WO2018081923A1 - 飞行器的控制方法和装置 - Google Patents

飞行器的控制方法和装置 Download PDF

Info

Publication number
WO2018081923A1
WO2018081923A1 PCT/CN2016/104222 CN2016104222W WO2018081923A1 WO 2018081923 A1 WO2018081923 A1 WO 2018081923A1 CN 2016104222 W CN2016104222 W CN 2016104222W WO 2018081923 A1 WO2018081923 A1 WO 2018081923A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
aircraft
flight
speed
flight control
Prior art date
Application number
PCT/CN2016/104222
Other languages
English (en)
French (fr)
Inventor
戚乘至
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to CN201680090596.6A priority Critical patent/CN110168462B/zh
Priority to PCT/CN2016/104222 priority patent/WO2018081923A1/zh
Publication of WO2018081923A1 publication Critical patent/WO2018081923A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Definitions

  • the present invention relates to the field of aircraft technology, and in particular, to a method and apparatus for controlling an aircraft.
  • the aircraft is used in aerial photography, agriculture, plant protection, self-timer, express transportation, disaster relief, observation of wildlife, surveillance of infectious diseases, mapping, news reports, power inspection, disaster relief, film and television shooting, manufacturing romance, etc. Expanded the use of aircraft.
  • the user in terms of flight control of an aircraft, the user generally controls a remote controller equipped with a joystick by both hands, and controls the aircraft by swinging the rocker and triggering the button, and is not easy to operate the remote controller and cannot flexibly control the aircraft.
  • the technical problem mainly solved by the embodiments of the present invention is to provide a control method and device for an aircraft, which is convenient for manipulating the flight control device for flexible control of the aircraft.
  • an embodiment of the present invention provides a method for controlling an aircraft, including:
  • an embodiment of the present invention provides a control device for an aircraft, including:
  • a placement angle acquisition module for obtaining a placement angle of the flight control device
  • the virtual coordinate origin is a reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed;
  • a flight position determining module configured to determine a flight position of the aircraft according to a placement angle of the flight control device, the virtual coordinate origin, and a distance between the aircraft and the virtual coordinate origin.
  • an embodiment of the present invention provides an electronic device, including:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method as described above.
  • an embodiment of the present invention further provides a non-transitory computer readable storage medium, where the computer-readable storage medium stores computer-executable instructions, when the computer-executable instructions are executed by an electronic device, The electronic device is caused to perform the method as described above.
  • an embodiment of the present invention further provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when When the program instructions are executed by the electronic device, the electronic device is caused to perform the method as described above.
  • a method for controlling an aircraft obtains a distance between an aircraft and a set virtual coordinate origin by acquiring a placement angle of the flight control device, according to a placement angle of the flight control device, a virtual coordinate origin, and an aircraft and a virtual coordinate origin.
  • the distance of the aircraft determines the flight position of the aircraft, wherein the virtual coordinate origin is the reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • FIG. 1 is a flowchart of a method for controlling an aircraft according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a spherical coordinate system with a virtual coordinate origin as a coordinate origin;
  • FIG. 3 is a flow chart of a method for controlling an aircraft according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling an aircraft according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling an aircraft according to another embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a control device for an aircraft according to an embodiment of the present invention.
  • FIG. 7 is a functional block diagram of a control device for an aircraft according to another embodiment of the present invention.
  • FIG. 8 is a functional block diagram of a control device for an aircraft according to another embodiment of the present invention.
  • FIG. 9 is a functional block diagram of a control device for an aircraft according to another embodiment of the present invention.
  • FIG. 10 is a functional block diagram of a control device for an aircraft according to another embodiment of the present invention.
  • FIG. 11 is a functional block diagram of a control device for an aircraft according to an embodiment of the present invention.
  • FIG. 12 is a functional block diagram of a control device for an aircraft according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the hardware structure of an electronic device for performing a control method of an aircraft according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for controlling an aircraft, which may be performed by a flight control device, which may include, but is not limited to, a remote controller, a mobile phone, a tablet computer, and the like.
  • the method includes:
  • Step S13 Obtain a placement angle of the flight control device.
  • the flight control device may be configured with at least one of a magnetometer, an inertial measurement unit, an accelerometer, a GPS (Global Positioning System), a barometer, a gyroscope, a laser range finder, and the like.
  • the placement angle of the flight control device can be obtained by at least one of a gyroscope, a magnetometer, and an inertial measurement unit. In practical applications, the placement angle of the flight control device can be determined by operating the position of the flight control device relative to the ground.
  • Step S15 Obtain a distance between the aircraft and the set virtual coordinate origin, wherein the virtual coordinate origin is a reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • the position of the virtual coordinate origin is fixed, that is, the position of the virtual coordinate origin does not change with the change of the position of the flight control device, and once determined, the coordinates will remain unchanged.
  • the virtual coordinate origin can be a fixed point set on the ground or a point placed on a fixed reference object.
  • the flight control device may set a virtual coordinate origin, wherein the virtual coordinate origin setting mode package But not limited to the following ways:
  • the user carries the flight control device, and by first triggering the touch screen or the button or the joystick of the flight control device during a flight, the GPS coordinate value of the position of the flight control device at the time of the trigger is recorded, and the recorded GPS coordinates are recorded.
  • the value is set to the virtual coordinate origin. In this way, the position of the virtual coordinate origin is fixed, and the user can carry the flight control device to leave the location.
  • the user manipulates the laser range finder on the flight control device to generate a laser beam, and the direction of the current laser beam is calculated by a magnetometer on the flight control device, and the irradiation point of the laser beam is calculated by the laser range finder.
  • the distance from the flight control device, and then the GPS coordinate value of the irradiation point of the laser beam is calculated according to the GPS coordinate value of the position where the flight control device is located, thereby setting the GPS coordinate value of the irradiation point of the laser beam to the virtual coordinate origin.
  • the position of the virtual coordinate origin is fixed, and when the flight control device moves, the virtual coordinate origin will remain unchanged.
  • the GPS coordinate value of the position where the aircraft is located during takeoff is recorded, and the recorded GPS coordinate value is set as the virtual coordinate origin. Once the position of the virtual coordinate origin is fixed, it will not change with the change in the position of the flight control device, nor will it change as the position of the aircraft changes.
  • Step S17 Determine a flight position of the aircraft according to a placement angle of the flight control device, a virtual coordinate origin, and a distance between the aircraft and the virtual coordinate origin.
  • the virtual coordinate origin is taken as the coordinate origin O in the spherical coordinate system, assuming that the flight position of the aircraft is located at P(r, ⁇ , ⁇ ) and the position of P(r, ⁇ , ⁇ ) at a certain moment. It is determined by three parameters of r, ⁇ , and ⁇ . Where r is the distance between point P and coordinate origin O, that is, the distance between the aircraft and the virtual coordinate origin; ⁇ is the azimuth of point P, and ⁇ is the elevation angle of point P. ⁇ and ⁇ can be determined according to the placement angle of the flight control device.
  • can be calculated by a magnetometer on the flight control device, and ⁇ can be calculated by an inertial measurement unit on the flight control device. In the way of determining r, it can be based on the flight control equipment
  • the touch sliding distance on the touch screen determines the distance between the aircraft and the virtual coordinate origin.
  • the distance between the aircraft and the virtual coordinate origin is a preset magnification relationship with respect to the touch sliding distance on the touch screen; when set on the flight control device
  • the distance between the aircraft and the virtual coordinate origin can also be determined according to the swing amplitude of the rocker on the flight control device.
  • the rocker can be a physical rocker or a virtual rocker on the touch screen of the flight control device. .
  • the flight speed of the aircraft is controlled according to the touch sliding speed on the touch screen of the flight control device. For example, establishing a mapping relationship between the touch sliding speed and the flying speed, so that the faster the touch sliding speed on the touch screen is, the faster the flying speed of the controlling aircraft is.
  • the flight speed of the aircraft is controlled according to the touch sliding direction on the touch screen. For example, sliding up on the touch screen, controlling the aircraft to accelerate, sliding down on the touch screen, controlling the aircraft to slow down.
  • the flying speed of the aircraft is controlled according to the touch sliding distance on the touch screen.
  • the touch sliding distance is in a preset proportional relationship with respect to the flying speed, and the flying speed of the aircraft is controlled according to the touch sliding distance.
  • the greater the touch sliding distance the faster the flying speed of the aircraft.
  • the flight speed of the aircraft is controlled according to the swing speed of the rocker on the flight control device. For example, the slower the swing stick is, the smaller the flight speed is, the faster the swing stick is, the faster the flight speed.
  • the flying speed of the aircraft is controlled according to the swinging direction of the rocker.
  • the joystick is swung upward, the aircraft is controlled to accelerate, the joystick is swung downward, and the aircraft is controlled to decelerate.
  • the flying speed of the aircraft is controlled according to the swinging amplitude of the rocker. For example, the greater the swing amplitude of the rocker, the greater the flight speed of the aircraft.
  • the speed of change of the placement angle of the flight control device is obtained, and the flight speed of the aircraft is controlled according to the change speed of the placement angle of the flight control device. For example, the faster the speed at which the flight control device is manipulated relative to the ground from one position to another, the faster the aircraft can fly.
