WO2018082372A1 - 扇叶可转向的风力发电风车 - Google Patents

扇叶可转向的风力发电风车 Download PDF

Info

Publication number
WO2018082372A1
WO2018082372A1 PCT/CN2017/098457 CN2017098457W WO2018082372A1 WO 2018082372 A1 WO2018082372 A1 WO 2018082372A1 CN 2017098457 W CN2017098457 W CN 2017098457W WO 2018082372 A1 WO2018082372 A1 WO 2018082372A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
bridge
radiating
windmill
wind
Prior art date
Application number
PCT/CN2017/098457
Other languages
English (en)
French (fr)
Inventor
邝嘉豪
Original Assignee
邝嘉豪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邝嘉豪 filed Critical 邝嘉豪
Publication of WO2018082372A1 publication Critical patent/WO2018082372A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine that can be steered by a blade.
  • Wind power generation is receiving more and more attention from the state. Therefore, many wind power plants have been set up all over the country. These wind power vehicles will be placed according to groups, that is, some are facing south and some are facing north. Setting, because the wind will change with the wind, there are always some wind turbines that are not working. Therefore, a lot of cost and energy are wasted, so it is very marketed to design a blade that can rotate with the rotation, can remotely rotate and can rotate autonomously to obtain the maximum amount of wind.
  • the object of the present invention is to overcome the above-mentioned shortcomings and to provide a fan-steerable wind power generation windmill
  • a fan-steerable wind power generation windmill includes a bottomed column, a windmill head, and a fan blade; the root of the blade is provided with a first rotating shaft, and The first rotating electrical machine is disposed in the windmill head; the power output end of the first rotating electrical machine is coupled to the first rotating shaft for driving the blade rotation;
  • the total control circuit includes a processor, and a wind direction wind speed measuring device connected to the processor signal, a signal transceiving module for communication; the signal transceiving module includes anti-radiation radiation antenna.
  • the windmill head is provided with a shielding plate, and the shielding plate isolates the windmill head from a communication cavity; the anti-radiation antenna is disposed in the communication cavity.
  • the shielding plate is a metal plate, and the shielding plate is provided with a plurality of circular protrusions; the circular protrusions face the anti-radiation antenna side.
  • the power output end of the first rotating electrical machine is surrounded by a bearing at a joint of the first rotating shaft; the front end of the windmill head is a tapered surface.
  • the anti-radiation antenna comprises a rectangular reflector, and the rectangular reflector is provided with a vertically symmetrical microstrip radiation array, and each microstrip radiation includes two left and right symmetrical microstrip subarrays and two connections.
  • Each of the microstrip sub-arrays includes a base arm, and the two ends of the base arm are respectively provided with bridge arms, and the two bridge arms are at an angle of 60 degrees; one bridge arm is vertically vertical a branch-shaped transition arm extends in the direction of the arm, and a first radiating arm extends in a direction parallel to an arm on the other bridge arm, the first radiating arm is on the side of the transition arm, and a F-shaped second radiating arm extends in a direction perpendicular to the radiating arm, and a radiating arm vertically connected to the first radiating arm is further provided with a third radiating arm parallel to the first radiating arm;
  • the bridge arm also extends outwardly from the T-bar, and the arm of the T-bar that is not connected to the other bridge arm is parallel to the bridge arm.
  • an equilateral triangle coupling arm extends inwardly, and the base arm extends to a side of the first radiating arm to form a trapezoidal isolation arm, the isolation arm and the base arm
  • the microstrip line is connected; the side of the isolation arm away from the base arm is provided with a circular arc-shaped recess.
  • the fan blade can be adaptively rotated according to the wind direction, and can be rotated remotely to obtain the maximum captured air volume, improve energy utilization rate, and increase power generation.
  • FIG. 1 is a perspective view of the present invention
  • FIG. 2 is a schematic diagram of the internal structure of the present invention.
  • FIG. 3 is a plan view of an anti-radiation antenna of the present invention.
  • FIG. 4 is a schematic structural view of a microstrip sub-array of the present invention.
  • FIG. 5 is a schematic structural view of a shielding plate of the present invention.
  • 6 is a simulation and test graph of S11 parameters of a specific embodiment of an anti-radiation antenna.
  • FIG. 7 is a gain simulation test curve diagram and an efficiency test curve diagram of a specific embodiment of an anti-radiation radiation antenna
  • FIG. 8 is a normalized radiation pattern at 5 GHz for an embodiment of an anti-radiation radiation antenna.
  • the reference numerals in FIGS. 1 to 8 illustrate:
  • nl-rectangular reflector n2-bridge; n3-base arm; n31-isolation arm; n4-bridge arm; n41-coupling arm; n5-T-bar; n7-transition arm; n8-first Radiation arm; n 9-second radiation arm; n91 - third radiation arm.
  • a fan-steerable wind power generation windmill includes a bottomed column 1 , a windmill head 3 , and a blade 2 ; the root of the blade 2
  • the first rotating shaft is further provided, and further includes a first rotating electrical machine 4 disposed in the windmill head 3; the power output end of the first rotating electrical machine 4 is connected to the first rotating shaft for driving the rotation of the blade 2;
