WO2018082015A1 - Shared configuration channel for grouped users - Google Patents

Shared configuration channel for grouped users Download PDF

Info

Publication number
WO2018082015A1
WO2018082015A1 PCT/CN2016/104611 CN2016104611W WO2018082015A1 WO 2018082015 A1 WO2018082015 A1 WO 2018082015A1 CN 2016104611 W CN2016104611 W CN 2016104611W WO 2018082015 A1 WO2018082015 A1 WO 2018082015A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
ues
information
crc
dedicated
Prior art date
Application number
PCT/CN2016/104611
Other languages
French (fr)
Inventor
Xiaohui Liu
Yu Zhang
Changlong Xu
Jilei Hou
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2016/104611 priority Critical patent/WO2018082015A1/en
Publication of WO2018082015A1 publication Critical patent/WO2018082015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data

Definitions

  • the technology discussed below relates generally to wireless communication systems, and more particularly, to a shared configuration channel for grouped users.
  • Various aspects of the disclosure provide for joint encoding of control information for multiple users in a wireless transmission.
  • multiplexing control information for a plurality of users into a single transmission and jointly encoding the multiplexed control information a larger code block size may be achieved, enabling greater coding gain.
  • each user may be enabled to decode the control information of other users, which may have been difficult or impossible in earlier implementations where multiplexed control information for different users was separately encoded.
  • FIG. 1 is a conceptual diagram illustrating an example of a radio access network.
  • FIG. 2 is a block diagram conceptually illustrating an example of a scheduling entity communicating with one or more scheduled entities according to some embodiments.
  • FIG. 3 is a schematic illustration of the resource structure for a radio access network showing time, frequency, and space dimensions.
  • FIG. 4 is a schematic illustration of the generation of a control data transmission according to the prior art, utilizing separate encoding of the control information for each user.
  • FIG. 5 is a schematic illustration of the generation of a control data transmission according to an exemplary embodiment utilizing joint encoding of multiple UEs’ control information.
  • FIG. 6 is a schematic illustration of the generation of a control data transmission according to an exemplary embodiment utilizing joint encoding of common control information and multiple UEs’ control information.
  • FIG. 7 is a schematic illustration of the generation of a control data transmission according to an exemplary embodiment including pooled control information.
  • FIG. 8 is a block diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • FIG. 9 is a block diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • FIG. 10 is a flow chart illustrating an exemplary process for jointly encoding control information for a plurality of UEs according to some aspects of the disclosure.
  • FIG. 11 is a flow chart illustrating an exemplary process for receiving and decoding a transmission that includes jointly encoded control data corresponding to a plurality of UEs, in accordance with some aspects of the disclosure.
  • FIG. 12 is a flow chart illustrating an exemplary process 1200 for utilizing pooled control information to provide for interference suppression or cancellation in accordance with some aspects of the present disclosure.
  • FIG. 1 a schematic illustration of a radio access network 100 is provided.
  • the geographic region covered by the radio access network 100 may be divided into a number of cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted over a geographical area from one access point or base station.
  • FIG. 1 illustrates macrocells 102, 104, and 106, and a small cell 108, each of which may include one or more sectors.
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • a base station serves each cell.
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a BS may also be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , or some other suitable terminology.
  • BTS base transceiver station
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNode B eNode B
  • FIG. 1 two high-power base stations 110 and 112 are shown in cells 102 and 104; and a third high-power base station 114 is shown controlling a remote radio head (RRH) 116 in cell 106. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables.
  • the cells 102, 104, and 106 may be referred to as macrocells, as the high-power base stations 110, 112, and 114 support cells having a large size.
  • a low-power base station 118 is shown in the small cell 108 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc.
  • the cell 108 may be referred to as a small cell, as the low-power base station 118 supports a cell having a relatively small size.
  • Cell sizing can be done according to system design as well as component constraints.
  • the radio access network 100 may include any number of wireless base stations and cells.
  • a relay node may be deployed to extend the size or coverage area of a given cell.
  • the base stations 110, 112, 114, 118 provide wireless access points to a core network for any number of mobile apparatuses.
  • FIG. 1 further includes a quadcopter or drone 120, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 120.
  • a quadcopter or drone 120 may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 120.
  • base stations may include a backhaul interface for communication with a backhaul portion of the network.
  • the backhaul may provide a link between a base station and a core network, and in some examples, the backhaul may provide interconnection between the respective base stations.
  • the core network is a part of a wireless communication system that is generally independent of the radio access technology used in the radio access network.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • Some base stations may be configured as integrated access and backhaul (IAB) nodes, where the wireless spectrum may be used both for access links (i.e., wireless links with UEs) , and for backhaul links.
  • IAB integrated access and backhaul
  • This scheme is sometimes referred to as wireless self-backhauling.
  • wireless self-backhauling rather than requiring each new base station deployment to be outfitted with its own hard-wired backhaul connection, the wireless spectrum utilized for communication between the base station and UE may be leveraged for backhaul communication, enabling fast and easy deployment of highly dense small cell networks.
  • the radio access network 100 is illustrated supporting wireless communication for multiple mobile apparatuses.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP) , but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • UE may be an apparatus that provides a user with access to network services.
  • a “mobile” apparatus need not necessarily have a capability to move, and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
  • IoT Internet of things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc. ; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, i.e., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • UEs 122 and 124 may be in communication with base station 110; UEs 126 and 128 may be in communication with base station 112; UEs 130 and 132 may be in communication with base station 114 by way of RRH 116; UE 134 may be in communication with low-power base station 118; and UE 136 may be in communication with mobile base station 120.
  • each base station 110, 112, 114, 118, and 120 may be configured to provide an access point to a core network (not shown) for all the UEs in the respective cells.
  • a mobile network node e.g., quadcopter 120
  • quadcopter 120 may be configured to function as a UE.
  • the quadcopter 120 may operate within cell 102 by communicating with base station 110.
  • two or more UE e.g., UEs 126 and 128, may communicate with each other using peer to peer (P2P) or sidelink signals 127 without relaying that communication through a base station (e.g., base station 112) .
  • P2P peer to peer
  • sidelink signals 127 without relaying that communication through a base station (e.g., base station 112) .
  • Unicast or broadcast transmissions of control information and/or traffic from a base station (e.g., base station 110) to one or more UEs (e.g., UEs 122 and 124) may be referred to as downlink (DL) transmission, while transmissions of control information and/or traffic originating at a UE (e.g., UE 122) may be referred to as uplink (UL) transmissions.
  • DL downlink
  • UL uplink
  • the uplink and/or downlink control information and/or traffic may be transmitted in transmission time intervals (TTIs) .
  • TTI may refer to the inter-arrival time of a given schedulable set of data.
  • a TTI may be configured to carry one or more transport blocks, which are generally the basic data unit exchanged between the physical layer (PHY) and medium access control (MAC) layer (sometimes referred to as a MAC PDU, or protocol data unit) .
  • a subframe may include one or more TTIs.
  • the term subframe may refer to an encapsulated set of information including one or more TTIs, which is capable of being independently decoded.
  • Multiple subframes may be grouped together to form a single frame or radio frame. Any suitable number of subframes may occupy a frame.
  • a subframe may have any suitable duration (e.g., 250 ⁇ s, 500 ⁇ s, 1 ms, etc. ) .
  • the air interface in the radio access network 100 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices. For example, multiple access for uplink (UL) or reverse link transmissions from UEs 122 and 124 to base station 110 may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SCMA sparse code multiple access
  • RSMA resource spread multiple access
  • multiplexing downlink (DL) or forward link transmissions from the base station 110 to UEs 122 and 124 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • TDM time division multiplexing
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • SCM sparse code multiplexing
  • the air interface in the radio access network 100 may utilize one or more duplexing algorithms.
  • Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full duplex means both endpoints can simultaneously communicate with one another.
  • Half duplex means only one endpoint can send information to the other at a time.
  • a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies.
  • Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) .
  • FDD frequency division duplex
  • TDD time division duplex
  • transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per subframe.
  • a radio access network 100 the ability for a UE to communicate while moving, independent of its location, is referred to as mobility.
  • the various physical channels between the UE and the radio access network are generally set up, maintained, and released under the control of a mobility management entity (MME) .
  • MME mobility management entity
  • a radio access network 100 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) .
  • a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells.
  • the UE may maintain communication with one or more of the neighboring cells. During this time, if the UE moves from one cell to another, or if signal quality from a neighboring cell exceeds that from the serving cell for a given amount of time, the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell. For example, UE 124 may move from the geographic area corresponding to its serving cell 102 to the geographic area corresponding to a neighbor cell 106. When the signal strength or quality from the neighbor cell 106 exceeds that of its serving cell 102 for a given amount of time, the UE 124 may transmit a reporting message to its serving base station 110 indicating this condition. In response, the UE 124 may receive a handover command, and the UE may undergo a handover to the cell 106.
  • target neighboring
  • UL reference signals from each UE may be utilized by the network to select a serving cell for each UE.
  • the base stations 110, 112, and 114/116 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCH) ) .
  • PSSs Primary Synchronization Signals
  • SSSs unified Secondary Synchronization Signals
  • PBCH Physical Broadcast Channels
  • the UEs 122, 124, 126, 128, 130, and 132 may receive the unified synchronization signals, derive the carrier frequency and subframe timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal.
  • the uplink pilot signal transmitted by a UE may be concurrently received by two or more cells (e.g., base stations 110 and 114/116) within the radio access network 100.
  • Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the base stations 110 and 114/116 and/or a central node within the core network) may determine a serving cell for the UE 124.
  • the radio access network e.g., one or more of the base stations 110 and 114/116 and/or a central node within the core network
  • the network may continue to monitor the uplink pilot signal transmitted by the UE 124.
  • the network 100 may handover the UE 124 from the serving cell to the neighboring cell, with or without informing the UE 124.
  • the synchronization signal transmitted by the base stations 110, 112, and 114/116 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing.
  • the use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
  • the air interface in the radio access network 100 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum.
  • Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body.
  • Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access.
  • Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs.
  • the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
  • LSA licensed shared access
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs or scheduled entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . In other examples, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • UE 138 is illustrated communicating with UEs 140 and 142. In some examples, the UE 138 is functioning as a scheduling entity or a primary sidelink device, and UEs 140 and 142 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device.
  • a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • UEs 140 and 142 may optionally communicate directly with one another in addition to communicating with the scheduling entity 138.
  • a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
  • FIG. 2 a block diagram illustrates a scheduling entity 202 and a plurality of scheduled entities 204 (e.g., 204a and 204b) .
  • the scheduling entity 202 may correspond to a base station 110, 112, 114, and/or 118.
  • the scheduling entity 202 may correspond to a UE 138, the quadcopter 120, or any other suitable node in the radio access network 100.
  • the scheduled entity 204 may correspond to the UE 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, and 142, or any other suitable node in the radio access network 100.
  • the scheduling entity 202 may broadcast traffic 206 to one or more scheduled entities 204 (the traffic may be referred to as downlink traffic) .
  • the term downlink may refer to a point-to-multipoint transmission originating at the scheduling entity 202.
