WO2018082159A1 - 一种基于反馈补偿的湿度传感器及湿度检测系统 - Google Patents

一种基于反馈补偿的湿度传感器及湿度检测系统 Download PDF

Info

Publication number
WO2018082159A1
WO2018082159A1 PCT/CN2016/110968 CN2016110968W WO2018082159A1 WO 2018082159 A1 WO2018082159 A1 WO 2018082159A1 CN 2016110968 W CN2016110968 W CN 2016110968W WO 2018082159 A1 WO2018082159 A1 WO 2018082159A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
humidity sensor
content
analog switch
detecting
Prior art date
Application number
PCT/CN2016/110968
Other languages
English (en)
French (fr)
Inventor
安烛
林长虹
Original Assignee
北京花花草草科技有限公司
李钦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京花花草草科技有限公司, 李钦 filed Critical 北京花花草草科技有限公司
Publication of WO2018082159A1 publication Critical patent/WO2018082159A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the utility model relates to the field of soil moisture detection, in particular to a humidity sensor and a humidity detection system based on feedback compensation.
  • Soil nutrient is closely related to plant growth.
  • the factors affecting soil nutrient are: water, soluble salt, organic matter content, available nutrients, soil texture and porosity.
  • the influence of water and soluble salt on plant growth is especially If the amount of these two nutrients is insufficient, it is easy to cause the plants to die or wither.
  • planting technology has also been greatly developed, mainly based on the experience of planters, and the soil is supplemented with water or salt according to planting experience, but human judgment is subjective and error-oriented. Plant mortality remains high. Under this background, water and salt detection technology came into being, and these technicians can make scientific judgments on the amount of water added and the amount of salt added.
  • the method of testing soil moisture by standing wave rate has been widely used.
  • the scheme is to insert a set of parallel needles into the soil and emit a certain frequency signal to the soil due to the parallel needle inserted into the soil.
  • the impedance of the transmission line is not matched, and a standing wave is generated.
  • the patent document with the application number CN201410445644.1 discloses a method and a detection device for detecting soil moisture content and conductivity based on double frequency alternating excitation, including a host computer, a single chip microcomputer, a dual frequency sinusoidal excitation signal generating circuit, and a soil moisture content detection method.
  • the shortcoming of the prior art is that the detection electrode is connected to the circuit for measuring the water content of the soil and the salt content of the soil, resulting in a complicated overall structure, a large power consumption of the device detection, and a certain increase in production cost;
  • the influence of soil salinity on the detection of soil water content was not considered, resulting in a large error in the final measurement result (soil moisture content), which could not truly reflect the soil moisture and had a negative impact on plant growth.
  • the purpose of the utility model is to provide a humidity sensor based on feedback compensation, which solves the problem that the structure is complicated, the power consumption is large, the cost is high, and the soil moisture content is not taken into consideration.
  • the present invention provides the following technical solutions:
  • a humidity sensor based on feedback compensation comprising: a parallel needle, a main controller, a moisture detecting chip, and Analog switch,
  • the parallel pin is connected to the analog switch for performing soil salt content detection according to a pulse signal sent by the main controller;
  • the analog switch is configured to switch to the water content detecting circuit after completing the soil salt content detection
  • the water content detecting chip is connected to the analog switch for detecting soil moisture content
  • the main controller is connected to the analog switch for generating first feedback information according to the measured salt content of the soil, and correcting the measured soil water content according to the first feedback information.
  • the parallel needles are two metal electrode rods having the same structure and arranged in parallel with each other, and the polarities of the two metal electrode rods are inconsistent.
  • a matching hole is formed in the parallel pin, and a temperature sensor is disposed in the matching hole, and the temperature sensor is fixedly connected to the matching hole.
  • the humidity sensor is connected to the main controller for detecting a temperature of the soil, generating second feedback information according to the measured temperature of the soil, and measuring the measured information according to the second feedback information.
  • the soil salinity is corrected.
  • the humidity sensor is further configured to switch back to a circuit for detecting a salt content of the soil after being corrected by the first feedback information.
  • the frequency of the pulse signal is 1 kHz to measure the soil conductivity through the parallel needle.
  • the main controller calculates the salt content of the soil according to the conductivity.
  • the water content detecting chip includes a signal generator and a standing wave rate detecting circuit
  • the signal generator is connected to the analog switch for emitting a square wave signal having a frequency of 133 MHz to the parallel needle to form a standing wave;
  • the standing wave rate detecting circuit is connected to the analog switch for detecting a standing wave ratio of a standing wave on the parallel pin.
  • the main controller calculates the soil water content based on the conductivity calculation.
  • a soil moisture detecting system includes the humidity sensor based on feedback compensation.
  • the utility model provides a humidity sensor based on feedback compensation, which comprises an analog switch, a parallel needle, a water content detecting chip and a main controller, and the soil salt content detection is realized by the cooperation of the main controller and the parallel needle.
  • the circuit is switched by the analog switch; the soil water content is detected by the cooperation of the parallel needle and the water content detecting chip; the soil salt content is converted into the first feedback information by the main controller, and the first feedback information is used as the soil containing Compensation for water volume; circuits that measure soil water content and soil salinity need not be connected to the detection electrode,
  • the structure is simple, the power consumption of equipment detection is reduced, and the production cost is reduced to some extent.
  • the parallel needles are used for the detection of salt content and water content; the influence of soil salinity on the detection of soil water content is considered.
  • soil moisture content the final measurement result (soil moisture content) more accurate, it truly reflects the soil moisture and provides people with the basis for planting.
  • the utility model also provides a soil moisture detecting system. Since the above humidity sensor has the above technical effects, the detecting system including the humidity sensor should also have corresponding technical effects.
  • FIG. 1 is a schematic structural view of a humidity sensor according to an embodiment of the present invention.