  • There is a total control circuit the total control circuit includes a processor, and a wind direction wind speed measuring device 6 connected to the processor signal, a signal transceiving module for communication; the signal transceiving module includes an anti-radiation antenna; 2 It can adapt to the wind direction according to the wind direction, can remotely rotate and autonomously to obtain the maximum captured air volume, improve energy usage and increase power generation; the first rotating electric machine 4 is connected with the processor signal; the wind direction wind speed measuring device 6 By measuring the wind direction and wind speed from the angle of the main adjustment fan blade 2, the wind direction can be adapted to
  • a bearing is arranged between the bottom column 1 and the windmill head 3; friction can be reduced and loss can be reduced.
  • a fan-steerable wind power generation windmill according to this embodiment has three blades 2 disposed at intervals of 120 degrees around the windmill head 3.
  • the power output end of the first rotating electrical machine 4 is surrounded by a bearing at a joint of the first rotating shaft; the front end of the windmill head 3 is a tapered surface.
  • the anti-radiation antenna includes a rectangular reflector nl, and the rectangular reflector nl is provided with a vertically symmetrical microstrip radiation array, each The microstrip radiation includes two left and right symmetrical microstrip subarrays and an array bridge n2 connecting the two microstrip subarrays; each of the microstrip subarrays includes a base arm n3, and the base arms n3 are respectively provided with bridge branches
  • the arm n4, the two bridge arms n4 are at an angle of 60 degrees; a bridge arm n4 extends in a direction perpendicular to the arm with a meandering transition arm n7, and the other bridge arm n4 is upwardly directed to an arm Extending in a parallel direction, a first radiating arm n8 extending from the first radiating arm n8 to the side of the transition arm n7 and extending in a direction perpendicular to the first radiating arm n8 extend
  • the designed communication antenna is designed and modified by no less than 2000 adjustments.
  • the specific test results are as follows: The simulation of this antenna is consistent with the IS11I parameter standard tested. The 10-l ldB impedance bandwidth tested is 28.5%, and the stop band IS11I is close to zero. As shown in Figure 7, the gain curve of this antenna is quite consistent. The average gain in the passband is 8.2dBi, and there is a high roll-off at the passband edge.
  • the out-of-band rejection is over 20dBi, 0 ⁇ It has better filtering effect in the range of 10 GHz, so it can be obtained with strong anti-electromagnetic field capability; the in-band efficiency of the embodiment of the invention is as high as 95%.
  • the pattern of other frequencies in the passband is similar to the 5GHz pattern.
  • the pattern in the entire passband is stable, which proves that the communication performance is high.
  • the above antenna is a non-size antenna, as long as the hole and hole are set in the bending direction.
  • the above experimental results can be achieved by the above methods; the above tests are all tested under the simulated 10KV wind turbine lm environment.
  • a blade steerable wind power generation windmill wherein the other end of the other bridge arm n4 further extends inwardly with an equilateral triangle coupling arm n41, and the base arm n3
  • One side of a radiating arm n8 extends from the trapezoidal isolation arm n31, and between the isolation arm n31 and the base arm n3, and between the coupling arm n41 and the bridge arm n4 are connected by a microstrip line; the isolation arm n31 is away from the base arm n3.
  • a circular recess is provided on one side. This design re-shaping the current to improve the radiation efficiency, and the average gain in the passband can reach 9.25dBi.
  • a blade steerable wind power generation windmill wherein the windmill head 3 is provided with a shielding plate b15, and the shielding plate M5 isolates the windmill head 3 from a communication cavity;
  • the radiating antenna is disposed in the communication cavity.
  • the shielding plate M5 is a metal plate, and the shielding plate M5 is provided with a plurality of circular protrusions b2; the circular protrusions b2 face the radiation-resistant antenna side.
  • the setting performance of the structure is very prominent.
  • the structure of the shielding plate M5 can effectively achieve the same shielding effect, and the effect of reducing the standing wave ratio is also achieved for the antenna.
  • the size of the antenna can be specifically optimized as follows: the rectangular reflector has a width of 42 mm and a height of 49 mm; the base arm has a width of 1.7 mm and a height of: 4.7 mm;
  • the standard line width is set to 0.85mm; the line width of the bridge arm is the standard line width, and the longest side is 14.5mm; the line width of the transition arm is: 0.7mm; the height is 2.1mm, the distance between the two longitudinal arms: 2.9mm
  • the line width of the first radiating arm is a standard line width, the longest side is 7.62, the line width of the second radiating arm is a standard line width, and the length of the trailing arm connected to the first radiating arm is 6.0 mm, two cross arms
  • the longest side is 4.2mm; the third radiating arm line width is the standard line width, the longest side is 4.2 mm; the T-shaped rod has a line width of standard line width, the longest side of the trailing arm is 0.9, mm, and
  • the radius of the circular recess is 0.8 mm. Microstrip cables are not required. Wherein, the free ends of the bridge arm, the first radiating arm, the second radiating arm and the third radiating arm have an acute angle of 30 degrees.
  • the circular protrusions shall not exceed 0.8 mm directly, and the center distance of the two circular protrusions shall not exceed 1.2 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种扇叶可转向的风力发电风车,包括有底柱(1)、风车头(3)、扇叶(2);扇叶(2)的根部设有第一转轴,还包括有设于风车头(3)内的第一旋转电机(4);第一旋转电机(4)的动力输出端与第一转轴连接,用于驱动扇叶(2)旋转;扇叶(2)能够随时按照风向来适应性的转动,能遥控也能自主转动来获得最大的捕获风量,提高能源使用率、提高发电量。