  • the scheduling entity 202 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink transmissions and, in some examples, uplink traffic 210 from one or more scheduled entities to the scheduling entity 202. Another way to describe the system may be to use the term broadcast channel multiplexing.
  • the term uplink may refer to a point-to-point transmission originating at a scheduled entity 204.
  • the scheduled entity 204 is a node or device that receives scheduling control information, including but not limited to scheduling grants, synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 202.
  • the scheduling entity 202 may broadcast control information 208 including one or more control channels, such as a PBCH; a PSS; a SSS; a physical control format indicator channel (PCFICH) ; a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) ; and/or a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities 204.
  • the PHICH carries HARQ feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) .
  • HARQ is a technique well known to those of ordinary skill in the art, wherein packet transmissions may be checked at the receiving side for accuracy, and if confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted.
  • the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
  • TTIs transmission time intervals
  • the scheduled entities 204 may transmit uplink control information 212 including one or more uplink control channels to the scheduling entity 202.
  • Uplink control information may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink traffic transmissions.
  • the control information 212 may include a scheduling request (SR) , i.e., request for the scheduling entity 202 to schedule uplink transmissions.
  • SR scheduling request
  • the scheduling entity 202 may transmit downlink control information 208 that may schedule the TTI for uplink packet transmissions.
  • Uplink and downlink transmissions may generally utilize a suitable error correcting block code.
  • a suitable error correcting block code an information message or sequence is split up into blocks, and an encoder at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
  • error correcting codes include Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, turbo codes, low-density parity check (LDPC) codes, and polar codes.
  • Various implementations of scheduling entities 202 and scheduled entities 204 may include suitable hardware and capabilities (e.g., an encoder and/or decoder) to utilize any one or more of these error correcting codes for wireless communication.
  • scheduled entities such as a first scheduled entity 204a and a second scheduled entity 204b may utilize sidelink signals for direct D2D communication.
  • Sidelink signals may include sidelink traffic 214 and sidelink control 216.
  • Sidelink control information 216 may include a request-to-send (RTS) channel and a clear-to-send (CTS) channel.
  • RTS request-to-send
  • CTS clear-to-send
  • the RTS may provide for a scheduled entity 204 to request a duration of time to keep a sidelink channel available for a sidelink signal; and the CTS may provide for the scheduled entity 204 to indicate the availability of the sidelink channel, e.g., for a requested duration of time.
  • An exchange of RTS and CTS signals may enable different scheduled entities performing sidelink communications to negotiate the availability of the sidelink channel prior to communication of the sidelink traffic information 214.
  • the channels or carriers illustrated in FIG. 2 are not necessarily all of the channels or carriers that may be utilized between a scheduling entity 202 and scheduled entities 204, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • FIG. 3 is a schematic illustration of the resource structure for a radio access network, such as the RAN 100 illustrated in FIG. 1.
  • this illustration may represent wireless resources as they may be allocated in an OFDM system that utilizes MIMO.
  • a two-dimensional grid of resource elements may be defined by separation of resources in frequency by defining a set of closely spaced frequency tones or sub-carriers, and separation in time by defining a sequence of symbols having a given duration. By setting the spacing between the tones based on the symbol rate, inter-symbol interference can be eliminated.
  • OFDM channels provide for high data rates by allocating a data stream in a parallel manner across multiple subcarriers.
  • MIMO is a multi-antenna technology that exploits multipath signal propagation so that the information-carrying capacity of a wireless link can be multiplied by using multiple antennas at the transmitter and receiver to send multiple simultaneous streams.
  • a suitable precoding algorithm scaling the respective streams’ amplitude and phase
  • the different spatial signatures of the respective streams can enable the separation of these streams from one another.
  • Massive MIMO is a MIMO system with a very large number of antennas (e.g., greater than an 8x8 array) .
  • a base station in communication with a large number of UEs, can exploit multipath signal propagation to increase overall network capacity by increasing throughput and spectral efficiency, and reducing the required transmission energy.
  • the resources in a wireless channel may be characterized according to three dimensions: frequency, space, and time.
  • the frequency and time dimensions of an OFDM stream are represented by a grid, with separate resource elements (REs) represented by each rectangle and having dimensions of one sub-carrier by one symbol.
  • REs resource elements
  • a plurality of OFDM streams are represented by separate OFDM resource grids spanning in the space dimension of FIG. 3.
  • control channels In a given subframe or TTI, transmission of one or more control channels may be followed by transmission of one or more traffic channels, in the time dimension.
  • the first two symbols include control channels or control information, which may be the same as the control information 208, 212, and/or 216 described above. Accordingly, these symbols may be referred to as a control region. Any suitable region of resources in the time, frequency, and space dimensions may be utilized as a control region, not necessarily limited to the first two symbols. Moreover, a control region need not necessarily be contiguous, and may be included in one, two, or any suitable number of separate regions.
  • the subsequent illustrated symbols included traffic channels or traffic information, which may be the same as the traffic information 206, 210, and/or 214 described above.
  • REs that carry reference signals (RS) are interleaved with REs that carry data. These RSs can provide for channel estimation by a receiving device.
  • control and traffic information for a plurality of users may be multiplexed in space, frequency, and time.
  • FIG. 4 is a schematic illustration of the generation of a control data transmission as it may be implemented in some examples.
  • control information for a given user or UE may include various fields for different types of information relating to control over traffic data and traffic RS.
  • a given UE’s control information may include a modulation order and coding scheme (MCS) , resource allocation, a transmission scheme, a RS configuration, etc.
  • MCS modulation order and coding scheme
  • control information for a plurality of users or UEs may be multiplexed into a given transmission of control data. That is, as described above, a downlink transmission from a scheduled entity may include control data for a plurality of scheduled entities.
  • the control information for each UE is subjected to a cyclic redundancy check (CRC) calculation, which in some examples may additionally take the destination UE’s identity into account.
  • CRC cyclic redundancy check
  • a UE may have a radio network temporary identifier (RNTI) or other suitable UE-specific identifier that may be known to the scheduling entity generating the CRCs.
  • RNTI radio network temporary identifier
  • a receiving UE may perform an integrity check or CRC calculation taking its own RNTI into account, so that the CRC would only be verified for control information that includes a CRC based on that UE’s RNTI.
  • each UE When utilizing this above-described scheme to generate control data for transmission, each UE’s control information and its appended CRC is separately encoded. Accordingly, because the total amount of information being encoded is relatively small, the amount of coding gain that might be achieved by the encoder is less than it would be in comparison to a large block size. That is, larger block sizes can result in greater coding gain.
  • each UE’s control information is separately encoded, other UEs in the cell may not be capable of decoding a given UE’s control information. Therefore, when a UE is experiencing interference from another nearby UE, interference suppression or cancellation may be difficult. That is, if a victim UE subject to multi-user (MU) interference were capable of obtaining an offending or interfering UE’s MCS, transmission scheme, etc., then the victim UE may better be capable of suppressing or cancelling the interference.
  • MU multi-user
  • a transmitting device to jointly encode control information for a plurality of users or UEs. That is, a single encoder or encoding algorithm may encode the control information (and, in some examples, CRCs) for a plurality of UEs.
  • each UE may be capable of decoding the control information of other UEs, benefiting an interference suppression/cancellation scheme.
  • each user may be enabled to decode the control information of paired users.
  • MU-MIMO technology may be facilitated by way of advanced receivers that rely on this information for such paired users.
  • spectral efficiency in such a MU-MIMO scheme may be improved.
  • the block size sent to an encoder may be relatively large.
  • the coding gain provided by the encoder can be increased, potentially resulting in a lower bit error rate (BER) under the same signal-to-noise ratio (SNR) conditions.
  • FIG. 5 is a schematic illustration of the generation of a control data transmission according to some aspects of the disclosure.
  • a transmitting device may utilize joint encoding of multiple UEs’ control information.
  • each UE’s control information may be predefined. In this way, with a form of standard configuration for each UE’s control information, other UEs may be better capable of decoding and interpreting another UE’s control information. As illustrated, each UE’s control information is subjected to a CRC calculation, and a corresponding individual CRC may be appended to the UE’s control information. As described above in the example illustrated in FIG. 4, the CRC for a given UE’s control information may be calculated based on that UE’s UE-specific identifier (e.g., an RNTI) .
  • UE-specific identifier e.g., an RNTI
  • a second, group CRC may be applied to a plurality of UEs’ control information. That is, a group CRC may be concatenated or interleaved with a group of users’ control information. By utilizing the group CRC, an individual UE may be enabled to verify the integrity of the received control information for the full group of UEs.
  • control information may be concatenated or interleaved (e.g., to create a relatively large code block) that may then be encoded by an encoder.
  • the encoded set of control data may then be modulated, scrambled, and/or mapped to suitable resources for transmission over a wireless air interface.
  • FIG. 6 is a schematic illustration of the generation of a control data transmission according to a further aspect of the disclosure.
  • a transmitting device may utilize joint encoding of common control information and multiple UEs’ control information.
  • common control information may be control information that may be shared among a group (e.g., the plurality) of UEs.
  • a group e.g., the plurality
  • some fields of control information may be identical, or similar, among a plurality of UEs.
  • Some examples of control information that might comport with common usage by a plurality of UEs might include a transmission scheme, a modulation order, a rank, a coding scheme, and resource mapping.
  • control information for each of the plurality of UEs may additionally include dedicated control information for that particular UE.
  • the dedicated control information may complement the common control information, and may include control information in addition to or beyond that included in the common control information.
  • a UE’s dedicated control information may additionally or alternatively include different control information than that included in the common control information, such that the dedicated control information may in some examples override the common control information for that UE.
  • each of the common control information and the dedicated control information may have an individual CRC (where the dedicated control information’s CRC may be based in part on a UE-specific identifier) , and the full group may have a group CRC.
  • the group of control information may then be jointly encoded, modulated, mapped to resources, and transmitted over an air interface.
  • FIG. 6 shows the joint encoding of the common and dedicated control information
  • the use of such common and dedicated control information need not necessarily utilize the joint encoding. That is, common and dedicated control information may be multiplexed onto a transmission channel utilizing the separate encoding algorithm described above and illustrated in FIG. 4.
  • FIG. 7 is a schematic illustration of the generation of a control data transmission according to a further aspect of the disclosure.
  • a transmitting device may utilize joint encoding of pooled control information and multiple UEs’ control information.
  • control information pool may be shared among a plurality of UEs, and may include control information corresponding to each of the plurality of UEs.
  • control information pool does not necessarily include the same control information for the plurality of UEs.
  • control information pool may include an array or sequence of control information separated into fields, with each field corresponding to a specific UE among the plurality of UEs.
  • the control information within the control information pool may include a subset of the control information conveyed to the UEs.
  • Some examples of control information within the control information pool may include a modulation order, a rank, a coding scheme, and a resource mapping.
  • control information for each of the plurality of UEs may additionally include dedicated control information for that particular UE.
  • the dedicated control information may complement the control information for that UE within the control information pool, and may include control information in addition to or beyond that included for each UE in the control information pool.
  • a UE’s dedicated control information may additionally or alternatively include different control information than that included in the common control information, such that the dedicated control information may in some examples override the common control information for that UE.
  • a pointer to an address within the control information pool.