  • FIG. 2 is an internal wiring diagram of a humidity sensor according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a humidity sensor according to still another preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a humidity sensor according to still another preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a humidity sensor according to still another preferred embodiment of the present invention.
  • the main controller 20, analog switch; 30, water content detection chip; 301, standing wave rate detection circuit; 302, signal generator; 40, parallel needle; 50, temperature sensor.
  • FIG. 1 is a schematic structural view of a humidity sensor according to an embodiment of the present invention
  • FIG. 2 is an internal wiring diagram of a humidity sensor according to a preferred embodiment of the present invention.
  • the feedback compensation based humidity sensor in this embodiment includes: a parallel pin 40, a main controller 10, a water content detecting chip 30, and an analog switch 20, and the parallel pin 40 is connected to the analog switch 20 for
  • the pulse signal sent by the main controller 10 is used to detect the soil salt content
  • the analog switch 20 is configured to switch to the water content detecting circuit after the soil salt content detection is completed
  • the water content detecting chip 30 and The analog switch 20 is connected to perform soil water content detection
  • the main controller 10 is connected to the analog switch 20 for generating first feedback information according to the measured salt content of the soil, and according to the Decoding the first feedback information to the measured soil The soil moisture content is corrected.
  • the pulse signal is a transient signal having a certain frequency and period, which is sent by the main controller 10 to enter the parallel needle 40 into the salt detection state.
  • the salt content of the soil is the content of salt in the soil.
  • the amount of salt is the embodiment of the fertility of the soil. It can be used to judge whether the soil is suitable for the growth of a certain plant.
  • the salt content is detected by the parallel needle 40 and the detection chip. achieve.
  • the water content of soil is the content of water in the soil. The growth of any plant requires water. Therefore, the amount of water can directly reflect whether the growth environment of the plant is favorable. The excessive moisture is not conducive to plant growth; the water content is detected by parallel.
  • the cooperation of the needle 40 with the moisture detecting chip 30 is achieved.
  • the first feedback information is feedback compensation information for compensating the soil water content, and the soil salt content is calculated by the main controller 10, specifically: the soil salt content is substituted into the salt content calibration formula, and the calculation is first.
  • Feedback information the soil moisture content is compensated by the first feedback information to obtain more accurate soil salinity; the salt content in the soil has a relatively large impact on the detection of soil water content, so salt content compensation is needed.
  • the parallel needle 40 is inserted into the soil, and the parallel needle 40 receives the pulse signal to complete the detection of the salt content of the soil: the conductivity is detected, and the salt content of the soil is obtained by the controller according to the conductivity, and is transmitted to the soil.
  • the main controller 10 is stored in a storage unit.
  • the parallel water needle 40 is used to complete the detection of the soil moisture content: the main controller 10 sends a trigger signal to cause the water content detecting chip 30 to enter the working state, and the square wave signal is emitted by the water content detecting chip 30 in parallel.
  • a standing wave is formed on the needle 40, and the standing wave ratio is detected by the water content detecting chip 30, and the storage unit that passes the water content to the main controller 10 is calculated by the standing wave rate calibration formula in the main controller 10. save.
  • the first feedback information is obtained by the controller operation, the soil water content is corrected according to the first feedback information, and the soil water content with relatively high accuracy is obtained, and is output as the final detection result.
  • analog switch 20 is further configured to switch back to the circuit for detecting the salt content of the soil after being corrected by the first feedback information; and automatically switch back to the circuit for detecting the salt content of the soil after the detection is completed, Ensure that the test is performed directly at the next test and no manual reset is required.
  • the frequency of the pulse signal is 1 kHz to measure the soil conductivity through the parallel needle 40; the salt content of the soil is detected as: a pulse signal is sent through the controller to bring the parallel needle 40 into a working state.
  • the detection of soil conductivity is carried out in conjunction with the pulse signal.
  • the main controller 10 obtains the soil salt content according to the conductivity calculation; transmits the detected soil conductivity to the main controller 10, and the main controller 10 substitutes the conductivity into the pre-stored therein.
  • Conductivity calibration formula calculate the soil salt content; achieve the detection of soil salt content.
  • the output of the moisture content in the soil can be recognized as a display, a player, etc., so that the personnel can judge the amount of water and salt according to the water.
  • the parallel pins 40 are two metal electrode rods of the same structure and arranged in parallel with each other, and the polarities of the two metal electrode rods are inconsistent. This design is easy to calculate, making the detection algorithm of soil water content simple enough.
  • chip type of the main controller 10 is: DA14580.
  • U7 is an analog switch, and its chip signal is: te3usb30e.
  • the utility model provides a humidity sensor based on feedback compensation, comprising an analog switch 20, a parallel needle 40, a water content detecting chip 30 and a main controller 10, and the cooperation of the main controller 10 and the parallel needle 40 Realizing the detection of soil salinity; switching the circuit through the analog switch 20; detecting the soil moisture content by the cooperation of the parallel needle 40 and the water content detecting chip 30; converting the soil salinity into the first feedback information through the main controller 10,
  • the first feedback information is used as compensation for soil water content; the circuit for measuring soil water content and soil salt content does not need to be connected to the detection electrode, the structure is simple, the power consumption of equipment detection is reduced, and the production is reduced to some extent.
  • FIG 3 is a schematic structural view of a humidity sensor according to a preferred embodiment of the present invention.