Description

扇叶可转向的风力发电风车 技术领域
[0001] 本发明涉及一种扇叶可转向的风力发电风车。
背景技术
[0002] 风力发电越来越受到国家的重视, 因此在全国各地都设立了众多的风力发电厂 , 这些风力发电车会按照组别进行放置, 即一些朝向南、 一些朝向北等, 这样 交错来设置, 因为风力会随吋改变, 因此总有一些风力电车是不在运转的。 因 此浪费了大量的成本和能源, 因此需要设计一种扇叶能够随吋转动、 能遥控也 能自主转动来获得最大的捕风量的将是非常有市场的。
技术问题
问题的解决方案
技术解决方案
[0003] 本发明的目的在于克服以上所述的缺点, 提供一种扇叶可转向的风力发电风车
[0004] 为实现上述目的, 本发明的具体方案如下: 一种扇叶可转向的风力发电风车, 包括有底柱、 风车头、 扇叶; 所述扇叶的根部设有第一转轴, 还包括有设于风 车头内的第一旋转电机; 所述第一旋转电机的动力输出端与第一转轴连接, 用 于驱动扇叶旋转;
[0005] 风车头内设有总控电路, 所述总控电路包括有处理器, 以及与处理器信号连接 的风向风速测量器、 用于通讯的信号收发模块; 信号收发模块包括有抗电辐射 天线。
[0006] 其中, 所述扇叶为三个, 围绕风车头间隔 120度设置。
[0007] 其中, 所述风车头内设有屏蔽板, 屏蔽板将风车头隔离出一个通信腔; 所述抗 电辐射天线设于通信腔内。
[0008] 其中, 屏蔽板为金属板, 屏蔽板上设有多个圆形凸起; 所述圆形凸起朝向抗辐 射天线一侧。 [0009] 其中, 第一旋转电机的动力输出端于第一转轴连接处围绕设有轴承; 风车头的 前端为锥面。
[0010] 其中, 所述抗电辐射天线包括有矩形反射板, 矩形反射板上设有上下对称的微 带辐射阵, 每个微带辐射振包括有两个左右对称的微带子阵以及连接两个微带 子阵的阵桥; 所述每个微带子阵包括有一个基臂, 基臂两端分别设有桥支臂, 两个桥支臂呈 60度夹角; 一个桥支臂上向垂直这个支臂的方向上延伸有 Π形的过 渡臂, 另一个桥支臂上向与一个支臂平行的方向上延伸出有第一辐射臂, 第一 辐射臂向过渡臂一侧、 且与第一辐射臂垂直的方向上延伸出 F形的第二辐射臂, 第二辐射臂与第一辐射臂垂直连接的一个辐射臂上还设有与第一辐射臂平行的 第三辐射臂; 另一个桥支臂还向外侧延伸出 T形杆, T形杆未与另一个桥支臂连 接的臂与桥支臂平行。
[0011] 其中, 所述另一个桥支臂自由端处还向内延伸出有等边三角形的耦合臂, 基臂 向第一辐射臂的一侧延伸出梯形的隔离臂, 隔离臂与基臂之间、 耦合臂与桥支 臂之间均通过微带线连接; 隔离臂远离基臂的一侧设有圆弧形凹陷。
发明的有益效果
有益效果
[0012] 扇叶能够随吋按照风向来适应性的转动, 能遥控也能自主转动来获得最大的捕 获风量, 提高能源使用率、 提高发电量。
对附图的简要说明
附图说明
[0013] 图 1是本发明的立体图;
[0014] 图 2是本发明的内部结构原理图;
[0015] 图 3是本发明的抗电辐射天线的平面图;
[0016] 图 4是本发明的微带子阵的结构示意图;
[0017] 图 5是本发明的屏蔽板的结构示意图;
[0018] 图 6是抗电辐射天线具体实施例的 S11参数的仿真和测试曲线图。
[0019] 图 7是抗电辐射天线具体实施例的增益仿真测试曲线图和效率测试曲线图;
[0020] 图 8是抗电辐射天线具体实施例在 5GHz的归一化辐射方向图。 [0021] 图 1至图 8中的附图标记说明:
[0022] 1-底柱; 2-扇叶; 3-风车头; 4-第一旋转电机; 5-屏蔽板; 6-风向风速测量器;
7-第二旋转电机;
[0023] bl-屏蔽板; b2-圆形凸起;
[0024] nl-矩形反射板; n2-阵桥; n3-基臂; n31-隔离臂; n4-桥支臂; n41-耦合臂; n5 -T形杆; n7-过渡臂; n8-第一辐射臂; n9-第二辐射臂; n91-第三辐射臂。
本发明的实施方式
[0025] 下面结合附图和具体实施例对本发明作进一步详细的说明, 并不是把本发明的 实施范围局限于此。
[0026] 如图 1至图 8所示, 本实施例所述的一种扇叶可转向的风力发电风车, 包括有底 柱 1、 风车头 3、 扇叶 2; 所述扇叶 2的根部设有第一转轴, 还包括有设于风车头 3 内的第一旋转电机 4; 所述第一旋转电机 4的动力输出端与第一转轴连接, 用于 驱动扇叶 2旋转; 风车头 3内设有总控电路, 所述总控电路包括有处理器, 以及 与处理器信号连接的风向风速测量器 6、 用于通讯的信号收发模块; 信号收发模 块包括有抗电辐射天线; 扇叶 2能够随吋按照风向来适应性的转动, 能遥控也能 自主转动来获得最大的捕获风量, 提高能源使用率、 提高发电量; 第一旋转电 机 4与处理器信号连接; 风向风速测量器 6通过随吋测量风向和风速来自主调节 扇叶 2的角度, 来适应风向, 来提高发电量, 降低能源损耗; 也可通过信号收发 模块来实现远程控制。
[0027] 还包括有与风车头 3固接的第二旋转电机 7, 所述风车头 3套设底柱 1, 第二旋转 电机 7的动力输出端与底柱 1相连接, 第二旋转电机 7与处理器信号连接; 还可以 通过旋转风车头 3来实现朝向的调节, 能有效来适应风向, 来提高发电量, 降低 能源损耗。
[0028] 所述底柱 1与风车头 3之间设有轴承; 可以减少摩擦, 降低损耗。 本实施例所述 的一种扇叶可转向的风力发电风车, 所述扇叶 2为三个, 围绕风车头 3间隔 120度 设置。 本实施例所述的一种扇叶可转向的风力发电风车, 第一旋转电机 4的动力 输出端于第一转轴连接处围绕设有轴承; 风车头 3的前端为锥面。 [0029] 本实施例所述的一种扇叶可转向的风力发电风车, 所述抗电辐射天线包括有矩 形反射板 nl, 矩形反射板 nl上设有上下对称的微带辐射阵, 每个微带辐射振包 括有两个左右对称的微带子阵以及连接两个微带子阵的阵桥 n2; 所述每个微带 子阵包括有一个基臂 n3, 基臂 n3两端分别设有桥支臂 n4, 两个桥支臂 n4呈 60度 夹角; 一个桥支臂 n4上向垂直这个支臂的方向上延伸有 Π形的过渡臂 n7, 另一个 桥支臂 n4上向与一个支臂平行的方向上延伸出有第一辐射臂 n8, 第一辐射臂 n8 向过渡臂 n7—侧、 且与第一辐射臂 n8垂直的方向上延伸出 F形的第二辐射臂 n9, 第二辐射臂 n9与第一辐射臂 n8垂直连接的一个辐射臂上还设有与第一辐射臂 n8 平行的第三辐射臂 n91 ; 另一个桥支臂 n4还向外侧延伸出 T形杆 N5, T形杆 N5未 与另一个桥支臂 n4连接的臂与桥支臂 n4平行。