  • the orientation of the pan/tilt on the aircraft is determined according to the direction of the touch sliding on the touch screen of the flight control device. For example, the touch sliding directions of the up, down, left, and right on the touch screen sequentially control the pan/tilt to rotate the camera up, down, left, and right, thereby adjusting the shooting angle of the camera.
  • the orientation of the pan/tilt on the aircraft is determined according to the direction of the swing of the rocker on the flight control device.
  • the joystick is swung up, down, left, and right, and the pan/tilt is sequentially controlled to move the camera up, down, left, and right to adjust the shooting angle of the camera.
  • a method for controlling an aircraft obtains a distance between an aircraft and a set virtual coordinate origin by acquiring a placement angle of the flight control device, according to a placement angle of the flight control device, a virtual coordinate origin, and an aircraft and a virtual coordinate origin.
  • the distance of the aircraft determines the flight position of the aircraft, wherein the virtual coordinate origin is the reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • the method is applied to a flight control device, and the flight control device is conveniently manipulated to flexibly control the aircraft.
  • another embodiment of the present invention provides a method for controlling an aircraft, which may be performed by a flight control device, which may include, but is not limited to, a remote controller, a mobile phone, a tablet computer, and the like.
  • the method includes:
  • Step S33 Obtain a placement angle of the flight control device.
  • Step S35 Obtain a distance between the aircraft and the set virtual coordinate origin, wherein the virtual coordinate origin is a reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • Step S37 Determine a flight position of the aircraft according to a placement angle of the flight control device, a virtual coordinate origin, and a distance between the aircraft and the virtual coordinate origin.
  • step S33, S35, and S37 please refer to the explanations of step S13, step S15, and step S17, and details are not described herein again.
  • Step S38 The flight control device sends an instruction to the aircraft to fly to the flight position.
  • an instruction to fly to the flight position is sent to the aircraft, and the aircraft then flies to the flight position according to the command.
  • step S38 may further comprise: the flight control device transmitting an instruction to the aircraft to hover at the flight position.
  • a method for controlling an aircraft obtains a distance between an aircraft and a set virtual coordinate origin by acquiring a placement angle of the flight control device, according to a placement angle of the flight control device, a virtual coordinate origin, and an aircraft and a virtual coordinate origin.
  • the distance determines the flight position of the aircraft, and the flight control device sends an instruction to the aircraft to fly to the flight position, wherein the virtual coordinate origin is a reference datum point when the aircraft is flying, the position of the virtual coordinate origin is fixed, and the method is applied to the flight.
  • the control device it is convenient to control the flight control device to flexibly control the aircraft.
  • another embodiment of the present invention provides a method of controlling an aircraft, which may be performed by an aircraft.
  • the method includes:
  • Step S41 The aircraft receives the value of the placement angle of the flight control device sent by the flight control device.
  • Step S42 The aircraft receives the value of the distance between the aircraft sent by the flight control device and the set virtual coordinate origin, wherein the virtual coordinate origin is a reference reference point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • Step S43 according to the placement angle of the flight control device, the virtual coordinate origin, and the fly The distance between the row and the virtual coordinate origin determines the flight position of the aircraft.
  • An embodiment of the present invention provides a method for controlling an aircraft, by receiving a value of a placement angle of a flight control device sent by a flight control device, receiving a value of a distance between an aircraft transmitted by the flight control device and a set virtual coordinate origin, according to flight control
  • the placement angle of the device, the origin of the virtual coordinate, and the distance between the aircraft and the origin of the virtual coordinate determine the flight position of the aircraft.
  • the virtual coordinate origin is the reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • the method is applied to an aircraft, and the flight control device is conveniently manipulated to flexibly control the aircraft.
  • another embodiment of the present invention provides a method of controlling an aircraft, which may be performed by an aircraft.
  • the method includes:
  • Step S51 The aircraft receives the value of the placement angle of the flight control device sent by the flight control device.
  • Step S52 The aircraft receives the value of the distance between the aircraft sent by the flight control device and the set virtual coordinate origin, wherein the virtual coordinate origin is a reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • Step S53 Determine a flight position of the aircraft according to a placement angle of the flight control device, a virtual coordinate origin, and a distance between the aircraft and the virtual coordinate origin.
  • Step S54 Receive a speed control parameter sent by the flight control device, where the speed control parameter is used to control the flight speed of the aircraft.
  • the speed control parameter may include, but is not limited to, at least one of the following: a touch sliding distance on the touch screen of the flight control device, a touch sliding speed, a touch sliding direction, a swinging amplitude of the rocker on the flight control device, a swinging speed, The direction of the swing, as well as the rate of change of the placement angle of the flight control device.
  • Step S55 Adjust the flight speed according to the speed control parameter.
  • Step S56 Receive a PTZ control parameter sent by the flight control device, where the PTZ control parameter is used to control the orientation of the PTZ on the aircraft.
  • the pan/tilt control parameter may include, but is not limited to, a touch sliding direction on a touch screen of the flight control device or a swing direction of the rocker on the flight control device.
  • Step S57 Adjust the orientation of the pan/tilt on the aircraft according to the pan/tilt control parameter.
  • step S51, step S52, step S53, step S54, step S55, step S56, and step S57 are explained with reference to the explanations of step S13, step S15, and step S17 described above. Let me repeat.
  • steps S54-S55 may be performed before the steps S56-S57, or may be performed after the steps S56-S57, and may be performed in the same manner as the steps S56-S57.
  • an embodiment of the present invention provides a control device 60 for an aircraft.
  • the device 60 may be a flight control device, and the flight control device includes: a placement angle acquisition module 61, a distance acquisition module 62, and a flight position determination module. 63.
  • the placement angle acquisition module 61 is configured to acquire a placement angle of the flight control device.
  • the flight control device may be configured with at least one of a magnetometer, an inertial measurement unit, an accelerometer, a GPS, a barometer, a gyroscope, a laser range finder, and the like.
  • the placement angle acquisition module 61 may be specifically configured to acquire a placement angle of the flight control device by at least one of a gyroscope, a magnetometer, and an inertial measurement unit. In practical applications, the placement angle of the flight control device can be determined by operating the position of the flight control device relative to the ground.
  • the distance obtaining module 62 is configured to obtain a distance between the aircraft and the set virtual coordinate origin, wherein the virtual coordinate origin is a reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • the position of the virtual coordinate origin is fixed, that is, the position of the virtual coordinate origin does not change with the change of the position of the flight control device, and once determined, the coordinates will remain unchanged.
  • the virtual coordinate origin can be a fixed point set on the ground or a point placed on a fixed reference object.
  • Virtual coordinate origin setting method package But not limited to the following ways:
  • the user carries the flight control device, and by first triggering the touch screen or the button or the joystick of the flight control device during a flight, the GPS coordinate value of the position of the flight control device at the time of the trigger is recorded, and the recorded GPS coordinates are recorded.
  • the value is set to the virtual coordinate origin. In this way, the position of the virtual coordinate origin is fixed, and the user can carry the flight control device to leave the location.
  • the user manipulates the laser range finder on the flight control device to generate a laser beam, and the direction of the current laser beam is calculated by a magnetometer on the flight control device, and the irradiation point of the laser beam is calculated by the laser range finder.
  • the distance from the flight control device, and then the GPS coordinate value of the irradiation point of the laser beam is calculated according to the GPS coordinate value of the position where the flight control device is located, thereby setting the GPS coordinate value of the irradiation point of the laser beam to the virtual coordinate origin.
  • the position of the virtual coordinate origin is fixed, and when the flight control device moves, the virtual coordinate origin will remain unchanged.
  • the GPS coordinate value of the position where the aircraft is located during takeoff is recorded, and the recorded GPS coordinate value is set as the virtual coordinate origin. Once the position of the virtual coordinate origin is fixed, it will not change with the change in the position of the flight control device, nor will it change as the position of the aircraft changes.
  • the flight position determining module 63 is configured to determine the flight position of the aircraft according to the placement angle of the flight control device, the virtual coordinate origin, and the distance between the aircraft and the virtual coordinate origin.
  • the virtual coordinate origin is taken as the coordinate origin O in the spherical coordinate system, assuming that the flight position of the aircraft is located at P(r, ⁇ , ⁇ ) and the position of P(r, ⁇ , ⁇ ) at a certain moment. It is determined by three parameters of r, ⁇ , ⁇ , where r is the distance between point P and coordinate origin O, ⁇ is the azimuth of point P, and ⁇ is the elevation angle of point P.
  • ⁇ and ⁇ can be determined according to the placement angle of the flight control device. For example, ⁇ can be calculated by a magnetometer on the flight control device, and ⁇ can be calculated by an inertial measurement unit on the flight control device.
  • the distance between the aircraft and the origin of the virtual coordinate may be determined according to the touch sliding distance on the touch screen of the flight control device.
  • the distance between the aircraft and the virtual coordinate origin is preset with respect to the touch sliding distance on the touch screen.
  • the relationship may also be determined according to the swing amplitude of the rocker on the flight control device, and the distance between the aircraft and the virtual coordinate origin may be determined, for example, the rocker may be a solid rocker or a virtual rocker.
  • the flight speed of the aircraft is controlled according to the touch sliding speed on the touch screen.
  • the flight speed of the aircraft is controlled according to the touch sliding direction on the touch screen.
  • the flying speed of the aircraft is controlled according to the touch sliding distance on the touch screen.
  • the flight speed of the aircraft is controlled according to the swing speed of the rocker.
