WO2018080183A1 - Battery system and electric vehicle comprising same - Google Patents

Battery system and electric vehicle comprising same Download PDF

Info

Publication number
WO2018080183A1
WO2018080183A1 PCT/KR2017/011885 KR2017011885W WO2018080183A1 WO 2018080183 A1 WO2018080183 A1 WO 2018080183A1 KR 2017011885 W KR2017011885 W KR 2017011885W WO 2018080183 A1 WO2018080183 A1 WO 2018080183A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
battery
thermal conductivity
main surface
insulating
Prior art date
Application number
PCT/KR2017/011885
Other languages
French (fr)
Korean (ko)
Inventor
고루브코브안드레
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP16195845.9A external-priority patent/EP3316391B1/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201780064405.3A priority Critical patent/CN109845024B/en
Publication of WO2018080183A1 publication Critical patent/WO2018080183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system and an electric vehicle, and relates to a battery system including a base plate provided to prevent thermal runaway spreading and an electric vehicle including the same.
  • Rechargeable or secondary batteries differ from primary batteries in that charging and discharging can be repeated, and primary batteries provide only an irreversible conversion of chemicals into electrical energy.
  • Low-capacity rechargeable batteries are used as power sources for small electrical devices such as mobile phones, laptops, computers and camcorders, while large-capacity rechargeable batteries are used as power sources for hybrid vehicles.
  • the secondary battery includes an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, a case accommodating the electrode assembly, and an electrode terminal electrically connected to the electrode assembly.
  • the electrolyte is injected into the case to enable the charging and discharging of the battery through the electrochemical reaction of the positive electrode, the negative electrode, and the electrolyte.
  • the shape of the case is, for example, cylindrical or rectangular, depending on the use of the battery.
  • the rechargeable battery may be used in the form of a battery module formed of a plurality of unit battery cells coupled in series and / or in parallel to provide a high energy density, for example, for driving a motor of a hybrid vehicle.
  • the battery module is formed by interconnecting the electrode terminals of the plurality of unit battery cells according to the amount of power required to implement a high power rechargeable battery for an electric vehicle, for example.
  • the battery module may be designed in a block or modular form.
  • each battery is coupled to a common current collector and a common battery management system, and the cells can be disposed in the common housing.
  • a plurality of battery cells are connected to form a sub module, and some sub modules are connected to form a battery module.
  • the battery management function may be implemented at least partially at the battery module or submodule level, thereby improving compatibility.
  • One or more battery modules are mechanically and electrically integrated, have a thermal management system, and are connected with one or more electrical consumer devices to constitute the battery system.
  • Mechanical integration of the battery module may be accomplished by providing a base plate and placing each battery cell or submodule thereon.
  • Fixing the battery cell or submodule may be accomplished by an indentation installed in the carrier plate, by a mechanical connection element such as a bolt or screw, or by the restraint of the cell or submodule.
  • the restraint can be accomplished by securing the sideplates to the sides of the carrierplate or by providing another carrierplate on the top side and fixing them to the existing first carrierplate and / or sideplates.
  • a multilevel battery module may be constructed in which the carrier plate and / or the side plate include a refrigerant duct for cooling the cell or submodule.
  • Mechanical integration of the submodule can be achieved by providing a mechanically strengthened electrical connection member or by fixing the battery cell to a carrier beam or strut in addition to the electrical connection member.
  • the submodule may be arranged in each casing covering part or all of the surface of the battery submodule, for example together with the casing in the battery module on the carrier plate.
  • submodules having a plurality of cells connected in parallel are connected in series (XsYp), or submodules having a plurality of cells connected in series are connected in parallel (XpYs).
  • XpYs type submodules can generate high voltages, but the wiring complexity increases because the voltage levels of each cell must be controlled individually. In the XsYp type submodule, the voltage levels of cells connected in parallel are automatically balanced.
  • the XsYp type submodule is mostly used for low capacity cells.
  • This information includes the actual SoC, potential electrical performance, charge capacity and internal resistance of the battery system, as well as the actual or expected power demand or remaining power of the consumer.
  • the battery system typically includes a battery management system for processing this information.
  • thermal management system For thermal control of battery systems, there is a need for a thermal management system to safely use at least one battery module by efficiently discharging, dissipating and / or dissipating heat generated from rechargeable batteries.
  • an increase in the internal temperature can cause abnormal reaction therein, so that the charge and discharge performance of the rechargeable battery can be degraded and its life can be shortened.
  • An example of such abnormal operating conditions is the thermal runaway of a battery cell, which can be caused by a severely overheated or overcharged lithium ion cell.
  • the critical temperature for thermal runaway is generally above 150 ° C. and may exceed the critical temperature due to local failure, internal short circuit of the cell, heat generation by poor electrical contact or short circuit of adjacent cells.
  • Thermal runaway is a chemical process that self-accelerates inside the cell until all active material is consumed, during which fault cells can be heated to cell temperatures above 700 ° C and large amounts of hot gas can be released into the system.
  • Fault cells can transfer large amounts of heat to adjacent cells during thermal runaway.
  • the adjacent cells are in direct contact with the faulty cell, heat conduction through the baseplate and / or heat transfer through their electrical connection members.
  • adjacent cells are also susceptible to thermal runaway, and thermal runaway spread can eventually lead to battery fire and / or total loss of the electric vehicle throughout the battery module.
  • the battery system may include a base plate provided with active cooling means for heat dissipation.
  • active cooling means are typically provided to provide uniform cooling to the attached battery cells.
  • Embodiments of the present invention are to provide a battery system including a base plate having anisotropic thermal conductivity to prevent thermal runaway spreading and an electric vehicle including such a battery system.
  • a battery system including a plurality of battery modules and a base plate is provided.
  • the battery modules may be spaced apart from each other in a first direction, and each battery module may include a plurality of battery cells arranged and aligned in a second direction.
  • the first and second directions may be substantially perpendicular to each other and may form an angle of approximately 90 °.
  • Each battery cell includes an electrode assembly accommodated in a battery case, each battery case may include a bottom surface.
  • the base plate may support the battery module and include a first main surface in thermal contact with a bottom surface of each of the plurality of battery cases.
  • the baseplate may basically have a flat shape and / or at least one face extending between the first and second directions.
  • the level of extension in the third plate in the third direction is considerably smaller than the first and second directions, and the third direction may be substantially perpendicular to the first and second directions.
  • the thermal conductivity (thermal conductivity) of the base plate in the first direction may be greater than the thermal conductivity of the base plate in the second direction.
  • the heat discharged by the battery cells is more effectively transferred in the first direction than in the second direction.
  • the thermal conduction of the baseplate induces one-way heat diffusion across the entire cell system.
  • the total increase in heat can be reduced in each battery cell, particularly in the battery cell of the same module as the fault cell and in a cell adjacent to the fault cell, thereby reducing the risk of thermal runaway spreading.
  • the base plate may include a first material having a first thermal conductivity.
  • the base plate may further include a plurality of insulating parts extending in the first direction and having a second thermal conductivity lower than the first thermal conductivity.
  • the insulating part may be installed or integrally provided on the base plate, and may be disposed to penetrate the first main surface of the base plate or to be close to the first main surface of the base plate.
  • the insulating part may be in thermal contact with the first main surface or may be embedded, interposed, or attached to the first main surface.
  • the insulation parts may be spaced apart in the second direction and parallel to each other.
  • the insulation unit may periodically block heat conduction in the second direction through the base plate to effectively lower the coefficient component associated with at least the second direction of the heat transfer coefficient of the base plate.
  • the baseplate may consist of a first material, for example aluminum or a thermally conductive polymer, or a first mixture, for example a metal alloy or a polymer mixture.
  • the insulation may comprise a second material having a second thermal conductivity, such as a metal, polymer or ceramic having a low thermal conductivity.
  • the insulation can achieve low thermal conductivity through structural features such as multiple voids or cavities.
  • the battery case may be a rectangular battery case, a cylindrical battery case or a flexible battery pouch, as long as the bottom surface is in thermal contact with the base plate.
  • Each battery case includes a pair of first side walls vertically connected to both ends of the first wide side and the second wide side, that is, the bottom side, and aligned in a first direction.
  • the first wide side faces the second wide side and the bottom is basically rectangular in shape.
  • the battery case may further include a pair of second side walls which are vertically connected to both opposite ends of the bottom surface and face each other and perpendicular to the pair of first side walls.
  • the bottom surface, the pair of first side walls and the pair of second side walls may form a volume for the electrode assembly.
  • the cap assembly including the terminals of the battery cell is disposed opposite the bottom surface to close the case.
  • the battery cell may be a rectangular battery cell contained in a packaging can.
  • Each battery module includes a plurality of rectangular battery cells stacked in a second direction so that the second wide side surface of the first battery cell faces the first wide side surface of the adjacent second battery cell in the same module.
  • the stacked battery cells do not directly contact each other, but in the same module, a gap (spaced space) is formed in a first direction between the second wide side wall of the first battery cell and the first wide side wall of the second battery cell adjacent to the first battery cell. It is extended.
  • the gap may be void, filled with adiabatic spacers, and used for active cooling of the sides of adjacent cells.
  • Each of the insulation parts is aligned with any one of the plurality of gaps along the first direction. That is, the insulating unit is disposed between adjacent cells in the same battery module.
  • the insulation may extend along the gap in the plurality of battery modules.
  • the insulation may extend continuously in the first direction across approximately the entire length of the baseplate.
  • the insulating portion extends over the entire length of the active region of the base plate, and the battery module may be disposed in the active region of the base plate.
  • Continuous insulation interferes with heat conduction in the second direction over the entire length of the baseplate in the first direction.
  • the base plate in which the insulation portion extends continuously can be easily manufactured.
  • the insulation portion extends over the entire length of the base plate along the first direction as a broken line
  • the gap of the insulation portion formed in the broken line may be disposed between adjacent battery modules.
  • the thermal conductivity in the second direction of the base plate can also be sufficiently reduced as the mechanical stability of the base plate is increased than the above-described embodiment.
  • the insulating portion extends from the first main surface of the base plate to the second main surface of the base plate opposite to the first main surface. That is, the insulating part may completely penetrate the base plate from the first main surface to the second main surface.
  • the portion having the second thermal conductivity by the second material path follows, and vice versa. .
  • the base plate may include, for example, cutting a plurality of concave grooves extending in the first direction from the first main surface of the base plate, filling the concave grooves with a material having a lower thermal conductivity compared to the base plate, and It can be produced by introducing a step (for example, grinding of the second main surface) by scraping the base plate in the second main surface until the second main surface opposite to the one main surface touches the filled concave groove.
  • a step for example, grinding of the second main surface
  • a plurality of insulating parts made of a heat insulating and high temperature resistant polymer may be put into a mold, for example, made of aluminum, and may be firmly combined with a base plate cast from the mold.
  • the base plate according to this embodiment does not have a bypass path through which heat is conducted around the insulation, the base plate greatly reduces the second direction heat conduction of the base plate.
  • the insulating portion may be a recessed groove embedded in the first main surface of the base plate.
  • the insulating portion extends from the first main surface of the base plate toward the second main surface opposite to the first main surface, but does not completely penetrate the base plate.
  • the base plate according to this embodiment can be manufactured by cutting the concave groove as described above, the step of cutting the base plate in the second main surface of the base plate is omitted.
  • the base plate including the concave groove is cast in a mold corresponding thereto, thereby reducing the material cost.
  • the recess is filled with a material having a second thermal conductivity which remains cavities or is lower than the first thermal conductivity.
  • the recess can be filled with a heat insulating polymer. According to this embodiment, a base plate having mechanically stable anisotropy thermal conductivity can be easily manufactured.
  • the battery system according to the present invention may include a plurality of heat radiating parts extending in the first direction.
  • the heat dissipation parts may be spaced apart from each other and parallel to each other in the second direction.
  • the baseplate may additionally or alternatively comprise the heat dissipation portion with respect to the insulation portion.
  • the heat dissipating part and the insulating part may be alternate with each other along the second direction of the base plate.
  • Each heat dissipation portion is aligned with respect to at least one battery case bottom, and preferably with respect to the plurality of battery case bottoms.
  • each heat dissipation portion is in thermal contact with at least one or preferably more battery case bottoms.
  • the heat dissipation unit is provided to increase the thermal conductivity of the base plate in the first direction.
  • an anisotropic (anisotropic) thermal conductivity of an excellent and advantageous base plate can be realized or improved.
  • Heat discharged from the faulty cell is transferred away from neighboring cells in the same module by being transferred to an adjacent module along the first direction.
  • the heat dissipation part may include a third material having a third thermal conductivity higher than the first thermal conductivity, which is the thermal conductivity of the base plate, and / or the second thermal conductivity, which is the thermal conductivity of the insulating part.
  • the heat dissipation unit may be a cooling channel provided integrally with the base plate and provided to guide the refrigerant.
  • the cooling channel is provided to increase the thermal conductivity and / or heat dissipation of the baseplate in the first direction while at least filled with the refrigerant.
  • the heat dissipation portion for example the cooling channel, preferably extends continuously across the entire length of the base plate in the first direction.
  • the cooling channel may further include a refrigerant port provided so that the end portion is attached to the outside of the cooling circuit.
  • the cooling channel itself may be formed of a third material having a third thermal conductivity higher than the first thermal conductivity and / or the second thermal conductivity.
  • the third material may be copper.
  • a base plate for a battery system that is, a base plate provided to support a plurality of battery modules, wherein the base plate extends to at least one surface between a first direction and a second direction. And the thermal conductivity of the base plate in the first direction is greater than the thermal conductivity in the second direction.
  • the thickness of the base plate in the third direction perpendicular to the first direction and the second direction may be smaller than the extended length of the first direction and the second direction of the base plate.
  • the base plate for the battery system is provided to support a plurality of battery modules arranged spaced apart from each other in the first direction, the battery module includes a plurality of battery cells arranged and aligned in the second direction, each battery cell has a bottom surface
  • the branch includes an electrode assembly housed in a battery case.
  • the base plate according to the present invention effectively transfers the heat discharged from the battery cell in the first direction rather than the second direction. Therefore, heat is transferred to the cells of adjacent modules instead of directly to neighboring cells of the heat dissipating cells.
  • Anisotropic heat conduction in the baseplate induces more unidirectional heat diffusion between the battery cells supported by the baseplate.
  • the baseplate can reduce the maximum increase in heat in each battery cell, and can reduce the risk of thermal runaway diffusion.
  • the base plate may include a first material having a first thermal conductivity.
  • the base plate may be made of a first material or a first mixed material having a first thermal conductivity.
  • the base plate may further include a plurality of insulating parts extending in the first direction and having a second thermal conductivity lower than the first thermal conductivity.
  • the insulating part may be integrally provided or attached to the base plate, and may be disposed to penetrate the first main surface of the base plate or to be close to the first main surface in the base plate.
  • the insulating portion may be in thermal contact with the first main surface and may be embedded or attached to the first main surface.
  • the plurality of insulation parts may be spaced apart from each other in a second direction and provided in parallel with each other.
  • the insulating section periodically interrupts the heat conduction of the base plate in the second direction to effectively lower the components of the heat transfer coefficient of the base plate, at least in relation to the second direction.
  • the baseplate consists of a first material, for example aluminum or a thermal conductivity polymer, or a first mixture, for example a metal alloy or a polymer mixture.
  • the insulation preferably comprises a second material having a second thermal conductivity, such as a metal, polymer or ceramic having a low thermal conductivity.
  • the insulation can achieve low thermal conductivity through structural features such as multiple voids or cavities.
  • the insulation may extend continuously in the first direction across substantially the entire length of the baseplate.
  • the insulating portion extends over the entire length of the active region of the base plate, and the battery module may be disposed in the active region of the base plate.
  • Continuous insulation interferes with heat conduction in the second direction over the entire length of the baseplate in the first direction.
  • the base plate in which the insulation portion extends continuously can be easily manufactured.
  • the insulating portion may extend over the entire length of the base plate along the first direction as a broken line.
  • the thermal conductivity in the second direction of the base plate can also be sufficiently reduced as the mechanical stability of the base plate is increased than the above-described embodiment.
  • the insulating portion extends from the first main surface of the base plate to the second main surface of the base plate opposite to the first main surface. That is, the insulating part may completely penetrate the base plate from the first main surface to the second main surface.
  • the portion having the second thermal conductivity by the second material follows, and vice versa. .
  • the base plate may include, for example, cutting a plurality of concave grooves extending in the first direction from the first main surface of the base plate, filling the concave grooves with a material having a lower thermal conductivity compared to the base plate, and It can be produced by introducing the step of scraping the base plate in the second main surface until the second main surface opposite to the one main surface touches the filled concave groove.
  • a plurality of insulating parts made of a heat insulating and high temperature resistant polymer may be put into a mold, and may be firmly coupled to a base plate made of, for example, aluminum and cast from the mold.
  • the second plate may significantly reduce the heat conduction of the base plate in the insulating part.
  • the insulating portion may be a concave groove interposed or embedded in the first main surface of the base plate. In other words, the insulation does not penetrate the entire thickness of the base plate.
  • the base plate according to this embodiment can be manufactured by cutting the concave groove as described above, and the step of cutting (grinding) the base plate in the second main surface of the base plate is omitted.
  • the base plate including the concave groove is cast in a mold corresponding thereto, thereby reducing the material cost.
  • the recess is filled with a material having a second thermal conductivity which remains cavities or is lower than the first thermal conductivity.
  • the recess can be filled with a heat insulating polymer. According to this embodiment, a base plate having mechanically stable anisotropy thermal conductivity can be easily manufactured.
  • the battery system according to the present invention may include a plurality of heat radiating parts extending in the first direction.
  • the heat dissipation parts may be spaced apart from each other and parallel to each other in the second direction.
  • the baseplate may additionally or alternatively comprise the heat dissipation portion with respect to the insulation portion.
  • the heat dissipation unit and the insulation unit may be alternately arranged along the second direction of the base plate.
  • the base plate may be provided such that the battery cell is supported on the upper side of the heat dissipation part so that the bottom surface of the battery cell is in thermal contact with the heat dissipation part.
  • the heat dissipation unit is provided to increase the thermal conductivity of the base plate in the first direction.
  • the heat dissipation part may include a third material having a third thermal conductivity higher than the first thermal conductivity, which is the thermal conductivity of the base plate, and / or the second thermal conductivity, which is the thermal conductivity of the insulating part.
  • the heat dissipation unit may be a cooling channel provided integrally with the base plate and provided to guide the refrigerant.
  • the cooling channel is arranged to increase the thermal conductivity and / or heat dissipation (heat dissipation) of the baseplate in the first direction while at least filled with the refrigerant.
  • the heat dissipation portion eg the cooling channel, preferably extends continuously across the entire length of the base plate in the first direction.
  • the cooling channel may further include a refrigerant port provided at the distal end to be attached to the outside of the cooling circuit.
  • the cooling channel may be formed of a third material having a third thermal conductivity higher than the first thermal conductivity and / or the second thermal conductivity.
  • the third material may be copper.
  • the heat dissipation amount as well as the thermal conductivity in the first direction of the base plate is increased as compared to the second direction.
  • Another aspect of the invention relates to an electric vehicle comprising a battery system as described above and / or comprising a base plate as described above.
  • Embodiments of the present invention allow the thermal conductivity of the base plate in the first direction to be greater than the thermal conductivity of the base plate in the second direction, inducing unidirectional heat diffusion across the battery system, thereby reducing the risk of thermal runaway propagation. It is possible to provide a battery system and an electric vehicle including the same.
  • FIG. 1 is a perspective view of a battery cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a battery cell according to an embodiment of the present invention.
  • FIG 3 is a side view schematically showing a conventional battery system.
  • FIG. 4 is a side view schematically showing a battery system according to a first embodiment of the present invention.
  • FIG. 5 is a plan view schematically illustrating a battery system and a base plate according to a first embodiment of the present invention.
  • FIG. 6 is a plan view schematically illustrating a battery system and a base plate according to a second embodiment of the present invention.
  • FIG. 7 is a side view schematically showing a battery system according to a third embodiment of the present invention.
  • a component when referred to as being 'connected' or 'connected' to another component, the component may be directly connected to or connected to the other component, but in between It will be understood that may exist.
  • a component when referred to as 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
  • the term 'comprises' or 'having' is only intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more. It is to be understood that it does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, actions, components, parts or combinations thereof.
  • 'and / or' includes any combination of the plurality of listed items or any of the plurality of listed items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • FIG. 1 is a perspective view of a battery cell according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line IV-IV of FIG.
  • the battery cell 80 includes an electrode assembly 10 and a case 26 containing the electrode assembly 10 and the electrode assembly 10. do.
  • the battery cell 80 may also include a cap assembly 30 for sealing the opening of the case 26.
  • the battery cell 80 will be described as an example that is not limited to a lithium ion secondary battery.
  • the electrode assembly 10 may be formed of a jelly roll type electrode assembly in which the anode 11 and the cathode 12 are spirally wound with the separator 13 interposed therebetween.
  • the positive electrode 11 and the negative electrode 12 may each include a coating area of a current collector formed of a thin metal foil coated with an active material, and the positive and negative electrode uncoated portions 11a and 12a of the current collector not coated with the active material. Each may include.
  • the coating area of the anode 11 may be formed by coating an active material such as a transition metal oxide on a substrate formed of a metal foil such as aluminum foil.
  • the coating area of the cathode 12 may be formed by coating an active material such as carbon, graphite, or the like on a substrate formed of a metal foil such as copper or nickel foil.
  • the positive electrode non-coating region 11a may be formed at one end in the longitudinal direction of the positive electrode 11, and the negative electrode non-coating region 12a may be formed at one end in the longitudinal direction of the negative electrode 12.
  • the positive electrode non-coating portion 11a and the negative electrode non-coating portion 12a may be opposite sides with respect to the coating area.
  • the separator 13 may include a plurality of separators that can be wound in a spiral after the anode 11, the cathode 12, and the separator 13 are alternately positioned.
  • the present invention is not limited thereto, and the electrode assembly 10 may have a structure including a plurality of anodes 11, separators 13, and cathodes 12 repeatedly stacked in a sheet shape.
  • the electrode assembly 10 may be accommodated in the case 26 together with the electrolyte.
  • the electrolyte may be composed of an organic solvent such as EC, PC, DEC, EMC, and a lithium salt such as LiPF 6 or LiBF 4.
  • the electrolyte can be in liquid, solid or gel state.
  • the case 26 may be configured in a substantially rectangular parallelepiped shape, and an opening may be formed in one surface thereof.
  • the case 26 may be formed of a metal such as aluminum.
  • the case 26 may include a substantially rectangular bottom surface 27, and may include a pair of first side walls corresponding to the wide side surfaces 18 and 19 to form a space for accommodating the electrode assembly 10. Each may include a pair of second sidewalls connected perpendicularly to an end of the bottom surface.
  • the first side walls 18 and 19 may be provided to face each other, and the second side walls may be arranged to face each other and may be connected to the first side walls 18 and 19.
  • the length of the edge at which the bottom surface 27 and the first side walls 18 and 19 are connected to each other may be longer than the length of the edge at which the bottom surface 27 and the second side walls are connected to each other.
  • the adjacent first and second side walls are at an angle of approximately 90 °.
  • the cap assembly 30 may include a cap plate 31 coupled to the case 26 to cover the opening of the case 26, and the cap assembly 30 may be electrically connected to the negative electrode 11 and the positive electrode 12, respectively. It may include a positive terminal (first terminal) 21 and a negative terminal (second terminal) 22 protruding outward from the plate 31.
  • Cap plate 31 may be provided in the form of a plate extending in one direction, it may be coupled to the opening of the case 26.
  • the cap plate 31 may include an injection hole 32 and a vent hole 34 communicating with an inside of the cap assembly 30.
  • the inlet 32 can be configured to allow the injection of electrolyte, and a sealing cap 38 can be mounted thereon or in it.
  • the vent member 39 may be opened at a set pressure and provided on the vent hole 34, and may include a notch 39a to facilitate the opening thereof.
  • the positive electrode terminal 21 and the negative electrode terminal 22 may be mounted to protrude upward from the cap plate 31.
  • the positive electrode terminal 21 may be electrically connected to the positive electrode 11 through the current collector tab 41, and the negative electrode terminal 22 may be electrically connected to the negative electrode 12 through the current collector tab 42.
  • a terminal connecting member 25 for electrically connecting the positive electrode terminal 21 and the current collecting tab 41 may be mounted between the positive electrode terminal 21 and the current collecting tab 41.
  • the terminal connection member 25 may be inserted into a hole formed in the positive electrode terminal 21 so that the lower portion thereof may be welded to the current collector tab 41.
  • the sealing gasket 59 may be inserted between the terminal connecting member 25 and the cap plate 31 through a hole in which the terminal connecting member 25 extends.
  • a lower insulating member 43 into which the lower portion of the terminal connection member 25 may be inserted may be mounted to the lower portion of the cap plate 31.
  • a connecting plate 58 for electrically connecting the positive electrode terminal 21 and the cap plate 31 may be mounted between the positive electrode terminal 21 and the cap plate 31.
  • the terminal connecting member 25 may be inserted into the connecting plate 58. Therefore, the cap plate 31 and the case 26 can be charged with the positive electrode.
  • a terminal connecting member 25 for electrically connecting the negative electrode terminal 22 and the current collecting tab 42 is installed between the negative electrode terminal 22 and the current collecting tab 42. Can be.
  • the terminal connection member 25 may be inserted into a hole formed in the negative electrode terminal 22 so that the upper and lower portions of the terminal connection member 25 may be welded to the negative electrode terminal 22 and the current collector tab 42, respectively.
  • a sealing gasket may be inserted between the negative electrode terminal 22 and the cap plate 31 through a hole through which the terminal connecting member 25 may extend.
  • a lower insulating member 45 for insulating the negative electrode terminal 22 and the current collector tab 42 from the cap plate 31 may be mounted below the cap plate 31.
  • An upper insulating member 54 for electrically insulating the negative electrode terminal 22 and the cap plate 31 may be mounted between the negative electrode terminal 22 and the cap plate 31.
  • the terminal connecting member 25 may be inserted into a hole formed in the upper insulating member 54.
  • the cap assembly 30 may include a shorting hole 37 and a shorting member 56 installed in the shorting hole 37 and shorting the positive electrode 11 and the negative electrode 12.
  • the short circuit member 56 may be provided between the upper insulation member 54 and the cap plate 31, and the upper insulation member 54 may be configured to have a cutout portion that may be formed at a position corresponding to the short circuit member 56. Can be.
  • the short circuit member 56 may overlap the negative electrode terminal 22 exposed through the cutout and may be positioned to be separated.
  • the short circuit member 56 may be between the negative electrode terminal 22 and the vent hole 34, and may be located closer to the negative electrode terminal 22 than the vent hole 34.
  • the short circuit member 56 may include a convex curved portion curved toward the electrode assembly 10, and may include an edge portion that may be formed outside the curved portion and fixed to the cap plate 31. .
  • the short circuit member 56 may be deformed to cause a short circuit.
  • the internal pressure of the battery cell 80 may increase.
  • the bent portion When the internal pressure of the battery cell 80 rises above a certain level (for example, a set level), the bent portion may be deformed to be curved concave in the opposite direction, whereby the shorting member 56 is connected to the negative electrode terminal 22. A short circuit occurs in contact.
  • a certain level for example, a set level
  • FIG 3 shows a schematic side view of a battery system 100 according to the prior art.
  • the battery module 90 including the plurality of stacked battery cells 80 is disposed above the base plate 60.
  • Each battery cell 80 is a rectangular battery cell 80 as described above, and includes a battery case 26.
  • the case 26 includes a bottom surface 27 opposite the cap assembly including the terminal 21, which bottom surface 27 is in thermal contact with the base plate 60.
  • the cells 80 have a gap 28 between the adjacent battery cells 81, 82, with the second wide side 19 of the first battery cell facing the first wide side 18 of the second battery cell 82. It is laminated so that it is formed.
  • the base plate 60 is a flat plate formed of a single body by a single material.
  • FIG 4 and 5 show schematic side and top views of (A) battery system 100 and (B) baseplate 60 according to the first embodiment of the invention.
  • the battery system 100 includes a plurality of battery modules 90 spaced apart in the first direction y.
  • Each battery module 90 includes a plurality of rectangular battery cells 80 as described above stacked or arranged in a second direction (x).
  • Each battery cell 80 includes a battery case 26 and a cap assembly 30, and the cap assembly includes positive and negative terminals 21 and 22, for example.
  • Each battery case 26 includes a bottom surface 27 and a pair of first side walls 18 and 19.
  • the cells are positioned on the base plate 60 so that the bottom surface 27 of each battery case 26 is in thermal contact with the first main surface 61 of the base plate 60.
  • the first side walls 18, 19 or wide side surfaces extend along the first direction and are aligned to face the first direction. In other words, the first side wall is aligned with the first direction.
  • the plurality of cells 80 may face the first wide side surface 18 of the second battery cell 82 so that the second wide side surface 19 of the first battery cell 81 faces each other. It is arranged in the second direction x. That is, a gap 28 between cells 80 is formed between the opposing wide sides 18, 19 of two neighboring cells 80. In addition, the gap 28 is formed such that its extended longitudinal direction is parallel to the first direction y.
  • the gaps 28 formed in the different battery modules 90 are arranged together on the same straight line in the first direction y. Aligned so that
  • the base plate 60 is a cast aluminum base plate 60 including a plurality of insulating parts 70.
  • the insulating parts 70 extending in the first direction are spaced apart from each other and parallel to each other in the second direction x.
  • the insulating part 70 crosses substantially the entire length of the base plate 60 along the first direction y of the base plate 60, and only a narrow edge region of the base plate 60 may be left.
  • Each insulator 70 is aligned with a plurality of gaps 28 between adjacent cells 80 in the plurality of battery modules 90. That is, the plurality of gaps 28 may be located above the insulating portion 80.
  • the insulating part 70 is made of a heat insulating polymer and is formed from the first main surface 61 of the base plate 60 from the first main surface 61 of the base plate 60 in the third direction z perpendicular to the x and y directions. Extends over the entire height of the baseplate 60 to 62.
  • the insulating portion 70 extending over the entire height of the base plate 60 may be formed through the following process.
  • the base plate 60 according to the first embodiment is provided by casting a flat aluminum base plate 60 and cutting a plurality of concave grooves in the first main surface of the flat base plate 60.
  • the cutting depth of the concave groove is adjusted so that the concave groove does not extend to the second main surface 62, and the recessed groove is filled with a heat insulating polymer after cutting.
  • the base plate is ground in the second main surface until the filled concave groove is exposed in the second main surface 62.
  • the concave groove extends to the second main surface, and thus the insulation portion is provided to extend over the entire height of the base plate.
  • the manageability of the base plate 60 in the manufacturing process It can be improved and breakage can be effectively prevented.
  • the base plate 60 Due to the heat insulating polymer, the base plate 60 is kept integral and the first direction y thermal conductivity of the base plate 60 is greater than the second direction thermal conductivity of the base plate 60. Thermal conduction in the second direction x is interrupted or suppressed at each insulation unit 70.
  • the battery system 100 includes a plurality of battery modules 90 and a plurality of battery cells 80 arranged as described with reference to FIGS. 4 and 5.
  • the base plate 60 of the second embodiment differs from the first embodiment in that each of the insulating parts 70 extends in a broken line along the first direction y, and between the insulating parts 70 in the first direction.
  • the gaps 71 are disposed between the adjacent battery modules 90.
  • the insulating part 70 may not extend over the entire length of the base plate 60 in the z direction perpendicular to the x and y directions.
  • the insulating part 70 is formed of a plurality of concave grooves 70 in the first main surface 61 of the base plate 60.
  • the recess 70 is cut into the plane 61 of the cast aluminum baseplate 60 or the baseplate 60 is initially cast with the recess in a suitable mold.
  • the recess 70 may be left hollow or filled with a heat insulating material.
  • the base plate 60 according to the second embodiment may be mechanically more stable than the first embodiment.
  • FIG. 7 shows a schematic side view of a battery system 100 according to a third embodiment including a plurality of battery modules 90 and a battery cell 80 as described above.
  • the base plate 60 is basically provided as described in connection with the first embodiment, but additionally includes a plurality of heat dissipating parts.
  • the heat dissipation unit is a coolant duct or a cooling channel 72 embedded in the aluminum base plate 60, and each cooling channel 72 includes a plurality of battery cells arranged in a straight line along the y direction in different battery modules 90. 80) aligned with the bottom surface (27).
  • the cooling channel 72 extends across the entire length of the base plate 60 along the first direction y and is configured to be connected to an external cooling circuit.
  • the baseplate 60 is basically manufactured as described with respect to the first embodiment, and a copper cooling channel 72 is placed in the mold before the aluminum baseplate 60 is cast.
  • the recess is cut between adjacent cooling channels 72.
  • the base plate 60 according to the third embodiment has an increased thermal conductivity and heat dissipation along the first direction y so that anisotropy with respect to thermal conductivity between the first and second directions is increased.
  • the heat of a battery cell 80 which failed during thermal runaway is mainly transferred to the adjacent battery module 90 and is not transferred to the adjacent battery cell of the same battery module 90.
  • cap assembly 31 cap plate
  • vent member 39a notch
  • base plate 61 the first main surface

Abstract

The present invention relates to a battery system and an electric vehicle comprising the same, the battery system comprising a plurality of battery cells arranged so as to be spaced apart from each other in a first direction and respectively arranged in a second reaction, wherein each of the plurality of battery cells comprises: a plurality of battery modules including an electrode assembly and accommodated in a battery case having the bottom surface; and a base plate supporting the battery modules and including a first main surface making thermal contact with the bottom surface of the battery case, and a heat conductivity according to a first direction of the base plate is greater than a heat conductivity according to a second direction of the base plate.