  • the feedback compensation based humidity sensor in this embodiment includes: a parallel pin 40, a main controller 10, a water content detecting chip 30, and an analog switch 20, and the parallel pin 40 is connected to the analog switch 20 for The pulse signal sent by the main controller 10 is used to detect the soil salt content; the analog switch 20 is configured to switch to the water content detecting circuit after the soil salt content detection is completed; the water content detecting chip 30 and The analog switch 20 is connected to perform soil water content detection; the main controller 10 is connected to the analog switch 20 for generating first feedback information according to the measured salt content of the soil, and according to the The first feedback information corrects the measured soil moisture content.
  • the parallel pin 40 is provided with a matching hole, and the matching hole is provided with a temperature sensor 50, and the temperature sensor 50 is fixedly connected with the matching hole; the temperature sensor 50 and the The main controller 10 is connected to detect the soil temperature, generate second feedback information according to the measured soil temperature, and correct the measured soil salt content according to the second feedback information.
  • the temperature sensor 50 is fixed in the hole in the parallel pin 40, and the micro temperature sensor 50 is used to ensure that it can be implanted into the matching hole; and the matching hole is disposed at one end of the parallel pin 40 in contact with the soil, thereby ensuring The temperature of the internal environment of the soil is detected; the matching hole can be fixedly connected to the temperature sensor 50 by means of a snap-on device, a fastening device, or a fastening device, which can be welded inside the matching hole or through the prior art. The other way is to make a fixed connection.
  • the function of the temperature sensor 50 is to detect the temperature of the environment in the soil, and transmit the temperature to the main controller 10, and calculate and convert the second feedback information through the main controller 10, and pass the second feedback information to the circuit.
  • the soil salinity obtained by the test is compensated to obtain high-precision soil salinity; the second feedback information is used as a feedback compensation signal to make the detection of soil salinity more accurate, thereby further improving the detection accuracy of soil water content.
  • FIG. 4 is a schematic structural view of a humidity sensor according to still another preferred embodiment of the present invention.
  • the feedback compensation based humidity sensor in this embodiment includes: a parallel pin 40, a main controller 10, a water content detecting chip 30, and an analog switch 20, and the parallel pin 40 is connected to the analog switch 20 for The pulse signal sent by the main controller 10 is used to detect the soil salt content; the analog switch 20 is configured to switch to the water content detecting circuit after the soil salt content detection is completed; the water content detecting chip 30 and The analog switch 20 is connected to perform soil water content detection; the main controller 10 is connected to the analog switch 20 for generating first feedback information according to the measured salt content of the soil, and according to the The first feedback information corrects the measured soil moisture content.
  • the water content detecting chip 30 includes a signal generator 302 and a standing wave rate detecting circuit 301, and the signal generator 302 is connected to the analog switch 20 for the parallel pin 40.
  • a square wave signal having a frequency of 133 MHz is generated to form a standing wave;
  • the standing wave rate detecting circuit 301 is connected to the analog switch 20 for detecting a standing wave ratio of the standing wave on the parallel pin 40; further, the The main controller 10 calculates the soil moisture content based on the conductivity calculation.
  • the main controller 10 issues a trigger signal to bring the standing wave rate detecting circuit 301 and the signal generator 302 into an active state, and sends a 133 MHz square wave signal through the signal generator 302.
  • a standing wave is formed on the parallel pin 40, and the standing wave ratio of the standing wave formed on the parallel pin 40 is detected by the standing wave ratio detecting circuit 301, and the soil dielectric is calculated by the standing wave ratio calibration formula in the main controller 10.
  • the constant, and then the volumetric soil moisture content is calculated according to the dielectric constant, and the soil moisture content is calculated according to the soil water content and the soil volume previously stored in the controller, and transmitted to the storage unit of the main controller 10 for storage.
  • U8 is a signal generator 302 whose chip signal is DS1088C-BGA, and its characteristic is to emit a high frequency signal;
  • U11 is a standing wave rate detecting circuit 301 whose chip type is LMH2121TMX. Its characteristics are low power consumption and wide detection range.
  • FIG. 5 is a schematic structural view of a soil moisture detecting system according to an embodiment of the present invention.
  • a soil moisture detecting system includes the humidity sensor based on feedback compensation.
  • the feedback compensation based humidity sensor comprises: a parallel needle 40, a main controller 10, a water content detecting chip 30, an analog switch 20, and a temperature sensor 50,
  • the parallel pin 40 is connected to the analog switch 20 for performing soil salt content detection according to a pulse signal sent by the main controller 10;
  • the temperature sensor 50 is connected to the main controller 10 for detecting the temperature of the soil, according to the measurement.
  • the soil temperature generates second feedback information, and corrects the measured soil salt content according to the second feedback information;
  • the analog switch 20 is configured to switch to the water content detecting circuit after completing the correction of the soil salt content
  • the water content detecting chip 30 is connected to the analog switch 20 for detecting soil moisture content
  • the main controller 10 is connected to the analog switch 20 for generating first feedback information according to the measured salt content of the soil, and performing the measured soil moisture content according to the first feedback information. Correction.
  • the water content detecting chip 30 includes a signal generator 302 and a standing wave rate detecting circuit 301, and the signal generator 302 is connected to the analog switch 20 for emitting a square wave having a frequency of 133 MHz to the parallel pin 40. Signal, forming a standing wave;
  • the standing wave rate detecting circuit 301 is connected to the analog switch 20 for detecting the standing wave ratio of the standing wave on the parallel pin 40; the main controller 10 calculates the soil water content according to the conductivity calculation .
  • a soil moisture detecting system is provided. Since the above humidity sensor has the above technical effects, the detecting system including the humidity sensor should also have a corresponding technical effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种基于反馈补偿的湿度传感器,包括模拟开关(20)、平行针(40)、含水量检测芯片(30)以及主控器(10),该传感器使测量土壤含水量以及土壤含盐量的电路无需均连接检测电极,结构简单,设备检测的功耗减小,并且一定程度上降低了生产成本,实现了分时复用平行针进行含盐量、含水量检测;考虑了土壤含盐量对土壤含水量检测的影响,使最终测量得到的土壤含水量结果精确度更高,真实反映出土壤的湿度,为人们提供种植依据。一种土壤湿度检测系统,由于上述湿度传感器具有上述技术效果,包含该湿度传感器的检测系统以也应具有相应的技术效果。

