnetic stirrer bar. The autoclave was sealed, pressurized at 5 bar with C0 2 , heated to the desired temperature and then pressurized at 10 bar with C0 2 . The reaction mixture was stirred at 90 C for 24 h and.
La conversión del epóxido (III) a carbonato cíclico (IV) se determinó a continuación mediante análisis de una muestra utilizando espectroscopia de 1 H RMN. La muestra restante se filtró sobre gel de sílice, eluyendo con CH2CI2 para eliminar el catalizador. El eluyente se evaporó a presión reducida para dar el carbonato cíclico, tanto puro como una mezcla de carbonato cíclico y epóxido sin reaccionar. En este último caso, la mezcla se purificó mediante cromatografía flash utilizando un gradiente de disolvente de primero hexano, y posteriormente una mezcla Hexano :Acetato de etilo (9:1 ), reajustando la proporción después con Hexano :Acetato de etilo (3:1 ), y finalmente con Acetato de etilo para dar el carbonato cíclico puro. Los resultados se muestran a continuación: The conversion of epoxide (III) to cyclic carbonate (IV) was then determined by analysis of a sample using 1 H NMR spectroscopy. The remaining sample was filtered over silica gel, eluting with CH2CI2 to remove the catalyst. The eluent was evaporated under reduced pressure to give the cyclic carbonate, both pure and a mixture of unreacted cyclic carbonate and epoxide. In the latter case, the mixture was purified by flash chromatography using a solvent gradient of first hexane, and subsequently a mixture Hexane: Ethyl acetate (9: 1), then readjusting the ratio with Hexane: Ethyl acetate (3: 1) ), and finally with ethyl acetate to give pure cyclic carbonate. The results are shown below:
Tabla 1 Table 1
Catalizador „ η n Catalyst „ η n
E EDpÓóxxiiddoo R R10 R R12 0 R11 ( (o//oo eenn (S TC s ) ( Pbcaor2) Tie (mh)po R (e%n)e 1 III 1 C6H5 H H lla (1) 90 10 87 E ED x TOX 10 R R12 0 R11 ( (o / / o o e e n n (S T C s ) ( P b c a o r 2 ) Tie ( m h) po R ( e % n ) e 1 III 1 C 6 H 5 HH lla (1) 90 10 87
1one
2 III 2 CH3 H H lla (1) 90 10 822 III 2 CH 3 HH lla (1) 90 10 82
3 III 3 C8Hi7 H H lla (1) 90 10 883 III 3 C 8 Hi7 HH lla (1) 90 10 88
4 III 4 CH2CH3 H H lla (1) 90 10 844 III 4 CH2CH3 H H lla (1) 90 10 84
5 III 5 (CH2)3CH3 H H lla (1) 90 10 835 III 5 (CH2) 3 CH 3 HH lla (1) 90 10 83
6 III 6 CehUCI H H lla (1) 90 10 926 III 6 CehUCI H H lla (1) 90 10 92
7 III 7 C6H4Br H H lla (1) 90 10 957 III 7 C 6 H 4 Br HH lla (1) 90 10 95
8 III 8 CH2OH H H lla (1) 90 10 998 III 8 CH2OH H H lla (1) 90 10 99
9 III 9 CH2CI H H lla (1) 90 10 889 III 9 CH2CI H H lla (1) 90 10 88
10 III 10 CH2OC6H4 H H lla (1) 90 10 9410 III 10 CH2OC6H4 H H lla (1) 90 10 94
11 III 11 (CH2)4 H lla (1) 90 10 24 8411 III 11 (CH 2 ) 4 H lla (1) 90 10 24 84
12 III 12 (CH2)3 H lla (1) 90 10 24 9212 III 12 (CH 2 ) 3 H lla (1) 90 10 24 92
13 III 13 CH3 CH; H lla (1) 90 10 24 5213 III 13 CH 3 CH; H lla (1) 90 10 24 52
14 III 14 H CH; CH3 lla (1) 90 10 24 6314 III 14 H CH; CH 3 lla (1) 90 10 24 63
15 III 15 H C6H 5 C6H5 lla (1) 90 10 24 7815 III 15 HC 6 H 5 C 6 H 5 lla (1) 90 10 24 78
16 III 16 H CH; C6H5 lla (1) 90 10 24 75 16 III 16 H CH; C 6 H 5 lla (1) 90 10 24 75
Resultados detallados para el ejemplo 3 Detailed results for example 3
A continuación, se dan los datos de los análisis para los carbonatos cíclicos IV 1-16, sintetizados en las siguientes condiciones:  The analysis data for the cyclic carbonates IV 1-16, synthesized under the following conditions, are given below:
Temperatura 90eC. Presión: 10 bar. Tiempo de reacción: 1 -24 h. Temperature 90 e C. Pressure: 10 bar. Reaction time: 1 -24 h.
