WO2018079558A1 - Wireless device - Google Patents

Wireless device Download PDF

Info

Publication number
WO2018079558A1
WO2018079558A1 PCT/JP2017/038380 JP2017038380W WO2018079558A1 WO 2018079558 A1 WO2018079558 A1 WO 2018079558A1 JP 2017038380 W JP2017038380 W JP 2017038380W WO 2018079558 A1 WO2018079558 A1 WO 2018079558A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
wireless
management unit
communication
beacon
Prior art date
Application number
PCT/JP2017/038380
Other languages
French (fr)
Japanese (ja)
Inventor
ラバリジョンナ ヴェルティナ
史秀 児島
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2018079558A1 publication Critical patent/WO2018079558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/30Connectivity information management, e.g. connectivity discovery or connectivity update for proactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless device that configures a network with a mesh structure.
  • a packet is transmitted to a target wireless device via a wireless device constituting the network. For this reason, how to select a wireless device to be routed, that is, routing processing becomes important.
  • the network it may be configured by a battery-driven wireless device.
  • dynamic routing processing may be necessary not only from the viewpoint of communication economy but also from the viewpoint of the remaining battery level for driving the wireless device.
  • battery-powered wireless devices often perform sleep operations that periodically cease operation due to battery capacity problems, making it difficult to grasp the status of adjacent wireless devices and perform routing processing dynamically. Met.
  • the conventional wireless device has a problem that it is difficult to perform dynamic routing processing when a mesh-structured network is configured by battery-powered wireless devices.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a wireless device that can grasp the status of an adjacent device and perform dynamic routing processing.
  • the wireless device is configured such that each of the wireless devices to which the wireless device belongs belongs to a network configured to transmit a beacon signal at a common time interval and to pause operation for a predetermined time during the transmission interval of the beacon signal.
  • a wireless device that is part of the network, and that receives a beacon signal including operation information indicating the operation status of another wireless device belonging to the network, and acquires operation information of the other wireless device from the received beacon signal In the communication event, the adjacent information management unit that manages the operation information in association with the identifier of the other wireless device and the operation information of the other wireless device managed by the adjacent information management unit when the communication event occurs. And a communication management unit that determines a routing destination for transmitting data.
  • FIG. 1 shows a state of a network formed by the wireless device of the embodiment.
  • the network NW formed by the wireless device of the embodiment has a mesh structure composed of a plurality of wireless devices.
  • the network includes a root device R (“R” in the figure, the same applies hereinafter) that controls the network, and other wireless devices A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, and S exist.
  • the wireless devices constituting the network operate in a state where the power supply capacity such as a battery is limited, and each forms a “hierarchy” (Depth) having the root device R as a vertex.
  • the hierarchy of the wireless device generally indicates the number of hops when a packet is transmitted to the root device R. However, since routing between wireless devices is dynamically determined for reasons of communication economy, the hierarchy of the root device R is “0” and the wireless device D is “2” as shown in FIG. However, it may be possible to communicate with the root device R directly.
  • the hierarchy is “1”, and as the adjacent wireless devices (communicable wireless devices), the root device R, the wireless devices B, D, F, H, L, M It is shown.
  • the wireless device G can receive packet transmission from the root device R and the wireless devices B, D, F, H, L, and M, and to the root device R, the wireless devices B, D, F, H, L, and M. Packets can be transmitted (routed).
  • each wireless device Since the wireless device G communicates with the adjacent route device R and the wireless devices B, D, F, H, L, and M, it is necessary to keep track of the respective operating states, so that the operation of the adjacent wireless device Information indicating the status is acquired and managed from each wireless device.
  • each wireless device periodically transmits a beacon radio wave (a beacon signal) including information (operation information) indicating its own operation state. That is, the wireless device G receives beacon radio waves from the route device R and the wireless devices B, D, F, H, L, and M, and acquires the respective operating states.
  • the transmission of beacon radio waves by the wireless device is performed at predetermined time intervals.
  • the transmission interval of beacon radio waves is common to all wireless devices including the root device R.
  • the timing for transmitting the beacon radio wave is not always synchronized among all wireless devices including the root device R.
  • the wireless device forming the network of the embodiment may be driven by a power source having a limited power source capacity such as a battery. Therefore, the wireless devices A to Q and the wireless device S have a function for suppressing power consumption, except for the route device R that controls the entire network. As one of the functions for suppressing power consumption, there is a hibernation function that puts at least part of the operation of the wireless device into a hibernation state.
  • the transmission / reception function of the wireless device is stopped.
  • Individual radio devices transmit beacon radio waves at a common time interval, but the timing is not synchronized, so beacon radio waves (and transmissions) of neighboring radio devices that are transmitted while they are dormant The target packet itself) cannot be received. Therefore, the radio apparatus according to the embodiment stops the pause function that puts the operation in a pause state at regular time intervals, and adds information indicating the timing to stop the pause function to the beacon radio wave to be transmitted. Thereby, it is possible to notify an adjacent device of the timing at which the device can receive all beacon radio waves.
  • wireless device G at least while stopping its own sleep function, it receives beacon radio waves from adjacent route device R, wireless devices B, D, F, H, L and M, The timing of these dormant states is acquired, and it is determined at which timing packet transmission is possible.
  • the wireless device G puts its own dormant timing on a beacon radio wave and transmits it to the adjacent route device R, wireless devices B, D, F, H, L, and M, and these wireless devices return to themselves. It informs when the packet can be transmitted.
  • the wireless device G can know the timing at which the adjacent wireless device can receive radio waves, it is possible to determine which wireless device should be routed when transmitting a packet.
  • the wireless device 1 configures a network NW having a mesh structure. And directly connected.
  • the wireless device 1 includes a transmission / reception unit 10 to which an antenna 15 is connected, a communication management unit 20, a self information management unit 30, a self information storage unit 35, an adjacent information management unit 40, and an adjacent information storage unit 45. Note that each of the parent device P, the brother device S, and the child device C has the same configuration as the wireless device 1.
  • the transceiver 10 is a wireless interface that transmits and receives radio waves in the wireless device of the embodiment.
  • the transmission / reception unit 10 has not only a routing function described below but also a function of performing specific data transmission / reception.
  • the transmission / reception unit 10 has a function of transmitting beacons at predetermined time intervals. In order to avoid a collision with an adjacent wireless device, a so-called CSMA / CA function may be provided.
  • the communication management unit 20 is a calculation block that performs routing processing in the network NW and data transmission / reception management.
  • the self information management unit 30 is a calculation block that sets or updates its own operation information.
  • the self information storage unit 35 stores the operation information set and updated by the self information management unit 30.
  • the adjacent information management unit 40 is a calculation block that collects and updates operation information of each adjacent wireless device.
  • the adjacent information storage unit 45 stores operation information of each adjacent wireless device.
  • the operation information is composed of a plurality of elements indicating the operation status of the wireless device.
  • the self-information stored in the self-information storage unit 35 is own operation information
  • the adjacent information stored in the adjacent information storage unit 45 is operation information of adjacent wireless devices.
  • the contents of the self information and the adjacent information are common except that the adjacent information includes the address of the corresponding wireless device.
  • FIG. 3 shows an example of adjacent information (operation information of adjacent devices) stored in the adjacent information storage unit 45.
  • the operation information includes, for example, the wireless device hierarchy, the operation period, the beacon interval of the entire operation period, and the number of beacons up to the entire operation period in units of adjacent radio devices.
  • the transmission / reception unit 10 of the embodiment transmits a beacon radio wave including its own operation information at a predetermined interval in order to enable dynamic routing.
  • the wireless device that has received the beacon radio wave acquires information such as the timing at which the radio device that has transmitted the beacon radio wave is in a dormant state based on operation information included in the beacon radio wave, and uses the information as reference information for routing processing.
  • the time interval for transmitting the beacon radio wave is common among the wireless devices, but the timing for transmitting the beacon radio wave is not always synchronized between the wireless devices. Therefore, when receiving beacon radio waves from all adjacent wireless devices, it is necessary to continue the reception state for a certain period. Therefore, the operation information includes information indicating at what timing the corresponding wireless device stops the dormant state (pause function) (is in a continuous reception state).
  • the operation information will be described in detail with reference to FIG.
  • the hierarchy is information indicating a relative distance based on a metric from the root device R located at the highest position on the network NW in the corresponding neighboring device, and the larger the value, the higher the cost due to the metric required for the root device. It shows that.
  • devices R, B, F, H, L, and M are listed as neighboring devices, and the layers on the respective networks are shown to be 0, 1, 1, 2, 2, and 2. ing.
  • the device R whose hierarchy is 0 is the highest-level root device.
  • the operating period is information indicating a period in which the wireless device is in an operating state (a period not in a dormant state) among transmission intervals (periods) of beacons transmitted by the wireless device.
  • the operation period can be represented by a numerical value indicating, for example, how much of the beacon transmission interval is operating (or dormant). In this example, if the operating period is “0.5”, it indicates that only half (1/2) of the beacon transmission intervals are operating, and the remaining period is in a dormant state. In the sleep state of the wireless device, since various functions such as the reception operation are stopped, it is possible to suppress battery consumption. Note that how to represent the operation period is not limited to this example. It may be expressed in a specific unit of time.
  • the beacon interval of the entire operation period is information indicating the frequency of occurrence of a period (period during which reception is continuously possible) that does not include a dormant state among transmission intervals of beacons transmitted by the wireless device.
  • the frequency is expressed using the number of beacon radio waves. That is, in the wireless device B of FIG. 3, the beacon interval of the entire operation period is “3”. If the beacon radio wave is transmitted three times, this is a pause state until the next beacon after one transmission. Indicates that it must not be.
