WO2018082373A1 - 海上风力机叶片运行状态监测系统 - Google Patents

海上风力机叶片运行状态监测系统 Download PDF

Info

Publication number
WO2018082373A1
WO2018082373A1 PCT/CN2017/098580 CN2017098580W WO2018082373A1 WO 2018082373 A1 WO2018082373 A1 WO 2018082373A1 CN 2017098580 W CN2017098580 W CN 2017098580W WO 2018082373 A1 WO2018082373 A1 WO 2018082373A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal image
wind turbine
frequency
blade
offshore wind
Prior art date
Application number
PCT/CN2017/098580
Other languages
English (en)
French (fr)
Inventor
王志刚
李仕平
杨波
陈志刚
李茂东
林金梅
翟伟
张双红
黄国家
辛明亮
邱樾
伍振凌
Original Assignee
广州特种承压设备检测研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州特种承压设备检测研究院 filed Critical 广州特种承压设备检测研究院
Publication of WO2018082373A1 publication Critical patent/WO2018082373A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics

Definitions

  • the invention relates to the technical field of wind turbine condition monitoring, in particular to an offshore wind turbine blade operating state monitoring system.
  • Wind power technology is gradually extending from land to sea due to its abundant wind resources, large power generation, long power generation, no land occupation, and large-scale development.
  • Offshore wind turbines have become a hot spot in the world of renewable energy development.
  • offshore wind farms are far more dangerous to operate than onshore wind farms, such as moisture and salt spray corrosion, lightning and typhoon damage, snow and waves, and sea impactors (sea ice). It is much larger than the onshore unit and has a high failure rate. Therefore, effective real-time monitoring of the operating state of the offshore wind turbine blades, and timely and effective prevention and monitoring of blade failures are urgent problems to be solved.
  • Infrared thermal imaging detection technology is widely used for non-destructive testing of wind turbine blade failure due to non-contact, large area, long distance and high detection sensitivity.
  • this method can only be used when the blade is static, because the blade rotates at high speed. It will cause the thermal imaging camera to not receive the surface temperature change of the blade in real time and cannot monitor the wind turbine blade state in time.
  • An offshore wind turbine blade running condition monitoring system comprises: a blade frequency collecting device for collecting a blade frequency of a wind turbine, and a synchronous driving of a driving signal that receives the same blade frequency and outputs two channels of the same frequency with an integral multiple of the frequency of the blade. a circuit, receiving the driving signal, emitting a light having the same frequency as the driving signal, and illuminating the rotating blade, receiving the driving signal, and performing thermal image acquisition at the same frequency of the driving signal to obtain heat a thermal image acquisition device like data, and an analysis terminal that receives the thermal image data and performs fault analysis;
  • the blade frequency collecting device is connected to the synchronous driving circuit; the synchronous driving circuit is connected to the light emitting device and the thermal image capturing device; and the thermal image capturing device is connected to the analyzing terminal.
  • the illuminating device is a stroboscope.
  • the frequency acquisition device is a speed sensor.
  • the frequency acquisition device is a laser speed sensor.
  • the thermal image acquisition device is of the type T420.
  • the method further includes an illumination number counter that counts the number of times of illumination of the illumination device, a thermal image acquisition counter that counts the number of times the thermal image acquisition device collects the thermal image, and the number of times the illumination is connected a counter and a comparator of the thermal image acquisition counter; the thermal image acquisition counter is electrically coupled to the thermal image acquisition device; the comparator is coupled to the synchronous drive circuit and the analysis terminal.
  • the blade frequency acquisition device is disposed on the nacelle of the wind turbine near the blades of the wind turbine.
  • the illumination device and the thermal image acquisition device are disposed on a tower of a wind turbine.
  • the illuminating device and the thermal image capturing device are disposed on a tower of the wind turbine, and the blades of the wind turbine are at the same height as the middle of the blade when the blades of the wind turbine are parallel to the tower .
  • the analyzing terminal is further connected to the synchronous driving circuit; the analyzing terminal is configured to send a self-locking signal to the said before performing fault analysis on the temperature information collected by the thermal image capturing device a synchronous drive circuit; after the failure analysis is completed, an unlock signal is sent to the synchronous drive circuit.
  • the frequency of the driving signal is integral with the blade frequency, that is, the lighting frequency of the lighting device and the blade frequency of the blade rotation are Integral multiple relationship, preferably, the illuminating frequency of the illuminating device is the same as the blade frequency of the blade rotation, that is, in a double relationship; thus, the two are in a relatively static state, and the observation result that the blade is relatively stationary can be obtained;
  • the synchronous driving circuit is connected to the illuminating device and the thermal image capturing device, and thus, the thermal image capturing device
  • the acquisition frequency is the same as the illumination frequency of the illuminating device.
  • the thermal image data of the blade can be collected by the thermal image acquisition device with the same illuminating frequency as the illuminating device, that is, the observation effect of the "frozen” at a certain moment of the high-speed rotating blade can be obtained. Therefore, the blade running state of the wind turbine blade at high speed operation can be analyzed. Therefore, the offshore wind turbine blade operating state monitoring system can timely monitor the wind turbine blade state.
  • FIG. 1 is a schematic structural view of an offshore wind turbine blade operating state monitoring system according to an embodiment
  • FIG. 2 is a schematic view showing the working principle of an offshore wind turbine blade operating state monitoring system according to an embodiment
  • FIG. 3 is a schematic structural view of an offshore wind turbine blade operating state monitoring system according to another embodiment.