  • the flying speed of the aircraft is controlled according to the swinging direction of the rocker.
  • the flying speed of the aircraft is controlled according to the swinging amplitude of the rocker.
  • the speed of change of the placement angle of the flight control device is obtained, and the flight speed of the aircraft is controlled according to the change speed of the placement angle of the flight control device.
  • the orientation of the pan/tilt on the aircraft is determined according to the direction of the touch sliding on the touch screen.
  • the orientation of the pan/tilt on the aircraft is determined according to the swinging direction of the rocker.
  • An embodiment of the present invention provides a control device for an aircraft.
  • the placement angle acquisition module acquires a placement angle of the flight control device, and the distance acquisition module acquires a distance between the aircraft and the set virtual coordinate origin.
  • the flight position determination module is placed according to the flight control device.
  • the angle, the origin of the virtual coordinate, and the distance between the aircraft and the origin of the virtual coordinate determine the flight position of the aircraft.
  • the virtual coordinate origin is the reference datum point when the aircraft is flying, and the position of the virtual coordinate origin is fixed.
  • the device 70 may be a flight control device.
  • the flight control device includes: a placement angle acquisition module 71 , a distance acquisition module 72 , and a flight position.
  • the determination module 73 and the instruction transmission module 74 are determined.
  • the placement angle acquisition module 71 is configured to acquire a placement angle of the flight control device by at least one of a gyroscope, a magnetometer, and an inertial measurement unit of the flight control device.
  • the distance obtaining module 72 is configured to determine a distance between the aircraft and the virtual coordinate origin according to the touch sliding distance on the touch screen of the flight control device, or the distance acquiring module 72 is configured to determine the aircraft and the swing amplitude according to the rocker on the flight control device. The distance from the origin of the virtual coordinate.
  • the flight position determining module 73 is configured to determine the flight position of the aircraft according to the placement angle of the flight control device, the virtual coordinate origin, and the distance between the aircraft and the virtual coordinate origin.
  • the explanations of the placement angle acquisition module 71, the distance acquisition module 72, and the flight position determination module 73 may be explained with reference to the placement angle acquisition module 61, the distance acquisition module 62, and the flight position determination module 63. I will not repeat them here.
  • the command transmitting module 74 is configured to send an instruction to the aircraft to fly to the flight position.
  • an instruction to fly to the flight position is sent to the aircraft, and the aircraft then flies to the flight position according to the command.
  • Yet another embodiment of the present invention provides a control device for an aircraft, which may be a flight control device, and the flight control device includes all modules included in the device 70, It may further include at least one of a first control module, a second control module, and a third control module (not shown).
  • the first control module is configured to control the flight speed of the aircraft according to the touch sliding speed on the touch screen of the flight control device;
  • the second control module is configured to control the flight speed of the aircraft according to the touch sliding direction on the touch screen;
  • the third control module is configured to control the flight speed of the aircraft according to the touch sliding distance on the touch screen.
  • a further embodiment of the present invention provides a control device for an aircraft, which may be a flight control device.
  • the flight control device may include a fourth control module and a fifth control module in addition to all the modules included in the device 70. At least one of the sixth control modules (not shown).
  • the fourth control module is configured to control the flight speed of the aircraft according to the swing speed of the rocker on the flight control device;
  • the fifth control module is configured to control the flight speed of the aircraft according to the swing direction of the rocker;
  • the sixth control module is used for The flight speed of the aircraft is controlled according to the swing amplitude of the rocker.
  • FIG. 8 another embodiment of the present invention provides a control device 80 for an aircraft.
  • the device 80 can be a flight control device.
  • the flight control device can include variable speed acquisition in addition to all modules included in the device 70.
  • the change speed acquisition module 81 is configured to acquire a change speed of the placement angle of the flight control device.
  • the seventh control module 82 is configured to control the flight speed of the aircraft according to the changing speed of the placement angle of the flight control device.
  • another embodiment of the present invention provides a control device 90 for an aircraft.
  • the device 90 may be a flight control device.
  • the flight control device may include a first cloud in addition to all modules included in the device 70.
  • the stage is oriented toward the determination module 91.
  • the first pan head orientation determining module 91 is configured to determine the orientation of the pan/tilt head on the aircraft according to the touch sliding direction on the touch screen.
  • another embodiment of the present invention provides a control device 100 for an aircraft.
  • the device 100 may be a flight control device.
  • the flight control device may include a second cloud in addition to all modules included in the device 70.
  • the stage is oriented toward the determination module 110.
  • the second pan head orientation determining module 110 is configured to determine the orientation of the pan/tilt head on the aircraft according to the swinging direction of the rocker.
  • an embodiment of the present invention provides a control device 200 for an aircraft.
  • the device 200 may be an aircraft.
  • the aircraft includes: a placement angle acquisition module 210 , a distance acquisition module 220 , and a flight position determination module 230 .
  • the placement angle acquisition module 210 is configured to receive a value of a placement angle of the flight control device transmitted by the flight control device.
  • the distance acquisition module 220 is configured to receive a value of a distance of the aircraft transmitted by the flight control device and the set virtual coordinate origin.
  • the flight position determining module 230 is configured to determine the flight position of the aircraft according to the placement angle of the flight control device, the virtual coordinate origin, and the distance between the aircraft and the virtual coordinate origin.
  • the placement angle acquisition module 210 for the explanation of the placement angle acquisition module 210, the distance acquisition module 220, and the flight position determination module 230, please refer to the explanations of the placement angle acquisition module 61, the distance acquisition module 62, and the flight position determination module 63. , will not repeat them here.
  • a control device for an aircraft receives a value of a placement angle of a flight control device sent by a flight control device by a placement angle acquisition module, and the distance acquisition module receives an aircraft and a set virtual coordinate origin transmitted by the flight control device.
  • the value of the distance, the flight position determining module determines the flight position of the aircraft according to the placement angle of the flight control device, the virtual coordinate origin, and the distance between the aircraft and the virtual coordinate origin, wherein the virtual coordinate origin is the reference datum when the aircraft is flying, and the virtual coordinate The position of the origin is fixed.
  • another embodiment of the present invention provides a control device 300 for an aircraft.
  • the device 300 may be an aircraft.
  • the aircraft may include a speed control parameter receiving module 310 in addition to all the modules included in the device 200.
  • the speed control parameter receiving module 310 is configured to receive a speed control parameter sent by the flight control device, where the speed control parameter is used to control a flight speed of the aircraft, wherein the speed control parameter comprises at least one of the following: a touch sliding on the touch screen of the flight control device Distance, touch sliding speed, touch sliding direction, swing amplitude of the rocker on the flight control device, swing speed, swing direction, and speed of change of the placement angle of the flight control device.
  • the flight speed adjustment module 320 is configured to adjust the flight speed according to the speed control parameter.
  • the PTZ control parameter receiving module 330 is configured to receive the PTZ control parameter sent by the flight control device, the PTZ control parameter is used to control the orientation of the PTZ on the aircraft, and the PTZ control parameter includes the touch sliding on the touch screen of the flight control device. Direction or direction of oscillation of the rocker on the flight control device.
  • the pan head orientation adjustment module 340 is configured to adjust the orientation of the pan/tilt head on the aircraft according to the pan/tilt control parameters.
  • FIG. 13 is a schematic diagram showing the hardware structure of an electronic device 400 for performing a control method of an aircraft according to an embodiment of the present invention.
  • the electronic device 400 can be a flight control device or an aircraft.
  • the electronic device 400 includes:
  • processors 410 and memory 420 One or more processors 410 and memory 420, one processor 410 is exemplified in FIG.
  • the processor 410 and the memory 420 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 420 is a non-volatile computer readable storage medium, and is usable for storing a non-volatile software program, a non-volatile computer executable program, and a module, such as a control method for executing an aircraft in an embodiment of the present invention. Corresponding program instructions/modules.
  • the processor 410 runs non-volatile software programs, instructions, and instructions stored in the memory 420 The modules, thereby performing various functional applications of the electronic device 400 and data processing, ie, the method of controlling the aircraft of the above method embodiments.
  • the memory 420 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the electronic device 400, and the like.
  • memory 420 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 420 can optionally include memory remotely located relative to processor 410, which can be connected to electronic device 400 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 420, and when executed by the one or more processors 410, perform the control method of the aircraft in any of the above method embodiments.
  • the foregoing electronic device can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the control method of the aircraft provided by the embodiments of the present invention.
  • Embodiments of the present invention provide a non-transitory computer readable storage medium storing computer-executable instructions that are executed by one or more processors, such as in FIG.
  • One processor 410 may cause the one or more processors described above to perform the control method of the aircraft in any of the above method embodiments.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, To pass the hardware.
  • a person skilled in the art can understand that all or part of the process of implementing the above embodiments can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable storage medium. When executed, the flow of an embodiment of the methods as described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