  • the beacon interval of the entire operation period of the device R is “1”, which indicates that one of the beacon transmissions is not in a dormant state, that is, there is no dormant state.
  • the number of beacons until the entire operation period indicates the number of beacon signals until the suspension function is canceled after the beacon signal including the operation information. For example, the number of beacons until the entire operation period of the wireless device B is “2”, which indicates that a period that does not include a dormant state appears after two more beacon radio waves are transmitted. Similarly, the number of beacons until the entire operation period of the root device R is “0”, which represents that the route apparatus R is not in a dormant state.
  • the operation information may include a next operation time indicating a time when the wireless device is operated next time, and a next stop time indicating a time when the radio apparatus is next in the sleep state.
  • This “time” is not limited to hours and minutes, but may be in units of seconds (and in milliseconds).
  • the next operation time and the next stop time may be included in the beacon radio wave, but can be calculated if there is a time when the beacon radio wave is received, the beacon interval of the entire operation period, and the number of beacons until the entire operation period. Therefore, the received wireless device itself may calculate.
  • FIG. 4 shows an example of transmission timing of beacon radio waves of the route device R and the wireless devices A to D, F to H, L, and M in the network shown in FIG.
  • each of the root device R and the wireless device transmits a beacon radio wave at regular time intervals.
  • the wireless device A is not synchronized with the root device R, but transmits a beacon radio wave Txa at a constant time interval ti (between t1 and t2). The same applies to other wireless devices.
  • the radio devices A, B, C, D, G, and F receive the beacon radio wave (Rxa in the figure). That is, since the wireless devices A, B, C, D, G, and F are adjacent devices of the root device R, it is possible to receive the beacon radio wave of the device R. Similarly, the wireless devices R, B, D, F, H, L, and M can receive the beacon radio wave Txg of the wireless device G.
  • beacon radio wave Txa of the radio device A reaches the root device R and the radio device B, but the beacon radio wave Txh of the radio device H reaches the radio devices G and M at the same timing. These are in a positional relationship where beacon radio waves do not reach each other.
  • the broken line indicates a period during which each wireless device is in operation. That is, the root device R is in an operating state for all periods (there is no dormant state), and the wireless device A is in an operating state for a half of the period from immediately after transmitting the beacon radio wave Txa to the next beacon radio wave Txa transmission. .
  • the operation period of the root device R is 1 (all period operation), and the operation period of the wireless device A is 0.5 (only 1/2 of the beacon interval is operating). It corresponds to.
  • FIAF Full Interval Awake Frequency
  • the root apparatus R has a beacon interval of “1” for the entire operation period, which indicates that there is no hibernation state (always the entire operation period).
  • the wireless device B indicates that one out of three beacon radio waves has no rest state after that and is in the full operation period. That is, there is no rest period after the transmission of the third beacon radio wave Txb (B3) among the three beacon radio wave transmissions (B1, B2, B3), counted from B1 of the wireless device B in FIG. For a period of time), a pause state occurs after the subsequent fourth beacon radio wave Txb (B4).
  • beacon radio wave Txb of the wireless device B reaches the device A in B1, but is not received because it is not the period indicated by the broken line of the device A.
  • apparatus A can receive.
  • all the wireless devices are configured to maintain the operation state continuously without being in a pause state until a beacon radio wave is transmitted a predetermined number of times. Accordingly, since any wireless device has an opportunity to receive the entire period between beacon radio waves, it is possible to receive all beacon radio waves of neighboring devices that can be received.
  • the self-information management unit 30 refers to its own operation information stored in the self-information storage unit 35, and gives the communication management unit 20 a timing at which to enter the hibernation state and a period during which the hibernation function to stop the hibernation state should be stopped.
  • FIAF beam interval for all operating periods
  • the transmission of the beacon radio wave Txg by the wireless device G is shown five times (G1 to G5), but after the first transmission of the first beacon radio wave Txg (G1), there is no pause state and the next The operation state indicated by the broken line continues until the beacon radio wave Txg (G2) is transmitted.
  • the communication management unit 20 performs on / off control of the operation of the transmission / reception unit 10 at a timing indicated by a broken line in FIG.
  • the transmitting / receiving unit 10 can receive beacon radio waves from all adjacent wireless devices during at least the entire operation period as indicated by G1 to G2 (Yes in step 100; hereinafter referred to as “Yes in S100”). .
  • the transmission / reception unit 10 receives and decodes the beacon radio waves of the adjacent route device R, wireless devices B, F, H, L, and M, and passes the operation information of each wireless device to the adjacent information management unit 40 (S105).
  • the adjacent information management unit 40 associates the operation information of each wireless device received from the transmission / reception unit 10 with the address of the wireless device and stores it in the adjacent information storage unit 45 as adjacent information (S110). For example, after transmitting the first beacon radio wave Txg (G1) in FIG. 4, the radio apparatus G first receives the beacon radio wave Txh of the radio apparatus H (point Y). As shown in FIG. 3, according to the operation information included in the beacon of the wireless device H, the beacon interval of the entire operation period is “4”, and the number of beacons until the entire operation period is “4”. This indicates that if the beacon radio wave Txh of the wireless device H is received at the point Y in FIG.
  • one out of four beacons includes a period in which there is no sleep state. This corresponds to the fact that a period that does not include a dormant state appears after the fourth beacon radio wave Txh (H4) counted from (a region indicated by a broken line continues until the next beacon radio wave emission). That is, after the operating states (1) to (3) of the wireless device H, a dormant state appears, and in the operating state (4), the next beacon (H5) is transmitted without the dormant state appearing.
  • the wireless device G receives the beacon radio wave Txl from the wireless device L at the point X following the beacon of the wireless device H.
  • the beacon interval of the entire operation period of the wireless device L is “3”, and the number of beacons until the entire operation period is “3”.
  • the beacon radio wave Txl (L1) of the wireless device L is received at the point X in FIG. 4, one out of three beacons is not in a dormant state, and counted from the point X (L1). This corresponds to the appearance of a period that does not include a dormant state after the third beacon radio wave Txl (L3) is emitted.
  • the adjacent information management unit 40 stores adjacent information as shown in FIG.
  • the transmission / reception unit 10 receives a beacon radio wave from an adjacent wireless device, and the adjacent information management unit 40 updates the adjacent information shown in FIG. 3 (S100 to S110). .
  • the communication management unit 20 selects a wireless device that is a counterpart to which a packet is to be transmitted as a routing destination candidate from the viewpoint of communication economy (S120). For example, assume that the wireless device F is selected as a routing destination candidate for the communication event at point a in FIG.
  • the communication management unit 20 refers to the adjacent information stored in the adjacent information storage unit 45 via the adjacent information management unit 40, and can the wireless device F be received using the operation information of the wireless device F (operation state) (S125). Specifically, based on the adjacent information (operation information) shown in FIG. 3, a timing chart as shown in FIG. 4 is internally generated to determine whether the target wireless device is in operation. .
  • the communication management unit 20 determines the wireless device that is the routing destination as the wireless device F (S130), and transmits a packet that is communication data (S135).
  • the wireless device F is in an operating state indicated by a broken line in FIG. Thereafter, the wireless device F transfers the packet to the root device R (b in the figure).
  • the communication management unit 20 determines whether the packet to be transmitted has a content that allows communication delay (S140). In the example illustrated in FIG. 4, the wireless device F is not operating at the point c.
  • the communication management unit 20 waits for transmission until the wireless device F enters an operating state (S145). That is, since the wireless device F is not in operation in c in the figure, the communication management unit 20 waits for transmission until d in the figure.
  • the communication management unit 20 determines the wireless device F as a routing destination at the timing of point d when the wireless device F is in the operating state (S130), and transmits a packet as communication data (S135). In the example shown in FIG. 4, since the wireless device F is in the operating state indicated by the broken line in d in the figure, the wireless device F is determined as the routing destination. Thereafter, the wireless device F transfers the packet to the root device R (e in the figure).
  • the communication management unit 20 When the transmission target packet does not allow communication delay (No in S140), for example, when the packet has a flag related to emergency communication, the communication management unit 20 gives up the wireless device F as a routing destination candidate, and others Routing candidates are selected (S150). The communication management unit 20 determines whether or not a new routing candidate is in operation (S125). If not, the communication management unit 20 determines whether to allow communication delay (S140), and the routing destination candidate is determined. Continue processing until In the example shown in FIG. 4, the wireless device B is selected as another candidate at f in the figure, and since the wireless device B is in operation, the wireless device B is determined as the routing destination and the communication data is transmitted. Thereafter, the wireless device B transfers the packet to the root device R (g in the figure).
  • the wireless device of the embodiment since its own operation information is transmitted as a regular beacon radio wave and receives a beacon radio wave from an adjacent radio device, the operation information of the radio device is acquired. Even if the wireless devices making up the network are not synchronized, it is possible to grasp the operating status of the wireless devices. That is, even if each wireless device is driven by a battery or the like and has a dormant state, it is possible to determine whether each wireless device is appropriate as a routing destination by acquiring the operating status of each other. Thereby, a dynamic routing process can be enabled.
  • each wireless device can set its own FIAF and operation period, it is possible to extend the time in which the device can operate when it is driven by a battery, and the entire network is more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless device according to an embodiment of the present invention is a wireless device that constitutes a network in which wireless devices belonging thereto are each configured to transmit beacon signals at common time intervals and stop the operation thereof for a predetermined period of time during each beacon signal transmission interval. The wireless device is provided with: a reception unit that receives beacon signals including operation information indicating operation states of other wireless devices belonging to the network; an adjacency information management unit that obtains the operation information of the other wireless devices from the received beacon signals and manages the operation information in association with identifiers of the other wireless devices; and a communication management unit that, when a communication event occurs, determines routing destinations for data transmission in the communication event on the basis of the operation information of the other wireless devices, which is managed by the adjacency information management unit.