  • an offshore wind turbine blade operating state monitoring system includes: a blade frequency collecting device 11 that collects a blade frequency of a wind turbine, receives a blade frequency, outputs two channels identically, and has a frequency and said a synchronous driving circuit 14 for driving signals having an integral frequency relationship of the blade frequency, receiving the driving signal, emitting light having the same frequency as the frequency of the driving signal, and illuminating the illuminating device 12 on the rotating blade 36, receiving the driving signal a thermal image acquisition device 13 for obtaining thermal image data by thermal image acquisition at the same frequency as the drive signal, and an analysis terminal 15 for receiving the thermal image data for failure analysis;
  • the blade frequency collecting device 11 is connected to the synchronous driving circuit 14; the synchronous driving circuit 14 is connected to the illumination device 12 and the thermal image acquisition device 13; the thermal image acquisition device 13 is connected to the analysis terminal 15.
  • the output end of the blade frequency collecting device 11 is connected to the input end of the synchronous driving circuit 14; the two output ends of the synchronous driving circuit 14 are respectively connected to the input end of the power generating device and the thermal image capturing device 13; the data of the thermal image capturing device 13 The output is connected to the data input of the analysis terminal 15.
  • the blade frequency collecting device 11 is configured to collect the blade frequency of the wind turbine and transmit the blade frequency to the synchronous driving circuit 14 in the form of a pulse signal.
  • the synchronous driving circuit 14 is configured to generate two driving signals with the same frequency and an integer multiple of the blade frequency, and output the two driving signals to the light emitting device 12 and the thermal image capturing device 13, respectively.
  • the illuminating device 12 is configured to receive the driving signal, emit light of the same frequency as the driving signal, and illuminate the rotating blade 36.
  • the thermal image capturing device 13 is configured to receive the driving signal and drive the signal at the same frequency. Thermal image acquisition is performed to obtain thermal image data, and the thermal image data is transmitted to the analysis terminal 15 for failure analysis.
  • the thermal image acquisition device 13 performs thermal image acquisition to obtain thermal image data, performs panoramic measurement in the form of an image, and collects surface heat parameters of the blade 36. That is, the thermal image data includes the thermal parameters of the surface of the blade 36. Specifically, the heat parameter includes temperature.
  • the analysis terminal 15 is configured to analyze the wind turbine blade failure according to the heat parameter of the surface of the blade 36.
  • the analysis terminal 15 can be a smart terminal such as a desktop computer, a palmtop computer, a notebook computer, or a smart phone.
  • the working process of the above-mentioned offshore wind turbine blade operating state monitoring system is: the blade frequency collecting device 11 collects the blade frequency of the wind turbine, and transmits the blade frequency to the synchronous driving circuit 14 in the form of a pulse signal; the synchronous driving circuit 14 receives the blade frequency And outputting two driving signals having the same frequency and integral frequency relationship with the blade frequency to the illuminating device 12 and the thermal image capturing device 13; the illuminating device 12 receiving the driving signal and emitting the same frequency as the driving signal frequency And irradiating onto the rotating blade 36; the thermal image capturing device 13 receives the driving signal, performs thermal image acquisition at the same frequency as the driving signal to obtain thermal image data, and transmits the thermal image data to the analyzing terminal 15 for failure analysis.
  • the frequency of the driving signal is integral with the blade frequency, that is, the lighting frequency of the illuminating device 12 is in integral multiple relationship with the blade frequency at which the blade 36 rotates, preferably , the illumination frequency of the illumination device 12 and the rotation of the blade 36
  • the blade frequencies are the same, that is, in a double relationship; thus, the two are in a relatively static state, and the observation result that the blade 36 is relatively stationary can be obtained; and the synchronous driving circuit 14 is connected to the light-emitting device 12 and the The thermal image acquisition device 13 is such that the acquisition frequency of the thermal image acquisition device 13 is the same as the illumination frequency of the illumination device 12.
  • the thermal image data of the blade 36 can be collected by the thermal image acquisition device 13 having the same illumination frequency as the illumination device 12. That is, the observation effect of the "frozen” at a certain moment of the blade 36 rotating at a high speed can be obtained. Therefore, the running state of the blades 36 of the wind turbine during high-speed operation of the wind turbine blade can be analyzed. Therefore, the offshore wind turbine blade operating state monitoring system can timely monitor the wind turbine blade state.
  • the wind turbine is preferably an offshore wind turbine.
  • the illumination device 12 is a stroboscope.
  • the stroboscope uses the "stroboscopic effect".
  • the flashing source's illumination source flickering frequency is strictly equal to or equal to the integer rotation of the measured object, the two are in a relatively static state, and the object is still stationary.
  • the observation result can obtain the observation effect of "freezing” at a certain moment of high-speed rotating object.
  • the frequency acquisition device is a speed sensor.
  • the speed sensor measures the speed of the wind turbine blade.
  • the speed measuring sensor can be an eddy current sensor, a Hall sensor, a capacitive switch or the like.
  • the frequency acquisition device is a laser speed sensor.
  • the laser speed sensor emits a laser beam to the surface of the blade 36.
  • the laser speed sensor receives the laser pulse signal reflected by the blade 36, and the control switch is turned on to output a high level signal; instead, the control switch is turned off.
  • the low-level signal is output, and finally the rotation frequency of the wind turbine blade is collected by controlling the switch to be turned on and off.
  • the measurement accuracy and sensitivity of the laser speed sensor are less affected by the environment and have high stability, which is especially suitable for use in harsh environments at sea.