Description

一种基于反馈补偿的湿度传感器及湿度检测系统 技术领域
本实用新型涉及土壤湿度检测领域,具体涉及一种基于反馈补偿的湿度传感器及湿度检测系统。
背景技术
土壤营养度和植物的生长有密切的关系,影响土壤营养度的因素有:水分、可溶性盐分、有机质含量、速效养分、土壤质地结构和孔隙率等,其中水分、可溶性盐分对植物生长的影响尤为突出,若此两种养分的量不足,很容易导致植物死亡或枯萎。
随着科学技术的进步,种植技术也得到了长足的发展,主要还是以种植人员的经验判断为准,按照种植经验对土壤进行水分或盐分的补充,但是人为判断毕竟存在主观性和误差性,植物的死亡率仍然居高不下。在此背景下,水分、盐分检测技术应运而生,通过这些技术人员可对加水量、加盐量等进行科学的判断。
现有技术中,通过驻波率测试土壤水分的方式已经广泛被大家使用,该方案为通过一组平行针插入土壤中,并向土壤中发射一定频率的信号,由于插入土壤中的平行针与传输线的阻抗不匹配,产生驻波,通过测试驻波率来测试出土壤中的阻抗,等效于土壤的介电常数,即可得到土壤的水分含量。如申请号为CN201410445644.1的专利文件公开了一种基于双频率交替激励的土壤含水率与电导率检测方法及检测装置,包括上位机、单片机、双频率正弦激励信号发生电路、土壤含水率检测控制电路、土壤含水率检测控制电路执行机构、土壤含水率检测电极、土壤含水率检测电路、土壤电导率检测电极、土壤电导率检测电路和A/D转换电路。
现有技术的不足之处在于,测量土壤含水量以及土壤含盐量的电路上均要连接检测电极,导致整体结构比较复杂,设备检测的功耗较大,并且一定程度上增加了生产成本;没有考虑土壤含盐量对土壤含水量检测的影响,导致最终测量得到的结果(土壤含水量)误差较大,无法真实反映土壤的湿度,对植物生长造成负面影响。
实用新型内容
本实用新型的目的是提供一种基于反馈补偿的湿度传感器,以解决结构复杂、功耗较大、成本高、未考虑土壤含盐量对土壤含水量因素的问题。
为了实现上述目的,本实用新型提供如下技术方案:
一种基于反馈补偿的湿度传感器,包括:平行针、主控器、含水量检测芯片以及 模拟开关,
所述平行针与所述模拟开关连接,用以根据所述主控器发出的脉冲信号进行土壤含盐量检测;
所述模拟开关,用以在完成土壤含盐量检测后,切换至所述含水量检测电路;
所述含水量检测芯片与所述模拟开关连接,用以进行土壤含水量检测;
所述主控器与所述模拟开关连接,用以根据测得的所述土壤含盐量生成第一反馈信息,并根据所述第一反馈信息对测得的所述土壤含水量进行校正。
上述湿度传感器,所述平行针为两个结构相同且相互平行设置的金属电极棒,两个所述金属电极棒的极性不一致。
上述湿度传感器,所述平行针上开设有匹配孔,所述匹配孔内放置有温度传感器,所述温度传感器与所述匹配孔固定连接。
上述湿度传感器,所述温度传感器与所述主控器连接,用以对土壤温度进行检测,根据测得的所述土壤温度生成第二反馈信息,并根据所述第二反馈信息对测得的土壤含盐量进行校正。
上述湿度传感器,所述模拟开关,还用以在通过所述第一反馈信息校正后,切换回对土壤含盐量进行检测的电路。
上述湿度传感器,所述脉冲信号的频率为1KHZ,用以通过所述平行针测得土壤电导率。
上述湿度传感器,所述主控器根据所述电导率计算获得所述土壤含盐量。
上述湿度传感器,所述含水量检测芯片包括信号发生器和驻波率检测电路,
所述信号发生器与所述模拟开关连接,用以向所述平行针发出频率为133MHZ的方波信号,形成驻波;
所述驻波率检测电路与所述模拟开关连接,用以检测所述平行针上驻波的驻波率。
上述湿度传感器,所述主控器根据所述电导率计算获得所述土壤含水量。
一种土壤湿度检测系统,包括所述基于反馈补偿的湿度传感器。
在上述技术方案中,本实用新型提供一种基于反馈补偿的湿度传感器,包括模拟开关、平行针、含水量检测芯片以及主控器,通过主控器与平行针的配合实现土壤含盐量检测;通过模拟开关切换电路;通过平行针与含水量检测芯片的配合实现土壤含水量的检测;通过主控器将土壤含盐量转换为第一反馈信息,再将第一反馈信息作为对土壤含水量的补偿;使测量土壤含水量以及土壤含盐量的电路无需均连接检测电极,结 构简单,设备检测的功耗减小,并且一定程度上降低了生产成本,实现了分时复用平行针进行含盐量、含水量检测;考虑了土壤含盐量对土壤含水量检测的影响,使最终测量得到的结果(土壤含水量)精确度更高,真实反映出土壤的湿度,为人们提供种植依据。
在上述技术方案中,本实用新型还提供一种土壤湿度检测系统,由于上述湿度传感器具有上述技术效果,包含该湿度传感器的检测系统以也应具有相应的技术效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例提供的湿度传感器的结构示意图;
图2为本实用新型一优选实施例提供的湿度传感器的内部接线图;
图3为本实用新型再一优选实施例提供的湿度传感器的结构示意图;
图4为本实用新型再一优选实施例提供的湿度传感器的结构示意图;