Description

無線装置Wireless device
 本発明は、メッシュ構造でネットワークを構成する無線装置に関する。 The present invention relates to a wireless device that configures a network with a mesh structure.
 メッシュ構造をもつネットワークの通信では、ネットワークを構成する無線装置を経由して目的とする無線装置までパケットを伝送する。このため、経由する無線装置をどのように選択するか、すなわちルーティング処理が重要になる。 In communication of a network having a mesh structure, a packet is transmitted to a target wireless device via a wireless device constituting the network. For this reason, how to select a wireless device to be routed, that is, routing processing becomes important.
 一方、ネットワークによっては、電池駆動の無線装置により構成される場合がある。このようなネットワークでは、通信経済上の観点だけでなく、無線装置を駆動する電池残量の観点から、動的なルーティング処理が必要になることがある。しかし、電池駆動の無線装置は、電池容量の問題から、定期的に動作を休止するスリープ動作をすることが多く、隣接する無線装置の状況を把握して動的にルーティング処理を行うことが困難であった。 On the other hand, depending on the network, it may be configured by a battery-driven wireless device. In such a network, dynamic routing processing may be necessary not only from the viewpoint of communication economy but also from the viewpoint of the remaining battery level for driving the wireless device. However, battery-powered wireless devices often perform sleep operations that periodically cease operation due to battery capacity problems, making it difficult to grasp the status of adjacent wireless devices and perform routing processing dynamically. Met.
特開2013-191358号公報JP 2013-191358 A
 このように、従来の無線装置では、電池駆動の無線装置によりメッシュ構造のネットワークを構成した場合に、動的なルーティング処理を行うことが困難であるという問題がある。本発明はかかる問題を解決するためになされたもので、隣接装置の状況を把握し動的なルーティング処理を可能とする無線装置を提供することを目的としている。 As described above, the conventional wireless device has a problem that it is difficult to perform dynamic routing processing when a mesh-structured network is configured by battery-powered wireless devices. The present invention has been made to solve such a problem, and an object of the present invention is to provide a wireless device that can grasp the status of an adjacent device and perform dynamic routing processing.
 実施形態の無線装置は、所属する無線装置それぞれが、共通する時間間隔でビーコン信号を送信するとともに、ビーコン信号の送信間隔の間にそれぞれ所定の時間動作を休止するように構成されたネットワークにおいて、該ネットワークをなす無線装置であって、ネットワークに所属する他の無線装置の稼働状況を示す稼働情報を含むビーコン信号を受信する受信部と、受信したビーコン信号から他の無線装置の稼働情報を取得し、該稼働情報を他の無線装置の識別子と対応付けて管理する隣接情報管理部と、通信イベント発生時に、隣接情報管理部が管理する他の無線装置の稼働情報に基づいて、通信イベントにおけるデータを送信するためのルーティング先を決定する通信管理部とを備えている。 The wireless device according to the embodiment is configured such that each of the wireless devices to which the wireless device belongs belongs to a network configured to transmit a beacon signal at a common time interval and to pause operation for a predetermined time during the transmission interval of the beacon signal. A wireless device that is part of the network, and that receives a beacon signal including operation information indicating the operation status of another wireless device belonging to the network, and acquires operation information of the other wireless device from the received beacon signal In the communication event, the adjacent information management unit that manages the operation information in association with the identifier of the other wireless device and the operation information of the other wireless device managed by the adjacent information management unit when the communication event occurs. And a communication management unit that determines a routing destination for transmitting data.
 本発明によれば、隣接装置の状況を把握し動的なルーティング処理を可能とする無線装置を提供することができる。 According to the present invention, it is possible to provide a wireless device that can grasp the status of neighboring devices and enable dynamic routing processing.
実施形態に係る無線装置からなるメッシュ型ネットワークの例を示す図である。It is a figure which shows the example of the mesh type network which consists of a radio | wireless apparatus which concerns on embodiment. 実施形態に係る無線装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless apparatus which concerns on embodiment. 実施形態に係る無線装置の隣接情報の例を示す図である。It is a figure which shows the example of the adjacent information of the radio | wireless apparatus which concerns on embodiment. 実施形態に係る無線装置からなるネットワークにおけるビーコン電波送信およびルーティング動作を時系列的に示す概念図である。It is a conceptual diagram which shows the beacon electric wave transmission and routing operation | movement in the network which consists of a radio | wireless apparatus which concerns on embodiment in time series. 実施形態に係る無線装置によるルーティング動作の例を示すフローチャートである。5 is a flowchart illustrating an example of a routing operation by the wireless device according to the embodiment.
 (実施形態のネットワーク構成)
以下、図面を参照して実施形態に係る無線装置を詳細に説明する。図1は、実施形態の無線装置がなすネットワークの様子を示している。
(Network configuration of the embodiment)
Hereinafter, a wireless device according to an embodiment will be described in detail with reference to the drawings. FIG. 1 shows a state of a network formed by the wireless device of the embodiment.
 図1に示すように、実施形態の無線装置がなすネットワークNWは、複数の無線装置からなるメッシュ構造を有している。ネットワークは、当該ネットワークを統括するルート装置R(図中「R」。以下同様。)と、他の無線装置A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,QおよびSとが存在する。ネットワークを構成する無線装置は、電池など電源容量が限られた状態で動作しており、それぞれルート装置Rを頂点とする「階層」(Depth)をなしている。無線装置の階層は、おおむねルート装置Rにパケットを伝送する際のホップ数を示す。しかし、無線装置間のルーティングは通信経済上の理由により動的に決定されるから、図1に示すようにルート装置Rの階層を「0」として、階層が「2」の無線装置Dであっても、直接ルート装置Rと通信可能な場合もあり得る。 As shown in FIG. 1, the network NW formed by the wireless device of the embodiment has a mesh structure composed of a plurality of wireless devices. The network includes a root device R (“R” in the figure, the same applies hereinafter) that controls the network, and other wireless devices A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, and S exist. The wireless devices constituting the network operate in a state where the power supply capacity such as a battery is limited, and each forms a “hierarchy” (Depth) having the root device R as a vertex. The hierarchy of the wireless device generally indicates the number of hops when a packet is transmitted to the root device R. However, since routing between wireless devices is dynamically determined for reasons of communication economy, the hierarchy of the root device R is “0” and the wireless device D is “2” as shown in FIG. However, it may be possible to communicate with the root device R directly.
 図1において無線装置Gを例にとると、階層は「1」であり、隣接する無線装置(通信可能な無線装置)として、ルート装置R、無線装置B,D,F,H,L,Mが示されている。無線装置Gは、ルート装置R、無線装置B,D,F,H,L,Mからパケットの伝送を受けることができ、ルート装置R、無線装置B,D,F,H,L,Mへパケットを伝送する(ルーティングする)ことができる。 Taking the wireless device G in FIG. 1 as an example, the hierarchy is “1”, and as the adjacent wireless devices (communicable wireless devices), the root device R, the wireless devices B, D, F, H, L, M It is shown. The wireless device G can receive packet transmission from the root device R and the wireless devices B, D, F, H, L, and M, and to the root device R, the wireless devices B, D, F, H, L, and M. Packets can be transmitted (routed).
 無線装置Gは、隣接するルート装置Rおよび無線装置B,D,F,H,L,Mと通信するため、それぞれの稼働状態を常に把握しておく必要があるから、隣接する無線装置の稼働状態を示す情報を各々の無線装置から取得し管理している。それを実現するため、無線装置それぞれは、自己の稼働状態を示す情報(稼働情報)を含んだビーコン電波(ビーコン信号)を定期的に送信する。すなわち、無線装置Gは、ルート装置R、無線装置B,D,F,H,L,Mからのビーコン電波を受信し、それぞれの稼働状態を取得している。 Since the wireless device G communicates with the adjacent route device R and the wireless devices B, D, F, H, L, and M, it is necessary to keep track of the respective operating states, so that the operation of the adjacent wireless device Information indicating the status is acquired and managed from each wireless device. In order to realize this, each wireless device periodically transmits a beacon radio wave (a beacon signal) including information (operation information) indicating its own operation state. That is, the wireless device G receives beacon radio waves from the route device R and the wireless devices B, D, F, H, L, and M, and acquires the respective operating states.
 無線装置によるビーコン電波の送信は、所定の時間間隔で行われる。ビーコン電波の送信間隔は、ルート装置Rを含めすべての無線装置が共通である。しかし、ビーコン電波を送信するタイミングは、ルート装置Rを含めすべての無線装置の間で同期されているとは限らない。 The transmission of beacon radio waves by the wireless device is performed at predetermined time intervals. The transmission interval of beacon radio waves is common to all wireless devices including the root device R. However, the timing for transmitting the beacon radio wave is not always synchronized among all wireless devices including the root device R.
 ところで、前述のとおり、実施形態のネットワークをなす無線装置は、電池など電源容量の限られた電源により駆動されることがある。したがって、ネットワーク全体を統括するルート装置Rを除き、無線装置AないしQおよび無線装置Sは、電源消費を抑えるための機能を備えている。電源消費を抑える機能の一つとして、無線装置の少なくとも一部の動作を休止状態とする休止機能が挙げられる。 Incidentally, as described above, the wireless device forming the network of the embodiment may be driven by a power source having a limited power source capacity such as a battery. Therefore, the wireless devices A to Q and the wireless device S have a function for suppressing power consumption, except for the route device R that controls the entire network. As one of the functions for suppressing power consumption, there is a hibernation function that puts at least part of the operation of the wireless device into a hibernation state.
 休止状態では、無線装置の送受信機能が停止される。個々の無線装置は、共通の時間間隔でビーコン電波を送信しているが、そのタイミングは同期されていないから、自己が休止状態の間に送信される隣接する無線装置のビーコン電波(さらには伝送対象たるパケット自体)を受信することができない。そこで、実施形態の無線装置は、動作を休止状態とする休止機能を一定の時間間隔で止めるとともに、送信するビーコン電波に休止機能を止めるタイミングを示す情報を追加している。これにより、自己が全てのビーコン電波を受信できるタイミングを隣接する装置に通知することができる。 In the hibernation state, the transmission / reception function of the wireless device is stopped. Individual radio devices transmit beacon radio waves at a common time interval, but the timing is not synchronized, so beacon radio waves (and transmissions) of neighboring radio devices that are transmitted while they are dormant The target packet itself) cannot be received. Therefore, the radio apparatus according to the embodiment stops the pause function that puts the operation in a pause state at regular time intervals, and adds information indicating the timing to stop the pause function to the beacon radio wave to be transmitted. Thereby, it is possible to notify an adjacent device of the timing at which the device can receive all beacon radio waves.