  • the thermal image acquisition device 13 is an infrared camera.
  • Infrared camera The heat parameters of the wind turbine blade surface can be collected according to a certain acquisition frequency.
  • the infrared camera performs panoramic measurement in the form of image, which can detect subtle changes in the surface heat parameters of the wind turbine blade, and has the advantages of high sensitivity and high efficiency.
  • the synchronous driving circuit in order to perform fault analysis more accurately, preferably has the same receiving blade frequency and the same output and the frequency is equal to the blade frequency.
  • the synchronous drive circuit of the drive signal in order to perform fault analysis more accurately, the synchronous driving circuit preferably has the same receiving blade frequency and the same output and the frequency is equal to the blade frequency.
  • the acquisition frequency is determined by the drive signal output from the drive synchronization circuit.
  • the model of the thermal imaging camera is: T420.
  • the infrared camera uses a model of the T420 produced by FLIR SYSTEMS (American Philel Systems), and the various working indexes of the infrared camera can meet the actual needs of the system.
  • the method further includes an illumination number counter 16 that counts the number of times of illumination of the illumination device 12, and a thermal image that counts the number of times the thermal image acquisition device 13 collects the thermal image.
  • An acquisition counter 17 and a comparator 18 connected to the illumination number counter 16 and the thermal image acquisition counter 17; the thermal image acquisition counter 17 is electrically connected to the thermal image acquisition device 13; the comparator 18 is connected to the The synchronous drive circuit 14 and the analysis terminal 15.
  • the input end of the thermal image acquisition counter 17 is connected to the frequency output end of the thermal image acquisition device 13; the two input terminals of the comparator 18 are respectively connected to the output end of the illumination counter and the output end of the thermal image acquisition counter 17; The output of the device 18 is connected to the reset terminal of the synchronous drive circuit 14 and to the further input of the analysis terminal 15.
  • the comparator 18 compares the counting results of the illumination number counter 16 and the thermal image acquisition counter 17 with each other, the analysis signal that can be analyzed can be output to the analysis terminal 15; and when the counting result is inconsistent, the reset signal is output to the synchronous driving circuit. 14; the synchronous drive circuit 14 is reset, and two identical drive signals are generated according to the blade frequency. Further, when the counting results are inconsistent, the reset signal may be output to the light-emitting number counter 16 and the thermal image capturing counter 17 to clear both the counters; or/and, the reset signal is output to the analyzing terminal 15, and the analyzing terminal 15 receives When the reset signal is reached, it is not necessary to perform fault analysis on the received thermal image data.
  • the reset is controlled by controlling the synchronous driving circuit 14
  • the illumination frequency of the illumination device 12 is adjusted to be strictly synchronized with the acquisition frequency of the thermal image acquisition device 13.
  • the wind turbine includes: a blade 36, a gearbox 37, a generator 38, a tower 39, a hub 3A, and a bearing housing 3B.
  • the vanes 36 are coupled to the gearbox 37 and the gears in the bearing housing 3B via the hub 3A.
  • the gear case 37, the generator 38, and the synchronous drive circuit 14 are housed in the bearing housing 3B.
  • the generator 38 conducts energy transfer through the gears in the gearbox 37 to the hub 3A.
  • the blade frequency acquisition device 11 is disposed on the nacelle of the wind turbine near the blades 36 of the wind turbine.
  • the blade frequency acquisition device 11 can be placed at the bottom of the nacelle of the wind turbine, near the blades 36 of the wind turbine. In this way, the sensitivity of the blade frequency acquisition device 11 is ensured while the acquisition delay time is shortened.
  • the bottom of the nacelle is the bottom of the bearing housing 3B.
  • the tower 39 is connected to the bearing housing 3B for supporting the bearing housing 3B.
  • the illumination device 12 and the thermal image acquisition device 13 are disposed on a tower 39 of the wind turbine.
  • panoramic measurements of the entire blade are made as much as possible.
  • a preferred embodiment for performing a panoramic measurement of the entire blade is that the illumination device 12 and the thermal image acquisition device 13 are disposed on a tower 39 of the wind turbine, the blades 36 of the wind turbine When the towers 39 are parallel, they are at the same height as the middle of the blades 36.
  • the analysis terminal 15 is also coupled to the synchronous drive circuit 14.
  • the analysis terminal 15 is configured to send a self-locking signal to the synchronous driving circuit 14 before performing fault analysis on the temperature information collected by the thermal image capturing device 13; after performing fault analysis, sending an unlock signal to The synchronous drive circuit 14.
  • the synchronous driving circuit 14 is integrated with a self-locking and unlocking function.
  • the analyzing terminal 15 receives the thermal image data transmitted by the thermal image capturing device 13, it immediately feeds back a feedback signal to the synchronous driving circuit 14 (specifically, self-locking). Signal), The synchronous driving circuit 14 is brought into a self-locking state.
  • the synchronous driving circuit 14 cannot receive the pulse signal transmitted from the blade frequency collecting device 11 until the analysis terminal 15 feeds back another feedback signal to the synchronous driving circuit 14 after the failure analysis is completed ( Specifically, the unlocking signal) causes the synchronous driving circuit 14 to enter an unlocked state. At this time, the synchronous driving circuit 14 continues to receive the pulse signal transmitted by the blade frequency collecting device 11. In this way, the entire device enters an orderly loop process, ensuring that the analysis terminal 15 has sufficient time to effectively analyze the thermal image data, thereby achieving an effective evaluation of the operating state of the blade surface, and real-time monitoring of the operating state of the wind turbine blade.