Catalizador: 1 % en moles. Catalyst: 1 mol%
Datos para el carbonato de estireno (IV 1 ): Rendimiento 87%. Sólido blanco purificado por lavado con Acetato de etilo. P.f: 49-51 eC; Ή RMN (500 MHz, CDCI3, 298 K): ¿7,3-7,5 (5H, m, ArH), 5,70 (1 H, t J 8,0 Hz, CHO), 4,82 (1 H, t J 8,4 Hz, OCH2), 4,36 (1 H, t J 8,6 Hz, OCH2); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿154,8, 135,8, 129,7, 129,2, 125,8, 76,7, 71 ,2; IR (neat, cnr1): v 3060, 3029, 2961 , 2903, 1791 , 1599; HRMS (ESI+): caled, m/z 187,0366 [M+Na]+; encontrado: 187,0369. Datos para el carbonato de propileno (IV 2): Rendimiento 82%. Líquido incoloro.1 H RMN (500 MHz, CDCI3, 298 K): ¿4,8-4,9 (1 H, m, OCH), 4,57 (1 H, t J 8,3 Hz, OCH2), 4,04 (1 H, dd J 8,3, 7,4 Hz, OCH2), 1 ,50 (3H, d J 6,3 Hz, CH3); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿154,7, 73,2, 70,5, 19,2; IR (neat, cnr1): v 2961 , 2902, 1781 ; HRMS (ESI+): caled, m/z 125,0209 [M+Na]+encontrado: 125,0215. Datos para el carbonato de 1 -deceno (IV 3): Rendimiento 88%. Líquido incoloro. 1 H RMN (500 MHz, CDCI3, 298 K): ¿4,8-4,6 (1 H, m, OCH), 4,50 (1 H, dd J 8,4, 7,8 Hz, OCH2), 4,04 (1 H, dd J 8,4, 7,2 Hz, OCH2), 1 ,6-1 ,9 (2H, m, CH2), 1 ,1 -1 ,6 (12H, m, 6 x CH2), 0,86 (3H, t J 6,8 Hz, CH3); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿155,2, 77,1 , 69,5, 34,0, 31 ,9, 29,4, 29,2, 29,1 , 24,5, 22,7, 14,2; IR (neat, cnr1): v 2916, 2851 , 1800; HRMS (ESI+): caled, m/z 201 ,1485 [M+H]+; encontrado: 201 ,1493. Data for styrene carbonate (IV 1): Yield 87%. White solid purified by washing with ethyl acetate. Mp: 49-51 e C; Ή NMR (500 MHz, CDCI 3 , 298 K): 7.3-7.5 (5H, m, ArH), 5.70 (1 H, t J 8.0 Hz, CHO), 4.82 ( 1 H, t J 8.4 Hz, OCH 2 ), 4.36 (1 H, t J 8.6 Hz, OCH 2 ); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 154.8, 135.8, 129.7, 129.2, 125.8, 76.7, 71, 2; IR (neat, cnr 1 ): v 3060, 3029, 2961, 2903, 1791, 1599; HRMS (ESI + ): caled, m / z 187.0366 [M + Na] + ; Found: 187.0369. Data for propylene carbonate (IV 2): Yield 82%. Colorless liquid 1 H NMR (500 MHz, CDCI 3 , 298 K): 4.8-4.9 (1 H, m, OCH), 4.57 (1 H, t J 8.3 Hz, OCH 2 ), 4 , 04 (1 H, dd J 8.3, 7.4 Hz, OCH2), 1.50 (3H, d J 6.3 Hz, CH 3 ); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 154.7, 73.2, 70.5, 19.2; IR (neat, cnr 1 ): v 2961, 2902, 1781; HRMS (ESI + ): caled, m / z 125.0209 [M + Na] + found: 125.0215. Data for 1-decane carbonate (IV 3): Yield 88%. Colorless liquid 1 H NMR (500 MHz, CDCI3, 298 K): 4.8-4.6 (1 H, m, OCH), 4.50 (1 H, dd J 8.4, 7.8 Hz, OCH 2 ), 4.04 (1 H, dd J 8.4, 7.2 Hz, OCH2), 1, 6-1, 9 (2H, m, CH 2 ), 1, 1 -1, 6 (12H, m , 6 x CH 2 ), 0.86 (3H, t J 6.8 Hz, CH 3 ); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 155.2, 77.1, 69.5, 34.0, 31, 9, 29.4, 29.2, 29.1, 24.5, 22.7, 14.2; IR (neat, cnr 1 ): v 2916, 2851, 1800; HRMS (ESI + ): caled, m / z 201, 1485 [M + H] + ; Found: 201, 1493.
Datos para el carbonato de 1 ,2-butileno (IV 4): Rendimiento 84%. Líquido incoloro. 1 H RMN (500 MHz, CDCI3, 298 K): ¿ 4,5-4,7 (1 H, m, OCH), 4,49 (1 H, t J 8,1 Hz, OCH2), 4,05 (1 H, dd J 6,3, 5,3 Hz, OCH2), 1 ,6-1 ,9 (2H, m, CH2) 1 ,00 (3H, t J 7,1 Hz, CH3). 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿155,2, 78,1 , 69,1 , 27,0, 8,6. IR (neat, cnr1): v 2938, 2917, 1801 ; HRMS (ESI+): caled, m/z 139,0366 [M+Na]+; encontrado: 139,0364. Data for 1,2-butylene carbonate (IV 4): Yield 84%. Colorless liquid 1 H NMR (500 MHz, CDCI3, 298 K): 4.5-4.7 (1 H, m, OCH), 4.49 (1 H, t J 8.1 Hz, OCH 2 ), 4, 05 (1 H, dd J 6.3, 5.3 Hz, OCH 2 ), 1, 6-1, 9 (2H, m, CH 2 ) 1, 00 (3H, t J 7.1 Hz, CH 3 ). 13 C { 1 H} NMR (125 MHz, CDCI3, 298 K) 155.2, 78.1, 69.1, 27.0, 8.6. IR (neat, cnr 1 ): v 2938, 2917, 1801; HRMS (ESI + ): caled, m / z 139.0366 [M + Na] + ; Found: 139.0364.
Datos para el carbonato de 1 ,2-hexileno (IV 5): Rendimiento 83%. Líquido incoloro.1 H RMN (500 MHz, CDCI3, 298 K): ¿ 4,68 (1 H, qd J 7,5, 5,4 Hz, OCH), 4,52 (1 H, t J 8,1 Hz, OCH2), 4,06 (1 H, dd J 8,4, 7,2 Hz, OCH2), 1 ,6-1 ,9 (2H, m, CH2), 1 ,2-1 ,6 (4H, m, 2 x CH2), 0,91 (3H, t J 7,1 Hz, CH3); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿154,8, 77,0, 69,2, 33,4, 26,3, 22,1 , 13,5; IR (neat, cnr1): v 2941 , 2922, 2899, 1796; HRMS (ESI+): caled, m/z 167,0679 [M+Na]+; encontrado: 167,0682. Data for 1,2-hexylene carbonate (IV 5): Yield 83%. Colorless liquid 1 H NMR (500 MHz, CDCI3, 298 K): 4.68 (1 H, qd J 7.5, 5.4 Hz, OCH), 4.52 (1 H, t J 8.1 Hz, OCH 2 ), 4.06 (1 H, dd J 8.4, 7.2 Hz, OCH 2 ), 1, 6-1, 9 (2H, m, CH 2 ), 1, 2-1, 6 (4H , m, 2 x CH 2 ), 0.91 (3H, t J 7.1 Hz, CH 3 ); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 154.8, 77.0, 69.2, 33.4, 26.3, 22.1, 13.5; IR (neat, cnr 1 ): v 2941, 2922, 2899, 1796; HRMS (ESI + ): caled, m / z 167.0679 [M + Na] + ; Found: 167.0682.