图5为本实用新型再一优选实施例提供的湿度传感器的结构示意图。
附图标记说明:
10、主控器;20、模拟开关;30、含水量检测芯片;301、驻波率检测电路;302、信号发生器;40、平行针;50、温度传感器。
具体实施方式
为了使本领域的技术人员更好地理解本实用新型的技术方案,下面将结合附图对本实用新型作进一步的详细介绍。
图1为本实用新型实施例提供的湿度传感器的结构示意图及图2为本实用新型一优选实施例提供的湿度传感器的内部接线图。
本实施例中的基于反馈补偿的湿度传感器,包括:平行针40、主控器10、含水量检测芯片30以及模拟开关20,所述平行针40与所述模拟开关20连接,用以根据所述主控器10发出的脉冲信号进行土壤含盐量检测;所述模拟开关20,用以在完成土壤含盐量检测后,切换至所述含水率检测电路;所述含水量检测芯片30与所述模拟开关20连接,用以进行土壤含水量检测;所述主控器10与所述模拟开关20连接,用以根据测得的所述土壤含盐量生成第一反馈信息,并根据所述第一反馈信息对测得的所述土 壤含水量进行校正。具体的,脉冲信号为发出的具有一定频率、周期的瞬时信号,由主控器10发出,用以使平行针40进入含盐量检测状态。土壤含盐量为土壤中的盐的含量,盐量的多少是土壤肥沃程度的体现,可以据此判断土壤是否适宜某种植物的生长;含盐量的检测通过平行针40与检测芯片的配合实现。土壤含水量为土壤中的水分的含量,任何植物的生长都需要水,因此,水分的多少可直接反应出植物的生长环境是否有利,水分过少不利于植物生长;含水量的检测是通过平行针40与含水量检测芯片30的配合实现的。第一反馈信息为对土壤含水量进行补偿的反馈补偿信息,由土壤含盐量经过主控器10的计算而来,具体为:将土壤含盐量代入含盐量标定公式,计算获得第一反馈信息;通过第一反馈信息对土壤含水量进行补偿,获得更精确的土壤含盐量;土壤中的盐分对土壤含水量的检测有比较大的影响,因此需要进行含盐量补偿。实际使用中,将平行针40插入土壤中,平行针40接收到脉冲信号,完成对土壤含盐量的检测:检测到电导率,并根据电导率通过控制器运算获得土壤含盐量,传至所述主控器10的存储单元中保存。再切换至含水量检测电路,配合平行针40完成土壤含水量的检测:主控器10发出触发信号,使含水量检测芯片30进入工作状态,通过含水量检测芯片30发出方波信号,在平行针40上形成驻波,并通过含水量检测芯片30检测驻波率,通过主控器10中的驻波率标定公式,计算获得如让含水量,传至所述主控器10的存储单元保存。最后根据土壤含盐量通过控制器运算获得第一反馈信息,根据第一反馈信息校正土壤含水量,获得精确性相对较高的土壤含水量,作为最终的检测结果予以输出。
进一步的,所述模拟开关20,还用以在通过所述第一反馈信息校正后,切换回对土壤含盐量进行检测的电路;完成检测后自动切换回对土壤含盐量检测的电路,保证在下一次检测时,直接进行检测,不需要人为复位。
优选的,所述脉冲信号的频率为1KHZ,用以通过所述平行针40测得土壤电导率;对土壤含盐量进行检测为:通过控制器发出脉冲信号,使平行针40进入工作状态,配合脉冲信号实现对土壤电导率的检测。
进一步的,所述主控器10根据所述电导率计算获得所述土壤含盐量;将检测获得的土壤电导率传至主控器10,主控器10将电导率代入预先存储于其中的电导率标定公式,计算获得土壤含盐量;实现了土壤含盐量的检测。
进一步的,土壤中的水分含量的输出相识可为显示器、播放器等设备,让人员可以据此判断加水、盐的量。
进一步的,所述平行针40为两个结构相同且相互平行设置的金属电极棒,两个所述金属电极棒的极性不一致。如此设计便于计算,使土壤含水量的检测算法足够简便。
本领域的技术人员应当了解,主控器10的芯片型号为:DA14580。
本领域的技术人员应当知晓,如图2所示,U7为模拟开关,其芯片信号为:te3usb30e。
在上述技术方案中,本实用新型提供一种基于反馈补偿的湿度传感器,包括模拟开关20、平行针40、含水量检测芯片30以及主控器10,通过主控器10与平行针40的配合实现土壤含盐量检测;通过模拟开关20切换电路;通过平行针40与含水量检测芯片30的配合实现土壤含水量的检测;通过主控器10将土壤含盐量转换为第一反馈信息,再将第一反馈信息作为对土壤含水量的补偿;使测量土壤含水量以及土壤含盐量的电路无需均连接检测电极,结构简单,设备检测的功耗减小,并且一定程度上降低了生产成本,实现了分时复用平行针40进行含盐量、含水量检测;考虑了土壤含盐量对土壤含水量检测的影响,使最终测量得到的结果(土壤含水量)精确度更高,真实反映出土壤的湿度,为人们提供种植依据。
图3为本实用新型一优选实施例提供的湿度传感器的结构示意图。