  • the pointer when a UE receives and decodes its dedicated control information, it is enabled to locate its own control information from within the control information pool.
  • the pointer, and the structure of the control information pool may be configured in any suitable manner to enable the UE to locate and read its own control information from within the control information pool.
  • the pointer may include an index, based on a reference point such as the first bit, octet, or byte of the control information pool array.
  • the index may indicate the starting point of the UE’s control information within the control information pool, e.g., based on the number of bits, octet, or bytes from the reference point.
  • the index may indicate a UE number between 1 and N, e.g., wherein N UEs have control information included in the transmission.
  • each UE’s control information within the control information pool may have a fixed and predetermined length.
  • each UE may have different lengths of control information within the control information pool.
  • the pointer to a location within the control information pool may additionally include the length of that UE’s control information within the control information pool.
  • control information pool and the dedicated control information may each have an individual CRC, and a group CRC may be appended to or mixed with the group. Further, the full set of control information may then be jointly encoded and configured for transmission as described above. In another example, separate encoding of the control information pool and the dedicated control information may be utilized as described above and illustrated in FIG. 4.
  • FIG. 8 is a block diagram illustrating an example of a hardware implementation for a scheduling entity 800 employing a processing system 814.
  • the scheduling entity 800 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1 and/or 2.
  • UE user equipment
  • the scheduling entity 800 may be a base station as illustrated in any one or more of FIGs. 1 and/or 2.
  • the scheduling entity 800 may be implemented with a processing system 814 that includes one or more processors 804.
  • processors 804 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the scheduling entity 800 may be configured to perform any one or more of the functions described herein. That is, the processor 804, as utilized in a scheduling entity 800, may be used to implement any one or more of the processes and procedures described below.
  • the processing system 814 may be implemented with a bus architecture, represented generally by the bus 802.
  • the bus 802 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 814 and the overall design constraints.
  • the bus 802 communicatively couples together various circuits including one or more processors (represented generally by the processor 804) , a memory 805, and computer-readable media (represented generally by the computer-readable medium 806) .
  • the bus 802 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • a bus interface 808 provides an interface between the bus 802 and a transceiver 810.
  • the transceiver 810 provides a communication interface or means for communicating with various other apparatus over a transmission medium.
  • a user interface 812 e.g., keypad, display, speaker, microphone, joystick
  • a user interface 812 may also be provided.
  • the processor 804 may include encoder circuitry 840 configured for various functions, including, for example, encoding control information and/or traffic information for a wireless transmission.
  • the encoder circuitry 840 may be configured to implement one or more of the functions described below in relation to FIGs. 4-7 and/or 10.
  • the processor 804 is responsible for managing the bus 802 and general processing, including the execution of software stored on the computer-readable medium 806.
  • the software when executed by the processor 804, causes the processing system 814 to perform the various functions described below for any particular apparatus.
  • the computer-readable medium 806 and the memory 805 may also be used for storing data that is manipulated by the processor 804 when executing software.
  • One or more processors 804 in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a computer-readable medium 806.
  • the computer-readable medium 806 may be a non-transitory computer-readable medium.
  • a non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g., a compact disc (CD) or a digital versatile disc (DVD)
  • the computer-readable medium may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer.
  • the computer-readable medium 806 may reside in the processing system 814, external to the processing system 814, or distributed across multiple entities including the processing system 814.
  • the computer-readable medium 806 may be embodied in a computer program product.
  • a computer program product may include a computer-readable medium in packaging materials.
  • the computer-readable storage medium 806 may include encoding software 862 configured for various functions, including, for example, encoding control information and/or traffic information for a wireless transmission.
  • the encoding software 862 may be configured to implement one or more of the functions described above in relation to FIG. 4-7 and/or 10.
  • FIG. 9 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduled entity 900 employing a processing system 914.
  • an element, or any portion of an element, or any combination of elements may be implemented with a processing system 914 that includes one or more processors 904.
  • the scheduled entity 900 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1 and/or 2.
  • UE user equipment
  • the processing system 914 may be substantially the same as the processing system 814 illustrated in FIG. 8, including a bus interface 908, a bus 902, memory 905, a processor 904, and a computer-readable medium 906.
  • the scheduled entity 900 may include a user interface 912 and a transceiver 910 substantially similar to those described above in FIG. 8. That is, the processor 904, as utilized in a scheduled entity 900, may be used to implement any one or more of the processes described below.
  • the processor 904 may include decoder circuitry 942 configured for various functions, including, for example, decoding control data and/or traffic data received over a wireless communication interface.
  • the decoder circuitry 942 may be configured to implement one or more of the functions described below in relation to FIGs. 11 and/or 12.
  • FIG. 10 is a flow chart illustrating an exemplary process 1000 for jointly encoding control information for a plurality of UEs according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments.
  • the process 1000 may be carried out by the scheduling entity 800 illustrated in FIG. 8. In some examples, the process 1000 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the scheduling entity may generate common control information or pooled control information for a plurality of UEs. For example, this may correspond to the common control information described above and illustrated in FIG. 6, or the control information pool described above and illustrated in FIG. 7.
  • the scheduling entity may generate dedicated control information for a plurality of UEs. For example, this may correspond to the dedicated control information described above and illustrated in FIGs. 5, 6, and 7.
  • the dedicated control information may be the full complement of control information for each of the respective UEs.
  • the dedicated control information may in some examples include a subset of the full complement of control information for each of the respective UEs, being complementary to the common or pooled control information as described above.
  • generation of the dedicated control information may further include generation of a pointer to an address within the control information pool, as described above.
  • the scheduling entity may generate individual CRCs for each of the UEs’ dedicated control information.
  • each individual CRC may be based on the corresponding UE’s dedicated control information, and further, based on the corresponding UE’s UE-specific identifier (e.g., an RNTI) .
  • UE-specific identifier e.g., an RNTI
  • the scheduling entity may generate an individual CRC for the common control information or the pooled control information. For example, this may correspond to the common control information described above and illustrated in FIG. 6, or the control information pool described above and illustrated in FIG. 7.
  • the scheduling entity may generate a group CRC for the plurality of UEs’ dedicated control information (and, in the corresponding examples that utilize it, the common control information or the pooled control information) .
  • the scheduling entity may jointly encode the full set of control information for the plurality of UEs, including the individual CRCs and the group CRC.
  • the scheduling entity may modulate, scramble, and map the encoded control data to suitable resources, so that at block 1016, the scheduling entity may transmit the control data over the air interface utilizing those resources.
  • FIG. 11 is a flow chart illustrating an exemplary process 1100 for receiving and decoding a transmission that includes jointly encoded control data corresponding to a plurality of UEs, in accordance with some aspects of the disclosure.
  • the process 1100 may be carried out by the scheduled entity 900 illustrated in FIG. 9.
  • the process 1100 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below. For ease of description, the following discussion refers to a first UE as carrying out the process 1100.
  • the first UE may receive a downlink transmission including multiplexed control information for a plurality of UEs.
  • the first UE may decode the multiplexed control information as one block or set of encoded data.
  • the first UE may check the integrity of the decoded, control information for the plurality of UEs. For example, the first UE may verify the group CRC by calculating a CRC based on the full set of multiplexed control information.
  • the first UE may locate or identify its own dedicated control information from within the multiplexed control information for the plurality of UEs. For example, the first UE may execute a CRC algorithm based on one set of dedicated control information, and also based on the first UE’s own UE-specific identifier (e.g., its RNTI) . If the CRC fails, the first UE may assume that that set of dedicated control information is for a different UE. The first UE may repeat this algorithm, stepping through each set of dedicated control information until it finds dedicated control information having a CRC that matches. Once a CRC check passes on a set of dedicated control information, the first UE may consider that it has identified its own dedicated control information.
  • a CRC algorithm based on one set of dedicated control information, and also based on the first UE’s own UE-specific identifier (e.g., its RNTI) . If the CRC fails, the first UE may assume that that set of dedicated control information is for a different UE.
  • the first UE may check the integrity of the common or pooled control information, according to the algorithm or example being utilized (e.g., see above and FIGs. 6 and 7) .
  • the first UE may verify the individual CRC corresponding to the common or pooled control information.
  • the first UE may locate its control information from within the control information pool utilizing the pointer included with the first UE’s dedicated control information (e.g., see above description and FIG. 7) .
  • a receiving device may take advantage of the pooled control information to enhance its interference suppression or cancellation capability.
  • FIG. 12 is a flow chart illustrating an exemplary process 1200 for utilizing pooled control information to provide for interference suppression or cancellation in accordance with some aspects of the present disclosure.
  • the process 1200 may be carried out by the scheduled entity 900 illustrated in FIG. 9.
  • the process 500 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • a UE or scheduled entity Before the process begins, it may be assumed that a UE or scheduled entity has received and obtained control data configured according to the example described above and illustrated in FIG. 7 utilizing a control information pool in addition to dedicated control information. Further, the UE or scheduled entity may be assumed to be communicating within the RAN.
  • the UE may determine whether a high level of interference is observed. For example, if a detected amount of interference is greater than an interference threshold; if a calculated signal to interference and noise ratio (SINR) is below an SINR threshold; if a block error rate (BLER) is greater than a BLER threshold; or any other suitable method may be utilized to determine whether a high level of interference is observed.
  • SINR signal to interference and noise ratio
  • BLER block error rate
  • the UE may determine one or more properties of the interfering signal. For example, these properties may include information such as the frequency and time resource occupied by the interfering transmission. Accordingly, it may be assumed that only the UEs that are allocated those frequency and time resources would be the source of the interfering transmission.
  • the UE may identify the interfering UE by searching for information within the control information pool corresponding to the one or more properties of the interfering signal.
  • the UE may obtain the set of control information for the interfering UE from the control information pool.
  • This pooled control information for the interfering UE may include such information fields as a modulation order, a transmission scheme, or any other suitable information that may assist in interference suppression/cancellation of the interfering signal.
  • the UE may then perform interference suppression or cancellation of the interfering signal based on the obtained control information (from the pooled control information) for the interfering UE.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • the term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1-4 One or more of the components, steps, features and/or functions illustrated in FIGs. 1-4 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1-4 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U. S. C. ⁇ 112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of wireless communication is provided. The method comprises: generating dedicated control information for a plurality of user equipment (UEs); generating individual cyclic redundancy check (CRC) information for each of the plurality of UEs' dedicated control information, wherein each CRC information is based on the respective UE's dedicated control information and the respective UE's UE- specific identifier; generating group CRC information for the dedicated control information for all of the plurality of UEs; jointly encoding all of the plurality of UEs' control information, including the individual CRC information and the group CRC information; and transmitting the jointly encoded control information over a wireless air interface.