Abstract

一种海上风力机叶片运行状态监测系统,包括:采集风力机的叶片频率的叶片频率采集设备(11),接收叶片频率、输出两路相同且频率与所述叶片频率成整数倍关系的驱动信号的同步驱动电路(14),接收所述驱动信号、发出频率与所述驱动信号频率相同的光并照射到旋转的叶片(36)上的发光设备(12),接收所述驱动信号、以所述驱动信号相同的频率进行热像采集得到热像数据的热像采集设备(13),及接收所述热像数据、进行故障分析的分析终端(15);所述叶片频率采集设备(11)连接所述同步驱动电路(14);所述同步驱动电路(14)连接所述发光设备(12)及所述热像采集设备(13);所述热像采集设备(13)连接所述分析终端(15)。该海上风力机叶片运行状态监测系统可以及时监测到风力机叶片状态。

Description

海上风力机叶片运行状态监测系统 技术领域
本发明涉及风力机状态监测技术领域,尤其涉及一种海上风力机叶片运行状态监测系统。
背景技术
由于海上风资源丰富,具有发电量大、发电时间长、不占用土地、可大规模开发等优势,风电技术正从陆上逐步延伸到海上。海上风力发电机已经成为世界可再生能源发展领域的热点。但是由于海上风电场较陆上风电场的工作环境更为恶劣,如湿气和盐雾腐蚀、雷电和台风的破坏、冰雪和海浪以及海上撞击物(海冰)等,海上风电机组运行风险远远大于陆上机组,故障率较高,因此,对海上风电机叶片的运行状态进行有效实时监测,及时有效地预防和监测叶片故障的发生是亟待解决的问题。
红外热成像检测技术由于非接触、大面积、远距离以及检测灵敏度高而广泛用于风力机叶片故障的无损检测,但是该方法目前只能运用在叶片静态时候的检测,原因是如果叶片高速旋转,会导致红外热像仪不能实时接收叶片表面温度变化而无法及时监测风力机叶片状态。
发明内容
基于此,有必要提供一种能够及时监测风力机叶片状态的海上风力机叶片运行状态监测系统。
一种海上风力机叶片运行状态监测系统,包括:采集风力机的叶片频率的叶片频率采集设备,接收叶片频率、输出两路相同且频率与所述叶片频率成整数倍关系的驱动信号的同步驱动电路,接收所述驱动信号、发出频率与所述驱动信号频率相同的光并照射到旋转的叶片上的发光设备,接收所述驱动信号、以所述驱动信号相同的频率进行热像采集得到热像数据的热像采集设备,及接收所述热像数据、进行故障分析的分析终端;
所述叶片频率采集设备连接所述同步驱动电路;所述同步驱动电路连接所述发光设备及所述热像采集设备;所述热像采集设备连接所述分析终端。
在其中一个实施例中,所述发光设备为频闪仪。
在其中一个实施例中,所述频率采集设备为测速传感器。
在其中一个实施例中,所述频率采集设备为激光测速传感器。
在其中一个实施例中,所述热像采集设备的型号为T420。
在其中一个实施例中,还包括对所述发光设备的发光次数进行计数的发光次数计数器、对所述热像采集设备的采集热像的次数进行计数的热像采集计数器及连接所述发光次数计数器和所述热像采集计数器的比较器;所述热像采集计数器与所述热像采集设备电连接;所述比较器连接所述同步驱动电路及分析终端。
在其中一个实施例中,所述叶片频率采集设备设置在风力机的机舱上、靠近所述风力机的叶片处。
在其中一个实施例中,所述发光设备及所述热像采集设备设置在风力机的塔筒上。
在其中一个实施例中,所述发光设备及所述热像采集设备设置在风力机的塔筒上、所述风力机的叶片与所述塔筒平行时与所述叶片中部等高的位置处。
在其中一个实施例中,所述分析终端还与所述同步驱动电路连接;所述分析终端用于在对所述热像采集设备采集的温度信息进行故障分析之前,发送自锁信号至所述同步驱动电路;在进行故障分析完成之后,发送开锁信号至所述同步驱动电路。
上述海上风力机叶片运行状态监测系统,由于所述叶片频率采集设备连接所述同步驱动电路,驱动信号的频率与叶片频率成整数倍关系,即,发光设备的发光频率与叶片旋转的叶片频率成整数倍数关系,优选地,发光设备的发光频率与叶片旋转的叶片频率相同,即成一倍的关系;如此,使得两者处于相对静止的状态,可以获得叶片相对静止的观测结果;而又由于所述同步驱动电路连接所述发光设备及所述热像采集设备,如此,热像采集设备的 采集频率与发光设备的发光频率相同,可以通过与发光设备发光频率相同的热像采集设备采集得到叶片相对静止的热像数据,即可以得到高速旋转的叶片某一时刻“冰冻”的观测效果。从而,可以分析得到风力机叶片高速运转时风力机的叶片运行状态,因此,该海上风力机叶片运行状态监测系统可以及时监测到风力机叶片状态。