Datos para el carbonato de 4-cloroestireno (IV 6): Rendimiento 92%. Sólido blanco. P.f: 66- 69eC; 1 H RMN (500 MHz, CDCI3, 298 K): ¿7,42 (2H, d J 8,5 Hz, ArH), 7,32 (2H, d J 8,5 Hz, ArH), 5,68 (1 H, t J 7,9 Hz, OCH), 4,82 (1 H, t J 8,4 Hz, OCH), 4,31 (1 H, t J 7,8 Hz, OCH2); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿154,6, 135,9, 134,4, 129,6, 127,3, 76,8, 71 ,1 ; IR (neat, crrv1): v 2973, 2698, 2121 , 2017, 1971 , 1793; HRMS (ESI+): caled, m/z 220,9976 [M+Na]+; encontrado: 220,9977. Datos para el carbonato de 4-bromoestireno (IV 7): Rendimiento 95%. Sólido blanco. P.f: 72- 75eC; Ή RMN (500 MHz, CDCI3, 298 K): ¿7,58 (2H, dd J 8,1 , 2,0 Hz, ArH), 7,25 (2H, dd J 8,4, 1 ,8 Hz, ArH), 5,68 (1 H, t J 7,9 Hz, OCH), 4,82 (1 H, t J 8,4 Hz, OCH2), 4,31 (1 H, t J 7,8 Hz, OCH2); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿154,5, 134,8, 132,5, 127,5, 123,9, 76,8, 70,9; IR (neat, crrv1): v 2951 , 2522, 2161 , 2017, 1981 , 1801 , 1771 ; HRMS (ESI+): caled, m/z 264,9471 [M+Na]+; encontrado: 264,9460. Data for 4-chlorostyrene carbonate (IV 6): Yield 92%. Solid white. Mp: 66-69 e C; 1 H NMR (500 MHz, CDCI 3 , 298 K): 7.42 (2H, d J 8.5 Hz, ArH), 7.32 (2H, d J 8.5 Hz, ArH), 5.68 (1 H, t J 7.9 Hz, OCH), 4.82 (1 H, t J 8.4 Hz, OCH), 4.31 (1 H, t J 7.8 Hz , OCH 2 ); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 154.6, 135.9, 134.4, 129.6, 127.3, 76.8, 71, 1; IR (neat, crrv 1 ): v 2973, 2698, 2121, 2017, 1971, 1793; HRMS (ESI + ): caled, m / z 220.9976 [M + Na] + ; Found: 220.9977. Data for 4-bromo-styrene carbonate (IV 7): Yield 95%. Solid white. Mp: 72-75 e C; Ή NMR (500 MHz, CDCI 3 , 298 K): 7.58 (2H, dd J 8.1, 2.0 Hz, ArH), 7.25 (2H, dd J 8.4, 1, 8 Hz , ArH), 5.68 (1 H, t J 7.9 Hz, OCH), 4.82 (1 H, t J 8.4 Hz, OCH 2 ), 4.31 (1 H, t J 7, 8 Hz, OCH 2 ); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 154.5, 134.8, 132.5, 127.5, 123.9, 76.8, 70.9; IR (neat, crrv 1 ): v 2951, 2522, 2161, 2017, 1981, 1801, 1771; HRMS (ESI + ): caled, m / z 264.9471 [M + Na] + ; Found: 264.9460.
Datos para el carbonato de glicerol (IV 8): Rendimiento 99%. Líquido incoloro.1 H RMN (500 MHz, DMSO-de, 298 K): ¿5,22 (1 H, t J 5,5, OH), 4,7-4,8 (1 H, m, OCH), 4,45 (1 H, t J 8,3 Hz, CH2O), 4,24 (1 H, dd J 8,1 , 5,8 Hz, CH20), 3,62 (1 H, ddd J 12,5, 5,5, 2,6 Hz, CH2OH), 3,46 (1 H, ddd J 12,6, 5,6, 3,3 Hz, CH2OH); 13C{1 H}RMN (125 MHz, DMSO-d6, 298 K) ¿155,7, 77,5, 66,4, 61 ,1 ; IR (neat, enr1): v 3382, 2901 , 1799; HRMS (ESI+): caled, m/z 141 ,0158 [M+Na]+; encontrado: 141 ,0156. Data for glycerol carbonate (IV 8): 99% yield. Colorless liquid 1 H NMR (500 MHz, DMSO-de, 298 K): 5.22 (1 H, t J 5.5, OH), 4.7-4.8 (1 H, m, OCH), 4, 45 (1 H, t J 8.3 Hz, CH2O), 4.24 (1 H, dd J 8.1, 5.8 Hz, CH 2 0), 3.62 (1 H, ddd J 12.5 , 5.5, 2.6 Hz, CH 2 OH), 3.46 (1 H, ddd J 12.6, 5.6, 3.3 Hz, CH 2 OH); 13 C { 1 H} NMR (125 MHz, DMSO-d 6 , 298 K) 155.7, 77.5, 66.4, 61, 1; IR (neat, enr 1 ): v 3382, 2901, 1799; HRMS (ESI + ): caled, m / z 141, 0158 [M + Na] + ; Found: 141, 0156.
Datos para el carbonato de 3-cloropropileno (IV 9): Rendimiento 88%. Líquido incoloro. 1 H RMN (500 MHz, CDCI3, 298 K): ¿4,98 (1 H, m, OCH), 4,59 (1 H, t J 8,5 Hz, CH2CI), 4,41 (1 H, dd J 9,0, 8,7 Hz, CH2CI), 3,79 (1 H, dd J 12,0, 6,5 Hz, CH20), 3,73 (1 H, dd J 12,5, 4,0 Hz, CH20); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿154,2, 74,3, 67,0, 43,7; IR (neat, enr1): 3451 , 1971 , 1803; HRMS (ESI+): caled, m/z 158,9819 [M+Na]+; encontrado: 158,9815. Data for 3-chloropropylene carbonate (IV 9): Yield 88%. Colorless liquid 1 H NMR (500 MHz, CDCI 3 , 298 K): 4.98 (1 H, m, OCH), 4.59 (1 H, t J 8.5 Hz, CH 2 CI), 4.41 ( 1 H, dd J 9.0, 8.7 Hz, CH 2 CI), 3.79 (1 H, dd J 12.0, 6.5 Hz, CH 2 0), 3.73 (1 H, dd J 12.5, 4.0 Hz, CH 2 0); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 154.2, 74.3, 67.0, 43.7; IR (neat, enr 1 ): 3451, 1971, 1803; HRMS (ESI + ): caled, m / z 158.9819 [M + Na] + ; Found: 158.9815.