Description

전지시스템 및 이를 포함하는 전기자동차Battery system and electric vehicle including same
본 발명은 전지시스템 및 전기자동차에 관한 것으로, 열 폭주 확산을 방지하도록 마련된 베이스플레이트를 포함하는 전지시스템과 이를 포함하는 전기자동차에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery system and an electric vehicle, and relates to a battery system including a base plate provided to prevent thermal runaway spreading and an electric vehicle including the same.
충전식 또는 2차전지는 충전 및 방전이 반복될 수 있다는 점에서 1차전지와 다르고, 1차전지는 화학물질에서 전기에너지로의 비가역적 변환만을 제공한다.Rechargeable or secondary batteries differ from primary batteries in that charging and discharging can be repeated, and primary batteries provide only an irreversible conversion of chemicals into electrical energy.
저용량의 충전식 전지는 휴대전화, 노트북, 컴퓨터 및 캠코더와 같은 소형 전기장치의 전원으로 사용되고, 대용량의 충전식 전지는 하이브리드 자동차 등의 전원으로 사용된다.Low-capacity rechargeable batteries are used as power sources for small electrical devices such as mobile phones, laptops, computers and camcorders, while large-capacity rechargeable batteries are used as power sources for hybrid vehicles.
일반적으로, 2차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전극조립체와, 상기 전극조립체를 수용하는 케이스와, 상기 전극조립체와 전기적으로 연결되는 전극단자를 포함한다.In general, the secondary battery includes an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, a case accommodating the electrode assembly, and an electrode terminal electrically connected to the electrode assembly.
양극, 음극 및 전해액의 전기 화학적 반응을 통해 전지의 충전 및 방전이 가능하도록 하기 위해 상기 케이스에는 전해액이 주입된다. 케이스의 형상은 예로써 원통형 또는 직사각형이며 전지의 용도에 따라 다르다.The electrolyte is injected into the case to enable the charging and discharging of the battery through the electrochemical reaction of the positive electrode, the negative electrode, and the electrolyte. The shape of the case is, for example, cylindrical or rectangular, depending on the use of the battery.
충전식 전지는 예컨대 하이브리드 차량의 모터 구동 등을 위해 고에너지 밀도를 제공하도록 직렬 및/또는 병렬로 결합된 복수의 단위 전지셀로 형성된 전지모듈 형태로 사용될 수 있다.The rechargeable battery may be used in the form of a battery module formed of a plurality of unit battery cells coupled in series and / or in parallel to provide a high energy density, for example, for driving a motor of a hybrid vehicle.
즉, 전지모듈은 예컨대 전기자동차용으로 고전력 충전식 전지를 구현하기 위해 요구되는 전력량에 따라 복수의 단위 전지셀의 전극단자를 상호 연결하여 형성된다.That is, the battery module is formed by interconnecting the electrode terminals of the plurality of unit battery cells according to the amount of power required to implement a high power rechargeable battery for an electric vehicle, for example.
전지모듈은 블록형 또는 모듈형으로 설계될 수 있다. 블록형의 경우, 각 전지는 공동 집전체 및 공동 전지관리시스템에 결합되고, 상기 전지는 공동 하우징에 배치될 수 있다.The battery module may be designed in a block or modular form. In the case of the block type, each battery is coupled to a common current collector and a common battery management system, and the cells can be disposed in the common housing.
모듈형의 경우, 복수의 전지셀이 서브모듈을 형성하도록 연결되고, 몇몇 서브모듈이 전지모듈을 형성하도록 연결된다. 전지관리 기능이 전지모듈 또는 서브모듈 레벨에서 적어도 부분적으로 구현될 수 있으므로 호환성이 개선될 수 있다.In the case of the modular type, a plurality of battery cells are connected to form a sub module, and some sub modules are connected to form a battery module. The battery management function may be implemented at least partially at the battery module or submodule level, thereby improving compatibility.
하나 또는 그 이상의 전지모듈은 기계적 및 전기적으로 통합되고, 열관리시스템이 구비되며, 전지시스템을 구성하기 위해 하나 이상의 전기소비장치와 연결된다.One or more battery modules are mechanically and electrically integrated, have a thermal management system, and are connected with one or more electrical consumer devices to constitute the battery system.
전지시스템의 기계적 통합은 예컨대 서브모듈과 같은 개별 부품간의 적절한 기계적 연결을 요구하고, 예컨대 자동차와 같이 전기소비장치를 제공하는 시스템 구조들과의 적절한 기계적 연결을 요구한다.Mechanical integration of the battery system requires proper mechanical connection between individual components, such as for example submodules, and proper mechanical connection with system structures that provide electrical consumption devices, such as, for example, automobiles.
이러한 연결들은 전지시스템의 평균수명동안 기능이 유지되도록 설계되어야 하고, 소비자의 사용 과정에서 제공되는 부하를 고려하여 설계되어야 한다.These connections should be designed to maintain functionality for the life of the battery system and to take into account the load provided during consumer use.
또한 모바일 장치들의 경우, 설치공간 및 호환성에 대한 요구사항이 충족되어야 한다.In addition, for mobile devices, requirements for footprint and compatibility must be met.
전지모듈의 기계적 통합은 베이스플레이트를 제공하고 그 위에 각 전지셀 또는 서브모듈을 위치시킴으로써 달성될 수 있다.Mechanical integration of the battery module may be accomplished by providing a base plate and placing each battery cell or submodule thereon.
전지셀 또는 서브모듈을 고정하는 것은 캐리어플레이트에 설치된 함입부, 볼트나 스크류와 같은 기계적 연결요소 또는 셀이나 서브모듈의 구속에 의해 달성될 수 있다.Fixing the battery cell or submodule may be accomplished by an indentation installed in the carrier plate, by a mechanical connection element such as a bolt or screw, or by the restraint of the cell or submodule.
상기 구속은 사이드플레이트를 캐리어플레이트의 측부에 고정하거나, 상부측에 다른 캐리어플레이트를 제공하고 이를 기존의 제1캐리어플레이트 및/또는 사이드플레이트에 고정함으로써 달성될 수 있다.The restraint can be accomplished by securing the sideplates to the sides of the carrierplate or by providing another carrierplate on the top side and fixing them to the existing first carrierplate and / or sideplates.
따라서, 캐리어플레이트 및/또는 사이드플레이트가 셀 또는 서브모듈의 냉각을 위한 냉매덕트를 포함하는 다중레벨 전지모듈이 구성될 수 있다.Accordingly, a multilevel battery module may be constructed in which the carrier plate and / or the side plate include a refrigerant duct for cooling the cell or submodule.
서브모듈의 기계적 통합은 기계적으로 강화된 전기적 연결부재의 제공 또는 상기 전기적 연결부재에 추가하여 캐리어 빔 또는 스트럿에 전지셀을 고정하여 달성될 수 있다.Mechanical integration of the submodule can be achieved by providing a mechanically strengthened electrical connection member or by fixing the battery cell to a carrier beam or strut in addition to the electrical connection member.
추가적으로/선택적으로, 서브모듈은 전지서브모듈의 표면 일부 또는 전부를 덮는 각 케이싱에 배치될 수 있고, 예컨대 캐리어플레이트상의 전지모듈내에 상기 케이싱과 함께 배치될 수 있다.Additionally / optionally, the submodule may be arranged in each casing covering part or all of the surface of the battery submodule, for example together with the casing in the battery module on the carrier plate.
모듈의 설계에서 전지시스템의 전기적 통합을 위해, 병렬로 연결된 복수의 셀을 가지는 서브모듈들이 직렬로 연결되거나(XsYp), 직렬로 연결된 복수의 셀을 가지는 서브모듈들이 병렬로 연결된다 (XpYs).In the design of the module, for the electrical integration of the battery system, submodules having a plurality of cells connected in parallel are connected in series (XsYp), or submodules having a plurality of cells connected in series are connected in parallel (XpYs).
XpYs 유형 서브모듈은 고전압을 발생시킬 수 있지만, 각 셀의 전압 수준이 각각 제어되어야 하므로 배선의 복잡도가 증가한다. XsYp 유형 서브모듈에서는 병렬로 연결된 셀들의 전압 수준이 자동으로 균형을 이룬다. XpYs type submodules can generate high voltages, but the wiring complexity increases because the voltage levels of each cell must be controlled individually. In the XsYp type submodule, the voltage levels of cells connected in parallel are automatically balanced.
따라서, 서브모듈 레벨에서 전압을 제어하는 것으로 충분하고, 배선 복잡도가 감소된다. 병렬로 연결된 셀의 서브모듈에서는 셀들의 용량이 합쳐지므로 XsYp 유형 서브모듈은 대부분 저용량 셀에 사용된다.Therefore, it is sufficient to control the voltage at the submodule level, and the wiring complexity is reduced. In the submodules of cells connected in parallel, the capacities of the cells are combined, so the XsYp type submodule is mostly used for low capacity cells.
전지시스템에 연결된 다양한 전기소비장치의 동적 전력수요를 충족시키기 위해 전지 출력과 충전을 정적 제어하는 것만으로는 충분하지 않다. 따라서, 전지시스템과 전기소비장치의 컨트롤러 사이에 지속적인 정보 교환이 이루어져야 한다.It is not enough to statically control battery output and charging to meet the dynamic power demands of various electrical consumers connected to the battery system. Therefore, a continuous exchange of information must be made between the battery system and the controller of the electric consumer device.
이러한 정보에는 전지시스템의 실제 충전상태(SoC), 잠재적인 전기적 성능, 충전능력 및 내부저항은 물론 실제 또는 예상 전력수요 또는 전기소비장치의 잔여량이 포함된다.This information includes the actual SoC, potential electrical performance, charge capacity and internal resistance of the battery system, as well as the actual or expected power demand or remaining power of the consumer.
전지시스템은 통상적으로 이러한 정보를 처리하기 위한 전지관리시스템을 포함한다.The battery system typically includes a battery management system for processing this information.
전지시스템의 열제어를 위해, 충전식 전지로부터 발생된 열을 효율적으로 배출, 방출 및/또는 분산시킴으로써 적어도 하나의 전지모듈을 안전하게 사용하기 위한 열관리시스템이 요구된다.For thermal control of battery systems, there is a need for a thermal management system to safely use at least one battery module by efficiently discharging, dissipating and / or dissipating heat generated from rechargeable batteries.
열 배출/방출/분산이 충분히 수행되지 않으면, 각 전지셀 사이에 온도편차가 발생하여 적어도 하나의 전지모듈은 요구되는 전력량을 생성할 수 없게 된다.If heat dissipation / discharge / dispersion is not sufficiently performed, a temperature deviation occurs between each battery cell, so that at least one battery module cannot generate the required amount of power.
게다가, 내부온도의 상승은 그 내부에서 비정상적인 반응을 일으킬 수 있으므로, 충전식 전지의 충전 및 방전 성능이 저하되고 그 수명이 단축될 수 있다.In addition, an increase in the internal temperature can cause abnormal reaction therein, so that the charge and discharge performance of the rechargeable battery can be degraded and its life can be shortened.
따라서, 셀로부터 열을 효율적으로 배출/방출/분산시키는 냉각장치가 필요하다.Therefore, there is a need for a cooling device that efficiently discharges / discharges / disperses heat from the cell.
이러한 비정상 작동조건의 예로는, 심하게 과열되거나 과충전된 리튬 이온 셀에 의해 일어날 수 있는 전지셀의 열폭주(thermal runaway)가 있다.An example of such abnormal operating conditions is the thermal runaway of a battery cell, which can be caused by a severely overheated or overcharged lithium ion cell.
열폭주가 일어나기 위한 임계온도는 일반적으로 150°C 이상이며, 국부적인 고장, 셀의 내부 단락, 불량 전기 접촉에 의한 열 발생 또는 인접한 셀의 단락으로 인해 상기 임계온도를 초과할 수 있다.The critical temperature for thermal runaway is generally above 150 ° C. and may exceed the critical temperature due to local failure, internal short circuit of the cell, heat generation by poor electrical contact or short circuit of adjacent cells.
열폭주는 모든 유효 물질이 소모될 때까지 셀 내부에서 자체 가속되는 화학적 과정이며, 그 동안 고장셀이 700°C 이상의 셀 온도까지 가열될 수 있고 대량의 고온가스가 시스템으로 방출될 수 있다.Thermal runaway is a chemical process that self-accelerates inside the cell until all active material is consumed, during which fault cells can be heated to cell temperatures above 700 ° C and large amounts of hot gas can be released into the system.
고장셀은 열폭주 중에 인접한 셀에 다량의 열을 전달할 수 있다. 상기 인접한 셀들은 고장셀에 직접 접촉, 베이스플레이트를 통한 열전도 및/또는 그들의 전기적 연결부재를 통해 열을 전달받는다.Fault cells can transfer large amounts of heat to adjacent cells during thermal runaway. The adjacent cells are in direct contact with the faulty cell, heat conduction through the baseplate and / or heat transfer through their electrical connection members.
따라서, 인접한 셀들 또한 열폭주 상태로 변하기 쉽고, 열폭주 확산은 전지모듈 전체에 걸쳐 결국 전지 화재 및/또는 전기자동차의 전체 손실을 야기할 수 있다.Thus, adjacent cells are also susceptible to thermal runaway, and thermal runaway spread can eventually lead to battery fire and / or total loss of the electric vehicle throughout the battery module.
한편, 전지시스템은 열 방출을 위한 능동적 냉각수단이 제공된 베이스플레이트를 포함할 수 있다. 그러나, 이러한 능동적 냉각수단은 통상적으로 부착된 전지셀들에 균일한 냉각을 제공하도록 마련된다.On the other hand, the battery system may include a base plate provided with active cooling means for heat dissipation. However, such active cooling means are typically provided to provide uniform cooling to the attached battery cells.
따라서, 고장셀에 의한 온도 구배에 따른 열의 확산과 다수의 고장셀 발생 위험이 지속된다.Accordingly, the risk of heat diffusion and the occurrence of a plurality of faulty cells due to the temperature gradient by the faulty cells continues.
그러므로 본 발명의 목적은 종래 기술의 결점의 적어도 일부를 극복하거나 감소시키고, 의도하지 않은 열 확산 및 열적 고장을 방지하기 위한 향상된 전지셀 냉각을 가지는 전지시스템을 제공하는 것이다.It is therefore an object of the present invention to provide a battery system having improved battery cell cooling to overcome or reduce at least some of the drawbacks of the prior art and to prevent unintended heat spreading and thermal failure.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art are only for the purpose of improving the understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the related art already known to those skilled in the art.
본 발명의 실시예들은 열 폭주 확산을 방지하기 위해 이방성 열전도율을 가지는 베이스플레이트를 포함하는 전지시스템 및 그러한 전지시스템을 포함하는 전기자동차를 제공하고자 한다.Embodiments of the present invention are to provide a battery system including a base plate having anisotropic thermal conductivity to prevent thermal runaway spreading and an electric vehicle including such a battery system.
본 발명의 일 실시예에 따르면, 복수의 전지모듈 및 베이스플레이트를 포함하는 전지시스템이 제공된다.According to an embodiment of the present invention, a battery system including a plurality of battery modules and a base plate is provided.
전지모듈은 제1방향으로 서로 이격되어 배치되고, 각 전지모듈은 제2방향으로 배열되고 정렬된 복수의 전지셀을 포함할 수 있다.The battery modules may be spaced apart from each other in a first direction, and each battery module may include a plurality of battery cells arranged and aligned in a second direction.
상기 제1방향 및 제2방향은 실질적으로 서로 수직하고, 대략 90°의 각도를 이룰 수 있다.The first and second directions may be substantially perpendicular to each other and may form an angle of approximately 90 °.
각각의 전지셀은 전지케이스 내에 수용된 전극조립체를 포함하며, 각 전지케이스는 바닥면을 포함할 수 있다.Each battery cell includes an electrode assembly accommodated in a battery case, each battery case may include a bottom surface.
베이스플레이트는 전지모듈을 지지하고, 복수의 전지케이스 각각의 바닥면과 열 접촉하는 제1메인면을 포함할 수 있다.The base plate may support the battery module and include a first main surface in thermal contact with a bottom surface of each of the plurality of battery cases.
베이스플레이트는 기본적으로 편평한 형상 및/또는 제1방향과 제2방향 사이에서 연장된 적어도 하나의 면을 가질 수 있다. 베이스플레이트에서 제3방향으로의 연장 수준은 제1 및 제2방향보다 상당히 작고, 상기 제3방향은 상기 제1 및 제2방향에 대해 실질적으로 수직일 수 있다.The baseplate may basically have a flat shape and / or at least one face extending between the first and second directions. The level of extension in the third plate in the third direction is considerably smaller than the first and second directions, and the third direction may be substantially perpendicular to the first and second directions.
제1방향에 대한 베이스플레이트의 열전도율(열전도율)은 제2방향에 대한 베이스플레이트의 열전도율보다 클 수 있다.The thermal conductivity (thermal conductivity) of the base plate in the first direction may be greater than the thermal conductivity of the base plate in the second direction.