[0030] 为达到较优的抗电磁场特性, 且又要满足远距离通信的辐射要求, 设计的通信 天线经过不下 2000次的调整和修改设计出该天线, 具体的测试结果如下: 如图 6 , 本天线的仿真与测试的 IS11I参数标准一致, 测试的 10-l ldB阻抗带宽是 28.5% , 阻带 IS11I接近于 0。 如图, 7, 本天线的增益曲线比较吻合, 测试通带内平均增 益 8.2dBi,并且在通带边沿有很高的滚降度, 在很宽的阻带内带外抑制超过 20dBi , 0〜10GHz范围内有较好的滤波效果, 因此可以得到其具备较强的抗电磁场能 力; 本发明实施例的带内效率高达 95%。 参阅图 8, 中心频率 5GHz的归一化方向 图; 最大辐射方向在辐射体的正上方, 主极化比交叉极化大 25dBi以上。 通带内 其他频率的方向图与 5GHz的方向图类似, 整个通带内方向图稳定, 证明其通信 性能较高; 上述天线为非尺寸要求天线, 只要在弯折方向上、 设置的孔、 洞的 方式上达到上述要求, 均可达到上述实验结果; 上述测试均是在模拟 10KV的风 力车 lm范内环境下进行测试。
[0031] 本实施例所述的一种扇叶可转向的风力发电风车, 所述另一个桥支臂 n4自由端 处还向内延伸出有等边三角形的耦合臂 n41, 基臂 n3向第一辐射臂 n8的一侧延伸 出梯形的隔离臂 n31, 隔离臂 n31与基臂 n3之间、 耦合臂 n41与桥支臂 n4之间均通 过微带线连接; 隔离臂 n31远离基臂 n3的一侧设有圆弧形凹陷。 如此设计对电流 进行了二次整形, 提高了辐射效率, 测试通带内平均增益可达到 9.25dBi的水平 [0032] 本实施例所述的一种扇叶可转向的风力发电风车, 所述风车头 3内设有屏蔽板 b 15, 屏蔽板 M5将风车头 3隔离出一个通信腔; 所述抗电辐射天线设于通信腔内 。 屏蔽板 M5为金属板, 屏蔽板 M5上设有多个圆形凸起 b2; 所述圆形凸起 b2朝 向抗辐射天线一侧。 该结构的设置性能非常突出, 屏蔽板 M5的结构能有效实现 屏蔽效果的同吋, 对天线还达到了降低驻波比的效果, 实验发现, 在强电磁环 境下, 当设置屏蔽板 Μ5, 不仅天线的隔离度有一定增加, 而且驻波比降低了 10 %, 当屏蔽板 M5设置在相同位置, 但是采用其他单极性天线不会产生该促进效 果, 因此本屏蔽板 M5与本设计的天线产生了更加优异的电气性能。
[0033] 如需获得上述稳定性能, 本天线的尺寸具体可以优化为: 矩形反射板的宽为 42 mm, 高为 49mm; 基臂的宽为 1.7mm, 高为: 4.7mm; 本文中记载的标准线宽设 定为 0.85mm; 桥支臂的线宽为标准线宽, 最长边为 14.5mm; 过渡臂的线宽为: 0.7mm; 高为 2.1mm, 两个纵臂距离: 2.9mm; 第一辐射臂的线宽为标准线宽, 其最长边为 7.62, 第二辐射臂的线宽为标准线宽, 与第一辐射臂连接的纵臂长为 6.0mm, 两个横臂最长边均为 4.2mm; 第三辐射臂线宽为标准线宽, 最长边为 4.2 mm; T形杆的线宽为标准线宽, 纵臂最长边为 0.9,mm, 横臂为平行四边形, 因 此其长边为 5.8mm; 耦合臂的线宽为二分之一的标准线宽, 并且边外边的边长为 4.0mm; 隔离臂的底边边长为: 2.85mm; 顶边边长为: 3.8mm; 高为: 2.1mm。 圆弧形凹陷的半径为 0.8mm。 微带连接线均不做要求。 其中, 桥支臂、 第一辐射 臂、 第二辐射臂、 第三辐射臂的自由端为楔形角锐角为 30度。 圆形凸起的直接 不超过 :0.8mm,两个圆形凸起的中心距离不超过 1.2mm。
[0034] 以上所述仅是本发明的一个较佳实施例, 故凡依本发明专利申请范围所述的构 造、 特征及原理所做的等效变化或修饰, 包含在本发明专利申请的保护范围内