涉及飞行器技术领域的一种飞行器的控制方法和装置,控制方法包括:获取飞行控制设备的放置角度(S13);获取飞行器与设置的虚拟坐标原点的距离,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定(S15);根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置(S17)。由此,方便操控飞行控制设备对飞行器进行灵活控制。

Description

飞行器的控制方法和装置 【技术领域】
本发明涉及飞行器技术领域,尤其涉及一种飞行器的控制方法和装置。
【背景技术】
目前,飞行器在航拍、农业、植保、自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄、制造浪漫等等领域的应用,大大地拓展了飞行器的用途。
现有技术中,在飞行器的飞行控制方面,一般是用户双手操控一个配置有摇杆的遥控器,通过摆动摇杆、触发按键的方式控制飞行器,不易操控遥控器且无法灵活控制飞行器。
【发明内容】
本发明实施例主要解决的技术问题是提供一种飞行器的控制方法和装置,方便操控飞行控制设备对飞行器进行灵活控制。
第一方面,本发明实施例提供了一种飞行器的控制方法,包括:
获取飞行控制设备的放置角度;
获取飞行器与设置的虚拟坐标原点的距离,其中,所述虚拟坐标原点为所述飞行器飞行时的参考基准点,所述虚拟坐标原点的位置固定;
根据所述飞行控制设备的放置角度、所述虚拟坐标原点以及所述飞行器与所述虚拟坐标原点的距离,确定所述飞行器的飞行位置。
第二方面,本发明实施例提供了一种飞行器的控制装置,包括:
放置角度获取模块,用于获取飞行控制设备的放置角度;
距离获取模块,用于获取飞行器与设置的虚拟坐标原点的距离, 其中,所述虚拟坐标原点为所述飞行器飞行时的参考基准点,所述虚拟坐标原点的位置固定;
飞行位置确定模块,用于根据所述飞行控制设备的放置角度、所述虚拟坐标原点以及所述飞行器与所述虚拟坐标原点的距离,确定所述飞行器的飞行位置。
第三方面,本发明实施例提供了一种电子设备,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
第四方面,本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被电子设备执行时,使所述电子设备执行如上所述的方法。
第五方面,本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被电子设备执行时,使所述电子设备执行如上所述的方法。
本发明实施例提供的一种飞行器的控制方法,通过获取飞行控制设备的放置角度,获取飞行器与设置的虚拟坐标原点的距离,根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。通过实施本发明实施例,方便操控飞行控制设备对飞行器进行灵活控制。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种飞行器的控制方法的流程图;
图2是以虚拟坐标原点作为坐标原点的球坐标系的示意图;
图3是本发明又一实施例提供的一种飞行器的控制方法的流程图;
图4是本发明又一实施例提供的一种飞行器的控制方法的流程图;
图5是本发明又一实施例提供的一种飞行器的控制方法的流程图;
图6是本发明实施例提供的一种飞行器的控制装置的功能框图;
图7是本发明又一实施例提供的一种飞行器的控制装置的功能框图;
图8是本发明又一实施例提供的一种飞行器的控制装置的功能框图;
图9是本发明又一实施例提供的一种飞行器的控制装置的功能框图;
图10是本发明又一实施例提供的一种飞行器的控制装置的功能框图;
图11是本发明实施例提供的一种飞行器的控制装置的功能框图;
图12是本发明又一实施例提供的一种飞行器的控制装置的功能框图;
图13是本发明实施例提供的一种用于执行飞行器的控制方法的电子设备的硬件结构示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
下面结合具体附图对本发明实施例作具体阐述。
如图1所示,本发明实施例提供了一种飞行器的控制方法,所述方法可以由飞行控制设备执行,所述飞行控制设备可以包括但不限于遥控器、手机、平板电脑等。所述方法包括:
步骤S13、获取飞行控制设备的放置角度。
在本发明实施例中,飞行控制设备可以配置有磁力计、惯性测量单元、加速度计、GPS(Global Positioning System,全球定位系统)、气压计、陀螺仪、激光测距仪等传感器中的至少一种。可以通过陀螺仪、磁力计和惯性测量单元中的至少一种获取飞行控制设备的放置角度。在实际应用中,可以通过操作飞行控制设备相对于地面的摆放姿态,确定飞行控制设备的放置角度。
步骤S15、获取飞行器与设置的虚拟坐标原点的距离,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。
在本发明实施例中,虚拟坐标原点的位置固定,即虚拟坐标原点的位置不随着飞行控制设备位置的改变而改变,一旦确定,其坐标将一直保持不变。虚拟坐标原点可以是设置在地面上的一个固定点,也可以是设置在一固定参照物上的一个点。在执行步骤S15之前,飞行控制设备可以设置虚拟坐标原点,其中,虚拟坐标原点的设置方式包 括但不限于如下几种方式:
第一种方式,用户携带飞行控制设备,通过在一次飞行过程中首次触发飞行控制设备的触摸屏或按键或摇杆,记录触发时飞行控制设备所处位置的GPS坐标值,并将记录的GPS坐标值设置为虚拟坐标原点。这样,虚拟坐标原点的位置就被固定下来,用户可以携带飞行控制设备离开该所处位置。
第二种方式,用户操控飞行控制设备上的激光测距仪产生激光束,通过飞行控制设备上的磁力计计算得到当前激光束所指向的方向,通过激光测距仪计算得到激光束的照射点与飞行控制设备的距离,进而根据飞行控制设备所处位置的GPS坐标值,计算得到激光束的照射点的GPS坐标值,从而将激光束的照射点的GPS坐标值设置为虚拟坐标原点。这样,虚拟坐标原点的位置则被固定下来,当飞行控制设备发生移动时,该虚拟坐标原点将仍保持不变。
第三种方式,用户利用飞行控制设备操控飞行器飞行时,记录起飞时飞行器所处位置的GPS坐标值,将记录的GPS坐标值设置为虚拟坐标原点。一旦该虚拟坐标原点的位置固定后,其将不随飞行控制设备的位置的改变而改变,也不随飞行器的位置的改变而改变。
步骤S17、根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
如图2所示,将虚拟坐标原点作为球坐标系中的坐标原点O,假设某一时刻,飞行器的飞行位置位于P(r,θ,φ)处,P(r,θ,φ)的位置由r,θ,φ这三个参数确定。其中,r是P点与坐标原点O的距离,即飞行器与虚拟坐标原点的距离;θ是P点的方位角,φ是P点的仰角。根据飞行控制设备的放置角度可以确定θ和φ,例如,φ可以由飞行控制设备上的磁力计计算得到,θ可以由飞行控制设备上的惯性测量单元计算得到。在r的确定方式上,可以根据在飞行控制设备的 触摸屏上的触控滑动距离,确定飞行器与虚拟坐标原点的距离,例如,飞行器与虚拟坐标原点的距离相对于在触摸屏上的触控滑动距离呈预设放大倍数的关系;当飞行控制设备上设置有摇杆时,也可以根据飞行控制设备上摇杆的摆动幅度,确定飞行器与虚拟坐标原点的距离,例如,摇杆可以是实体摇杆,也可以是飞行控制设备的触摸屏上的虚拟摇杆。
在控制飞行器的飞行速度的实现方式上,包括但不限于以下几种方式中的一种或几种方式的组合:
第一种方式,根据在飞行控制设备的触摸屏上的触控滑动速度,控制飞行器的飞行速度。例如,建立触控滑动速度与飞行速度之间的映射关系,使得在触摸屏上的触控滑动速度越快,控制飞行器的飞行速度就越快。
第二种方式,根据在触摸屏上的触控滑动方向,控制飞行器的飞行速度。例如,在触摸屏上向上滑动,控制飞行器进行加速,在触摸屏上向下滑动,控制飞行器进行减速。
第三种方式,根据在触摸屏上的触控滑动距离,控制飞行器的飞行速度。例如,触控滑动距离相对于飞行速度呈预设比例关系,根据触控滑动距离,控制飞行器的飞行速度,又如,触控滑动距离越大,飞行器的飞行速度越快。
第四种方式,根据飞行控制设备上摇杆的摆动速度,控制飞行器的飞行速度。例如,越缓慢摆动摇杆,飞行速度越小,越快速摆动摇杆,飞行速度越快。
第五种方式,根据摇杆的摆动方向,控制飞行器的飞行速度。例如,操控摇杆向上摆动,控制飞行器进行加速,操控摇杆向下摆动,控制飞行器进行减速。
第六种方式,根据摇杆的摆动幅度,控制飞行器的飞行速度。例如,摇杆的摆动幅度越大,飞行器的飞行速度越大。
第七种方式,获取飞行控制设备的放置角度的变化速度,并根据飞行控制设备的放置角度的变化速度,控制飞行器的飞行速度。例如,操控飞行控制设备相对于地面从一种摆放姿态至另一种摆放姿态的变化速度越快,飞行器的飞行速度越快。