따라서, 본 발명에 따른 전지시스템에서 전지셀에 의해 배출된 열은 제2방향보다 제1방향으로 더욱 효과적으로 전달된다.Therefore, in the battery system according to the present invention, the heat discharged by the battery cells is more effectively transferred in the first direction than in the second direction.
그러므로 열은 열 배출 셀과 동일한 모듈 내의 바로 이웃하는 셀로부터 멀리 이동되며 인접한 전지모듈의 셀로 이동된다.Therefore, heat is moved away from the immediately neighboring cell in the same module as the heat dissipation cell and transferred to the cells of the adjacent battery module.
따라서, 베이스플레이트의 열전도는 전체 전지시스템에 걸쳐 일방향적인 열 확산이 유도된다.Thus, the thermal conduction of the baseplate induces one-way heat diffusion across the entire cell system.
이로써, 각 전지셀에서 특히 고장셀과 동일한 모듈의 전지셀 및 고장셀과 인접한 셀에서 열의 총 증가량이 감소될 수 있는 바, 열폭주 확산의 위험이 감소된다.As a result, the total increase in heat can be reduced in each battery cell, particularly in the battery cell of the same module as the fault cell and in a cell adjacent to the fault cell, thereby reducing the risk of thermal runaway spreading.
본 발명에 따른 전지시스템의 일 실시예에서, 베이스플레이트는 제1열전도율을 가지는 제1물질을 포함할 수 있다.In one embodiment of the battery system according to the present invention, the base plate may include a first material having a first thermal conductivity.
베이스플레이트는 제1방향으로 연장되고 제1열전도율보다 낮은 제2 열전도율을 가지는 복수의 절연부를 더 포함할 수 있다.The base plate may further include a plurality of insulating parts extending in the first direction and having a second thermal conductivity lower than the first thermal conductivity.
상기 절연부는 베이스플레이트에 설치되거나 일체로 마련되며, 베이스플레이트의 제1메인면을 관통하거나 베이스플레이트 내의 제1메인면에 근접하게 배치 될 수 있다.The insulating part may be installed or integrally provided on the base plate, and may be disposed to penetrate the first main surface of the base plate or to be close to the first main surface of the base plate.
절연부는 제1메인면과 열 접촉되거나 제1메인면에 매설, 개재 또는 부착될 수 있다.The insulating part may be in thermal contact with the first main surface or may be embedded, interposed, or attached to the first main surface.
절연부들은 제2방향으로 이격되고 서로 평행할 수 있다.The insulation parts may be spaced apart in the second direction and parallel to each other.
절연부는 베이스플레이트를 통한 제2방향으로의 열전도를 주기적으로 차단하여 베이스플레이트의 열전달계수 중 적어도 제2방향과 관련된 계수 성분을 효과적으로 낮출 수 있다.The insulation unit may periodically block heat conduction in the second direction through the base plate to effectively lower the coefficient component associated with at least the second direction of the heat transfer coefficient of the base plate.
베이스플레이트는 예컨대 알루미늄이나 열전도성 폴리머와 같은 제1물질, 또는 예컨대 금속합금이나 중합체 혼합물과 같은 제1혼합물로 이루어질 수 있다.The baseplate may consist of a first material, for example aluminum or a thermally conductive polymer, or a first mixture, for example a metal alloy or a polymer mixture.
절연부는 제2열전도율을 갖는 제2물질, 예컨대 낮은 열전도율을 가지는 금속, 중합체 또는 세라믹을 포함할 수 있다.The insulation may comprise a second material having a second thermal conductivity, such as a metal, polymer or ceramic having a low thermal conductivity.
추가적으로 또는 선택적으로, 절연부는 구조적 특징, 예컨대 다수의 공극 또는 공동을 통해 낮은 열전도율을 구현할 수 있다.Additionally or alternatively, the insulation can achieve low thermal conductivity through structural features such as multiple voids or cavities.
전지케이스는 바닥면이 베이스플레이트와 열 접촉하는 한, 각형 전지케이스, 원통형 전지케이스 또는 가요성 전지파우치일 수 있다.The battery case may be a rectangular battery case, a cylindrical battery case or a flexible battery pouch, as long as the bottom surface is in thermal contact with the base plate.
각 전지케이스는 제1와이드측면 및 제2와이드측면, 즉 바닥면의 양단부에 수직으로 연결되고 제1방향으로 정렬된 한 쌍의 제1측벽들을 포함한다.Each battery case includes a pair of first side walls vertically connected to both ends of the first wide side and the second wide side, that is, the bottom side, and aligned in a first direction.
바람직하게는, 제1와이드측면은 제2와이드측면과 마주하고, 바닥면은 기본적으로 직사각형 형상을 가진다. Preferably, the first wide side faces the second wide side and the bottom is basically rectangular in shape.
상기 전지케이스는 상기 바닥면의 또 다른 양단부에 수직하게 연결되고, 서로 대면하며 상기 한 쌍의 제1측벽에 수직한 한 쌍의 제2측벽을 더 포함할 수 있다.The battery case may further include a pair of second side walls which are vertically connected to both opposite ends of the bottom surface and face each other and perpendicular to the pair of first side walls.
바닥면, 한 쌍의 제1측벽 및 한 쌍의 제2측벽은 전극조립체를 위한 용적을 형성할 수 있다.The bottom surface, the pair of first side walls and the pair of second side walls may form a volume for the electrode assembly.
전지셀의 단자를 포함하는 캡조립체는 케이스를 폐쇄하기 위해 바닥면에 대향하여 배치된다. 다시 말해서, 전지셀은 포장용 캔에 수용된 각형 전지셀일 수 있다.The cap assembly including the terminals of the battery cell is disposed opposite the bottom surface to close the case. In other words, the battery cell may be a rectangular battery cell contained in a packaging can.
각각의 전지모듈은 제2방향으로 적층된 복수의 각형 전지셀을 포함하여 제1전지셀의 제2와이드측면이 동일 모듈에서 인접한 제2전지셀의 제1와이드측면과 대면한다. Each battery module includes a plurality of rectangular battery cells stacked in a second direction so that the second wide side surface of the first battery cell faces the first wide side surface of the adjacent second battery cell in the same module.
적층형 전지셀은 직접 접촉하지 않지만, 동일 모듈에서 제1전지셀의 제2와이드측벽과 상기 제1전지셀에 인접한 제2전지셀의 제1와이드측벽 사이에 제1방향으로 갭(이격공간)이 연장되어 있다.The stacked battery cells do not directly contact each other, but in the same module, a gap (spaced space) is formed in a first direction between the second wide side wall of the first battery cell and the first wide side wall of the second battery cell adjacent to the first battery cell. It is extended.
상기 갭은 공극일 수 있고, 단열 스페이서로 채워질 수 있으며, 인접한 셀들의 측면에 대한 능동 냉각을 위해 이용될 수 있다.The gap may be void, filled with adiabatic spacers, and used for active cooling of the sides of adjacent cells.
절연부 각각은 제1방향을 따라 상기 복수의 갭 중 어느 하나와 정렬된다. 즉, 절연부는 동일한 전지모듈에서 인접한 셀 사이에 배치된다.Each of the insulation parts is aligned with any one of the plurality of gaps along the first direction. That is, the insulating unit is disposed between adjacent cells in the same battery module.
전지모듈이 정렬되면, 절연부는 다수의 전지모듈에서 갭을 따라 연장될 수 있다.When the battery modules are aligned, the insulation may extend along the gap in the plurality of battery modules.
인접한 전지셀들의 와이드측면들은 직접 접촉하지 않기 때문에, 이러한 셀들 사이의 열 전달은 주로 베이스플레이트를 통한 열전도에 의해 일어난다.Since the wide sides of adjacent battery cells are not in direct contact, heat transfer between these cells occurs mainly by heat conduction through the baseplate.
절연부를 베이스플레이트 내에 위치시키고, 셀들 사이에 갭을 정렬시킴으로써, 인접한 셀들 사이의 열전달 경로가 차단된다.By placing the insulation in the baseplate and aligning the gaps between the cells, the heat transfer path between adjacent cells is blocked.
절연부는 베이스플레이트의 대략 전체 길이를 가로 질러 제1방향으로 연속하여 연장될 수 있다.The insulation may extend continuously in the first direction across approximately the entire length of the baseplate.
절연부는 베이스플레이트의 활성영역 전체 길이에 걸쳐 연장되고, 전지모듈은 베이스플레이트의 활성영역 내에 배치될 수 있다.The insulating portion extends over the entire length of the active region of the base plate, and the battery module may be disposed in the active region of the base plate.
연속적인 절연부는 제1방향에 대한 베이스플레이트의 전체 길이에 걸쳐 제2방향으로의 열전도를 방해한다.Continuous insulation interferes with heat conduction in the second direction over the entire length of the baseplate in the first direction.
또한, 절연부가 연속적으로 연장된 베이스플레이트는 용이하게 제조할 수 있다.In addition, the base plate in which the insulation portion extends continuously can be easily manufactured.
그러나, 또 다른 실시예에 따르면, 절연부는 파선으로서 제1방향을 따라 베이스플레이트의 전체 길이에 걸쳐 연장되고, 상기 파선에 형성된 절연부의 간극은 인접한 전지모듈 사이에 배치될 수 있다.However, according to another embodiment, the insulation portion extends over the entire length of the base plate along the first direction as a broken line, the gap of the insulation portion formed in the broken line may be disposed between adjacent battery modules.
이러한 실시예에서, 베이스플레이트의 기계적 안정성이 전술한 실시예보다 증가되면서 베이스플레이트의 제2방향에 대한 열전도율 또한 충분히 감소될 수 있다. In this embodiment, the thermal conductivity in the second direction of the base plate can also be sufficiently reduced as the mechanical stability of the base plate is increased than the above-described embodiment.
절연부는 베이스플레이트의 제1메인면으로부터 상기 제1메인면에 대향하는 베이스플레이트의 제2메인면까지 연장된다. 즉, 절연부는 제1메인면으로부터 제2메인면까지 상기 베이스플레이트를 완전히 관통할 수 있다.The insulating portion extends from the first main surface of the base plate to the second main surface of the base plate opposite to the first main surface. That is, the insulating part may completely penetrate the base plate from the first main surface to the second main surface.
즉, 예컨대 제1물질에 의해 제1열전도율을 가지는 베이스플레이트 부분에서 제2방향을 따르는 단면에 있어서, 예컨대 제2물질로에 의해 제2열전도율을 가지는 부분이 뒤 따르며, 그 반대의 경우도 가능하다.That is, for example, in the cross section along the second direction in the base plate portion having the first thermal conductivity by the first material, for example, the portion having the second thermal conductivity by the second material path follows, and vice versa. .
베이스플레이트는, 예컨대 베이스플레이트의 제1메인면에서 제1방향으로 연장된 복수의 오목홈을 절삭하는 단계, 상기 오목홈을 베이스플레이트와 비교하여 더 낮은 열전도율을 가지는 물질로 충전하는 단계 및 상기 제1메인면에 대향하는 제2메인면이 상기 충전된 오목홈에 닿을 때까지 제2메인면에서 베이스플레이트를 깎아내는(예컨대, 제2메인면의 연삭) 단계를 도입함으로써 제조될 수 있다.The base plate may include, for example, cutting a plurality of concave grooves extending in the first direction from the first main surface of the base plate, filling the concave grooves with a material having a lower thermal conductivity compared to the base plate, and It can be produced by introducing a step (for example, grinding of the second main surface) by scraping the base plate in the second main surface until the second main surface opposite to the one main surface touches the filled concave groove.
또는, 예컨대 단열 및 고온저항 폴리머로 마련된 복수의 절연부를 금형에 넣어 예컨대 알루미늄으로 마련되며 상기 금형에서 주조되는 베이스플레이트와 견고히 결합시킬 수 있다.Alternatively, for example, a plurality of insulating parts made of a heat insulating and high temperature resistant polymer may be put into a mold, for example, made of aluminum, and may be firmly combined with a base plate cast from the mold.
이러한 실시예에 따른 베이스플레이트는 절연부 주위에 열이 전도되는 우회경로가 존재하지 않으므로, 절연부에서 베이스플레이트의 제2방향 열전도를 크게 감소시킨다.Since the base plate according to this embodiment does not have a bypass path through which heat is conducted around the insulation, the base plate greatly reduces the second direction heat conduction of the base plate.
본 발명의 또 다른 실시예에 따르면, 절연부는 베이스플레이트의 제1메인면 내에 매설되는 오목홈일 수 있다.According to another embodiment of the present invention, the insulating portion may be a recessed groove embedded in the first main surface of the base plate.
즉, 절연부는 베이스플레이트의 제1메인면으로부터 제1메인면에 대향하는 제2메인면을 향해 연장되지만, 베이스플레이트를 완전히 관통하지는 않는다.That is, the insulating portion extends from the first main surface of the base plate toward the second main surface opposite to the first main surface, but does not completely penetrate the base plate.
이러한 실시예에 따른 베이스플레이트는 전술한 바와 같이 오목홈을 절삭함으로써 제조될 수 있으며, 베이스플레이트의 제2메인면에서 베이스플레이트를 깎아내는 단계는 생략된다.The base plate according to this embodiment can be manufactured by cutting the concave groove as described above, the step of cutting the base plate in the second main surface of the base plate is omitted.
제조 초기에 상기 오목홈을 포함하는 베이스플레이트가 그에 맞는 금형에서 주조되는 바, 재료비용이 감소된다. 이러한 실시예에 따르면, 오목홈은 공동으로 남아 있거나 제1열전도율보다 낮은 제2열전도율을 가지는 물질로 채워진다. At the beginning of the manufacturing process, the base plate including the concave groove is cast in a mold corresponding thereto, thereby reducing the material cost. According to this embodiment, the recess is filled with a material having a second thermal conductivity which remains cavities or is lower than the first thermal conductivity.
오목홈은 단열성 폴리머로 채워질 수 있다. 이러한 실시예에 따르면, 기계적으로 안정적인 이방성의 열전도율을 가지는 베이스플레이트가 용이하게 제조될 수 있다. The recess can be filled with a heat insulating polymer. According to this embodiment, a base plate having mechanically stable anisotropy thermal conductivity can be easily manufactured.
본 발명에 따른 전지시스템은 제1방향으로 연장된 복수의 방열부를 포함할 수 있다. 방열부는 제2방향으로 상호 이격되고 서로 평행할 수 있다. 베이스플레이트는 절연부에 대해 추가적으로 또는 선택적으로 상기 방열부를 포함할 수 있다.The battery system according to the present invention may include a plurality of heat radiating parts extending in the first direction. The heat dissipation parts may be spaced apart from each other and parallel to each other in the second direction. The baseplate may additionally or alternatively comprise the heat dissipation portion with respect to the insulation portion.
방열부 및 절연부는 베이스플레이트의 제2방향을 따라 서로 교번할 수 있다. 각 방열부는 적어도 하나의 전지케이스 바닥면에 대해 정렬되고, 바람직하게는 복수의 전지케이스 바닥면에 대해 정렬된다.The heat dissipating part and the insulating part may be alternate with each other along the second direction of the base plate. Each heat dissipation portion is aligned with respect to at least one battery case bottom, and preferably with respect to the plurality of battery case bottoms.
즉, 각 방열부는 적어도 하나 또는 바람직하게는 그 이상의 전지케이스 바닥면과 열 접촉한다. 방열부는 제1방향으로 베이스플레이트의 열전도율을 증가시키도록 마련된다. 따라서, 우수하고 유리한 베이스플레이트의 이방성(비등방성) 열전도율이 실현 또는 향상될 수 있다.That is, each heat dissipation portion is in thermal contact with at least one or preferably more battery case bottoms. The heat dissipation unit is provided to increase the thermal conductivity of the base plate in the first direction. Thus, an anisotropic (anisotropic) thermal conductivity of an excellent and advantageous base plate can be realized or improved.
고장셀로부터 배출된 열은 제1방향을 따라 인접한 모듈로 전달됨으로써 동일 모듈에서 이웃하는 셀들로부터 멀리 이동된다.Heat discharged from the faulty cell is transferred away from neighboring cells in the same module by being transferred to an adjacent module along the first direction.
방열부는 베이스플레이트의 열전도율인 제1열전도율 및/또는 절연부의 열전도율인 제2열전도율보다 높은 제3열전도율을 가지는 제3물질을 포함할 수 있다.The heat dissipation part may include a third material having a third thermal conductivity higher than the first thermal conductivity, which is the thermal conductivity of the base plate, and / or the second thermal conductivity, which is the thermal conductivity of the insulating part.
상기 방열부는 상기 베이스플레이트에 일체로 마련되고 냉매를 가이드하도록 마련된 냉각채널일 수 있다. 상기 냉각채널은 적어도 냉매로 충전된 동안 제1방향에 대한 베이스플레이트의 열전도율 및/또는 열 분산을 증가시키도록 마련된다.The heat dissipation unit may be a cooling channel provided integrally with the base plate and provided to guide the refrigerant. The cooling channel is provided to increase the thermal conductivity and / or heat dissipation of the baseplate in the first direction while at least filled with the refrigerant.