Claims

权利要求书
[权利要求 1] 一种扇叶可转向的风力发电风车, 其特征在于: 包括有底柱 (1
风车头 (3) 、 扇叶 (2) ; 所述扇叶 (2) 的根部设有第一转轴, 还 包括有设于风车头 (3) 内的第一旋转电机 (4) ; 所述第一旋转电机
(4) 的动力输出端与第一转轴连接, 用于驱动扇叶 (2) 旋转; 风车 头 (3) 内设有总控电路, 所述总控电路包括有处理器, 以及与处理 器信号连接的风向风速测量器 (6) 、 用于通讯的信号收发模块; 信 号收发模块包括有抗电辐射天线; 所述抗电辐射天线包括有矩形反射 板 (nl) , 矩形反射板 (nl) 上设有上下对称的微带辐射阵, 每个微 带辐射振包括有两个左右对称的微带子阵以及连接两个微带子阵的阵 桥 (n2) ; 所述每个微带子阵包括有一个基臂 (n3) , 基臂 (n3) 两 端分别设有桥支臂 (n4) , 两个桥支臂 (n4) 呈 60度夹角; 一个桥支 臂 (n4) 上向垂直这个支臂的方向上延伸有 Π形的过渡臂 (n7) , 另 一个桥支臂 (n4) 上向与一个支臂平行的方向上延伸出有第一辐射臂
(n8) , 第一辐射臂 (n8) 向过渡臂 (n7) —侧、 且与第一辐射臂 ( n8) 垂直的方向上延伸出 F形的第二辐射臂 (n9) , 第二辐射臂 (n9 ) 与第一辐射臂 (n8) 垂直连接的一个辐射臂上还设有与第一辐射臂
(n8) 平行的第三辐射臂 (n91) ; 另一个桥支臂 (n4) 还向外侧延 伸出 T形杆 (N5) , T形杆 (N5) 未与另一个桥支臂 (n4) 连接的臂 与桥支臂 (n4) 平行。
PCT/CN2017/098457 2016-11-04 2017-08-22 扇叶可转向的风力发电风车 WO2018082372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610961458.2A CN106523268B (zh) 2016-11-04 2016-11-04 扇叶可转向的风力发电风车
CN201610961458.2 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018082372A1 true WO2018082372A1 (zh) 2018-05-11

Family

ID=58326220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098457 WO2018082372A1 (zh) 2016-11-04 2017-08-22 扇叶可转向的风力发电风车

Country Status (2)