在控制飞行器上云台的朝向的实现方式上,包括但不限于以下几种方式:
第一种方式,根据在飞行控制设备的触摸屏上的触控滑动方向,确定飞行器上云台的朝向。例如,在触摸屏上向上、下、左、右的触控滑动方向依次对应控制云台带动相机向上、下、左、右转动,从而调整相机的拍摄角度。
第二种方式,根据飞行控制设备上摇杆的摆动方向,确定飞行器上云台的朝向。例如,操控摇杆向上、下、左、右摆动,依次对应控制云台带动相机向上、下、左、右转动,从而调整相机的拍摄角度。
本发明实施例提供的一种飞行器的控制方法,通过获取飞行控制设备的放置角度,获取飞行器与设置的虚拟坐标原点的距离,根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。将所述方法应用于飞行控制设备,方便操控飞行控制设备对飞行器进行灵活控制。
如图3所示,本发明又一实施例提供了一种飞行器的控制方法,所述方法可以由飞行控制设备执行,所述飞行控制设备可以包括但不限于遥控器、手机、平板电脑等。所述方法包括:
步骤S33、获取飞行控制设备的放置角度。
步骤S35、获取飞行器与设置的虚拟坐标原点的距离,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。
步骤S37、根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
在本发明实施例中,对步骤S33、步骤S35、步骤S37的解释说明请参考对步骤S13、步骤S15、步骤S17的解释说明,在此不再赘述。
步骤S38、飞行控制设备向飞行器发送飞到飞行位置的指令。
在本发明实施例中,飞行控制设备确定飞行器的飞行位置后,向飞行器发送飞到飞行位置的指令,进而飞行器根据该指令飞到所述飞行位置。
在一个可选实施例中,步骤S38之后还可以包括:飞行控制设备向飞行器发送悬停在所述飞行位置的指令。
本发明实施例提供的一种飞行器的控制方法,通过获取飞行控制设备的放置角度,获取飞行器与设置的虚拟坐标原点的距离,根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置,飞行控制设备向飞行器发送飞到飞行位置的指令,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定,将所述方法应用于飞行控制设备上,方便操控飞行控制设备对飞行器进行灵活控制。
如图4所示,本发明又一实施例提供了一种飞行器的控制方法,所述方法可以由飞行器执行。所述方法包括:
步骤S41、飞行器接收飞行控制设备发送的飞行控制设备的放置角度的值。
步骤S42、飞行器接收飞行控制设备发送的飞行器与设置的虚拟坐标原点的距离的值,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。
步骤S43、根据飞行控制设备的放置角度、虚拟坐标原点以及飞 行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
本发明实施例提供的一种飞行器的控制方法,通过接收飞行控制设备发送的飞行控制设备的放置角度的值,接收飞行控制设备发送的飞行器与设置的虚拟坐标原点的距离的值,根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。将所述方法应用于飞行器,方便操控飞行控制设备对飞行器进行灵活控制。
如图5所示,本发明又一实施例提供了一种飞行器的控制方法,所述方法可以由飞行器执行。所述方法包括:
步骤S51、飞行器接收飞行控制设备发送的飞行控制设备的放置角度的值。
步骤S52、飞行器接收飞行控制设备发送的飞行器与设置的虚拟坐标原点的距离的值,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。
步骤S53、根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
步骤S54、接收飞行控制设备发送的速度控制参数,速度控制参数用于控制飞行器的飞行速度。
其中,速度控制参数可以包括但不限于以下至少一种:飞行控制设备的触摸屏上的触控滑动距离、触控滑动速度、触控滑动方向,飞行控制设备上摇杆的摆动幅度、摆动速度、摆动方向,以及飞行控制设备的放置角度的变化速度。
步骤S55、根据速度控制参数,调整飞行速度。
步骤S56、接收飞行控制设备发送的云台控制参数,云台控制参数用于控制飞行器上云台的朝向。
其中,云台控制参数可以包括但不限于在飞行控制设备的触摸屏上的触控滑动方向或飞行控制设备上摇杆的摆动方向。
步骤S57、根据云台控制参数,调整飞行器上云台的朝向。
在本发明实施例中,对步骤S51、步骤S52、步骤S53、步骤S54、步骤S55、步骤S56、步骤S57的解释说明请参考对上述步骤S13、步骤S15、步骤S17的解释说明,在此不再赘述。
可以理解的是,步骤S54-S55可以先于步骤S56-S57执行,也可以后于步骤S56-S57执行,还可以与步骤S56-S57交叉或同步执行,本发明实施例不作限定。
如图6所示,本发明实施例提供了一种飞行器的控制装置60,所述装置60可以为飞行控制设备,飞行控制设备包括:放置角度获取模块61、距离获取模块62、飞行位置确定模块63。
放置角度获取模块61用于获取飞行控制设备的放置角度。
在本发明实施例中,飞行控制设备可以配置有磁力计、惯性测量单元、加速度计、GPS、气压计、陀螺仪、激光测距仪等传感器中的至少一种。放置角度获取模块61具体可以用于通过陀螺仪、磁力计和惯性测量单元中的至少一种获取飞行控制设备的放置角度。在实际应用中,可以通过操作飞行控制设备相对于地面的摆放姿态,确定飞行控制设备的放置角度。
距离获取模块62用于获取飞行器与设置的虚拟坐标原点的距离,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。
在本发明实施例中,虚拟坐标原点的位置固定,即虚拟坐标原点的位置不随着飞行控制设备位置的改变而改变,一旦确定,其坐标将一直保持不变。虚拟坐标原点可以是设置在地面上的一个固定点,也可以是设置在一固定参照物上的一个点。虚拟坐标原点的设置方式包 括但不限于如下几种方式:
第一种方式,用户携带飞行控制设备,通过在一次飞行过程中首次触发飞行控制设备的触摸屏或按键或摇杆,记录触发时飞行控制设备所处位置的GPS坐标值,并将记录的GPS坐标值设置为虚拟坐标原点。这样,虚拟坐标原点的位置就被固定下来,用户可以携带飞行控制设备离开该所处位置。
第二种方式,用户操控飞行控制设备上的激光测距仪产生激光束,通过飞行控制设备上的磁力计计算得到当前激光束所指向的方向,通过激光测距仪计算得到激光束的照射点与飞行控制设备的距离,进而根据飞行控制设备所处位置的GPS坐标值,计算得到激光束的照射点的GPS坐标值,从而将激光束的照射点的GPS坐标值设置为虚拟坐标原点。这样,虚拟坐标原点的位置则被固定下来,当飞行控制设备发生移动时,该虚拟坐标原点将仍保持不变。
第三种方式,用户利用飞行控制设备操控飞行器飞行时,记录起飞时飞行器所处位置的GPS坐标值,将记录的GPS坐标值设置为虚拟坐标原点。一旦该虚拟坐标原点的位置固定后,其将不随飞行控制设备的位置的改变而改变,也不随飞行器的位置的改变而改变。
飞行位置确定模块63用于根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
如图2所示,将虚拟坐标原点作为球坐标系中的坐标原点O,假设某一时刻,飞行器的飞行位置位于P(r,θ,φ)处,P(r,θ,φ)的位置由r,θ,φ这三个参数确定,其中,r是P点与坐标原点O的距离,θ是P点的方位角,φ是P点的仰角。根据飞行控制设备的放置角度可以确定θ和φ,例如,φ可以由飞行控制设备上的磁力计计算得到,θ可以由飞行控制设备上的惯性测量单元计算得到。在r的确定方式 上,可以根据在飞行控制设备的触摸屏上的触控滑动距离,确定飞行器与虚拟坐标原点的距离,例如,飞行器与虚拟坐标原点的距离相对于在触摸屏上的触控滑动距离呈预设放大倍数的关系;也可以根据飞行控制设备上摇杆的摆动幅度,确定飞行器与虚拟坐标原点的距离,例如,摇杆可以是实体摇杆,也可以是虚拟摇杆。
在控制飞行器的飞行速度的实现方式上,包括但不限于以下几种方式:
第一种方式,根据在触摸屏上的触控滑动速度,控制飞行器的飞行速度。
第二种方式,根据在触摸屏上的触控滑动方向,控制飞行器的飞行速度。
第三种方式,根据在触摸屏上的触控滑动距离,控制飞行器的飞行速度。
第四种方式,根据摇杆的摆动速度,控制飞行器的飞行速度。
第五种方式,根据摇杆的摆动方向,控制飞行器的飞行速度。
第六种方式,根据摇杆的摆动幅度,控制飞行器的飞行速度。