상기 방열부, 예컨대 냉각채널은 바람직하게는 제1방향으로 베이스플레이트의 전체 길이를 가로지르도록 연속적으로 연장된다. 바람직하게는, 냉각채널은 말단부가 냉각회로 외부에 부착되도록 마련된 냉매포트를 더 포함할 수 있다.The heat dissipation portion, for example the cooling channel, preferably extends continuously across the entire length of the base plate in the first direction. Preferably, the cooling channel may further include a refrigerant port provided so that the end portion is attached to the outside of the cooling circuit.
냉각채널 자체는 제1열전도율 및/또는 제2열전도율보다 더 높은 제3열전도율을 가지는 제3물질로 형성될 수 있다. 상기 제3물질은 구리일 수 있다.The cooling channel itself may be formed of a third material having a third thermal conductivity higher than the first thermal conductivity and / or the second thermal conductivity. The third material may be copper.
수성 또는 유성의 냉매가 상기 냉각채널을 통해 유동함에 따라, 베이스플레이트의 제1방향에 대한 열전도율뿐만 아니라 방열량도 증가된다.As aqueous or oily refrigerant flows through the cooling channel, heat dissipation as well as thermal conductivity in the first direction of the base plate increases.
한편, 본 발명의 또 다른 실시예는 전지시스템용 베이스플레이트, 즉 복수의 전지모듈을 지지하도록 마련된 베이스플레이트에 관한 것으로, 상기 베이스플레이트는 제1방향 및 제2방향 사이에서 적어도 하나의 면으로 연장되고, 제1방향에 대한 베이스플레이트의 열전도율은 제2방향에 대한 열전도율보다 더 크다.Meanwhile, another embodiment of the present invention relates to a base plate for a battery system, that is, a base plate provided to support a plurality of battery modules, wherein the base plate extends to at least one surface between a first direction and a second direction. And the thermal conductivity of the base plate in the first direction is greater than the thermal conductivity in the second direction.
상기 제1방향 및 제2방향에 대한 수직한 제3방향으로의 베이스플레이트 두께는 베이스플레이트의 제1방향 및 제2방향의 연장된 길이보다 작을 수 있다.The thickness of the base plate in the third direction perpendicular to the first direction and the second direction may be smaller than the extended length of the first direction and the second direction of the base plate.
전지시스템용 베이스플레이트는 제1방향으로 상호 이격 배치된 복수의 전지모듈을 지지하도록 마련되고, 전지모듈은 제2방향으로 배치되어 정렬된 복수의 전지셀들을 포함하며, 각 전지셀들은 바닥면을 가지는 전지케이스 내에 수용된 전극조립체를 포함한다.The base plate for the battery system is provided to support a plurality of battery modules arranged spaced apart from each other in the first direction, the battery module includes a plurality of battery cells arranged and aligned in the second direction, each battery cell has a bottom surface The branch includes an electrode assembly housed in a battery case.
따라서, 본 발명에 따른 베이스플레이트는 전지셀로부터 배출된 열을 제2방향보다 제1방향으로 효과적으로 전달시킨다. 그러므로, 열은 열 배출 셀의 이웃하는 셀로 바로 이동하는 대신, 인접한 모듈의 셀들로 이동된다.Therefore, the base plate according to the present invention effectively transfers the heat discharged from the battery cell in the first direction rather than the second direction. Therefore, heat is transferred to the cells of adjacent modules instead of directly to neighboring cells of the heat dissipating cells.
베이스플레이트에서 이방성의 열전도는 상기 베이스플레이트에 의해 지지된 전지셀들 사이에서 보다 일방향적인 열 확산을 유도한다.Anisotropic heat conduction in the baseplate induces more unidirectional heat diffusion between the battery cells supported by the baseplate.
그러므로, 베이스플레이트는 각 전지셀에서 열의 최대 증가량을 감소시킬 수 있고, 열폭주 확산의 위험을 감소시킬 수 있다.Therefore, the baseplate can reduce the maximum increase in heat in each battery cell, and can reduce the risk of thermal runaway diffusion.
베이스플레이트는 제1열전도율을 가지는 제1물질을 포함할 수 있다.The base plate may include a first material having a first thermal conductivity.
상기 베이스플레이트는 제1열전도율을 가지는 제1물질 또는 제1혼합물질로 이루어질 수 있다.The base plate may be made of a first material or a first mixed material having a first thermal conductivity.
베이스플레이트는 제1방향으로 연장되고 제1열전도율보다 더 낮은 제2열전도율을 가지는 복수의 절연부를 더 포함할 수 있다.The base plate may further include a plurality of insulating parts extending in the first direction and having a second thermal conductivity lower than the first thermal conductivity.
절연부는 베이스플레이트에 일체로 마련되거나 부착될 수 있고, 베이스플레이트의 제1메인면을 관통하거나 베이스플레이트 내에서 제1메인면에 근접하게 배치될 수 있다.The insulating part may be integrally provided or attached to the base plate, and may be disposed to penetrate the first main surface of the base plate or to be close to the first main surface in the base plate.
절연부는 제1메인면과 열적으로 접촉하고 제1메인면에 매립 또는 부착될 수 있다.The insulating portion may be in thermal contact with the first main surface and may be embedded or attached to the first main surface.
복수의 절연부는 제2방향으로 상호 이격되고 서로 평행하게 마련될 수 있다.The plurality of insulation parts may be spaced apart from each other in a second direction and provided in parallel with each other.
절연부는 제2방향에 대한 베이스플레이트의 열전도를 주기적으로 차단하여 베이스플레이트의 열전달계수, 적어도 제2방향과 관련된 계수의 성분을 효과적으로 저하시킨다.The insulating section periodically interrupts the heat conduction of the base plate in the second direction to effectively lower the components of the heat transfer coefficient of the base plate, at least in relation to the second direction.
베이스플레이트는 예컨대 알루미늄이나 열전도율 폴리머와 같은 제1물질, 또는 예컨대 금속합금이나 중합체 혼합물과 같은 제1혼합물로 이루어진다. 절연부는 바람직하게는 제2열전도율을 갖는 제2물질, 예컨대 낮은 열전도율을 가지는 금속, 폴리머 또는 세라믹을 포함한다. The baseplate consists of a first material, for example aluminum or a thermal conductivity polymer, or a first mixture, for example a metal alloy or a polymer mixture. The insulation preferably comprises a second material having a second thermal conductivity, such as a metal, polymer or ceramic having a low thermal conductivity.
추가적으로 또는 선택적으로, 절연부는 구조적 특징, 예컨대 다수의 공극 또는 공동을 통해 낮은 열전도율을 구현할 수 있다.Additionally or alternatively, the insulation can achieve low thermal conductivity through structural features such as multiple voids or cavities.
절연부는 베이스플레이트의 거의 전체 길이를 가로 질러 제1방향으로 연속하여 연장될 수 있다.The insulation may extend continuously in the first direction across substantially the entire length of the baseplate.
절연부는 베이스플레이트의 활성영역 전체 길이에 걸쳐 연장되고, 전지모듈은 베이스플레이트의 활성영역 내에 배치될 수 있다.The insulating portion extends over the entire length of the active region of the base plate, and the battery module may be disposed in the active region of the base plate.
연속적인 절연부는 제1방향에 대한 베이스플레이트의 전체 길이에 걸쳐 제2방향으로의 열전도를 방해한다.Continuous insulation interferes with heat conduction in the second direction over the entire length of the baseplate in the first direction.
또한, 절연부가 연속적으로 연장된 베이스플레이트는 용이하게 제조할 수 있다.In addition, the base plate in which the insulation portion extends continuously can be easily manufactured.
그러나, 또 다른 실시예에 따르면, 절연부는 파선으로서 제1방향을 따라 베이스플레이트의 전체 길이에 걸쳐 연장될 수 있다.However, according to another embodiment, the insulating portion may extend over the entire length of the base plate along the first direction as a broken line.
이러한 실시예에서, 베이스플레이트의 기계적 안정성이 전술한 실시예보다 증가되면서 베이스플레이트의 제2방향에 대한 열전도율 또한 충분히 감소될 수 있다.In this embodiment, the thermal conductivity in the second direction of the base plate can also be sufficiently reduced as the mechanical stability of the base plate is increased than the above-described embodiment.
절연부는 베이스플레이트의 제1메인면으로부터 상기 제1메인면에 대향하는 베이스플레이트의 제2메인면까지 연장된다. 즉, 절연부는 제1메인면으로부터 제2메인면까지 상기 베이스플레이트를 완전히 관통할 수 있다.The insulating portion extends from the first main surface of the base plate to the second main surface of the base plate opposite to the first main surface. That is, the insulating part may completely penetrate the base plate from the first main surface to the second main surface.
예컨대, 제1물질에 의한 제1열전도율을 가지는 베이스플레이트 부분에서 제2방향을 따라 취한 단면에 있어서, 예컨대 제2물질로에 의한 제2열전도율을 가지는 부분이 뒤 따르며, 그 반대의 경우도 가능하다.For example, in the cross section taken along the second direction from the base plate portion having the first thermal conductivity by the first material, for example, the portion having the second thermal conductivity by the second material follows, and vice versa. .
베이스플레이트는, 예컨대 베이스플레이트의 제1메인면에서 제1방향으로 연장된 복수의 오목홈을 절삭하는 단계, 상기 오목홈을 베이스플레이트와 비교하여 더 낮은 열전도율을 가지는 물질로 충전하는 단계 및 상기 제1메인면에 대향하는 제2메인면이 상기 충전된 오목홈에 닿을 때까지 제2메인면에서 베이스플레이트를 깎아내는 단계를 도입함으로써 제조될 수 있다.The base plate may include, for example, cutting a plurality of concave grooves extending in the first direction from the first main surface of the base plate, filling the concave grooves with a material having a lower thermal conductivity compared to the base plate, and It can be produced by introducing the step of scraping the base plate in the second main surface until the second main surface opposite to the one main surface touches the filled concave groove.
또는, 예컨대 단열 및 고온저항 폴리머로 마련된 복수의 절연부를 금형에 넣어, 예컨대 알루미늄으로 마련되며 상기 금형에서 주조되는 베이스플레이트와 견고히 결합시킬 수 있다.Alternatively, for example, a plurality of insulating parts made of a heat insulating and high temperature resistant polymer may be put into a mold, and may be firmly coupled to a base plate made of, for example, aluminum and cast from the mold.
이러한 실시예에 따른 베이스플레이트는 절연부 주위에 열이 전도되는 우회경로가 존재하지 않으므로, 절연부에서 베이스플레이트의 제2방향 열전도를 크게 감소시킬 수 있다.In the base plate according to this embodiment, since there is no bypass path for conducting heat around the insulating part, the second plate may significantly reduce the heat conduction of the base plate in the insulating part.
본 발명의 또 다른 실시예에 따르면, 절연부는 베이스플레이트의 제1메인면 내에 개재 또는 매설되는 오목홈일 수 있다. 즉, 절연부는 베이스플레이트의 전체 두께를 모두 관통하지 않는다.According to another embodiment of the present invention, the insulating portion may be a concave groove interposed or embedded in the first main surface of the base plate. In other words, the insulation does not penetrate the entire thickness of the base plate.
이러한 실시예에 따른 베이스플레이트는 전술한 바와 같이 오목홈을 절삭함으로써 제조될 수 있으며, 베이스플레이트의 제2메인면에서 베이스플레이트를 깎아내는(연삭하는) 단계는 생략된다.The base plate according to this embodiment can be manufactured by cutting the concave groove as described above, and the step of cutting (grinding) the base plate in the second main surface of the base plate is omitted.
제조 초기에 상기 오목홈을 포함하는 베이스플레이트가 그에 맞는 금형에서 주조되는 바, 재료비용이 감소된다.At the beginning of the manufacturing process, the base plate including the concave groove is cast in a mold corresponding thereto, thereby reducing the material cost.
이러한 실시예에 따르면, 오목홈은 공동으로 남아 있거나 제1열전도율보다 낮은 제2열전도율을 가지는 물질로 채워진다.According to this embodiment, the recess is filled with a material having a second thermal conductivity which remains cavities or is lower than the first thermal conductivity.
오목홈은 단열성 폴리머로 채워질 수 있다. 이러한 실시예에 따르면, 기계적으로 안정적인 이방성의 열전도율을 가지는 베이스플레이트가 용이하게 제조될 수 있다.The recess can be filled with a heat insulating polymer. According to this embodiment, a base plate having mechanically stable anisotropy thermal conductivity can be easily manufactured.
본 발명에 따른 전지시스템은 제1방향으로 연장된 복수의 방열부를 포함할 수 있다.The battery system according to the present invention may include a plurality of heat radiating parts extending in the first direction.
방열부는 제2방향으로 상호 이격되고 서로 평행할 수 있다. 베이스플레이트는 절연부에 대해 추가적으로 또는 선택적으로 상기 방열부를 포함할 수 있다. 방열부 및 절연부는 베이스플레이트의 제2방향을 따라 서로 교번하여 배열될 수 있다.The heat dissipation parts may be spaced apart from each other and parallel to each other in the second direction. The baseplate may additionally or alternatively comprise the heat dissipation portion with respect to the insulation portion. The heat dissipation unit and the insulation unit may be alternately arranged along the second direction of the base plate.
베이스플레이트는 방열부의 상부측에 전지셀이 지지되도록 마련되어 전지셀의 바닥면이 방열부와 열 접촉하도록 마련될 수 있다.The base plate may be provided such that the battery cell is supported on the upper side of the heat dissipation part so that the bottom surface of the battery cell is in thermal contact with the heat dissipation part.
방열부는 제1방향으로 베이스플레이트의 열전도율을 증가시키도록 마련된다.The heat dissipation unit is provided to increase the thermal conductivity of the base plate in the first direction.
방열부는 베이스플레이트의 열전도율인 제1열전도율 및/또는 절연부의 열전도율인 제2열전도율보다 높은 제3열전도율을 가지는 제3물질을 포함할 수 있다.The heat dissipation part may include a third material having a third thermal conductivity higher than the first thermal conductivity, which is the thermal conductivity of the base plate, and / or the second thermal conductivity, which is the thermal conductivity of the insulating part.
상기 방열부는 상기 베이스플레이트에 일체로 마련되고 냉매를 가이드하도록 마련된 냉각채널일 수 있다.The heat dissipation unit may be a cooling channel provided integrally with the base plate and provided to guide the refrigerant.
냉각채널은 적어도 냉매로 충전된 동안 제1방향에 대한 베이스플레이트의 열전도율 및/또는 열 분산(방열량)을 증가시키도록 마련된다.The cooling channel is arranged to increase the thermal conductivity and / or heat dissipation (heat dissipation) of the baseplate in the first direction while at least filled with the refrigerant.
방열부, 예컨대 냉각채널은 바람직하게는 제1방향으로 베이스플레이트의 전체 길이를 가로지르도록 연속적으로 연장된다.The heat dissipation portion, eg the cooling channel, preferably extends continuously across the entire length of the base plate in the first direction.
냉각채널은 말단부가 냉각회로 외부에 부착되도록 마련된 냉매포트를 더 포함할 수 있다.The cooling channel may further include a refrigerant port provided at the distal end to be attached to the outside of the cooling circuit.
냉각채널은 제1열전도율 및/또는 제2열전도율보다 더 높은 제3열전도율을 가지는 제3물질로 형성될 수 있다. 상기 제3물질은 구리일 수 있다.The cooling channel may be formed of a third material having a third thermal conductivity higher than the first thermal conductivity and / or the second thermal conductivity. The third material may be copper.
수성 또는 유성의 냉매가 구리 냉각채널을 통해 유동함에 따라, 제2방향과 비교할 때 베이스플레이트의 제1방향에 대한 열전도율 뿐만 아니라 방열량도 증가된다.As the aqueous or oily refrigerant flows through the copper cooling channel, the heat dissipation amount as well as the thermal conductivity in the first direction of the base plate is increased as compared to the second direction.
본 발명의 다른 태양은 전술 한 바와 같은 전지 시스템을 포함하고 /하거나 전술 한 바와 같은베이스 플레이트를 포함하는 전기 자동차에 관한 것이다.Another aspect of the invention relates to an electric vehicle comprising a battery system as described above and / or comprising a base plate as described above.
본 발명의 추가적인 태양은 청구항, 도면 및 다음의 설명으로부터 명백해질 것이다.Further aspects of the invention will be apparent from the claims, the drawings and the following description.
본 발명의 실시예들은 제1방향에 대한 베이스플레이트의 열전도율이 제2방향에 대한 베이스플레이트의 열전도율보다 크게 형성되도록 하는 바, 전지시스템에 걸쳐 일방향적인 열 확산을 유도하여 열폭주 전파의 위험이 감소되도록 하는 전지시스템 및 이를 포함하는 전기자동차를 제공할 수 있다.Embodiments of the present invention allow the thermal conductivity of the base plate in the first direction to be greater than the thermal conductivity of the base plate in the second direction, inducing unidirectional heat diffusion across the battery system, thereby reducing the risk of thermal runaway propagation. It is possible to provide a battery system and an electric vehicle including the same.