Datos para el carbonato de 3-fenoxipropileno (IV 10): Rendimiento 94%. Sólido blanco. P.f: 94-97eC; Ή RMN (500 MHz, CDCI3, 298 K): ¿7,2-7,5 (2H, m, 2 x ArH), 7,04 (1 H, t J 7,5 Hz, ArH), 6,9-7,0 (2H, m, 2 x ArH), 5,0-5,1 (1 H, m, OCH), 4,5-4,7 (2H, m, O CH2), 4,26 (1 H, dd J 10,6, 4,2 Hz, CH2OPh), 4,16 (1 H, dd J 10,6, 3,6 Hz, CH2OPh); 13C{1 H}RMN (125 MHz, CDCI3, 298 K) ¿158,1 , 154,5, 129,7, 122,0, 1 14,6, 74,1 , 66,9, 66,2; IR (neat, enr1): 3429, 3061 , 2989, 2924, 2328, 1791 ; HRMS (ESI+): caled, m/z 217,0471 [M+Na]+; encontrado: 217,0482. Data for 3-phenoxypropylene carbonate (IV 10): Yield 94%. Solid white. Mp: 94-97 e C; Ή NMR (500 MHz, CDCI 3 , 298 K): 7.2-7.5 (2H, m, 2 x ArH), 7.04 (1 H, t J 7.5 Hz, ArH), 6, 9-7.0 (2H, m, 2 x ArH), 5.0-5.1 (1 H, m, OCH), 4.5-4.7 (2H, m, O CH 2 ), 4, 26 (1 H, dd J 10.6, 4.2 Hz, CH 2 OPh), 4.16 (1 H, dd J 10.6, 3.6 Hz, CH 2 OPh); 13 C { 1 H} NMR (125 MHz, CDCI 3 , 298 K) 158.1, 154.5, 129.7, 122.0, 1 14.6, 74.1, 66.9, 66.2 ; IR (neat, enr 1 ): 3429, 3061, 2989, 2924, 2328, 1791; HRMS (ESI + ): caled, m / z 217.0471 [M + Na] + ; Found: 217.0482.
Datos para el carbonato de cis-1 ,2-ciclohexeno (IV 11 ): Rendimiento 84%. Sólido blanco. P.f: 35-37eC; 1 H RMN (400 MHz, CDCI3, 298 K): ¿4,6^1,7 (m, 2H, CHO), 1 ,8-2,0 (4H, m, 2xCH2CHO), 1 ,5-1 ,7 (2H, m, CH2), 1 ,3-1 ,4 (2H, m, CH2); 13C{1 H} RMN (100 MHz, CDCI3, 298 K) ¿155,2, 75,7, 26,7, 19,2; IR (neat, enr1): 2933, 2861 , 1784; HRMS (ESI+): caled, m/z 165,0522 [M+Na]+; encontrado: 165,0522. Datos para el carbonato de cis-1 ,2-ciclopenteno (IV 12): Rendimiento 92%. Sólido blanco. P.f: 30-33eC; Ή RMN (400 MHz, CDCI3, 298 K): ¿5,00-5,20 (m, 2H, CHO), 2,00-2,20 (2H, m, CH2), 1 ,50-1 ,90 (4H, m, CH2); 13C{1 H} RMN (100 MHz, CDCI3, 298 K) ¿155,6, 81 ,9, 32,3, 21 ,6; IR (neat, cnr1): 2967, 2871 , 1789; HRMS (ESI+): caled, m/z 151 ,0366 [M+Na]+; encontrado: 151 ,0360. Data for cis-1, 2-cyclohexene carbonate (IV 11): Yield 84%. White solid. Mp: 35-37 e C; 1 H NMR (400 MHz, CDCI3, 298 K): 4.6 ^ 1.7 (m, 2H, CHO), 1, 8-2.0 (4H, m, 2xCH 2 CHO), 1, 5- 1, 7 (2H, m, CH 2 ), 1, 3-1, 4 (2H, m, CH 2 ); 13 C { 1 H} NMR (100 MHz, CDCI3, 298 K) 155.2, 75.7, 26.7, 19.2; IR (neat, enr 1 ): 2933, 2861, 1784; HRMS (ESI + ): caled, m / z 165.0522 [M + Na] + ; Found: 165.0522. Data for cis-1, 2-cyclopentene carbonate (IV 12): Yield 92%. Solid white. Mp: 30-33 e C; Ή NMR (400 MHz, CDCI 3 , 298 K): 5.00-5.20 (m, 2H, CHO), 2.00-2.20 (2H, m, CH 2 ), 1, 50-1 , 90 (4H, m, CH 2 ); 13 C { 1 H} NMR (100 MHz, CDCI 3 , 298 K) 155.6, 81, 9, 32.3, 21, 6; IR (neat, cnr 1 ): 2967, 2871, 1789; HRMS (ESI + ): caled, m / z 151, 0366 [M + Na] + ; Found: 151, 0360.
Datos para el carbonato de cis-2,3-buteno (IV 13): Rendimiento 52%. Líquido incoloro de una mezclar 94:6 de los isómeros cis y trans. 1 H RMN (400 MHz, CDCI3, 298 K): ¿4,82 (m, 2H, CH), 1 ,35 (6, d J 6,2 Hz, CH3); 13C{1 H} RMN (100 MHz, CDCI3, 298 K) ¿154,7, 76,1 , 14,5; IR (neat, cnr1): 2960, 2899, 1787; HRMS (ESI+): caled, m/z 139,0366 [M+Na]+; encontrado: 139,0365. Data for cis-2,3-butene carbonate (IV 13): Yield 52%. Colorless liquid of a 94: 6 mixture of cis and trans isomers. 1 H NMR (400 MHz, CDCI 3 , 298 K): 4.82 (m, 2H, CH), 1.35 (6, d J 6.2 Hz, CH 3 ); 13 C { 1 H} NMR (100 MHz, CDCI 3 , 298 K) 154.7, 76.1, 14.5; IR (neat, cnr 1 ): 2960, 2899, 1787; HRMS (ESI + ): caled, m / z 139.0366 [M + Na] + ; Found: 139.0365.