附图说明
图1为一实施例的海上风力机叶片运行状态监测系统的结构示意图;
图2为一实施例的海上风力机叶片运行状态监测系统的工作原理示意图;
图3为另一实施例的海上风力机叶片运行状态监测系统的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/和”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,为本发明一实施例的海上风力机叶片运行状态监测系统,包括:采集风力机的叶片频率的叶片频率采集设备11,接收叶片频率、输出两路相同且频率与所述叶片频率成整数倍关系的驱动信号的同步驱动电路14,接收所述驱动信号、发出频率与所述驱动信号频率相同的光并照射到旋转的叶片36上的发光设备12,接收所述驱动信号、以所述驱动信号相同的频率进行热像采集得到热像数据的热像采集设备13,及接收所述热像数据、进行故障分析的分析终端15;
所述叶片频率采集设备11连接所述同步驱动电路14;所述同步驱动电路 14连接所述发光设备12及所述热像采集设备13;所述热像采集设备13连接所述分析终端15。
具体地,叶片频率采集设备11的输出端连接同步驱动电路14的输入端;同步驱动电路14的两个输出端分别连接发电设备及热像采集设备13的输入端;热像采集设备13的数据输出端连接分析终端15的数据输入端。
叶片频率采集设备11,用于采集风力机的叶片频率,并将该叶片频率通过脉冲信号的形式传输至同步驱动电路14。同步驱动电路14,用于生成两路相同且频率与所述叶片频率成整数倍关系的驱动信号,并将两路驱动信号分别输出至发光设备12及热像采集设备13。发光设备12,用于接收所述驱动信号、发出频率与驱动信号频率相同的光,照射到旋转的叶片36上;热像采集设备13,用于接收所述驱动信号、以驱动信号相同的频率进行热像采集得到热像数据,并将该热像数据传输至分析终端15进行故障分析。需要说明的是,热像采集设备13进行热像采集得到热像数据,是以图像形式进行全景测量,采集叶片36表面热量参数。即,热像数据包括叶片36表面的热量参数。具体地,热量参数包括温度。分析终端15,用于根据叶片36表面的热量参数对风力机叶片故障进行分析。分析终端15可以为台式电脑、掌上电脑、笔记本电脑、智能手机等智能终端。
上述海上风力机叶片运行状态监测系统的工作过程为:叶片频率采集设备11采集风力机的叶片频率,并将该叶片频率通过脉冲信号的形式传输至同步驱动电路14;同步驱动电路14接收叶片频率、输出两路相同且频率与所述叶片频率成整数倍关系的驱动信号至发光设备12及热像采集设备13;发光设备12接收所述驱动信号、发出频率与所述驱动信号频率相同的光并照射到旋转的叶片36上;热像采集设备13接收所述驱动信号、以驱动信号相同的频率进行热像采集得到热像数据,并将该热像数据传输至分析终端15进行故障分析。
由于所述叶片频率采集设备11连接所述同步驱动电路14,驱动信号的频率与叶片频率成整数倍关系,即,发光设备12的发光频率与叶片36旋转的叶片频率成整数倍数关系,优选地,发光设备12的发光频率与叶片36旋转 的叶片频率相同,即成一倍的关系;如此,使得两者处于相对静止的状态,可以获得叶片36相对静止的观测结果;而又由于所述同步驱动电路14连接所述发光设备12及所述热像采集设备13,如此,热像采集设备13的采集频率与发光设备12的发光频率相同,可以通过与发光设备12发光频率相同的热像采集设备13采集得到叶片36相对静止的热像数据,即可以得到高速旋转的叶片36某一时刻“冰冻”的观测效果。从而,可以分析得到风力机叶片高速运转时风力机的叶片36运行状态,因此,该海上风力机叶片运行状态监测系统可以及时监测到风力机叶片状态。
需要说明的是,由于海上风电场较陆上风电场的工作环境更为恶劣,如湿气和盐雾腐蚀、雷电和台风的破坏、冰雪和海浪以及海上撞击物(海冰)等,海上风电机组运行风险远远大于陆上机组,故障率较高。因此,风力机优选为海上风力机。
在其中一个实施例中,所述发光设备12为频闪仪。频闪仪利用“频闪效应”,当频闪仪的照明光源闪动频率严格与被测物体的转动或运动速度相等或者是其整数倍时,两者处于相对静止的状态,将获得物体静止的观测结果,即可以得到高速旋转物体某一时刻“冰冻”的观测效果。
在其中一个实施例中,所述频率采集设备为测速传感器。测速传感器测量风力机叶片的转速。该测速传感器可以为电涡流传感器、霍尔传感器、电容式开关等。