도 1은 본 발명의 일 실시예에 따른 전지셀의 사시도이다.1 is a perspective view of a battery cell according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전지셀의 단면도이다.2 is a cross-sectional view of a battery cell according to an embodiment of the present invention.
도 3은 종래의 전지시스템을 개략적으로 나타낸 측면도이다.3 is a side view schematically showing a conventional battery system.
도 4는 본 발명의 제1실시예에 따른 전지시스템을 개략적으로 나타낸 측면도이다.4 is a side view schematically showing a battery system according to a first embodiment of the present invention.
도 5는 본 발명의 제1실시예에 따른 전지시스템 및 베이스플레이트를 개략적으로 나타낸 평면도이다.5 is a plan view schematically illustrating a battery system and a base plate according to a first embodiment of the present invention.
도 6은 본 발명의 제2실시예에 따른 전지시스템 및 베이스플레이트를 개략적으로 나타낸 평면도이다.6 is a plan view schematically illustrating a battery system and a base plate according to a second embodiment of the present invention.
도 7은 본 발명의 제3실시예에 따른 전지시스템을 개략적으로 나타낸 측면도이다.7 is a side view schematically showing a battery system according to a third embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본 명세서에서, 동일한 구성요소에 대해서 중복된 설명은 생략한다.In this specification, duplicate descriptions of the same components are omitted.
또한 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '직접 연결되어' 있다거나 '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.Also, in the present specification, when a component is referred to as being 'connected' or 'connected' to another component, the component may be directly connected to or connected to the other component, but in between It will be understood that may exist. On the other hand, in the present specification, when a component is referred to as 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
또한, 본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용되는 것으로써, 본 발명을 한정하려는 의도로 사용되는 것이 아니다. Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
또한 본 명세서에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. Also, in this specification, the singular forms may include the plural forms unless the context clearly indicates otherwise.
또한 본 명세서에서, '포함하다' 또는 '가지다' 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것이 존재함을 지정하려는 것일 뿐, 하나 또는 그 이상의 다른 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 할 것이다.Also, as used herein, the term 'comprises' or 'having' is only intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more. It is to be understood that it does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, actions, components, parts or combinations thereof.
또한 본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.Also in this specification, the term 'and / or' includes any combination of the plurality of listed items or any of the plurality of listed items. In the present specification, 'A or B' may include 'A', 'B', or 'both A and B'.
도 1은 본 발명의 일 실시예에 따른 전지셀의 사시도이고, 도 2는 도 1의 IV-IV 선을 따라 취한 단면도이다.1 is a perspective view of a battery cell according to an embodiment of the present invention, Figure 2 is a cross-sectional view taken along the line IV-IV of FIG.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전지셀(80)은 전극조립체(10) 및 전해액을 수용하며 상기 전극조립체(10)을 수용하는 케이스(26)를 포함한다.As shown in FIG. 1 and FIG. 2, the battery cell 80 according to the exemplary embodiment of the present invention includes an electrode assembly 10 and a case 26 containing the electrode assembly 10 and the electrode assembly 10. do.
전지셀(80)은 또한 케이스(26)의 개구를 밀봉하기 위한 캡조립체(30)를 포함할 수 있다. 전지셀(80)은 리튬 이온 2차전지에 제한되지 않은 예로서 설명될 것이다.The battery cell 80 may also include a cap assembly 30 for sealing the opening of the case 26. The battery cell 80 will be described as an example that is not limited to a lithium ion secondary battery.
상기 전극조립체(10)는 세퍼레이터(13)를 사이에 두고 양극(11)과 음극(12) 을 나선형으로 권취한 젤리롤 타입의 전극조립체로 형성될 수 있다.The electrode assembly 10 may be formed of a jelly roll type electrode assembly in which the anode 11 and the cathode 12 are spirally wound with the separator 13 interposed therebetween.
상기 양극(11)과 음극(12)은 각각 활물질이 코팅된 얇은 금속박으로 형성된 집전체의 코팅영역을 포함할 수 있으며, 활물질이 코팅되지 않은 집전체의 양극 및 음극 무지부(11a, 12a)를 각각 포함할 수 있다.The positive electrode 11 and the negative electrode 12 may each include a coating area of a current collector formed of a thin metal foil coated with an active material, and the positive and negative electrode uncoated portions 11a and 12a of the current collector not coated with the active material. Each may include.
일례로서, 양극(11)의 코팅영역은 알루미늄 호일과 같은 금속박으로 형성된 기재에 전이 금속 산화물과 같은 활성 물질을 코팅함으로써 형성될 수 있다.As an example, the coating area of the anode 11 may be formed by coating an active material such as a transition metal oxide on a substrate formed of a metal foil such as aluminum foil.
또한, 음극(12)의 코팅영역은 구리 또는 니켈 호일과 같은 금속박으로 형성된 기재에 탄소, 흑연 등과 같은 활성물질을 코팅함으로써 형성될 수 있다.In addition, the coating area of the cathode 12 may be formed by coating an active material such as carbon, graphite, or the like on a substrate formed of a metal foil such as copper or nickel foil.
양극 무지부 영역(11a)은 양극(11)의 길이방향 일측 단부에 형성될 수 있고, 음극 무지부 영역(12a)은 음극 (12)의 길이 방향 일측 단부에 형성될 수 있다. The positive electrode non-coating region 11a may be formed at one end in the longitudinal direction of the positive electrode 11, and the negative electrode non-coating region 12a may be formed at one end in the longitudinal direction of the negative electrode 12.
상기 양극 무지부(11a)와 음극 무지부(12a)는 코팅영역에 대해 서로 반대되는 측일 수 있다.The positive electrode non-coating portion 11a and the negative electrode non-coating portion 12a may be opposite sides with respect to the coating area.
또한, 세퍼레이터(13)는 양극(11), 음극(12) 및 세퍼레이터(13)가 교번하여 대로 위치된 후에 나선형으로 권취될 수 있는 복수의 세퍼레이터를 포함할 수 있다.In addition, the separator 13 may include a plurality of separators that can be wound in a spiral after the anode 11, the cathode 12, and the separator 13 are alternately positioned.
다만, 본 발명은 이에 한정되지 않고, 전극조립체(10)는 시트 형상으로 반복적으로 적층된 복수의 양극(11), 세퍼레이터 (13) 및 음극(12)을 포함하는 구조를 가질 수 있다.However, the present invention is not limited thereto, and the electrode assembly 10 may have a structure including a plurality of anodes 11, separators 13, and cathodes 12 repeatedly stacked in a sheet shape.
전극 조립체(10)는 전해액과 함께 케이스(26) 내에 수용될 수 있다. 상기 전해액은 EC, PC, DEC, EMC 등의 유기 용매와 LiPF6 또는 LiBF4와 같은 리튬염으로 이루어질 수 있다. 전해액은 액체, 고체 또는 겔 상태일 수 있다.The electrode assembly 10 may be accommodated in the case 26 together with the electrolyte. The electrolyte may be composed of an organic solvent such as EC, PC, DEC, EMC, and a lithium salt such as LiPF 6 or LiBF 4. The electrolyte can be in liquid, solid or gel state.
케이스(26)는 대략 직육면체 형상으로 구성될 수 있으며, 그 일면에 개구가 형성될 수 있다. 케이스(26)는 알루미늄과 같은 금속으로 형성될 수 있다.The case 26 may be configured in a substantially rectangular parallelepiped shape, and an opening may be formed in one surface thereof. The case 26 may be formed of a metal such as aluminum.
케이스(26)는 대략 직사각형의 바닥면(27)을 포함할 수 있고, 전극조립체(10)를 수용하기 위한 공간을 형성하기 위해 와이드측면(18, 19)에 해당하는 한 쌍의 제1측벽 및 각각 바닥면의 단부에 수직으로 연결된 한 쌍의 제2측벽을 포함할 수 있다.The case 26 may include a substantially rectangular bottom surface 27, and may include a pair of first side walls corresponding to the wide side surfaces 18 and 19 to form a space for accommodating the electrode assembly 10. Each may include a pair of second sidewalls connected perpendicularly to an end of the bottom surface.
제1측벽(18, 19)은 서로 마주보도록 마련될 수 있고, 제2측벽은 서로 마주보도록 배치되며 상기 제1측벽(18, 19)에 연결될 수 있다. The first side walls 18 and 19 may be provided to face each other, and the second side walls may be arranged to face each other and may be connected to the first side walls 18 and 19.
바닥면(27)과 제1측벽(18, 19)이 서로 연결되는 모서리의 길이는 바닥면 (27)과 제2측벽이 서로 연결되는 모서리의 길이보다 길 수 있다. 바람직하게는, 인접한 제1 및 2측벽은 대략 90 °의 각도를 이룬다.The length of the edge at which the bottom surface 27 and the first side walls 18 and 19 are connected to each other may be longer than the length of the edge at which the bottom surface 27 and the second side walls are connected to each other. Preferably, the adjacent first and second side walls are at an angle of approximately 90 °.
캡조립체(30)는 케이스(26)에 결합되어 상기 케이스(26)의 개구를 덮는 캡플레이트(31)를 포함 할 수 있으며, 음극(11) 및 양극(12)에 각각 전기적으로 연결되기 위해 캡플레이트(31)로부터 외측으로 돌출된 양극단자(제1단자)(21) 및 음극단자(제2단자)(22)를 포함할 수 있다.The cap assembly 30 may include a cap plate 31 coupled to the case 26 to cover the opening of the case 26, and the cap assembly 30 may be electrically connected to the negative electrode 11 and the positive electrode 12, respectively. It may include a positive terminal (first terminal) 21 and a negative terminal (second terminal) 22 protruding outward from the plate 31.
캡플레이트(31)는 일방향으로 연장된 플레이트 형태로 마련될 수 있고, 케이스(26)의 개구에 결합될 수 있다. 캡플레이트(31)는 캡조립체 (30)의 내부와 연통되는 주입구(32) 및 벤트홀(34)을 포함할 수 있다. Cap plate 31 may be provided in the form of a plate extending in one direction, it may be coupled to the opening of the case 26. The cap plate 31 may include an injection hole 32 and a vent hole 34 communicating with an inside of the cap assembly 30.
주입구(32)는 전해액의 주입을 허용하도록 구성될 수 있으며, 밀봉캡(38)이 그 위에 또는 그 안에 장착될 수 있다. 또한, 벤트부재(39)는 설정된 압력에서 개방되고 벤트홀(34)상에 마련되며, 그 개방을 용이하게 하기 위한 노치(39a)를 포함할 수 있다.The inlet 32 can be configured to allow the injection of electrolyte, and a sealing cap 38 can be mounted thereon or in it. In addition, the vent member 39 may be opened at a set pressure and provided on the vent hole 34, and may include a notch 39a to facilitate the opening thereof.
양극단자(21) 및 음극단자(22)는 캡플레이트(31)로부터 상방으로 돌출되도록 장착될 수 있다.The positive electrode terminal 21 and the negative electrode terminal 22 may be mounted to protrude upward from the cap plate 31.
양극단자(21)는 집전탭(41)을 통해 양극(11)에 전기적으로 연결될 수 있고, 음극단자(22)는 집전탭(42)을 통해 음극(12)에 전기적으로 연결될 수 있다. 양극단자(21)와 집전탭(41)을 전기적으로 연결하기 위한 단자연결부재(25)가 양극단자(21) 및 집전탭(41) 사이에 장착될 수 있다.The positive electrode terminal 21 may be electrically connected to the positive electrode 11 through the current collector tab 41, and the negative electrode terminal 22 may be electrically connected to the negative electrode 12 through the current collector tab 42. A terminal connecting member 25 for electrically connecting the positive electrode terminal 21 and the current collecting tab 41 may be mounted between the positive electrode terminal 21 and the current collecting tab 41.
단자연결부재(25)는 양극단자(21)에 형성된 구멍에 삽입되어 그 하부가 집전탭(41)에 용접될 수 있다. 밀봉용 가스켓(59)이 단자연결부재(25)가 연장된 구멍을 통해 단자연결부재(25)와 캡플레이트(31) 사이에 삽입 장착될 수 있다.The terminal connection member 25 may be inserted into a hole formed in the positive electrode terminal 21 so that the lower portion thereof may be welded to the current collector tab 41. The sealing gasket 59 may be inserted between the terminal connecting member 25 and the cap plate 31 through a hole in which the terminal connecting member 25 extends.
또한, 단자연결부재(25)의 하부가 삽입될 수 있는 하부절연부재(43)가 캡플레이트(31)의 하부에 장착될 수 있다. 양극단자(21)와 캡플레이트(31)를 전기적으로 연결하기 위한 연결판(58)이 양극단자(21)와 캡플레이트(31) 사이에 장착될 수 있다.In addition, a lower insulating member 43 into which the lower portion of the terminal connection member 25 may be inserted may be mounted to the lower portion of the cap plate 31. A connecting plate 58 for electrically connecting the positive electrode terminal 21 and the cap plate 31 may be mounted between the positive electrode terminal 21 and the cap plate 31.
단자연결부재(25)는 연결판(58)에 삽입될 수 있다. 따라서, 캡플레이트(31) 및 케이스(26)은 양극으로 대전될 수 있다.The terminal connecting member 25 may be inserted into the connecting plate 58. Therefore, the cap plate 31 and the case 26 can be charged with the positive electrode.
상기한 단자연결부재(25)와 유사하게, 음극단자(22)와 집전탭(42) 사이에는 음극단자(22) 및 집전탭(42)을 전기적으로 연결하기 위한 단자연결부재(25)가 설치될 수 있다.Similar to the terminal connecting member 25 described above, a terminal connecting member 25 for electrically connecting the negative electrode terminal 22 and the current collecting tab 42 is installed between the negative electrode terminal 22 and the current collecting tab 42. Can be.
단자연결부재(25)는 음극단자(22)에 형성된 구멍에 삽입되어 단자연결부재(25)의 상부 및 하부가 각각 음극단자(22) 및 집전탭(42)에 용접될 수 있다.The terminal connection member 25 may be inserted into a hole formed in the negative electrode terminal 22 so that the upper and lower portions of the terminal connection member 25 may be welded to the negative electrode terminal 22 and the current collector tab 42, respectively.
상기한 가스켓(59)과 유사하게, 밀봉용 가스켓이 단자연결부재(25)가 연장될 수 있는 구멍을 통해 음극단자(22)와 캡플레이트(31) 사이에 삽입 장착될 수 있다.Similar to the gasket 59 described above, a sealing gasket may be inserted between the negative electrode terminal 22 and the cap plate 31 through a hole through which the terminal connecting member 25 may extend.
또한, 음극단자(22)와 집전탭(42)을 캡플레이트(31)에 대해 절연하기 위한 하부절연부재(45)가 캡플레이트(31)의 하부에 장착될 수 있다.In addition, a lower insulating member 45 for insulating the negative electrode terminal 22 and the current collector tab 42 from the cap plate 31 may be mounted below the cap plate 31.
음극단자(22) 및 캡플레이트(31)를 전기적으로 절연하기 위한 상부절연부재(54)가 음극단자(22)와 캡플레이트(31) 사이에 장착될 수 있다. 단자연결부재 (25)는 상부절연부재 (54)에 형성된 구멍에 삽입될 수 있다.An upper insulating member 54 for electrically insulating the negative electrode terminal 22 and the cap plate 31 may be mounted between the negative electrode terminal 22 and the cap plate 31. The terminal connecting member 25 may be inserted into a hole formed in the upper insulating member 54.
캡조립체(30)는 단락홀(37)과, 상기 단락홀(37)에 설치되고 양극(11) 및 음극(12)을 단락시킬 수 있는 단락부재(56)를 포함할 수 있다.The cap assembly 30 may include a shorting hole 37 and a shorting member 56 installed in the shorting hole 37 and shorting the positive electrode 11 and the negative electrode 12.
단락부재(56)는 상부절연부재(54)와 캡플레이트 (31) 사이에 마련될 수 있고, 상부절연부재 (54)는 단락부재 (56)에 대응하는 위치에 형성될 수 있는 절개부를 갖도록 구성될 수 있다.The short circuit member 56 may be provided between the upper insulation member 54 and the cap plate 31, and the upper insulation member 54 may be configured to have a cutout portion that may be formed at a position corresponding to the short circuit member 56. Can be.
단락부재(56)는 상기 절개부를 통해 노출된 음극단자(22)와 중첩될 수 있고, 분리되도록 위치될 수 있다.The short circuit member 56 may overlap the negative electrode terminal 22 exposed through the cutout and may be positioned to be separated.