Description

SHARED CONFIGURATION CHANNEL FOR GROUPED USERS TECHNICAL FIELD
The technology discussed below relates generally to wireless communication systems, and more particularly, to a shared configuration channel for grouped users.
INTRODUCTION
As the demand for mobile broadband access continues to increase, research and development continue to advance wireless communication technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a simplified summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.
Various aspects of the disclosure provide for joint encoding of control information for multiple users in a wireless transmission. By multiplexing control information for a plurality of users into a single transmission and jointly encoding the multiplexed control information, a larger code block size may be achieved, enabling greater coding gain. Further, each user may be enabled to decode the control information of other users, which may have been difficult or impossible in earlier implementations where multiplexed control information for different users was separately encoded.
These and other aspects of the invention will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and embodiments of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the present invention in conjunction with the accompanying figures. While features of  the present invention may be discussed relative to certain embodiments and figures below, all embodiments of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments of the invention discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a conceptual diagram illustrating an example of a radio access network.
FIG. 2 is a block diagram conceptually illustrating an example of a scheduling entity communicating with one or more scheduled entities according to some embodiments.
FIG. 3 is a schematic illustration of the resource structure for a radio access network showing time, frequency, and space dimensions.
FIG. 4 is a schematic illustration of the generation of a control data transmission according to the prior art, utilizing separate encoding of the control information for each user.
FIG. 5 is a schematic illustration of the generation of a control data transmission according to an exemplary embodiment utilizing joint encoding of multiple UEs’ control information.
FIG. 6 is a schematic illustration of the generation of a control data transmission according to an exemplary embodiment utilizing joint encoding of common control information and multiple UEs’ control information.
FIG. 7 is a schematic illustration of the generation of a control data transmission according to an exemplary embodiment including pooled control information.
FIG. 8 is a block diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
FIG. 9 is a block diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
FIG. 10 is a flow chart illustrating an exemplary process for jointly encoding control information for a plurality of UEs according to some aspects of the disclosure.
FIG. 11 is a flow chart illustrating an exemplary process for receiving and decoding a transmission that includes jointly encoded control data corresponding to a plurality of UEs, in accordance with some aspects of the disclosure.
FIG. 12 is a flow chart illustrating an exemplary process 1200 for utilizing pooled control information to provide for interference suppression or cancellation in accordance with some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
RADIO ACCESS NETWORK
The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, a schematic illustration of a radio access network 100 is provided.
The geographic region covered by the radio access network 100 may be divided into a number of cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted over a geographical area from one access point or base station. FIG. 1 illustrates  macrocells  102, 104, and 106, and a small cell 108, each of which may include one or more sectors. A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
In general, a base station (BS) serves each cell. Broadly, a base station is a network element in a radio access network responsible for radio transmission and  reception in one or more cells to or from a UE. A BSmay also be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , or some other suitable terminology.
In FIG. 1, two high-power base stations 110 and 112 are shown in  cells  102 and 104; and a third high-power base station 114 is shown controlling a remote radio head (RRH) 116 in cell 106. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables. In the illustrated example, the  cells  102, 104, and 106 may be referred to as macrocells, as the high- power base stations  110, 112, and 114 support cells having a large size. Further, a low-power base station 118 is shown in the small cell 108 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells. In this example, the cell 108 may be referred to as a small cell, as the low-power base station 118 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints. It is to be understood that the radio access network 100 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell. The  base stations  110, 112, 114, 118 provide wireless access points to a core network for any number of mobile apparatuses.
FIG. 1 further includes a quadcopter or drone 120, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 120.
In general, base stations may include a backhaul interface for communication with a backhaul portion of the network. The backhaul may provide a link between a base station and a core network, and in some examples, the backhaul may provide interconnection between the respective base stations. The core network is a part of a wireless communication system that is generally independent of the radio access technology used in the radio access network. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network. Some base stations may be configured as integrated access and backhaul (IAB) nodes, where the wireless spectrum may be used both for access links (i.e., wireless links with UEs) , and for backhaul links. This scheme is  sometimes referred to as wireless self-backhauling. By using wireless self-backhauling, rather than requiring each new base station deployment to be outfitted with its own hard-wired backhaul connection, the wireless spectrum utilized for communication between the base station and UE may be leveraged for backhaul communication, enabling fast and easy deployment of highly dense small cell networks.
The radio access network 100 is illustrated supporting wireless communication for multiple mobile apparatuses. A mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP) , but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus that provides a user with access to network services.
Within the present document, a “mobile” apparatus need not necessarily have a capability to move, and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) . A mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc. ; an industrial automation and enterprise device; a logistics controller;  agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc. Still further, a mobile apparatus may provide for connected medicine or telemedicine support, i.e., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Within the radio access network 100, the cells may include UEs that may be in communication with one or more sectors of each cell. For example,  UEs  122 and 124 may be in communication with base station 110;  UEs  126 and 128 may be in communication with base station 112;  UEs  130 and 132 may be in communication with base station 114 by way of RRH 116; UE 134 may be in communication with low-power base station 118; and UE 136 may be in communication with mobile base station 120. Here, each  base station  110, 112, 114, 118, and 120 may be configured to provide an access point to a core network (not shown) for all the UEs in the respective cells.
In another example, a mobile network node (e.g., quadcopter 120) may be configured to function as a UE. For example, the quadcopter 120 may operate within cell 102 by communicating with base station 110. In some aspects of the disclosure, two or more UE (e.g., UEs 126 and 128) may communicate with each other using peer to peer (P2P) or sidelink signals 127 without relaying that communication through a base station (e.g., base station 112) .
Unicast or broadcast transmissions of control information and/or traffic from a base station (e.g., base station 110) to one or more UEs (e.g., UEs 122 and 124) may be referred to as downlink (DL) transmission, while transmissions of control information and/or traffic originating at a UE (e.g., UE 122) may be referred to as uplink (UL) transmissions. In addition, the uplink and/or downlink control information and/or traffic may be transmitted in transmission time intervals (TTIs) . As used herein, the term TTI may refer to the inter-arrival time of a given schedulable set of data. In various examples, a TTI may be configured to carry one or more transport blocks, which are generally the basic data unit exchanged between the physical layer (PHY) and medium access control (MAC) layer (sometimes referred to as a MAC PDU, or protocol data unit) . In accordance with various aspects of the present disclosure, a subframe may include one or more TTIs. Thus, as further used herein, the term subframe may refer to an encapsulated set of information including one or more TTIs, which is capable of  being independently decoded. Multiple subframes may be grouped together to form a single frame or radio frame. Any suitable number of subframes may occupy a frame. In addition, a subframe may have any suitable duration (e.g., 250 μs, 500 μs, 1 ms, etc. ) .
The air interface in the radio access network 100 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices. For example, multiple access for uplink (UL) or reverse link transmissions from  UEs  122 and 124 to base station 110 may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes. Further, multiplexing downlink (DL) or forward link transmissions from the base station 110 to UEs 122 and 124 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
Further, the air interface in the radio access network 100 may utilize one or more duplexing algorithms. Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions. Full duplex means both endpoints can simultaneously communicate with one another. Half duplex means only one endpoint can send information to the other at a time. In a wireless link, a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies. Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) . In FDD, transmissions in different directions operate at different carrier frequencies. In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per subframe.
In the radio access network 100, the ability for a UE to communicate while moving, independent of its location, is referred to as mobility. The various physical channels between the UE and the radio access network are generally set up, maintained, and released under the control of a mobility management entity (MME) . In various  aspects of the disclosure, a radio access network 100 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) . In a network configured for DL-based mobility, during a call with a scheduling entity, or at any other time, a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells. During this time, if the UE moves from one cell to another, or if signal quality from a neighboring cell exceeds that from the serving cell for a given amount of time, the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell. For example, UE 124 may move from the geographic area corresponding to its serving cell 102 to the geographic area corresponding to a neighbor cell 106. When the signal strength or quality from the neighbor cell 106 exceeds that of its serving cell 102 for a given amount of time, the UE 124 may transmit a reporting message to its serving base station 110 indicating this condition. In response, the UE 124 may receive a handover command, and the UE may undergo a handover to the cell 106.