第七种方式,获取飞行控制设备的放置角度的变化速度,并根据飞行控制设备的放置角度的变化速度,控制飞行器的飞行速度。
在控制飞行器上云台的朝向的实现方式上,包括但不限于以下几种方式:
第一种方式,根据在触摸屏上的触控滑动方向,确定飞行器上云台的朝向。
第二种方式,根据摇杆的摆动方向,确定飞行器上云台的朝向。
本发明实施例提供的一种飞行器的控制装置,通过放置角度获取模块获取飞行控制设备的放置角度,距离获取模块获取飞行器与设置的虚拟坐标原点的距离,飞行位置确定模块根据飞行控制设备的放置 角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。通过实施本发明实施例,方便操控飞行控制设备对飞行器进行灵活控制。
如图7所示,本发明又一实施例提供了一种飞行器的控制装置70,所述装置70可以为飞行控制设备,飞行控制设备包括:放置角度获取模块71、距离获取模块72、飞行位置确定模块73和指令发送模块74。
放置角度获取模块71用于通过飞行控制设备的陀螺仪、磁力计和惯性测量单元中的至少一种获取飞行控制设备的放置角度。
距离获取模块72用于根据在飞行控制设备的触摸屏上的触控滑动距离,确定飞行器与虚拟坐标原点的距离,或者距离获取模块72用于根据飞行控制设备上摇杆的摆动幅度,确定飞行器与虚拟坐标原点的距离。
飞行位置确定模块73用于根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
在本发明实施例中,对放置角度获取模块71、距离获取模块72、飞行位置确定模块73的解释说明可以参考对放置角度获取模块61、距离获取模块62、飞行位置确定模块63的解释说明,在此不再赘述。
指令发送模块74用于向飞行器发送飞到飞行位置的指令。
在本发明实施例中,飞行控制设备确定飞行器的飞行位置后,向飞行器发送飞到飞行位置的指令,进而飞行器根据该指令飞到所述飞行位置。
本发明又一实施例提供了一种飞行器的控制装置,该装置可以为飞行控制设备,飞行控制设备除包括装置70所包含的所有模块外, 还可以包括第一控制模块、第二控制模块、第三控制模块中的至少一种模块(图中未示出)。其中,第一控制模块用于根据在飞行控制设备的触摸屏上的触控滑动速度,控制飞行器的飞行速度;第二控制模块用于根据在触摸屏上的触控滑动方向,控制飞行器的飞行速度;第三控制模块,用于根据在触摸屏上的触控滑动距离,控制飞行器的飞行速度。
本发明又一实施例提供了一种飞行器的控制装置,该装置可以为飞行控制设备,飞行控制设备除包括装置70所包含的所有模块外,还可以包括第四控制模块、第五控制模块、第六控制模块中的至少一种模块(图中未示出)。其中,第四控制模块用于根据飞行控制设备上摇杆的摆动速度,控制飞行器的飞行速度;第五控制模块用于根据摇杆的摆动方向,控制飞行器的飞行速度;第六控制模块用于根据摇杆的摆动幅度,控制飞行器的飞行速度。
如图8所示,本发明又一实施例提供了一种飞行器的控制装置80,装置80可以为飞行控制设备,飞行控制设备除包括装置70所包含的所有模块外,还可以包括变化速度获取模块81和第七控制模块82。其中:
变化速度获取模块81用于获取飞行控制设备的放置角度的变化速度。
第七控制模块82用于根据飞行控制设备的放置角度的变化速度,控制飞行器的飞行速度。
如图9所示,本发明又一实施例提供了一种飞行器的控制装置90,装置90可以为飞行控制设备,飞行控制设备除包括装置70所包含的所有模块外,还可以包括第一云台朝向确定模块91。
第一云台朝向确定模块91用于根据在触摸屏上的触控滑动方向,确定飞行器上云台的朝向。
如图10所示,本发明又一实施例提供了一种飞行器的控制装置100,装置100可以为飞行控制设备,飞行控制设备除包括装置70所包含的所有模块外,还可以包括第二云台朝向确定模块110。
第二云台朝向确定模块110用于根据摇杆的摆动方向,确定飞行器上云台的朝向。
如图11所示,本发明实施例提供了一种飞行器的控制装置200,装置200可以为飞行器,飞行器包括:放置角度获取模块210、距离获取模块220、飞行位置确定模块230。
放置角度获取模块210用于接收飞行控制设备发送的飞行控制设备的放置角度的值。
距离获取模块220用于接收飞行控制设备发送的飞行器与设置的虚拟坐标原点的距离的值。
飞行位置确定模块230用于根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置。
在本发明实施例中,对放置角度获取模块210、距离获取模块220、飞行位置确定模块230的解释说明请参考对上述放置角度获取模块61、距离获取模块62、飞行位置确定模块63的解释说明,在此不再赘述。
本发明实施例提供的一种飞行器的控制装置,通过放置角度获取模块接收飞行控制设备发送的飞行控制设备的放置角度的值,距离获取模块接收飞行控制设备发送的飞行器与设置的虚拟坐标原点的距离的值,飞行位置确定模块根据飞行控制设备的放置角度、虚拟坐标原点以及飞行器与虚拟坐标原点的距离,确定飞行器的飞行位置,其中,虚拟坐标原点为飞行器飞行时的参考基准点,虚拟坐标原点的位置固定。通过实施本发明实施例,方便操控飞行控制设备对飞行器进 行灵活控制。
如图12所示,本发明又一实施例提供了一种飞行器的控制装置300,装置300可以为飞行器,飞行器除包括装置200所包含的所有模块外,还可以包括速度控制参数接收模块310、飞行速度调整模块320、云台控制参数接收模块330以及云台朝向调整模块340。
速度控制参数接收模块310用于接收飞行控制设备发送的速度控制参数,速度控制参数用于控制飞行器的飞行速度,其中,速度控制参数包括以下至少一种:飞行控制设备的触摸屏上的触控滑动距离、触控滑动速度、触控滑动方向,飞行控制设备上摇杆的摆动幅度、摆动速度、摆动方向,以及飞行控制设备的放置角度的变化速度。
飞行速度调整模块320用于根据速度控制参数,调整飞行速度。
云台控制参数接收模块330用于接收飞行控制设备发送的云台控制参数,云台控制参数用于控制飞行器上云台的朝向,云台控制参数包括在飞行控制设备的触摸屏上的触控滑动方向或飞行控制设备上摇杆的摆动方向。
云台朝向调整模块340用于根据云台控制参数,调整飞行器上云台的朝向。
图13是本发明实施例提供的一种用于执行飞行器的控制方法的电子设备400的硬件结构示意图。其中,该电子设备400可以为飞行控制设备或飞行器。如图13所示,该电子设备400包括:
一个或多个处理器410以及存储器420,图13中以一个处理器410为例。
处理器410和存储器420可以通过总线或者其他方式连接,图13中以通过总线连接为例。
存储器420作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的用于执行飞行器的控制方法对应的程序指令/模块。处理器410通过运行存储在存储器420中的非易失性软件程序、指令以及 模块,从而执行电子设备400的各种功能应用以及数据处理,即实现上述方法实施例的飞行器的控制方法。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备400的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器420可选包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至电子设备400。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器420中,当被所述一个或者多个处理器410执行时,执行上述任意方法实施例中的飞行器的控制方法。
上述电子设备可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的飞行器的控制方法。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图13中的一个处理器410,可使得上述一个或多个处理器可执行上述任意方法实施例中的飞行器的控制方法。
以上所描述的设备实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可 以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种飞行器的控制方法,其特征在于,包括:
    获取飞行控制设备的放置角度;
    获取飞行器与设置的虚拟坐标原点的距离,其中,所述虚拟坐标原点为所述飞行器飞行时的参考基准点,所述虚拟坐标原点的位置固定;
    根据所述飞行控制设备的放置角度、所述虚拟坐标原点以及所述飞行器与所述虚拟坐标原点的距离,确定所述飞行器的飞行位置。
  2. 如权利要求1所述的方法,其特征在于,所述方法由所述飞行控制设备执行;所述方法还包括:
    所述飞行控制设备向所述飞行器发送飞到所述飞行位置的指令。
  3. 如权利要求2所述的方法,其特征在于,所述获取飞行控制设备的放置角度,包括:
    通过所述飞行控制设备的陀螺仪、磁力计和惯性测量单元中的至少一种获取所述飞行控制设备的放置角度。
  4. 如权利要求2或3所述的方法,其特征在于,所述获取飞行器与设置的虚拟坐标原点的距离,包括:
    根据在所述飞行控制设备的触摸屏上的触控滑动距离,确定所述飞行器与所述虚拟坐标原点的距离。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括以下情况中的至少一种:
    根据在所述触摸屏上的触控滑动速度,控制所述飞行器的飞行速度;
    根据在所述触摸屏上的触控滑动方向,控制所述飞行器的飞行速度;
    根据在所述触摸屏上的所述触控滑动距离,控制所述飞行器的飞 行速度。
  6. 如权利要求2或3所述的方法,其特征在于,所述获取飞行器与设置的虚拟坐标原点的距离,包括:
    根据所述飞行控制设备上摇杆的摆动幅度,确定所述飞行器与所述虚拟坐标原点的距离。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括以下情况中的至少一种:
    根据所述摇杆的摆动速度,控制所述飞行器的飞行速度;
    根据所述摇杆的摆动方向,控制所述飞行器的飞行速度;
    根据所述摇杆的所述摆动幅度,控制所述飞行器的飞行速度。
  8. 如权利要求2、3、4、6中任一所述的方法,其特征在于,所述方法还包括:
    获取所述飞行控制设备的放置角度的变化速度;
    根据所述飞行控制设备的放置角度的变化速度,控制所述飞行器的飞行速度。
  9. 如权利要求4或5所述的方法,其特征在于,所述方法还包括:
    根据在所述触摸屏上的触控滑动方向,确定所述飞行器上云台的朝向。
  10. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    根据所述摇杆的摆动方向,确定所述飞行器上云台的朝向。
  11. 如权利要求1所述的方法,其特征在于,所述方法由所述飞行器执行;
    所述获取飞行控制设备的放置角度,包括:
    所述飞行器接收所述飞行控制设备发送的所述飞行控制设备的放置角度的值;
    所述获取飞行器与设置的虚拟坐标原点的距离,包括:
    所述飞行器接收所述飞行控制设备发送的所述飞行器与设置的虚拟坐标原点的距离的值。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述飞行控制设备发送的速度控制参数,所述速度控制参数用于控制所述飞行器的飞行速度,其中,所述速度控制参数包括以下至少一种:所述飞行控制设备的触摸屏上的触控滑动距离、触控滑动速度、触控滑动方向,所述飞行控制设备上摇杆的摆动幅度、摆动速度、摆动方向,以及所述飞行控制设备的放置角度的变化速度;
    根据所述速度控制参数,调整所述飞行速度。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    接收所述飞行控制设备发送的云台控制参数,所述云台控制参数用于控制所述飞行器上云台的朝向,所述云台控制参数包括在所述飞行控制设备的触摸屏上的触控滑动方向或所述飞行控制设备上摇杆的摆动方向;
    根据所述云台控制参数,调整所述飞行器上云台的朝向。
  14. 一种飞行器的控制装置,其特征在于,包括:
    放置角度获取模块,用于获取飞行控制设备的放置角度;
    距离获取模块,用于获取飞行器与设置的虚拟坐标原点的距离,其中,所述虚拟坐标原点为所述飞行器飞行时的参考基准点,所述虚拟坐标原点的位置固定;
    飞行位置确定模块,用于根据所述飞行控制设备的放置角度、所述虚拟坐标原点以及所述飞行器与所述虚拟坐标原点的距离,确定所述飞行器的飞行位置。
  15. 如权利要求14所述的飞行器的控制装置,其特征在于,所述装置为所述飞行控制设备,所述飞行控制设备还包括:
    指令发送模块,用于向所述飞行器发送飞到所述飞行位置的指 令。
  16. 如权利要求15所述的飞行器的控制装置,其特征在于,所述放置角度获取模块具体用于通过所述飞行控制设备的陀螺仪、磁力计和惯性测量单元中的至少一种获取所述飞行控制设备的放置角度。
  17. 如权利要求15或16所述的飞行器的控制装置,其特征在于,所述距离获取模块具体用于根据在所述飞行控制设备的触摸屏上的触控滑动距离,确定所述飞行器与所述虚拟坐标原点的距离。
  18. 如权利要求17所述的飞行器的控制装置,其特征在于,所述飞行控制设备还包括以下模块中的至少一种:
    第一控制模块,用于根据在所述触摸屏上的触控滑动速度,控制所述飞行器的飞行速度;
    第二控制模块,用于根据在所述触摸屏上的触控滑动方向,控制所述飞行器的飞行速度;
    第三控制模块,用于根据在所述触摸屏上的所述触控滑动距离,控制所述飞行器的飞行速度。
  19. 如权利要求15或16所述的飞行器的控制装置,其特征在于,所述距离获取模块具体用于根据所述飞行控制设备上摇杆的摆动幅度,确定所述飞行器与所述虚拟坐标原点的距离。
  20. 如权利要求19所述的飞行器的控制装置,其特征在于,所述飞行控制设备还包括以下模块中的至少一种:
    第四控制模块,用于根据所述摇杆的摆动速度,控制所述飞行器的飞行速度;
    第五控制模块,用于根据所述摇杆的摆动方向,控制所述飞行器的飞行速度;
    第六控制模块,用于根据所述摇杆的所述摆动幅度,控制所述飞行器的飞行速度。
  21. 如权利要求15、16、17、19中任一所述的飞行器的控制装置, 其特征在于,所述飞行控制设备还包括:
    变化速度获取模块,用于获取所述飞行控制设备的放置角度的变化速度;
    第七控制模块,用于根据所述飞行控制设备的放置角度的变化速度,控制所述飞行器的飞行速度。
  22. 如权利要求17或18所述的飞行器的控制装置,其特征在于,所述飞行控制设备还包括:
    第一云台朝向确定模块,用于根据在所述触摸屏上的触控滑动方向,确定所述飞行器上云台的朝向。
  23. 如权利要求19或20所述的飞行器的控制装置,其特征在于,所述飞行控制设备还包括:
    第二云台朝向确定模块,用于根据所述摇杆的摆动方向,确定所述飞行器上云台的朝向。
  24. 如权利要求14所述的飞行器的控制装置,其特征在于,所述装置为所述飞行器;
    所述放置角度获取模块具体用于接收所述飞行控制设备发送的所述飞行控制设备的放置角度的值;
    所述距离获取模块具体用于接收所述飞行控制设备发送的所述飞行器与设置的虚拟坐标原点的距离的值。
  25. 如权利要求24所述的飞行器的控制装置,其特征在于,所述飞行器还包括:
    速度控制参数接收模块,用于接收所述飞行控制设备发送的速度控制参数,所述速度控制参数用于控制所述飞行器的飞行速度,其中,所述速度控制参数包括以下至少一种:所述飞行控制设备的触摸屏上的触控滑动距离、触控滑动速度、触控滑动方向,所述飞行控制设备上摇杆的摆动幅度、摆动速度、摆动方向,以及所述飞行控制设备的放置角度的变化速度;
    飞行速度调整模块,用于根据所述速度控制参数,调整所述飞行速度。
  26. 如权利要求24或25所述的飞行器的控制装置,其特征在于,所述飞行器还包括:
    云台控制参数接收模块,用于接收所述飞行控制设备发送的云台控制参数,所述云台控制参数用于控制所述飞行器上云台的朝向,所述云台控制参数包括在所述飞行控制设备的触摸屏上的触控滑动方向或所述飞行控制设备上摇杆的摆动方向;
    云台朝向调整模块,用于根据所述云台控制参数,调整所述飞行器上云台的朝向。
PCT/CN2016/104222 2016-11-01 2016-11-01 飞行器的控制方法和装置 WO2018081923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680090596.6A CN110168462B (zh) 2016-11-01 2016-11-01 飞行器的控制方法和装置
PCT/CN2016/104222 WO2018081923A1 (zh) 2016-11-01 2016-11-01 飞行器的控制方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104222 WO2018081923A1 (zh) 2016-11-01 2016-11-01 飞行器的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2018081923A1 true WO2018081923A1 (zh) 2018-05-11