Datos para el carbonato de trans-2,3-buteno (IV 14): Rendimiento 63%. Sólido blanco. P.f: 30- 32eC; 1 H RMN (400 MHz, CDCI3, 298 K): ¿4,32 (m, 2H, CH), 1 ,44 (6, d J 5,9 Hz, CH3); 13C{1 H} RMN (100 MHz, CDCI3, 298 K) ¿154,6, 80,0, 18,5; IR (neat, cnr1): 2955, 2871 , 1776; HRMS (ESI+): caled, m/z 139,0366 [M+Na]+; encontrado: 139,0369. Datos para el carbonato de trans-1 ,2-difeniletileno (IV 15): Rendimiento 78%. Sólido blanco. P.f: 109-1 10eC; 1 H RMN (400 MHz, CDCI3, 298 K): ¿7,35-7,45 (m, 6H, ArH), 7,25-7,35 (m, 4H, ArH), 5,42 (s, 2H, CH); 13C{1 H} RMN (100 MHz, CDCI3, 298 K) ¿154,4, 135,1 , 129,8, 129,3, 126,1 , 85,0, 80,8, 18,4; IR (neat, cnr1): 3051 , 2977, 1812, 1458; HRMS (ESI+): caled, m/z 263,0679 [M+Na]+; encontrado: 263,0676. Datos para el carbonato de trans-1 -fenil-2-metiletileno (IV 16): Rendimiento 75%. Sólido blanco. P.f: 1 12-1 15BC; 1 H RMN (400 MHz, CDCI3, 298 K): ¿7,30-7,50 (5H, m, ArH) 5,12 (1 H, d, J8,0 Hz, CH), 4,59 (1 H, m, CH), 1 ,55 (3H, d, J8,0 Hz, CH3); 13C{1 H} RMN (100 MHz, CDCI3, 298 K) ¿154,4, 135,1 , 129,8, 129,3, 126,1 , 85,0, 80,8, 18,4; IR (neat, cnr1): 3010, 2950, 1800, 1459; HRMS (ESI+): caled, m/z 201 ,0522 [M+Na]+; encontrado: 201 ,0529. Data for trans-2,3-butene carbonate (IV 14): Yield 63%. White solid. Mp: 30-32 e C; 1 H NMR (400 MHz, CDCI 3 , 298 K): 4.32 (m, 2H, CH), 1.44 (6, d J 5.9 Hz, CH 3 ); 13 C { 1 H} NMR (100 MHz, CDCI 3 , 298 K) 154.6, 80.0, 18.5; IR (neat, cnr 1 ): 2955, 2871, 1776; HRMS (ESI + ): caled, m / z 139.0366 [M + Na] + ; Found: 139.0369. Data for trans-1,2-diphenylethylene carbonate (IV 15): Yield 78%. White solid. Mp: 109-110 e C; 1 H NMR (400 MHz, CDCI 3 , 298 K): 7.35-7.45 (m, 6H, ArH), 7.25-7.35 (m, 4H, ArH), 5.42 (s , 2H, CH); 13 C { 1 H} NMR (100 MHz, CDCI 3 , 298 K) 154.4, 135.1, 129.8, 129.3, 126.1, 85.0, 80.8, 18.4; IR (neat, cnr 1 ): 3051, 2977, 1812, 1458; HRMS (ESI + ): caled, m / z 263.0679 [M + Na] + ; Found: 263.0676. Data for trans-1-phenyl-2-methylethylene carbonate (IV 16): Yield 75%. White solid. Mp: 1 12-1 15 B C; 1 H NMR (400 MHz, CDCI 3 , 298 K): 7.30-7.50 (5H, m, ArH) 5.12 (1 H, d, J8.0 Hz, CH), 4.59 ( 1 H, m, CH), 1.55 (3H, d, J8.0 Hz, CH 3 ); 13 C { 1 H} NMR (100 MHz, CDCI 3 , 298 K) 154.4, 135.1, 129.8, 129.3, 126.1, 85.0, 80.8, 18.4; IR (neat, cnr 1 ): 3010, 2950, 1800, 1459; HRMS (ESI +): caled, m / z 201, 0522 [M + Na] + ; Found: 201, 0529.

Claims

REIVINDICACIONES
1 . Un catalizador para producir carbonatos cíclicos, caracterizado por que dicho catalizador es de fórmula I o II:  one . A catalyst for producing cyclic carbonates, characterized in that said catalyst is of formula I or II:
Figure imgf000024_0001
en la que Xn está seleccionado del grupo compuesto por Cl~, Br, I", p-CH3C6H4S03~, CH3SO3", CF3SO3-, (C6H5)4B-, F4B-, CUB-, F6P-, HSO4-, S04 2-, NO3-, C03 2-, CH3(CH2)nC02- (n=0-20), C6H5-C02 y CF3C02 ", R2, R4, R5, R6, R7, R8 y R9 pueden ser iguales o distintos entre sí y están seleccionados del grupo compuesto por H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, OH, CH3(CH2)nO (n=0-18), (CH3)2N, CH2=CHCH2, CH3CH=CHCH2, F, Cl, Br, I, CHO, CN, N02, C02H, CH3(CH2)nCO (n=0-18), CH3(CH2)n02C (n=0-18), o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-CH3(CH2)nCO-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-, p-H03S-C6H4, o-, m-, p-H02C-C6H4, o-, m-, y p-CH3(CH2)nO2C-C6H4 (n=0-18),
Figure imgf000024_0001
where X n is selected from the group consisting of Cl ~ , Br, I " , p-CH 3 C 6 H 4 S03 ~ , CH3SO3 " , CF3SO3-, (C 6 H 5 ) 4B-, F 4 B-, CUB-, F 6 P-, HSO4-, S0 4 2 -, NO3-, C0 3 2 -, CH 3 (CH 2 ) nC02- (n = 0-20), C 6 H 5 -C0 2 and CF 3 C0 2 " , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be the same or different from each other and are selected from the group consisting of H, CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2 CH, (CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , OH, CH 3 (CH 2 ) n O (n = 0- 18), (CH 3 ) 2 N, CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , F, Cl, Br, I, CHO, CN, N0 2 , C0 2 H, CH 3 (CH 2 ) n CO (n = 0-18), CH 3 (CH 2 ) n 0 2 C (n = 0-18), o-, m-, p- [CH 3 (CH 2 ) n] -C 6 H4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m-, p - [(CH 3 ) 3C] -C 6 H 4 , o- , m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) nO] -C 6 H4 (n = 0-18), o-, m -, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , o-, m-, p-CF 3 -C 6 H 4 , or -, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m-, p-Br-C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p-CH 3 (CH 2 ) nCO-C 6 H4 (n = 0-18), o-, m-, p-CN-C 6 H 4 , o-, m -, p-N0 2 -C 6 H 4 , o-, m-, p-H0 3 SC 6 H 4 , o-, m-, p-H0 2 CC 6 H 4 , o-, m-, and p -CH 3 (CH 2 ) No 2 CC 6 H4 (n = 0-18),
R1 y R3 pueden ser iguales o distintos entre sí y están seleccionados del grupo compuesto por H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, CH3(CH2)nO (n=0-18), CH2=CHCH2, CH3CH=CHCH2, o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-[CH3(CH2)nCO]-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-y p-CH3(CH2)n02C-C6H4 (n=0-18). R 1 and R 3 may be the same or different from each other and are selected from the group consisting of H, CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2 CH, (CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , CH 3 (CH 2 ) n O (n = 0-18), CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , o-, m- , p- [CH 3 (CH 2 ) n] -C 6 H4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m -, p - [(CH 3 ) 3C] -C 6 H4, o-, m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) nO] -C 6 H4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , o-, m-, p-CF 3 -C 6 H 4 , o-, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m-, p -Br-C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) nCO ] -C 6 H4 (n = 0-18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o-, my p- CH 3 (CH 2 ) n0 2 CC 6 H4 (n = 0-18).