In a network configured for UL-based mobility, UL reference signals from each UE may be utilized by the network to select a serving cell for each UE. In some examples, the  base stations  110, 112, and 114/116 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCH) ) . The  UEs  122, 124, 126, 128, 130, and 132 may receive the unified synchronization signals, derive the carrier frequency and subframe timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal. The uplink pilot signal transmitted by a UE (e.g., UE 124) may be concurrently received by two or more cells (e.g., base stations 110 and 114/116) within the radio access network 100. Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the base stations 110 and 114/116 and/or a central node within the core network) may determine a serving cell for the UE 124. As the UE 124 moves through the radio access network 100, the network may continue to monitor the uplink pilot signal transmitted by the UE 124. When the signal strength or quality of the pilot signal measured by a neighboring cell exceeds that of the signal strength or quality measured by the serving cell, the network 100 may  handover the UE 124 from the serving cell to the neighboring cell, with or without informing the UE 124.
Although the synchronization signal transmitted by the  base stations  110, 112, and 114/116 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing. The use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
In various implementations, the air interface in the radio access network 100 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum. Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body. Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access. Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs. For example, the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
SIGNALING ENTITIES
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs or scheduled entities utilize resources allocated by the scheduling entity.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . In other  examples, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. For example, UE 138 is illustrated communicating with  UEs  140 and 142. In some examples, the UE 138 is functioning as a scheduling entity or a primary sidelink device, and  UEs  140 and 142 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device. In still another example, a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network. In a mesh network example,  UEs  140 and 142 may optionally communicate directly with one another in addition to communicating with the scheduling entity 138.
Thus, in a wireless communication network with scheduled access to time-frequency resources and having a cellular configuration, a P2P configuration, or a mesh configuration, a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources. Referring now to FIG. 2, a block diagram illustrates a scheduling entity 202 and a plurality of scheduled entities 204 (e.g., 204a and 204b) . Here, the scheduling entity 202 may correspond to a  base station  110, 112, 114, and/or 118. In additional examples, the scheduling entity 202 may correspond to a UE 138, the quadcopter 120, or any other suitable node in the radio access network 100. Similarly, in various examples, the scheduled entity 204 may correspond to the  UE  122, 124, 126, 128, 130, 132, 134, 136, 138, 140, and 142, or any other suitable node in the radio access network 100.
As illustrated in FIG. 2, the scheduling entity 202 may broadcast traffic 206 to one or more scheduled entities 204 (the traffic may be referred to as downlink traffic) . In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at the scheduling entity 202. Broadly, the scheduling entity 202 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink transmissions and, in some examples, uplink traffic 210 from one or more scheduled entities to the scheduling entity 202. Another way to describe the system may be to use the term broadcast channel multiplexing. In accordance with aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a scheduled entity 204. Broadly, the scheduled entity 204 is a node or device that receives scheduling control information, including but not limited to scheduling grants, synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 202.
The scheduling entity 202 may broadcast control information 208 including one or more control channels, such as a PBCH; a PSS; a SSS; a physical control format indicator channel (PCFICH) ; a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) ; and/or a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities 204. The PHICH carries HARQ feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) . HARQ is a technique well known to those of ordinary skill in the art, wherein packet transmissions may be checked at the receiving side for accuracy, and if confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
Uplink traffic 210 and/or downlink traffic 206 including one or more traffic channels, such as a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH) (and, in some examples, system information blocks (SIBs)) , may additionally be transmitted between the scheduling entity 202 and the scheduled entity 204. Transmissions of the control and traffic information may be organized by subdividing a carrier, in time, into suitable transmission time intervals (TTIs) .
Furthermore, the scheduled entities 204 may transmit uplink control information 212 including one or more uplink control channels to the scheduling entity 202. Uplink control information may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink traffic transmissions. In some examples, the control information 212 may include a scheduling request (SR) , i.e., request for the scheduling entity 202 to schedule uplink transmissions. Here, in response to the SR transmitted on the control channel 212, the scheduling entity 202 may transmit downlink control information 208 that may schedule the TTI for uplink packet transmissions.
Uplink and downlink transmissions may generally utilize a suitable error correcting block code. In a typical block code, an information message or sequence is split up into blocks, and an encoder at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise. Some examples of error correcting codes include Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, turbo codes, low-density parity check (LDPC) codes, and polar codes. Various implementations of  scheduling entities 202 and scheduled entities 204 may include suitable hardware and capabilities (e.g., an encoder and/or decoder) to utilize any one or more of these error correcting codes for wireless communication.
In some examples, scheduled entities such as a first scheduled entity 204a and a second scheduled entity 204b may utilize sidelink signals for direct D2D communication. Sidelink signals may include sidelink traffic 214 and sidelink control 216. Sidelink control information 216 may include a request-to-send (RTS) channel and a clear-to-send (CTS) channel. The RTS may provide for a scheduled entity 204 to request a duration of time to keep a sidelink channel available for a sidelink signal; and the CTS may provide for the scheduled entity 204 to indicate the availability of the sidelink channel, e.g., for a requested duration of time. An exchange of RTS and CTS signals (e.g., handshake) may enable different scheduled entities performing sidelink communications to negotiate the availability of the sidelink channel prior to communication of the sidelink traffic information 214.
The channels or carriers illustrated in FIG. 2 are not necessarily all of the channels or carriers that may be utilized between a scheduling entity 202 and scheduled entities 204, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
RESOURCE STRUCTURE
FIG. 3 is a schematic illustration of the resource structure for a radio access network, such as the RAN 100 illustrated in FIG. 1. In some examples, this illustration may represent wireless resources as they may be allocated in an OFDM system that utilizes MIMO.
In an OFDM system, a two-dimensional grid of resource elements may be defined by separation of resources in frequency by defining a set of closely spaced frequency tones or sub-carriers, and separation in time by defining a sequence of symbols having a given duration. By setting the spacing between the tones based on the symbol rate, inter-symbol interference can be eliminated. OFDM channels provide for high data rates by allocating a data stream in a parallel manner across multiple subcarriers.
MIMO is a multi-antenna technology that exploits multipath signal propagation so that the information-carrying capacity of a wireless link can be multiplied by using  multiple antennas at the transmitter and receiver to send multiple simultaneous streams. At the multi-antenna transmitter, a suitable precoding algorithm (scaling the respective streams’ amplitude and phase) is applied (in some examples, based on known channel state information) . At the multi-antenna receiver, the different spatial signatures of the respective streams (and, in some examples, known channel state information) can enable the separation of these streams from one another.
Massive MIMO is a MIMO system with a very large number of antennas (e.g., greater than an 8x8 array) . Further, in a multi-user MIMO (MU-MIMO) system, a base station, in communication with a large number of UEs, can exploit multipath signal propagation to increase overall network capacity by increasing throughput and spectral efficiency, and reducing the required transmission energy.
Referring again to FIG. 3, the resources in a wireless channel may be characterized according to three dimensions: frequency, space, and time. The frequency and time dimensions of an OFDM stream are represented by a grid, with separate resource elements (REs) represented by each rectangle and having dimensions of one sub-carrier by one symbol. Further, by utilizing spatial multiplexing (e.g., with MIMO) , a plurality of OFDM streams are represented by separate OFDM resource grids spanning in the space dimension of FIG. 3.
In a given subframe or TTI, transmission of one or more control channels may be followed by transmission of one or more traffic channels, in the time dimension. In the non-limiting example illustrated in FIG. 3, the first two symbols include control channels or control information, which may be the same as the  control information  208, 212, and/or 216 described above. Accordingly, these symbols may be referred to as a control region. Any suitable region of resources in the time, frequency, and space dimensions may be utilized as a control region, not necessarily limited to the first two symbols. Moreover, a control region need not necessarily be contiguous, and may be included in one, two, or any suitable number of separate regions.
The subsequent illustrated symbols included traffic channels or traffic information, which may be the same as the  traffic information  206, 210, and/or 214 described above. In either a control region or a traffic region of the illustrated subframe, REs that carry reference signals (RS) are interleaved with REs that carry data. These RSs can provide for channel estimation by a receiving device.
While the above description only refers to the front resource grid (i.e., not considering the space dimension) , it is to be understood that control and traffic information for a plurality of users may be multiplexed in space, frequency, and time.
CONTROL DATA GENERATION
FIG. 4 is a schematic illustration of the generation of a control data transmission as it may be implemented in some examples. As illustrated here, control information for a given user or UE may include various fields for different types of information relating to control over traffic data and traffic RS. For example, as illustrated in FIG. 4, a given UE’s control information may include a modulation order and coding scheme (MCS) , resource allocation, a transmission scheme, a RS configuration, etc. Of course, this is only one example and any suitable set of control information may be included for a particular UE.
As further illustrated, the control information for a plurality of users or UEs may be multiplexed into a given transmission of control data. That is, as described above, a downlink transmission from a scheduled entity may include control data for a plurality of scheduled entities.