 すなわち、無線装置Gを例にとると、少なくとも自己の休止機能を止めている間に、隣接するルート装置R、無線装置B,D,F,H,LおよびMからのビーコン電波を受信し、これらの休止状態のタイミングを取得して、どのタイミングでパケット伝送が可能かを判定する。併せて、無線装置Gは、自己の休止状態のタイミングをビーコン電波に載せて隣接するルート装置R、無線装置B,D,F,H,LおよびMに送信し、これらの無線装置が自己へパケットを伝送可能なタイミングを知らせている。これにより、無線装置Gは、隣接する無線装置が電波を受信可能なタイミングを知ることができるので、パケットを伝送する場合にどの無線装置へルーティングすればよいかを判定することが可能になる。 That is, taking wireless device G as an example, at least while stopping its own sleep function, it receives beacon radio waves from adjacent route device R, wireless devices B, D, F, H, L and M, The timing of these dormant states is acquired, and it is determined at which timing packet transmission is possible. At the same time, the wireless device G puts its own dormant timing on a beacon radio wave and transmits it to the adjacent route device R, wireless devices B, D, F, H, L, and M, and these wireless devices return to themselves. It informs when the packet can be transmitted. As a result, since the wireless device G can know the timing at which the adjacent wireless device can receive radio waves, it is possible to determine which wireless device should be routed when transmitting a packet.
 (実施形態の無線装置)
続いて、実施形態のネットワークにおいてルーティングを可能にする無線装置の機能構成を詳細に説明する。図2に示すように、実施形態の無線装置1は、メッシュ構造のネットワークNWを構成し、ルート装置に近い上位の親装置P、同じく下位の子装置C、および自己と同階層の兄弟装置Sと直接的に接続されている。無線装置1は、アンテナ15が接続された送受信部10、通信管理部20、自己情報管理部30、自己情報記憶部35、隣接情報管理部40、および隣接情報記憶部45を備えている。なお、親装置P、兄弟装置S、子装置Cは、それぞれ無線装置1と同様の構成を有している。
(Radio Device of Embodiment)
Next, the functional configuration of the wireless device that enables routing in the network of the embodiment will be described in detail. As illustrated in FIG. 2, the wireless device 1 according to the embodiment configures a network NW having a mesh structure. And directly connected. The wireless device 1 includes a transmission / reception unit 10 to which an antenna 15 is connected, a communication management unit 20, a self information management unit 30, a self information storage unit 35, an adjacent information management unit 40, and an adjacent information storage unit 45. Note that each of the parent device P, the brother device S, and the child device C has the same configuration as the wireless device 1.
 送受信部10は、実施形態の無線装置において電波を送信し受信する無線インタフェースである。送受信部10は、以下に説明するルーティング機能だけでなく、具体的なデータの送受信をも行う機能を有している。送受信部10は、所定の時間間隔でビーコンを送信する機能を有している。なお、隣接する無線装置との衝突を避けるため、いわゆるCSMA/CAの機能を備えてもよい。 The transceiver 10 is a wireless interface that transmits and receives radio waves in the wireless device of the embodiment. The transmission / reception unit 10 has not only a routing function described below but also a function of performing specific data transmission / reception. The transmission / reception unit 10 has a function of transmitting beacons at predetermined time intervals. In order to avoid a collision with an adjacent wireless device, a so-called CSMA / CA function may be provided.
 通信管理部20は、ネットワークNWにおけるルーティング処理や、データの送受信管理を行う演算ブロックである。自己情報管理部30は、自己の稼働情報を設定または更新する演算ブロックである。自己情報記憶部35は、自己情報管理部30が設定し更新した稼働情報を記憶する。隣接情報管理部40は、隣接する無線装置それぞれの稼働情報を収集し更新する演算ブロックである。隣接情報記憶部45は、隣接する無線装置それぞれの稼働情報を記憶する。 The communication management unit 20 is a calculation block that performs routing processing in the network NW and data transmission / reception management. The self information management unit 30 is a calculation block that sets or updates its own operation information. The self information storage unit 35 stores the operation information set and updated by the self information management unit 30. The adjacent information management unit 40 is a calculation block that collects and updates operation information of each adjacent wireless device. The adjacent information storage unit 45 stores operation information of each adjacent wireless device.
 稼働情報は、その無線装置の稼働状況を示す複数の要素により構成されている。自己情報記憶部35が記憶する自己情報は自己の稼働情報であり、隣接情報記憶部45が記憶する隣接情報は隣接する無線装置の稼働情報である。自己情報と隣接情報の内容は、隣接情報が対応する無線装置のアドレスを含んでいる点を除いて、それぞれ共通である。 The operation information is composed of a plurality of elements indicating the operation status of the wireless device. The self-information stored in the self-information storage unit 35 is own operation information, and the adjacent information stored in the adjacent information storage unit 45 is operation information of adjacent wireless devices. The contents of the self information and the adjacent information are common except that the adjacent information includes the address of the corresponding wireless device.
 図3は、隣接情報記憶部45が記憶する隣接情報(隣接装置の稼働情報)の一例を示している。図3に示すように、稼働情報は、たとえばその無線装置の階層、稼働期間、全稼働期間のビーコン間隔、全稼働期間までのビーコン回数を、隣接する無線装置単位で含んでいる。 FIG. 3 shows an example of adjacent information (operation information of adjacent devices) stored in the adjacent information storage unit 45. As shown in FIG. 3, the operation information includes, for example, the wireless device hierarchy, the operation period, the beacon interval of the entire operation period, and the number of beacons up to the entire operation period in units of adjacent radio devices.
 実施形態の送受信部10は、動的なルーティングを可能にするため、所定の間隔で、自己の稼働情報を含むビーコン電波を送信する。ビーコン電波を受信した無線装置は、ビーコン電波に含まれる稼働情報に基づき当該ビーコン電波を送信した無線装置が休止状態となるタイミングなどの情報を取得してルーティング処理の参考情報とする。 The transmission / reception unit 10 of the embodiment transmits a beacon radio wave including its own operation information at a predetermined interval in order to enable dynamic routing. The wireless device that has received the beacon radio wave acquires information such as the timing at which the radio device that has transmitted the beacon radio wave is in a dormant state based on operation information included in the beacon radio wave, and uses the information as reference information for routing processing.
 前述したとおり、ビーコン電波を送信する時間間隔は無線装置間で共通するが、ビーコン電波を送信するタイミングは、無線装置間で同期しているとは限らない。したがって、隣接する無線装置全てのビーコン電波を受信するときは、一定期間受信状態を継続する必要がある。そこで、稼働情報は、対応する無線装置がどのタイミングで休止状態(休止機能)を止めているか(継続的な受信状態にあるか)を示す情報を含んでいる。 As described above, the time interval for transmitting the beacon radio wave is common among the wireless devices, but the timing for transmitting the beacon radio wave is not always synchronized between the wireless devices. Therefore, when receiving beacon radio waves from all adjacent wireless devices, it is necessary to continue the reception state for a certain period. Therefore, the operation information includes information indicating at what timing the corresponding wireless device stops the dormant state (pause function) (is in a continuous reception state).
 図3を参照して稼働情報について詳細に説明する。階層とは、対応する隣接装置において、ネットワークNW上の最上位に位置するルート装置Rからのメトリックによる相対距離を示す情報であり、その値が大きいほどルート装置までに要するメトリックによるコストが大きい多いことを示す。図3に示す例では、隣接装置として装置R,B,F,H,L、Mがリストされ、それぞれのネットワーク上の階層が0,1,1,2,2,2であることが示されている。階層が0である装置Rは、最上位のルート装置である。 The operation information will be described in detail with reference to FIG. The hierarchy is information indicating a relative distance based on a metric from the root device R located at the highest position on the network NW in the corresponding neighboring device, and the larger the value, the higher the cost due to the metric required for the root device. It shows that. In the example shown in FIG. 3, devices R, B, F, H, L, and M are listed as neighboring devices, and the layers on the respective networks are shown to be 0, 1, 1, 2, 2, and 2. ing. The device R whose hierarchy is 0 is the highest-level root device.
 稼働期間とは、その無線装置が送信するビーコンの送信間隔(期間)のうち、当該無線装置が稼働状態にある期間(休止状態ではない期間)を示す情報である。稼働期間は、たとえば、ビーコンの送信間隔のうちどれくらいの割合を稼働(または休止)しているかを示す数値で表すことができる。この例において稼働期間が「0.5」であれば、ビーコンの送信間隔のうち半分(1/2)の期間のみ稼働しており、残りの期間は休止状態であることを示している。無線装置の休止状態では、受信動作などの諸機能が停止しているから、電池の消耗を抑えることが可能になる。なお、稼働期間をどのように表すかについてはこの例に限定されない。具体的な時間の単位で表してもよい。 The operating period is information indicating a period in which the wireless device is in an operating state (a period not in a dormant state) among transmission intervals (periods) of beacons transmitted by the wireless device. The operation period can be represented by a numerical value indicating, for example, how much of the beacon transmission interval is operating (or dormant). In this example, if the operating period is “0.5”, it indicates that only half (1/2) of the beacon transmission intervals are operating, and the remaining period is in a dormant state. In the sleep state of the wireless device, since various functions such as the reception operation are stopped, it is possible to suppress battery consumption. Note that how to represent the operation period is not limited to this example. It may be expressed in a specific unit of time.
 全稼働期間のビーコン間隔とは、その無線装置が送信するビーコンの送信間隔のうち、休止状態を含まない期間(継続して受信可能な期間)が現れる頻度を示す情報である。図3に示す例では、その頻度をビーコン電波の回数を用いて表している。すなわち、図3の無線装置Bは、全稼働期間のビーコン間隔が「3」であるが、これは、ビーコン電波の送信が3回あればそのうち1回の送信後次のビーコンまでは休止状態とはならないことを示している。同様に、装置Rは全稼働期間のビーコン間隔が「1」であるが、これはビーコン送信1回のうち1回は休止状態とはならないこと、すなわち休止状態が存在しないことを表している。 The beacon interval of the entire operation period is information indicating the frequency of occurrence of a period (period during which reception is continuously possible) that does not include a dormant state among transmission intervals of beacons transmitted by the wireless device. In the example shown in FIG. 3, the frequency is expressed using the number of beacon radio waves. That is, in the wireless device B of FIG. 3, the beacon interval of the entire operation period is “3”. If the beacon radio wave is transmitted three times, this is a pause state until the next beacon after one transmission. Indicates that it must not be. Similarly, the beacon interval of the entire operation period of the device R is “1”, which indicates that one of the beacon transmissions is not in a dormant state, that is, there is no dormant state.