进一步地,所述频率采集设备为激光测速传感器。激光测速传感器发射激光束到叶片36表面,当叶片36经过激光光束时,激光测速传感器接收被叶片36反射回的激光脉冲信号,控制开关接通,输出高电平信号;相反,控制开关关断,输出低电平信号,最终通过控制开关接通和关断来实现对风力机叶片旋转频率的采集。激光测速传感器的测量精度和灵敏度受环境影响小,稳定性高,特别适用于海上恶劣的环境下使用。
在其中一个实施例中,所述热像采集设备13为红外热像仪。红外热像仪 可以按照一定的采集频率采集风力机叶片表面热量参数。红外热像仪以图像形式进行全景测量,能够检测出风力机叶片表面热量参数的细微变化,具有高灵敏度、高效率等优势。
在一个较佳的实施例中,由于受到红外热像仪采集频率的限制,为了更准确地进行故障分析,同步驱动电路优选为,接收叶片频率、输出两路相同且频率与所述叶片频率相等的驱动信号的同步驱动电路。
在本实施例中,采集频率由驱动同步电路输出的驱动信号决定。优选地,所述红外热像仪的型号为:T420。具体地,红外热像仪选用美国FLIR SYSTEMS公司(美国菲力尔系统公司)生产的型号为:T420的红外热像仪,该红外热像仪的各项工作指标都能满足系统的实际需求。
请参阅图2,在其中一个实施例中,还包括对所述发光设备12的发光次数进行计数的发光次数计数器16、对所述热像采集设备13的采集热像的次数进行计数的热像采集计数器17及连接所述发光次数计数器16及所述热像采集计数器17的比较器18;所述热像采集计数器17与所述热像采集设备13电连接;所述比较器18连接所述同步驱动电路14及分析终端15。
具体地,热像采集计数器17的输入端连接所述热像采集设备13的频率输出端;比较器18的两个输入端分别连接发光计数器的输出端及热像采集计数器17的输出端;比较器18的输出端连接同步驱动电路14的复位端及分析终端15的又一输入端。
如此,可以在比较器18比较发光次数计数器16及热像采集计数器17的计数结果一致时,输出可进行分析的分析信号至分析终端15;而在计数结果不一致时,输出复位信号至同步驱动电路14;同步驱动电路14复位,重新根据叶片频率生成两路相同的驱动信号。进一步地,在计数结果不一致时,还可以输出复位信号至发光次数计数器16及热像采集计数器17使这两个计数器均清零;或/及,输出复位信号至分析终端15,分析终端15接收到该复位信号时,无需对该次接收到的热像数据进行故障分析。
从而,可以保证发光设备12的发光频率和热像采集设备13的采集频率严格同步。当两者频率出现差异时,通过控制同步驱动电路14进行复位,来 调整发光设备12的发光频率与热像采集设备13的采集频率严格同步。
请参阅图3,风力机包括:叶片36、齿轮箱37、发电机38、塔筒39、轮毂3A、轴承箱3B。叶片36通过轮毂3A与齿轮箱37及轴承箱3B中的齿轮连接。齿轮箱37、发电机38及同步驱动电路14收容于轴承箱3B内。发电机38通过齿轮箱37中的齿轮与轮毂3A进行能量传递。
在其中一个实施例中,所述叶片频率采集设备11设置在风力机的机舱上、靠近所述风力机的叶片36处。如,叶片频率采集设备11可以设置在风力机的机舱的底部、靠近所述风力机的叶片36处。如此,保证叶片频率采集设备11的灵敏度同时缩短采集延迟时间。在一个具体实施例中,机舱的底部即为轴承箱3B的底部。塔筒39连接轴承箱3B,用于支撑轴承箱3B。
在其中一个实施例中,所述发光设备12及所述热像采集设备13设置在风力机的塔筒39上。如此,尽可能对整个叶片进行全景测量。优选地,一个可以对整个叶片进行全景测量的最佳实施方式是:所述发光设备12及所述热像采集设备13设置在风力机的塔筒39上、所述风力机的叶片36与所述塔筒39平行时与所述叶片36中部等高的位置处。
请继续参阅图2,在其中一个实施例中,所述分析终端15还与所述同步驱动电路14连接。其中,所述分析终端15用于在对所述热像采集设备13采集的温度信息进行故障分析之前,发送自锁信号至所述同步驱动电路14;在进行故障分析完成之后,发送开锁信号至所述同步驱动电路14。