The control information for each UE is subjected to a cyclic redundancy check (CRC) calculation, which in some examples may additionally take the destination UE’s identity into account. For example, a UE may have a radio network temporary identifier (RNTI) or other suitable UE-specific identifier that may be known to the scheduling entity generating the CRCs. As described further below, a receiving UE may perform an integrity check or CRC calculation taking its own RNTI into account, so that the CRC would only be verified for control information that includes a CRC based on that UE’s RNTI.
After adding the CRC to the control information, it is encoded, and then modulated and mapped to resources in the wireless air interface (e.g., see FIG. 3) .
When utilizing this above-described scheme to generate control data for transmission, each UE’s control information and its appended CRC is separately encoded. Accordingly, because the total amount of information being encoded is relatively small, the amount of coding gain that might be achieved by the encoder is less than it would be in comparison to a large block size. That is, larger block sizes can result in greater coding gain.
Further, because each UE’s control information is separately encoded, other UEs in the cell may not be capable of decoding a given UE’s control information. Therefore, when a UE is experiencing interference from another nearby UE, interference suppression or cancellation may be difficult. That is, if a victim UE subject to multi-user (MU) interference were capable of obtaining an offending or interfering UE’s MCS, transmission scheme, etc., then the victim UE may better be capable of suppressing or cancelling the interference.
Various aspects of the present disclosure provide for a transmitting device to jointly encode control information for a plurality of users or UEs. That is, a single encoder or encoding algorithm may encode the control information (and, in some examples, CRCs) for a plurality of UEs. In this way, each UE may be capable of decoding the control information of other UEs, benefiting an interference suppression/cancellation scheme. Moreover, each user may be enabled to decode the control information of paired users. In this way, MU-MIMO technology may be facilitated by way of advanced receivers that rely on this information for such paired users. Still further, spectral efficiency in such a MU-MIMO scheme may be improved.
Furthermore, by combining the control information from a plurality of UEs together, the block size sent to an encoder may be relatively large. In this way, the coding gain provided by the encoder can be increased, potentially resulting in a lower bit error rate (BER) under the same signal-to-noise ratio (SNR) conditions.
FIG. 5 is a schematic illustration of the generation of a control data transmission according to some aspects of the disclosure. In this illustration, a transmitting device may utilize joint encoding of multiple UEs’ control information.
In some examples, the format, the size, and the fields used within each UE’s control information may be predefined. In this way, with a form of standard configuration for each UE’s control information, other UEs may be better capable of decoding and interpreting another UE’s control information. As illustrated, each UE’s control information is subjected to a CRC calculation, and a corresponding individual CRC may be appended to the UE’s control information. As described above in the example illustrated in FIG. 4, the CRC for a given UE’s control information may be calculated based on that UE’s UE-specific identifier (e.g., an RNTI) .
Following each UE’s control information being given its own individual CRC, in an aspect of the disclosure, a second, group CRC may be applied to a plurality of UEs’ control information. That is, a group CRC may be concatenated or interleaved  with a group of users’ control information. By utilizing the group CRC, an individual UE may be enabled to verify the integrity of the received control information for the full group of UEs.
The full group of UEs’ control information may be concatenated or interleaved (e.g., to create a relatively large code block) that may then be encoded by an encoder. The encoded set of control data may then be modulated, scrambled, and/or mapped to suitable resources for transmission over a wireless air interface.
FIG. 6 is a schematic illustration of the generation of a control data transmission according to a further aspect of the disclosure. In this illustration, a transmitting device may utilize joint encoding of common control information and multiple UEs’ control information.
Many of the aspects and features of the example shown in FIG. 6 are the same as those described above in relation to FIG. 5. Those aspects that are the same are not detailed below, for brevity. As illustrated in FIG. 6, in addition to the control information for a plurality of UEs, common control information is also included. Here, common control information may be control information that may be shared among a group (e.g., the plurality) of UEs. For example, in a RAN, some fields of control information may be identical, or similar, among a plurality of UEs. Some examples of control information that might comport with common usage by a plurality of UEs might include a transmission scheme, a modulation order, a rank, a coding scheme, and resource mapping.
In this example, control information for each of the plurality of UEs may additionally include dedicated control information for that particular UE. Here, the dedicated control information may complement the common control information, and may include control information in addition to or beyond that included in the common control information. Of course, in some examples, a UE’s dedicated control information may additionally or alternatively include different control information than that included in the common control information, such that the dedicated control information may in some examples override the common control information for that UE.
As illustrated, each of the common control information and the dedicated control information may have an individual CRC (where the dedicated control information’s CRC may be based in part on a UE-specific identifier) , and the full group may have a  group CRC. The group of control information may then be jointly encoded, modulated, mapped to resources, and transmitted over an air interface.
While the example illustrated in FIG. 6 shows the joint encoding of the common and dedicated control information, in another aspect of the disclosure, the use of such common and dedicated control information need not necessarily utilize the joint encoding. That is, common and dedicated control information may be multiplexed onto a transmission channel utilizing the separate encoding algorithm described above and illustrated in FIG. 4.
FIG. 7 is a schematic illustration of the generation of a control data transmission according to a further aspect of the disclosure. In this illustration, a transmitting device may utilize joint encoding of pooled control information and multiple UEs’ control information.
Many of the aspects and features of the example shown in FIG. 6 are the same as those described above in relation to FIGs. 5 and 6. Those aspects that are the same are not detailed below, for brevity. As illustrated in FIG. 7, in addition to the control information for a plurality of UEs, a pool of control information is also included. Here, the control information pool may be shared among a plurality of UEs, and may include control information corresponding to each of the plurality of UEs. In this example, unlike the common control information described above and illustrated in FIG. 6, the control information pool does not necessarily include the same control information for the plurality of UEs. Rather, the control information pool may include an array or sequence of control information separated into fields, with each field corresponding to a specific UE among the plurality of UEs. The control information within the control information pool may include a subset of the control information conveyed to the UEs. Some examples of control information within the control information pool may include a modulation order, a rank, a coding scheme, and a resource mapping.
In this example, control information for each of the plurality of UEs may additionally include dedicated control information for that particular UE. Here, the dedicated control information may complement the control information for that UE within the control information pool, and may include control information in addition to or beyond that included for each UE in the control information pool. Of course, in some examples, a UE’s dedicated control information may additionally or alternatively include different control information than that included in the common control  information, such that the dedicated control information may in some examples override the common control information for that UE.
Furthermore, appended to or mixed with a UE’s dedicated control information is a pointer to an address within the control information pool. By virtue of the pointer, when a UE receives and decodes its dedicated control information, it is enabled to locate its own control information from within the control information pool. The pointer, and the structure of the control information pool, may be configured in any suitable manner to enable the UE to locate and read its own control information from within the control information pool. As one nonlimiting example, the pointer may include an index, based on a reference point such as the first bit, octet, or byte of the control information pool array. In some examples, the index may indicate the starting point of the UE’s control information within the control information pool, e.g., based on the number of bits, octet, or bytes from the reference point. In another example, the index may indicate a UE number between 1 and N, e.g., wherein N UEs have control information included in the transmission. Here, each UE’s control information within the control information pool may have a fixed and predetermined length. Of course, in other examples, each UE may have different lengths of control information within the control information pool. In such a case, as one nonlimiting example, the pointer to a location within the control information pool may additionally include the length of that UE’s control information within the control information pool. The above is merely some examples, and those of ordinary skill in the art will comprehend that any suitable pointer or index may be utilized within the scope of this disclosure.
In the example illustrated in FIG. 7, similar to the example described above and illustrated in FIG. 6, the control information pool and the dedicated control information may each have an individual CRC, and a group CRC may be appended to or mixed with the group. Further, the full set of control information may then be jointly encoded and configured for transmission as described above. In another example, separate encoding of the control information pool and the dedicated control information may be utilized as described above and illustrated in FIG. 4.
SCHEDULING ENTITY
FIG. 8 is a block diagram illustrating an example of a hardware implementation for a scheduling entity 800 employing a processing system 814. For example, the scheduling entity 800 may be a user equipment (UE) as illustrated in any one or more of  FIGs. 1 and/or 2. In another example, the scheduling entity 800 may be a base station as illustrated in any one or more of FIGs. 1 and/or 2.
The scheduling entity 800 may be implemented with a processing system 814 that includes one or more processors 804. Examples of processors 804 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. In various examples, the scheduling entity 800 may be configured to perform any one or more of the functions described herein. That is, the processor 804, as utilized in a scheduling entity 800, may be used to implement any one or more of the processes and procedures described below.
In this example, the processing system 814 may be implemented with a bus architecture, represented generally by the bus 802. The bus 802 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 814 and the overall design constraints. The bus 802 communicatively couples together various circuits including one or more processors (represented generally by the processor 804) , a memory 805, and computer-readable media (represented generally by the computer-readable medium 806) . The bus 802 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 808 provides an interface between the bus 802 and a transceiver 810. The transceiver 810 provides a communication interface or means for communicating with various other apparatus over a transmission medium. Depending upon the nature of the apparatus, a user interface 812 (e.g., keypad, display, speaker, microphone, joystick) may also be provided.