2. Un procedimiento para producir carbonatos cíclicos según la reacción
Figure imgf000025_0001
donde cada uno de los sustituyentes R10, R11 y R12 se seleccionan de H, alquilo C1-20 opcionalmente sustituido por alquilo CMO, eterociclilo C3-20, arilo C5-20, halógeno, hidroxi, éter, ciano, nitro, carboxi, éster, amido, amino, acilamido, ureido, aciloxi, tiol, tioéter, sulfóxido, sulfonilo, tioamido y sulfonamido, heterociclo C3-20 opcionalmente sustituido por alquilo CMO, heterociclilo C3-20, arilo C5-20, halógeno, hidroxi, éter, ciano, nitro, carboxi, éster, amido, amino, acilamido, ureido, aciloxi, tiol, tioéter, sulfóxido, sulfonilo, tioamido y sulfonamino y arilo C5-20 opcionalmente sustituido por alquilo CMO, heterociclilo C3-20, arilo C5-20, halógeno, hidroxi, éter, ciano, nitro, carboxi, éster, amido, amino, acilamido, ureido, aciloxi, tiol, tioéter, sulfóxido, sulfonilo, tioamido y sulfonamido, o R10 y R12 o R11 y R12 forman un grupo conector opcionalmente sustituido, entre los dos átomos de carbono a los que están unidos respectivamente,donde el grupo conector, junto con los átomos de carbono a los que están unidos, puede formar un cicloalquilo C5-20 o heterociclo C5-20 opcionalmente sustituidos por alquilo CMO, heterociclilo C3-20, arilo C5-20, halógeno, hidroxi, éter, ciano, nitro, carboxi, éster, amido, amino, acilamido, ureido, aciloxi, tiol, tioéter, sulfóxido, sulfonilo, tioamido y sulfonamido,
2. A procedure to produce cyclic carbonates according to the reaction
Figure imgf000025_0001
wherein each of the substituents R 10 , R 11 and R 12 are selected from H, C1-20 alkyl optionally substituted by CMO alkyl, C3-20 ether cyclyl, C5-20 aryl, halogen, hydroxy, ether, cyano, nitro, carboxy , ester, amido, amino, acylamido, ureido, acyloxy, thiol, thioether, sulfoxide, sulfonyl, thioamido and sulfonamido, C3-20 heterocycle optionally substituted by CMO alkyl, C3-20 heterocyclyl, C5-20 aryl, halogen, hydroxy, ether , cyano, nitro, carboxy, ester, amido, amino, acylamido, ureido, acyloxy, thiol, thioether, sulfoxide, sulfonyl, thioamido and sulfonamino and C5-20 aryl optionally substituted by CMO alkyl, C3-20 heterocyclyl, C5-20 aryl , halogen, hydroxy, ether, cyano, nitro, carboxy, ester, amido, amino, acylamido, ureido, acyloxy, thiol, thioether, sulfoxide, sulfonyl, thioamido and sulfonamido, or R 10 and R 12 or R 11 and R 12 form an optionally substituted connecting group, between the two carbon atoms to which they are attached respectively, where the gr upo connector, together with the carbon atoms to which they are attached, can form a C5-20 cycloalkyl or C5-20 heterocycle optionally substituted by CMO alkyl, C3-20 heterocyclyl, C5-20 aryl, halogen, hydroxy, ether, cyano , nitro, carboxy, ester, amido, amino, acylamido, ureido, acyloxy, thiol, thioether, sulfoxide, sulfonyl, thioamido and sulfonamido,
caracterizado por poner en contacto un epóxido con dióxido de carbono en presencia de un catalizador que tiene la fórmula I: characterized by contacting an epoxide with carbon dioxide in the presence of a catalyst having the formula I:
Figure imgf000025_0002
Figure imgf000025_0002
(i)  (i)
donde R2, R4, R5, R6, R7, R8 y R9 pueden ser iguales o distintos entre sí y están seleccionados del grupo compuesto por H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, OH, CH3(CH2)nO (n=0-18), (CH3)2N, CH2=CHCH2, CH3CH=CHCH2, F, Cl, Br, I, CHO, CN, N02, CO2H, CH3(CH2)nCO (n=0-18), CH3(CH2)n02C (n=0-18), o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-CH3(CH2)nCO-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-, p-H03S-C6H4, o-, m-, p-H02C-C6H4, o-, m-, -CH3(CH2)n02C-C6H4 (n=0-18), R1 está seleccionado del grupo compuesto por H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, CH3(CH2)nO (n=0-18), CH2=CHCH2, CH3CH=CHCH2, o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-[CH3(CH2)nCO]-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-, p-CH3(CH2)n02C-C6H4 (n=0-18), en combinación con un cocatalizador que suministra Xn_, siendo Xn_: Cl", Br, I", p-CH3C6H4S03 ", CH3S03 ", CF3S03 ", (C6H5) B-, F4B", CI4B", F6P", HS04 ", S04 2", N03 ", C03 2", CH3(CH2)nC02- (n=0-20), C6H5-C02- y CF3C02 ", o de un organocatalizador de fórmula II: where R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 can be the same or different from each other and are selected from the group consisting of H, CH 3 (CH 2 ) n (n = 0-18 ), (CH 3 ) 2 CH, (CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , OH, CH 3 (CH 2 ) n O (n = 0-18), (CH 3 ) 2 N, CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , F, Cl, Br, I, CHO, CN, N0 2 , CO2H, CH 3 (CH 2 ) n CO (n = 0- 18), CH 3 (CH2) n0 2 C (n = 0-18), o-, m-, p- [CH 3 (CH2) n] -C 6 H4 (n = 0-18), o-, m-, p - [(CH 3 ) 2CH] -C6H 4 , o-, m-, p - [(CH 3 ) 3C] -C 6 H4, o-, m-, p- [sec-Bu] - C 6 H 4 , o-, m-, p- [CH 3 (CH2) nO] -C 6 H4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o- , m-, p - [(CH 3 ) 2N] -C 6 H 4 , o-, m-, p-CF 