由于叶片旋转频率较快(一般为50赫兹,旋转周期仅为0.02秒),而分析终端15进行故障分析的时间需要1秒以上,可见,分析终端15进行故障分析的处理时间要远远大于叶片旋转周期,分析终端15无法及时对热像采集设备13采集的所有热像数据进行故障分析。本实施例中同步驱动电路14中集成有自锁和开锁功能,当分析终端15接收到热像采集设备13传输的热像数据之后,立即反馈给同步驱动电路14一个反馈信号(具体为自锁信号), 使同步驱动电路14进入自锁状态,此时同步驱动电路14无法接收叶片频率采集设备11传输过来的脉冲信号,直到当故障分析完成后,分析终端15反馈给同步驱动电路14另一个反馈信号(具体为开锁信号),使同步驱动电路14进入开锁状态,此时,同步驱动电路14继续接收叶片频率采集设备11传输过来的脉冲信号。如此,整个装置进入一个有序循环的过程,保证分析终端15有足够的时间来对热像数据进行有效分析,从而达到对叶片表面运行状态的有效评估,能够实时监测风力机叶片的运行状况。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出多个变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种海上风力机叶片运行状态监测系统,其特征在于,包括:采集风力机的叶片频率的叶片频率采集设备,接收叶片频率、输出两路相同且频率与所述叶片频率成整数倍关系的驱动信号的同步驱动电路,接收所述驱动信号、发出频率与所述驱动信号频率相同的光并照射到旋转的叶片上的发光设备,接收所述驱动信号、以所述驱动信号相同的频率进行热像采集得到热像数据的热像采集设备,及接收所述热像数据、进行故障分析的分析终端;
    所述叶片频率采集设备连接所述同步驱动电路;所述同步驱动电路连接所述发光设备及所述热像采集设备;所述热像采集设备连接所述分析终端。
  2. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述分析终端还与所述同步驱动电路连接;所述分析终端用于在对所述热像采集设备采集的温度信息进行故障分析之前,发送自锁信号至所述同步驱动电路;在进行故障分析完成之后,发送开锁信号至所述同步驱动电路。
  3. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,还包括对所述发光设备的发光次数进行计数的发光次数计数器、对所述热像采集设备的采集热像的次数进行计数的热像采集计数器及连接所述发光次数计数器和所述热像采集计数器的比较器;所述热像采集计数器与所述热像采集设备电连接;所述比较器连接所述同步驱动电路及分析终端。
  4. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述发光设备为频闪仪。
  5. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述频率采集设备为测速传感器。
  6. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述频率采集设备为激光测速传感器。
  7. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述叶片频率采集设备设置在风力机的机舱上、靠近所述风力机的叶片处。
  8. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在 于,所述发光设备及所述热像采集设备设置在风力机的塔筒上。
  9. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述发光设备及所述热像采集设备设置在风力机的塔筒上、所述风力机的叶片与所述塔筒平行时与所述叶片中部等高的位置处。
  10. 根据权利要求1所述的海上风力机叶片运行状态监测系统,其特征在于,所述热像采集设备为的型号为T420。
PCT/CN2017/098580 2016-11-02 2017-08-23 海上风力机叶片运行状态监测系统 WO2018082373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610946236.3A CN106351803B (zh) 2016-11-02 2016-11-02 海上风力机叶片运行状态监测系统
CN201610946236.3 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018082373A1 true WO2018082373A1 (zh) 2018-05-11