또한, 단락부재(56)는 음극단자(22)와 벤트홀(34) 사이에 있을 수 있고, 벤트홀(34)보다 음극 단자(22)에 더 가까이 위치할 수 있다.In addition, the short circuit member 56 may be between the negative electrode terminal 22 and the vent hole 34, and may be located closer to the negative electrode terminal 22 than the vent hole 34.
상기 단락부재(56)는 상기 전극조립체(10)측으로 굴곡진 볼록한 굴곡부를 포함 할 수 있으며, 상기 굴곡부의 외측에 형성될 수 있고 상기 캡 플레이트(31)에 고정될 수 있는 가장자리부를 포함할 수 있다.The short circuit member 56 may include a convex curved portion curved toward the electrode assembly 10, and may include an edge portion that may be formed outside the curved portion and fixed to the cap plate 31. .
전지셀(80)의 내부압력이 상승하면 단락부재(56)는 단락을 일으키도록 변형될 수 있다. When the internal pressure of the battery cell 80 increases, the short circuit member 56 may be deformed to cause a short circuit.
달리 표현하면, 전지셀(80) 내에서 의도치 않은 반응에 의해 가스가 생성되면 전지셀(80)의 내부압력이 증가할 수 있다.In other words, when gas is generated by an unintended reaction in the battery cell 80, the internal pressure of the battery cell 80 may increase.
전지셀(80)의 내부압력이 어느 수준(예컨대, 설정 수준) 이상으로 상승되면, 굴곡부는 반대 방향으로 오목하게 굴곡지도록 변형될 수 있고, 그에 따라 단락부재(56)가 음극단자(22)와 접촉하여 단락이 일어난다.When the internal pressure of the battery cell 80 rises above a certain level (for example, a set level), the bent portion may be deformed to be curved concave in the opposite direction, whereby the shorting member 56 is connected to the negative electrode terminal 22. A short circuit occurs in contact.
도 3은 종래 기술에 따른 전지시스템 (100)의 개략적인 측면도를 도시한다. 여기서, 적층된 복수의 전지셀(80)을 포함하는 전지모듈(90)이 베이스플레이트(60)의 상부에 배치된다.3 shows a schematic side view of a battery system 100 according to the prior art. Here, the battery module 90 including the plurality of stacked battery cells 80 is disposed above the base plate 60.
각 전지셀(80)은 상술한 바와 같은 각형의 전지셀(80)이며, 전지케이스(26)를 포함한다. 케이스(26)는 단자(21)를 포함하는 캡조립체에 대향하는 바닥면(27)을 포함하며, 상기 바닥면 (27)은 베이스플레이트(60)와 열 접촉한다.Each battery cell 80 is a rectangular battery cell 80 as described above, and includes a battery case 26. The case 26 includes a bottom surface 27 opposite the cap assembly including the terminal 21, which bottom surface 27 is in thermal contact with the base plate 60.
셀(80)들은 제1전지셀의 제2와이드측면(19)이 제2전지셀(82)의 제1와이드측면(18)을 마주하고 인접한 전지셀(81, 82) 사이에 갭(28)이 형성되도록 적층된다. 베이스플레이트(60)는 단일재료에 의해 단일체로 형성된 평면플레이트이다.The cells 80 have a gap 28 between the adjacent battery cells 81, 82, with the second wide side 19 of the first battery cell facing the first wide side 18 of the second battery cell 82. It is laminated so that it is formed. The base plate 60 is a flat plate formed of a single body by a single material.
도 4 및 도 5는 (A) 전지시스템(100) 및 (B) 본 발명의 제1실시예에 따른 베이스플레이트 (60)의 개략적인 측면도 및 평면도를 도시한다.4 and 5 show schematic side and top views of (A) battery system 100 and (B) baseplate 60 according to the first embodiment of the invention.
제1실시예에 따른 전지시스템(100)은 제1방향(y)으로 이격된 복수의 전지모듈(90)을 포함한다. 각 전지모듈(90)은 제2방향(x)으로 적층 또는 배치된 상술한 바와 같은 복수의 각형 전지셀(80)을 포함한다.The battery system 100 according to the first embodiment includes a plurality of battery modules 90 spaced apart in the first direction y. Each battery module 90 includes a plurality of rectangular battery cells 80 as described above stacked or arranged in a second direction (x).
각 전지셀(80)은 전지케이스(26) 및 캡조립체(30)를 포함하며, 캡조립체는 예컨대 양극 및 음극단자(21, 22)를 포함한다.Each battery cell 80 includes a battery case 26 and a cap assembly 30, and the cap assembly includes positive and negative terminals 21 and 22, for example.
각 전지케이스(26)는 바닥면(27)과 한 쌍의 제1측벽(18, 19)을 포함한다. 셀들은 베이스플레이트(60)상에 위치되어 각 전지케이스(26)의 바닥면(27)이 베이스플레이트(60)의 제1메인면(61)과 열 접촉한다. Each battery case 26 includes a bottom surface 27 and a pair of first side walls 18 and 19. The cells are positioned on the base plate 60 so that the bottom surface 27 of each battery case 26 is in thermal contact with the first main surface 61 of the base plate 60.
상기 제1측벽(18, 19) 또는 와이드측면은 제1방향을 따라 연장되어 제1방향을 향하도록 정렬된다. 즉, 상기 제1측벽은 제1방향과 나란하도록 정렬된다.The first side walls 18, 19 or wide side surfaces extend along the first direction and are aligned to face the first direction. In other words, the first side wall is aligned with the first direction.
어느 하나의 전지모듈(90)에서 복수의 셀(80)은 제1전지셀(81)의 제 2와이드측면(19)이 제2전지셀(82)의 제1와이드측면(18)을 마주하도록 제2방향(x)으로 배치된다. 즉, 셀(80)간의 갭(28)이 이웃하는 2개의 셀(80)의 마주보는 와이드측면(18, 19) 사이에 형성된다. 또한, 상기 갭(28)은 그 연장된 길이 방향이 상기 제1방향(y)과 나란하게 형성된다.In any one of the battery modules 90, the plurality of cells 80 may face the first wide side surface 18 of the second battery cell 82 so that the second wide side surface 19 of the first battery cell 81 faces each other. It is arranged in the second direction x. That is, a gap 28 between cells 80 is formed between the opposing wide sides 18, 19 of two neighboring cells 80. In addition, the gap 28 is formed such that its extended longitudinal direction is parallel to the first direction y.
한편, 복수의 전지모듈(90)이 제1방향(y)을 따라 배치된 경우, 서로 다른 전지모듈(90)에 형성된 갭(28)은 서로 제1방향(y)의 동일 직선상에 함께 배치되도록 정렬된다.On the other hand, when the plurality of battery modules 90 are arranged along the first direction y, the gaps 28 formed in the different battery modules 90 are arranged together on the same straight line in the first direction y. Aligned so that
제1실시예에 따른 베이스플레이트(60)는 복수의 절연부(70)를 포함하는 주조된 알루미늄 베이스플레이트(60)이다.The base plate 60 according to the first embodiment is a cast aluminum base plate 60 including a plurality of insulating parts 70.
제1방향으로 연장된 절연부(70)는 제2방향(x)으로 서로 이격되고 서로 평행하다. 절연부(70)는 베이스플레이트(60)의 제1방향(y)을 따라 베이스플레이트(60)의 대략 전체 길이를 가로 지르며, 베이스플레이트(60)의 좁은 모서리 영역만이 남겨질 수 있다.The insulating parts 70 extending in the first direction are spaced apart from each other and parallel to each other in the second direction x. The insulating part 70 crosses substantially the entire length of the base plate 60 along the first direction y of the base plate 60, and only a narrow edge region of the base plate 60 may be left.
각 절연부(70)는 복수의 전지모듈(90)에서 인접한 셀들(80)사이의 복수의 갭(28)과 정렬된다. 즉, 상기한 복수의 갭(28)은 상기한 절연부(80) 상측에 위치할 수 있다.Each insulator 70 is aligned with a plurality of gaps 28 between adjacent cells 80 in the plurality of battery modules 90. That is, the plurality of gaps 28 may be located above the insulating portion 80.
절연부(70)는 단열성 폴리머로 형성되고, x 및 y방향에 수직한 제 3방향(z)으로 베이스플레이트(60)의 제1메인면(61)으로부터 베이스플레이트(60)의 제2메인면(62)까지 베이스플레이트(60)의 전체 높이에 걸쳐 연장된다.The insulating part 70 is made of a heat insulating polymer and is formed from the first main surface 61 of the base plate 60 from the first main surface 61 of the base plate 60 in the third direction z perpendicular to the x and y directions. Extends over the entire height of the baseplate 60 to 62.
한편, 베이스플레이트(60)의 전체 높이에 걸쳐 연장된 절연부(70)는 다음과 같은 공정을 거쳐 형성될 수 있다.On the other hand, the insulating portion 70 extending over the entire height of the base plate 60 may be formed through the following process.
우선, 제1실시예에 따른 베이스플레이트(60)는 평면 알루미늄 베이스플레이트(60)의 주조 및 상기 평면 베이스플레이트(60)의 제1메인면에 복수의 오목홈을 절삭함으로써 마련된다.First, the base plate 60 according to the first embodiment is provided by casting a flat aluminum base plate 60 and cutting a plurality of concave grooves in the first main surface of the flat base plate 60.
이 때, 오목홈의 절삭 깊이는 오목홈이 제2메인면(62)까지 연장되지 않도록 조정되며, 절삭 이후 오목홈에는 단열성 폴리머가 충전된다.At this time, the cutting depth of the concave groove is adjusted so that the concave groove does not extend to the second main surface 62, and the recessed groove is filled with a heat insulating polymer after cutting.
상기 폴리머의 경화 후, 베이스플레이트는 제2메인면(62)에서 상기 충전된 오목홈이 노출될 때까지 상기 제2메인면이 연삭된다. 상기 연삭과정을 통해 상기 오목홈은 제2메인면까지 연장된 형태가 되며, 이에 따라 절연부는 베이스플레이트의 전체 높이에 걸쳐 연장된 형태로 마련되는 것이다.After curing of the polymer, the base plate is ground in the second main surface until the filled concave groove is exposed in the second main surface 62. Through the grinding process, the concave groove extends to the second main surface, and thus the insulation portion is provided to extend over the entire height of the base plate.
위와 같이 오목홈이 제2메인면(62)까지 연장되지 않도록 절삭한 뒤 연삭과정을 통해 제2메인면에서 오목홈을 노출시키는 제조 공정에 의해, 제조 공정상에서 베이스플레이트(60)의 관리성이 향상되며 파단 등이 효과적으로 예방될 수 있다.By cutting the concave grooves so that the concave grooves do not extend to the second main surface 62 as described above and exposing the concave grooves on the second main surface through the grinding process, the manageability of the base plate 60 in the manufacturing process It can be improved and breakage can be effectively prevented.
단열성 중합체로 인해 베이스플레이트(60)는 일체로 유지되고 베이스플레이트(60)의 제1방향(y) 열전도율은 베이스플레이트(60)의 제2방향 열전도율보다 크다. 제2방향(x)에 대한 열전도는 각 절연부(70)에서 방해 또는 억제된다.Due to the heat insulating polymer, the base plate 60 is kept integral and the first direction y thermal conductivity of the base plate 60 is greater than the second direction thermal conductivity of the base plate 60. Thermal conduction in the second direction x is interrupted or suppressed at each insulation unit 70.
도 6은 제2실시예에 따른 전지시스템(100) 및 베이스플레이트(60)의 개략적인 평면도를 도시한다. 제2실시예에서, 전지시스템(100)은 도 4 및 도 5와 관련하여 설명된 바와 같이 배치된 복수의 전지모듈(90) 및 복수의 전지셀(80)을 포함한다.6 shows a schematic plan view of the battery system 100 and the base plate 60 according to the second embodiment. In the second embodiment, the battery system 100 includes a plurality of battery modules 90 and a plurality of battery cells 80 arranged as described with reference to FIGS. 4 and 5.
제2실시예의 베이스플레이트(60)는 각 절연부(70)가 제1방향(y)을 따라 파선으로 연장된 점에서 제1실시예와 차이를 가지며, 제1방향으로 절연부(70)간의 간극(71)들은 인접한 전지모듈(90) 사이에 배치된다. 또한, 절연부(70)는 x 및 y방향과 수직한 z방향으로 베이스플레이트(60)의 전체길이에 걸쳐 연장되지 않을 수 있다.The base plate 60 of the second embodiment differs from the first embodiment in that each of the insulating parts 70 extends in a broken line along the first direction y, and between the insulating parts 70 in the first direction. The gaps 71 are disposed between the adjacent battery modules 90. In addition, the insulating part 70 may not extend over the entire length of the base plate 60 in the z direction perpendicular to the x and y directions.
제2실시예에서 절연부(70)는 베이스플레이트(60)의 제1메인면(61) 내에 복수의 오목홈(70)으로 형성된다. 오목홈(70)은 주조된 알루미늄 베이스플레이트(60)의 평면(61) 내로 절삭되거나, 베이스플레이트(60)가 적절한 금형에서 상기 오목홈과 함께 초기에 주조된다.In the second embodiment, the insulating part 70 is formed of a plurality of concave grooves 70 in the first main surface 61 of the base plate 60. The recess 70 is cut into the plane 61 of the cast aluminum baseplate 60 or the baseplate 60 is initially cast with the recess in a suitable mold.
오목홈(70)은 중공상태로 남겨지거나 단열성 물질로 채워질 수 있다. 제2실시예에 따른 베이스플레이트(60)는 제1실시예보다 기계적으로 안정적일 수 있다.The recess 70 may be left hollow or filled with a heat insulating material. The base plate 60 according to the second embodiment may be mechanically more stable than the first embodiment.
도 7은 전술한 바와 같은 복수의 전지모듈(90) 및 전지셀(80)을 포함하는 제3실시예에 따른 전지시스템 (100)의 개략적인 측면도를 도시한다.FIG. 7 shows a schematic side view of a battery system 100 according to a third embodiment including a plurality of battery modules 90 and a battery cell 80 as described above.
베이스플레이트(60)는 기본적으로 제1실시예와 관련하여 설명된 것과 같이 마련되지만, 추가적으로 복수의 방열부를 포함한다.The base plate 60 is basically provided as described in connection with the first embodiment, but additionally includes a plurality of heat dissipating parts.
방열부는 알루미늄 베이스플레이트(60)내에 매설된 냉매덕트 또는 냉각채널(72)이며, 각 냉각채널(72)은 서로 다른 전지모듈(90)에서 y방향을 따르는 직선상에 배치된 복수의 전지셀(80) 바닥면(27)과 정렬된다.The heat dissipation unit is a coolant duct or a cooling channel 72 embedded in the aluminum base plate 60, and each cooling channel 72 includes a plurality of battery cells arranged in a straight line along the y direction in different battery modules 90. 80) aligned with the bottom surface (27).
특히, 냉각채널(72)은 제1방향(y)을 따라 베이스플레이트(60)의 전체 길이를 가로질러 연장되고, 외부의 냉각회로에 연결되도록 구성된다.In particular, the cooling channel 72 extends across the entire length of the base plate 60 along the first direction y and is configured to be connected to an external cooling circuit.
베이스플레이트(60)는 기본적으로 제1실시예에 관하여 설명한 바와 같이 제조되며, 상기 알루미늄 베이스플레이트(60)가 주조되기 전에 구리 냉각채널(72)이 금형 내에 위치된다.The baseplate 60 is basically manufactured as described with respect to the first embodiment, and a copper cooling channel 72 is placed in the mold before the aluminum baseplate 60 is cast.
절연부(70)의 형성에 있어서, 오목홈은 인접한 냉각채널(72) 사이에 절삭된다.In the formation of the insulator 70, the recess is cut between adjacent cooling channels 72.
제3실시예에 따른 베이스플레이트(60)는 제1 및 2방향 사이의 열전도율에 대한 이방성이 증대되도록, 제1방향(y)을 따라 증대된 열전도율 및 방열성을 가진다.The base plate 60 according to the third embodiment has an increased thermal conductivity and heat dissipation along the first direction y so that anisotropy with respect to thermal conductivity between the first and second directions is increased.
따라서, 예컨대 열폭주 중에 고장난 전지셀(80)의 열은 주로 인접한 전지모듈(90)로 이송되고 동일한 전지모듈 (90)의 인접한 전지셀로 이송되지 않는다.Thus, for example, the heat of a battery cell 80 which failed during thermal runaway is mainly transferred to the adjacent battery module 90 and is not transferred to the adjacent battery cell of the same battery module 90.
- 부호의 설명 -Description of the sign
10 : 전극조립체 11 : 양극10 electrode assembly 11 anode
11a : 양극무지부 12 : 음극11a: anode positive portion 12: cathode
12a : 음극무지부 13 : 세퍼레이터12a: negative electrode non-coating portion 13: separator
18 : 제1와이드측면 19 : 제2와이드측면18: first wide side 19: second wide side
21 : 양극단자(제1단자) 22 : 음극단자(제2단자)21: positive terminal (first terminal) 22: negative terminal (second terminal)
25 : 단자연결부재 26 : 케이스25: terminal connecting member 26: case
27 : 바닥면 28 : 갭27: bottom surface 28: gap
30 : 캡조립체 31 : 캡플레이트30: cap assembly 31: cap plate
32 : 주입구 34 : 벤트홀32: injection hole 34: vent hole
37 : 단락홀 38 : 밀봉캡37: short circuit hole 38: sealing cap
39 : 벤트부재 39a : 노치39: vent member 39a: notch
41, 42 : 집전탭 43, 45 : 하부절연부재41, 42: current collector tab 43, 45: lower insulating member
54 : 상부절연부재 56 : 단락부재54 upper insulating member 56 short circuit member
58 : 연결판 59 : 가스켓58: connecting plate 59: gasket
60 : 베이스플레이트 61 : 제1메인면60: base plate 61: the first main surface
62 : 제2메인면 70 : 절연부/오목홈62: second main surface 70: insulation / recess groove
71 : (절연부의)간극 72 : 냉각채널71: clearance gap 72: cooling channel
80 : 전지셀 81 : 제1전지셀80: battery cell 81: first battery cell
82 : 제2전지셀 90 : 전지모듈82: second battery cell 90: battery module
100 : 전지시스템100: battery system