In some aspects of the disclosure, the processor 804 may include encoder circuitry 840 configured for various functions, including, for example, encoding control information and/or traffic information for a wireless transmission. For example, the encoder circuitry 840 may be configured to implement one or more of the functions described below in relation to FIGs. 4-7 and/or 10.
The processor 804 is responsible for managing the bus 802 and general processing, including the execution of software stored on the computer-readable medium 806. The software, when executed by the processor 804, causes the processing system 814 to perform the various functions described below for any particular  apparatus. The computer-readable medium 806 and the memory 805 may also be used for storing data that is manipulated by the processor 804 when executing software.
One or more processors 804 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium 806. The computer-readable medium 806 may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer. The computer-readable medium 806 may reside in the processing system 814, external to the processing system 814, or distributed across multiple entities including the processing system 814. The computer-readable medium 806 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system. 
In one or more examples, the computer-readable storage medium 806 may include encoding software 862 configured for various functions, including, for example, encoding control information and/or traffic information for a wireless transmission.. For example, the encoding software 862 may be configured to implement one or more of the functions described above in relation to FIG. 4-7 and/or 10.
SCHEDULED ENTITY
FIG. 9 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduled entity 900 employing a processing system 914. In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 914 that includes one or more processors 904. For example, the scheduled entity 900 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1 and/or 2.
The processing system 914 may be substantially the same as the processing system 814 illustrated in FIG. 8, including a bus interface 908, a bus 902, memory 905, a processor 904, and a computer-readable medium 906. Furthermore, the scheduled entity 900 may include a user interface 912 and a transceiver 910 substantially similar to those described above in FIG. 8. That is, the processor 904, as utilized in a scheduled entity 900, may be used to implement any one or more of the processes described below.
In some aspects of the disclosure, the processor 904 may include decoder circuitry 942 configured for various functions, including, for example, decoding control data and/or traffic data received over a wireless communication interface. For example, the decoder circuitry 942 may be configured to implement one or more of the functions described below in relation to FIGs. 11 and/or 12.
FIG. 10 is a flow chart illustrating an exemplary process 1000 for jointly encoding control information for a plurality of UEs according to some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the process 1000 may be carried out by the scheduling entity 800 illustrated in FIG. 8. In some examples, the process 1000 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
At optional block 1002, the scheduling entity may generate common control information or pooled control information for a plurality of UEs. For example, this may correspond to the common control information described above and illustrated in FIG. 6, or the control information pool described above and illustrated in FIG. 7.
At block 1004, the scheduling entity may generate dedicated control information for a plurality of UEs. For example, this may correspond to the dedicated control information described above and illustrated in FIGs. 5, 6, and 7. In a case where  optional block 1002 is omitted and there is no common or pooled control information, the dedicated control information may be the full complement of control information for each of the respective UEs. In a case where optional block 1002 is not omitted and there is common or pooled control information, the dedicated control information may in some examples include a subset of the full complement of control information for each of the respective UEs, being complementary to the common or pooled control information as described above. In a case wherein, at block 1002, pooled control information is generated, then at block 1004, generation of the dedicated control information may further include generation of a pointer to an address within the control information pool, as described above.
At block 1006, the scheduling entity may generate individual CRCs for each of the UEs’ dedicated control information. Here, each individual CRC may be based on the corresponding UE’s dedicated control information, and further, based on the corresponding UE’s UE-specific identifier (e.g., an RNTI) .
At optional block 1008, the scheduling entity may generate an individual CRC for the common control information or the pooled control information. For example, this may correspond to the common control information described above and illustrated in FIG. 6, or the control information pool described above and illustrated in FIG. 7.
At block 1010, the scheduling entity may generate a group CRC for the plurality of UEs’ dedicated control information (and, in the corresponding examples that utilize it, the common control information or the pooled control information) .
At block 1012, the scheduling entity may jointly encode the full set of control information for the plurality of UEs, including the individual CRCs and the group CRC.
At block 1014, the scheduling entity may modulate, scramble, and map the encoded control data to suitable resources, so that at block 1016, the scheduling entity may transmit the control data over the air interface utilizing those resources.
FIG. 11 is a flow chart illustrating an exemplary process 1100 for receiving and decoding a transmission that includes jointly encoded control data corresponding to a plurality of UEs, in accordance with some aspects of the disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the process 1100 may be carried out by the scheduled entity 900 illustrated in FIG. 9. In some examples,  the process 1100 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below. For ease of description, the following discussion refers to a first UE as carrying out the process 1100.
At block 1102, the first UE may receive a downlink transmission including multiplexed control information for a plurality of UEs.
At optional block 1104, based on an assumption that the multiplexed control information is jointly encoded, the first UE may decode the multiplexed control information as one block or set of encoded data.
At block 1106, the first UE may check the integrity of the decoded, control information for the plurality of UEs. For example, the first UE may verify the group CRC by calculating a CRC based on the full set of multiplexed control information.
At block 1108, the first UE may locate or identify its own dedicated control information from within the multiplexed control information for the plurality of UEs. For example, the first UE may execute a CRC algorithm based on one set of dedicated control information, and also based on the first UE’s own UE-specific identifier (e.g., its RNTI) . If the CRC fails, the first UE may assume that that set of dedicated control information is for a different UE. The first UE may repeat this algorithm, stepping through each set of dedicated control information until it finds dedicated control information having a CRC that matches. Once a CRC check passes on a set of dedicated control information, the first UE may consider that it has identified its own dedicated control information.
At optional block 1110, the first UE may check the integrity of the common or pooled control information, according to the algorithm or example being utilized (e.g., see above and FIGs. 6 and 7) . For example, the first UE may verify the individual CRC corresponding to the common or pooled control information.
At optional block 1112, the first UE may locate its control information from within the control information pool utilizing the pointer included with the first UE’s dedicated control information (e.g., see above description and FIG. 7) .
In a further aspect of the disclosure, particularly when utilizing the pooled control information as described above and illustrated in FIG. 7, a receiving device may take advantage of the pooled control information to enhance its interference suppression or cancellation capability.
For example, FIG. 12 is a flow chart illustrating an exemplary process 1200 for utilizing pooled control information to provide for interference suppression or cancellation in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the process 1200 may be carried out by the scheduled entity 900 illustrated in FIG. 9. In some examples, the process 500 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
Before the process begins, it may be assumed that a UE or scheduled entity has received and obtained control data configured according to the example described above and illustrated in FIG. 7 utilizing a control information pool in addition to dedicated control information. Further, the UE or scheduled entity may be assumed to be communicating within the RAN.
At block 1202, the UE may determine whether a high level of interference is observed. For example, if a detected amount of interference is greater than an interference threshold; if a calculated signal to interference and noise ratio (SINR) is below an SINR threshold; if a block error rate (BLER) is greater than a BLER threshold; or any other suitable method may be utilized to determine whether a high level of interference is observed.
If yes, then at block 1204, the UE may determine one or more properties of the interfering signal. For example, these properties may include information such as the frequency and time resource occupied by the interfering transmission. Accordingly, it may be assumed that only the UEs that are allocated those frequency and time resources would be the source of the interfering transmission.
Thus, at block 1206, the UE may identify the interfering UE by searching for information within the control information pool corresponding to the one or more properties of the interfering signal.
Once the control information within the control information pool corresponding to the identified interfering UE is located, then at block 1208 the UE may obtain the set of control information for the interfering UE from the control information pool. This pooled control information for the interfering UE may include such information fields as a modulation order, a transmission scheme, or any other suitable information that may assist in interference suppression/cancellation of the interfering signal.
At block 1210, the UE may then perform interference suppression or cancellation of the interfering signal based on the obtained control information (from the pooled control information) for the interfering UE.
Additional information regarding various aspects and embodiments of the present invention is provided in the attached Appendix.
Several aspects of a wireless communication network have been presented with reference to an exemplary implementation. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The terms “circuit” and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors  that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1-4 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs. 1-4 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim  element is to be construed under the provisions of 35 U. S. C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
Figure PCTCN2016104611-appb-000001
Figure PCTCN2016104611-appb-000002
Figure PCTCN2016104611-appb-000003
Figure PCTCN2016104611-appb-000004
Figure PCTCN2016104611-appb-000005
Figure PCTCN2016104611-appb-000006
Figure PCTCN2016104611-appb-000007