Family

ID=57865054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098580 WO2018082373A1 (zh) 2016-11-02 2017-08-23 海上风力机叶片运行状态监测系统

Country Status (2)

Country Link
CN (1) CN106351803B (zh)
WO (1) WO2018082373A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851384A1 (en) * 2020-01-20 2021-07-21 AIRBUS HELICOPTERS DEUTSCHLAND GmbH An aircraft with an illumination system for rotating blades
CN115013261A (zh) * 2022-08-08 2022-09-06 国网浙江省电力有限公司舟山供电公司 一种用于海上风电场的状态监测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351803B (zh) * 2016-11-02 2019-02-26 广州特种承压设备检测研究院 海上风力机叶片运行状态监测系统
CN111721221A (zh) * 2020-05-13 2020-09-29 杭州微光电子股份有限公司 轴流风机叶片变形的检测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149031A (zh) * 2013-04-02 2013-06-12 哈尔滨电机厂有限责任公司 一种计算机控制的模型水轮机流态观测的同步数字式成像方法
WO2014145537A1 (en) * 2013-03-15 2014-09-18 Digital Wind Systems, Inc. System and method for ground based inspection of wind turbine blades
CN204961177U (zh) * 2015-09-23 2016-01-13 中国特种设备检测研究院 一种风机叶片检测装置
CN105258672A (zh) * 2015-11-26 2016-01-20 广州航新航空科技股份有限公司 旋翼椎体监测方法及椎体测量装置以及系统
CN106351803A (zh) * 2016-11-02 2017-01-25 广州特种承压设备检测研究院 海上风力机叶片运行状态监测系统
CN206221176U (zh) * 2016-11-02 2017-06-06 广州特种承压设备检测研究院 海上风力机叶片故障在线监测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367969B1 (en) * 1999-07-21 2002-04-09 General Electric Company Synthetic reference thermal imaging method
CN103149240A (zh) * 2013-03-19 2013-06-12 南京诺威尔光电系统有限公司 自动跟踪热波成像无损检测系统及方法
CN103245668B (zh) * 2013-04-22 2015-03-25 南京诺威尔光电系统有限公司 一种激光扫描热波成像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145537A1 (en) * 2013-03-15 2014-09-18 Digital Wind Systems, Inc. System and method for ground based inspection of wind turbine blades
CN103149031A (zh) * 2013-04-02 2013-06-12 哈尔滨电机厂有限责任公司 一种计算机控制的模型水轮机流态观测的同步数字式成像方法
CN204961177U (zh) * 2015-09-23 2016-01-13 中国特种设备检测研究院 一种风机叶片检测装置
CN105258672A (zh) * 2015-11-26 2016-01-20 广州航新航空科技股份有限公司 旋翼椎体监测方法及椎体测量装置以及系统
CN106351803A (zh) * 2016-11-02 2017-01-25 广州特种承压设备检测研究院 海上风力机叶片运行状态监测系统
CN206221176U (zh) * 2016-11-02 2017-06-06 广州特种承压设备检测研究院 海上风力机叶片故障在线监测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851384A1 (en) * 2020-01-20 2021-07-21 AIRBUS HELICOPTERS DEUTSCHLAND GmbH An aircraft with an illumination system for rotating blades
CN115013261A (zh) * 2022-08-08 2022-09-06 国网浙江省电力有限公司舟山供电公司 一种用于海上风电场的状态监测方法及系统
CN115013261B (zh) * 2022-08-08 2022-12-06 国网浙江省电力有限公司舟山供电公司 一种用于海上风电场的状态监测方法及系统

Also Published As

Publication number Publication date
CN106351803A (zh) 2017-01-25
CN106351803B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2018082373A1 (zh) 海上风力机叶片运行状态监测系统
CN103364072B (zh) 风电机组叶片在线检测装置
CN202710100U (zh) 风力发电机组远程在线健康状态监测与故障诊断系统
US9217415B2 (en) Estimation of wind properties using a light detection and ranging device
US9217413B2 (en) Wind turbine optical wind sensor
GB2478600A (en) A wind energy power plant optical vibration sensor
Zhao et al. Remote structural health monitoring for industrial wind turbines using short-range Doppler radar
CN202562445U (zh) 基于激光测距原理的积雪深度多点自动测量装置
CN110067708A (zh) 一种使用功率曲线识别偏航对风不正的方法
Lee et al. Feasibility of in situ blade deflection monitoring of a wind turbine using a laser displacement sensor within the tower
CN105508146B (zh) 风力发电机组的偏航测试系统
CN103644863A (zh) 贯流风叶径向圆跳度非接触在线诊断装置与方法
CN103033641B (zh) 非接触式汽轮机转速检测装置及方法
Nikoubin et al. Structural health monitoring of wind turbines using a low-cost portable K-band radar: An ab-initio field investigation
CN208502958U (zh) 一种风电机组振动数据采集系统
CN207600740U (zh) 一种用于风力发电机的监测系统
CN207366507U (zh) 风机浆叶在役超声波无损检测装置
CN206221176U (zh) 海上风力机叶片故障在线监测装置
CN208847343U (zh) 热电发电机热成像及可见光双视场实时监测装置
EP2764241A2 (en) Method and device for detecting accumulation of material on a blade of a wind turbine and for determining upwind condition
CN203396477U (zh) 风电机组叶片在线检测装置
CN109883473A (zh) 一种非接触测温与转速测量一体化分析仪
Ashwini et al. Wireless sensor network for condition monitoring of remote wind mill
CN204082446U (zh) 基于6LoWPAN无线传感网络的海上风电机组综合监控系统
Slinger et al. Relative power curve measurements using turbine mounted, continuous-wave lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867036

Country of ref document: EP

Kind code of ref document: A1