 全稼働期間までのビーコン回数は、その稼働情報が含まれたビーコン電波の後、休止機能が解除されるまでのビーコン電波の回数を示している。たとえば、無線装置Bの全稼働期間までのビーコン回数は「2」であるが、これは、ビーコン電波をあと2回送信した後に休止状態を含まない期間が現れることを示している。同様に、ルート装置Rの全稼働期間までのビーコン回数は「0」であるが、これは休止状態とはならないことを表している。 The number of beacons until the entire operation period indicates the number of beacon signals until the suspension function is canceled after the beacon signal including the operation information. For example, the number of beacons until the entire operation period of the wireless device B is “2”, which indicates that a period that does not include a dormant state appears after two more beacon radio waves are transmitted. Similarly, the number of beacons until the entire operation period of the root device R is “0”, which represents that the route apparatus R is not in a dormant state.
 なお、稼働情報には、当該無線装置が次に稼働する時刻を示す次回稼働時刻や、同じく次に休止状態となる時刻を示す次回休止時刻を含んでもよい。この「時刻」は、時分に限らず秒単位(さらにはミリセコンド単位)としてもよい。次回稼働時刻や次回休止時刻は、ビーコン電波に含めてもよいが、ビーコン電波を受信した時刻と、全稼働期間のビーコン間隔と、全稼働期間までのビーコン回数とがあれば計算が可能であるから、受信した無線装置自らが計算しても構わない。 Note that the operation information may include a next operation time indicating a time when the wireless device is operated next time, and a next stop time indicating a time when the radio apparatus is next in the sleep state. This “time” is not limited to hours and minutes, but may be in units of seconds (and in milliseconds). The next operation time and the next stop time may be included in the beacon radio wave, but can be calculated if there is a time when the beacon radio wave is received, the beacon interval of the entire operation period, and the number of beacons until the entire operation period. Therefore, the received wireless device itself may calculate.
 (実施形態のネットワークにおけるビーコン電波)
ここで、図4を参照して、実施形態のネットワークにおける各無線装置のビーコン電波の送信態様を説明する。図4は、図1に示すネットワークにおけるルート装置R、無線装置A~D,F~H,LおよびMそれぞれのビーコン電波の送信タイミング例を示している。
(Beacon radio wave in network of embodiment)
Here, with reference to FIG. 4, the transmission aspect of the beacon electric wave of each radio | wireless apparatus in the network of embodiment is demonstrated. FIG. 4 shows an example of transmission timing of beacon radio waves of the route device R and the wireless devices A to D, F to H, L, and M in the network shown in FIG.
 図4に示すように、ネットワークNWにおいて、ルート装置Rおよび無線装置それぞれは、一定時間間隔でビーコン電波を送信する。例えばルート装置Rは、参照時刻t=0のときにビーコン電波Txrを送信すると、t=t1,t2,t3,t4…のように一定間隔でビーコン電波Txrを送信する。同様に、無線装置Aは、ルート装置Rと同期はしていないが、一定の時間間隔ti(t1とt2の間)でビーコン電波Txaを送信する。他の無線装置も同様である。 As shown in FIG. 4, in the network NW, each of the root device R and the wireless device transmits a beacon radio wave at regular time intervals. For example, when the root device R transmits the beacon radio wave Txr at the reference time t = 0, the root device R transmits the beacon radio wave Txr at regular intervals such as t = t1, t2, t3, t4. Similarly, the wireless device A is not synchronized with the root device R, but transmits a beacon radio wave Txa at a constant time interval ti (between t1 and t2). The same applies to other wireless devices.
 図4に示すように、t=0においてルート装置Rがビーコン電波Txrを送信すると、無線装置A,B,C,D,GおよびFが当該ビーコン電波を受信している(図中Rxa)。すなわち、無線装置A,B,C,D,GおよびFは、ルート装置Rの隣接装置であるから、装置Rのビーコン電波を受信することが可能である。同様に、無線装置R,B,D,F,H,LおよびMは、無線装置Gのビーコン電波Txgを受信可能である。 As shown in FIG. 4, when the root device R transmits a beacon radio wave Txr at t = 0, the radio devices A, B, C, D, G, and F receive the beacon radio wave (Rxa in the figure). That is, since the wireless devices A, B, C, D, G, and F are adjacent devices of the root device R, it is possible to receive the beacon radio wave of the device R. Similarly, the wireless devices R, B, D, F, H, L, and M can receive the beacon radio wave Txg of the wireless device G.
 なお、無線装置Aのビーコン電波Txaは、ルート装置Rおよび無線装置Bに届いているが、同じタイミングで無線装置Hのビーコン電波Txhが無線装置GおよびMに届いている。これらは互いにビーコン電波が届かない位置関係にあることになる。 Note that the beacon radio wave Txa of the radio device A reaches the root device R and the radio device B, but the beacon radio wave Txh of the radio device H reaches the radio devices G and M at the same timing. These are in a positional relationship where beacon radio waves do not reach each other.
 図4において、破線は無線装置それぞれが稼働状態である期間を示している。すなわち、ルート装置Rは全期間稼働状態にあり(休止状態がない)、無線装置Aは、ビーコン電波Txaを送信した直後から次のビーコン電波Txa送信までの期間の1/2だけ稼働状態にある。これは、図3に示す稼働情報のうちルート装置Rの稼働期間が1(全期間稼働)、同じく無線装置Aの稼働期間が0.5(ビーコン間隔のうち1/2だけ稼働)であることに対応している。 In FIG. 4, the broken line indicates a period during which each wireless device is in operation. That is, the root device R is in an operating state for all periods (there is no dormant state), and the wireless device A is in an operating state for a half of the period from immediately after transmitting the beacon radio wave Txa to the next beacon radio wave Txa transmission. . This means that in the operation information shown in FIG. 3, the operation period of the root device R is 1 (all period operation), and the operation period of the wireless device A is 0.5 (only 1/2 of the beacon interval is operating). It corresponds to.
 図4において、FIAF(Full Interval Awake Frequency)とは、図3に示す稼働情報における全稼働期間のビーコン間隔に対応する。例えば、ルート装置Rは、全稼働期間のビーコン間隔が「1」であるが、これは休止状態が存在しないこと(常に全稼働期間であること)を示している。同様に、無線装置Bは、ビーコン電波3回のうち1回はその後の休止状態がなく全稼働期間となっていることを示している。すなわち、図4における無線装置BのB1から数えて、3回のビーコン電波送信(B1,B2,B3)のうち3回目のビーコン電波Txb(B3)の送信後は休止期間がなく(破線で示される期間が継続)、続く4回目のビーコン電波Txb(B4)の後から休止状態が生じている。 In FIG. 4, FIAF (Full Interval Awake Frequency) corresponds to the beacon interval of the entire operation period in the operation information shown in FIG. For example, the root apparatus R has a beacon interval of “1” for the entire operation period, which indicates that there is no hibernation state (always the entire operation period). Similarly, the wireless device B indicates that one out of three beacon radio waves has no rest state after that and is in the full operation period. That is, there is no rest period after the transmission of the third beacon radio wave Txb (B3) among the three beacon radio wave transmissions (B1, B2, B3), counted from B1 of the wireless device B in FIG. For a period of time), a pause state occurs after the subsequent fourth beacon radio wave Txb (B4).
 図4において破線で囲まれていない期間は、ビーコン電波が届いていても受信することができない。例えば、無線装置Bのビーコン電波Txbは、B1において装置Aに届いているが、装置Aの破線で示される期間ではないから、受信はされない。B3において装置Aは受信することができる。 In the period not surrounded by the broken line in FIG. 4, it cannot be received even if the beacon radio wave arrives. For example, the beacon radio wave Txb of the wireless device B reaches the device A in B1, but is not received because it is not the period indicated by the broken line of the device A. In B3, apparatus A can receive.
 すなわち、すべての無線装置は、ビーコン電波を所定回数送信すると、続くビーコン電波までの間を休止状態とせず継続して稼働状態を維持するように構成される。したがって、どの無線装置もビーコン電波間の全期間を受信可能となる機会があるから、受信可能な隣接装置のビーコン電波すべてを受信することが可能になる。 That is, all the wireless devices are configured to maintain the operation state continuously without being in a pause state until a beacon radio wave is transmitted a predetermined number of times. Accordingly, since any wireless device has an opportunity to receive the entire period between beacon radio waves, it is possible to receive all beacon radio waves of neighboring devices that can be received.
 (実施形態の無線装置の動作)
続いて、図1ないし5を参照して、この実施形態のネットワークにおける無線装置の動作について詳細に説明する。以下の説明は、図1および4における無線装置Gの動作例である。
(Operation of Wireless Device of Embodiment)
Next, the operation of the wireless device in the network of this embodiment will be described in detail with reference to FIGS. The following description is an example of the operation of the wireless device G in FIGS.
 自己情報管理部30は、自己情報記憶部35に記憶された自己の稼働情報を参照し、休止状態とすべきタイミングおよび休止状態とする休止機能を止めるべき期間を通信管理部20に与える。ここで、図4に示すように、無線装置Gの「全稼働期間のビーコン間隔」(FIAF)は「5」であるから、ビーコン電波の送信5回のうち1回は、その次のビーコン電波送信まで休止状態とはならず、全期間稼働状態となる。 The self-information management unit 30 refers to its own operation information stored in the self-information storage unit 35, and gives the communication management unit 20 a timing at which to enter the hibernation state and a period during which the hibernation function to stop the hibernation state should be stopped. Here, as shown in FIG. 4, since the “beacon interval for all operating periods” (FIAF) of the wireless device G is “5”, one out of five transmissions of the beacon radio wave is the next beacon radio wave. It is not in a suspended state until transmission, but is in an operating state for the entire period.
 すなわち、図4において無線装置Gのビーコン電波Txgの送信は5回示されているが(G1~G5)、そのうち最初の1回目のビーコン電波Txg(G1)の送信後は休止状態がなく、次のビーコン電波Txg(G2)送信まで破線で示される稼働状態が継続している。通信管理部20は、例えば図4にて破線で示されるタイミングで送受信部10の動作をオンオフ制御している。送受信部10は、少なくともG1~G2に示されるような全稼働期間中において、隣接する無線装置すべてのビーコン電波を受信することができる(ステップ100のYes。以下「S100のYes」のように称する。)。 That is, in FIG. 4, the transmission of the beacon radio wave Txg by the wireless device G is shown five times (G1 to G5), but after the first transmission of the first beacon radio wave Txg (G1), there is no pause state and the next The operation state indicated by the broken line continues until the beacon radio wave Txg (G2) is transmitted. For example, the communication management unit 20 performs on / off control of the operation of the transmission / reception unit 10 at a timing indicated by a broken line in FIG. The transmitting / receiving unit 10 can receive beacon radio waves from all adjacent wireless devices during at least the entire operation period as indicated by G1 to G2 (Yes in step 100; hereinafter referred to as “Yes in S100”). .)
 送受信部10は、隣接するルート装置R,無線装置B,F,H,LおよびMのビーコン電波を受信して復号し、無線装置それぞれの稼働情報を隣接情報管理部40に渡す(S105)。 The transmission / reception unit 10 receives and decodes the beacon radio waves of the adjacent route device R, wireless devices B, F, H, L, and M, and passes the operation information of each wireless device to the adjacent information management unit 40 (S105).