Claims (13)

  1. 제1방향을 따라 상호 이격되도록 배치되고, 제2방향으로 배치된 복수의 전지셀을 포함하며, 상기 복수의 전지셀은 각각 바닥면을 가지는 전지케이스 내에 수용된 전극조립체를 포함하는 복수의 전지모듈; 및A plurality of battery modules disposed to be spaced apart from each other in a first direction and including a plurality of battery cells arranged in a second direction, wherein the plurality of battery cells each includes an electrode assembly accommodated in a battery case having a bottom surface; And
    상기 전지모듈을 지지하고, 상기 전지케이스의 바닥면과 열 접촉하는 제1메인면을 포함하는 베이스플레이트;를 포함하고,And a base plate supporting the battery module and including a first main surface in thermal contact with a bottom surface of the battery case.
    상기 베이스플레이트의 제1방향에 따른 열전도율은 상기 베이스플레이트의 제2방향에 따른 열전도율보다 더 큰 전지시스템.And a thermal conductivity in the first direction of the base plate is greater than a thermal conductivity in the second direction of the base plate.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 베이스플레이트는 제1열전도율을 가지는 제1물질을 포함하며, 상기 제1열전도율보다 더 낮은 제2열전도율을 가지며 제1방향으로 연장된 복수의 절연부를 포함하는 전지시스템.The base plate includes a first material having a first thermal conductivity, and includes a plurality of insulation portions extending in a first direction and having a second thermal conductivity lower than the first thermal conductivity.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 전지케이스 각각은 상기 바닥면의 각 단부에 수직하게 연결되며 상기 제1방향을 따라 정렬된 제1와이드측면 및 제2와이드측면을 포함하고,Each of the battery cases includes a first wide side surface and a second wide side surface that are vertically connected to each end of the bottom surface and aligned along the first direction.
    상기 제2방향을 기준으로 제1전지셀의 제2와이드측면과 상기 제1전지셀에 이웃하는 제2전지셀의 제1와이드측면 사이에 상기 제1방향으로 연장된 갭이 마련되며,A gap extending in the first direction is provided between the second wide side surface of the first battery cell and the first wide side surface of the second battery cell adjacent to the first battery cell with respect to the second direction.
    상기 절연부 각각은 상기 제1방향을 따라 상기 갭과 정렬되는 전지시스템.Each of the insulating parts is aligned with the gap along the first direction.
  4. 청구항 2에 있어서, The method according to claim 2,
    상기 절연부는 상기 제1방향을 따라 상기 베이스플레이트의 전체 길이를 가로질러 연속적으로 연장된 전지시스템.And the insulating portion extends continuously across the entire length of the base plate along the first direction.
  5. 청구항 2에 있어서, The method according to claim 2,
    상기 절연부는 상기 제1방향을 따라 상기 베이스플레이트의 전체 길이를 가로지르는 파선으로 연장되고, 상기 파선의 간극은 이웃하는 전지모듈 사이에 배치되는 전지시스템.The insulating part extends in a broken line across the entire length of the base plate along the first direction, and the gap of the broken line is disposed between neighboring battery modules.
  6. 청구항 2에 있어서, The method according to claim 2,
    상기 절연부는 상기 베이스플레이트의 상기 제1메인면에서 상기 제1메인면에 대향하는 상기 베이스플레이트의 제2메인면까지 연장되는 전지시스템.And the insulating portion extends from the first main surface of the base plate to a second main surface of the base plate opposite to the first main surface.
  7. 청구항 2에 있어서,The method according to claim 2,
    상기 절연부는 상기 베이스플레이트의 상기 제1메인면에 매설된 오목홈인 전지시스템.And the insulating part is a concave groove embedded in the first main surface of the base plate.
  8. 청구항 7에 있어서, The method according to claim 7,
    상기 오목홈은 중공 상태이거나 상기 제1연전도율보다 더 낮은 상기 제2열전도율을 가지는 물질로 채워진 전지시스템.And the concave groove is hollow or filled with a material having the second thermal conductivity lower than the first conductivity.
  9. 청구항 2에 있어서, The method according to claim 2,
    상기 베이스플레이트는 상기 제1방향으로 연장된 복수의 방열부를 더 포함하고,The base plate further includes a plurality of heat dissipation parts extending in the first direction,
    상기 방열부 각각은 적어도 하나의 전지케이스 바닥면과 정렬되는 전지시스템.Each of the heat dissipating parts is aligned with at least one battery case bottom surface.
  10. 청구항 9에 있어서, The method according to claim 9,
    상기 방열부는 상기 제1열전도율 및 제2열전도율보다 더 높은 제3열전도율을 가지는 제3물질을 포함하는 전지시스템.The heat dissipation unit includes a third material having a third thermal conductivity higher than the first thermal conductivity and the second thermal conductivity.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 방열부는 상기 베이스플레이트 내에 일체로 마련되고 냉매를 가이드하도록 마련된 냉각채널인 전지시스템.The heat dissipation unit is a battery system is integrally provided in the base plate and a cooling channel provided to guide the refrigerant.
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 방열부는 제1방향을 따라 상기 베이스플레이트의 전체 길이를 가로질러 연속적으로 연장된 전지시스템.And the heat dissipation unit continuously extends across the entire length of the base plate in a first direction.
  13. 청구항 1 내지 12 중 어느 하나에 따른 전지시스템을 포함하는 전기자동차.An electric vehicle comprising a battery system according to any one of claims 1 to 12.
PCT/KR2017/011885 2016-10-26 2017-10-26 Battery system and electric vehicle comprising same WO2018080183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780064405.3A CN109845024B (en) 2016-10-26 2017-10-26 Battery system and electric vehicle including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP16195845.9 2016-10-26
EP16195845.9A EP3316391B1 (en) 2016-10-26 2016-10-26 Battery system, base plate for a battery system and electric vehicle
KR10-2017-0139329 2017-10-25
KR1020170139329A KR102210218B1 (en) 2016-10-26 2017-10-25 Battery system, base plate for a battery system and electric vehicle