本实施例中的基于反馈补偿的湿度传感器,包括:平行针40、主控器10、含水量检测芯片30以及模拟开关20,所述平行针40与所述模拟开关20连接,用以根据所述主控器10发出的脉冲信号进行土壤含盐量检测;所述模拟开关20,用以在完成土壤含盐量检测后,切换至所述含水率检测电路;所述含水量检测芯片30与所述模拟开关20连接,用以进行土壤含水量检测;所述主控器10与所述模拟开关20连接,用以根据测得的所述土壤含盐量生成第一反馈信息,并根据所述第一反馈信息对测得的所述土壤含水量进行校正。作为本实施例中优选的,所述平行针40上开设有匹配孔,所述匹配孔内放置有温度传感器50,所述温度传感器50与所述匹配孔固定连接;所述温度传感器50与所述主控器10连接,用以对土壤温度进行检测,根据测得的所述土壤温度生成第二反馈信息,并根据所述第二反馈信息对测得的土壤含盐量进行校正。具体的,温度传感器50固定于平行针40上的孔中,采用的使微型温度传感器50,如此可保证能植入匹配孔中;并且匹配孔设置于平行针40与土壤接触的一端,保证能够对土壤内部环境进行温度检测;匹配孔与温度传感器50固定连接的方式可以为:通过卡接装置卡接、通过扣接装置扣接,可以是焊接于匹配孔内部,也可以是通过现有技术中的其他方式进行固定连接。温度传感器50的作用为检测土壤中环境的温度,并将该温度传送给主控器10,经过主控器10计算转换获得第二反馈信息,通过第二反馈信息对电路 检测获得的土壤含盐量进行补偿,获得高精度土壤含盐量;第二反馈信息作为反馈补偿信号使土壤含盐量的检测更为精确,从而进一步提高了土壤含水量的检测精确度。
图4为本实用新型再一优选实施例提供的湿度传感器的结构示意图。
本实施例中的基于反馈补偿的湿度传感器,包括:平行针40、主控器10、含水量检测芯片30以及模拟开关20,所述平行针40与所述模拟开关20连接,用以根据所述主控器10发出的脉冲信号进行土壤含盐量检测;所述模拟开关20,用以在完成土壤含盐量检测后,切换至所述含水率检测电路;所述含水量检测芯片30与所述模拟开关20连接,用以进行土壤含水量检测;所述主控器10与所述模拟开关20连接,用以根据测得的所述土壤含盐量生成第一反馈信息,并根据所述第一反馈信息对测得的所述土壤含水量进行校正。作为本实施例中优选的,所述含水量检测芯片30包括信号发生器302和驻波率检测电路301,所述信号发生器302与所述模拟开关20连接,用以向所述平行针40发出频率为133MHZ的方波信号,形成驻波;所述驻波率检测电路301与所述模拟开关20连接,用以检测所述平行针40上驻波的驻波率;进一步的,所述主控器10根据所述电导率计算获得所述土壤含水量。具体的,当模拟开关20切换至含水量检测电路时,主控器10发出触发信号,使驻波率检测电路301与信号发生器302进入工作状态,通过信号发生器302发出133MHZ的方波信号,在平行针40上形成驻波,并通过驻波率检测电路301检测平行针40上形成的驻波的驻波率,通过主控器10中的驻波率标定公式,计算获得土壤介电常数,再根据介电常数计算获得体积土壤含水率,根据土壤含水量以及预先存储于控制器中的土壤体积计算获得土壤含水量,并传至所述主控器10的存储单元保存。
本领域技术人员应当明了,如图2所示,U8为信号发生器302,其芯片信号为DS1088C-BGA,其特性为发出高频信号;U11为驻波率检测电路301,其芯片型号为LMH2121TMX,其特性为低功耗,检测范围广。
图5为本实用新型实施例提供的土壤湿度检测系统的结构示意图。
一种土壤湿度检测系统,包括所述基于反馈补偿的湿度传感器。
所述基于反馈补偿的湿度传感器包括:平行针40、主控器10、含水量检测芯片30、模拟开关20以及温度传感器50,
所述平行针40与所述模拟开关20连接,用以根据所述主控器10发出的脉冲信号进行土壤含盐量检测;
所述温度传感器50与所述主控器10连接,用以对土壤温度进行检测,根据测得 的所述土壤温度生成第二反馈信息,并根据所述第二反馈信息对测得的土壤含盐量进行校正;
所述模拟开关20,用以在完成校正土壤含盐量后,切换至所述含水量检测电路;
所述含水量检测芯片30与所述模拟开关20连接,用以进行土壤含水量检测;
所述主控器10与所述模拟开关20连接,用以根据测得的所述土壤含盐量生成第一反馈信息,并根据所述第一反馈信息对测得的所述土壤含水量进行校正。
所述含水量检测芯片30包括:信号发生器302和驻波率检测电路301,所述信号发生器302与所述模拟开关20连接,用以向所述平行针40发出频率为133MHZ的方波信号,形成驻波;
所述驻波率检测电路301与所述模拟开关20连接,用以检测所述平行针40上驻波的驻波率;所述主控器10根据所述电导率计算获得所述土壤含水量。
在上述技术方案中,提供一种土壤湿度检测系统,由于上述湿度传感器具有上述技术效果,包含该湿度传感器的检测系统以也应具有相应的技术效果。
以上只通过说明的方式描述了本实用新型的某些示范性实施例,毋庸置疑,对于本领域的普通技术人员,在不偏离本实用新型的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行修正。因此,上述附图和描述在本质上是说明性的,不应理解为对本实用新型权利要求保护范围的限制。