 隣接情報管理部40は、送受信部10から受け取った無線装置それぞれの稼働情報を、当該無線装置のアドレスと対応付け、隣接情報として隣接情報記憶部45に記憶させる(S110)。例えば、無線装置Gは、図4中1回目のビーコン電波Txg(G1)を送信後に、まず無線装置Hのビーコン電波Txhを受信する(Y点)。図3に示すように、無線装置Hのビーコンに含まれる稼働情報によれば、全稼働期間のビーコン間隔が「4」、全稼働期間までのビーコン回数は「4」である。これは、図4のY点において無線装置Hのビーコン電波Txhを受信したとすると、ビーコン4回(H1~H4)のうち1回は休止状態がない期間を含むことを示し、また、Y点から数えて4回目のビーコン電波Txh(H4)の後に休止状態を含まない期間が現れること(破線で示す領域がその次のビーコン電波発射まで継続すること)が示されていることに対応する。すなわち、無線装置Hの稼働状態(1)~(3)の後には休止状態が現れ、稼働状態(4)は休止状態が現れないまま次のビーコン(H5)が送信される。 The adjacent information management unit 40 associates the operation information of each wireless device received from the transmission / reception unit 10 with the address of the wireless device and stores it in the adjacent information storage unit 45 as adjacent information (S110). For example, after transmitting the first beacon radio wave Txg (G1) in FIG. 4, the radio apparatus G first receives the beacon radio wave Txh of the radio apparatus H (point Y). As shown in FIG. 3, according to the operation information included in the beacon of the wireless device H, the beacon interval of the entire operation period is “4”, and the number of beacons until the entire operation period is “4”. This indicates that if the beacon radio wave Txh of the wireless device H is received at the point Y in FIG. 4, one out of four beacons (H1 to H4) includes a period in which there is no sleep state. This corresponds to the fact that a period that does not include a dormant state appears after the fourth beacon radio wave Txh (H4) counted from (a region indicated by a broken line continues until the next beacon radio wave emission). That is, after the operating states (1) to (3) of the wireless device H, a dormant state appears, and in the operating state (4), the next beacon (H5) is transmitted without the dormant state appearing.
 同様に、無線装置Gは、無線装置Hのビーコンに続いてX点において無線装置Lからのビーコン電波Txlを受信する。図3に示すように、無線装置Lの全稼働期間のビーコン間隔が「3」、全稼働期間までのビーコン回数は「3」である。これは、図4のX点において無線装置Lのビーコン電波Txl(L1)を受信したとすると、ビーコン3回のうち1回は休止状態がないことを示し、またX点(L1)から数えて3回目のビーコン電波Txl(L3)発射の後に休止状態を含まない期間が現れることに対応する。 Similarly, the wireless device G receives the beacon radio wave Txl from the wireless device L at the point X following the beacon of the wireless device H. As illustrated in FIG. 3, the beacon interval of the entire operation period of the wireless device L is “3”, and the number of beacons until the entire operation period is “3”. This indicates that if the beacon radio wave Txl (L1) of the wireless device L is received at the point X in FIG. 4, one out of three beacons is not in a dormant state, and counted from the point X (L1). This corresponds to the appearance of a period that does not include a dormant state after the third beacon radio wave Txl (L3) is emitted.
 他の無線装置についても同様であり、隣接情報管理部40は、図3に示すような隣接情報を隣接情報記憶部45に記憶させる。 The same applies to other wireless devices, and the adjacent information management unit 40 stores adjacent information as shown in FIG.
 通信イベントが発生しない場合(S115のNo)、送受信部10は、隣接する無線装置からのビーコン電波を受信し、隣接情報管理部40は、図3に示す隣接情報を更新する(S100~S110)。 When a communication event does not occur (No in S115), the transmission / reception unit 10 receives a beacon radio wave from an adjacent wireless device, and the adjacent information management unit 40 updates the adjacent information shown in FIG. 3 (S100 to S110). .
 通信イベントが発生した場合(S115のYes)、通信管理部20は、通信経済などの観点でパケットを伝送すべき相手方たる無線装置をルーティング先候補として選定する(S120)。例えば、図4のa点の通信イベントについて、ルーティング先候補として無線装置Fを選定したものと仮定する。 When a communication event occurs (Yes in S115), the communication management unit 20 selects a wireless device that is a counterpart to which a packet is to be transmitted as a routing destination candidate from the viewpoint of communication economy (S120). For example, assume that the wireless device F is selected as a routing destination candidate for the communication event at point a in FIG.
 通信管理部20は、隣接情報管理部40を介して隣接情報記憶部45に記憶された隣接情報を参照し、無線装置Fの稼働情報を用いて無線装置Fが受信可能であるか(稼働状態であるか)を判定する(S125)。具体的には、図3に示す隣接情報(稼働情報)をもとに、図4に示すようなタイミングチャートを内部的に生成して、対象となる無線装置が稼働状態であるかを判定する。 The communication management unit 20 refers to the adjacent information stored in the adjacent information storage unit 45 via the adjacent information management unit 40, and can the wireless device F be received using the operation information of the wireless device F (operation state) (S125). Specifically, based on the adjacent information (operation information) shown in FIG. 3, a timing chart as shown in FIG. 4 is internally generated to determine whether the target wireless device is in operation. .
 無線装置Fが稼働中であれば(S125のYes)、通信管理部20は、ルーティング先たる無線装置を無線装置Fに確定し(S130)、通信データたるパケットを送信する(S135)。図4に示す例では、図中aにおいて無線装置Fは破線で示される稼働状態にあるから、無線装置Fをルーティング先として確定する。その後、無線装置Fは、ルート装置Rへパケットを転送する(図中b)。 If the wireless device F is in operation (Yes in S125), the communication management unit 20 determines the wireless device that is the routing destination as the wireless device F (S130), and transmits a packet that is communication data (S135). In the example illustrated in FIG. 4, the wireless device F is in an operating state indicated by a broken line in FIG. Thereafter, the wireless device F transfers the packet to the root device R (b in the figure).
 無線装置Fが稼働中でない場合(S125のNo)、通信管理部20は、伝送対象のパケットが通信遅れを許容する内容であるかを判定する(S140)。図4に示す例では、c点において無線装置Fが稼働していない。 If the wireless device F is not in operation (No in S125), the communication management unit 20 determines whether the packet to be transmitted has a content that allows communication delay (S140). In the example illustrated in FIG. 4, the wireless device F is not operating at the point c.
 伝送対象パケットが通信遅れを許容する場合(S140のYes)、通信管理部20は、無線装置Fが稼働状態となるまで送信を待機する(S145)。すなわち、図中cにおいて無線装置Fが稼働状態ではなかったので、通信管理部20は、図中dまで送信を待機させる。そして、無線装置Fが稼働状態となったd点のタイミングで、通信管理部20は、無線装置Fをルーティング先として確定し(S130)、通信データたるパケットを送信する(S135)。図4に示す例では、図中dにおいて無線装置Fは破線で示される稼働状態にあるから、無線装置Fをルーティング先として確定する。その後、無線装置Fは、ルート装置Rへパケットを転送する(図中e)。 If the transmission target packet allows a communication delay (Yes in S140), the communication management unit 20 waits for transmission until the wireless device F enters an operating state (S145). That is, since the wireless device F is not in operation in c in the figure, the communication management unit 20 waits for transmission until d in the figure. The communication management unit 20 determines the wireless device F as a routing destination at the timing of point d when the wireless device F is in the operating state (S130), and transmits a packet as communication data (S135). In the example shown in FIG. 4, since the wireless device F is in the operating state indicated by the broken line in d in the figure, the wireless device F is determined as the routing destination. Thereafter, the wireless device F transfers the packet to the root device R (e in the figure).
 伝送対象パケットが通信遅れを許容しない場合(S140のNo)、例えば、当該パケットが緊急通信に係るフラグを有している場合、通信管理部20は、ルーティング先候補として無線装置Fをあきらめ、他のルーティング候補を選定する(S150)。通信管理部20は、新たなルーティング候補が稼働中であるか否かを判定し(S125)、稼働中でなければ通信遅れを許容するか否かを判定し(S140)、ルーティング先候補が確定するまで処理を継続する。図4に示す例では、図中fで無線装置Bを他の候補として選定し、無線装置Bは稼働中であるからルーティング先として無線装置Bを確定させ、通信データを送信している。その後、無線装置Bは、ルート装置Rへパケットを転送する(図中g)。 When the transmission target packet does not allow communication delay (No in S140), for example, when the packet has a flag related to emergency communication, the communication management unit 20 gives up the wireless device F as a routing destination candidate, and others Routing candidates are selected (S150). The communication management unit 20 determines whether or not a new routing candidate is in operation (S125). If not, the communication management unit 20 determines whether to allow communication delay (S140), and the routing destination candidate is determined. Continue processing until In the example shown in FIG. 4, the wireless device B is selected as another candidate at f in the figure, and since the wireless device B is in operation, the wireless device B is determined as the routing destination and the communication data is transmitted. Thereafter, the wireless device B transfers the packet to the root device R (g in the figure).
 このように、実施形態の無線装置によれば、自己の稼働情報を定期的なビーコン電波として送信するとともに隣接する無線装置からのビーコン電波を受信して当該無線装置の稼働情報を取得するので、ネットワークを構成する無線装置それぞれが同期されていなくても、当該無線装置それぞれの稼働状況を互いに把握することが可能になる。すなわち、無線装置それぞれが電池などで駆動され休止状態を有するものであっても、無線装置相互で互いの稼働状況を取得して、ルーティング先として適当かどうか判定することができる。これにより、動的なルーティング処理を可能にすることができる。 Thus, according to the wireless device of the embodiment, since its own operation information is transmitted as a regular beacon radio wave and receives a beacon radio wave from an adjacent radio device, the operation information of the radio device is acquired. Even if the wireless devices making up the network are not synchronized, it is possible to grasp the operating status of the wireless devices. That is, even if each wireless device is driven by a battery or the like and has a dormant state, it is possible to determine whether each wireless device is appropriate as a routing destination by acquiring the operating status of each other. Thereby, a dynamic routing process can be enabled.
 また、実施形態の無線装置によれば、各無線装置が独自のFIAFや稼働期間を設定できるので、装置が電池駆動などの場合に稼働可能な時間を長くすることができ、ネットワーク全体をより安定化することができる。 In addition, according to the wireless device of the embodiment, since each wireless device can set its own FIAF and operation period, it is possible to extend the time in which the device can operate when it is driven by a battery, and the entire network is more stable. Can be
 1…無線装置、10…送受信部、15…アンテナ、20…通信管理部、30…自己情報管理部、35…自己情報記憶部、40…隣接情報管理部、45…隣接情報記憶部。 DESCRIPTION OF SYMBOLS 1 ... Radio | wireless apparatus, 10 ... Transmission / reception part, 15 ... Antenna, 20 ... Communication management part, 30 ... Self information management part, 35 ... Self information storage part, 40 ... Adjacent information management part, 45 ... Adjacent information storage part.