Publications (1)

Publication Number Publication Date
WO2018080183A1 true WO2018080183A1 (en) 2018-05-03

Family

ID=62025159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011885 WO2018080183A1 (en) 2016-10-26 2017-10-26 Battery system and electric vehicle comprising same

Country Status (1)

Country Link
WO (1) WO2018080183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098865A (en) * 2020-09-28 2020-12-18 湖北亿纬动力有限公司 Experimental method for thermal runaway diffusion of battery cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145719B1 (en) * 2009-04-01 2012-05-14 주식회사 엘지화학 Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
KR101271858B1 (en) * 2011-03-08 2013-06-07 로베르트 보쉬 게엠베하 Battery pack with enhanced radiating ability
WO2015008563A1 (en) * 2013-07-17 2015-01-22 カルソニックカンセイ株式会社 Assembled battery
US20150044538A1 (en) * 2011-12-09 2015-02-12 Honda Motor Co., Ltd. Structure for securing battery
US9397375B2 (en) * 2014-09-25 2016-07-19 Atieva, Inc. Battery pack with segmented, electrically isolated heat sink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145719B1 (en) * 2009-04-01 2012-05-14 주식회사 엘지화학 Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
KR101271858B1 (en) * 2011-03-08 2013-06-07 로베르트 보쉬 게엠베하 Battery pack with enhanced radiating ability
US20150044538A1 (en) * 2011-12-09 2015-02-12 Honda Motor Co., Ltd. Structure for securing battery
WO2015008563A1 (en) * 2013-07-17 2015-01-22 カルソニックカンセイ株式会社 Assembled battery
US9397375B2 (en) * 2014-09-25 2016-07-19 Atieva, Inc. Battery pack with segmented, electrically isolated heat sink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098865A (en) * 2020-09-28 2020-12-18 湖北亿纬动力有限公司 Experimental method for thermal runaway diffusion of battery cell module
CN112098865B (en) * 2020-09-28 2023-09-01 湖北亿纬动力有限公司 Experimental method for thermal runaway diffusion of cell module

Similar Documents

Publication Publication Date Title
WO2019139385A1 (en) Battery module having gas discharge structure
WO2018194296A1 (en) Battery module
WO2019098588A1 (en) Battery module comprising sensing assembly and busbar assembly
WO2016182170A1 (en) Battery module
WO2019035571A1 (en) Battery pack having improved temperature control performance
WO2018128404A1 (en) Chassis components, vehicle battery system integrally formed with chassis components, and integrated battery system vehicle comprising same
WO2019098507A1 (en) Battery module and battery pack comprising same
WO2021045376A1 (en) Battery pack, and battery rack and power storage device comprising same
WO2018128295A1 (en) Battery system and vehicle including same
WO2018080183A1 (en) Battery system and electric vehicle comprising same
WO2022191683A1 (en) Bus bar assembly, battery pack comprising bus bar assembly, and vehicle comprising battery pack
WO2023158145A1 (en) Battery pack and device comprising same
WO2019132155A1 (en) Battery module
WO2022235096A1 (en) Bus bar assembly, battery pack including same, and automobile
WO2018143596A1 (en) Current collection system for battery module, battery module, and vehicle
WO2022149964A1 (en) Battery pack and vehicle including same
WO2022186663A1 (en) Battery pack and vehicle comprising same
WO2022149968A1 (en) Battery pack and vehicle comprising same
WO2023121102A1 (en) Battery assembly with reinforced safety
WO2019160333A1 (en) Terminal case having improved secondary battery state estimation function
WO2024014925A1 (en) Battery pack and vehicle comprising same
WO2023121416A1 (en) Battery module with reinforced safety
WO2023063634A1 (en) Battery pack and vehicle comprising same
WO2023121067A1 (en) Battery pack and vehicle comprising same
WO2023063636A1 (en) Battery pack and vehicle comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865886

Country of ref document: EP

Kind code of ref document: A1