Claims (10)

  1. 一种基于反馈补偿的湿度传感器,其特征在于,包括:平行针、主控器、含水量检测芯片以及模拟开关,
    所述平行针与所述模拟开关连接,用以根据所述主控器发出的脉冲信号进行土壤含盐量检测;
    所述模拟开关,用以在完成土壤含盐量检测后,切换至所述含水量检测芯片;
    所述含水量检测芯片与所述模拟开关连接,用以进行土壤含水量检测;
    所述主控器与所述模拟开关连接,用以根据测得的所述土壤含盐量生成第一反馈信息,并根据所述第一反馈信息对测得的所述土壤含水量进行校正。
  2. 根据权利要求1所述的湿度传感器,其特征在于,所述平行针为两个结构相同且相互平行设置的金属电极棒,两个所述金属电极棒的极性不一致。
  3. 根据权利要求1所述的湿度传感器,其特征在于,所述平行针上开设有匹配孔,所述匹配孔内放置有温度传感器,所述温度传感器与所述匹配孔固定连接。
  4. 根据权利要求3所述的湿度传感器,其特征在于,所述温度传感器与所述主控器连接,用以对土壤温度进行检测,根据测得的所述土壤温度生成第二反馈信息,并根据所述第二反馈信息对测得的土壤含盐量进行校正。
  5. 根据权利要求1所述的湿度传感器,其特征在于,所述模拟开关,还用以在通过所述第一反馈信息校正后,切换回对土壤含盐量进行检测的电路。
  6. 根据权利要求1所述的湿度传感器,其特征在于,所述脉冲信号的频率为1KHZ,用以通过所述平行针测得土壤电导率。
  7. 根据权利要求6所述的湿度传感器,其特征在于,所述主控器根据所述电导率计算获得所述土壤含盐量。
  8. 根据权利要求1所述的湿度传感器,其特征在于,所述含水量检测芯片包括信号发生器和驻波率检测电路,
    所述信号发生器与所述模拟开关连接,用以向所述平行针发出频率为133MHZ的方波信号,形成驻波;
    所述驻波率检测电路与所述模拟开关连接,用以检测所述平行针上驻波的驻波率。
  9. 根据权利要求8所述的湿度传感器,其特征在于,所述主控器根据所述电导率计算获得所述土壤含水量。
  10. 一种土壤湿度检测系统,其特征在于,包括权利要求1-9中所述的湿度传感器。
PCT/CN2016/110968 2016-11-04 2016-12-20 一种基于反馈补偿的湿度传感器及湿度检测系统 WO2018082159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621189170.XU CN206523465U (zh) 2016-11-04 2016-11-04 一种基于反馈补偿的湿度传感器及湿度检测系统
CN201621189170.X 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018082159A1 true WO2018082159A1 (zh) 2018-05-11