3 -C 6 H4, o-, m-, pFC 6 H 4 , o-, m- , p-CI-C 6 H 4 , o-, m-, p-Br-C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p-CH 3 (CH 2 ) nCO-C 6 H 4 (n = 0-18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o-, m-, p-H0 3 SC 6 H 4 , o-, m-, p-H0 2 CC 6 H 4 , o-, m-, -CH 3 (CH2) n02C-C 6 H4 (n = 0-18), R 1 is selected from the group consisting of H, CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2CH, (CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , CH 3 (CH 2 ) n O (n = 0-18), CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , o-, m-, p- [CH 3 ( CH 2 ) n] -C 6 H 4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m-, p - [( CH 3 ) 3 C] -C 6 H 4 , o-, m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n O] - C 6 H 4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , or -, m-, p-CF 3 -C 6 H 4 , o-, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m-, p-Br -C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n CO] -C 6 H 4 (n = 0-18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o-, m-, p-CH 3 (CH 2 ) n 0 2 CC 6 H 4 (n = 0-18), in combination with a cocatalyst that supplies X n_ , with X n_ : Cl " , Br, I " , p-CH 3 C 6 H 4 S0 3 " , CH 3 S0 3 " , CF 3 S0 3 " , (C 6 H 5 ) B-, F 4 B " , CI 4 B " , F 6 P " , H S0 4 " , S0 4 2" , N0 3 " , C0 3 2" , CH 3 (CH 2 ) n C0 2 - (n = 0-20), C 6 H 5 -C0 2 - and CF 3 C0 2 " , or of an organocatalyst of formula II:
Figure imgf000026_0001
Figure imgf000026_0001
donde Xn" está seleccionado del grupo compuesto por Cl", Br, I", p-CH3C6H4S03 ", CH3S03 ", CF3S03 ", (C6H5) B-, F B", CI4B", F6P", HS04 ", S04 2", N03 ", C03 2", CH3(CH2)nC02- (n=0-20), C6H5-C02- y CF3C02 ", R2, R4, R5, R6, R7, R8 y R9 pueden ser iguales o distintos entre sí y están seleccionados del grupo compuesto por H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, OH, CH3(CH2)nO (n=0-18), (CH3)2N, CH2=CHCH2, CH3CH=CHCH2, F, Cl, Br, I, CHO, CN, N02, C02H, CH3(CH2)nCO (n=0-18), CH3(CH2)n02C (n=0-18), o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-CH3(CH2)nCO-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m-, p-H03S-C6H4, o-, m-, p-H02C-C6H4, o-, m- y p-CH3(CH2)n02C-C6H4 (n=0-18), R1 y R3 pueden ser iguales o distintos entre sí y están seleccionados del grupo compuesto por H, CH3(CH2)n (n=0-18), (CH3)2CH, (CH3)3C, sec-Bu, C6H5, C6H5CH2, CH3(CH2)nO (n=0-18), CH2=CHCH2, CH3CH=CHCH2, o-, m-, p-[CH3(CH2)n]-C6H4 (n=0-18), o-, m-, p-[(CH3)2CH]-C6H4, o-, m-, p-[(CH3)3C]-C6H4, o-, m-, p-[sec-Bu]-C6H4, o-, m-, p-[CH3(CH2)nO]-C6H4 (n=0-18), o-, m-, p-OH-C6H4, o-, m-, p-[(CH3)2N]-C6H4, o-, m-, p-CF3-C6H4, o-, m-, p-F-C6H4, o-, m-, p-CI-C6H4, o-, m-, p-Br-C6H4, o-, m-, p-l-C6H4, o-, m-, p-CHO-C6H4, o-, m-, p-[CH3(CH2)nCO]-C6H4 (n=0-18), o-, m-, p-CN-C6H4, o-, m-, p-N02-C6H4, o-, m- y p-CH3(CH2)nO2C-C6H4 (n=0-18). where X n " is selected from the group consisting of Cl " , Br, I " , p-CH 3 C 6 H 4 S0 3 " , CH 3 S0 3 " , CF 3 S0 3 " , (C 6 H 5 ) B- , FB " , CI 4 B " , F 6 P " , HS0 4 " , S0 4 2 " , N0 3 " , C0 3 2 " , CH 3 (CH 2 ) n C0 2 - (n = 0-20), C 6 H 5 -C0 2 - and CF 3 C0 2 " , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 can be the same or different from each other and are selected from the group consisting of H , CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2 CH, (CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , OH, CH 3 (CH 2 ) n O (n = 0-18), (CH 3 ) 2 N, CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , F, Cl, Br, I, CHO, CN, N0 2 , C0 2 H, CH 3 (CH 2 ) n CO (n = 0-18), CH 3 (CH 2 ) n 0 2 C (n = 0-18), o-, m-, p- [CH 3 (CH 2 ) n ] -C 6 H 4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m-, p - [(CH 3 ) 3 C] -C 6 H 4 , o-, m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n O] -C 6 H 4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , o- , m-, p-CF 3 -C 6 H 4 , o-, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m-, p-Br- C 6 H 4 , o- , m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p-CH 3 (CH 2 ) n CO-C 6 H 4 (n = 0- 18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o-, m-, p-H0 3 SC 6 H 4 , or -, m-, p-H0 2 CC 6 H 4 , o-, m- and p-CH 3 (CH 2 ) n 0 2 CC 6 H 4 (n = 0-18), R 1 and R 3 can be same or different from each other and are selected from the group consisting of H, CH 3 (CH 2 ) n (n = 0-18), (CH 3 ) 2 CH, (CH 3 ) 3 C, sec-Bu, C 6 H 5 , C 6 H 5 CH 2 , CH 3 (CH 2 ) n O (n = 0-18), CH 2 = CHCH 2 , CH 3 CH = CHCH 2 , o-, m-, p- [CH 3 ( CH 2 ) n ] -C 6 H 4 (n = 0-18), o-, m-, p - [(CH 3 ) 2 CH] -C 6 H 4 , o-, m-, p - [( CH 3 ) 3 C] -C 6 H 4 , o-, m-, p- [sec-Bu] -C 6 H 4 , o-, m-, p- [CH 3 (CH 2 ) n O] - C 6 H 4 (n = 0-18), o-, m-, p-OH-C 6 H 4 , o-, m-, p - [(CH 3 ) 2 N] -C 6 H 4 , or -, m-, p-CF 3 -C 6 H 4 , o-, m-, pFC 6 H 4 , o-, m-, p-CI-C 6 H 4 , o-, m-, p-Br -C 6 H 4 , o-, m-, plC 6 H 4 , o-, m-, p-CHO-C 6 H 4 , o-, m-, p- [CH 3 (CH2) nCO] -C 6 H4 (n = 0 -18), o-, m-, p-CN-C 6 H 4 , o-, m-, p-N0 2 -C 6 H 4 , o-, m- and p-CH 3 (CH2) nO2C- C 6 H4 (n = 0-18).