Claims (5)

  1.  所属する無線装置それぞれが、共通する時間間隔でビーコン信号を送信するとともに、前記ビーコン信号の送信間隔の間にそれぞれ所定の時間動作を休止するように構成されたネットワークにおいて、該ネットワークをなす無線装置であって、
     前記ネットワークに所属する他の無線装置の稼働状況を示す稼働情報を含む前記ビーコン信号を受信する受信部と、
     前記受信したビーコン信号から前記他の無線装置の稼働情報を取得し、該稼働情報を前記他の無線装置の識別子と対応付けて管理する隣接情報管理部と、
     通信イベント発生時に、前記隣接情報管理部が管理する前記他の無線装置の稼働情報に基づいて、前記通信イベントにおけるデータを送信するためのルーティング先を決定する通信管理部と
    を備えた無線装置。
    Each of the wireless devices to which the wireless device belongs belongs to a network configured to transmit a beacon signal at a common time interval and to pause operation for a predetermined time during the transmission interval of the beacon signal. Because
    A receiving unit that receives the beacon signal including operation information indicating an operation status of another wireless device belonging to the network;
    An adjacent information management unit that acquires operation information of the other wireless device from the received beacon signal and manages the operation information in association with an identifier of the other wireless device;
    And a communication management unit that determines a routing destination for transmitting data in the communication event based on operation information of the other wireless device managed by the adjacent information management unit when a communication event occurs.
  2.  前記所属する無線装置は、前記ビーコン信号を所定回数送信するごとに1回、前記ビーコン信号の送信間隔の間継続して動作することを特徴とする請求項1記載の無線装置。 The wireless device according to claim 1, wherein the wireless device to which the wireless device belongs belongs operates once during the transmission interval of the beacon signal once every time the beacon signal is transmitted a predetermined number of times.
  3.  前記ビーコン信号は、前記継続して動作する送信間隔がどれくらいの頻度で発生するかを示す情報と、前記継続して動作する期間が発生するビーコン信号の送信タイミングを示す情報を含むことを特徴とする請求項2記載の無線装置。 The beacon signal includes information indicating how often the continuous operation transmission interval is generated and information indicating transmission timing of the beacon signal during which the continuous operation period occurs. The wireless device according to claim 2.
  4.  前記通信管理部は、前記通信イベント発生時に前記他の無線装置が休止している場合、前記通信イベントの実行を待機させることを特徴とする請求項1ないし3のいずれか1項に記載の無線装置。 The wireless communication according to any one of claims 1 to 3, wherein the communication management unit waits for the execution of the communication event when the other wireless device is suspended when the communication event occurs. apparatus.
  5.  前記通信管理部は、前記通信イベント発生時に前記他の無線装置が休止している場合、前記通信イベントが通信の遅延を許容するか否かを判定し、許容されない場合にルーティング先の選定を繰り返すことを特徴とする請求項1ないし3のいずれか1項に記載の無線装置。 The communication management unit determines whether or not the communication event allows a delay in communication when the other wireless device is inactive when the communication event occurs, and repeats selection of a routing destination when the communication event is not allowed. The wireless device according to claim 1, wherein the wireless device is a wireless device.
PCT/JP2017/038380 2016-10-25 2017-10-24 Wireless device WO2018079558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-209065 2016-10-25
JP2016209065A JP6893631B2 (en) 2016-10-25 2016-10-25 Wireless device