Family

ID=59887640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110968 WO2018082159A1 (zh) 2016-11-04 2016-12-20 一种基于反馈补偿的湿度传感器及湿度检测系统

Country Status (2)

Country Link
CN (1) CN206523465U (zh)
WO (1) WO2018082159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351917A (zh) * 2018-12-24 2020-06-30 广州交投工程检测有限公司 含水率快速检测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398540B (zh) * 2018-01-31 2024-02-13 昆明大蚯蚓科技有限公司 用于土壤测量指标的处理方法及装置
CN114609199A (zh) * 2020-12-09 2022-06-10 上海硕物天成信息科技有限公司 一种土壤水分含量的测量系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145379A1 (en) * 2002-12-16 2004-07-29 Peter Buss Soil matric potential and salinity measurement apparatus and method of use
CN101013097A (zh) * 2007-02-14 2007-08-08 中国科学院南京土壤研究所 原位土壤盐分含量传感变送器
CN102997964A (zh) * 2012-12-07 2013-03-27 西北农林科技大学 一种土壤多参数传感测量系统
CN203191329U (zh) * 2013-04-12 2013-09-11 武汉大学 一种监测高含盐量土壤中水分和盐分的时域反射仪探头
CN105717278A (zh) * 2016-04-14 2016-06-29 中国科学院半导体研究所 一种土壤盐水温传感器
CN205484177U (zh) * 2016-03-02 2016-08-17 北京小米移动软件有限公司 土壤参数测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145379A1 (en) * 2002-12-16 2004-07-29 Peter Buss Soil matric potential and salinity measurement apparatus and method of use
CN101013097A (zh) * 2007-02-14 2007-08-08 中国科学院南京土壤研究所 原位土壤盐分含量传感变送器
CN102997964A (zh) * 2012-12-07 2013-03-27 西北农林科技大学 一种土壤多参数传感测量系统
CN203191329U (zh) * 2013-04-12 2013-09-11 武汉大学 一种监测高含盐量土壤中水分和盐分的时域反射仪探头
CN205484177U (zh) * 2016-03-02 2016-08-17 北京小米移动软件有限公司 土壤参数测量装置
CN105717278A (zh) * 2016-04-14 2016-06-29 中国科学院半导体研究所 一种土壤盐水温传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351917A (zh) * 2018-12-24 2020-06-30 广州交投工程检测有限公司 含水率快速检测装置

Also Published As

Publication number Publication date
CN206523465U (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018082159A1 (zh) 一种基于反馈补偿的湿度传感器及湿度检测系统
CN202339352U (zh) 高精度固态风速风向测量装置
CN201464410U (zh) 高频电容式土壤湿度传感器
CN202676649U (zh) 一种同步实时自补偿测量土壤含水率的电容式传感器
CN203465028U (zh) 一种基于ntc温度传感器的多通道温度监控仪
CN201382838Y (zh) 大面积压力分布信号采集系统
CN204228602U (zh) 作物叶片生理水分监测系统
CN204301867U (zh) 新型改良红外测温仪
CN202720088U (zh) 一种实时环境下通过互联网进行压力量值传递的装置
CN211627551U (zh) 一种集成型土壤及周围环境检测系统
CN202421385U (zh) 一种便携式变压器测试仪
CN107966476A (zh) 一种混沌时域反射土壤含水量测量装置及方法
Yitong et al. Design of multi-parameter wireless sensor network monitoring system in precision agriculture
CN102706511B (zh) 一种实时环境下通过互联网进行压力量值传递的装置
CN111487295A (zh) 一种活立木树干含水率检测仪
RU134656U1 (ru) Устройство контроля влажности почвы
CN206683678U (zh) 多功能植物监护仪
CN203011349U (zh) 植物茎秆直径测量装置
CN110988038A (zh) 一种土壤水分特征线测量装置及其测量方法
CN116008149A (zh) 一种农田犁底层渗漏在线实时检测系统及检测方法
CN201697912U (zh) 土壤水势温度测量仪
CN203396721U (zh) 一种基于ZigBee网络的木地板含水率检测系统
CN110596341A (zh) 一种集成型土壤及周围环境检测系统
CN208013215U (zh) 一种盆栽试验测量土壤状态的装置
US20210208006A1 (en) Remote temperature monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920490

Country of ref document: EP

Kind code of ref document: A1