Claims (6)

  1. A method of wireless communication, comprising:
    generating dedicated control information for a plurality of user equipment (UEs) ;
    generating individual cyclic redundancy check (CRC) information for each of the plurality of UEs’ dedicated control information, wherein each CRC information is based on the respective UE’s dedicated control information and the respective UE’s UE-specific identifier;
    generating group CRC information for the dedicated control information for all of the plurality of UEs;
    jointly encoding all of the plurality of UEs’ control information, including the individual CRC information and the group CRC information; and
    transmitting the jointly encoded control information over a wireless air interface.
  2. The method of claim 1, further comprising:
    generating common control information common to each of the plurality of UEs; and
    generating individual CRC information for the common control information,
    wherein the generating group CRC information for the dedicated control information for all of the plurality of UEs is further for the common control information, and
    wherein the jointly encoding further includes the common control information.
  3. The method of claim 1, further comprising:
    generating pooled control information comprising a pool of control information fields, each of the control information fields corresponding a respective one of the plurality of UEs; and
    generating individual CRC information for the pooled control information,
    wherein the dedicated control information for the plurality of UEs comprises respective pointers for each of the plurality of UEs that point to the respective UEs’ control information within the pool of control information,
    wherein the generating group CRC information for the dedicated control information for all of the plurality of UEs is further for the pooled control information, and
    wherein the jointly encoding further includes the pooled control information.
  4. A method of wireless communication operable at a user equipment (UE) , comprising:
    receiving a downlink transmission comprising jointly encoded multiplexed control information for a plurality of UEs, including the UE;
    decoding the jointly encoded multiplexed control information;
    verifying integrity of the multiplexed control information;
    locating dedicated control information for the UE from within the multiplexed control information; and
    receiving traffic data based on the dedicated control information for the UE.
  5. The method of claim 4, wherein the jointly encoded multiplexed control information further comprises common control information common to each of the plurality of UEs, the method further comprising:
    verifying integrity of the common control information,
    wherein the receiving traffic data is further based on the common control information.
  6. The method of claim 4, wherein:
    the jointly encoded multiplexed control information further comprises pooled control information comprising a pool of control information fields, each of the control information fields corresponding a respective one of the plurality of UEs;
    the dedicated control information for the UE comprises a pointer; and
    wherein the method further comprises:
    verifying integrity of the pooled control information; and
    locating control information for the UE within the pooled control information utilizing the pointer,
    wherein the receiving traffic data is further based on the control information for the UE within the pooled control information.
PCT/CN2016/104611 2016-11-04 2016-11-04 Shared configuration channel for grouped users WO2018082015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104611 WO2018082015A1 (en) 2016-11-04 2016-11-04 Shared configuration channel for grouped users

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104611 WO2018082015A1 (en) 2016-11-04 2016-11-04 Shared configuration channel for grouped users

Publications (1)

Publication Number Publication Date
WO2018082015A1 true WO2018082015A1 (en) 2018-05-11

Family

ID=62076537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104611 WO2018082015A1 (en) 2016-11-04 2016-11-04 Shared configuration channel for grouped users

Country Status (1)

Country Link
WO (1) WO2018082015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499446B1 (en) 2018-08-17 2019-12-03 At&T Intellectual Property I, L.P. Instantiating a slice of a 5G or other next generation service network in an underserved area
WO2023230392A1 (en) * 2022-05-25 2023-11-30 Qualcomm Incorporated Learning-based dynamic signal formatting with ramification coding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351538A1 (en) * 2002-04-05 2003-10-08 Lucent Technologies Inc. Shared signaling for multiple user equipment
CN101175019A (en) * 2006-10-31 2008-05-07 华为技术有限公司 Multi-user equipment data transmission method and system in mobile communication network
US20130114533A1 (en) * 2011-11-04 2013-05-09 Samsung Electronics Co., Ltd. Method and apparatus for resource allocation in multi-carrier wireless system
WO2013107364A1 (en) * 2012-01-20 2013-07-25 中兴通讯股份有限公司 Method and apparatus for sending downlink control information, method and apparatus for detecting downlink control channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351538A1 (en) * 2002-04-05 2003-10-08 Lucent Technologies Inc. Shared signaling for multiple user equipment
CN101175019A (en) * 2006-10-31 2008-05-07 华为技术有限公司 Multi-user equipment data transmission method and system in mobile communication network
US20130114533A1 (en) * 2011-11-04 2013-05-09 Samsung Electronics Co., Ltd. Method and apparatus for resource allocation in multi-carrier wireless system
WO2013107364A1 (en) * 2012-01-20 2013-07-25 中兴通讯股份有限公司 Method and apparatus for sending downlink control information, method and apparatus for detecting downlink control channel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499446B1 (en) 2018-08-17 2019-12-03 At&T Intellectual Property I, L.P. Instantiating a slice of a 5G or other next generation service network in an underserved area
US10834776B2 (en) 2018-08-17 2020-11-10 At&T Intellectual Property I, L.P. Instantiating a slice of a 5G or other next generation service network in an underserved area
US11464062B2 (en) 2018-08-17 2022-10-04 At&T Intellectual Property I, L.P. Instantiating a slice of a 5G or other next generation service network in an underserved area
WO2023230392A1 (en) * 2022-05-25 2023-11-30 Qualcomm Incorporated Learning-based dynamic signal formatting with ramification coding

Similar Documents

Publication Publication Date Title
US11044735B2 (en) Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
US20230246739A9 (en) Crc bits for joint decoding and verification of control information using polar codes
US10972937B2 (en) Group indicator for code block group based retransmission in wireless communication
US11082066B2 (en) Efficient control channel design using polar codes
US10952196B2 (en) DMRS indication for transmissions scheduled by fallback DCI in NR
WO2018126378A1 (en) Wireless communication with polar codes using a mask sequence for frozen bits
US11540262B2 (en) Dynamic padding field to match downlink and uplink downlink control information length
US10805039B2 (en) Rate matching behavior for bundled CORESETs
US11777526B2 (en) Efficient control channel design using polar codes
US11096214B2 (en) Distributed channel access mechanism using multiple access signatures for control transmissions
US10298352B2 (en) Radio single symbol design via frequency division multiplexing of reference signals and data tones
EP3491767B1 (en) Apparatus and method for estimating downlink channel conditions at cell-edge
WO2018082015A1 (en) Shared configuration channel for grouped users

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920640

Country of ref document: EP

Kind code of ref document: A1