Country Link
CN (1) CN106523268B (zh)
WO (1) WO2018082372A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523268B (zh) * 2016-11-04 2019-06-04 京电能源科技有限公司 扇叶可转向的风力发电风车
CN106523283B (zh) * 2016-11-04 2019-06-04 京电能源科技有限公司 一种随风转向的风力发电风车
CN112090188A (zh) * 2020-08-25 2020-12-18 颜娟 一种基于楞次定律的风力空气清洁装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384029A (zh) * 2010-08-26 2012-03-21 Ssb风系统两合公司 用于风能发电设备的变桨系统
US20150086357A1 (en) * 2013-09-24 2015-03-26 General Electric Company Wind turbine and method for adjusting yaw bias in wind turbine
CN104681975A (zh) * 2015-03-24 2015-06-03 邝嘉豪 一种设有微带隔离直线的单极性微带振子
CN204646536U (zh) * 2015-05-20 2015-09-16 中船重工(武汉)凌久电气有限公司 一种应用于微网的风力发电控制系统
CN105041571A (zh) * 2015-08-20 2015-11-11 沈阳华创风能有限公司 预测风速风向的智能控制系统及其控制方法
CN106523283A (zh) * 2016-11-04 2017-03-22 史坚鹏 一种随风转向的风力发电风车
CN106523268A (zh) * 2016-11-04 2017-03-22 史坚鹏 扇叶可转向的风力发电风车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201003466Y (zh) * 2007-02-02 2008-01-09 大庆德塔电气有限公司 1.5mw直驱式变速恒频风力发电机组
CN201198817Y (zh) * 2008-04-25 2009-02-25 沈阳锐昌机电有限公司 一种离并网两用直驱变桨式风力发电机
CN201243209Y (zh) * 2008-05-06 2009-05-20 成都阜特科技有限公司 风力发电机组控制系统
EP2141359A1 (en) * 2008-07-02 2010-01-06 Siemens Aktiengesellschaft Wind turbine configuration management system, and central computer system therefor
US8155923B2 (en) * 2009-06-08 2012-04-10 General Electric Company System, remote device, and method for validating operation of a wind turbine
CN202579032U (zh) * 2012-05-31 2012-12-05 重庆华渝电气仪表总厂 一种无线风力发电机组变桨控制系统
CN103901290A (zh) * 2012-12-28 2014-07-02 鸿富锦精密工业(深圳)有限公司 电磁兼容性测试系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384029A (zh) * 2010-08-26 2012-03-21 Ssb风系统两合公司 用于风能发电设备的变桨系统
US20150086357A1 (en) * 2013-09-24 2015-03-26 General Electric Company Wind turbine and method for adjusting yaw bias in wind turbine
CN104681975A (zh) * 2015-03-24 2015-06-03 邝嘉豪 一种设有微带隔离直线的单极性微带振子
CN204646536U (zh) * 2015-05-20 2015-09-16 中船重工(武汉)凌久电气有限公司 一种应用于微网的风力发电控制系统
CN105041571A (zh) * 2015-08-20 2015-11-11 沈阳华创风能有限公司 预测风速风向的智能控制系统及其控制方法
CN106523283A (zh) * 2016-11-04 2017-03-22 史坚鹏 一种随风转向的风力发电风车
CN106523268A (zh) * 2016-11-04 2017-03-22 史坚鹏 扇叶可转向的风力发电风车

Also Published As

Publication number Publication date
CN106523268A (zh) 2017-03-22
CN106523268B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2018082372A1 (zh) 扇叶可转向的风力发电风车
WO2018082377A1 (zh) 一种随风转向的风力发电风车
CN208352516U (zh) 一种宽频段小型化北斗微带中馈天线
CN106785393A (zh) 一种基于平面单极子天线的双频宽波瓣毫米波微带天线
CN203850423U (zh) 一种宽频双极化振子
CN105322291A (zh) 微带阵列天线
WO2017054127A1 (zh) 一种通信设备
CN109193171A (zh) 一种基于Van Atta阵列极化转换的低RCS微带天线
KR20220098043A (ko) 안테나 및 전자 장치
CN109326878B (zh) 一种基于表面波波导和高阻抗表面的宽带端射天线
CN108736154A (zh) 一种圆极化轨道角动量天线
CN104134858A (zh) 一种环耦合的宽带小型化圆锥螺旋天线
CN204011710U (zh) 一种双阻带宽槽超宽带天线
CN205811057U (zh) 微带天线
CN205488569U (zh) 螺旋缝隙圆极化喇叭天线
CN206180102U (zh) 一种基于褶皱金属周期结构的小型化宽带天线
CN109378587B (zh) 小型化双频超宽带全向天线
CN203071223U (zh) 一种超宽带双极化天线辐射装置
CN207009649U (zh) 宽频带双极化基站天线
CN111403911B (zh) 一种低剖面宽频带天线
CN209119323U (zh) 一种120°定向高增益天线
WO2018028207A1 (zh) 一种微带天线
CN206412464U (zh) 一种天线振子组件及射灯天线
CN203481393U (zh) 内芯天线
CN204130691U (zh) 一种WiMax天线用宽频带振子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868445

Country of ref document: EP

Kind code of ref document: A1