3. El procedimiento de acuerdo con la reivindicación 2, caracterizado por que la temperatura de reacción está en el rango entre 20 y 100eC. 3. The method according to claim 2, characterized in that the reaction temperature is in the range between 20 and 100 e C.
4. El procedimiento de acuerdo con la reivindicación 2 a 3, caracterizado por que la presión de reacción está en el rango entre 1 y 10 bar. 4. The method according to claim 2 to 3, characterized in that the reaction pressure is in the range between 1 and 10 bar.
5. El procedimiento de acuerdo con cualquiera de las reivindicaciones 2 a 4, caracterizado por que el tiempo de reacción en la reacción III→ IV está en el rango entre 30 min y 26 horas. 5. The method according to any of claims 2 to 4, characterized in that the reaction time in reaction III → IV is in the range between 30 min and 26 hours.
6. El procedimiento de acuerdo con cualquiera de las reivindicaciones 2 a 5, caracterizado por que la concentración de catalizador está en el rango entre 0,01 y 1 % en moles. 6. The process according to any of claims 2 to 5, characterized in that the catalyst concentration is in the range between 0.01 and 1 mol%.
PCT/ES2017/070681 2016-11-07 2017-10-13 Organocatalysts for the production of cyclic carbonates WO2018083357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201631419 2016-11-07
ES201631419A ES2667439B1 (en) 2016-11-07 2016-11-07 ORGANOCATALIZERS FOR OBTAINING CYCLIC CARBONATES

Publications (1)

Publication Number Publication Date
WO2018083357A1 true WO2018083357A1 (en) 2018-05-11

Family

ID=62076762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070681 WO2018083357A1 (en) 2016-11-07 2017-10-13 Organocatalysts for the production of cyclic carbonates

Country Status (2)

Country Link
ES (1) ES2667439B1 (en)
WO (1) WO2018083357A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132474A1 (en) * 2007-04-25 2008-11-06 University Of Newcastle Upon Tyne Synthesis of cyclic carbonates in the presence of dimeric aluminium (salen) catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132474A1 (en) * 2007-04-25 2008-11-06 University Of Newcastle Upon Tyne Synthesis of cyclic carbonates in the presence of dimeric aluminium (salen) catalysts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN WANG ET AL.: "An efficient metal-and solvent-free organocatalytic system for chemical fixation of C02 into cyclic carbonates under muld conditions", GREEN CHEMISTRY, vol. 18, no. 5, 3 July 2016 (2016-07-03), pages 1229 - 1233, XP055335297 *
M COKOJA ET AL.: "Synthesis of cyclic carbonates from epoxides and CO2 by using organocatalysts", CHEMSUSCHEM, vol. 8, 2015, pages 2436 - 2454 *

Also Published As

Publication number Publication date
ES2667439B1 (en) 2019-02-14
ES2667439A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
ES2398143T3 (en) Synthesis of cyclic carbonates in the presence of dimeric aluminum catalysts (SALEN)
RU2406722C2 (en) Bis-(thio-hydrazide amide) salts for cancer treatment
ES2512718T3 (en) Aluminum complexes and their use in the synthesis of cyclic carbonates
BRPI0908982B1 (en) SYNTHESIS OF CYCLICAL CARBONETS
JP5208782B2 (en) Fluorosulfonylimides and process for producing the same
Hutchins et al. Aqueous polar aprotic solvents. Efficient sources of nucleophilic oxygen
JP2010168249A (en) Fluorosulfonylimides and method for producing the same
WO2015106624A1 (en) 2,4(1h,3h)-pyrimidinedione derivatives and preparation method therefor
AU2004281225A1 (en) Furan derivatives as EP4 receptor antagonists
CA3007624C (en) Method for producing n-retinoylcysteic acid alkyl ester
ES2667439B1 (en) ORGANOCATALIZERS FOR OBTAINING CYCLIC CARBONATES
Iimura et al. Direct thioesterification from carboxylic acids and thiols catalyzed by a Brønsted acid
WO2009138763A1 (en) Formation of 18f and 19f fluoroarenes bearing reactive functionalities
CN111072605A (en) Preparation method of fluoroalkyl-substituted benzofuran derivative or indole derivative
Kanbayashi et al. Synthesis of an optically active polymer containing a planar phthalimide backbone by asymmetric polymerization
Garlyauskayte et al. Synthesis of new organic super acids—N-(trifluoromethylsulfonyl) imino derivatives of trifluoromethanesulfonic acid and bis (trifluoromethylsulfonyl) imide
ES2351421T3 (en) METHOD FOR PRODUCING 2-ISOPROPENYL-5-METHYL-4-HEXEN-1-ILO 3-METHYL-2-BUTENOATE.
Barton et al. Diels-Alder reactions of thebaines with cycloalkenones; Lithium tetrafluoroborate as a novel diels-alder catalyst.
KR100936349B1 (en) Novel synthesis method of metal cyclopetadienide in bulk
Kato et al. A convenient preparation of anhydrous alkali metal thiocarboxylates
Chen et al. Manganese (iii)-promoted thiocarbonylation of alkylborates with disulfides: synthesis of aliphatic thioesters
CN115260077A (en) Synthetic method of thiocyano-containing indoline compound
Yamada et al. Stereospecific synthesis of (R)‐[2‐2H1]‐glycine by means of microbial reduction and a determination of It's absolute configuration by CD spectra
KR20140063792A (en) Method of producing 2-oxo-2h-cyclohepta[b]furan analogue
CN117069687A (en) Method for catalyzing and fixing carbon dioxide by halogen-free organic ion to catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867483

Country of ref document: EP

Kind code of ref document: A1