Family

ID=62075366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104222 WO2018081923A1 (zh) 2016-11-01 2016-11-01 飞行器的控制方法和装置

Country Status (2)

Country Link
CN (1) CN110168462B (zh)
WO (1) WO2018081923A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252067A (zh) * 2021-12-25 2022-03-29 江苏九天航空航天科技有限公司 一种制导炮弹空中姿态预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342165A (zh) * 2013-06-25 2013-10-09 深圳市大疆创新科技有限公司 飞行器的控制装置、控制系统及控制方法
CN104765359A (zh) * 2015-03-18 2015-07-08 贵州翰凯斯智能技术有限公司 一种在虚拟遥杆触摸屏对多旋翼飞行器盲操的控制方法
US20150316927A1 (en) * 2014-04-30 2015-11-05 Lg Electronics Inc. Unmanned aerial vehicle control apparatus and method
US20150370250A1 (en) * 2014-06-19 2015-12-24 Skydio, Inc. Magic wand interface and other user interaction paradigms for a flying digital assistant
CN105469579A (zh) * 2015-12-31 2016-04-06 北京臻迪机器人有限公司 体感遥控器、体感遥控飞行系统和方法
CN105700812A (zh) * 2016-02-26 2016-06-22 北京臻迪机器人有限公司 可移动设备的控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898699B (zh) * 2015-05-28 2020-03-17 小米科技有限责任公司 飞行控制方法及装置、电子设备
CN105549604B (zh) * 2015-12-10 2018-01-23 腾讯科技(深圳)有限公司 飞行器操控方法和装置
CN105786011B (zh) * 2016-03-07 2018-06-12 重庆邮电大学 一种遥控飞行器的控制方法及设备
CN106043694B (zh) * 2016-05-20 2019-09-17 腾讯科技(深圳)有限公司 一种控制飞行器飞行的方法、移动终端、飞行器及系统
CN106054914A (zh) * 2016-08-17 2016-10-26 腾讯科技(深圳)有限公司 一种飞行器的控制方法及飞行器控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342165A (zh) * 2013-06-25 2013-10-09 深圳市大疆创新科技有限公司 飞行器的控制装置、控制系统及控制方法
US20150316927A1 (en) * 2014-04-30 2015-11-05 Lg Electronics Inc. Unmanned aerial vehicle control apparatus and method
US20150370250A1 (en) * 2014-06-19 2015-12-24 Skydio, Inc. Magic wand interface and other user interaction paradigms for a flying digital assistant
CN104765359A (zh) * 2015-03-18 2015-07-08 贵州翰凯斯智能技术有限公司 一种在虚拟遥杆触摸屏对多旋翼飞行器盲操的控制方法
CN105469579A (zh) * 2015-12-31 2016-04-06 北京臻迪机器人有限公司 体感遥控器、体感遥控飞行系统和方法
CN105700812A (zh) * 2016-02-26 2016-06-22 北京臻迪机器人有限公司 可移动设备的控制方法及装置

Also Published As

Publication number Publication date
CN110168462A (zh) 2019-08-23
CN110168462B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US11771076B2 (en) Flight control method, information processing device, program and recording medium
US10567497B2 (en) Reticle control and network based operation of an unmanned aerial vehicle
WO2020211812A1 (zh) 一种飞行器降落方法及装置
US9641810B2 (en) Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
CN109071034A (zh) 切换云台工作模式的方法、控制器和图像增稳设备
WO2018073879A1 (ja) 飛行経路生成方法、飛行経路生成システム、飛行体、プログラム、及び記録媒体
JP6878567B2 (ja) 3次元形状推定方法、飛行体、モバイルプラットフォーム、プログラム及び記録媒体
WO2016192249A1 (zh) 一种飞行器的操控方法和装置
CN107992064B (zh) 基于主无人机的从无人机飞行控制方法、装置及系统
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
WO2018187916A1 (zh) 云台随动控制方法及控制设备
US20210112207A1 (en) Method, control apparatus and control system for controlling an image capture of movable device
WO2020135449A1 (zh) 一种中继点生成方法、装置和无人机
US20200169666A1 (en) Target observation method, related device and system
CN113875222B (zh) 拍摄控制方法和装置、无人机及计算机可读存储介质
WO2018059398A1 (zh) 多旋翼飞行器的控制方法、装置和系统
JP6912281B2 (ja) 飛行体、飛行制御システム、飛行制御方法、プログラム及び記録媒体
CN115167529A (zh) 监控方法及系统、无人机、移动终端和存储介质
WO2019140695A1 (zh) 控制飞行器飞行的方法及设备
WO2018081923A1 (zh) 飞行器的控制方法和装置
JP2019178907A5 (zh)
WO2021079516A1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP7067897B2 (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2022188151A1 (zh) 影像拍摄方法、控制装置、可移动平台和计算机存储介质
JP6818379B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920775

Country of ref document: EP

Kind code of ref document: A1