Publications (1)

Publication Number Publication Date
WO2018079558A1 true WO2018079558A1 (en) 2018-05-03

Family

ID=62023604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038380 WO2018079558A1 (en) 2016-10-25 2017-10-24 Wireless device

Country Status (2)

Country Link
JP (1) JP6893631B2 (en)
WO (1) WO2018079558A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056426A1 (en) * 2006-11-10 2008-05-15 Mitsubishi Electric Corporation Mobile communication system, mobile station and base station
JP2010239357A (en) * 2009-03-31 2010-10-21 Oki Electric Ind Co Ltd Wireless communication apparatus and communication control method
JP2012156682A (en) * 2011-01-25 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Radio communication system and radio communication method
WO2014208045A1 (en) * 2013-06-26 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Route control device and route control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056426A1 (en) * 2006-11-10 2008-05-15 Mitsubishi Electric Corporation Mobile communication system, mobile station and base station
JP2010239357A (en) * 2009-03-31 2010-10-21 Oki Electric Ind Co Ltd Wireless communication apparatus and communication control method
JP2012156682A (en) * 2011-01-25 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Radio communication system and radio communication method
WO2014208045A1 (en) * 2013-06-26 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Route control device and route control method

Also Published As

Publication number Publication date
JP6893631B2 (en) 2021-06-23
JP2018074262A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US11006237B2 (en) System and method for low power data routing
US7653010B2 (en) System and method for wireless mesh networking
Long et al. Energy-aware real-time routing for large-scale industrial internet of things
CN105340229B (en) The method and apparatus that dynamic adjustment is carried out to the frame MTU in communication network
US20070233835A1 (en) Methodology for scheduling data transfers from nodes using path information
Sumathi et al. Energy optimization in manets using on-demand routing protocol
TWI468047B (en) Mac protocol for multi-channel wireless networks
JP7057670B2 (en) Configurable communication module for flexible communication in energy-limited wireless systems
EP2109961A1 (en) Method for allocating an address of device in wireless personal area network (wpan) and wpan device
US20090161637A1 (en) Communication apparatus and method in wireless sensor network
WO2014080568A1 (en) Method for transmitting and receiving data
Bernard et al. A low energy consumption MAC protocol for WSN
US20080240322A1 (en) Communication controller and method for saving power in transmitting and receiving
WO2018220443A1 (en) System and method for low power data routing
Veisi et al. Enabling centralized scheduling using software defined networking in industrial wireless sensor networks
WO2018079558A1 (en) Wireless device
JP5975509B2 (en) Wireless communication system, wireless communication method, wireless communication device, wireless communication device control method, and wireless communication device control program
JP5254108B2 (en) Wireless communication apparatus and communication control method
JP2016010028A (en) Radio communication device and route construction method
JP6282509B2 (en) Wireless device and wireless communication system including the same
Bello et al. A platform for evaluating clustering strategies in mobile IEEE 802.15. 4-TSCH networks
Lu et al. Improving robustness and flexibility of MAC layer for guaranteed QoS indoor monitoring in wireless mesh sensor networks
JP2014123829A (en) Slave radio device, master radio device and path construction method
Kim et al. Energy-aware real-time routing for large-scale industrial internet of things
JP4229151B2 (en) Communication control apparatus and method, and node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864320

Country of ref document: EP

Kind code of ref document: A1